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Abstract: Recently developed quantum algorithms address computational challenges
in numerical analysis by performing linear algebra in Hilbert space. Such algorithms can
produce a quantum state proportional to the solution of a d-dimensional system of linear
equations or linear differential equations with complexity poly(log d). While several of
these algorithms approximate the solution to within ε with complexity poly(log(1/ε)),
no such algorithm was previously known for differential equations with time-dependent
coefficients. Here we develop a quantum algorithm for linear ordinary differential equa-
tions based on so-called spectral methods, an alternative to finite difference meth-
ods that approximates the solution globally. Using this approach, we give a quantum
algorithm for time-dependent initial and boundary value problems with complexity
poly(log d, log(1/ε)).

1. Introduction

Differential equations have extensive applications throughout mathematics, science, and
engineering. Numerical methods for differential equations have beenwidely studied (see
for example [25]), giving fast algorithms for solving them using classical computers.

Recent work has developed quantum algorithms with the potential to extract infor-
mation about solutions of systems of differential equations even faster than is possible
classically. This body of work grew from the quantum linear systems algorithm (QLSA)
[20], which produces a quantum state proportional to the solution of a sparse system of d
linear equations in time poly(log d). Subsequent work improved the performance of that
algorithm [1,15] and applied it to develop similar quantum algorithms for differential
equations.

To achieve this improvement, quantum algorithms must operate under different as-
sumptions than those made for algorithms in classical numerical analysis. To represent
the output using poly(log d) qubits, the output is produced as a quantum state, not as
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an explicit description of a vector. Furthermore, to facilitate applying Hamiltonian sim-
ulation, these quantum algorithms use implicit access to the system of equations (say,
through a matrix specified by a sparse Hamiltonian oracle and the ability to prepare
quantum states encoding certain vectors). While these assumptions restrict the types of
equations that can be addressed and the types of information that can be extracted from
the final state, they nevertheless appear capable of producing useful information that
cannot be efficiently computed classically.

In this paper, we focus on systems of first-order linear ordinary differential equations
(ODEs). Such equations can be written in the form

dx(t)

dt
= A(t)x(t) + f (t) (1.1)

where t ∈ [0, T ] for some T > 0, the solution x(t) ∈ C
d is a d-dimensional vector, and

the system is determined by a time-dependentmatrix A(t) ∈ C
d×d and a time-dependent

inhomogeneity f (t) ∈ C
d . Provided A(t) and f (t) are continuous functions of t , the

initial value problem (i.e., the problem of determining x(t) for a given initial condition
x(0)) has a unique solution [2].

The Hamiltonian simulation problem is simply the special case of the quantum ODE
problem where A is antihermitian and f is zero. A substantial body of work has de-
veloped fast quantum algorithms for that special case [6–9,11,13,27–30]. Hamiltonian
simulation underlies the QLSA [15,20] which in turn gives algorithms for more general
differential equations.

Berry presented the first efficient quantum algorithm for general linear ODEs [5]. His
algorithm represents the system of differential equations as a system of linear equations
using a linear multistep method and solves that system using the QLSA. This approach
achieves complexity logarithmic in the dimension d and, by using a high-order integrator,
close to quadratic in the evolution time T . While this method could in principle be
applied to handle time-dependent equations, the analysis of [5] only explicitly considers
the time-independent case for simplicity.

Since it uses a finite difference approximation, the complexity of Berry’s algorithm
as a function of the solution error ε is poly(1/ε) [5]. Reference [10] improved this
to poly(log(1/ε)) by using a high-precision QLSA based on linear combinations of
unitaries [15] to solve a linear system that encodes a truncated Taylor series. However,
this approach assumes that A(t) and f (t) are time-independent so that the solution of
the ODE can be written as an explicit series, and it is unclear how to generalize the
algorithm to time-dependent ODEs.

While we focus here on extending the above line of work, several other approaches
have been proposed for addressing differential equations with quantum computers. Ref-
erence [26] used a quantum version of the Euler method to handle nonlinear ODEs with
polynomial nonlinearities. This algorithm has complexity logarithmic in the dimension
but exponential in the evolution time (as is inevitable for general nonlinear ODEs). Other
work has developed quantum algorithms for partial differential equations (PDEs). Ref-
erence [16] described a quantum algorithm that applies the QLSA to implement a finite
element method for Maxwell’s equations. Reference [17] applied Hamiltonian simula-
tion to a finite difference approximation of the wave equation. Most recently, reference
[3] presented a continuous-variable quantum algorithm for initial value problems with
non-homogeneous linear PDEs.

Most of the aforementioned algorithms use a local approximation: they discretize the
differential equations into small time intervals to obtain a system of linear equations or
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linear differential equations that can be solved by the QLSA or Hamiltonian simulation.
For example, the central difference scheme approximates the time derivative at the point
x(t) as

dx(t)

dt
= x(t + h) − x(t − h)

2h
+ O(h2). (1.2)

High-order finite difference or finite element methods can reduce the error to O(hk),
where k − 1 is the order of the approximation. However, when solving an equation over
the interval [0, T ], the number of iterations is T/h = �(ε−1/k) for fixed k, giving a
total complexity that is poly(1/ε) even using high-precision methods for the QLSA or
Hamiltonian simulation.

For ODEs with special structure, some prior results already show how to avoid a
local approximation and thereby achieve complexity poly(log(1/ε)). When A(t) is anti-
Hermitian and f (t) = 0,we can directly applyHamiltonian simulation [9]; if A and f are
time-independent, then [10] uses a Taylor series to achieve complexity poly(log(1/ε)).
However, the case of general time-dependent linear ODEs had remained elusive.

In this paper, we use a nonlocal representation of the solution of a system of dif-
ferential equations to give a new quantum algorithm with complexity poly(log(1/ε))
even for time-dependent equations. While this is an exponential improvement in the de-
pendence on ε over previous work, it does not necessarily give an exponential runtime
improvement in the context of an algorithm with classical output. In general, statistical
error will introduce an overhead of poly(1/ε)when attempting to measure an observable
with precision ε. However, achieving complexity poly(log(1/ε)) can result in a poly-
nomial improvement in the overall running time. In particular, if an algorithm is used
as a subroutine k times, we should ensure error O(1/k) for each subroutine to give an
overall algorithm with bounded error. A subroutine with complexity poly(log(1/ε)) can
potentially give significant polynomial savings in such a case.

Time-dependent linear differential equations describe a wide variety of systems in
science and engineering. Examples include the wave equation and the Stokes equa-
tion (i.e., creeping flow) in fluid dynamics [24], the heat equation and the Boltzmann
equation in thermodynamics [19,33], the Poisson equation and Maxwell’s equations in
electromagnetism [22,34], and of course Schrödinger’s equation in quantummechanics.
Moreover, some nonlinear differential equations can be studied by linearizing them to
produce time-dependent linear equations (e.g., the linearized advection equation in fluid
dynamics [12]).

We focus our discussion on first-order linear ODEs. Higher-order ODEs can be
transformed into first-order ODEs by standard methods. Also, by discretizing space,
PDEs with both time and space dependence can be regarded as sparse linear systems
of time-dependent ODEs. Thus we focus on an equation of the form (1.1) with initial
condition

x(0) = γ (1.3)

for some specified γ ∈ C
d . We assume that A(t) is s-sparse (i.e., has at most s nonzero

entries in any row or column) for any t ∈ [0, T ]. Furthermore, we assume that A(t), f (t),
and γ are provided by black-box subroutines (which serve as abstractions of efficient
computations). In particular, following essentially the same model as in [10] (see also
Section 1.1 of [15]), suppose we have an oracle OA(t) that, for any t ∈ [0, T ] and any
given row or column specified as input, computes the locations and values of the nonzero
entries of A(t) in that row or column.We also assume oracles Ox and O f (t) that, for any
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t ∈ [0, T ], prepare normalized states |γ 〉 and | f (t)〉 proportional to γ and f (t), and that
also compute ‖γ ‖ and ‖ f (t)‖, respectively. Given such a description of the instance,
the goal is to produce a quantum state ε-close to |x(T )〉 (a normalized quantum state
proportional to x(T )).

As mentioned above, our main contribution is to implement a method that uses a
global approximation of the solution. We do this by developing a quantum version
of so-called spectral methods, a technique from classical numerical analysis that (ap-
proximately) represents the components of the solution x(t)i ≈ ∑

j ci jφ j (t) as linear
combinations of basis functions φ j (t) expressing the time dependence. Specifically,
we implement a Chebyshev pseudospectral method [4,21] using the QLSA. This ap-
proach approximates the solution by a truncated Chebyshev series with undetermined
coefficients and solves for those coefficients using a linear system that interpolates the
differential equations. According to the convergence theory of spectral methods, the so-
lution error decreases exponentially provided the solution is sufficiently smooth [18,31].
We use the LCU-based QLSA to solve this linear system with high precision [15]. To
analyze the algorithm, we upper bound the solution error and condition number of the
linear system and lower bound the success probability of the final measurement. Over-
all, we show that the total complexity of this approach is poly(log(1/ε)) for general
time-dependent ODEs. Informally, we show the following:

Theorem 1 (Informal). Consider a linear ODE (1.1) with given initial conditions. As-
sume A(t) is s-sparse and diagonalizable, and Re(λi (t)) ≤ 0 for all eigenvalues of
A(t). Then there exists a quantum algorithm that produces a state ε-close in l2 norm
to the exact solution, succeeding with probability �(1), with query and gate complexity
O

(
s‖A‖T poly(log(s‖A‖T/ε))).

In addition to initial value problems (IVPs), our approach can also address boundary
value problems (BVPs). Given an oracle for preparing a state α|x(0)〉+β|x(T )〉 express-
ing a general boundary condition, the goal of the quantum BVP is to produce a quantum
state ε-close to |x(t)〉 (a normalized state proportional to x(t)) for any desired t ∈ [0, T ].
We also give a quantum algorithm for this problem with complexity poly(log(1/ε)), as
follows:

Theorem 2 (Informal). Consider a linear ODE (1.1) with given boundary conditions.
Assume A(t) is s-sparse and diagonalizable, and Re(λi (t)) ≤ 0 for all eigenvalues of
A(t). Then there exists a quantum algorithm that produces a state ε-close in l2 norm
to the exact solution, succeeding with probability �(1), with query and gate complexity
O

(
s‖A‖4T 4 poly(log(s‖A‖T/ε))).

We give formal statements of Theorems 1 and 2 in Sects. 8 and 9, respectively. Note
that the dependence of the complexity on ‖A‖ and T is worse for BVPs than for IVPs.
This is because a rescaling approach that we apply for IVPs (introduced in Sect. 3)
cannot be extended to BVPs.

The remainder of this paper is organized as follows. Section 2 introduces the spectral
method and Sect. 3 shows how to encode it into a quantum linear system. Then Sect. 4
analyzes the exponential decrease of the solution error, Sect. 5 bounds the condition
number of the linear system, Sect. 6 lower bounds the success probability of the final
measurement, and Sect. 7 describes how to prepare the initial quantum state.We combine
these bounds in Sect. 8 to establish the main result.We then extend the analysis for initial
value problems to boundary value problems in Sect. 9. Finally, we conclude in Sect. 10
with a discussion of the results and some open problems.
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2. Spectral Method

Spectralmethods provide awayof solvingdifferential equations usingglobal approxima-
tions [18,31]. The main idea of the approach is as follows. First, express an approximate
solution as a linear combination of certain basis functions with undetermined coeffi-
cients. Second, construct a system of linear equations that such an approximate solution
should satisfy. Finally, solve the linear system to determine the coefficients of the linear
combination.

Spectral methods offer a flexible approach that can be adapted to different settings
by careful choice of the basis functions and the linear system. A Fourier series provides
an appropriate basis for periodic problems, whereas Chebyshev polynomials can be
applied more generally. The linear system can be specified using Gaussian quadrature
(giving a spectral element method or Tau method), or one can simply interpolate the
differential equations using quadrature nodes (giving a pseudo-spectral method) [31].
Since general linear ODEs are non-periodic, and interpolation facilitates constructing a
straightforward linear system, we develop a quantum algorithm based on the Chebyshev
pseudo-spectral method [4,21].

In this approach, we consider a truncated Chebyshev approximation x(t) of the exact
solution x̂(t), namely

xi (t) =
n∑

k=0

ci,kTk(t), i ∈ [d]0 := {0, 1, . . . , d − 1} (2.1)

for any n ∈ Z
+. (See “Appendix A” for the definition of Tk(t) and a discussion of its

properties.) The coefficients ci,k ∈ C for all i ∈ [d]0 and k ∈ [n + 1]0 are determined
by demanding that x(t) satisfies the ODE and initial conditions at a set of interpolation
nodes {tl}nl=0 (with 1 = t0 > t1 > · · · > tn = −1), where x(t0) and x(tn) are the initial
and final states, respectively. In other words, we require

dx(tl)

dt
= A(tl)x(tl) + f (tl), ∀ l ∈ [n + 1], t ∈ [−1, 1], (2.2)

and

xi (t0) = γi , i ∈ [d]0. (2.3)

We choose the domain [−1, 1] in (2.2) because this is the natural domain for Chebyshev
polynomials. Correspondingly, in the following section, we rescale the domain of initial
value problems to be [−1, 1]. We would like to be able to increase the accuracy of the
approximation by increasing n, so that

‖x̂(t) − x(t)‖ → 0 as n → ∞. (2.4)

There aremanypossible choices for the interpolationnodes.Hereweuse theChebyshev-
Gauss-Lobatto quadrature nodes, tl = cos lπ

n for l ∈ [n + 1]0, since these nodes achieve
the highest convergence rate among all schemes with the same number of nodes [23,25].
These nodes also have the convenient property that Tk(tl) = cos klπ

n , making it easy to
compute the values xi (tl).

To evaluate the condition (2.2), it is convenient to define coefficients c′
i,k for i ∈ [d]0

and k ∈ [n + 1]0 such that

dxi (t)

dt
=

n∑

k=0

c′
i,kTk(t). (2.5)
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We can use the differential property of Chebyshev polynomials,

2Tk(t) = T ′
k+1(t)

k + 1
− T ′

k−1(t)

k − 1
, (2.6)

to determine the transformation between ci,k and c′
i,k . As detailed in “Appendix A”, we

have

c′
i,k =

n∑

j=0

[Dn]k j ci, j , i ∈ [d]0, k ∈ [n + 1]0, (2.7)

where Dn is the (n + 1) × (n + 1) upper triangular matrix with nonzero entries

[Dn]k j = 2 j

σk
, k + j odd, j > k, (2.8)

where

σk :=
{
2 k = 0
1 k ∈ [n] := {1, 2, . . . , n}. (2.9)

Using this expression in (2.2), (2.7), and (2.8), we obtain the following linear equa-
tions:

n∑

k=0

Tk(tl)c
′
i,k =

d−1∑

j=0

Ai j (tl)
n∑

k=0

Tk(tl)c j,k + f (tl)i , i ∈ [d]0, l ∈ [n + 1]0.

(2.10)

We also demand that the Chebyshev series satisfies the initial condition xi (1) = γi for all
i ∈ [d]0. This system of linear equations gives a global approximation of the underlying
system of differential equations. Instead of locally approximating the ODE at discretized
times, these linear equations use the behavior of the differential equations at the n + 1
times {tl}nl=0 to capture their behavior over the entire interval [−1, 1].

Our algorithm solves this linear system using the high-precision QLSA [15]. Given
an encoding of the Chebyshev coefficients cik , we can obtain the approximate solution
x(t) as a suitable linear combination of the cik , a computation that can also be captured
within a linear system. The resulting approximate solution x(t) is close to the exact
solution x̂(t):

Lemma 1 (Lemma 19 of [18]). Let x̂(t) ∈ Cr+1(−1, 1) be the solution of the differential
equations (1.1) and let x(t) satisfy (2.2) and (2.3) for {tl = cos lπ

n }nl=0. Then there is a
constant C, independent of n, such that

max
t∈[−1,1] ‖x̂(t) − x(t)‖ ≤ C max

t∈[−1,1]
‖x̂ (n+1)(t)‖

nr−2 . (2.11)

This shows that the convergence behavior of the spectral method is related to the
smoothness of the solution. For a solution in Cr+1, the spectral method approximates
the solution with n = poly(1/ε). Furthermore, if the solution is smoother, we have an
even tighter bound:
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Lemma 2 (Eq. (1.8.28) of [31]). Let x̂(t) ∈ C∞(−1, 1) be the solution of the differential
equations (1.1) and let x(t) satisfy (2.2) and (2.3) for {tl = cos lπ

n }nl=0. Then

max
t∈[−1,1] ‖x̂(t) − x(t)‖ ≤

√
2

π
max

t∈[−1,1] ‖x̂
(n+1)(t)‖

( e

2n

)n
. (2.12)

For simplicity, we replace the value
√
2/π by the upper bound of 1 in the following

analysis.
This result implies that if the solution is in C∞, the spectral method approximates

the solution to within ε using only n = poly(log(1/ε)) terms in the Chebyshev series.
Consequently, this approach gives a quantum algorithmwith complexity poly(log(1/ε)).

3. Linear System

In this section we construct a linear system that encodes the solution of a system of
differential equations via theChebyshevpseudospectralmethod introduced inSect. 2.We
consider a system of linear, first-order, time-dependent ordinary differential equations,
and focus on the following initial value problem:

Problem 1. In the quantum ODE problem, we are given a system of equations

dx(t)

dt
= A(t)x(t) + f (t) (3.1)

where x(t) ∈ C
d , A(t) ∈ C

d×d is s-sparse, and f (t) ∈ C
d for all t ∈ [0, T ]. We

assume that Ai j , fi ∈ C∞(0, T ) for all i, j ∈ [d]. We are also given an initial condition
x(0) = γ ∈ C

d . Given oracles that compute the locations and values of nonzero entries
of A(t) for any t , and that prepare normalized states |γ 〉 proportional to γ and | f (t)〉
proportional to f (t) for any t ∈ [0, T ], the goal is to output a quantum state |x(T )〉 that
is proportional to x(T ).

Without loss of generality,we rescale the interval [0, T ]onto [−1, 1]by the linearmap
t �→ 1 − 2t/T . Under this rescaling, we have d

dt �→ − T
2

d
dt , so A �→ − T

2 A, which can
increase the spectral norm. To reduce the dependence on T—specifically, to give an algo-
rithmwith complexity close to linear in T—wedivide the interval [0, T ] into subintervals
[0, �1], [�1, �2], . . . , [�m−1, T ] with �0 := 0, �m := T . Each subinterval [�h, �h+1]
for h ∈ [m]0 is then rescaled onto [−1, 1]with the linearmap Kh : [�h, �h+1] → [−1, 1]
defined by

Kh : t �→ 1 − 2(t − �h)

�h+1 − �h
, (3.2)

which satisfies Kh(�h) = 1 and Kh(�h+1) = −1. To solve the overall initial value
problem, we simply solve the differential equations for each successive interval (as
encoded into a single system of linear equations).

Now let τh := |�h+1 − �h | and define

Ah(t) := −τh

2
A(Kh(t)) (3.3)

xh(t) := x(Kh(t)) (3.4)
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fh(t) := −τh

2
f (Kh(t)). (3.5)

Then, for each h ∈ [m]0, we have the rescaled differential equations

dxh
dt

= Ah(t)xh(t) + fh(t) (3.6)

for t ∈ [−1, 1] with the initial conditions

xh(1) =
{

γ h = 0
xh−1(−1) h ∈ [m]. (3.7)

By taking

τh ≤ 2

maxt∈[�h ,�h+1] ‖A(t)‖ (3.8)

where ‖·‖ denotes the spectral norm, we can ensure that ‖Ah(t)‖ ≤ 1 for all t ∈ [−1, 1].
In particular, it suffices to take

τ := max
h∈{0,1,...,m−1} τh ≤ 2

maxt∈[0,T ] ‖A(t)‖ . (3.9)

Having rescaled the equations to use the domain [−1, 1], we nowapply theChebyshev
pseudospectral method. Following Sect. 2, we substitute the truncated Chebyshev series
of x(t) into the differential equations with interpolating nodes {tl = cos lπ

n : l ∈ [n]},
giving the linear system

dx(tl)

dt
= Ah(tl)x(tl) + fh(tl), h ∈ [m]0, l ∈ [n + 1] (3.10)

with initial condition

x(t0) = γ. (3.11)

Note that in the following, terms with l = 0 refer to this initial condition.
We now describe a linear system

L|X〉 = |B〉 (3.12)

that encodes the Chebyshev pseudospectral approximation and uses it to produce an
approximation of the solution at time T .

The vector |X〉 ∈ C
m+p ⊗ C

d ⊗ C
n+1 represents the solution in the form

|X〉 =
m−1∑

h=0

d−1∑

i=0

n∑

l=0

ci,l(�h+1)|hil〉 +
m+p∑

h=m

d−1∑

i=0

n∑

l=0

xi |hil〉 (3.13)

where ci,l(�h+1) are the Chebyshev series coefficients of x(�h+1) and xi := x(�m)i is
the i th component of the final state x(�m).

The right-hand-side vector |B〉 represents the input terms in the form

|B〉 =
m−1∑

h=0

|h〉|B( fh)〉 (3.14)
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where

|B( fh)〉 =
d−1∑

i=0

γi |i0〉 +
d−1∑

i=0

n∑

l=1

fh(cos lπ
n )i |il〉, h ∈ [m − 1]. (3.15)

Here γ is the initial condition and fh(cos lπ
n )i is i th component of fh at the interpolation

point tl = cos lπ
n .

We decompose the matrix L in the form

L =
m−1∑

h=0

|h〉〈h| ⊗ (L1 + L2(Ah)) +
m∑

h=1

|h〉〈h − 1| ⊗ L3

+
m+p∑

h=m

|h〉〈h| ⊗ L4 +
m+p∑

h=m+1

|h〉〈h − 1| ⊗ L5. (3.16)

We now describe each of the matrices Li for i ∈ [5] in turn.
The matrix L1 is a discrete representation of dx

dt , satisfying

|h〉〈h| ⊗ L1|X〉 =
d−1∑

i=0

n∑

k=0

Tk(t0)ci,k |hi0〉 +
d−1∑

i=0

n∑

l=1,k,r=0

Tk(tl)[Dn]kr ci,r |hil〉

(3.17)

(recall from (2.5) and (2.7) that Dn encodes the action of the time derivative on a
Chebyshev expansion). Thus L1 has the form

L1 =
d−1∑

i=0

n∑

k=0

Tk(t0)|i0〉〈ik| +
d−1∑

i=0

n∑

l=1,k,r=0

cos
klπ

n
[Dn]kr |il〉〈ir | (3.18)

= Id ⊗ (|0〉〈0|Pn +
n∑

l=1

|l〉〈l|PnDn) (3.19)

where the interpolation matrix is a discrete cosine transform matrix:

Pn :=
n∑

l,k=0

cos
klπ

n
|l〉〈k|. (3.20)

The matrix L2(Ah) discretizes Ah(t), i.e.,

|h〉〈h| ⊗ L2(Ah)|X〉 = −
d−1∑

i, j=0

n∑

l=1,k=0

Ah(tl)i j Tk(tl)c j,k |hil〉. (3.21)

Thus

L2(Ah) = −
d−1∑

i, j=0

n∑

l=1,k=0

Ah(tl)i j cos
klπ

n
|il〉〈 jk| (3.22)



1436 A. M. Childs, J.-P. Liu

= −
n∑

l=1

Ah(tl) ⊗ |l〉〈l|Pn . (3.23)

Note that if Ah is time-independent, then

L2(Ah) = −Ah ⊗ Pn . (3.24)

The matrix L3 combines the Chebyshev series coefficients ci,l to produce xi for
each i ∈ [d]0. To express the final state x(−1), L3 represents the linear combination
xi (−1) = ∑n

k=0 ci,kTk(−1) = ∑n
k=0(−1)kci,k . Thus we take

L3 =
d−1∑

i=0

n∑

k=0

(−1)k |i0〉〈ik|. (3.25)

Notice that L3 has zero rows for l ∈ [n].
When h = m, L4 is used to construct xi from the output of L3 for l = 0, and to repeat

xi n times for l ∈ [n]. When m + 1 ≤ h ≤ m + p, both L4 and L5 are used to repeat xi
(n + 1)p times for l ∈ [n]. This repetition serves to increase the success probability of
the final measurement. In particular, we take

L4 = −
d−1∑

i=0

n∑

l=1

|il〉〈il − 1| +
d−1∑

i=0

n∑

l=0

|il〉〈il| (3.26)

and

L5 = −
d−1∑

i=0

|i0〉〈in|. (3.27)

In summary, the linear system is as follows. For each h ∈ [m]0, (L1 + L2(Ah))|X〉 =
|Bh〉 solves the differential equations over [�h, �h+1], and the coefficients ci,l(�h+1) are
combined by L3 into the (h + 1)st block as initial conditions. When h = m, the final
coefficients ci,l(�m) are combined by L3 and L4 into the final state with coefficients xi ,
and this solution is repeated (p + 1)(n + 1) times by L4 and L5.

To explicitly illustrate the structure of this system, we present a simple example in
“Appendix B”.

4. Solution Error

In this section, we bound how well the solution of the linear system defined above
approximates the actual solution of the system of differential equations.

Lemma 3. For the linear system L|X〉 = |B〉 defined in (3.12), let x be the approximate
ODE solution specified by the linear system and let x̂ be the exact ODE solution. Then
for n sufficiently large, the error in the solution at time T satisfies

‖x̂(T ) − x(T )‖ ≤ m max
t∈[0,T ] ‖x̂

(n+1)(t)‖ en+1

(2n)n
. (4.1)
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Proof. First we carefully choose n satisfying

n ≥ e

2

⌊
log(ω)

log(log(ω))

⌋

(4.2)

where

ω := max
t∈[0,T ]

‖x̂ (n+1)(t)‖
‖γ ‖ (m + 1) (4.3)

to ensure that

max
t∈[0,T ]

‖x̂ (n+1)(t)‖
‖γ ‖

( e

2n

)n ≤ 1

m + 1
. (4.4)

According to the quantum spectral method defined in Sect. 3, we solve

dx

dt
= Ah(t)x(t) + fh(t), h ∈ [m]0. (4.5)

We denote the exact solution by x̂(�h+1), and we let x(�h+1) = ∑d
i=0

∑n
l=0(−1)nci,l

(�h+1), where ci,l(�h+1) is defined in (3.13). Define

�h+1 := ‖x̂(�h+1) − x(�h+1)‖. (4.6)

For h = 0, Lemma 2 implies

�1 = ‖x̂(�1) − x(�1)‖ ≤ max
t∈[0,T ] ‖x̂

(n+1)(t)‖
( e

2n

)n
. (4.7)

For h ∈ [m], the error in the approximate solution of dx
dt = Ah(t)x(t)+ fh(t) has two

contributions: the error from the linear system and the error in the initial condition. We
let x̃(�h+1) denote the solution of the linear system

(
L1 + L2(Ah)

)|̃x(�h+1)〉 = |B( fh)〉
under the initial condition x̂(�h). Then

�h+1 ≤ ‖x̂(�h+1) − x̃(�h+1)‖ + ‖x̃(�h+1) − x(�h+1)‖. (4.8)

The first term can be bounded using Lemma 2, giving

‖x̂(�h+1) − x̃(�h+1)‖ ≤ max
t∈[0,T ] ‖x̂

(n+1)(t)‖
( e

2n

)n
. (4.9)

The second term comes from the initial error�h , which is transported through the linear
system. Let

Eh+1 = Êh+1 + δh+1 (4.10)

where Eh+1 is the solution of the linear system with input �h and Êh+1 is the exact
solution of dx

dt = Ah+1(t)x(t) + fh+1(t) with initial condition x(�h) = �h . Then by
Lemma 2,

‖δh+1‖ = ‖Êh+1 − Eh+1‖ ≤ �h

‖γ ‖ max
t∈[0,T ] ‖x̂

(n+1)(t)‖
( e

2n

)n
, (4.11)
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so

‖x̃(�h+1) − x(�h+1)‖ ≤ �h +
�h

‖γ ‖ max
t∈[0,T ] ‖x̂

(n+1)(t)‖
( e

2n

)n
. (4.12)

Thus, we have an inequality recurrence for bounding �h :

�h+1 ≤
(
1 + max

t∈[0,T ]
‖x̂ (n+1)(t)‖

‖γ ‖
( e

2n

)n)
�h + max

t∈[0,T ] ‖x̂
(n+1)(t)‖

( e

2n

)n
. (4.13)

Now we iterate h from 1 to m. Equation (4.4) implies

max
t∈[0,T ]

‖x̂ (n+1)(t)‖
‖γ ‖

( e

2n

)n ≤ 1

m + 1
≤ 1

m
, (4.14)

so
(
1 + max

t∈[0,T ]
‖x̂ (n+1)(t)‖

‖γ ‖
( e

2n

)n)m−1 ≤
(
1 +

1

m

)m ≤ e. (4.15)

Therefore

�m ≤
(
1 + max

t∈[0,T ]
‖x̂ (n+1)(t)‖

‖γ ‖
( e

2n

)n)m−1
�1

+
m−1∑

h=1

(
1 + max

t∈[0,T ]
‖x̂ (n+1)(t)‖

‖γ ‖
( e

2n

)n)h−1
max
t∈[0,T ] ‖x̂

(n+1)(t)‖
( e

2n

)n

≤
(
1 +

1

m

)m−1
�1 + (m − 1)

(
1 +

1

m

)m−1
max
t∈[0,T ] ‖x̂

(n+1)(t)‖
( e

2n

)n

≤ max
t∈[0,T ] ‖x̂

(n+1)(t)‖ en+1

(2n)n
+ (m − 1) max

t∈[0,T ] ‖x̂
(n+1)(t)‖ en+1

(2n)n

= m max
t∈[0,T ] ‖x̂

(n+1)(t)‖ en+1

(2n)n
,

(4.16)

which shows that the solution error decreases exponentially with n. In other words, the
linear system approximates the solution with error ε using n = poly(log(1/ε)). ��

Note that for time-independent differential equations, we can directly estimate
‖x̂ (n+1)(t)‖ using

x̂ (n+1)(t) = An+1
h x̂(t) + An

h fh . (4.17)

Writing Ah = Vh�hV
−1
h where �h = diag(λ0, . . . , λd−1), we have eAh = Vhe�h V−1

h .
Thus the exact solution of time-independent equation with initial condition x̂(1) = γ is

x̂(t) = eAh(1−t)γ + (eAh(1−t) − I )A−1
h fh

= Vhe
�h V−1

h γ + Vh(e
�h(1−t) − I )�−1

h V−1
h fh .

(4.18)

Since Re(λi ) ≤ 0 for all eigenvalues λi of Ah for i ∈ [d]0, we have ‖e�h‖ ≤ 1.
Therefore

‖x̂(t)‖ ≤ κV (‖γ ‖ + 2‖ fh‖). (4.19)
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Furthermore, since maxh,t ‖Ah(t)‖ ≤ 1, we have

max
t∈[0,T ] ‖x̂

(n+1)(t)‖ ≤ max
t∈[0,T ](‖x̂(t)‖ + ‖ fh(t)‖)

≤ κV (‖γ ‖ + 3‖ fh‖)
≤ κV (‖γ ‖ + 2τ‖ f ‖).

(4.20)

Thus the solution error satisfies

‖x̂(T ) − x(T )‖ ≤ mκV (‖γ ‖ + 2τ‖ f ‖) en+1

(2n)n
. (4.21)

Note that, although we represent the solution differently, this bound is similar to the
corresponding bound in [10, Theorem 6].

5. Condition Number

We now analyze the condition number of the linear system.

Lemma 4. Consider an instance of the quantum ODE problem as defined in Problem 1.
For all t ∈ [0, T ], assume A(t) can be diagonalized as A(t) = V (t)�(t)V−1(t) for
some �(t) = diag(λ0(t), . . . , λd(t)), with Re(λi (t)) ≤ 0 for all i ∈ [d]0. Let κV :=
maxt∈[0,T ] κV (t)beanupper boundon the conditionnumber of V (t). Then form, p ∈ Z

+

and n sufficiently large, the condition number of L in the linear system (3.12) satisfies

κL ≤ (πm + p + 2)(n + 1)3.5(2κV + e‖γ ‖). (5.1)

Proof. We begin by bounding the norms of some operators that appear in the definition
of L . First we consider the l∞ norm of Dn since this is straightforward to calculate:

‖Dn‖∞ := max
1≤i≤n

n∑

j=0

|[Dn]i j | =
{

n(n+2)
2 n even,

(n+1)2

2 − 2 n odd.
(5.2)

Thus we have the upper bound

‖Dn‖ ≤ √
n + 1‖Dn‖∞ ≤ (n + 1)2.5

2
. (5.3)

Next we upper bound the spectral norm of the discrete cosine transform matrix Pn :

‖Pn‖2 ≤ max
0≤l≤n

n∑

k=0

cos2
klπ

n
≤ max

0≤l≤n
{n + 1} = n + 1. (5.4)

Therefore

‖Pn‖ ≤ √
n + 1. (5.5)

Thus we can upper bound the norm of L1 as

‖L1‖ ≤ ‖Dn‖‖Pn‖ ≤ (n + 1)3

2
. (5.6)
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Next we consider the spectral norm of L2(Ah) for any h ∈ [m]0. We have

L2(Ah) = −
n∑

l=1

Ah(tl) ⊗ |l〉〈l|Pn . (5.7)

Since the eigenvalues of each Ah(tl) for l ∈ [n + 1]0 are all eigenvalues of
n∑

l=0

Ah(tl) ⊗ |l〉〈l|, (5.8)

we have
∥
∥
∥
∥

n∑

l=1

Ah(tl) ⊗ |l〉〈l|
∥
∥
∥
∥ ≤

∥
∥
∥
∥

n∑

l=0

Ah(tl) ⊗ |l〉〈l|
∥
∥
∥
∥ ≤ max

t∈[−1,1] ‖Ah(t)‖ ≤ 1 (5.9)

by (3.8). Therefore

‖L2(Ah)‖ ≤ ‖Pn‖ ≤ √
n + 1. (5.10)

By direct calculation, we have

‖L3‖ = √
n + 1, (5.11)

‖L4‖ ≤ 2, (5.12)

‖L5‖ = 1. (5.13)

Thus, for n ≥ 5, we find

‖L‖ ≤ (n + 1)3

2
+

√
n + 1 +

√
n + 1 + 2 + 1 ≤ (n + 1)3. (5.14)

Next we upper bound ‖L−1‖. By definition,
‖L−1‖ = sup

‖|B〉‖≤1
‖L−1|B〉‖. (5.15)

We express |B〉 as

|B〉 =
m+p∑

h=0

n∑

l=0

d−1∑

i=0

βhil |hil〉 =
m+p∑

h=0

n∑

l=0

|bhl〉 (5.16)

where |bhl〉 := ∑d−1
i=0 βhil |hil〉 satisfies ‖|bhl〉‖2 = ∑d−1

i=0 |βhil |2 ≤ 1. For any fixed
h ∈ [m + p + 1]0 and l ∈ [n + 1]0, we first upper bound ‖L−1|bhl〉‖ and use this to
upper bound the norm of L−1 applied to linear combinations of such vectors.

Recall that the linear system comes from (2.10), which is equivalent to

n∑

k=0

T ′
k(tr )ci,k(�h) =

d−1∑

j=0

Ah(tr )i j

n∑

k=0

Tk(tr )c j,k(�h) + fh(tr )i , i ∈ [d]0, r ∈ [n + 1]0.

(5.17)
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For fixed h ∈ [m + p + 1]0 and r ∈ [n + 1]0, define vectors xhr , x ′
hr ∈ C

d with

(xhr )i :=
n∑

k=0

Tk(tr )ci,k(�h), (x ′
hr )i :=

n∑

k=0

T ′
k(tr )ci,k(�h) (5.18)

for i ∈ [d]0. We claim that xhr = x ′
hr = 0 for any r �= l. Combining only the equations

from (5.17) with r �= l gives the system

x ′
hr = Ah(tr )xhr . (5.19)

Consider a corresponding system of differential equations

dx̂hr (t)

dt
= Ah(tr )x̂(t) + b (5.20)

where x̂hr (t) ∈ C
d for all t ∈ [−1, 1]. The solution of this system with b = 0 and

initial condition x̂hr (1) = 0 is clearly x̂hr (t) = 0 for all t ∈ [−1, 1]. Then the nth-order
truncated Chebyshev approximation of (5.20), which should satisfy the linear system
(5.19) by (2.1) and (2.2), is exactly xhr . UsingLemma3 and observing that x̂ (n+1)(t) = 0,
we have

xhr = x̂hr (t) = 0. (5.21)

When t = tl , we let |B〉 = |bhl〉 denote the first nonzero vector. Combining only the
equations from (5.17) with r = l gives the system

x ′
hl = Ah(tl)xhl . (5.22)

Consider a corresponding system of differential equations

dx̂hr (t)

dt
= Ah(tr )x̂(t) + b, (5.23)

with γ = bh0, b = 0 for l = 0; or γ = 0, b = bhl for l ∈ [n].
Using the diagonalization Ah(tl) = V (tl)�h(tl)V−1(tl), we have eA = V (tl)e�h(tl )

V−1(tl). Thus the exact solution of the differential equations (5.20) with r = l and initial
condition x̂hr (1) = γ is

x̂hr (t) = eAh(tl )(1−t)γ + (eAh(tl )(1−t) − I )Ah(tl)
−1b

= V (tl)e
�h(tl )(1−t)V−1(tl)γ + V (e�h(tl )(1−t) − I )�h(tl)

−1V−1b.
(5.24)

According to Eq. (4.4) in the proof of Lemma 3, we have

xhl = x̂hl(−1) + δhl (5.25)

where

‖δhl‖ ≤ max
t∈[0,T ] ‖x̂

(n+1)
hl (t)‖ en+1

(2n)n
≤ e‖γ ‖

m + 1
. (5.26)
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Now for h ∈ [m + 1]0, we take xhl to be the initial condition γ for the next subinterval
to obtain x(h+1)l . Using (5.24) and (5.25), starting from γ = bh0, b = 0 for l = 0, we
find

xml = V (tl)

(m−h+1∏

j=1

e2�h(tl )
)

V−1(tl)γ +
m−h∑

k=0

V (tl)

( k∏

j=1

e2�h(tl )
)

V−1(tl)δ(m−k)l .

(5.27)

Since ‖�h(tl)‖ ≤ ‖�‖ ≤ 1 and �h(tl) = diag(λ0, . . . , λd−1) with Re(λi ) ≤ 0 for
i ∈ [d]0, we have ‖e2�h(tl )‖ ≤ 1. Therefore

‖xhl‖ ≤ ‖xml‖ ≤ κV (tl)‖bhl‖ + (m − h + 1)κV (tl)‖δhl‖ ≤ κV (tl) + e‖γ ‖ ≤ κV + e‖γ ‖.
(5.28)

On the other hand, with γ = 0, b = bhl for l ∈ [n], we have

xml = V (tl)

(m−h∏

j=1

e2�h(tl )
)

(
(e2�h(tl ) − I )�h(tl)

−1)V−1(tl)b

+
m−h∑

k=0

V (tl)

( k∏

j=1

e2�h(tl )
)

V−1(tl)δ(m−k)l ,

(5.29)

so

‖xhl‖ ≤ 2κV (tl)‖bhl‖ + (m − h + 1)κV (tl)‖δhl‖ ≤ 2κV (tl) + e‖γ ‖ ≤ 2κV + e‖γ ‖.
(5.30)

For h ∈ {m,m + 1, . . . ,m + p}, according to the definition of L4 and L5, we similarly
have

‖xhl‖ = ‖xml‖ ≤ 2κV + e‖γ ‖. (5.31)

According to (5.24), x̂hl(t) is a monotonic function of t ∈ [−1, 1], which implies

‖x̂hl(t)‖2 ≤ max{‖x̂hl(−1)‖2, ‖x̂hl(1)‖2} ≤ (2κV + e‖γ ‖)2. (5.32)

Using the identity
∫ 1

−1

dt√
1 − t2

= π, (5.33)

we have
∫ 1

−1
‖x̂hl(t)‖2 dt√

1 − t2
≤ (2κV + e‖γ ‖)2

∫ 1

−1

dt√
1 − t2

= π(2κV + e‖γ ‖)2.
(5.34)

Consider the Chebyshev expansion of x̂hl(t) as in (2.1):

x̂hl(t) =
d−1∑

i=0

∞∑

l=0

ci,l(�h+1)Tl(t). (5.35)
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By the orthogonality of Chebyshev polynomials (as specified in (A.7)), we have

∫ 1

−1
‖x̂hl(t)‖2 dt√

1 − t2
=

∫ 1

−1

(d−1∑

i=0

∞∑

l=0

ci,l(�h+1)Tl(t)

)2 dt√
1 − t2

=
d−1∑

i=0

∞∑

l=1

c2i,l(�h+1) + 2
d−1∑

i=0

c2i,0(�h+1) ≥
d−1∑

i=0

n∑

l=1

c2i,l(�h+1) + 2
d−1∑

i=0

c2i,0(�h+1).

(5.36)

Using (5.34), this gives

d−1∑

i=0

n∑

l=0

c2i,l(�h+1) ≤
∫ 1

−1
x̂2hl(t)

dt√
1 − t2

≤ π(2κV + e‖γ ‖)2. (5.37)

Now we compute ‖|X〉‖, summing the contributions from all ci,r (�h) and xmr , and
notice that ci,r = 0 and xmr = 0 for all r �= l, giving

‖|X〉‖2 =
m−1∑

h=0

d−1∑

i=0

c2i,l(�h+1) + (p + 1)(xml)
2

≤ πm(2κV + e‖γ ‖)2 + (p + 1)(κV + e‖γ ‖)2
≤ (πm + p + 1)(2κV + e‖γ ‖)2.

(5.38)

Finally, considering all h ∈ [m + p + 1]0 and l ∈ [n + 1]0, from (5.16) we have

‖|B〉‖2 =
m+p∑

h=0

n∑

l=0

‖|bhl〉‖2 ≤ 1, (5.39)

so

‖L−1‖2 = sup
‖|B〉‖≤1

‖L−1|B〉‖2 = sup
‖|B〉‖≤1

m+p∑

h=0

n∑

l=0

‖L−1|bhl〉‖2

≤ (πm + p + 1)(m + p + 1)(n + 1)(2κV + e‖γ ‖)2
≤ (πm + p + 1)2(n + 1)(2κV + e‖γ ‖)2,

(5.40)

and therefore

‖L−1‖ ≤ (πm + p + 1)(n + 1)0.5(2κV + e‖γ ‖). (5.41)

Finally, combining (5.14) and (5.41) gives

κL = ‖L‖‖L−1‖ ≤ (πm + p + 1)(n + 1)3.5(2κV + e‖γ ‖) (5.42)

as claimed. ��
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6. Success Probability

We now evaluate the success probability of our approach to the quantum ODE problem.

Lemma 5. Consider an instance of the quantum ODE problem as defined in Problem 1
with the exact solution x̂(t) for t ∈ [0, T ], and its corresponding linear system (3.12)
with m, p ∈ Z

+ and n sufficiently large. When applying the QLSA to this system, the
probability of measuring a state proportional to |x(T )〉 = ∑d−1

i=0 xi |i〉 is

Pmeasure ≥ (p + 1)(n + 1)

πmq2 + (p + 1)(n + 1)
, (6.1)

where xi is defined in (3.13), τ is defined in (3.9), and

q := max
t∈[0,T ]

‖x̂(t)‖
‖x(T )‖ . (6.2)

Proof. After solving the linear system (3.12) using the QLSA, we measure the first and
third registers of |X〉 (as defined in (3.13)). We decompose this state as

|X〉 = |Xbad〉 + |Xgood〉, (6.3)

where

|Xbad〉 =
m−1∑

h=0

d−1∑

i=0

n∑

l=0

ci,l(�h+1)|hil〉, (6.4)

|Xgood〉 =
m+p∑

h=m

d−1∑

i=0

n∑

l=0

xi |hil〉. (6.5)

When the first register is observed in some h ∈ {m,m + 1, . . . ,m + p} (no matter
what outcome is seen for the third register), we output the second register, which is then
in a normalized state proportional to the final state:

|Xmeasure〉 = |x(T )〉
‖|x(T )〉‖ , (6.6)

with

|x(T )〉 =
d−1∑

i=0

xi |i〉 =
d−1∑

i=0

n∑

k=0

ci,kTk(t)|i〉. (6.7)

Notice that

‖|x(T )〉‖2 =
d−1∑

i=0

x2i (6.8)

and

‖|Xgood〉‖2 = (p + 1)(n + 1)
d−1∑

i=0

x2i = (p + 1)(n + 1)‖|x(T )〉‖2. (6.9)
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Considering the definition of q, the contribution from time interval h under the
rescaling (3.2), and the identity (5.33), we have

q2‖x(T )‖2 = max
t∈[0,T ] ‖x̂(t)‖

2 = 1

π

∫ 1

−1

dτ√
1 − τ 2

max
t∈[0,T ] ‖x̂(t)‖

2

≥ 1

π

∫ 1

−1

dτ√
1 − τ 2

max
t∈[�h ,�h+1]

‖x̂(t)‖2

= 1

π

∫ 1

−1

dτ√
1 − τ 2

max
t∈[−1,1]

‖x̂h(t)‖2 ≥ 1

π

∫ 1

−1
‖x̂h(t)‖2 dt

√
1 − t2

,

(6.10)

where x̂h(t) is the solution of (4.5) with the rescaling in (3.4). By the orthogonality of
Chebyshev polynomials (as specified in (A.7)),

q2‖x(T )‖2 ≥ 1

π

∫ 1

−1
‖x̂h(t)‖2 dt

√
1 − t2

= 1

π

∫ 1

−1
(

d−1∑

i=0

∞∑

k=0

ci,k(�h+1)Tk(t))
2 dt
√
1 − t2

= 1

π
(

d−1∑

i=0

∞∑

k=1

c2i,k(�h+1) + 2
d−1∑

i=0

c2i,0(�h+1)) ≥ 1

π

d−1∑

i=0

n∑

k=0

c2i,k(�h+1).

(6.11)

For all h ∈ [m]0, we have

mq2‖x(T )‖2 ≥
m−1∑

h=0

1

π

d−1∑

i=0

n∑

k=0

c2i,k(�h+1) = 1

π
‖|Xbad〉‖2, (6.12)

and therefore

‖|Xgood〉‖2 = (p + 1)(n + 1)‖x(T )‖2 ≥ (p + 1)(n + 1)

πmq2
‖|Xbad〉‖2. (6.13)

Thus we see that the success probability of the measurement satisfies

Pmeasure ≥ (p + 1)(n + 1)

πmq2 + (p + 1)(n + 1)
(6.14)

as claimed. ��

7. State Preparation

We now describe a procedure for preparing the vector |B〉 in the linear system (3.12)
(defined in (3.14) and (3.15)) using the given ability to prepare the initial state of the
system of differential equations. We also evaluate the complexity of this procedure.

Lemma 6. Consider state preparation oracles acting on a state space with basis vectors
|h〉|i〉|l〉 for h ∈ [m]0, i ∈ [d]0, l ∈ [n]0, where m, d, n ∈ N, encoding an initial
condition γ ∈ C

d and function fh(cos lπ
n ) ∈ C

d as in (3.15). Specifically, for any h ∈
[m]0 and l ∈ [n], let Ox be a unitary oracle that maps |0〉|0〉|0〉 to a state proportional to
|0〉|γ 〉|0〉 and |h〉|φ〉|l〉 to |h〉|φ〉|l〉 for any |φ〉 orthogonal to |0〉; let O f (h, l) be a unitary
that maps |h〉|0〉|l〉 to a state proportional to |h〉| fh(cos lπ

n )〉|l〉 and maps |0〉|φ〉|0〉 to



1446 A. M. Childs, J.-P. Liu

|0〉|φ〉|0〉 for any |φ〉 orthogonal to |0〉. Suppose ‖γ ‖ and ‖ fh(cos lπ
n )‖ are known. Then

the normalized quantum state

|B〉 ∝ |0〉|γ 〉|0〉 +
m−1∑

h=0

n∑

l=1

|h〉| fh(cos lπ
n )〉|l〉 (7.1)

can be prepared with gate and query complexity O(mn).

Proof. We normalize the components of the state using the coefficients

b00 = ‖γ ‖
√

‖γ ‖2 + ∑n
l=1 ‖ fh(cos lπ

n )‖2
,

bhl = ‖ fh(cos lπ
n )‖

√
‖γ ‖2 + ∑n

l=1 ‖ fh(cos lπ
n )‖2

, h ∈ [m]0, l ∈ [n]
(7.2)

so that
m−1∑

h=0

n∑

l=0

b2hl = 1. (7.3)

First we perform a unitary transformation mapping

|0〉|0〉|0〉 �→ b00|0〉|0〉|0〉 + b01|0〉|0〉|1〉 + · · · + b(m−1)n|m − 1〉|0〉|n〉. (7.4)

This can be done in time complexity O(mn) by standard techniques [32]. Then we
perform Ox and O f (h, l) for all h ∈ [m]0, l ∈ [n], giving

|0〉|γ 〉|0〉 +
m−1∑

h=0

n∑

l=1

|h〉| fh(cos lπ
n )〉|l〉 (7.5)

using O(mn) queries. ��

8. Main Result

Having analyzed the solution error, condition number, success probability, and state
preparation procedure for our approach, we are now ready to establish the main result.

Theorem 1. Consider an instance of the quantum ODE problem as defined in Prob-
lem 1. Assume A(t) can be diagonalized as A(t) = V (t)�(t)V−1(t) where �(t) =
diag(λ1(t), . . . , λd(t)) with Re(λi (t)) ≤ 0 for each i ∈ [d]0 and t ∈ [0, T ]. Then there
exists a quantum algorithm that produces a state x(T )/‖x(T )‖ ε-close to x̂(T )/‖x̂(T )‖
in l2 norm, succeeding with probability �(1), with a flag indicating success, using

O
(
κV s‖A‖Tq poly(log(κV s‖A‖g′T/εg))

)
(8.1)

queries to oracles OA(h, l) (a sparse matrix oracle for Ah(tl) as defined in (3.3)) and
Ox and O f (h, l) (as defined in Lemma 6). Here ‖A‖ := maxt∈[0,T ] ‖A(t)‖; κV :=
maxt κV (t), where κV (t) is the condition number of V (t); and

g := ‖x̂(T )‖, g′ := max
t∈[0,T ]max

n∈N ‖x̂ (n+1)(t)‖, q := max
t∈[0,T ]

‖x̂(t)‖
‖x(T )‖ . (8.2)

The gate complexity is larger than the query complexity by a factor of poly(log(κV ds
‖A‖g′T/ε)).
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Proof. We first present the algorithm and then analyze its complexity.
Statement of the algorithm. First, we choose m to guarantee

‖A‖T
2m

≤ 1. (8.3)

Then, as in Sect. 3, we divide the interval [0, T ] into small subintervals [0, �1], [�1, �2],
. . . , [�m−1, T ] with �0 = 0, �m = T , and define

τ := max
0≤h≤m−1

{τh}, τh := |�h+1 − �h | = T

m
. (8.4)

Each subinterval [�h, �h+1] for h ∈ [m − 1] is mapped onto [−1, 1] with a linear
mapping Kh satisfying Kh(�h) = 1, Kh(�h+1) = −1:

Kh : t �→ t = 1 − 2(t − �h)

�h+1 − �h
. (8.5)

We choose

n = e

2
max

{⌊
log(�)

log(log(�))

⌋

,

⌊
log(ω)

log(log(ω))

⌋}

(8.6)

where

� := g′em
δ

= g′em(1 + ε)

gε
(8.7)

and

ω := g′

‖γ ‖ (m + 1). (8.8)

Since maxt∈[0,T ] ‖x̂ (n+1)(t)‖ ≤ g′, by Lemma 3, this choice guarantees

‖x̂(T ) − x(T )‖ ≤ m max
t∈[0,T ] ‖x̂

(n+1)(t)‖ en+1

(2n)n
≤ δ (8.9)

and

max
t∈[0,T ]

‖x̂ (n+1)(t)‖
‖γ ‖

( e

2n

)n ≤ 1

m + 1
. (8.10)

Now ‖x̂(T ) − x(T )‖ ≤ δ implies
∥
∥
∥
∥

x̂(T )

‖x̂(T )‖ − x(T )

‖x(T )‖
∥
∥
∥
∥ ≤ δ

min{‖x̂(T )‖, ‖x(T )‖} ≤ δ

g − δ
=: ε, (8.11)

so we can choose such n to ensure that the normalized output state is ε-close to
x̂(T )/‖x̂(T )‖.

Following Sect. 3, we build the linear system L|X〉 = |B〉 (see (3.12)) that encodes
the quantum spectral method. By Lemma 4, the condition number of this linear system
is at most (πm + p +1)(n +1)3.5(2κV + e‖γ ‖∞). Then we use the QLSA from reference
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[15] to obtain a normalized state |X〉 and measure the first and third register of |X〉 in
the standard basis. If the measurement outcome for the first register belongs to

S = {m,m + 1, . . . ,m + p}, (8.12)

we output the state of the second register, which is a normalized state |x(T )〉/‖|x(T )〉‖
satisfying (8.11). By Lemma 5, the probability of this event happening is at least

(p+1)(n+1)
πmq2+(p+1)(n+1)

. To ensure m + p = O(‖A‖T ), we can choose

p = O(m) = O(‖A‖T ), (8.13)

so we can achieve success probability �(1) with O(q/
√
n) repetitions of the above

procedure.
Analysis of the complexity The matrix L is an (m + p + 1)d(n + 1)× (m + p + 1)d(n + 1)
matrix with O(ns) nonzero entries in any row or column. By Lemma 4 and our choice of
parameters, the condition number of L is O

(
κV (m+ p)n3.5

)
. Consequently, by Theorem

5 of [15], the QLSA produces the state |x(T )〉 with

O
(
κV (m + p)n4.5s poly(log(κVmns/δ))

) = O
(
κV s‖A‖T poly(log(κV s‖A‖g′T/εg))

)

(8.14)

queries to the oracles OA(h, l), Ox , and O f (h, l), and its gate complexity is larger by
a factor of poly(log(κVmnds/δ)). Using O(q/

√
n) steps of amplitude amplification to

achieve success probability �(1), the overall query complexity of our algorithm is

O
(
κV (m + p)n4sq poly(log(κVmns/δ))

) = O
(
κV s‖A‖Tq poly(log(κV s‖A‖g′T/εg))

)
,

(8.15)

and the gate complexity is larger by a factor of

poly(log(κV ds‖A‖g′T/εg)) (8.16)

as claimed. ��
In general, g′ could be unbounded above as n → ∞. However, we could obtain a

useful bound in such a case by solving the implicit Eqs. (8.9) and (8.10).
Note that for time-independent differential equations, we can replace g′ by ‖γ ‖ +

2τ‖ f ‖ as shown in (4.20). In place of (8.7) and (8.8), we choose

� := (‖γ ‖ + 2τ‖ f ‖)emκV

δ
= (‖γ ‖ + 2τ‖ f ‖)emκV (1 + ε)

gε
(8.17)

and

ω := ‖γ ‖ + 2τ‖ f ‖
‖γ ‖ (m + 1)κV . (8.18)

By Lemma 3, this choice guarantees

‖x̂(T ) − x(T )‖ ≤ max
t∈[−1,1] ‖x̂(t) − x(t)‖ ≤ mκV (‖γ ‖ + 2τ‖ f ‖) en+1

(2n)n
≤ δ

(8.19)
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and

max
t∈[0,T ]

‖x̂ (n+1)(t)‖
‖γ ‖

( e

2n

)n ≤ κV (‖γ ‖ + 2τ‖ f ‖)
‖γ ‖

( e

2n

)n ≤ 1

m + 1
. (8.20)

Thus we have the following:

Corollary 1. For time-independent differential equations, under the same assumptions
of Theorem 1, there exists a quantum algorithm using

O
(
κV s‖A‖Tq poly(log(κV sγ ‖A‖‖ f ‖T/εg))

)
(8.21)

queries to OA(h, l), Ox , and O f (h, l). The gate complexity of this algorithm is larger
than its query complexity by a factor of poly(log(κV dsγ ‖A‖‖ f ‖T/ε)).

The complexity of our algorithm depends on the parameter q in defined in (8.2),
which characterizes the decay of the final state relative to the initial state. As discussed
in Section 8 of [10], it is unlikely that the dependence on q can be significantly improved,
since renormalization of the state effectively implements postselection and an efficient
procedure for performing this would have the unlikely consequence BQP = PP.

We also require the real parts of the eigenvalues of A(t) to be non-positive for all
t ∈ [0, T ] so that the solution cannot grow exponentially. This requirement is essentially
the same as in the time-independent case considered in [10] and improves upon the
analogous condition in [5] (which requires an additional stability condition). Also as
in [10], our algorithm can produce approximate solutions for non-diagonalizable A(t),
although the dependence on ε degrades to poly(1/ε). For further discussion of these
considerations, see Sections 1 and 8 of [10].

9. Boundary Value Problems

So far we have focused on initial value problems (IVPs). Boundary value problems
(BVPs) are another widely studied class of differential equations that appear in many
applications, but that can be harder to solve than IVPs.

Consider a sparse, linear, time-dependent system of differential equations as in Prob-
lem 1 but with a constraint on some linear combination of the initial and final states:

Problem 2. In the quantum BVP, we are given a system of equations

dx(t)

dt
= A(t)x(t) + f (t), (9.1)

where x(t) ∈ C
d , A(t) ∈ C

d×d is s-sparse, and f (t) ∈ C
d for all t ∈ [0, T ], and

a boundary condition αx(0) + βx(T ) = γ with α, β, γ ∈ C
d . Suppose there exists

a unique solution x̂ ∈ C∞(0, T ) of this boundary value problem. Given oracles that
compute the locations and values of nonzero entries of A(t) for any t , and that prepare
quantum states α|x(0)〉 + β|x(T )〉 = |γ 〉 and | f (t)〉 for any t , the goal is to output a
quantum state |x(t∗)〉 that is proportional to x(t∗) for some specified t∗ ∈ [0, T ].

As before, we can rescale [0, T ] onto [−1, 1] by a linear mapping. However, since
we have boundary conditions at t = 0 and t = T , we cannot divide [0, T ] into small
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subintervals. Instead, we directly map [0, T ] onto [−1, 1]with a linear map K satisfying
K (0) = 1 and K (T ) = −1:

K : t �→ t = 1 − 2t

T
. (9.2)

Now the new differential equations are

dx

dt
= −T

2

(
A(t)x + f (t)

)
. (9.3)

If we define AK (t) := − T
2 A(t) and fK (t) = − T

2 f (t), we have

dx

dt
= AK (t)x(t) + fK (t) (9.4)

for t ∈ [−1, 1]. Now the boundary condition takes the form

αx(1) + βx(−1) = γ. (9.5)

Since we only have one solution interval, we need to choose a larger order n of the
Chebyshev series to reduce the solution error. In particular, we take

n = e

2
‖A‖T max

{⌊
log(�)

log(log(�))

⌋

,

⌊
log(ω)

log(log(ω))

⌋}

(9.6)

where � and ω are the same as Theorem 1.
As in Sect. 3, we approximate x(t) by a finite Chebyshev series with interpolating

nodes {tl = cos lπ
n : l ∈ [n]} and thereby obtain a linear system

dx(tl)

dt
= AK (tl)x(tl) + f (tl), l ∈ [n] (9.7)

with the boundary condition

αx(t0) + βx(tn) = γ. (9.8)

Observe that the linear equations have the same form as in (3.10). Instead of (3.11),
the termwith l = 0 encodes the condition (9.8) expanded in a Chebyshev series, namely

αi

n∑

k=0

ci,kTk(t0) + βi

n∑

k=0

ci,kTk(tn) = γi (9.9)

for each i ∈ [d]0. Since Tk(t0) = 1 and Tk(tn) = (−1)k , this can be simplified as

n∑

k=0

(αi + (−1)kβi )ci,k = γi . (9.10)

If αi + (−1)kβi = 0, the element of |il〉〈ik| of L2(AK ) is zero; if αi + (−1)kβi �= 0,
without loss of generality, the two sides of this equality can be divided by αi + (−1)kβi
to guarantee that the terms with l = 0 can be encoded as in (3.11).
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Now this system can be written in the form of equation (3.12) with m = 1. Here
L , |X〉, and |B〉 are the same as in (3.16), (3.13), and (3.14), respectively, with m = 1,
except for adjustments to L3 that we now describe.

The matrix L3 represents the linear combination xi (t∗) = ∑n
k=0 ci,kTk(t

∗). Thus we
take

L3 =
d−1∑

i=0

n∑

k=0

Tk(t
∗)|i0〉〈ik|. (9.11)

Since |Tk(t∗)| ≤ 1, we have

‖L3‖ ≤ n + 1, (9.12)

and it follows that Lemma 3 also holds for boundary value problems. Similarly, Lemma 4
still holds with m = 1.

We are now ready to analyze the complexity of the quantum BVP algorithm. The
matrix L defined above is a (p+2)d(n+1)× (p+2)d(n+1)matrix with O(ns) nonzero
entries in any row or column, with condition number O(κV pn3.5). By Lemma 5 with
p = O(1), O(q/

√
n) repetitions suffice to ensure success probability �(1). By (9.6), n

is linear in ‖A‖T and poly-logarithmic in � and ω. Therefore, we have the following:

Theorem 2. Consider an instance of the quantum BVP as defined in Problem 2. Assume
A(t) canbediagonalizedas A(t) = V (t)�(t)V−1(t)where�(t) = diag(λ1(t), . . . , λd(t))
with Re(λi (t)) ≤ 0 for each i ∈ [d]0 and t ∈ [0, T ]. Then there exists a quantum
algorithm that produces a state x(t∗)/‖x(t∗)‖ ε-close to x̂(t∗)/‖x̂(t∗)‖ in l2 norm,
succeeding with probability �(1), with a flag indicating success, using

O
(
κV s‖A‖4T 4q poly(log(κV s‖A‖g′T/εg))

)
(9.13)

queries to OA(h, l), Ox , and O f (h, l). Here ‖A‖, κV , g, g′ and q are defined as in
Theorem 1. The gate complexity is larger than the query complexity by a factor of
poly(log(κV ds‖A‖g′T/ε)).

As for initial value problems, we can simplify this result in the time-independent
case.

Corollary 2. For a time-independent boundary value problem, under the same assump-
tions of Theorem 2, there exists a quantum algorithm using

O
(
κV s‖A‖4T 4q poly(log(κV sγ ‖A‖‖ f ‖T/εg))

)
(9.14)

queries to OA(h, l), Ox , and O f (h, l). The gate complexity of this algorithm is larger
than its query complexity by a factor of poly(log(κV dsγ ‖A‖‖ f ‖T/ε)).

10. Discussion

In this paper, we presented a quantum algorithm to solve linear, time-dependent ordinary
differential equations. Specifically, we showed how to employ a global approximation
basedon the spectralmethod as an alternative to themore straightforwardfinite difference
method. Our algorithm handles time-independent differential equations with almost the
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same complexity as [10], but unlike that approach, can also handle time-dependent dif-
ferential equations. Compared to [5], our algorithm improves the complexity of solving
time-dependent linear differential equations from poly(1/ε) to poly(log(1/ε)).

This work raises several natural open problems. First, our algorithmmust assume that
the solution is smooth. If the solution is inCr , the solution error is O( 1

nr−2 ) by Lemma 1.
Can we improve the complexity to poly(log(1/ε)) under such weaker smoothness
assumptions?

Second, the complexity of our algorithm is logarithmic in the parameter g′ defined in
(8.2), which characterizes the amount of fluctuation in the solution. However, the query
complexity of Hamiltonian simulation is independent of that parameter [7,30]. Can we
develop quantum algorithms for general differential equations with query complexity
independent of g′?

Third, our algorithmhasnearly optimal dependenceonT , scaling asO(T poly(log T )).
According to the no-fast-forwarding theorem [6], the complexity must be at least linear
in T , and indeed linear complexity is achievable for the case of Hamiltonian simulation
[14]. Can we handle general differential equations with complexity linear in T ? Further-
more, can we achieve an optimal tradeoff between T and ε as shown for Hamiltonian
simulation in [28]?

Finally, can the techniques developed here be applied to give improved quantum
algorithms for linear partial differential equations, or even for nonlinear ODEs or PDEs?
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A Chebyshev Polynomials

This appendix defines the Chebyshev polynomials and presents some of their properties
that are useful for our analysis.

For any k ∈ N, the Chebyshev polynomial of the first kind can be defined as the
function

Tk(x) = cos(k arccos x), x ∈ [−1, 1]. (A.1)

It can be shown that this is a polynomial of degree k in x . For example, we have

T0(x) = 1, T1(x) = x, T2(x) = 2x2 − 1, T3(x) = 4x3 − 3x, T4(x) = 8x4 − 8x2 + 1. (A.2)

Using the trigonometric addition formula cos(k + 1)θ + cos(k − 1)θ = 2 cos θ cos kθ ,
we have the recurrence

Tk+1(x) = 2xTk(x) − Tk−1(x) (A.3)

(which also provides an alternative definition of the Chebyshev polynomials, starting
from the initial conditions T0(x) = 1 and T1(x) = x). We also have the bounds

|Tk(x)| ≤ 1 for |x | ≤ 1, Tk(±1) = (±1)k . (A.4)
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Chebyshev polynomials are orthogonal polynomials on [−1, 1]with the weight func-
tion w(x) := (1 − x2)−1/2. More concretely, defining an inner product on L2

w(−1, 1)
by

( f, g)w :=
∫ 1

−1
f (x)g(x)

dx√
1 − x2

, (A.5)

we have

(Tm, Tn)w =
∫ π

0
cosmθ cos nθ dθ (A.6)

= π

2
σnδm,n (A.7)

where

σn :=
{
2 n = 0
1 n ≥ 1.

(A.8)

It is well known from the approximation theorem ofWeierstrass that {Tk(x) : k ∈ N}
is complete on the space L2

w(−1, 1). In other words, we have the following:

Lemma 7. Any function u ∈ L2
w(−1, 1) can be expanded by a unique Chebyshev series

as

u(x) =
∞∑

k=0

ĉkTk(x) (A.9)

where the coefficients are

ĉk = 2

π
(u, Tk)w. (A.10)

For any N ∈ N, we introduce the orthogonal projection PN : L2
w(−1, 1) → PN

(where PN denotes the set of polynomials of degree at most N ) by

PNu(x) =
N∑

k=0

ĉkTk(x). (A.11)

By the completeness of the Chebyshev polynomials, we have

(PNu(x), v(x))w = (u(x), v(x))w ∀ v ∈ PN (A.12)

and

‖PNu(x) − u(x)‖w → 0, N → ∞. (A.13)

Finally, we compute the Chebyshev series of u′(x) in terms of the Chebyshev series
of u(x). Since Tk(x) = cos kθ where θ = arccos x , we have

T ′
k(x) = k sin kθ

sin θ
. (A.14)
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Since

2 cos kθ = sin(k + 1)θ

sin θ
− sin(k − 1)θ

sin θ
, (A.15)

we obtain

2Tk(x) = T ′
k+1(x)

k + 1
− T ′

k−1(x)

k − 1
, k ≥ 2 (A.16)

and

T1(x) = T ′
2(x)

4
. (A.17)

Since PNu(x) ∈ PN , the derivative of this projection should be in PN−1. Indeed, we
have

u′(x) =
N−1∑

k=0

ĉ′
kTk(x)

= 1

2

N−1∑

k=1

ĉ′
k
T ′
k+1(x)

k + 1
− 1

2

N−1∑

k=2

ĉ′
k

T ′
k−1(x)

k − 1
+ ĉ′

0T0(x)

=
N−2∑

k=2

(ĉ′
k−1 − ĉ′

k+1)
T ′
k (x)

2k
− 1

2
ĉ′
2T

′
1(x) +

1

2
ĉ′
N−2

T ′
N−1(x)

N − 1
+
1

2
ĉ′
N−1

T ′
n(x)

N
+ ĉ′

0T0(x)

=
N∑

k=1

ĉkT
′
k (x).

(A.18)

Comparing the coefficients of both sides, we find

σk ĉ
′
k = ĉ′

k+2 + 2(k + 1)ĉk+1, k ∈ [N ]0
ĉ′
N = 0

ĉ′
N+1 = 0

(A.19)

where σk is defined in (A.8).
Since ĉ′

k = 0 for k ≥ N , we can calculate ĉ′
N−1 from ĉN and then successively

calculate ĉ′
N−2, . . . , ĉ

′
1, ĉ

′
0. This recurrence gives

ĉ′
k = 2

σk

N∑

j=k+1
j+k odd

j ĉ j , k ∈ [N ]0. (A.20)

Since ĉ′
k only depends on ĉ j for j > k, the transformationmatrix DN between the values

ĉ′
k and ĉk for k ∈ [N + 1]0 is an upper triangular matrix with all zero diagonal elements,
namely

[DN ]k j =
{

2 j
σk

j > k, j + k odd

0 otherwise.
(A.21)
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B An Example of the Quantum Spectral Method

Section 3 defines a linear system that implements the quantum spectral method for
solving a system of d time-dependent differential equations. Here we present a simple
example of this system for the case d = 1, namely

dx

dt
= A(t)x(t) + f (t) (B.1)

where x(t), A(t), f (t) ∈ C, t ∈ [0, T ], and we have the initial condition

x(0) = γ ∈ C. (B.2)

In particular, we choose m = 3, n = 2, and p = 1 in the specification of the
linear system. We divide [0, T ] into m = 3 intervals [0, �1], [�1, �2], [�2, T ] with
�0 = 0, �m = T , and map each one onto [−1, 1] with the linear mapping Kh satisfying
Kh(�h) = 1 and Kh(�h+1) = −1. Then we take the finite Chebyshev series of x(t)
with n = 2 into the differential equation with interpolating nodes {tl = cos lπ

n : l ∈
[2]} = {0,−1} to obtain a linear system. Finally, we repeat the final state p = 1 time to
increase the success probability.

With these choices, the linear system has the form

L =

⎛

⎜
⎜
⎜
⎝

L1 + L2(A0)

L3 L1 + L2(A1)

L3 L1 + L2(A2)

L3 L4
L5 L4

⎞

⎟
⎟
⎟
⎠

(B.3)

with

L1 = |0〉〈0|Pn +
n∑

l=1

|l〉〈l|PnDn =
⎛

⎝
1 1 1
0 1 0
0 1 −4

⎞

⎠ (B.4)

L2(Ah) = −
n∑

l=1

Ah(tl) ⊗ |l〉〈l|Pn = −
⎛

⎝
0 0 0

Ah(0) 0 −Ah(0)
Ah(−1) −Ah(−1) Ah(−1)

⎞

⎠ (B.5)

L3 =
d∑

i=0

n∑

k=0

(−1)k |i0〉〈ik| =
⎛

⎝
1 −1 1
0 0 0
0 0 0

⎞

⎠ (B.6)

L4 = −
d∑

i=0

n∑

l=1

|il〉〈il − 1| +
d∑

i=0

n∑

l=0

|il〉〈il| =
⎛

⎝
1 0 0

−1 1 0
0 −1 1

⎞

⎠ (B.7)

L5 = −
d∑

i=0

|i0〉〈in| =
⎛

⎝
0 0 −1
0 0 0
0 0 0

⎞

⎠ . (B.8)
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The vector |X〉 has the form

|X〉 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

c0(�1)

c1(�1)

c2(�1)

c0(�2)

c1(�2)

c2(�2)

c0(�3)

c1(�3)

c2(�3)

x
x
x
x
x
x

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(B.9)

where cl(�h+1) are the Chebyshev series coefficients of x(�h+1) and x is the final state
x(�m) = x(−1).

Finally, the vector |B〉 has the form

|B〉 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

γ

f0(0)
f0(−1)

0
f1(0)
f1(−1)

0
f2(0)
f2(−1)

0
0
0
0
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(B.10)

where γ comes from the initial condition and fh(cos lπ
n ) is the value of fh at the inter-

polation point tl = cos lπ
n ∈ {0,−1}.
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