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In memoriam Pascal Norbelly

Abstract: Janus and Epimetheus are two moons of Saturn with very peculiar motions.
As they orbit around Saturn on quasi-coplanar and quasi-circular trajectories whose radii
are only 50 km apart (less than their respective diameters), every four (terrestrial) years
the bodies approach eachother and theirmutual gravitational influence lead to a swapping
of the orbits: the outer moon becomes the inner one and vice-versa. This behavior
generates horseshoe-shaped trajectories depicted in an appropriate rotating frame. In
spite of analytical theories and numerical investigations developed to describe their long-
term dynamics, so far very few rigorous long-time stability results on the “horseshoe
motion” have been obtained even in the restricted three-body problem. Adapting the idea
of Arnol’d (Russ Math Surv 18:85–191, 1963) to a resonant case (the co-orbital motion
is associated with trajectories in 1:1 mean motion resonance), we provide a rigorous
proof of existence of 2-dimensional elliptic invariant tori on which the trajectories are
similar to those followed by Janus and Epimetheus. For this purpose, we apply KAM
theory to the planar three-body problem.

1. Introduction

In the framework of the planetary three-body problem (two bodies orbiting a more mas-
sive one), the co-orbital motion is associated with trajectories in 1:1 mean-motion reso-
nance. In other words, the planets share the same orbital period. This problem possesses
a very rich dynamics which is related to the five famous “Lagrange” configurations.1

This resonance has been extensively studied since the discovery of Jupiter’s “Trojan”
asteroids whose trajectories librate around one of the L4 and L5 equilibria with respect
to the Sun and the planet. Since then, other co-orbital objects have been discovered in the
Solar System and particularly in the system of Saturn’s satellites which presently holds

1 For two of these configurations the three bodies are located at the vertices of an equilateral triangle. These
equilibria correspond to the fixed points L4 and L5 in the restricted three-body problem (RTBP). The other
three are the Euler collinear configurations (L1, L2, and L3 in the RTBP).
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Fig. 1. a,bSchematic representation of the orbitalmotion of the co-orbitalmoons of Saturn. The average values
of the semi-major axes are rescaled to 1 while the moons’ radial excursions are exaggerated by a factor of 200.
The trajectories of Helene, Polydeuces, Calypso, and Telesto are seen in frames that rotate respectively with
Dione and Tethys. Polydeuces’ and Helene’s trajectories (respectively Calypso’s and Telesto’s trajectories)
describe a tadpole shape that surrounds the Lagrange points L4 and L5 with respect to the Sun and Dione
(respectively Tethys)

five pairs of co-orbital moons: Calypso and Telesto, which are co-orbital with Tethys,
Helene and Polydeuces, co-orbital with Dione, and the pair Janus-Epimetheus.

As displayed in Fig. 1, the trajectories of Calypso and Telesto (resp. Helene and
Polydeuces) in the rotating reference frame with Tethys (resp. Dione) describe a tadpole
shape which corresponds to a small deformation of the Lagrange equilateral configura-
tions L4 or L5 with respect to Saturn and Tethys. This “tadpole” motion, which is also
characteristic of Jupiter’s Trojans, has been extensively investigated in recent decades
especially long-term stability of these asteroids (see [20,31]).

Regarding Janus and Epimetheus, as Fig. 2 shows, they exhibit a horseshoe-shaped
trajectory. As they orbit around Saturn (in about 17h) on quasi-coplanar and quasi-
circular trajectories whose radii are only 50 km apart (less than their respective diam-
eters), their mean orbital frequency is slightly different (the inner body being a little
faster than the outer one). Thus, the bodies approach each other every four terrestrial
years and their mutual gravitational influence leads to a swapping of the orbits: the outer
moon becomes the inner one and vice-versa. This behavior generates the horseshoe
trajectories depicted in an appropriate2 rotating frame. This surprising dynamics of the
Janus-Epimetheus co-orbital pair was confirmed by Voyager 1’s flyby in 1981 (see [1]).

Actually, the twomoons exchange their orbits after a relatively close approach whose
minimal distance is larger than 10000 km, which is too far apart to get in their respective
Hill’s sphere3 whose radius is around 150 km. Hence, the gravitational influence of
the planet dominates the orbital dynamics of Janus and Epimetheus while their mutual
interaction remains only a perturbation.

Summarizing, we look for coplanar, low eccentricity co-orbital trajectories which
mimic the behavior of these satellites. Contrarily to the tadpole orbits (Helene, Poly-
deuces, Calypso, and Telesto as in Fig. 1 and also Jupiter’s Trojans) where the difference
of mean longitudes oscillates around ±60◦ (see Sect. 2.3), for the considered horseshoe

2 The horseshoe trajectories are depicted in the frame that rotates with the moons’ average mean motion.
3 Which is the gravitational sphere of influence where the primary acts as a perturbator.
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Fig. 2. Schematic representation of the Saturn-Janus-Epimetheus trajectories which are depicted in an appro-
priate rotating frame that rotates with the moons’ average mean-motion. They describe a horseshoe shape
whose radial amplitude is about 80 km for Epimetheus (red curve) and 20 km for Janus (blue curve). Starting
from the configuration A where Janus, Saturn, and Epimetheus are aligned and the latter is the outer moon,
Janus catches up with Epimetheus and a close encounter occurs: due to their mutual gravitational interaction
the inner moon shifts towards the outer one and vice-versa (configuration B). More precisely, without over-
taking Epimetheus, Janus decelerates and “falls” towards the outer orbit. Likewise, Epimetheus accelerates as
it becomes the inner moon and moves away from Janus until another aligned configuration is reached (config-
uration C). Next, Epimetheus catches up with Janus, a close encounter occurs, and another orbital exchange
takes place (configuration D). It takes about 4 years between each orbital exchange and about 8 years for
Janus and Epimetheus to cover all their horseshoe-shaped trajectories (which corresponds to 4000 revolutions
around Saturn)

trajectories this quantity oscillates around 180◦ with a large amplitude, larger than 312◦
(see Sects. 2.3 and 4.4 for details).

Froma theoretical point of view, using a suitable approximation of the restricted three-
body problem (RTBP)4 and without available observations, Brown [7] was the first to
consider “horseshoe” orbits which encompass L4, L3, L5 equilibria and predicted that
they were possible solutions of the system. Subsequently, some horseshoe orbits and
families of orbits of this kind have been found numerically in the planar RTBP with
respect to the Sun and Jupiter by Rabe [29] followed by numerous other authors.

Several analytical theories have been developed to describe the long-term dynamics
of the Janus-Epimetheus co-orbital pair and, more generally, of horseshoe motions in
the three-body problem.

One approach, elaborated by Spirig and Waldvogel [35], lies in the description of
the two moon dynamics by matching two adapted approximations: the outer one where
the moons do not interact when they are apart and the inner one where the mutual
gravitational influence dominates during the close encounter. As we have seen, from an
astronomical point of view this is not relevant with the observed motions of the Janus
and Epimetheus. From a mathematical point of view, and this is central in the present
paper, the reasoning followed by Spirig and Waldvogel [35] does not lie in classical

4 In this approximation, it is assumed that the massless one does not affect the motion of the other two,
which is consequently Keplerian.
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setting of the implicit function theorem or KAM theory where we need to consider a
perturbation of a unique integrable system.

Another approach, which is followed in the present paper, is precisely based on
the introduction of a unique integrable approximation associated with the co-orbital
resonance. This kind of global model was introduced in the late seventies. In the context
of the restricted problem (RTBP) by tacking the mass ratio between the secondary
and the primary small enough, Garfinkel [17] develops an approximation adapted to
quasi-circular orbits in co-orbital resonance in order to study the behavior of the Trojan
asteroids. Following the same idea, Yoder et al. [36] give a less accurate approximation
of the co-orbital resonance but applicable to the situation of two comparable moons
such as Janus and Epimetheus.5 Going back to the framework of the restricted problem
(RTBP), themost detailed numerical exploration of horseshoe dynamics has been carried
out in Dermott andMurray [13,14]. Focusing on quasi-circular trajectories, they provide
some general properties such as heuristic estimates of the horseshoe orbit lifetime and
the relative width of the tadpole and horseshoe domain.

In spite of these analytical theories as well as the indications provided by some
numerical investigations (see [3,25]), so far very few rigorous long-time stability results
have been obtained on the “horseshoemotion”, even in the restricted three-body problem.

Cors andHall [10] studied the persistence of these trajectories in the three-body prob-
lem with the help of a Hamiltonian formulation of the planetary problem by introducing
several small quantities (the mass of the moons, the radii difference, and the minimum
angular separation between the moons) whose relative sizes are determined in order to
explore the horseshoe dynamics. Their approximation of the dynamics in the co-orbital
resonance retains terms up to a given order in the expansion of the perturbation which
correspond to the mutual interaction between the moons. An important feature in Cors
and Hall [10] is that their approximation is valid for an area in phase space composed
of orbits where the mutual distance at closest approach of the satellites is comparable to
εα for 0 < α < 1/5 with the ratio ε of the moons’ masses to the central body’s mass.
This allows one to get results on the existence of horseshoe-shaped orbits over times of
order εα−2.

After completion of the present work, Cors et al. [11] published an article about
the existence of quasi-periodic horseshoe trajectories. The authors use Cors and Hall
[10] approximation to give a computer-assisted proof for the existence of 4-dimensional
Lagrangian tori associated with co-orbital orbits where there are close approaches of
the satellites. Even if some details of the proof are omitted in this paper, this promising
work provides normalizing transformations of the considered Hamiltonian designed to
prove the existence of invariant tori.

Going back to the strategy of Garfinkel [17], Yoder et al. [36], Dermott and Murray
[13,14], a Hamiltonian formalism adapted to the study of the motion of two planets in
co-orbital resonance was developed in Robutel and Pousse [33]. This yields a global
integrable 1:1-resonant normal form which was specified in Robutel et al. [32] where
estimates on the required averaging process are given (and also some stability results).
In particular, this model is valid for any orbits in 1:1 resonance provided the mutual
distance at closest approach is reduced by ε1/3, which corresponds to Hill’s sphere,
and its domain of definition includes the L3, L4 and L5 equilibria. A drawback to this
method is that the action-angle variables in this integrable approximation are not explicit.

5 Indeed, Janus is only 3 times more massive than Epimetheus. This is a particular case since for all the
co-orbital pairs of celestial objects observed up to now, one is very small with respect to the other hence the
RTBP is a good model except for Janus-Epimetheus.
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Nevertheless, we can compute asymptotic estimates on the frequencies of trajectories
close to orbits homoclinic to the hyperbolic equilibrium L3 (see Fig. 2).

In the present paper, our goal is to prove the existence of invariant tori on which the
trajectories are similar to those followed by Janus and Epimetheus and for this purpose
we apply KAM theory with the latter integrable approximation in co-orbital resonance.

In his seminal article, Arnol’d [2] proved rigorously the existence of quasi-periodic
motions in the planar planetary three-body problem. This has been extended to the spatial
N -body problem by Féjoz [16] and Chierchia and Pinzari [9]. Going back to the spatial
three-body problem, Biasco et al. [6] proved the existence of lower dimensional invariant
tori while Chenciner and Llibre [8] and Lei [23] proved the existence of quasi-periodic
almost-collisional orbits.

Assuming that the planets never experience close encounters, Arnol’d first considered
two uncoupled Kepler problems as the integrable part of the Hamiltonian. In order to get
Kolmogorov non-degeneracy of the frequency map, he added a suitable approximation
of the secular part of the perturbation.6

In the co-orbital resonance, KAM theory has already been applied: in the restricted
three-body problem, Leontovich [24] proved the existence of quasi-periodic tadpole
trajectories. His reasonings are based on a fourth degree expansion of the Hamiltonian
around Lagrange equilateral configurations which yields a Kolmogorov non-degenerate
integrable Hamiltonian. Unfortunately, this method is only relevant in the neighborhood
of the equilateral equilibria and does not fit trajectories that encompass the L4, L3, and
L5 equilibria such as the horseshoe orbits.

As discussed before, in our context the mutual interaction of the moons remains a
perturbation of the main force which comes from the central attractor. As a consequence,
the planetary three-body problem studied by Arnol’d is also relevant for modeling Janus
and Epimetheus’ trajectories around Saturn.

We would like to use KAM theory in order to prove the existence of quasi-periodic
trajectories whose main features are those of the observed satellite’s trajectories but our
context is tricky : unlike Arnol’d’s situation that relies on non-resonant Kepler orbits,
we are strictly in 1:1 resonance which prevents of use the secular perturbation in order
to get a non-degeneracy.

In order to prove the existence of quasi-periodic horseshoe orbits, we replace the
previous secular perturbation by the integrable 1:1-resonant normal form introduced by
Robutel andPousse [33]. Since the action-angle variables in the integrable approximation
are not explicit, it is very tricky to check Kolmogorov’s non-degeneracy condition as in
Arnol’d’s article. However, it is possible to look at weaker non-degereracy conditions,
like those stated by Pöschel [28] to prove the persistence of lower dimensional normally
elliptic invariant tori in the context of non-linear partial differential equations.7 This
latter result was already applied in celestial mechanics by Biasco et al. [6] to prove
the existence of 2d elliptic invariant tori for the three-body planetary problem in a
non-resonant case (while co-orbital trajectories are resonant). In our context, we will
follow the same scheme of proof and, as a consequence, we give a rigorous proof of
2-dimensional tori associated with horseshoe like motions. Our main theorem (Theorem
2.1) is stated at the end of Sect. 2.

6 Which is the averaged perturbation along the Keplerian flows.
7 This result was initially stated by Melnikov [27] and independently proved by Eliasson [15] and Kuksin

[21].
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Actually, it is certainly possible to compute higher order normal forms with a
computer-assisted proof in order to check Kolmogorov’s non-degeneracy condition in
our setting and ensure the existence of Lagrangian invariant tori.

In Sect. 2,we specify the characteristics of the quasi-periodic orbitswewant to obtain.
In Sect. 3, some useful notations are introduced. In Sect. 4, we describe the different
steps of our reduction scheme in order to build an integrable approximation associated
with the horseshoe motion. Section 5 is dedicated to the application of KAM theory.
Finally, Sect. 6 is devoted to extensions, comments, and prospects.

Appendix A concerns the proof of the technical propositions and lemmas used in our
reasonings.

2. 2d Co-orbital Tori and Horseshoe Trajectories in the Planetary Problem

2.1. Canonical heliocentric coordinates. We consider two planets of respective masses
εm1 and εm2 orbiting in a plane around a central body (the Sun or a star) of mass m0,
ε being an arbitrarily small positive parameter. We assume that the three bodies are
only influenced by their mutual gravitational interaction. Without loss of generality, we
assume the gravitational constant to be equal to 1 and set

0 < m1 � m2.

Using heliocentric coordinates [22] and rescaling both action variables and time (see
formore details [32]), the Hamiltonian of the three-body problem reads

H(r̃ j , r j ) = HK (r̃ j , r j ) +HP (r̃ j , r j ) with

HK (r̃ j , r j ) =
∑

j∈ {1,2}

(∥∥r̃ j
∥∥2

2m̂ j
− μ j m̂ j∥∥r j

∥∥

)
and

HP (r̃ j , r j ) = ε

(
r̃1 • r̃2

m0
− m1m2

‖r1 − r2‖
)

(2.1)

where “ • ” and “‖ · ‖” are respectively the Euclidean scalar product and norm.
In these expressions, the canonical variable r j corresponds to the heliocentric position

of planet j while r̃ j , the conjugated variable of r j , is associated with the rescaled
barycentric linear momentum of the same body. The mass parameters m̂ j and μ j are
defined by

m̂ j = m0m j

m0 + εm j
and μ j = m0 + εm j .

The Hamiltonian H, which is an analytical function in the domain

D =
{
(r̃1, r1, r̃2, r2) ∈ R

8 such that r1 �= r2
}
,

possesses two components: HK , which describes the unperturbed Keplerian motion of
the two planets (themotion of a body ofmass m̂ j around a fixed center ofmassm0+εm j ),
andHP , which models the perturbations due to the gravitational interaction between the
two planets and the fact that the heliocentric frame is not a Galilean one.

Finally, the planetary Hamiltonian H is invariant under the action of the symmetry
group SO(2) associated with the rotations around the vertical axis. This property is
equivalent to the fact that the total angular momentum, that is C̃(r̃ j , r j ) = ∑

j∈{1,2} r̃ j ×
r j (where “×” is the vectorial product), is preserved.
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2.2. Poincaré complex variables.. In order to define a canonical coordinate system
related to the elliptic elements (a j , e j , λ j ,� j ) (respectively the semi-major axis, the
eccentricity, the mean longitude, and the longitude of the pericenter of the planet j), we
use Poincaré’s complex variables (� j , λ j , x j , x̃ j ) j∈{1,2} ∈ (R × T × C × C)2:

� j = m̂ j
√
μ j a j , x j = √

� j

√
1 −

√
1 − e2j exp(i� j ), and x̃ j = −i x j .

This coordinate system has the advantage of being regular when the eccentricities tend to
zero. Consequently, the product ϒ̃ = (ϒ̃1, ϒ̃2) of analytic symplectic transformations

ϒ̃ j (� j , λ j , x j , x̃ j ) = (r̃ j , r j ) ( j ∈ {1, 2})
yields the new Hamiltonian

H̃(� j , λ j , x j , x̃ j ) = H̃K (�1,�2) + H̃P (� j , λ j , x j , x̃ j )

where HK (r̃ j , r j ) = H̃K (�1,�2) = −
∑

j∈ {1,2}

1

2

μ2
j m̂

3
j

�2
j

.

H̃ is analytic on the domain ϒ̃−1(D) ⊂ (R × T × C × C)2.

2.3. The 1:1 resonance. In the limit of the Keplerian approximation, two planets are
in co-orbital resonance, or 1:1 mean-motion resonance, when their two orbital frequen-
cies are equal. According to the third Kepler law, the exact resonance occurs when
(�1,�2) = (�1,0,�2,0) with

∂ H̃K

∂�1
(�1,0,�2,0) = ∂ H̃K

∂�2
(�1,0,�2,0) = υ0 > 0,

that is
μ2
1m̂3

1

(�1,0)3
= μ2

2m̂3
2

(�2,0)3
= υ0,

where � j,0 = m̂ j
√
μ j a j,0 and a j,0 = μ

1/3
j υ

−2/3
0

(2.2)

are respectively the exact-resonant action and semi-major axis of the planet j .
In order to construct a coordinate system adapted to the co-orbital resonance, let us

introduce the symplectic transformation

ϒ(Z, ζ , x, x̃) = (�1, λ1, x1, x̃1,�2, λ2, x2, x̃2)

such that

Z =
(

Z1
Z2

)
=
(
1 0
1 1

)(
�1 − �1,0
�2 − �2,0

)
, ζ =

(
ζ1
ζ2

)
=
(
1 −1
0 1

)(
λ1
λ2

)
,

x =
(

x1
x2

)
, x̃ = −ix.

In these variables, the planetary Hamiltonian becomes

H(Z, ζ , x, x̃) = HK (Z) + HP (Z, ζ , x, x̃),

where HK (Z) = − m̂3
1μ

2
1

2(�1,0 + Z1)2
− m̂3

2μ
2
2

2(�2,0 + Z2 − Z1)2
and HP = H̃P ◦ ϒ,
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which yields a zero frequency ∂Z1 HK (0) at the origin. Hence, the temporal evolution
of the angles ζ j and variables x j satisfy the relation

ζ̇2 = υ0 +O(‖Z‖) +O(ε), ζ̇1 = O(‖Z‖) +O(ε), and ẋ j = O(ε)

where ε is the small parameter associated with the planetary masses (see Sect. 2.1).
As a consequence, these variables evolve at different rates: ζ2 is a “fast” angle with

a frequency of order 1, ζ1 undergoes “semi-fast” variations at a frequency of order
√
ε

(in the resonant domain, Z is at most of order
√
ε as it is shown in Sect. 4.4), while the

variables (x j ) j∈{1,2} related to the eccentricities are associated with the “slow” degrees
of freedom evolving on a timescale of order ε (secular variations of the orbits).

A classical way to reduce the problem in order to study the semi-fast and secular
dynamics of the co-orbital resonance is to average the Hamiltonian over the fast angle ζ2
to get a resonant normal form. We shall prove, in Sect. 4.2, that there exists a symplectic
transformation ϒ close to the identity and defined on a domain that will be specified
later, such that

ϒ : (Z. , ζ. , x. , x̃. ) �−→ (Z, ζ , x, x̃)

and

H ◦ ϒ(Z. , ζ. , x. , x̃. ) = HK (Z. ) + H P (Z. , ζ. 1, x. , x̃. ) + H∗(Z. , ζ. , x. , x̃. )

where H P (Z. , ζ. 1, x. , x̃. ) = 1

2π

∫ 2π

0
HP (Z. j , ζ. 1, ζ. 2, x. , x̃. )dζ. 2 .

H P is the averaged perturbation which depends only on the semi-fast and slow variables
while the remainder H∗ is supposed to be small with respect to H P . More precisely, the
sizes of H P and H∗ increase simultaneously with the distance to the singularity asso-
ciated with the planetary collision. We showed in Robutel et al. [32] that the remainder
is negligible compared to H P as long as the distance to the singularity is less than a
quantity of order ε1/3, which will be assumed from the Sect. 4. In addition, properties
regarding the transformation ϒ and the remainder H∗ will be stated in Sect. 4.2. More
precisely, the averaging process will be iterated until the fast component is exponentially
small with respect to ε.

2.3.1. D’Alembert rule and averaged Hamiltonian’s dynamics. The Hamiltonian H ,
which is analytic on a suitable domain, can be expanded in Taylor series in a neighbor-
hood of x = x̃ = 0 as

H(Z, ζ , x, x̃) =
∑

(k,p,̃p)∈D
fk,p,̃p(Z, ζ1)x

p1
1 x p2

2 x̃ p̃1
1 x̃ p̃2

2 exp(ikζ2) (2.3)

where D =
{
(k,p, p̃) ∈ Z × N

2 × N
2 / k + p1 + p2 − p̃1 − p̃2 = 0

}
(2.4)

is known as the D’Alembert rule which is equivalent to the conservation of the angular
momentum C̃(r̃ j , r j ). From this relation follows a key property of the averaged Hamil-
tonian that reads

H(Z. , ζ. 1, x. , x̃. ) = HK (Z. ) + H P (Z. , ζ. 1, x. , x̃. ) + H∗(Z. , ζ. 1, x. , x̃. )

where H∗(Z. , ζ. 1, x. , x̃. ) = 1

2π

∫ 2π

0
H∗(Z. , ζ. 1, ζ. 2, x. , x̃. )dζ. 2 .
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Fig. 3. Phase portrait of the Hamiltonian H(Z. , ζ. 1, 0, 0) in the coordinates (ζ. 1, Z. 1). The units and the param-

eter are chosen such that Z. 2 = 0, m0 = 1, υ0 = 2π , εm1 = 10−3, εm2 = 3 × 10−4. The blue area
corresponds to tadpole or Trojan orbits while the red one corresponds to horseshoe orbits. See Sect. 2.4 for
more details

Indeed, the D’Alembert rule still holds after averaging (see [33]) and the Taylor expan-
sion of the averaged Hamiltonian H , which does not depend on the angle ζ. 2, is even
in the slow variables (x. , x̃. ). Moreover, this propriety is equivalent to the fact that the
quantity

C(Z. 2, x. , x̃. ) = Z. 2 + i x. 1 x̃. 1 + i x. 2 x̃. 2 (2.5)

is an integral of the averaged motion. As a consequence, the set

C0 = {x. = x̃. = 0}
is an invariant manifold for the flow of H . On this “quasi-circular” manifold, the dynam-
ics is controlled by the one-degree of freedom Hamiltonian H(Z. , ζ. 1, 0, 0).

2.4. Semi-fast dynamics and horseshoe domain. The phase portrait of the integrable
Hamiltonian H(Z. , ζ. 1, 0, 0) is displayed inFig. 3. This figure being extensively described
in Robutel and Pousse [33], we will limit ourselves to present what will be useful
thereafter.

Two elliptic fixed points are present on this phase portrait. These points, labelled by
L4 or L5, coincide with the Lagrange equilateral equilibria, which are linearly stable as
long as the planetary masses are small enough.8 They are surrounded by periodic orbits
(blue domains) that correspond to semi-fast deformations of Lagrange configurations
(the tadpole orbits of Fig. 1). In the center of the phase portrait, the fixed point labelled
by L3 represents the unstable Euler configuration for which the three bodies are aligned
and the Sun is between the two planets. Its stable and unstable manifolds, which coincide
(red curve), bound the two previous domains. Outside these separatrices lie the horseshoe
orbits (red region). Contrarily to the tadpole orbits for which the variation of ζ. 1 does
not exceed 156◦, along a horseshoe trajectory the difference of the mean-longitudes ζ. 1

8 According to Gascheau [19], when the planetary orbits are circular, the equilateral configurations are
linearly stable if the mass of the three bodies satisfy the relation 27(m0εm1 + m0εm2 + εm1εm2) < (m0 +
εm1 + εm2)

2.
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Fig. 4. Phase portrait of the considered Hamiltonian H̃1(Z1, ζ1) = −εB(1 + δ). It approximates the one
of the Hamiltonian H(Z, ζ1, 0, 0), which is depicted in Fig. 3, in the L3-separatrix region. The units and
the parameter are the same as in Fig. 3. In this approximation, the L1 and L2 fixed points as well as their
separatrices have disappeared while {ζ1 = 0} became a singularity. For δ = 0, the separatrix divides the phase
portrait in two distinct dynamics: the two tadpole trajectory domains for δ < 0, which are surrounded by the
separatrix, and the horseshoe trajectories for δ > 0 (grey trajectory)

oscillate around 180◦ with a very large amplitude of at least 312◦ (see Sect. 4.4). It is on
this region, more precisely close to the outer edge of the separatrix, that we will focus
in the next sections.

The outer part of the horseshoe domain is bounded by the separatrices associatedwith
L1 and L2 (beige and brown curves). Beyond these manifolds, the top and the bottom
light grey areas correspond to non-resonant dynamics where the angle ζ. 1 evolves slowly
but in a monotonous way. The singularity that corresponds to the collision between the
planets is located at Z. 1 = ζ. 1 = 0 and is separated from the previous regions by the
stable and unstable manifolds originated at L1 and L2. It is shown in Robutel et al.
[32] that the distance between the singularity and these structures is of order ε1/3. As
mentioned above, in this case, the remainder H∗ is at least as large as the perturbation,
and this part of the phase portrait is not necessarily relevant. But this is not a problem
since, in the following, we will work only in the vicinity of the L3-separatrix.

2.5. 2d co-orbital tori. In Sect. 4.3, we shall introduce a linear transformation that
uncouple the fast and semi-fast dynamics. Moreover, we shall approximate the semi-
fast dynamics in the L3-separatrix region (the two domains surrounded by the separatrix
and its outer neighborhood; see Fig. 4) by a simple Hamiltonian proportional to

H̃1(Z1, ζ1) = −AZ2
1 + εBF(ζ1)

where the coefficients A, B, and the 2π -periodic real function F will be defined later.
With the previous notations, the separatrix is defined by the level curve H̃1(Z1, ζ1) =
h0 = −εB while those given by H̃1(Z1, ζ1) = hδ = −εB(1 + δ) with δ > 0 are
the horseshoe orbits surrounding the latter. As a consequence, for each 2π/νδ-periodic
trajectory of the differential system associated with the Hamiltonian H̃1, there exists a
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2π -periodic real function Fδ such that the parametric representation of the latter trajec-
tory reads

ζ1(t) = Fδ(νδt) , Z1(t) = −νδ F ′
δ(νδt)

2A
. (2.6)

Moreover, the function Fδ parametrizing a horseshoe orbit of energy hδ satisfies

− ν2δ

(
F ′
δ(νδt)

)2

4A
+ εBF (Fδ(νδt)) = −εB(1 + δ) with δ > 0. (2.7)

The smaller δ is, the closer to the separatrix the orbit is.
In the same way the fast dynamics will be approached by a quadratic integrable

Hamiltonian H2(Z2) (see Sect. 4.3). Hence we are led to consider the Hamiltonian
system linked to

H̃1(Z1, ζ1) +H2(Z2). (2.8)

Consequently the phase space is foliated in 2-dimensional tori invariant under theHamil-
tonian flow linked to (2.8). Hence, we choose as reference tori the 2d tori that are
parametrized in the original variables by

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

λ1(θ) = c1 + θ2 + (1 − κ)Fδ(θ1)

λ2(θ) = c2 + θ2 − κFδ(θ1)

�1(θ) = c3 +
√
εGδ(θ1)

�2(θ) = c4 − √
εGδ(θ1)

x j (θ) = 0

(2.9)

with θ ∈ T
2 and

√
εGδ = −νδ F ′

δ/2A. These objects will be called 2d co-orbital tori.
In the expression (2.9), the function Fδ and the frequency νδ parametrize respectively
the semi-fast horseshoe orbits and frequency as in (2.6) and (2.7), while the c j are real
constant coefficients and κ = m1/(m1 + m2). On each torus, the flow is linear with the
frequency

θ̇ = ω = (νδ, υ) where νδ ∼ d1

√
ε

ln δ
and υ ∼ d2

for some constants d1 > 0 and d2 > 0 when δ goes to zero.
By an application of KAM theory, we would like to continue the 2d co-orbital tori

under the flow of the three-body problem carrying quasi-periodic trajectories with two
frequencies: a semi-fast one, corresponding to the averaged motion, and a fast one. But
to this end, the knowledge of the semi-fast dynamics is not enough, it is also neces-
sary to control the dynamics in the directions that are normal to the 2d co-orbital tori.
These normal directions will be called secular directions. Hence, we will consider the
Hamiltonian

H̃1(Z1, ζ1) +H2(Z2) + Q̃(ζ1, x, x̃)

where Q̃ is a suitable approximation of the secular dynamics, which is quadratic in the
eccentricity variables thanks to the conservation of the D’Alembert rule given by (2.4).
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Q̃ characterizes the linear stability of the C0-manifold in the normal directions (x, x̃)
via the derived variational equations in the eccentricity variables. However, as Q̃ is ζ1-
dependent, the variational equations are time-dependent along a 2d co-orbital tori which
prevents to express their solutions in a close form. Hence, we shall transform our system
of canonical coordinates in order to uncouple the semi-fast and secular dynamics, and
express the Hamiltonian in a suitable normal form.

2.6. Reduction to a suitable normal form. In the horseshoe region, the semi-fast angle
ζ1 does not evolve in a monotonous way which prevents to remove directly the ζ1-
dependency via a second averaging process.

Using the classical integral formulations (see Sect. 4.4), we will build semi-fast
action-angle variables adapted to horseshoe trajectories. Hence we shall prove that there
exists a canonical transformation

� : (J1, Z2, φ1, ζ2, x, x̃) �−→ (Z, ζ , x, x̃)

such that the considered Hamiltonian reads

H1(J1) +H2(Z2) +Q(J1, φ1, x, x̃)

where H1(J1) = H̃1(Z1(J1, φ1), ζ1(J1, φ1)),

dH1

dJ1
(J1) = νδ(J1), and Q(J1, φ1, x, x̃) = Q̃(ζ1(J1, φ1), x, x̃).

However, it gives rise to an important drawback: the expressions of the semi-fast dynam-
ics are no longer explicit which bring additional difficulties in our forthcoming applica-
tion of KAM theory.

Then, we will proceed to a second averaging process (over the semi-fast angle φ1 in
that case) in order to reject the φ1-dependency in a general remainder. The method is
based on asymptotic expansions as the trajectory gets closer to the separatrix. For the
sake of simplicity, as δ tends to zero, we constrain the energy shift δ by the relation
ε2q̂ � δ � εq̂ for some exponent q̂ > 0. We shall prove that there exists a symplectic
transformation

� : (J. 1, Z. 2, φ. 1, ζ. 2, x. , x̃. ) �−→ (J1, Z2, φ1, ζ2, x, x̃)

close to identity and such that, in these variables, the considered Hamiltonian becomes

H (J. 1) +H2(Z. 2) +Q(J. 1, x. , x̃. ) +H∗(J. 1, Z. 2, φ. 1, x. , x̃. )

where Q(J. 1, x. , x̃. ) = 1

2π

∫ 2π

0
Q(J. 1, φ. 1, x. , x̃. )dφ. 1

and H∗ is supposed to be small with respect to Q. More precisely, we will iterate the
averaging process until the semi-fast component H †∗ = H∗ − H∗, where

H∗(J. 1, Z. 2, x. , x̃. ) = 1

2π

∫ 2π

0
H∗(J. 1, Z. 2, φ. 1, x. , x̃. )dφ. 1

is exponentially small with respect to ε.
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Finally, from the secular Hamiltonian H that reads

H (J. 1, Z. 2, x. , x̃. ) = H1(J. 1) +H2(Z. 2) +Q(J. 1, x. , x̃. ) +H∗(J. 1, Z. 2, x. , x̃. )

we shall deduce the linear stability of the 2d co-orbital tori considered in the formulas
(2.9). Indeed, from the conservation of the D’Alembert rule given by (2.4) and of the
integral C(Z. 2, x. , x̃. ) given by (2.5), we will control the remainder H∗ that reads

H∗(J. 1, Z. 2, x. , x̃. ) = F0(J. 1, Z. 2) +
∑

j,k∈{1,2}
F( j,k)(J. 1, Z. 2, x. , x̃. )x. j x̃. k

and obtain the spectrum of the second order terms in the eccentricities, that is

Q(J. 1, x. , x̃. ) +
∑

j,k∈{1,2}
F( j,k)(J. 1, Z. 2, 0, 0)x. j x̃. k .

The spectrum being simple with purely imaginary eigenvalues associated with the two
secular frequencies

� = (g1, g2) = O
(
ε,

ε

|ln ε|
)
,

then we will prove that the considered 2d co-orbital tori are normally elliptic. As a
consequence, we will consider the normal form

H1(J. 1) +H2(Z. 2) +F0(J. 1, Z. 2) +
∑

j∈{1,2}
ig j (J. 1, Z. 2)z j z̃ j

where (z, z̃) are the eccentricity variables that diagonalize the secular HamiltonianQ +
H∗.

2.7. 2d tori for the full Hamiltonian in the horseshoe domain. Now, let us see how
the quasi-periodic orbits associated with the horseshoe region can be built in the full
problem, and what will they look like.

As described above, we will develop an integrable approximation of the problem
which will enable us to uncouple the fast, semi-fast, and secular dynamics. It will be
proved that, if we choose a horseshoe orbit which lies on the quasi-circular manifold
C0 and is close enough to the L3-separatrix, its two frequencies (fast and semi-fast) are
respectively of order (1,

√
ε/ |ln ε|)while it is normally elliptic along the two transversal

directions with frequencies of order (ε, ε/ |ln ε|). This yields four different timescales
that will prevent the occurrence of small divisors for ε small enough. As a consequence,
we will take advantage of this property, which will be used to fulfill the Melnikov
condition on the frequency map required to apply Pöschel [28]’s theorem, to get 2-
dimensional tori associated with the horseshoe orbits in the three-body problem.

Theorem 2.1. There exists a real number ε∗ > 0 such that for all ε with 0 < ε < ε∗,
the Hamiltonian flow linked to the planetary Hamiltonian H given by (2.1) admits an
invariant set which is an union of 2-dimensional C∞ invariant tori carrying quasi-
periodic trajectories. These tori are close, in C 0-topology, to the 2d co-orbital tori
introduced above.
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The quasi-periodic trajectories that come from this application of KAM theory can
be described as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

λ1(θ) = c1 + θ2 + (1 − κ)Fδ(θ1) + f1(θ; ε)
λ2(θ) = c2 + θ2 − κFδ(θ1) + f2(θ; ε)
�1(θ) = c3 +

√
εGδ(θ1) + f3(θ; ε)

�2(θ) = c4 +
√
εGδ(θ1) + f4(θ; ε)

x j (θ) = f5, j (θ; ε)

where θ̇ = ω = (νδ, υ) and f j are small perturbative terms. Indeed, there exists C � 1
independent of the small parameters of the problem such that:

‖ f1‖ � Cεγ1 , ‖ f2‖ � Cεγ1 , ‖ f3‖ � Cεγ2 , ‖ f4‖ � Cεγ2 ,
∥∥ f5, j

∥∥ � Cεγ3

for the supremum norm on our domain with real exponents γ j such that

7/40 < γ1 < γ2 < γ3 < 3/4.

In this expression, the functions Fδ and Gδ parametrize the semi-fast horseshoe orbits
as in (2.9).

3. Notations

In order to apply KAM theory, we need an integrable approximation of the Hamiltonian
of the problem associated with the horseshoe motion and whose frequency map satisfies
non-degeneracy properties.

Before going further, let us introduce some useful notations.
First of all, the vector (0, 0)will be denoted 0while E(x)will denote the floor function

of a real number x .
Moreover, for z ∈ C

n , Re(z) ∈ R
n , Im(z) ∈ R

n are the vectors corresponding
respectively to the real part and the imaginary part of z. Finally, the magnitude | · | of the
complex vector z is the supremum norm of the magnitude on each complex coordinate,
that is

|z| = sup
j∈{1,...,n}

∣∣z j
∣∣ .

3.1. Complex domains and norms. LetD a subset ofCn and f a function in C (D,Cm).
Then, we will denote ‖ f ‖D the supremum norm of f on the domain D such that

‖ f ‖D = sup
z∈D

| f (z)| .

Now, let U a subset ofRn . We will define its associate complexified domain of width
r > 0 such that

BrU = {
z ∈ C

n / ∃x0 ∈ U such that |z − x0| � r
} =

⋃

x0∈U
Br {x0}
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where for a real vector x0 ∈ R
n , Br {x0} is the complex closed ball of radius r > 0

centered on x0. Hence, we will denote

Bn
r = Br {0n}

the closed ball of radius r > 0 centered on the origin in C
n .

Let U a subset of Tn . We will define its associated complexified domain of width s
such that

VsU = {
z ∈ C

n/Re(z) ∈ U , |Im(z)| � s
}
.

For an interval S = [a, b] ⊂ R and a set Î ⊂ T
2, if ρ > 0 and σ > 0, we define the

complex domain K̂ρ,σ as follows:

K̂ρ,σ = BρS × B1
ρ × Vσ Î × B4√

ρσ .

For 0 < p � 1, we also consider the domains

K̂p = K̂pρ,pσ

and define the supremum norm on these latter as follows:

‖ · ‖p = ‖ · ‖K̂pρ,pσ
.

We will need to consider the case of anisotropic analyticity widths where for ρ =
(ρ1, ρ2) ∈ R

∗
+ ×R

∗
+ and σ = (σ1, σ2) ∈ R

∗
+ ×R

∗
+. The complex domainKρ,σ is defined

as follows:

Kρ,σ = Bρ1S × B1
ρ2

× Vσ1T × Vσ2T × B4√
ρ2σ2

and its restriction Kρ,σ ,r , such as

Kρ,σ ,r = Bρ1S × B1
ρ2

× Vσ1T × Vσ2T × B4
r

for 0 < r � √
ρ2σ2. Thus, for 0 < p � 1, we also consider the domains

Kp = Kpρ,pσ and Kp,r = Kpρ,pσ ,r

with the supremum norms

‖ · ‖p = ‖ · ‖Kp
and ‖ · ‖p,r = ‖ · ‖Kp,r

.

Finally, for 1 � k � +∞ and a given function f ∈ C k(U ,Cm)where U is a compact
set in Cn , we define the C k-norm ‖ f ‖C k on U such that

‖ f ‖C k = sup
p�k

∥∥∥∥∥
∂ p f

∂z p1
1 . . . ∂z pn

n

∥∥∥∥∥U
(3.1)

with (p j ) j∈{1,...,n} ∈ N
n and p = ∑n

j=1 p j .
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3.2. Estimates. In the sequel we do not attempt to obtain estimates with particularly
sharp constants. Actually, we suppress all constants and use the notation

x � • y, x •� y, and x =• y

to indicate respectively that

x < Cy, Cx < y, and x = Cy

with some constant C � 1 independent of the small parameters of the problem.

3.3. Derivatives. Let us now introduce several simplifiednotations about the derivatives.
Let a function f (z) with z ∈ C, we will denote

f ′(z) = d f

dz
(z) and f (l)(z) = dl f

dzl
(z).

Let f (w, x, y, z) a multi-variable function of C8 with w = (w1, w2), x = (x1, x2),
y = (y1, y2), and z = (z1, z2). Then, we will denote the partial derivatives

∂w1 f = ∂ f

∂w1
, ∂ l

w1
f = ∂ l f

∂wl
1

,

∂w f = (∂w j f ) j∈{1,2}, ∂w∂x f =
(

∂2 f

∂w j∂xk

)

j,k∈{1,2}
,

∂2w f = ∂w∂w =
(

∂2 f

∂w j∂wk

)

j,k∈{1,2}
, ∂(z,w) f = (∂z f, ∂w f ),

and

∂2(z,w) f = ∂(z,w)∂(z,w) f =
(
∂z∂z f ∂z∂w f
∂w∂z f ∂w∂w f

)
.

Finally, the differential of the function f will be denoted

d f = (∂w f, ∂x f, ∂y f, ∂z f ) and dl f = dd . . . d︸ ︷︷ ︸
l

f.

3.4. Hamiltonian flow. The Hamiltonian flow at a time t generated by an auxiliary
function g(w, x, y, z)will be denoted�

g
t (w, x, y, z). By introducing the Poisson bracket

of the two real functions f (w, x, y, z) and g(w, x, y, z), such as

{ f, g} = ∂w f • ∂xg − ∂wg • ∂x f + ∂y f • ∂zg − ∂yg • ∂z f,

then the Hamiltonian flow satisfies
d

dt
( f ◦ �

g
t ) = { f, g} ◦ �

g
t

and thus the Taylor expansions

f ◦ �
g
1 = f +

∫ 1

0
{g, f } ◦ �

g
s ds and (3.2)

f ◦ �
g
1 = f + {g, f } +

∫ 1

0
(1 − s) {g, {g, f }} ◦ �

g
s ds. (3.3)
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4. Reduction of the Hamiltonian

The main goal of this section is to reduce the planetary Hamiltonian H(Z, ζ , x, x̃) =
HK (Z) + HP (Z, ζ , x, x̃) defined in Sect. 2.3 to the sum of two terms: an integrable
Hamiltonian associated with horseshoe trajectories written in terms of action variables
and a remainder whose size is controlled. Several steps are necessary.

4.1. A collisionless domain . First of all, let us define a complexified domain excluding
the collision manifold where the sizes of the Keplerian and perturbation parts will be
estimated.

For an arbitrary fixed �̂ > 0, independent of the small parameters of the problem,
we define the set Î by

Î =
{
ζ ∈ T

2/ |ζ1| � �̂
}

where “| · |” denotes the usual distance over the quotient space T = R/2πZ. Remark
that the condition on ζ1 can also be considered with the real variable ζ1 ∈ [�̂, 2π − �̂]
since there exists an unique real representative in this segment for an angle ζ1 with a
modulus lowered by �̂. Hence, Î has the structure of a cylinder in R × T.

If we assume that the planets are on circular exact-resonant orbits (Z = x =
x̃ = 0; see Sect. 2.3), the fixed quantity �̂ corresponds to the minimal angular
separation between the two planets which yields to a minimal distance given by
� = 2min(a1,0, a2,0) sin(�̂/2). Thus, with the notations of Sect. 3, for an arbitrary
�̂ > 0 independent of the small parameters of the problem, ρ > 0 and σ > 0 small
enough that will be specified in the sequel, we can define a complex domain of holo-
morphy

K̂ρ,σ = B2
ρ × Vσ Î × B4√

ρσ

that excludes the collision manifold. In this setting, it will be possible to estimate the
size of the transformations and the functions involved in our resonant normal form
constructions.

Hence, we set out the following

Lemma 4.1 (Estimates on HK and HP ). Assuming that

0 < ρ0 < σ0 , ρ0 •� 1, and σ0 •� �̂,

the Hamiltonian H is analytic in the domain K̂ρ0,σ0 and satisfies:

‖HK ‖C 3 � • 1, ‖HP‖C 4 � • ε. (4.1)

4.2. First averaging. In the first step of the reduction scheme, we average the Hamilto-
nian H over the fast angle ζ2 in order to reject the ζ2-dependency in an exponentially
small remainder. This reduction is provided by the following
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Theorem 4.1 (First averaging theorem). For

1/7 < β < 1/2, (ρ, σ ) = σ0(ε
β, 1),

and ε small enough (i.e. ε •� 1), there exists a canonical transformation

ϒ :
{

K̂1/3 −→ K̂1
(Z. , ζ. , x. , x̃. ) �−→ (Z, ζ , x, x̃)

with K̂1/6 ⊆ ϒ(K̂1/3) ⊆ K̂1/2 (4.2)

and such that

H ◦ ϒ(Z. , ζ. , x. , x̃. ) = HK (Z. ) + H P (Z. , ζ. 1, x. , x̃. ) + H∗(Z. , ζ. , x. , x̃. )

where H P (Z. , ζ. 1, x. , x̃. ) = 1

2π

∫ 2π

0
HP (Z. j , ζ. 1, ζ. 2, x. , x̃. )dζ. 2

(4.3)

with the following estimates:
∥∥H∗

∥∥
1/3 � • ε2−β, (4.4)

∥∥∥H†∗
∥∥∥
1/3

� • ε exp(− 1

εα
), (4.5)

for

H∗(Z. , ζ. 1, x. , x̃. ) = 1

2π

∫ 2π

0
H∗(Z. , ζ. 1, ζ. 2, x. , x̃. )dζ. 2, H†∗ = H∗ − H∗,

and

α = 1 − 2β

5
.

Moreover, the size of the transformation ϒ is given by

‖Z. − Z‖1/3 � • ε,
∥∥ζ. − ζ

∥∥
1/3

� • ε1−β,

‖(x. , x̃. ) − (x, x̃)‖1/3 � • ε1−β/2.
(4.6)

The remainder H†∗ being exponentially small on K̂1/3, we choose to drop it for the
moment in order to focus our reduction on the averaged Hamiltonian given by

H(Z. , ζ. 1, x. , x̃. ) = HK (Z. ) + H P (Z. , ζ. 1, x. , x̃. ) + H∗(Z. , ζ. 1, x. , x̃. ).

At last, we have the following crucial property.

Lemma 4.2 (D’Alembert rule in the Averaged Problem). We choose the transformation
ϒ such as the D’Alembert rule, given by (2.4), is preserved (see Lemma A.1). Equiva-
lently, the quantity

C(Z. 2, x. , x̃. ) = Z. 2 + i x. 1 x̃. 1 + i x. 2 x̃. 2, (4.7)

associated with the angular momentum C̃(r̃ j , r j ), is a first integral of the averaged
Hamiltonian H.
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Furthermore, if a general function f , which does not depend on the fast angle ζ. 2,
satisfies the D’Alembert rule, then there exists a set of function ( f( j,k)) j,k∈{1,2} such that

f (Z. , ζ. 1, x. , x̃. ) = f0(Z. , ζ. 1) + f2(Z. , ζ. 1, x. , x̃. )

= f0(Z. , ζ. 1) +
∑

j,k∈{1,2}
f( j,k)(Z. , ζ. 1, x. , x̃. )x. j x̃. k

with f0(Z. , ζ. 1) = f (Z. , ζ. 1, 0, 0)
and f( j,k)(Z. , ζ. 1, x. , x̃. ) − f( j,k)(Z. , ζ. 1, 0, 0) = O2(‖(x. , x̃. )‖).

(4.8)

This implies that in the expansion of H in the neighborhood of {x. = x̃. = 0} the total
degree in x. 1, x. 2, x̃. 1, x̃. 2 in the monomials appearing in the associated Taylor series is
even. Hence, the quasi-circular manifold defined as follows:

C0 =
{
(Z. , ζ. , x. , x̃. ) ∈ R

2 × T
2 × C

4 / x. = x̃. = 0
}

is invariant by the flow of the Hamiltonian H . For more details on the topology of C0,
see the phase portrait and its description in Sect. 2.4.

4.3. The reduction of H. In the second step, we perform some reductions in order to get
a more tractable expression of the Hamiltonian H . It mainly consists in an expansion of
the Hamiltonian in a suitable domain and at an appropriate degree.

First of all, regarding the eccentricities, a polynomial expansion of degree two in
x. = x̃. = 0 is enough to control the dynamics along the secular directions (i.e. the
directions transversal to C0).

For the action variables Z. , it is natural to expand in the neighborhood of the exact-
resonant actions (�1,0,�2,0) given in the formula (2.2), that is Z. = 0. Thus, H P is
truncated at degree zero while it is necessary to keep the second order for the Keplerian
part.

However, coming from the fact that when Z. = Z� with

Z� =
(

�1,0 − �1,�
�1,0 +�2,0 − (�1,� +�2,�)

)
and � j,� = m̂ jμ

1/2
j m1/6

0 υ
−1/3
0 ,

the two associated semi-major axes are both equal to the same value given by a� =
m1/3

0 υ
−2/3
0 . Consequently, it is much more convenient to center the expansion of H P

at Z. = Z�. This shift generates only small additional terms, as the difference between
� j,0 and � j,� satisfies the inequalities 0 < � j,0 − � j,� � • ε. Remark that the reduced
mass m̂ j can be replaced by m j which only adds small terms to the remainder of order
ε ‖Z. ‖2 from HK and of order ε2 from H P .

Finally, in order to uncouple the fast and semi-fast action variable Z. 1 and Z. 2, we
introduce a new set of action-angle variables via the linear transformation �̃ given by

�̃ :
{

K̂1/6 −→ K̂1/3
(I,ϕ,w, w̃) �−→ (I1 + κ I2, I2, ϕ1, ϕ2 − κϕ1,w, w̃)

where

κ = m1

m1 + m2
� 1

2
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and such that

K̂1/18 ⊆ �̃(K̂1/6) ⊆ K̂1/4 . (4.9)

All of these successive transformations and estimation of the generate remainder are
summarized in the following

Theorem 4.2 (Hamiltonian reduction). Under the assumptions of Theorem 4.1, we have
the following assertions:

(1) in the coordinates (I,ϕ,w, w̃) the averaged Hamiltonian H̃ = H ◦ �̃ − HK (0)
can be written

H̃ (I, ϕ1,w, w̃) = H̃1(I1, ϕ1) +H2(I2) +Q̃(ϕ1,w, w̃) + R̃(I, ϕ1,w, w̃)

(4.10)

where

H̃1(I1, ϕ1) = υ0

(
−AI 21 + εBF(ϕ1)

)
, H2(I2) = υ0

(
I2 − E I 22

)
,

R̃(I, ϕ1,w, w̃) = R̃0(I, ϕ1) +
∑

j,k∈{1,2}
R̃( j,k)(I, ϕ1,w, w̃)w j w̃k,

Q̃(φ1,w, w̃) =
∑

j,k∈{1,2}
Q̃( j,k)(φ1)w j w̃k

= iευ0D

( Ã(ϕ1)

m1
w1w̃1 +

B̃(ϕ1)√
m1m2

w1w̃2

+
conj(B̃)(ϕ1)√

m1m2
w̃1w2 +

Ã(ϕ1)

m2
w2w̃2

)
,

with

F(ϕ1) = 2

3

(
cosϕ1 − D(ϕ1)

−1
)
,

Ã(ϕ1) = D(ϕ1)
−5

4
(5 cos 2ϕ1 − 13 + 8 cosϕ1) − cosϕ1,

B̃(ϕ1) = e−2iϕ1 − D(ϕ1)
−5

8

(
e−3iϕ1 + 16e−2iϕ1 − 26e−iϕ1 + 9eiϕ1

)
,

conj(B̃)(ϕ1) is the complex conjugate of B̃(ϕ1),

D(ϕ1) = √
2 − 2 cosϕ1,

(4.11)

and the parameters:

A = 3

2
υ
1/3
0 m−2/3

0

(
1

m1
+

1

m2

)
, B = 3

2
υ

−1/3
0 m2/3

0 D,

D = m1m2

m0
, E = 3

2
υ
1/3
0 m−2/3

0 (m1 + m2)
−1.

(4.12)
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(2) The remainder R̃ is bounded by the threshold
∥∥∥R̃

∥∥∥
1/6

� • ε3β

and, if we assume β > 1/3, we can ensure
∥∥∥R̃( j,k)

∥∥∥
1/6

� • ε2−2β.

Remark 4.1. On the domain K̂1/6, the size of the remainder R̃ is larger than the one
provided by the first averaging given by (4.4).

As a consequence, the averaged Hamiltonian H̃ possesses three components. The
first one describes the dynamics on the quasi-circular manifold C0. It is composed of
the integrable Hamiltonian H2 and the mechanical system H̃1, respectively associated
with the fast and the semi-fast variations. The second component Q̃ which is of order
two in eccentricity and depends of the semi-fast angle described the main part of the
secular behavior along the two normal-directions. At last, we have the remainder R̃
whose shape and size are controlled on the domain K̂1/6.

4.4. The mechanical system H̃1. In the third step, we focus our efforts on the semi-fast
dynamics in order to build an action-angle coordinate system valid for the horseshoe
trajectory region.According toTheorem4.2, the semi-fast component of theHamiltonian
is given by the following mechanical system:

H̃1(I1, ϕ1) = υ0

(
−AI 21 + εBF(ϕ1)

)

where the real function F is defined on ]0, 2π [ by (4.11) and A, B are two positive
constants given by (4.12). As

H̃1(−I1, ϕ1) = H̃1(I1, ϕ1) and H̃1(I1, π − ϕ1) = H̃1(I1, π + ϕ1),

the study of the Hamiltonian H̃1 and its flow can be reduced to R+×]0, π ]. As

F(ϕ1) = −1 +
7

24
(ϕ1 − π)2 +O4(ϕ1 − π),

the point of coordinates (0, π) is a hyperbolic fixed point whose energy level equals
h0 = ευ0BF(π) = −ευ0B.

With these notations, the horseshoe orbits that we are interested in are the level curves
of H̃1 which fulfill the relation

H̃1(I1, ϕ1) = hδ = −ευ0B(1 + δ) with δ > 0.

Along a hδ-level curve, the action I1 can be expressed as a function of ϕ1 for ϕmin
1,δ �

ϕ1 � π , where ϕmin
1,δ is the angle corresponding in one of the two intersections of the

level curve with the axis I1 = 0 (see Fig. 5). This angle, which is also the minimal value
of ϕ1 along a hδ-level curve, verifies

ϕmin
1,δ = 2 arcsin

(√
2 − 1

2

)
− c0δ +O(δ2) where 1/4 < c0 < 1/3. (4.13)
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Fig. 5. Phase portrait of the mechanical system H̃1(I1, ϕ1) depicted in the domain R+×]0, π [ (the entire
phase portrait is represented in Fig. 4). δ = 0 corresponds to the separatrix (black curve) that surrounds the
tadpole domain (δ < 0) while δ > 0 corresponds to the horseshoe trajectories (grey curves). The grey region
represents the horseshoe trajectories such as δ∗ � δ � 2δ∗ where adapted action-angle variables are built

By symmetry reasons, the amplitude of variation of ϕ1 around π , for a given value of
hδ , is greater than 2π − 2ϕmin

1,δ > 312◦.
When δ > 0, the orbit of energy hδ is periodic and the corresponding period is given

by the expression

Tδ = 2

υ0
√
εAB

∫ π

ϕmin
1,δ

dϕ1√
Uδ(ϕ1)

with

Uδ(ϕ1) = ε−1AB−1(I1(ϕ1))
2 = 1 + δ + F(ϕ1).

As the orbit approaches the separatrix (δ tends to zero), its period Tδ tends to infinity.
More precisely,

Lemma 4.3 (Semi-fast Frequency). if 0 < δ∗ is small enough (δ∗ •� 1), then for all δ ∈
[δ∗, 2δ∗] the asymptotic expansions of the semi-fast frequency and of its first derivative
read

νδ = 2πT −1
δ = υ0

√
εK

|ln δ|
(
1 + ĥ0(δ)

)
and ν′

δ = υ0
√
εK

δ |ln δ|2
(
1 + ĥ1(δ)

)
(4.14)

where (ĥ j ) j∈{0,1} are analytic functions over [δ∗, 2δ∗] that satisfy the relations

∣∣∣ĥ j (δ)

∣∣∣ � •
∣∣ln δ∗∣∣−1

and K =
√
7π2

6
AB =

√
21π2

8

m1 + m2

m0
.

We define a subset of the horseshoe region in order to build the adapted action-angle
variables. Thus, let us consider the domain D∗ defined as

D∗ =
{
(I1, ϕ1) ∈ R×]0, 2π [ such that H̃1(I1, ϕ1) = hδ

with δ∗ � δ � 2δ∗
}
. (4.15)
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This set, which corresponds to the grey region in Fig. 5, contains the horseshoe orbits
of the mechanical system which are close to the separatrix.

In this domain we can build a system of action-angle variables denoted (J1, φ1) such
that

H1(J1) = H̃1 ◦ F(J1, φ1) = hδ and H ′
1 (J1) = νδ

where F = (F1,F2) :
{
F−1(D∗) −→ D∗
(J1, φ1) �−→ (I1, ϕ1)

with F−1(D∗) = S∗ × T ; S∗ = [a, b] ⊂ R.

(4.16)

If we restrict our attention to an arbitrary energy level corresponding to a fixed shift
of energy δ that belongs to the segment

[
δ∗, 2δ∗], the transformation in action-angle

variables can be defined explicitly by the classical integral formulation:

J1 = 4
√
εB A−1

∫ π

ϕmin
1,δ

√
Uδ(s)ds and φ1 = − νδ

2υ0
√
εAB

∫ ϕ1

ϕmin
1,δ

ds√
Uδ(s)

where δ and ϕmin
1,δ are functions of (I1, ϕ1).

As we look for a complex domain of holomorphy for the integrable HamiltonianH1,
we have the following

Theorem 4.3 (Semi-fast holomorphic extension). For δ∗ small enough (δ∗ •� 1), the
transformation F can be extended holomorphically over Bρ̂1S∗ × Vσ̂1T with ρ̂1 =√
ε(δ∗) p̂ and σ̂1 = (δ∗) p̂ for some positive exponent p̂. Moreover, the extended function

is C-Lipschitz with C •= 1/
√
δ∗.

Remark 4.2. Rough estimates lead to p̂ = 11/2 which is far to be optimal. Moreover,
without loss of generality, we can assume that δ∗ is small enough that in the domain
Bρ̂1S∗ there is a diffeomorphism between J1 and δ. We will also use the notations hδ ,
νδ , ν′

δ for the energy and the frequency on the complex domain Bρ̂1S∗. From a more
general point of view, the polynomial link between the energy shift δ∗ and the analyticity
widths is arbitrary and certainly not optimal. Another possibility would be to leave these
quantities independent during the calculations and to fix them at the end, in view of the
constraints obtained.

4.5. The Hamiltonian in semi-fast action-angle variables. Going back to the averaged
Hamiltonian H̃ considered in (4.10), the introduction of action-angle variables of the
mechanical system leads to the following expressions.

Theorem 4.4 (Semi-fast action-angle variables). With the notations of Sect. 3, for δ∗
small enough (δ∗ •� 1) there exists a canonical transformation

� :
{

Kρ,σ −→ K̂1/6
(J,φ,w, w̃) �−→ (I,ϕ,w, w̃)

where (I1, ϕ1, I2, ϕ2) = (F(J1, φ1), J2, φ2)

and

Kρ,σ = Bρ1S∗ × B1
ρ2

× Vσ1T × Vσ2T × B4√
ρ2σ2

such that

ρ1 •= √
ε(δ∗) p̂, ρ2 •= εβ, σ1 •= (δ∗) p̂, σ2 •= 1,

and 1/3 < β < 1/2.
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Then, the transformed HamiltonianH = H̃ ◦� is analytic, satisfies the D’Alembert
rule, and reads

H (J, φ1,w, w̃) = H1(J1) +H2(J2) +Q(J1, φ1,w, w̃) +R(J, φ1,w, w̃)

where

H1(J1) = hδ, H ′
1 (J1) = νδ, H ′′

1 (J1) = − ν′
δνδ

ευ0B
,

H2(J2) = υ0

(
J2 − E J 2

2

)
,

R(J, φ1,w, w̃) = R0(J1, ϕ1) +
∑

j,k∈{1,2}
R( j,k)(J, φ1,w, w̃)w j w̃k,

Q(J1, φ1,w, w̃) =
∑

j,k∈{1,2}
Q( j,k)(J1, φ1)w j w̃k

= iευ0D

(A(J1, φ1)

m1
w1w̃1 +

B(J1, φ1)√
m1m2

w1w̃2

+
conj(B)(J1, φ1)√

m1m2
w̃1w2 +

A(J1, φ1)

m2
w2w̃2

)

with A = Ã ◦ F2 and B = B̃ ◦ F2. Moreover, the following bounds are satisfied:

∥∥∥H (l)
1

∥∥∥Kρ,σ

� • ε
2−l
2 (δ∗)−l p̂(l ∈ {0, . . . , 4}),

∥∥∥∂ l
J1Q( j,k)

∥∥∥Kρ,σ

� • ε
2−l
2 (δ∗)−l p̂ (l ∈ {0, 1, 2}),

‖R‖Kρ,σ
� • ε3β,

∥∥R( j,k)
∥∥Kρ,σ

� • ε2−2β, (4.17)

and

∥∥∂J1F1
∥∥Kρ,σ

� • (δ∗)− p̂,
∥∥∂φ1F1

∥∥Kρ,σ
� •

√
ε(δ∗)− p̂,

∥∥∂J1F2
∥∥Kρ,σ

� •
√
ε
−1

(δ∗)− p̂,
∥∥∂φ1F2

∥∥Kρ,σ
� • (δ∗)− p̂.

Remark 4.3. In the complex domain Kρ,σ , there exists a diffeomorphism between the
shift of energy δ and the semi-fast action J1.

4.6. Second averaging. In the fourth step, we average the Hamiltonian H over the
semi-fast angle φ1 in order to reject the φ1-dependency up to an exponentially small
remainder.

Up to now, δ and ε were two independent small parameters. However, in order to
simplify the calculations in the following we link the bounds in energy level to ε such
that

δ∗ = εq̂ (4.18)
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where q̂ is a positive exponent thatwill be determined in the sequel.Hence, the analyticity
widths of the considered domain of holomorphy Kρ,σ are equal to

ρ1 •= √
εεq, ρ2 •= εβ, σ1 •= εq, σ2 •= 1,

q := p̂q̂, and 1/3 < β < 1/2.

Then, using the notations of Sect. 3 we restrict the domain of holomorphy of the
Hamiltonian H to the complex domains Kp = Kpρ,pσ for 0 < p � 1 with

ρ1 •= √
εε5q, ρ2 •= εβ, σ1 •= εq, σ2 •= 1,

q = 2 p̂q̂, and 1/3 < β < 1/2

where the following bounds on the semi-fast frequency are valid:

√
ε

|ln ε| � • |νδ| = ∣∣H ′
1 (J∗)

∣∣ � •
√
ε

|ln ε|

for any δ ∈ [
δ∗, 2δ∗] (or equivalently for any J∗ ∈ S∗) and for J1 ∈ Bρ1S∗ there exists

J∗ ∈ S∗ such that

∥∥H ′
1 (J1) − H ′

1 (J∗)
∥∥

p � •
√
εε3q.

The latter estimates come from (4.17) which allows to bound H ′′
1 . Consequently, we

have

√
ε

|ln ε| � •
∣∣H ′

1 (J1)
∣∣ � •

√
ε

|ln ε| (4.19)

uniformly over Kp.
In this setting, one can normalize once again the Hamiltonian in order to eliminate

the semi-fast angle φ1 according to the following

Theorem 4.5 (Second averaging theorem). For

q = 3β − 1

15
with 4/9 < β < 1/2 (4.20)

and ε small enough (ε •� 1), there exists a canonical transformation

� :
{ K7/12 −→ K1
(J. ,φ. ,w. , w̃. ) �−→ (J,φ,w, w̃)

with K5/12 ⊆ �(K7/12) ⊆ K3/4

such that H ◦ � = H +H †∗ where

H (J. ,w. , w̃. ) = H1(J. 1) +H2(J. 2) +Q(J. 1,w. , w̃. ) +F (J. ,w. , w̃. )
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is the secular Hamiltonian with

H1(J. 1) = hδ. , H ′
1 (J. 1) = νδ. , H ′′

1 (J. 1) = − ν′
δ.
νδ.

ευ0B
,

H2(J. 2) = υ0

(
J. 2 − E J.

2
2

)
,

F (J. ,w. , w̃. ) = F0(J. ) +
∑

j,k∈{1,2}
F( j,k)(J. ,w. , w̃. )w. j w̃. k,

Q(J. 1,w. , w̃. ) = 1

2π

∫ 2π

0
Q(J. 1, φ. 1,w. , w̃. )dφ. 1,

and H †∗ is the remainder that contains the φ. 1-dependency such that

H
†
∗(J. ,w. , w̃. ) = 1

2π

∫ 2π

0
H †∗ (J. , φ. 1,w. , w̃. )dφ. 1 = 0.

Moreover, for 0 < p < 7/12 the choice for q given in (4.20) yields the following upper
bounds:

∥∥∥H (l)
1

∥∥∥
p

� • ε
2−l
2 −lq (l ∈ {0, . . . , 4}),

∥∥∥Q(l)
( j,k)

∥∥∥
p

� • ε
2−l
2 −lq (l ∈ {0, 1, 2}),

‖F0‖p � • ε3β,
∥∥F( j,k)

∥∥
p � • ε2−2β, (4.21)

∥∥∂J1F0
∥∥

p � • ε3β− 1
2−5q,

∥∥∂J2F0
∥∥

p � • ε2β,
∥∥∥∂2J1F0

∥∥∥
p

� • ε3β−1−10q,

∥∥∥∂2J2F0

∥∥∥
p

� • εβ,

∥∥∂J1∂J2F0
∥∥

p � • ε2β− 1
2−5q,

∥∥∂JF( j,k)
∥∥

p � • ε1/3,
∥∥∥∂2JF( j,k)

∥∥∥
p

� • ε−1/3,

∥∥∥∂2(w,w̃)F( j,k)

∥∥∥
p

� • ε2−3β, (4.22)

and

∥∥∥H †∗
∥∥∥

p
� • ε exp

(
− 1

εq

)
. (4.23)

Finally, we can bound the size of the transformation by

∥∥J. 1 − J1
∥∥

p � • |ln ε| ε3β− 1
2−2q,

∥∥∥φ. 1 − φ1

∥∥∥
p

� • |ln ε| ε3β−1−6q,

∥∥∥φ. 2 − φ2

∥∥∥
p

� • |ln ε| ε2β− 1
2−q,

‖(w. , w̃. ) − (w, w̃)‖p � • |ln ε| √εε−q ‖(w, w̃)‖p ,

while J. 2 = J2.
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The remainder H †∗ being exponentially small, we drop it for the moment in order to
focus on the secular Hamiltonian H .

Remark 4.4. In the same way as in the Remark 4.3, on the complex domain Kp there
exists a diffeomorphism between the shift of energy δ. and the semi-fast action J. 1.

4.7. The normal frequencies. In the fifth step, we focus our effort on the secular dynam-
ics. From the estimates of the previous theorem, the main part of the secular dynamics
is given byQ whose coefficients A and B are the result of the averaging of Ã ◦ F2 and
B̃ ◦ F2 with respect to the semi-fast angle φ1. The action-angle transformation F being
not explicit, we perform the average with respect to the initial angle ϕ1 = F2(J1, φ1).
More specifically, we consider the average at a semi-fast action J∗ ∈ S∗, hence on a
level curve corresponding to δ. ∈ [

δ∗, 2δ∗] such that

A(J∗) = νδ.

υ0
√
επ2AB

∫ π

ϕmin
1,δ.

Ã(ϕ1)dϕ1√
Uδ. (ϕ1)

,

B(J∗) = νδ.

υ0
√
επ2AB

∫ π

ϕmin
1,δ.

Re
(
B̃(ϕ1)

)
dϕ1

√
Uδ. (ϕ1)

with
dφ. 1
dt

= H ′
1 (J∗) = νδ. . (4.24)

From these expressions, we deduce the asymptotic expansion of the pure imaginary
eigenvalues of (Q( j,k)(J∗)) j,k∈{1,2} that we denote i g̃ j,δ. for j ∈ {1, 2} where g̃1,δ. and
g̃2,δ. correspond to the main part of the two secular frequencies. Hence, we have the
following

Theorem 4.6 (Secular frequencies). The asymptotic expansions of the main part of the
secular frequencies as δ. tends to zero (with our definition of D∗ given by (4.15)) are
given by

g̃1,δ. = ευ0
m1 + m2

m0

(
7

8
+ ĥ2(δ. )

)
,

g̃2,δ. = ευ0
m1 + m2

m0

(
c2

|ln δ. | + ĥ3(δ. )

)
,

(4.25)

where

c2 < 0,
∣∣∣ĥ2(δ. )

∣∣∣ � •
∣∣ln δ∗∣∣−1

and
∣∣∣ĥ3(δ. )

∣∣∣ � •
∣∣ln δ∗∣∣−2

.

Then, we need to reduce the quadratic part

Q(J. 1,w. , w̃. ) +
∑

j,k∈{1,2}
F( j,k)(J. , 0, 0)w. j w̃. k (4.26)

to a diagonal form for J. ∈ B∗ = Bpρ1S∗ × B1
pρ2 for some 0 < p < 7/12. Since

we link the shift in energy δ. with the mass ratio ε via a power law as in (4.18), the
differences between the coefficients of (Q( j,k)(J. 1)) j,k∈{1,2} and (Q( j,k)(J∗)) j,k∈{1,2} for
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J. 1 ∈ Bpρ1S∗ are negligible with respect to the eigenvalues (4.25). Indeed, the estimates
(4.21) of Theorem 4.5 together with the mean value theorem provide the following:

∥∥∥Q( j,k)(J. 1) − Q( j,k)(J∗)
∥∥∥

p
� • ε

31
30 since 4/9 < β < 1/2.

In the same way, the estimates (4.22) imply that the coefficients (F( j,k)) j,k∈{1,2} are of
size ε2−2β and thus, are also negligible with respect to the eigenvalues (4.25) over B∗.
Consequently, for all J. ∈ B∗, the main part of the eigenvalues in the quadratic form
(4.26) are given by the eigenvalues of Q(J∗,w. , w̃. ) for some J∗ ∈ S∗.

We denote by ig j (J. ) the eigenvalues of (4.26) for J. ∈ B∗. Since these quantities
are perturbation of g̃1,δ. and g̃2,δ. , which are different for ε small enough, the spectrum
of (4.26) is simple. On the real domain B∗ ∩ R

2, the angular momentum C(J. 2,w. , w̃. )
given by (4.7) being an integral ofH ◦ � considered in Theorem 4.5, the manifold C0
is normally stable. These two properties imply that the two perturbed frequencies are
also purely imaginary numbers, or equivalently g j (J. ) is real, for J. ∈ B∗ ∩ R

2.
In the complex domain B∗, we have

g j (J. ) = g̃ j,δ. + f j (J. ) with || f j ||p � • ε2−2β.

Consequently, as δ∗ = εq̂ � δ. � 2εq̂ = 2δ∗, for ε small enough we have

ε � •
∣∣g1(J. )

∣∣ � • ε and
ε

|ln ε| � •
∣∣g2(J. )

∣∣ � •
ε

|ln ε| (4.27)

on the complex domain B∗.
Since the spectrum is simple, there exists a symplectic transformation which is linear

with respect to w. , w̃. and diagonalizes the quadratic form (4.26). In the same way, the
eigenspaces of (4.26) are close to those of Q(J. 1,w. , w̃. ) which correspond to a non-
singular transformation depending of A(J. 1) and B(J. 1). Hence, we have the following

Theorem 4.7 (Diagonalization). With the notations of Sect. 3, for

0 < r •� ε
1
4 +3q with q = 3β − 1

15
and 4/9 < β < 1/2

(which is strictly smaller that
√
ρ2σ2 with the considered values of β), there exists

0 < p < 7/12 and a canonical transformation

� :
{ Kp,r −→ K7/12
(
,ψ, z, z̃) �−→ (J. ,φ. ,w. , w̃. )

which is linear with respect to z and z̃ with

J. = 
, φ. = ψ + G2(
, z, z̃) where G2 = O2(‖(z, z̃)‖),

such that the secular Hamiltonian H ◦ � = Ȟ + Ř reads

Ȟ = H1 +H2 +F0 +
∑

j=1,2

ig j (
)z j z̃ j and

Ř(
, z, z̃) = O4(‖(z, z̃)‖) with
∥∥∥Ř

∥∥∥
p,r

� • ε2−3βr4.

(4.28)
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As a consequence, we set out the following

Corollary 4.1. Taking into account the exponentially small remainders in Theorems 4.1
and 4.5, the planetary Hamiltonian H given in (2.1) reads

Ȟ(
,ψ, z, z̃) = Ȟ (
, z, z̃) + Ř(
, z, z̃) + Ȟ∗(
,ψ, z, z̃)

with
∥∥∥Ȟ∗

∥∥∥
p,r

� • ε exp(− 1

εα
)

where α = 1 − 2β

5
and 4/9 < β < 1/2 .

5. Application of a Pöschel Version of KAM Theory

As said in the introduction, we apply Pöschel version of KAM theory for the persistence
of lower dimensional normally elliptic invariant tori [28].More preciselywe implement a
formulation of Pöschel’s theorem [28] given in Proposition 2.2 of Biasco et al. [6], which
is a summary ofTheoremsA,BandCorollaryC inPöschel [28] for the finite-dimensional
case. In the co-orbital case, we have to be cautious about the dependance with respect
to the small parameter ε of the constants involved in these statements. Indeed, some
quantities, such as the analyticity width with respect to the semi-fast angle, are singular
in our problem.

For the sake of clarity, we will now try to be as close as possible to the notations used
in Biasco et al. [6]. Pöschel’s theorem requires a parametrized normal form that can be
written in our case as

N(y, z, z̃; ξ) =
∑

j=1,2

ω j (ξ)y j +
∑

j=1,2

i� j (ξ)z j z̃ j (5.1)

where ω are the internal frequencies, which depends on the 2d parameter ξ belonging
a complex set � defined later and � are the normal or secular frequencies. The 2d tori
given by the quasi-circular manifold C0 = {z = z̃ = 0} are invariant under the flow of
the normal form given by (5.1) and are normally elliptic.

Let us now consider the Hamiltonian

H(y,ψ, z, z̃; ξ) = N(y, z, z̃; ξ) + P(y,ψ, z, z̃; ξ) (5.2)

with
{

ω j (ξ) = H ′
j (ξ j ) + ∂� jF0(ξ)

� j (ξ) = g j (ξ)

and

P(y,ψ, z, z̃; ξ) = Ȟ(ξ + y,ψ, z, z̃) − N(y, z, z̃; ξ) − Ȟ (ξ , 0, 0), (5.3)

Ȟ and Ȟ being respectively the planetary Hamiltonian considered in the corollary 4.1
and the integrable approximation of Theorem 4.7.

Wewill need estimates on the Lipschitz norm of a function f defined over the domain
�:

| f |Lip� = sup
ξ �=ξ ′∈�

∣∣ f (ξ) − f (ξ ′)
∣∣

∣∣ξ − ξ ′∣∣ .
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Hence | f |Lip� � ‖d f ‖� for a differentiable function. Especially, we consider the upper
bound:

|ω|Lip� + |�|Lip� � M.

Moreover, Pöschel reasoning requires that the internal frequency map ω is a diffeo-
morphism onto its image ω(�) (more precisely � = B2

ρ where ρ is determined in
Proposition A.4). Thus, we consider the following upper bound:

|ω−1|Lip� � L .

In order to ensure the persistence of normally elliptic tori, we have to check Mel-
nikov’s condition for multi-integers of length bounded by

K0 = 16L M.

More precisely, we have to prove the existence of a constant γ0 > 0 such that

min
ξ∈�

{ |�1(ξ)|, |�2(ξ)|, |�1(ξ) − �2(ξ)| } � γ0 and

min
ξ∈�

|ω(ξ) • k + �(ξ) • l| � γ0 ∀ 0 < |k| � K0, |l| � 2

(see Proposition A.1 for more details).
The planetary Hamiltonian H defined in (5.2) is analytic over the domain

D(r̄ , s̄) =
{
(y,ψ, z, z̃) ∈ C

8 / |y| < r̄2, ψ ∈ Vs̄T
2, |(z, z̃)| < r̄

}
(5.4)

such that 0 < r̄ < r and 0 < s̄ •� σ1. The thresholds of Proposition 2.2 in Biasco et
al. [6] concern the size of the perturbation P measured using the norm of its associated
Hamiltonian vector field XP. More precisely, on the domain D(r̄ , s̄), we consider the
following norms:

‖XP‖r̄ ,D(r̄ ,s̄) = sup
D(r̄ ,s̄)×�

(
|∂yP| + 1

r̄2
|∂ψP| + 1

r̄
(|∂zP| + |∂̃zP|)

)
,

‖XP‖Lipr̄ ,D(r̄ ,s̄) = sup
D(r̄ ,s̄)

(
|∂yP|Lip� +

1

r̄2
|∂ψP|Lip� +

1

r̄

(
|∂zP|Lip� + |∂̃zP|Lip�

))

where, for a function f defined over D(r̄ , s̄) × �, we define

| f |Lip� = sup
ξ �=ξ ′∈�

∥∥ f ( · ; ξ) − f ( · ; ξ ′)
∥∥

D(r̄ ,s̄)

|ξ − ξ ′| ,

hence | f |Lip� � ||∂ξ f ||D(r̄ ,s̄)×� for a differentiable function.
Now, we can state the theorem which ensures the existence of invariant tori.
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Theorem 5.1. With the previous notations, there exists a large enough parameter τ > 0
such that for γ ∈]0, γ0/2], if

ε = ‖XP‖r̄ ,D(r̄ ,s̄) +
γ

Mγ0
‖XP‖Lipr̄ ,D(r̄ ,s̄)

•� cγ

La Ma
σ b
1 , (5.5)

where a = τ + 1, b = 2τ + 4, and c > 0 is a constant depending only on τ , then the
following holds. There exists a non-empty Cantor set of parameters �∗ ⊂ � (more
precisely, the measure of its complement �\�∗ goes to zero with γ ) and a Lipschitz
continuous family of tori embedding

T :
{
T
2 × �∗ −→ Dr̄
(θ , ξ) �−→ (y(θ , ξ),ψ(θ, ξ), z(θ , ξ), z̃(θ , ξ))

with

Dr̄ =] − r̄2, r̄2[×] − r̄2, r̄2[×T
2 × B4

r̄ and z̃(θ, ξ) = −i z̄(θ , ξ),

a Lipschitz homeomorphism ω∗ on �∗ such that, for any ξ ∈ �∗, the image T(T2, ξ)
is a real-analytic (elliptic) H-invariant 2-dimensional torus, on which the flow linked to
H is analytically conjugated to the linear flow θ �→ θ + ω∗t . Moreover, the embedding
T(T2, ξ) for ξ ∈ �∗ is ε/γ -close to the torus {
 + ξ = z = z̃ = 0} with the notations
of the Corollary 4.1.

Remark 5.1. The previous theorem corresponds to Proposition 2.2 in Biasco et al. [6]
but we have to specify the dependance with respect to the parameters which appear in
threshold (5.5) since these constants goes to zero in our case. This is obtained by going
back to the original paper of Pöschel [28] where the exponent “a” comes from Corollary
C, the exponent “b” is defined below formula (6) and (17) of Pöschel [28], finally the
parameter τ is defined in formula (22).

As it was specified above, we have to be cautious with the fact that the involved
constants degenerate when ε goes to zero. This is overcome by constraining ε to be
inside an interval [ε0/2, ε0] for any arbitrary ε0 > 0 and in Sect. A.11, we prove that
the main threshold (5.5) is satisfied if ε0 is small enough (ε0 •� 1).

Consequently, for mass ratio ε small enough, we find the desired quasi-periodic
horseshoe orbits.

6. Extensions, Comments and Prospects

As we have seen, the obtained quasi-periodic motions suffer two limitations: they corre-
spond to 2-dimensional tori but not Lagrangian tori in this 4-degree of freedom system
and they are close to the L3-separatrix.

Concerning the first item, our initial goal was to obtain Lagrangian tori following
the reasonings of Herman and Féjoz in the N -body planetary problem with large gaps
between the planets [16]. To ensure the existence of Lagrangian invariant tori, we have to
prove that the frequencymapassociatedwith theHamiltonianȞ , introduced inTheorem
4.7, satisfies Rüssmann non-degeneracy condition (i.e. its image should not be included
in any hyperplane of R4). Hence, we have to consider the map F(
) = (ω(
), �̌(
))

with:

ω j (
) = H ′
j (� j ) + ∂� jF0(
) and �̌ j (
) = g̃ j,δ.(�1) + f̌ j (
)
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where (g̃ j,δ. )( j∈{1,2}) are the normal frequencies associated with the averaged quadratic

part
(
Q( j,k)(�1)

)

j,k∈{1,2}, that are introduced in Theorem 4.6. The functions f̌ j are

small quantities generated by the remainder
(
F( j,k)(
, 0, 0))

)
j,k∈{1,2}. If we consider

the approximate frequency map

F0(
) = (H ′
1 (�1),H

′
2 (�2), g̃1,δ.(�1), g̃2,δ.(�1))

we can prove that

det(F0, ∂�2F0, ∂�1F0, ∂
2
�1
F0) �= 0.

But our approach does not give enough control on the remainder (∂� jF0(
), f̌ j (
))

to ensure the same property on the complete frequency map F(
). Hence we don’t
have enough information in our approximation which has to be refined in order to prove
Rüssmann non-degeneracy condition for Lagrangian tori.We believe that a possible way
to overcome this issue would be to consider an integrable approximation truncated at
higher order in semi-fast action. Indeed in this case, the integrable approximation would
not be a mechanical system as in Medvedev et al. [26]. From a more general point of
view, estimates that may be useful in our context can certainly be found in the work of
Biasco and Chierchia [4,5] where a general KAM theory of secondary Lagrangian tori
is studied in the case of a perturbed mechanical system.

We can also consider a nearly-invariant Lagrangian toriwhere the solutions are almost
quasi-periodic for a very long time. More specifically, the horseshoe orbits which are
ε-close to the L3-separatrix have four frequencies (fast, semi-fast and two normal fre-
quencies)which are respectively of order (1,

√
ε/ |ln ε| , ε, ε/ |ln ε|). These four different

timescales, which prevent the occurrence of small divisors for ε small enough, allows
to reduce the secular Hamiltonian Ȟ introduced in Theorem 4.7 to a Birkhoff normal
form up to an arbitrary order. Using Theorem 5.5 of Giorgilli et al. [20] or Proposition
1 of Delshams and Gutiérrez [12], it is possible to get the following statement.

Theorem 6.1. The estimates (4.27)and Theorem4.7 ensure that for an arbitrary L ∈ N
∗,

there exists εL > 0 such that for any ε < εL we have

ε

|ln ε| � • |l1g1(
) + l2g2(
)| (6.1)

for any (l1, l2) ∈ Z
2 of length 0 < |l1| + |l2| � L.

Hence, if we impose

r < r0 •= ε−1−β/2
(

εβ/2

|ln ε|
)L

,

then for any ε < εL and p′ < p small enough, there exists a canonical transformation

� :
{ Kp′,r −→ Kp,r
(
. ,ψ. , z. , z̃. ) �−→ (
,ψ, z, z̃)

with


 = 
. , ψ = ψ. + G4(
. , z. , z̃. ) where G4 = O4(‖(z. , z̃. )‖)
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such that the transformed secular Hamiltonian

Ȟ ◦ �(
. , z. , z̃. ) = N(L)(
. ,ψ. , z. , z̃. ) + R(L+1)∗ (
. , z. , z̃. )

is reduced in a Birkhoff normal form up to order L in (z. , z̃. ).
As a consequence, we have

N(L)(
. , z. , z̃. ) =
∑

s∈{1,...,E(L/2)}
N(s)(
. , z. , z̃. )

whereN(s) is a homogeneous polynomial of degree s in z. 1̃z. 1 and z. 2̃z. 2 while the remainder

R(L+1)∗ is of order L + 1 in (z. 1, z̃. 1, z. 2, z̃. 2) and
∥∥∥R(L+1)∗

∥∥∥
p,r

� • r L .

By using the action-angle variables (" j , θ j ) j∈{1,...,4} such that

" j = �. j , θ j = ψ. j
, z. j = √

" j+2e−iθ j+2 , z̃. j = −i
√
" j+2eiθ j+2 ,

we obtain a nearly-invariant Lagrangian tori over polynomially long times with respect
to ε at any order. Actually, in view of estimates (6.1), we can certainly push these
reasonings in order to obtain a time of stability of order εln ε.

Another possible direct extension of our work comes from the fact that our reasonings
are valid in the vicinity of the separatrices arising from L3. Actually, we have considered
orbits which surround these separatrices but we can also consider orbits which are inside
one of these loops (see Fig. 3). In that case, the frequencies have the same order as in the
present paper and the same strategy would certainly allows to ensure the existence of
quasi-periodic tadpole orbits which are far from the equilateral Lagrange configurations.

Concerning prospects, in this paper we have shown the existence of invariant tori
which are polynomially (with respect to ε) close to the L3-separatrix. This is only a trick
that leads us to derive the frequencymap, which is, in this case, close to the one evaluated
at the L3 equilibrium. Actually our mechanical approximation, defined in Sect. 4.4, is
valid well beyond this separatrix: numerical simulations show that this kind of model is
able to approach accurately Janus-Epimetheus actual motion (see [34]). Thus, it would
be interesting to build quasi-periodic trajectories with initial conditions close to those
of these satellites.

Another natural extension of our result would be to consider the spatial three-body
problem. Using Jacobi reduction, which allows one to eliminate inclinations and ascend-
ing nodes for a given value of the angular momentum (see [30]), the spatial problem
can be reduced to a four degrees of freedom Hamiltonian system as it is the case for the
planar case. Once reduced, the spatial problem should have properties that are similar
to those of the Hamiltonian studied in the present paper.
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Appendix A. Proofs

A.1. Theorem 4.1: Estimates on HK , HP . By the real analyticity of the transformation
in Poincaré resonant complex variable ϒ̃ ◦ ϒ , there exists ρ0 > 0 and σ0 > 0 such that
the differential of its complex extension,

ϒ̃ ◦ ϒ :
{

K̂ρ0,σ0 −→ C
8

(Z, ζ , x, x̃) �−→ (r̃1, r1, r̃2, r2) ,

admits a norm uniformly bounded on the collisionless domain K̂ρ0,σ0 (defined in
Sect. 4.1) by a constant C > 0 independent of ε.

In the following, we will denote Dρ0,σ0 the image of K̂ρ0,σ0 by the transformation
ϒ̃ ◦ ϒ .

Hence, as ‖(Z, ζ , x, x̃)‖K̂ρ0,σ0
� ρ0 + σ0 + 2

√
ρ0σ0 then

∥∥r j − Re(r j )
∥∥

Dρ0,σ0
� C(ρ0 + σ0 + 2

√
ρ0σ0).

Thus, one has

‖r1 − r2‖Dρ0,σ0
� ‖Re(r1) − Re(r2)‖Dρ0,σ0

−
∑

j∈{1,2}

∥∥r j − Re(r j )
∥∥

Dρ0,σ0

� � − 8Cσ0 � �

2

since ρ0 < σ0 and σ0 •� �̂ where �̂ is an arbitrary fixed value on T such that the
minimum distance � between two planets in circular motion is reached (see Sect. 4.1
for more details).

Consequently, ∂ l
r j

‖r1 − r2‖−1
Dρ0,σ0

� • �−l−1 � • 1 and

‖HP‖C 4 � •
ε

�5
� • ε on the domain K̂ρ0,σ0

as � (resp. �̂) does not depend on the small parameter ε.
Finally, since ρ0 •� 1 then there exists a constant c > 0 such that

c �
∥∥�1,0 + Z1

∥∥Kρ0,σ0
and c �

∥∥�2,0 + Z2 − Z1
∥∥Kρ0,σ0

which implies that

‖HK ‖C 4 � •
1

c6
� • 1 on the domain K̂ρ0,σ0 .

A.2. Theorem 4.1: First Averaging Theorem. First of all, we define an iterative lemma
of averaging. Let us introduce some notations: (ξk)k∈{1,2,3} are given positive numbers
such that

0 < ξ1 < ρ, 0 < ξ2 < σ, 0 < ξ3 <
√
ρσ

and, for 0 � r � 1, we denote K̂r the domain such as

K̂r = B2
ρ−rξ1 × Vσ−rξ2 Î × B4√

ρσ−rξ3
.

Hence, we set out the following
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Lemma A.1 (First iterative lemma). Let ρ−, σ−, ξ1, ξ2 be fixed positive real numbers
that depend on the small parameter ε and

ρ+ = ρ− − ξ1 > 0, σ + = σ− − ξ2 > 0,

ξ3 =
√
ρ−σ− − √

ρ+σ +.
(A.1)

Let H− be a Hamiltonian of the form

H−(Z, ζ , x, x̃) = HK (Z) + H P (Z, ζ1, x, x̃)

+ H0,−∗ (Z, ζ1, x, x̃) + H1,−∗ (Z, ζ , x, x̃)

which is analytic on the domain K̂−
0 = K̂ρ−,σ− and such that

H
1,−
∗ (Z, ζ1, x, x̃) = 1

2π

∫ 2π

0
H1,−∗ (Z, ζ1, ζ2, x, x̃)dζ2 = 0.

Let η−, (μ−
l )l∈{0,1,2,3} be fixed positive real numbers, which depend on ε, such that

∥∥∥H1,−∗
∥∥∥
K̂−
0

� η−,

∥∥∥H0,−∗
∥∥∥
K̂−
0

� μ−
0 (A.2)

and
∥∥∥∂Z

(
H P + H0,−∗

)∥∥∥
K̂−
0

� μ−
1 ,

∥∥∥∂ζ

(
H P + H0,−∗

)∥∥∥
K̂−
0

� μ−
2 ,

∥∥∥∂(x,̃x)
(
H + H0,−∗

)∥∥∥
K̂−
0

� μ−
3 .

If we assume that

η− •� ξ1ξ2 (A.3)

then there exists a canonical transformation

ϒ
+ :

{
K̂−
1 −→ K̂−

0
(Z. , ζ. , x. , x̃. ) �−→ (Z, ζ , x, x̃)

with K̂−
2/3 ⊆ ϒ

+
(K̂−

1/2) ⊆ K̂−
1/3 (A.4)

and such that, in the new variables, the Hamiltonian H+ = H− ◦ ϒ
+

can be written

H+ = HK + H P + H0,−∗ + H+∗
= HK + H P + H0,+∗ + H1,+∗

with

{
H0,+∗ = H0,−∗ + H

+
∗

H1,+∗ = H+∗ − H
+
∗

and

H
+
∗(Z. , ζ. 1, x. , x̃. ) = 1

2π

∫ 2π

0
H+∗ (Z. , ζ. 1, ζ. 2, x. , x̃. )dζ. 2.

Furthermore, we have the thresholds
∥∥∥H1,+∗

∥∥∥
K̂−
1

� η+,

∥∥∥H0,+∗
∥∥∥
K̂−
1

� μ+
0, (A.5)
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and
∥∥∥∂Z

(
H P + H0,+∗

)∥∥∥
K̂−
1

� μ+
1,

∥∥∥∂ζ

(
H P + H0,+∗

)∥∥∥
K̂−
1

� μ+
2,

∥∥∥∂(x,̃x)
(
H P + H0,+∗

)∥∥∥
K̂−
1

� μ+
3,

(A.6)

with the following quantities:

η+ =• η−
(
θ+ +

ρ−

ξ2

)
, μ+

0 − μ−
0 =• η−θ+,

μ+
l − μ−

l =• η− θ+

ξl
(l ∈ {1, 2, 3}),

and θ+ = μ−
1

ξ2
+

μ−
2

ξ1
+

μ−
3

ξ3
+

η−

ξ1ξ2
. (A.7)

Proof. We define ϒ
+ : K̂−

1 −→ K̂−
0 that is the time-one map of the Hamiltonian flow

generated by the auxiliary function χ+, i.e. ϒ
+ = �

χ+

1 with

χ+(Z, ζ , x, x̃) = 2π

υ0

∫ 1

0
s H1,−∗ (Z, ζ1, ζ2 + 2πs, x, x̃)ds

such that
{
χ+, υ0Z. 2

}
+ H1,−∗ = 0 and

χ+(Z, ζ1, x, x̃) = 1

2π

∫ 2π

0
χ+(Z, ζ1, ζ2, x, x̃)dζ2 = 0.

(A.8)

Thus, in the new variables, the Hamiltonian reads

H+ = H− ◦ ϒ
+ = H− + H− ◦ �

χ+

1 − H−

= H− + υ0Z. 2 ◦ �
χ+

1 − υ0Z. 2 + (H− − υ0Z. 2) ◦ �
χ+

1 − H− + υ0Z. 2

= HK + H P + H0,−∗ + H1,−∗ +
{
χ+, υ0Z. 2

}
︸ ︷︷ ︸

(∗)
+H+∗

with the remainder

H+∗ =
∫ 1

0
(1 − s)

{
χ+,

{
χ+, υ0Z. 2

}} ◦ �χ+

s ds +
∫ 1

0

{
χ+, H− − υ0Z. 2

} ◦ �χ+

s ds

=
∫ 1

0

{
χ+, HK − υ0Z. 2 + H P + H0,−∗ + s H1,−∗

}
◦ �χ+

s ds

that is given by the Eqs. (3.2) and (3.3) while (∗) is equal to zero by (A.8).
We have to estimate the size of H+∗ to prove the thresholds (A.5) and (A.6). Firstly,

by the conditions (A.2), we have
∥∥χ+

∥∥
K̂−
0

� • η−
υ0

� • η− as υ0 = O(1). One then applies

the Cauchy inequalities to obtain the partial derivatives

∥∥∂Zχ+
∥∥
K̂−
1/2

� •
η−

ξ1
,

∥∥∂ζχ
+
∥∥
K̂−
1/2

� •
η−

ξ2
,

∥∥∂(x,̃x)χ+
∥∥
K̂−
1/2

� •
η−

ξ3
,
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and deduces the estimates on the Poisson brackets

∥∥{χ+, HK − υ0Z. 2
}∥∥

K̂−
1/2

� •
η−ρ−

ξ2

(by the threshold ‖∂ZHK − (0, υ0)‖K̂−
0

� • ρ− given by (4.1) and the mean value theo-

rem),

∥∥∥
{
χ+, H1,−∗

}∥∥∥
K̂−
1/2

� •
(η−)2

ξ1ξ2

(as (A.1) implies that (ξ3)2 � ξ1ξ2), and

∥∥∥
{
χ+, H P + H0,−∗

}∥∥∥
K̂−
1/2

� • η−(μ
−
1

ξ2
+

μ−
2

ξ1
+

μ−
3

ξ3

)
.

As a consequence, the remainder of the transformation ϒ
+
is bounded such that

∥∥H+∗
∥∥
K̂−
1/2

� • η−(θ+ + ρ−

ξ2

)

where θ+ is given by (A.7). Moreover, taking into account that χ+ = 0 (given by (A.8)),
we have

H
+
∗(Z, ζ1, x, x̃) = 1

2π

∫ 2π

0

∫ 1

0
s
{
χ+, H1,−∗

}
◦ �χ+

s (Z, ζ1, τ, x, x̃)dsdτ

and therefore

∥∥∥H
+
∗
∥∥∥
K̂−
1/2

� •
(η−)2

ξ1ξ2
� • η−θ+.

Hence, if we denote H0,+∗ = H0,−∗ + H
+
∗ and H1,+∗ = H+∗ − H

+
∗ then the triangle

inequality gives the estimates (A.5) and (A.6) (together with the Cauchy inequalities for
the last).

Finally, by the Eq. (3.2) and the Cauchy inequalities, we can estimate the size of the
transformation ϒ

+
. Hence, the condition (A.3) provides the following estimates

‖Z. − Z‖
K̂−
1/2

� •
η−

ξ2
� ξ1

6
,

∥∥∥ζ. − ζ

∥∥∥
K̂−
1/2

� •
η−

ξ1
� ξ2

6
,

and ‖(x. , x̃. ) − (x, x̃)‖K̂−
1/2

� •
η−

ξ3
� ξ3

6

which yields (A.4). ��
Now, in order to prove Theorem 4.1, one applies a first time Lemma A.1. Thus, we

define the following

(ξ1, ξ2, ξ3) = σ0

3
(εβ, 1, εβ/2) for 1/7 < β < 1/2
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such that K̂r = K̂1− r
3
for 0 � r � 1. By Theorem 4.1 and the notations of Lemma A.1,

the Hamiltonian H is analytical on K̂1 and of the form

H(Z, ζ , x, x̃) = HK (Z) + H P (Z, ζ1, x, x̃) +
[
HP − H P

]
(Z, ζ , x, x̃)

with

η− � • ε, μ−
0 = 0 and μ−

l � • ε for l ∈ {1, 2, 3}.
Hence, the condition (A.3) is fulfilled and Lemma A.1 provides the existence of the

transformation ϒ
0 : K̂2/3 −→ K̂1 such that

H0 = H ◦ ϒ
0 = HK + H P + H0,0∗ + H1,0∗

with the following thresholds:
∥∥∥H1,0∗

∥∥∥
2/3

� η0 � • ε1−β,

∥∥∥H0,0∗
∥∥∥
2/3

� μ0
0 � • ε2−β, (A.9)

and
∥∥∥∂Z

(
H P + H0,0∗

)∥∥∥
2/3

� μ0
1 � • ε,

∥∥∥∂ζ

(
H P + H0,0∗

)∥∥∥
2/3

� μ0
2 � • ε,

∥∥∥∂(x,̃x)
(
H P + H0,0∗

)∥∥∥
2/3

� μ0
3 � • ε.

Moreover, by the Eq. (3.2) and the Cauchy inequalities, one has:

‖Z. − Z‖2/3 � • ε,
∥∥∥ζ. − ζ

∥∥∥
2/3

� • ε1−β,

and ‖(x. , x̃. ) − (x, x̃)‖2/3 � • ε1−β/2.

Then, we apply iteratively Lemma A.1 to reduce the fast component of the Hamil-
tonian until an exponentially small size with respect to ε. To do so, let s be a non-zero
integer such that s = E(ε−α) + 1 where

α = 1 − 2β

5
for 1/7 < β < 1/2.

We define

(ξ1, ξ2, ξ3) = σ0

3s
(εβ, 1, εβ/2)

as well as the sequences (ρ j ) j∈{0,1,...,s}, (σ j ) j∈{0,1,...,s} with

(ρ j , σ j ) = 2s − j

3s
(ρ, σ ) for j ∈ {1, . . . , s}

such that K̂ j
r = K̂ 2

3− j+r
3s

for 0 � r � 1.

Replacing the notation − and + of Lemma A.1 by j−1 and j and assuming that for all
0 < j � s the following condition (associated with (A.3)) is fulfilled:

η j−1 •� εβ−2α, (A.10)
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an iterative application of Lemma A.1 to the Hamiltonian H0 provides a sequence of

canonical transformations (ϒ
j
) j∈{1,...,s} such that H0 ◦ ϒ

1 ◦ · · · ◦ ϒ
s
is equal to the

Hamiltonian of the formula (4.3) with

H∗(Z. , ζ. , x. , x̃. ) = H0,s∗ (Z. , ζ. 1, x. , x̃. ) + H1,s∗ (Z. , ζ. , x. , x̃. ).

In order to complete the proof, let us consider n ∈ {1, . . . , s} such that the sequences
(η j ) j∈{1,...,n} and (μ

j
l ) j∈{1,...,n} satisfy the following induction hypothesis:

η j � η j−1 exp(−1) and μ
j
l − μ

j−1
l �

μ0
l

s
(l ∈ {1, 2, 3}).

For n = 1, as 0 < α < 1/7 < β < 1/2, (A.10) is satisfied and θ1 � • ε1−β−α implies
that

η1 � • η0εβ−α � η0 exp(−1)

for ε •� exp(− 1
β−α

) and

μ1
l − μ0

l � • ε2−β−2α � •
μ0

l

s
ε1−β−3α �

μ0
l

s
(l ∈ {1, 2, 3})

for ε •� 1.
For a fixed integer n, (η j ) j∈{0,...,n} is decreasing while

μn
l � μn−1

l +
μ0

l

s
� · · · � μ0

l + n
μ0

l

s
� 2μ0

l (l ∈ {1, 2, 3}),
then the induction is immediate. Indeed, (A.10) is satisfied and θn+1 � θ0 � • ε1−β−α

implies that

ηn+1 � • ηnεβ−α � ηn exp(−1) and

μn+1
l − μn

l � •
μ0

l

s
ε1−β−3α �

μ0
l

s
(l ∈ {1, 2, 3}).

As a consequence, we have

ηs � • ηs−1 exp(−1) � · · · � • η0 exp(−s)� • ε1+β exp(− 1

εα
)

and μs
l � • ε (l ∈ {1, 2, 3})

which prove (4.5). Likewise,

μs
0 − μ0

0 � μs
0 − μs−1

0 + · · · + μ1
0 − μ0

0 � • η0θ1 � • ε2−α

and then μs
0 � • ε2−β proves (4.4).

At last, and in the same way as for the first application of Lemma A.1, for each

transformation ϒ
j
with j ∈ {1, . . . , s}, the Eq. (3.2) and Cauchy inequalities lead to

‖Z. − Z‖1/3 � • ε1+β−α,

∥∥∥ζ. − ζ

∥∥∥
1/3

� • ε1−α,

and ‖(x. , x̃. ) − (x, x̃)‖1/3 � • ε1+β/2−α.

Consequently, the size of the transformationϒ is dominated by that of the transformation

ϒ
0
which provides the estimates (4.6) and yields (4.2).
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A.3. Lemma 4.2: D’Alembert rule in the Averaged Problem. The D’Alembert rule,
given by (2.4), derives from the preservation of the angular momentum denoted
C̃ = ∑

j∈{1,2} r̃ j ×r j . By the transformation in the resonant Poincaré complex variables

ϒ̃ ◦ ϒ , we have C(Z, ζ , x, x̃) = C̃ ◦ ϒ̃ ◦ ϒ(Z, ζ , x, x̃) = Z2 + i x1 x̃1 + i x2 x̃2. C̃ being
an integral of the motion, it turns out that

0 = {C̃,H} = {C,H ◦ ϒ̃ ◦ ϒ} = {C, H}. (A.11)

Injecting the expansion (2.3) in (A.11) we get

0 = {C,
∑

(k,p,̃p)∈D
fk,p,̃p(Z, ζ1)x

p1
1 x p2

2 x̃ p̃1
1 x̃ p̃2

2 exp(ikζ2)}

= −i
∑

(k,p,̃p)∈D
(k + p1 − p̃1 + p2 − p̃2) fk,p,̃p(Z, ζ1)x

p1
1 x p2

2 x̃ p̃1
1 x̃ p̃2

2 exp(ikζ2).

As a consequence, one has

k + p1 − p̃1 + p2 − p̃2 = 0.

In order to prove Lemma 1, it only needs to be shown that the expression of C = C◦ϒ
is equal to C(Z. , ζ. , x. , x̃. ) = Z. 2 + i x. 1 x̃. 1 + i x. 2 x̃. 2. As the averaging transformation ϒ is

generated by the composition of the transformations (�χ j

1 ) j∈{0,...,s} (see Sect. A.2), the
result holds if {χ j , C} = 0.

At first iteration, the generating function χ0 reads

χ0(Z, ζ , x, x̃) = 2π

υ0

∫ 1

0
s
[
HP − H P

]
(Z,ζ1,ζ2+2πs,x,̃x) ds.

As HP satisfies the D’Alembert rule, one has

{χ0, C} = 2π

υ0

∫ 1

0
s{HP − H P , C}ds = 0,

which leads to: C ◦ �
χ0

1 = C. The same holds true for the other iterations.
Finally, let a real function f that satisfies the D’Alembert rule and does not depend

on the fast angle ζ. 2. Hence, the total degree in x. 1, x. 2, x̃. 1, x̃. 2 in the monomials appearing
in the Taylor expansion of f in neighborhood of x. = x̃. = 0 is even. As a consequence
f can be decomposed such as f = f0 + f2 with the properties (4.8).

A.4. Theorem 4.2: Reduction. TheHamiltonian of Theorem 4.2 is obtained by a suitable
expansion of the averaged Hamiltonian H in the neighborhood of the quasi-circular
manifold C0.

First of all, by Lemma 4.2, H and H∗ can be decomposed respectively such as

H P (Z. , ζ. 1, x. , x̃. ) = H P,0(Z. , ζ. 1) +
∑

j,k∈{1,2}
H P,( j,k)(Z. , ζ. 1, x. , x̃. )x. j x̃. k

and H∗(Z. , ζ. 1, x. , x̃. ) = H∗,0(Z. , ζ. 1) +
∑

j,k∈{1,2}
H∗,( j,k)(Z. , ζ. 1, x. , x̃. )x. j x̃. k .
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Regarding the eccentricities, a polynomial expansion of H of the degree two with
respect to x. = x̃. = 0 provides

H P,( j,k) = H P,( j,k)( · , · , 0, 0) + R1
P,( j,k)

with R1
P,( j,k)(Z. , ζ. 1, x. , x̃. ) = g( j,k)(1) − g( j,k)(0)

and g( j,k)(t) = H P,( j,k)(Z. , ζ. 1, tx. , t x̃. ).

The size of the remainder involved in this approximation is estimated thanks to the mean
value theorem applied on the function g( j,k) for (t,Z. , ζ. , x. , x̃. ) ∈ [0, 1] × K1/3 together
with the bound (4.1) of Theorem 4.1. Hence, this yields

∥∥∥R1
P,( j,k)

∥∥∥
1/3

� • ε1+β.

Now,we consider the expansion of H with respect to the exact resonant actionZ. = 0.
The Keplerian part can be written:

HK = HK (0) + υ0Z. 2 + Q + R2
K + R3

K

with R2
K (Z. ) = HK − HK (0) − υ0Z. 2 − Q̃(Z. ),

and R3
K (Z. ) = Q̃(Z. ) − Q(Z. )

where the quadratic form Q̃ reads

Q̃(Z. ) = −υ0 Ã
(

Z.
2
1 + (1 − κ̃)(−2Z. 1Z. 2 + Z.

2
2)
)

with

Ã = 3

2
υ
1/3
0

(
m̂−1

1 μ
−2/3
1 + m̂−1

2 μ
−2/3
2

)
, 1 − κ̃ = m̂−1

2 μ
−2/3
2

m̂−1
1 μ

−2/3
1 + m̂−1

2 μ
−2/3
2

,

and its approximation

Q(Z. ) = −υ0A
(

Z.
2
1 + (1 − κ)(−2Z. 1Z. 2 + Z.

2
2)
)

with

A = 3

2
υ
1/3
0 m−2/3

0

(
1

m1
+

1

m2

)
, 1 − κ = m2

m1 + m2
.

The application of the Taylor formula on the function g(t) = HK (tZ) for (t,Z) ∈
[0, 1] × B2

ρ/3 leads to

R2
K (Z. ) =

∫ 1

0

(1 − t)2

2
g(3)(t)dt

and, together with the bound (4.1), provides the estimates
∥∥∥R2

K

∥∥∥
1/3

� • ε3β.

Regarding the estimate of R3
K , as

m̂ j = m j +O(ε), μ j = m0 +O(ε), (A.12)
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then Ã − A = O(ε) and κ̃ − κ = O(ε) provide the following bound:
∥∥∥R3

K

∥∥∥
1/3

� • ε3β since β < 1/2.

In the case of the the perturbation part, one can split H P,0 and (H P,( j,k))1� j,k,�2 in the
sum of three terms as follows:

H P,0 = G0 + R2
P,0 + R3

P,0,

with R2
P,0(Z. , ζ. 1) = H P,0(Z. , ζ. 1) − H P,0(0, ζ. 1)

and R3
P,0(ζ. 1) = H P,0(0, ζ. 1) − G0(ζ. 1),

and

H P,( j,k)( · , · , 0, 0) = G( j,k) + R2
P,( j,k) + R3

P,( j,k)

with R2
P,( j,k)(Z. , ζ. 1) = H P,( j,k)(Z. , ζ. 1, 0, 0) − H P,( j,k)(0, ζ. 1, 0, 0)

and R3
P,( j,k)(ζ. 1) = H P,( j,k)(0, ζ. 1, 0, 0) − G( j,k)(ζ. 1)

where

G0(ζ. 1) = εm1m2

(
− 1

D0(ζ. 1)
+

cos ζ. 1√
a1,0a2,0

)

and

(
G( j,k)

)
1� j,k�2 = iε

m1m2√
m0

⎛

⎜⎜⎜⎝

A0

m1a1/2
1,0

B0√
m1m2(a1,0a2,0)1/4

conj(B0)√
m1m2(a1,0a2,0)1/4

A0

m1a1/2
1,0

⎞

⎟⎟⎟⎠

with

A0 = a1,0a2,0
4D5

0

(
a1,0a2,0(5 cos 2ζ. 1 − 13) + 4(a2

1,0 + a2
2,0) cos ζ. 1

)
− cos ζ. 1√

a1,0a2,0
,

B0 = −a1,0a2,0
8D5

0

(
a1,0a2,0

(
e−3iζ. 1 − 26e−iζ. 1 + 9eiζ. 1

)
+ 8(a2

1,0 + a2
2,0)e

−2iζ. 1
)

+
e−2iζ. 1√
a1,0a2,0

,

conj(B0) that is the complex conjugate of B0,

D0 =
√

a2
1,0 + a2

2,0 − 2a1,0a2,0 cos ζ. 1.

With similar reasonings as for the eccentricities, we use the mean value theorem to
evaluate the remainder in the truncation at order 0 of H P,0 and (H P,( j,k))1� j,k,�2.
Hence, this yields

∥∥∥R2
P,0

∥∥∥
1/3

� • ε3β since β < 1/2

and
∥∥∥R2

P,( j,k)

∥∥∥
1/3

� • ερ � • ε1+β.
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Moreover the following estimates:
∥∥∥R3

P,0

∥∥∥
1/3

� • ε2,
∥∥∥R3

P,( j,k)

∥∥∥
1/3

� • ε2,

are obtained with the approximation of the formula (A.12).
Finally, in order to get a more tractable expression, one can shift the perturbation

parts to

Z. = Z� =
(

�1,0 − �1,�
�1,0 +�2,0 − (�1,� +�1,�)

)

with � j,� = m̂ jμ
1/2
j m1/6

0 υ
−1/3
0 where the two associated semi-major axes are both

equal to the same value given by a� = m1/3
0 υ

−2/3
0 . This yields

G0 = ευ0BF + R4
P,0 and G( j,k) = Q̃( j,k) + R4

P,( j,k)

with the following thresholds:
∥∥∥R4

P,0

∥∥∥
1/3

� • ε2 and
∥∥∥R4

P,( j,k)

∥∥∥
1/3

� • ε2

that are estimated thanks to the bound 0 � � j,0 − � j,� � • ε.
As a consequence,

Lemma A.2. The averaged Hamiltonian can be written

H(Z. , ζ. 1, x. , x̃. ) = HK (0) + υ0

(
Z. 2 − AQ(Z. ) + εBF(ζ. 1)

)

+ Q̃(ζ. 1, x. , x̃. ) + R(Z. , ζ. 1, x. , x̃. )

with R(Z. , ζ. 1, x. , x̃. ) = R0(Z. , ζ. 1) +
∑

j,k{1,2} R( j,k)(Z. , ζ. 1, x. , x̃. )x. j x̃. k such that

R0 = R2
K + R2

P,0 + R3
K + R3

P,0 + R4
P,0 + H∗,0

R( j,k) = R1
P,( j,k) + R2

P,( j,k) + R3
P,( j,k) + R4

P,( j,k) + H∗,( j,k)

and

‖R‖1/3 � • ε3β.

Moreover, if we assume β > 1/3, we can ensure that
∥∥R( j,k)

∥∥
1/6 � • ε2−2β.

Remark that this last bound comes from the threshold
∥∥H∗,( j,k)

∥∥
1/6 � • ε2−2β

that is obtained by application of the Cauchy inequalities.
In order to uncouple the fast and semi-fast degrees of freedom, we perform the

symplectic linear transformation �̃(I,ϕ,w, w̃) = (Z. , ζ. , x. , x̃. ) which diagonalizes the

quadratic form Q. This leads to the Hamiltonian H̃ and its remainder R̃ = R ◦ �̃. The
inclusions (4.9) are ensured since κ � 1/2.
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A.5. Lemma 4.3: Semi-fast Frequency. Let us first prove the expression (4.13) which
gives the lower bound of ϕ1 along a hδ-level curve.

A straightforward calculation shows that ϕmin
1,δ is given by the smallest positive root

of the polynomial equation 4X3− (5+3δ)X +1 = 0, where X = sin(ϕmin
1,δ /2). It follows

that ϕmin
1,δ is an analytic function of δ in a neighborhood of 0, which satisfies

ϕmin
1,δ = 2 arcsin

(√
2 − 1

2

)
− 3(

√
2 − 1)

(3
√
2 − 2)

√
1 + 2

√
2
δ +O(δ2).

In order to prove the relations (4.14), let us begin to derive an asymptotic expansion

of the integral Iδ = ∫ π

ϕmin
1,δ

dϕ√
Uδ(ϕ)

involved in the expression (4.4). Iδ can be splitted

in three different terms:

Iδ = I1
δ + I2

δ + I3
δ with

I1
δ =

∫ π
3

ϕmin
1,δ

dϕ√
Uδ(ϕ)

, I(2)
δ =

∫ π

π
3

dϕ√
U 0

δ (ϕ)

and

I3
δ =

∫ π

π
3

⎛

⎝ 1√
Uδ(ϕ)

− 1√
U 0

δ (ϕ)

⎞

⎠ dϕ

where U 0
δ (ϕ) = δ +

7

24
(ϕ − π)2.

As Uδ(ϕ
min
1,δ ) = 0, Taylor formula leads to

I1
δ =

(π
3

− ϕmin
1,δ

) ∫ 1

0

du√
u
√

Gδ(u)
where

Gδ(u) =
∫ 1

0
F ′ (ϕmin

1,δ +
(π
3

− ϕmin
1,δ

)
uv
)
dv.

As Gδ(u) > Gδ(1) and G0(1) > 1 and if δ > 0 is small enough, one has
∫ 1

0

du√
u
√

Gδ(u)
� •

∫ 1

0

du√
u
.

As a consequence, I1
δ is analytic with respect to δ.

The integral expression I2
δ can be calculated explicitly as

I2
δ =

√
24

7
arcsinh

(√
7

54

π√
δ

)
=
√
6

7
| ln δ| +I 2

δ

where I 2
δ is analytic in δ.

All that remains is to estimate the size of I3
δ and of its first derivative. First of all,

Uδ being an infinitely differentiable function of ϕ ∈ [π/3, π ] satisfying the additional
relations:

Uδ(π) = 1 + δ + F(π) = δ,
dUδ

dϕ
(π) = d3Uδ

dϕ3 (π) = 0 and
d2Uδ

dϕ2 (π) = 7

12
,
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Taylor formula leads to |Uδ(ϕ) − U 0
δ (ϕ)| � • |ϕ − π |4. From the inequalities

U 0
δ (ϕ)� • Uδ(ϕ)� • U 0

δ (ϕ), δ � U 0
δ (ϕ), |ϕ − π |2 •� U 0

δ (ϕ),

that hold for (δ, ϕ) ∈ [δ∗, 2δ∗] × [π/3, π ], one can derive the following relations:
∣∣∣∣∣∣

1√
Uδ

− 1√
U 0

δ

∣∣∣∣∣∣
� • 1 and

∣∣∣∣∣∣
dp

dδ p

⎛

⎝ 1√
Uδ

− 1√
U 0

δ

⎞

⎠

∣∣∣∣∣∣
� •

1√
δ∗2p−1 .

It follows that I3
δ is analytic on [δ∗, 2δ∗] and that its first derivative is bounded by

∣∣∣∣∣
dI3

δ

dδ

∣∣∣∣∣ � •
1√
δ∗ .

As a consequence

Tδ = 2π

υ0
√
εK

|ln δ| [1 + g(δ)]

with |g(δ)| � • | ln δ∗|−1 and
∣∣g′(δ)

∣∣ � • (δ∗)−1 |ln δ∗|−2. As

νδ = υ0
√
εK

| ln δ|
[
1 − g(δ) +

g(δ)2

1 + g(δ)

]
,

we get the expressions (4.14).

A.6. Theorem 4.3: Semi-fast Holomorphic Extension. We consider the mechanical sys-
tem

H̃1(I1, ϕ1) = υ0

(
−AI 21 + εBF(ϕ1)

)

where A, B are two positive constants and the real function F is defined on ]0, 2π [ by
(4.11).

On the domain D∗, defined as

D∗ =
{
(I1, ϕ1) ∈ R×]0, 2π [ such that H̃1(I1, ϕ1) = hδ

with δ∗ � δ � 2δ∗
}

for some δ∗ > 0, we can build a system of action-angle variables denoted (J1, φ1) such
that

H1(J1) = H̃1 ◦ F(J1, φ1) = hδ and H ′
1 (J1) = νδ.

The transformation in action-angle variables, which will be denoted G, satisfies

G :
{

D∗ −→ S∗ × T

(I1, ϕ1) �−→ (J1, φ1)

with S∗ = [a, b] for some a < 0 < b. We also denote F = G−1 the inverse of the
action-angle transformation as in (4.16).
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We rewrite the Hamiltonian in a suitable form for the complex extension,

H̃1(I1, ϕ1) = −ευ0B(1 + h(I1, ϕ1))

with h(I1, ϕ1) = A

εB
I 21 − 1 − F(ϕ1),

and the transformation G can be defined explicitly by a classical integral formulation.
The action is given by

J1 = 4

√
ε

B

A

(
π − ϕmin

(I1,ϕ1)

) ∫ 1

0

√
Uπ
(I1,ϕ1)

(x)dx

with Uθ
(I1,ϕ1)

(x) = 1 + F
(
(1 − x)ϕmin

(I1,ϕ1) + xθ
)
+ h(I1, ϕ1)

where ϕmin
(I1,ϕ1)

= F−1(−1 − h(I1, ϕ1)) and J1 is the action linked to an energy curve

corresponding to an arbitrary shift of energy δ ∈]δ∗, 2δ∗[. The lower angle ϕmin
(I1,ϕ1)

is

well defined since F ′(ϕmin
0 ) �= 0 where ϕmin

0 = 2 arcsin
(√

2−1
2

)
is the minimal value

of the angle ϕ1 along the separatrix henceF(ϕmin
0 ) = −1, consequentlyF−1 is analytic

around −1. Concerning the angle φ1, we have to consider the time of transit from the
point (0, ϕmin

(I1,ϕ1)
) to (I1, ϕ1) which is given by

τ(I1, ϕ1) = 2√
εAB

(
ϕ1 − ϕmin

(I1,ϕ1)

) ∫ 1

0

dx√
Uϕ1
(I1,ϕ1)

(x)

and φ1 = π

2

τ(I1, ϕ1)

τ (I1, π)
.

Now, we look for the complex domain of holomorphy of the integrable Hamiltonian
H1. We first consider the complex domain

D∗,ρ̂ =
{
(I1, ϕ1) ∈ C

2/∃(I ∗
1 , ϕ

∗
1 ) ∈ D∗with:

∣∣I1 − I ∗
1

∣∣ � √
ερ̂∣∣ϕ1 − ϕ∗

1

∣∣ � ρ̂

}

for ρ̂ > 0 and ε small enough (ρ̂ •� 1, ε •� 1).
In order to disentangle the dependance of the complex domain D∗,ρ̂ with respect to

δ∗ and ε, we perform the following scalings:

I1 = √
ε Î1 and J1 = √

ε Ĵ1 for ( Î1, ϕ1) ∈ D̂∗

with

D̂∗ =
{
( Î1, ϕ1) ∈ R×]0, 2π [ such that ĥ( Î1, ϕ1) = δ

with δ∗ � δ � 2δ∗
}

for the real analytic function

ĥ( Î1, ϕ1) = A

B
Î 21 − 1 − F(ϕ1),
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and we consider the complex extension D̂∗,ρ̂ = Bρ̂D̂∗ with

D̂∗,ρ̂ =
{
( Î1, ϕ1) ∈ C

2/∃( Î ∗
1 , ϕ

∗
1 ) ∈ D̂∗with:

∣∣∣ Î1 − Î ∗
1

∣∣∣ � ρ̂∣∣ϕ1 − ϕ∗
1

∣∣ � ρ̂

}

where ρ̂ > 0 is small enough (ρ̂ •� 1).
Likewise, we have the following real analytic functions:

Ĵ1( Î1, ϕ1) = 4

√
B

A

(
π − ϕ̂

min
( Î1,ϕ1)

) ∫ 1

0

√
Ûπ

( Î1,ϕ1)
(x)dx

with

Ûθ

( Î1,ϕ1)
(x)=1+F

(
(1 − x)ϕ̂min

( Î1,ϕ1)
+ xθ

)
+ ĥ( Î1, ϕ1),

ϕ̂
min
( Î1,ϕ1)

=F−1(−1 − ĥ( Î1, ϕ1)),

and

φ1( Î1, ϕ1) = π

2

ϕ1 − ϕ̂
min
( Î1,ϕ1)

π − ϕ̂
min
( Î1,ϕ1)

∫ 1

0

dx√
Ûϕ1

( Î1,ϕ1)
(x)

∫ 1

0

dx√
Ûπ

( Î1,ϕ1)
(x)

.

Hence we consider the transformation

Ĝ :
{

D̂∗ −→ Ŝ∗ × T

( Î1, ϕ1) �−→ ( Ĵ1, φ1)

with

Ŝ∗ =
[

a√
ε
,

b√
ε

]
for some a < 0 < b

which corresponds to the action-angle variables for the mechanical system

Ĥ1( Î1, ϕ1) = υ0

(
−AÎ 21 + BF(ϕ1)

)

and its inverse mapping will be denoted F̂ = Ĝ−1. Moreover, these transformations are
independent of ε.

By classical theorem of complex analysis, F̂ (resp. Ĝ) can be extended in a unique
way to a map F (resp. G) holomorphic on a complex set

Br Ŝ∗ × VsT =

⎧
⎪⎨

⎪⎩

( Ĵ1, φ1) ∈ C
2 / ∃ Ĵ ∗

1 ∈ Ŝ∗ such that∣∣∣ Ĵ1 − Ĵ ∗
1

∣∣∣ � r, Re(φ1) ∈ T

and |Im(φ1)| � s

⎫
⎪⎬

⎪⎭
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and G holomorphic over the set D̂∗,ρ̂ for some r > 0, s > 0 and ρ̂ > 0 small enough.
We want to compute a lower bound on the analyticity widths r , s. For ρ̂ > 0, we denote

∥∥∥ Ĵ1
∥∥∥
ρ̂

= sup
D̂∗,ρ̂

∣∣∣ Ĵ1( Î1, ϕ1)
∣∣∣ , ‖φ1‖ρ̂ = sup

D̂∗,ρ̂

∣∣∣φ1( Î1, ϕ1)
∣∣∣ ,

moreover, we consider

M̃ =
∥∥∥ Ĵ1

∥∥∥
ρ̂
+ ‖φ1‖ρ̂ .

Finally, since the real mapping Ĝ is symplectic, it is non-degenerate at each point of the
domain D̂∗ and we denote

L̃ = sup
D̂∗

∣∣∣dĜ−1
( Î1,ϕ1)

∣∣∣ .

By a standard application of the Lipschitz inverse function theorem (see [18]), we
obtain the main estimate of this section.

Theorem A.1. Suppose that U is an open subset of a Banach space (E, ||.||) and that
g : U → E is a Lipschitz mapping with constant K < 1.

Let f (x) = x + g(x). If the closed ball Bε{x} centered at x ∈ E of radius ε is
contained in U, then

B(1−K )ε{ f (x)} ⊆ f (Bε{x}) ⊆ B(1+K )ε{ f (x)}.
The mapping f is a homeomorphism of U onto f −1(U ), the inverse mapping f −1

is a Lipschitz mapping with constant (1 − K )−1 and f (U ) is an open subset of E.

More precisely, we use Theorem 4.1 and Cauchy inequalities applies on G which
yields

Theorem A.2. With the previous notations, if

r •= ρ̂2

L̃2M̃
and s •= ρ̂2

L̃2M̃
,

then G admits an inverse mapping F which is holomorphic on Br Ŝ∗ × VsT and F is
C-Lipschitz with C =• M̃.

Hence, in order to estimate the analyticity widths in action-angle variables for the
considered mechanical system, we have to compute the dependance w.r.t. the quantity
δ∗ of the analyticity width ρ̂ in the original variables ( Î1, ϕ1), the upper bounds L̃ on the
real domain D̂∗ and M̃ on the complex domain D∗,ρ̂ . In order to bound L̃ , we use the fact

that Ĝ is symplectic on the real domain D̂∗, hence the coefficients of the Jacobian matrix
linked to dĜ−1 are given by the derivatives of Ĝ that we estimate by an application of
Cauchy inequalities over D∗,ρ̂ . We obtain

L̃ =• (δ∗)−3/2.
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Concerning the quantities ρ̂ and M̃ on the complex domain D∗,ρ̂ , rough estimates
ensure that if we choose the analyticity width ρ̂ =• δ∗ for δ∗ small enough (δ∗ •� 1), we
can ensure the upper bound

M̃ � •
√
δ∗−1

.

Plugging these estimates in the latter theoremensure thatG admits an inversemapping
F which is holomorphic on Br Ŝ∗ × VsT for

0 < r •� (δ∗)11/2 and 0 < s •� (δ∗)11/2.

Going back to the initial variables, if we denote F = (F1, F2), then the extended
transformation in action-angle coordinates in the complex plane is given by

(
√
εF1(J1/

√
ε, φ1), F2(J1/

√
ε, φ1))

and we obtain the analyticity widths of Theorem 4.3.

Moreover, F is C-Lipschitz with C =•
√
δ∗−1

and the distance to the real domain
of the image is bounded by

√
ε(δ∗) p̂−1/2 for I1 and by (δ∗) p̂−1/2 for ϕ1 hence these

quantities are bounded by
√
ε(δ∗)5 and (δ∗)5 for p̂ = 11/2.

A.7. Theorem 4.4: Semi-fast Action-Angle variables. The existence of the transforma-
tion � is immediate by application of Lemma 4.3 to the averaged Hamiltonian H̃
considered in (4.3).

Finally, the two last thresholds in (4.17) are deduced by an application of the Cauchy
inequalities.

A.8. Theorem 4.5: Second Averaging Theorem. In the same way as for the First Aver-
aging Theorem, we define firstly an iterative lemma of averaging. Let us introduce some
notations: (ξk)k∈{1,...,5} are given positive numbers such that

0 < ξ j < ρ j , 0 < ξ2+ j < σ j for j ∈ {1, 2}, 0 < ξ5 <
√
ρ2σ2,

and for 0 � r � 1, we denote Kr , the domain such as

Kr = Bρ1−rξ1S∗ × B1
ρ2−rξ2 × Vσ1−rξ3T × Vσ2−rξ4T × B4√

ρ2σ2−rξ5
.

Moreover, we will consider ν0 a lower bound for the semi-fast frequencyH ′
1 on the

complex domain Kp and according to (4.19), we can choose

ν0 •=
√
ε

|ln ε|
with our polynomial dependence of δ∗ with respect to ε.
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Hence, we set out the following:

Lemma A.3 (Second iterative lemma). Let ρ−, σ−, (ξk)k∈{1,...,4} be fixed positive real
numbers that depend on the small parameter ε and

ρ+ = ρ− − (ξ1, ξ2), σ + = σ− − (ξ3, ξ4),

ξ5 =
√
ρ−
2 σ−

2 −
√
ρ+
2σ

+
2 such as 0 < ρ+

j , 0 < σ +
j for j ∈ {1, 2}.

Let H − be a Hamiltonian of the form

H −(J, φ1,w, w̃) =H1(J1) +H2(J2) +Q(J1,w, w̃)

+H 0,−∗ (J,w, w̃) +H 1,−∗ (J, φ1,w, w̃)

with H l,−∗ = H l,−
∗,0 +

∑
j,k∈{1,2} H

l,−
∗,( j,k)w j w̃k for l ∈ {0, 1} (given by (4.8)), which

satisfies the D’Alembert rule, is analytic on the domain K−
0 = Kρ−,σ− and such that

H
1,−
∗ (J,w, w̃) = 1

2π

∫ 2π

0
H 1,−∗ (J, φ1,w, w̃)dφ1 = 0.

Let (η−
l )l∈{0,2} and (μ−

l,m)l∈{0,2},m∈{0,1,2} be fixed positive real numbers, which depend
on ε, such that:

∥∥∥H 1,−
∗,0

∥∥∥
K−
0

� η−
0 ,

∥∥∥H 1,−
∗,( j,k)

∥∥∥
K−
0

� η−
2 ,

∥∥∥H 0,−
∗,0

∥∥∥
K−
0

� μ−
0,0,

∥∥∥H 0,−
∗,( j,k)

∥∥∥
K−
0

� μ−
2,0,

(A.13)

and
∥∥∥∂JmH

0,−
∗,0

∥∥∥
K−
0

� μ−
0,m,

∥∥∥∂JmH
0,−

∗,( j,k)

∥∥∥
K−
0

� μ−
2,m (m ∈ {1, 2}).

If we assume that

η−
0 + η−

2 ρ−
2 σ−

2

ν0
•� ξ1ξ3,

η−
0 + η−

2 ρ−
2 σ−

2

ν0
•� ξ2ξ4,

η−
0 + η−

2 ρ−
2 σ−

2

ν0
•� (ξ5)

2,

(A.14)

then there exists a canonical transformation

�
+ :

{
K−
1 −→ K−

0
(J. ,φ. ,w. , w̃. ) �−→ (J,φ,w, w̃)

with K−
2/3 ⊆ �

+
(K−

1/2) ⊆ K−
1/3

and such that, in the new variables, the Hamiltonian H + = H − ◦ �
+

satisfies the
D’Alembert rule and can be written

H + = H1 +H2 +Q +H 0,−∗ +H +∗
= H1 +H2 +Q +H 0,+∗ +H 1,+∗

with

{
H 0,+∗ = H 0,−∗ +H

+
∗

H 1,+∗ = H +∗ − H
+
∗
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such that H l,+∗ = H l,+
∗,0 +

∑
j,k∈{1,2} H

l,+
∗,( j,k)w. j w̃. k for l ∈ {0, 1} (given by (4.8)) and

H
+
∗(J. ,w. , w̃. ) = 1

2π

∫ 2π

0
H +∗ (J. , φ. 1,w. , w̃. )dφ. 1.

Furthermore, we have the thresholds
∥∥∥H 1,+

∗,0
∥∥∥
K−
0

� η+0 ,

∥∥∥H 1,+
∗,( j,k)

∥∥∥
K−
0

� η+2 ,

∥∥∥H 0,+
∗,0

∥∥∥
K−
0

� μ+
0,0,

∥∥∥H 0,+
∗,( j,k)

∥∥∥
K−
0

� μ+
2,0,

(A.15)

and
∥∥∥∂JmH

0,+
∗,0

∥∥∥
K−
0

� μ+
0,m,

∥∥∥∂JmH
0,+

∗,( j,k)

∥∥∥
K−
0

� μ+
2,m (m ∈ {1, 2}), (A.16)

with the following quantities:

η+0 =• η−
0
θ+0

ν0
, η+2 =• η−

2

(
θ+0

ν0
+

η−
0

η−
2

θ+1

ν0
+ ρ−

2 σ−
2

θ+1 + θ+2

ν0

)
,

μ+
0,0 − μ−

0,0 =• η−
0
γ +
0

ν0
, μ+

2,0 − μ−
2,0 =• η−

2

(
γ +
0

ν0
+ ρ−

2 σ−
2

γ +
2

ν0

)
,

μ+
0,m − μ−

0,m =• η−
0

γ +
0

ν0ξm
, μ+

2,m − μ−
2,m =• η−

2

(
γ +
0

ν0ξm
+ ρ−

2 σ−
2

γ +
2

ν0ξm

)
,

(A.17)

for m ∈ {1, 2} and

γ +
0 = η−

0

ξ1ξ3
, γ +

2 = η−
2

(
1

ξ1ξ3
+

1

(ξ5)2

)
, θ+0 = μ−

0,1

ξ3
+ γ +

0 ,

θ+1 =

∥∥∥Q( j,k)

∥∥∥
K−
0

ξ1ξ3
+

μ−
2,1

ξ3
,

θ+2 =

∥∥∥Q( j,k)

∥∥∥
K−
0

(ξ5)2
+

μ−
2,0

(ξ5)2
+ γ +

2 .

(A.18)

Proof. We define �
+ : K−

1 −→ K−
0 as the time-one map of the Hamiltonian flow

generated by some auxiliary function χ+, i.e. �
+ = �

χ+

1 with

χ+(J, φ1,w, w̃) = 2π

H ′
1 (J1)

∫ 1

0
sH 1,−∗ (J, φ1 + 2πs,w, w̃)ds

such that the following properties are satisfied:
{
χ+,H1

}
+H 1,−∗ = 0,

χ+(J,w, w̃) = 1

2π

∫ 2π

0
χ+(J, φ1,w, w̃)dφ1 = 0,

and χ+ = χ+
0 +

∑

1� j,k�2

χ+
( j,k)w j w̃k (given by (4.8)).

(A.19)
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Thus, for the same reason as in Lemma A.1, the Hamiltonian can be written

H + = H − ◦ �
+ = H1 +H2 +Q +H 0,−∗ +H 1,−∗ +

{
χ+,H1

}
︸ ︷︷ ︸

(∗)
+H +∗

with

H +∗ =
∫ 1

0

{
χ+,Q +H 0,−∗ + sH 1,−∗

}
◦ �χ+

s ds

and (∗) is equal to zero by (A.19).
Then, in order to estimate the size of the remainderH +∗ , the thresholds (A.13) provide

∥∥χ+
0

∥∥
K−
0

� •
η−
0

ν0
,

∥∥∥χ+
( j,k)

∥∥∥
K−
0

� •
η−
2

ν0
,

while the Cauchy inequalities imply the following:

∥∥∂φ1χ+
0

∥∥
K−
1/4

� •
η−
0

ν0ξ3
,

∥∥∥∂φ1χ+
( j,k)

∥∥∥
K−
1/4

� •
η−
2

ν0ξ3
,

∥∥∥∂(w,w̃)χ
+
( j,k)

∥∥∥
K−
1/4

� •
η−
2

ν0ξ5
,

and
∥∥∂Jlχ

+
0

∥∥
K−
1/4

� •
η−
0

ν0ξl
,

∥∥∥∂Jlχ
+
( j,k)

∥∥∥
K−
1/4

� •
η−
2

ν0ξl
for l ∈ {1, 2},

as well as the following estimates on the Poisson brackets:

∥∥∥
{
χ+
0 ,H

0,−
∗,0

}∥∥∥
K−
1/4

� •
η−
0

ν0ξ3
μ−
0,1,

∥∥∥
{
χ+
0 ,H

1,−
∗,0

}∥∥∥
K−
1/4

� •
(η−

0 )2

ν0ξ1ξ3
,

and

∥∥∥
{
χ+,Q( j,k)

}∥∥∥
K−
1/4

� •
η−
2

ν0

∥∥∥Q( j,k)

∥∥∥
K−
0

[
η−
0

η−
2

1

ξ1ξ3
+ ρ−

2 σ−
2

(
1

ξ1ξ3
+

1

(ξ5)2

)]
,

∥∥∥∂2(w,w̃)

{
χ+,H 0,−∗

}∥∥∥
K−
1/4

� •
η−
2

ν0

[
μ−
0,1

ξ3
+

η−
0

η−
2

μ−
2,1

ξ3
+ ρ−

2 σ−
2

(
μ−
2,1

ξ3
+

μ−
2,0

(ξ5)2

)]
,

∥∥∥∂2(w,w̃)

{
χ+,H 1,−∗

}∥∥∥
K−
1/4

� •
η−
2

ν0

[
η−
0

ξ1ξ3
+ η−

2 ρ−
2 σ−

2

(
1

ξ1ξ3
+

1

(ξ5)2

)]

as 1 �
√
ρ−
2 σ−

2

ξ5
� ρ−

2 σ−
2

(ξ5)
2 . Consequently, the remainder of the transformation �

+
is

bounded such that

∥∥H +∗,0
∥∥
K̂−
1/4

� • η−
0
θ+0

ν0
,

∥∥∥H +
∗,( j,k)

∥∥∥
K̂−
1/4

� • η−
2

(
θ+0

ν0
+

η−
0

η−
2

θ+1

ν0
+ ρ−

2 σ−
2

θ+1 + θ+2

ν0

)

where γ +
0 , γ

+
2 , θ

+
0 ,θ

+
1 and θ+2 are defined in (A.17). Moreover by taking into account that

χ+ = 0 (given by (A.19)), we deduce the following:

∥∥∥H +
∗,0
∥∥∥
K̂−
1/4

� • η−
0
γ +
0

ν0
,

∥∥∥H +
∗,( j,k)

∥∥∥
K̂−
1/4

� • η−
2

(
γ +
0

ν0
+ ρ−

2 σ−
2

γ +
2

ν0

)
.
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Hence, if we denote H 0,+∗ = H 0,−∗ +H
+
∗ and H 1,+∗ = H +∗ − H

+
∗ then the triangle

inequality gives the estimates (A.15) and (A.16) (together with the Cauchy inequalities
for the last).

Finally, in the same way as for Lemma A.1, the conditions (A.14) provide the esti-
mates on the size of the transformation �

+
which yields (A.17) and (A.18). ��

Now, in order to prove Theorem 4.5, one applies iteratively LemmaA.3 to the Hamil-
tonian H that can be written:

H (J, φ1,w, w̃) =H1(J1) +H2(J2) +Q(J1,w, w̃)

+H 0,0∗ (J,w, w̃) +H 1,0∗ (J, φ1,w, w̃)

where

H 0,0∗ = H 0,0
∗,0 +

∑

j,k∈{1,2}
H 0,0

∗,( j,k)w j w̃k = R,

H 1,0∗ = H 1,0
∗,0 +

∑

j,k∈{1,2}
H 1,0

∗,( j,k)w j w̃k = R − R +Q − Q,

and R(J,w, w̃) = 1

2π

∫ 2π

0
R(J, φ1,w, w̃)dφ1,

with the following thresholds:
∥∥∥H 0,0

∗,0
∥∥∥
1

� μ0
0,0 � • ε3β,

∥∥∥H 0,0
∗,( j,k)

∥∥∥
1

� μ0
2,0 � • ε2−2β,

∥∥∥H 1,0
∗,0

∥∥∥
1

� η00 � • ε3β,
∥∥∥H 1,0

∗,( j,k)

∥∥∥
1

� η02 � • ε.

Moreover, by reducing the domain of analyticity to K5/6, one can apply the Cauchy
inequalities and obtain the followings:
∥∥∥∂J1H

0,0
∗,0

∥∥∥
5/6

� μ0
0,1 � • ε3β− 1

2−5q,

∥∥∥∂J1H
0,0

∗,( j,k)

∥∥∥
5/6

� μ0
2,1 � • ε

3
2−2β−5q,

∥∥∥∂J2H
0,0

∗,0
∥∥∥
5/6

� μ0
0,2 � • ε2β,

∥∥∥∂J2H
0,0

∗,( j,k)

∥∥∥
5/6

� μ0
2,2 � • ε2−3β.

In the same way as in the proof of Theorem 4.5, let s a non-zero integer such that
s = E(ε−q) + 1 where

q = 3β − 1

15
for 4/9 < β < 1/2.

We define

(ξ1, ξ3) •= 1

4s
(
√
εε5q, εq), (ξ2, ξ4, ξ5) = σ0

4s
(εβ, 1, εβ/2),

as well as the sequences
(
ρ j
)

j∈{0,1,...,s},
(
σ j

)
j∈{0,1,...,s} with

(ρ j , σ j ) =
(
5

6
− j

4s

)
(ρ, σ ) for j ∈ {0, . . . , s}

such that K j
r = K 5

6− j+r
4s

for 0 � r � 1.
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Replacing the notation − and + by j−1 and j and assuming that for all 0 < j � s the
following conditions (associated with (A.14)) are fulfilled:

|ln ε|
(
η

j−1
0 + η

j−1
2 εβ

)
•� ε1+8q,

|ln ε|
(
η

j
0 + η

j
2ε

β
)

•� ε
1
2 +β+2q,

then an iterative application of Lemma A.3 to the HamiltonianH provides a sequence

of canonical transformations
(
�

j
)

j∈{1,...,s} such that H ◦ � = �
1 ◦ �

2 ◦ · · · ◦ �
s
is

equal to the Hamiltonian H +H †∗ withF = H 0,s∗ and H †∗ = H 1,s∗ .
For the same reasons as in the proof of Theorem 4.1, for all n ∈ {1, . . . , s},

the sequences
(
η

j
l

)

j∈{1,...,n} and
(
μ

j
l,m

)

j∈{1,...,n} must satisfy the following induction

hypothesis:

η
j
l � η

j−1
l exp(−1), μ

j
l,m − μ

j−1
l,m �

μ0
l,m

s
, (A.20)

for l ∈ {0, 2} and m ∈ {0, 1, 2}.
For n = 1, (A.20) is fulfilled as 4/9 < β < 1/2 and ε •� 1. Moreover,

γ 1
0 =• ε3β− 1

2−8q, γ 1
2 � • ε

1
2−8q,

θ10 � • ε
1
2 +q, θ11 � • ε

1
2−8q, and θ12 � • ε

1
2−8q

imply that

η1l � • η00 |ln ε| εq � η0l exp(−1) (l ∈ {0, 2})
for |ln ε| εq •� exp(−1) and

μ1
0,m − μ0

0,m � •
μ0
0,m

s
ε3β−1−10q |ln ε| �

μ0
0,m

s
,

μ1
2,m − μ0

2,m � •
μ0
2,m

s
ε5β−2−10q |ln ε| �

μ0
2,m

s

for ε •� 1 (m ∈ {0, 1, 2}).
For a fixed integer n, the induction is immediate since the sequences

(
η

j
l

)

j∈{0,...,n}

are decreasing such that
ηn
0

ηn
2

� η00

η02
while μn

l,m � 2μ0
l,m .

Hence, this proves the hypothesis (A.20) up to s and consequently that

ηs
l � • η0l exp(−s)� • ε exp(− 1

εq
) and μs

l,m � 2μ0
l,m

which provide (4.23) and a part of the thresholds (4.21) and (4.22). The missing thresh-
olds of (4.22) are deduced by using the Cauchy inequalities in a restricted domain Kp
with 0 < p < 7/12.
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Finally, the Eq. (3.2) as well as the Cauchy inequalities provide the size of the trans-
formation � on Kp:

‖(w. , w̃. ) − (w, w̃)‖p �
s∑

l=1

∥∥∥χ l
( j,k)

∥∥∥
p
‖(w, w̃)‖p � • |ln ε| √εε−q ‖(w, w̃)‖p ,

∥∥∥φ. 1 − φ1

∥∥∥
p

�
s∑

l=1

∥∥∥∂J1χ
l
∥∥∥

p
� • |ln ε| ε3β−1−6q,

and in the same way

∥∥∥φ. 2 − φ2

∥∥∥
p

� • |ln ε| ε2β− 1
2−q,

∥∥J. 1 − J1
∥∥

p � • |ln ε| ε3β− 1
2−2q.

Remark that as χ j does not depend on φ2 for all j ∈ {1, . . . , s} then J. 2 = J2. This
yields K5/12 ⊆ �(K7/12) ⊆ K9/12 for |ln ε| ε3β−1−7q •� 1.

A.9. Theorem 4.6: Secular Frequencies. We denote by f (J, φ) a regular function on
R × T and by f̃ (ϕ) the real function satisfying the relation f̃ ◦ F2 = f . Using these
notations, the average of f at J∗ ∈ S∗ reads

f̄ (J∗) = 1

2π

∫ 2π

0
f (J∗, φ)dφ = 1

Tδ.

∫ Tδ.

0
f (J∗, νδ. t)dt

= νδ.

2πυ0
√
εAB

[∫ π

ϕmin
1,δ

f̃ (ϕ)√
Uδ. (ϕ)

dϕ +
∫ 2π−ϕmin

1,δ

π

f̃ (ϕ)√
Uδ. (ϕ)

dϕ

]

= νδ.

2πυ0
√
εAB

∫ π

ϕmin
1,δ

[
f̃ (ϕ) + f̃ (2π − ϕ)√

Uδ. (ϕ)

]
dϕ.

(A.21)

As Ã(2π − ϕ) = Ã(ϕ) and B̃(2π − ϕ) = conj(B̃(ϕ)), the expressions of A(J∗) and
B(J∗) given by (4.24) follow.

The asymptotic expansions ofA(J∗) and B(J∗) have now to be derived. As Ã(π) =
7/8, it follows from Lemma 2 and (A.21) that

A(J∗) = 7

8
+

√
7

6
| ln δ. |−1(1 + ĥ0(δ.))

∫ π

ϕmin
1,δ

[
Ã(ϕ) − Ã(π)√

Uδ. (ϕ)

]
dϕ.

The main part of the integral involved in the previous expressions can be computed as
follows:

∫ π

ϕmin
1,δ

[
Ã(ϕ) − Ã(π)√

Uδ. (ϕ)

]
dϕ =

∫ π

ϕmin
1,δ.

[
Ã(ϕ) − Ã(π)√

U0(ϕ)

]
dϕ +

∫ ϕmin
1,δ.

ϕmin
1,δ

[
Ã(ϕ) − Ã(π)√

Uδ. (ϕ)

]
dϕ

+
∫ π

ϕmin
1,δ.

(
1√

Uδ. (ϕ)
− 1√

U0(ϕ)

)(
Ã(ϕ) − Ã(π)

)
dϕ.
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As |ϕmin
1,δ − ϕmin

1,δ.
| � • δ∗ and because |Ã(ϕ) − Ã(π)| � • |ϕ − π |2, the two last integrals

are respectively � • δ∗ and � •
√
δ∗. It turns out that

A(J∗) = 7

8
+

√
7

6

CA
| ln δ. | (1 + ĥ0(δ.)) with

CA =
∫ π

ϕmin
1,δ.

(
Ã(ϕ) − Ã(π)√

U0(ϕ)

)
dϕ

and |ĥ0(δ.)| � • | ln δ∗|−1.
For the same reasons, we also have

B(J∗) = 7

8
+

√
7

6

CB
| ln δ. | (1 + ĥ0(δ.)) with

CB =
∫ π

ϕmin
1,δ.

⎛

⎝
Re

(
B̃(ϕ)

)
− B̃(π)

√
U0(ϕ)

⎞

⎠ dϕ

where the real coefficients CA and CB are bounded by

−28 < CA < −27 and 16 < CB < 17.

This provides all that is needed for deriving the asymptotic expansion of the secular
frequencies g̃1,δ. and g̃2,δ. . Indeed, these frequencies are given by g̃ j,δ. = ευ0

m1m2
m0

λ j

where λ j are the two roots of the polynomial

λ2 − m1 + m2

m1m2
A(J∗)λ − B(J∗)2 − A(J∗)2

m1m2
.

At this point, Theorem 4.6 is deduced from an asymptotic expansion of the λ j , from
which it follows that the coefficients c2 involved in (4.25) satisfy the relations

−90 < c2 = 2(CA − CB) < −86.

A.10. Theorem 4.7: Diagonalization. By the discussion that precedes Theorem 4.7, as
the spectrum of (4.26) is simple, there exists a symplectic transformation �̌ which is
linear with respect to w. , w̃. and diagonalizes the quadratic form (4.26).

In the general case the diagonalizing transformation is generated by a function which
can be written

χ(J. ,w. , w̃. ) =
∑

j,k∈{1,2}
χ( j,k)(J. )w. j w̃. k

where χ( j,k)(J. ) are of order 1 over the considered domain.
Using Cauchy inequalities to bound the derivatives of χ in order to control the

variation of the angles associated with J. under the considered transformation, we obtain
the upper bounds

∥∥∥ψ1 − φ. 1

∥∥∥
p,r

� • r2ε− 1
2−5q � • σ1 and

∥∥∥ψ2 − φ. 2

∥∥∥
p,r

� • r2ε−β � • σ2
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since 0 < r •� ε
1
4 +3q.

Finally, by Lemma 4.2 the Taylor expansion reads

F( j,k)(J. ,w. , w̃. ) − F( j,k)(J. , 0, 0) =
∫ 1

0
(1 − t)g′′

( j,k)(t)dt

with g( j,k)(t) = F( j,k)(J. , tw. , tw̃. ).

Together with the estimates (4.22) of Theorem 4.5, this provides the threshold (4.28) on

Ř =
(
F2 − ∑

j,k∈{1,2} F( j,k)( · , 0, 0)w. j w̃. k

)
◦ �.

A.11. Theorem 5.1: Application of a Pöschel version of KAM Theory. As itwas specified
in Sect. 5, from now on, we constrain ε to be inside an interval [ε0/2, ε0] for an arbitrary
ε0 > 0.

Let us consider the frequency map linked to the Hamiltonian Ȟ (see Theorem 4.7)
that is denoted (ω(
),�(
)) with ω j = H ′

j + ∂� jF0 and � j = g j , and the following
thresholds:

‖ω1‖p,r � • ε
1
2−q
0 , ‖ω2‖p,r � • 1,

‖�1‖p,r � • ε0, ‖�2‖p,r � •
ε0

|ln ε0| ,

that are deduced from
∥∥H ′

2

∥∥
p � • 1 and the bounds (4.22) and (4.27). Moreover, we

have the following thresholds on the derivatives:
∥∥∥∥∥∂�1ω1 − E1

ε
q
0 |ln ε0|3

∥∥∥∥∥
p,r

� •
1

ε
q
0 |ln ε0|4

,
∥∥∂�2ω1

∥∥
p,r � • ε

β− 1
6

0 ,

∥∥∂�1ω2
∥∥

p,r � • ε
β− 1

6
0 ,

∥∥∂�2ω2 − E2
∥∥

p,r � • εβ0

withE1 = υ0K 2B−1 andE2 = −2Eυ0 (that are not equal to zero) from the bounds (4.22)
and themean value theorem. Consequently the eigenvalues of dω are small perturbations

of
E1

ε
q
0 |ln ε0|4

and E2. We also ensure that dω is inversible with the eigenvalues λ1(
),

λ2(
) such that
∥∥∥∥∥λ1 − ε

q
0 |ln ε0|4

E1

∥∥∥∥∥
p,r

� • εq0 |ln ε0|2 ,
∥∥∥∥λ2 − 1

E2

∥∥∥∥
p,r

� • εβ0 .

Hence, ω is a local diffeomorphism.
In order to apply Pöschel version of KAM theory for the persistence of lower dimen-

sional normally elliptic invariant tori [28], we must consider a domain where the internal
frequency map ω is a diffeomorphism. Hence, we set out the following

Lemma A.4. For ε ∈ [ε0/2, ε0], the internal frequency map ω is a diffeomorphism from
� = B2

ρ onto its image provided by

ρ •= ε1+9q

|ln ε|3 with 4/9 < β < 1/2.
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Moreover, we have the upper bounds

‖ω‖� � • 1, ‖dω‖� � •
1

ε
q
0 |ln ε0|3

,

∥∥∥ω−1
∥∥∥
�

� • εβ0 ,

∥∥∥dω−1
∥∥∥

ω(�)
� • 1, and ‖d�‖� � • ε1/30 .

(A.22)

Proof. We consider ω0 = ω − ω(0) where ω0 is holomorphic on the closed ball B2
ρ1

with ρ1 •= ε
1
2 +5q
0 . Then, we define

ω̃0 =(dω(0))−1ω0 − Id such that dω̃0 = (dω(0))−1(dω − dω(0)).

Hence, ‖dω̃0‖B2
ρ1

� •E −1
2 ‖dω − dω(0)‖B2

ρ1
since the highest eigenvalue of (dω(0))−1

satisfies |λ2(0)| � •E −1
2 for ε small enough with E2 �= 0. Furthermore, by the mean

value theorem as well as the Cauchy inequalities, we can ensure that on the closed ball
B2
ρ̃ such that 2ρ̃ •= ρ2

1 = ε1+10q then

‖dω̃0‖B2
ρ̃

� •
∥∥∥d2ω

∥∥∥B2
ρ1/4

ρ̃ � •
ρ̃

ρ2
1

� 1

2
.

Consequently, the application:

ω̂0 = Id +ω̃0

is a diffeomorphism from B2
ρ̃ to ω̃0(B2

ρ̃ ) by the fixed point theorem. Moreover, ω̂(0) = 0
yields

B2
ρ̃/2 ⊂ ω̂0(B2

ρ̃ ) ⊂ B2
3ρ̃/2

and ω̂
−1
0 is a Lipschitz mapping with a constant 2.

Now, as ω = ω(0) + dω(0)ω̂0, we consider

ω−1(y) = ω̂
−1
0

(
(dω(0))−1(y − ω(0))

)
.

If (dω(0))−1(y − ω(0)) ∈ B2
ρ̃/2, then there exists

ρ̂ •= ρ̃

2
such that ‖y − ω(0)‖B2

ρ̂
� ρ̂

(as
∥∥dω(0)−1

∥∥B2
ρ̃/2

� • 1). Hence, we have determined ω−1 over Bρ̂{ω(0)}.
Finally for (y, y′) ∈ (Bρ̂{ω(0)})2, we have

∥∥∥ω−1(y) − ω−1(y′)
∥∥∥B2

ρ̂

� •
∥∥y − y′∥∥B2

ρ̂

as dω̂−1
0 is 2-Lispshitz and

∥∥dω(0)−1
∥∥B2

ρ̂

� • 1. Hence, as ‖dω‖ρ̂ � •
1

ε
q
0 |ln ε0|3

then

ω(B2
ρ) ⊂ Bρ̂{ω(0)} for ρ =•

ε
1+9q
0

|ln ε0|3
.

Consequently,ω is a diffeomorphism fromB2
ρ onto its image and the estimates (A.22)

are ensured (by the estimates (4.22)). ��
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By the notations of Sect. 5, with | f |Lip� � ||d f ||� for a differentiable function and
the upper bounds (A.22) ensure

|ω|Lip� + |�|Lip� � M =•
1

ε
q
0 |ln ε0|3

, |ω−1|Lip� � L =• 1.

A property needed to apply the Pöschel results on the persistence of normally elliptic
tori is to ensure Melnikov’s condition for multi-integers of length bounded by K0 =
16L M . This is the content of the following

Proposition A.1. Let

K0 =•
1

ε
q
0 |ln ε0|3

and γ0 •= ε0

| ln ε0| ,

we have, for ε ∈ [ε0/2, ε0] with ε0 •� 1,

min
ξ∈�

{ |�1(ξ)| , |�2(ξ)| , |�1(ξ) − �2(ξ)|
}

� γ0 and

min
ξ∈�

|ω(ξ) • k + �(ξ) • l| � γ0 ∀0 < |k| � K0, |l| � 2.

Proof. First of all, for ξ ∈ � we have the followings:

√
ε0

|ln ε0| � • |ω1(ξ)| � •
√
ε0

|ln ε0| , 1� • |ω2(ξ)| � • 1,

ε � • |�1(ξ)| � • ε0,
ε

|ln ε0| � • |�2(ξ)| � •
ε0

|ln ε0|
(A.23)

that are deduced from (4.19) and (4.27). As a consequence, with ε ∈ [ε0/2, ε0], for
ξ ∈ �:

|�1(ξ)| � γ0, |�2(ξ)| � γ0, |�1(ξ) − �2(ξ)| � γ0.

For (k, l) ∈ Z
2 × Z

2 with 0 < |k| � K0 and |l| � 2 we have

‖k1ω1 + l • �‖� � • K0 ‖ω1‖� � • ε2/50

since 4/9 < β < 1/2. Especially, for a large enough constant C > 0, we have

|k • ω(ξ) + l • �(ξ)| � |k2| |ω2(ξ)| − Cε
2/5
0 � |ω2(ξ)| − Cε2/5 � γ0

deduced from (A.23) with ε0 •� 1 and k2 �= 0. Likewise, if k2 = 0 then for a large
enough constant C > 0, we have

|k1ω1 + l • �| � |k1| |ω1| − Cε0 � |ω1| − Cε0 � γ0

with ε0 •� 1. ��
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The Hamiltonian H defined in (5.2) is analytic over the domain D(r̄ , s̄) defined in
(5.4) with 0 < r̄ < r and s̄ •= ε

q
0.

With the estimates given in Proposition A.1, it remains to check the thresholds of the
Proposition 2.2 in Biasco et al. [6] which become here the threshold (5.5) of Theorem
5.1 and has to be satisfied for a small enough bound ε0 on the mass ratio.

We decompose the perturbation (5.3) in P = P1 + P2 + P3 + P4 with

P1(y, z, z̃; ξ) =
∑

j∈{1,2}

(
H j (ξ j + y j ) − H j (ξ j ) − ω j (ξ)y j

)
+F0(ξ + y) − F0(ξ),

P2(y, z, z̃; ξ) =
∑

j∈{1,2}
i
(
g j (ξ + y) − g j (ξ)

)
z j z̃ j ,

P3(y, z, z̃; ξ) = Ř(ξ + y, z, z̃), and P4(y,ψ, z, z̃; ξ) = Ȟ∗(ξ + y,ψ, z, z̃).

With the estimates of Theorem 4.5 together with Taylor formula, since P1, P2 (resp.
P3) are of order 2 in yi , z j z̃ j (resp. of order 4 in z j , z̃ j ). Likewise, with the corollary
4.1, ψ appears only in P4 which is exponentially small. As a consequence, we obtain
for ε ∈ [ε0/2, ε0] that

‖XP‖r̄ ,D(r̄ ,s̄) � •
r̄2

ε
p
0

+
ε

p′
0

r̄2
exp(− 1

εα0
)

and ‖XP‖Lipr̄ ,D(r̄ ,s̄) � •
r̄2

ε
p
0

+
ε

p′
0

r̄2
exp(− 1

εα0
),

hence

ε = ‖XP‖r̄ ,D(r̄ ,s̄) +
γ

Mγ0
‖XP‖Lipr̄ ,D(r̄ ,s̄) � •

r̄2

ε
p
0

+
ε

p′
0

r̄2
exp(− 1

εα0
)

for some positive exponents p and p′ (remark that p = p′ can be chosen). We need

r̄2

ε
p
0

+
ε

p
0

r̄2
exp(− 1

εα0
) •� cγ

La Ma
σ b
1

and we choose r̄ = r0εd
0 for a small enough constant r0 > 0 and a large enough exponent

d which ensure

r20ε
2d−p
0

•� cγ

2La Ma
σ b
1 .

Then,

ε
p′−2d
0

r20
exp(− 1

εα0
) •� cγ

2La Ma
σ b
1

is ensured for small enough ε0 < ε∗ and the main threshold (5.5) is satisfied. Hence, we
can find quasi-periodic horseshoe orbits for mass ratio 0 < ε < ε∗.
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