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Abstract: We prove some conjectures about vertex algebras which emerge in gauge
theory constructions associated to the geometric Langlands program. In particular, we
present the conjectural kernel vertex algebra for the ST 2S duality transformation in
SU (2) gauge theory.We find a surprising coincidence, which gives a powerful hint about
the nature of the corresponding duality wall. Concretely, we determine the branching
rules for the small N = 4 superconformal algebra at central charge −9 as well as for the
generic large N = 4 superconformal algebra at central charge −6. Moreover we obtain
the affine vertex superalgebra of osp(1|2) and the N = 1 superconformal algebra times
a free fermion as quantum Hamiltonian reductions of the large N = 4 superconformal
algebras at c = −6.

1. Introduction

Certain deformable families of vertex algebras and their module categories appear in
gauge theory constructions [CrG,GR] involving the GL twist of four-dimensional gauge
theory, with applications to problems in the quantum geometric Langlands program
[KWit,Gait1,Gait2]. The objective of this work is to prove some of the vertex algebra
predictions associated to dualities in SU (2) gauge theory.

1.1. VOA predictions from gauge theory. The vertex algebra constructions which follow
from gauge theory can be described without reference to the original gauge theory
motivations. We will do so here and postpone the gauge theory interpretation to a later
subsection.

The predictions are most clear for simply-laced Lie algebras. So let g be a simply-
laced Lie algebra and κ a non-rational complex number. Our basic building blocks will
be vertex algebras associated to g at (critically shifted) levels which are related to κ

by PSL2(Z) fractional linear transformations. These include in particular the universal
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affine vertex algebra gκ ′ ≡ Vk′(g) of g at level k′ = κ ′ − h∨. Here h∨ denotes the dual
Coxeter number of g. The other building blocks are Wρ

κ ′(g) ≡ W ρ

k′(g), the quantum
Hamiltonian reduction of gκ ′ for the embedding ρ : sl(2) → g of sl(2) in g. Sometimes,
auxiliary rational vertex algebras also appear, such as the algebra F(n) of n real free
fermions or the WZW vertex algebras Lk(g), i.e. the simple quotients of Kac–Moody
algebras at integral level.

An important set of predictions is the existence of a collection of “kernel vertex
algebras” An[g, κ]which are built as extensions of gκ ×g κ

nκ−1
in the following manner.1

Let P+ be the set of dominant weights of g and Q its root lattice. For λ ∈ P+ denote by
Vk(λ) the Weyl module of Vk(g) at level k. Let k, k′ be related to κ, κ ′ by κ = k + h∨
and κ ′ = k′ + h∨. Then [CrG] conjectures that for n a positive integer and κ, κ ′ such
that

1

κ
+

1

κ ′ = n

the module

An[g, κ] =
⊕

λ∈P+∩Q

Vk(λ) ⊗ Vk′(λ)

can be given the structure of a simple vertex algebra for generic κ .
There are several more families of vertex algebras with a related conjectural con-

struction:

• One can now consider an embedding ρ : sl(2) → g and replace one factor by the
corresponding modules ofW ρ

k (g) obtained via quantum Hamiltonian reduction from
Weyl modules. For example, we can define

HR,ρ
DS

(
An[g, κ]) :=

⊕

λ∈P+∩Q

Vk(λ) ⊗ Hρ
DS (Vk′(λ)) .

Here R stands for the reduction on the right factor. Again, the expectation from gauge
theory is that this is a simple vertex algebra for generic κ . Moreover in some instances
this algebra is expected to be isomorphic to a simpler vertex algebra. For example,
if we take n = 1 and ρ the regular embedding of sl(2) in g, then main Theorem 3

(2) of [ACL1] implies that H
R,ρreg
DS (An[g, κ]) ∼= Vk−1(g) ⊗ L1(g) as modules for

Vk(g) ⊗ W
ρreg

k′ (g). Here L1(g) denotes the simple affine vertex algebra of g at level
one.

• Similarly we can define the quantum Hamiltonian reduction on the left factor HL ,ρ
DS

or on both Hρ,ρ′
DS , e.g.

Hρ,ρ′
DS

(
An[g, κ]) :=

⊕

λ∈P+∩Q

Hρ
DS (Vk(λ)) ⊗ Hρ′

DS (Vk′(λ)) .

1 More intricate vertex algebras A(ni )[g, κ] can be built as extensions of longer chains of vertex algebras

of the form gκ ⊗
(

m⊗
i=1

Wκi (g)

)
⊗ gκm+1 , associated to a chain of levels satisfying κi + κ−1

i+1 = ni with

κ0 = κ−1. Here Wκ (g) denotes Wρ

κ ′ (g) for regular embedding ρ. We will not discuss this larger family of
vertex algebras here.
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• The An[g, κ] vertex algebras are expected to have a nice large κ limit. The expec-
tation is for example that for κ → ∞ one has as G × Vk′(g)-modules

lim
κ→∞ An[g, κ] ∼= Z ⊗

⊕

λ∈P+∩Q

ρλ ⊗ Vk′(λ),

where Z is a commutative vertex algebra and ρλ is the irreducible highest-weight
representation of g (or equivalently the Lie group G of g) of highest-weight λ. In
other words, one expects that affine vertex algebra action gets traded for an action of
G in the large coupling limit.

These algebras were identified explicitly in [CrG] for g = sl(2) and n = 1. Here we
will identify them for g = sl(2) and n = 2.

1.2. Results. Among finite dimensional simple Lie superalgebras there is one continu-
ous exceptional family called d(2, 1; a), parameterized by the complex number a. The
large N = 4 superconformal algebra is the quantum Hamiltonian reduction of the affine
vertex operator superalgebra of d(2, 1; a) at level kd with respect to a minimal nilpotent
element [KWak]. There is thus a two parameter family of such W -superalgebras whose
simple quotient we denote by sVir(kd ,a)

lrg N=4. Furthermore, the large N = 4 superconformal
algebra has a good a → ∞ limit, which contains a large nontrivial ideal; the quotient
by this ideal is the small N = 4 superconformal algebra sVir(kd )

sm N=4.
Recent work [A–P1,A–P2] on conformal embeddings of affine vertex operator alge-

bras in minimal W -superalgebras shows that sVir(1/2,a)
lrg N=4 is a vertex algebra extension

of

V−(a+3)/2(sl(2)) ⊗ V−(a−1+3)/2(sl(2)).

This is precisely the choice of levels which appear in A2[sl(2), κ = 1−a
2 ]! Thismotivates

us to study the branching rules of this embedding, i.e. the decomposition of sVir(1/2,a)
lrg N=4

in terms of V−(a+3)/2(sl(2))⊗V−(a−1+3)/2(sl(2))-modules. For the same reason, we also

study the corresponding decomposition of sVir(1/2)sm N=4.
We denote as before by Vk(λ) the Weyl module of Vk(sl(2)) of highest-weight λ,

ρλ the corresponding irreducible highest-weight representation of SU (2) and the fun-
damental weight of sl(2) is denoted by ω. Our first main result is Theorem 2.5. It says
the following: As a module for SU (2) × V−3/2(sl(2)) the simple small N = 4 super-
conformal algebra at central charge −9 decomposes as

sVir(1/2)sm N=4
∼=

∞⊕

m=0

ρmω ⊗ V−3/2(mω).

The proof of this decomposition result uses Adamović’s construction of this algebra
[Ad] as well as conformal embeddings found in [C].

Analogously, one can now use the theory of deformable families of vertex algebras
as introduced in [CL1,CL2] to study the decomposition of sVir(1/2,a)

lrg N=4. For this let a be
generic. Our second main result is then Corollary 2.6 saying that as a V−(a+3)/2(sl(2))⊗
V−(a−1+3)/2(sl(2))-module

sVir(1/2,a)
lrg N=4

∼=
∞⊕

m=0

V−(a+3)/2(mω) ⊗ V−(a−1+3)/2(mω).
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The quantumHamiltonian reduction of Vk(sl(2)) is the Virasoro vertex algebra at central
charge 13 − 6(k + 2) − 6(k + 2)−1. We consider the case k = −(a−1 + 3)/2 and apply
the quantum Hamiltonian reduction functor to sVir(1/2,a)

lrg N=4. Our third result is Theorem
2.10 stating that this reduction is isomorphic to V�(osp(1|2)) (� = −(a + 3)/2) and the
reduction on both affine vertex subalgebras is isomorphic to the N = 1 superconformal
algebra at central charge 3/2 + 3(a + 2 + a−1) times a free fermion vertex operator
superalgebra.

Let us summarize our results in terms of the language of Section 1.1. Let κ be generic.

1.

A2[sl(2), κ] ∼=
(
sVir(1/2,a)

lrg N=4

)

even
with κ = (1 − a)/2.

2.

H
R,ρreg
DS

(
sVir(1/2,a)

lrg N=4

) ∼= V�(osp(1|2)) with � = −(a + 3)/2.

3.

H
ρreg,ρreg
DS

(
sVir(1/2,a)

lrg N=4

) ∼= sVirN=1,c ⊗ F(1)

with sVirN=1,c the N = 1 superconformal algebra at central charge c = 3/2 + 3(a +
2 + a−1) and F(1) a free fermion vertex operator superalgebra of rank one.

4. We have an isomorphism of SU (2) × V−3/2(sl(2))-modules

lim
a→∞ sVir(1/2,a)

lrg N=4
∼= Z ⊗ sVir(1/2)sm N=4

∼= Z ⊗
∞⊕

m=0

ρmω ⊗ V−3/2(mω)

with Z a commutative Heisenberg vertex algebra of rank three.

1.3. Gauge theory motivation. We refer to [CrG,GR,FG] for a general discussion of the
construction of “corner vertex algebras”, i.e. vertex algebras supported at 2d junctions
between 3d topological boundary conditions in the GL-twisted 4d gauge theory.

Here we will only need the following pieces of information, which hold as stated for
non-rational κ .

1. The 4d gauge theory is labelled by a gauge group G and a topological coupling κ

(aka � in [KWit,GR,CrG]). The term “gauge group” means roughly a choice of
global form for the gauge algebra g. More precisely, it involves some extra data in
the form of “discrete theta angles”.

2. The 3d boundary conditions are associated to a spin-ribbon category of “boundary
line defects”.

3. Consider two boundary conditions associated to categories C1 and C2. Then a 2d
junction between these boundary conditions is associated to a vertex algebra A12
equipped with a functor F12 : C̄1 × C2 → A12 − mod.

4. We often denote a junction between boundaries B1 and B2 as an arrow B1 → B2.
If we need to distinguish different junctions, we label the arrow.

5. Junctions can be composed. The corresponding vertex algebras compose by exten-
sion along C2:

A13 ≡ (F12 × F23)(1 ⊗ DiagC2 ⊗ 1). (1.1)
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6. There is a “duality groupoid” which acts on κ by certain fractional linear transforma-
tions in PGL2(Z) and possibly on G. 4d theories related by duality are equivalent,
and duality relates boundary conditions and junctions of dual pairs of theories. The
categories of lines and junction vertex algebras match under duality.

7. There are two universal families of boundary conditions Np,q and Dp,q , labelled by
coprime integers p and q defined up to overall rescaling. The duality groupoid acts
on the (q, p) label as a column vector for PGL2(Z).

8. The category of lines at N1,0 is essentially the Kazhdan-Lusztig category K Lκ(G),
up to subtleties associated to discrete theta angles.

9. The category of lines at D0,1 is essentially Dκ − mod(GrG), up to subtleties as-
sociated to discrete theta angles. We will not use this fact directly, but we will use
the related observation that nice junctions of the form D0,1 → B support vertex
algebras with a Vκ+n(g) subalgebra with integer n and admit a corresponding G[[z]]
action.

10. There is an N0,1 → N1,0 junction supporting theWκ(g) W -algebra, up to subtleties
associated to discrete theta angles.

11. There is an D0,1 → N1,0 junction supporting the gκ := Vκ−h∨(g) Kac–Moody
algebra, up to subtleties associated to discrete theta angles.

We denote with the greek symbol κ the critically shifted level of algebras and with latin
k the non-critically shifted one.

If we specialize to g = sl(2) and ignore subtleties concerning the global form of the
group, the following junction vertex algebras have been identified [CrG,FG]:

• N0,1 → N1,0: Virκ . This is the Virasoro algebra of central charge cVirκ = 13 −
6κ − 6κ−1.

• N0,1 → N2,1: sVir2κ−1. The N = 1 super-Virasoro algebra sVirκ has central charge
csVirκ = 15

2 − 3κ − 3κ−1.
• D0,1 → N1,0: sl(2)κ = Vκ−2(sl(2)). This is the Kac–Moody algebra at critically
shifted level κ . It has central charge csu(2)κ = 3 − 6κ−1.

• D0,1 → N2,1: osp(1|2)2κ−1. This super-Kac–Moody algebra has an sl(2) 1+κ
2

sub-

algebra. It has central charge cosp(1|2)2κ−1 = 1 − 3κ−1.
• D0,1 → D1,0: L1(d(2, 1;−κ)). This is a quotient of the super-Kac–Moody algebra
based on the d(2, 1;−κ) exceptional superalgebrawhich is an extension of sl(2)κ+1⊗
sl(2)κ−1+1 ⊗ L1(su(2)). The central charge of this vertex algebra is cd(2,1;−κ)1 = 1.

These algebras enjoy many coset relations. They can all be understood in terms of
composition of junctions. These algebras also enjoy several relations based on quantum
Hamiltonian reductions. These relations map D0,1 → B junction vertex algebras to
N1,n → B junction vertex algebras, for appropriate n.

The main result of this paper is the identification of one more junction vertex algebra:

• D0,1 → D2,−1: sVir
(1/2,−1−2κ)
lrg N=4 . This is the large N = 4 superconformal algebra at

central charge −6, which is an extension of sl(2)κ+1 ⊗ sl(2) κ+1
2κ+1

.

The extension is compatiblewith the composition of junctions D0,1 → N1,−1 → D2,−1.
Indeed, D0,1 → N1,−1 supports sl(2)κ+1 and the N1,−1 → D2,−1 junction at coupling
κ is equivalent to the D1,−2 → N1,−1 junction at coupling κ−1, which is equivalent to
the D1,0 → N1,1 junction at coupling 2 + κ−1 and to the D0,1 → N1,−1 junction at
coupling − κ

2κ+1 .
We also verify that this statement is compatible with the reduction of D0,1 → D2,1

to D0,1 → N2,1 and N0,1 → N2,1 junctions under quantum Hamiltonian reductions.
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1.4. The κ → ∞ limit. The gauge theory structures at rational κ and κ = ∞ are
somewhat more subtle than at generic κ . Still, one expects the junction vertex algebras
to have reasonably good limits as κ is brought to rational points, though some fields such
as Kac–Moody currents of infinite level or Virasoro modes of infinite central charge may
have to be rescaled and replaced by classical fields in the limit.

The κ → ∞ limit of the above table gives

• N0,1 → N1,0: Vir∞, classical Virasoro stress tensor.
• N0,1 → N2,1: Semi-classical super-Virasoro sVir∞. The rescaled super-conformal
generator survives the limit, but the OPE contains a classical stress tensor.

• D0,1 → N1,0: sl(2)∞, a classical sl(2) connection.
• D0,1 → N2,1: osp(1|2)∞. The two fermionic generators survive as psu(1|1) cur-
rents, with OPE deformed by a classical sl(2) connection.

• D0,1 → D1,0: L1(psu(2|2)), with OPE deformed by a classical sl(2) connection.

and our new entry becomes

• D0,1 → D2,−1: sVir
(1/2)
sm N=4, the small N = 4 super-Virasoro of central charge −9,

with OPE deformed by a classical sl(2) connection.

1.5. Gauge theory predictions from VOA. Somewhat surprisingly, this is not the first
gauge theory appearance of the small N = 4 super-Virasoro of central charge −9. This
vertex algebra was found, as well, as the chiral algebra associated to four-dimensional
N = 4 gauge theory, in the sense of [B–R]. Concretely, it emerges as the result of a
BRST reduction of symplectic bosons valued in the adjoint of the gauge group. The
sl(2) global symmetry emerges in a surprising way and is not manifest in the BRST
construction.

The chiral algebraswhich appear in [B–R] can always be given an alternative physical
construction, as boundary vertex algebras for certain three-dimensional gauge theories
[CoG]. In the case at hand, that would be the maximally supersymmetric (i.e. N = 8)
three-dimensional SU (2) gauge theory. The theory has an so(7) R-symmetry, which is
enhanced to so(8) in the IR.

The boundary supporting the chiral algebra preserves an so(3)C × so(4) subgroup in
so(7), which is enhanced to so(4) × so(4) in the IR. More precisely, the second so(4)
factor includes the su(2)H R-symmetry and an su(2)F flavor symmetry. The first so(4)
factor includes the su(2)C ′ R-symmetry and the su(2)F ′ flavor symmetry which emerge
in the IR.

Correspondingly, boundary chiral algebra itself is built through the BRST reduction
of symplectic bosons, which only makes manifest the sl(2) current algebra associated
to the su(2)F flavor symmetry. The emergent sl(2) global symmetry is associated to the
emergent su(2)F ′ flavor symmetry.

Crucially, the kernel vertex algebras at κ = ∞ are expected to coincide with the
boundary vertex algebras of three-dimensional (i.e.N = 4) gauge theories which appear
at “duality walls”. For example, the κ = ∞ limit of L1(d(2, 1;−κ)) coincides with the
boundary vertex algebra of the “T [SU (2)]” gauge theory.

Hence we arrive at the following conjectures:

• The ST 2S dualitywall in four-dimensional SU (2)SYMsupports the three-dimensional
N = 8 SCFT defined by three-dimensional SU (2) gauge theory.

• The 3d SCFT is treated as anN = 4 theory, with su(2)F ×su(2)F ′ ⊂ so(8)R flavor
symmetry.
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• The 3d SCFT is coupled to the four-dimensional gauge theories on the two sides of
the wall by gauging su(2)F × su(2)F ′ .

It would be nice to test these conjectures further. This could be done, for example,
by computing the action of ’t Hooft-Wilson lines on the duality wall as in [DGV]. This
should parallel a similar check about the action of Hecke modifications on conformal
blocks of kernel vertex algebras, which is also an open problem even for n = 1.

2. The Large N=4 Superconformal Algebra

The large N = 4 superconformal algebra V (k, a) arises as a quantum Hamiltonian
reduction of the affine vertex operator superalgebra of the exceptional Lie superalgebra
d(2, 1; a) at level k.2 It depends on two complex parameters k and a, and has strong
generators e, f, h, e′, f ′, h′,G±±, L . Here L is a Virasoro field of central charge

c = −6k − 3,

e, f, h, e′, f ′, h′ are even primary fields of weight 1, and G±± are odd primary of
weight 3/2. The operator product algebra appears explicitly in [KWak]. First, {e, f, h}
and {e′, f ′, h′} generate two commuting affine sl(2) algebras at levels − a+1

a k − 1 and
−(a + 1)k − 1, respectively.

h′(z)h′(w) ∼ −2((a + 1)k + 1)(z − w)−2, h(z)h(w) ∼ −2

(
a + 1

a
k + 1

)
(z − w)−2,

e′(z) f ′(w) ∼ −((a + 1)k + 1)(z − w)−2 + h′(w)(z − w)−1,

e(z) f (w) ∼ −
(
a + 1

a
k + 1

)
(z − w)−2 + h(w)(z − w)−1,

h′(z)e′(w) ∼ 2e′(w)(z − w)−1 h(z)e(w) ∼ 2e(w)(z − w)−1,

h′(z) f ′(w) ∼ −2 f ′(w)(z − w)−1, h(z) f (w) ∼ −2 f (w)(z − w)−1.

Next, these act on the odd fields G±± by

h′(z)G±±(w) ∼ ±G±±(w)(z − w)−1, h′(z)G±∓(w) ∼ ±G±∓(w)(z − w)−1,

h(z)G±±(w) ∼ ±G±±(w)(z − w)−1, h(z)G±∓(w) ∼ ∓G±∓(w)(z − w)−1,

e′(z)G−−(w) ∼ −G+−(w)(z − w)−1, e′(z)G−+(w) ∼ −G++(w)(z − w)−1,

e(z)G−−(w) ∼ G−+(w)(z − w)−1, e(z)G+−(w) ∼ G++(w)(z − w)−1,

f ′(z)G++(w) ∼ −G−+(w)(z − w)−1, f ′(z)G+−(w) ∼ −G−−(w)(z − w)−1,

f (z)G++(w) ∼ G+−(w)(z − w)−1, f (z)G−+(w) ∼ G−−(w)(z − w)−1,

2 The reader should be warned that k here is kd in the introduction, and has nothing to do with the κ of the
gauge theory, which is instead related to a.
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Finally, the OPEs of the odd fields are

G++(z)G++(w) ∼ 2a

(a + 1)2
(: e′e :)(w)(z − w)−1,

G−−(z)G−−(w) ∼ 2a

(a + 1)2
(: f ′ f :)(w)(z − w)−1,

G−+(z)G−+(w) ∼ − 2a

(a + 1)2
(: f ′e :)(w)(z − w)−1,

G+−(z)G+−(w) ∼ − 2a

(a + 1)2
(: e′ f :)(w)(z − w)−1,

G++(z)G−+(w) ∼ − 2a

a + 1

(
1

a + 1
+ k

)
e(w)(z − w)−2

+

(
a

(a + 1)2
: h′e : − a

a + 1

(
1

a + 1
+ k

)
∂e

)
(w)(z − w)−1,

G++(z)G+−(w) ∼ 2

a + 1

(
a

a + 1
+ k

)
e′(w)(z − w)−2

+

(
− a

(a + 1)2
: he′ : + 1

a + 1

(
a

a + 1
+ k

)
∂e′

)
(w)(z − w)−1,

G−−(z)G−+(w) ∼ 2

a + 1

(
a

a + 1
+ k

)
f ′(w)(z − w)−2

+

(
a

(a + 1)2
: h f ′ : + 1

a + 1

(
a

a + 1
+ k

)
∂ f ′

)
(w)(z − w)−1,

G−−(z)G+−(w) ∼ − 2a

a + 1

(
1

a + 1
+ k

)
f (w)(z − w)−2

+

(
− a

(a + 1)2
: h′ f : − a

a + 1

(
1

a + 1
+ k

)
∂ f

)
(w)(z − w)−1,

G++(z)G−−(w) ∼ −2

(
k(k + 1) +

a

(a + 1)2

)
(z − w)−3 +

(
a + k + ak

(1 + a)2
h′

+
a(1 + k + ak)

(1 + a)2
h

)
(w)(z − w)−2

+

(
kL +

a

4(1 + a)2
: h′h′ : + a

4(1 + a)2
: hh : − a

2(1 + a)2
: hh′ :

+
a

(1 + a)2
: e′ f ′ :

+
a

(1 + a)2
: e f : + ak

2(1 + a)
∂h +

k

2(1 + a)
∂h′

)
(w)(z − w)−1

G−+(z)G+−(w) ∼ 2

(
k(k + 1) +

a

(a + 1)2

)
(z − w)−3

+

(
a + k + ak

(1 + a)2
h′ − a(1 + k + ak)

(1 + a)2
h

)
(w)(z − w)−2
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+

(
− kL − a

4(1 + a)2
: h′h′ : − a

4(1 + a)2
: hh : − a

2(1 + a)2
: hh′ :

− a

(1 + a)2
: e′ f ′ :

− a

(1 + a)2
: e f : − ak

2(1 + a)
∂h +

2a + k + ak

2(1 + a)2
∂h′

)
(w)(z − w)−1.

We shall denote by sVir(k,a)
lrg N=4 the simple quotient of V (k, a) by its maximal proper

ideal Ik,a graded by conformal weight. For generic values of k and a, V (k, a) is simple
so that V (k, a) = sVir(k,a)

lrg N=4.
It will be convenient to introduce a change of variables and replace the Virasoro field

L with the field

LC = L − Lsl(2), Lsl(2) = − 1

4(k + ak − 1)

(
: h′h′ : +2 : x ′y′ : +2 : y′x ′ :

)
.

Note that LC is just the Virasoro field for the coset

Com(V−(a+1)/k−1(sl(2)), V (k, a)),

whereV−(a+1)/k−1(sl(2)) ⊆ V (k, a) is the subVOAgenerated by {x ′, y′, h′}. The central
charge of LC is −6k(a + k + ak)

k + ak − 1
. With this change of variables, the fields G±± are no

longer primary, but now satisfy

LC (z)G++(w) ∼ 3(2k + 2ak − 1)

4(k + ak − 1)
G++(w)(z − w)−2

+

(
1

2(k + ak − 1)
: h′G++ : + 1

1 − k − ak
: x ′G−+ : +∂G++

)

× (w)(z − w)−1, (2.1)

LC (z)G+−(w) ∼ 3(2k + 2ak − 1)

4(k + ak − 1)
G+−(w)(z − w)−2

+

(
1

2(k + ak − 1)
: h′G+− : + 1

1 − k − ak
: x ′G−− : +∂G+−

)

× (w)(z − w)−1, (2.2)

LC (z)G−−(w) ∼ 3(2k + 2ak − 1)

4(k + ak − 1)
G−−(w)(z − w)−2

+

(
− 1

2(k + ak − 1)
: h′G−− : + 1

1 − k − ak
: y′G+− : +∂G−−

)

× (w)(z − w)−1, (2.3)

LC (z)G−+(w) ∼ 3(2k + 2ak − 1)

4(k + ak − 1)
G−+(w)(z − w)−2

+

(
− 1

2(k + ak − 1)
: h′G−+ : + 1

1 − k − ak
: y′G++ : +∂G−+

)

× (w)(z − w)−1. (2.4)
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Additionally, the OPEs G++(z)G−−(w) and G−+(z)G+−(w) are replaced with

G++(z)G−−(w) ∼ −2

(
k(k + 1) +

a

(a + 1)2

)
(z − w)−3

+

(
a + k + ak

(1 + a)2
h′ + a(1 + k + ak)

(1 + a)2
h

)
(w)(z − w)−2

+

(
kLC − a + k + ak

4(1 + a)2(k + ak − 1)
: h′h′ : + a

4(1 + a)2
: hh :

− a

2(1 + a)2
: hh′ :

− a + k + ak

(1 + a)2(k + ak − 1)
: e′ f ′ : + a

(1 + a)2
: e f : + ak

2(1 + a)
∂h

+
k(a + k + ak)

2(1 + a)(k + ak − 1)
∂h′

)
(w)(z − w)−1, (2.5)

G−+(z)G+−(w) ∼ 2

(
k(k + 1) +

a

(a + 1)2

)
(z − w)−3

+

(
a + k + ak

(1 + a)2
h′ − a(1 + k + ak)

(1 + a)2
h

)
(w)(z − w)−2

+

(
− kLC +

a + k + ak

4(1 + a)2(k + ak − 1)
: h′h′ : − a

4(1 + a)2
: hh :

− a

2(1 + a)2
: hh′ :

+
a + k + ak

(1 + a)2(k + ak − 1)
: e′ f ′ : − a

(1 + a)2
: e f : − ak

2(1 + a)
∂h

+
(k + ak − 2)(a + k + ak)

2(1 + a)2(k + ak − 1)
∂h′

)
(w)(z − w)−1. (2.6)

From now on, we shall replace L with LC , and use these OPE relations instead of
the original ones. We may regard k and a as formal variables, and we regard V (k, a)

as a vertex algebra over the ring R consisting of rational functions in k and a with
possible poles at a = 0, a + 1 = 0, and 1 − k − ak = 0. Since V (k, a) is generically
simple, V (k, a) is simple as a vertex algebra over R. Also, it is freely generated as a
vertex superalgebra, so each weight graded space V (k, a)[n] for n ∈ 1

2Z≥0, is a free
R-module.

2.1. sVir(k,a)
lrg N=4 as deformable families. For all n ∈ 1

2Z≥0, V (k, a)[n] has the Shapo-
valov pairing 〈, 〉n given by

〈ω, ν〉 = ω(2n−1)ν,

which takes values in R. If p = p(k, a) is an irreducible factor of the determinant of
〈, 〉n for some n, there will be a nontrivial null vector in V (k, a)[n]. Let Ip ⊂ R be the
ideal generated by p. Since R ∼= V (k, a)[0], we can regard Ip as a subset of V (k, a)[0].
Let

Ip · V (k, a) ⊂ V (k, a)
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be the set of Ip-linear combinations of elements of V (k, a), which is just the vertex
algebra ideal generated by Ip. Then the quotient

V Ip (k, a) = V (k, a)/(Ip · V (k, a))

is a vertex algebra defined over the ring Rp = R/Ip. It is a free Rp-module, but it is is
not simple as a vertex algebra over Rp since its maximal proper graded ideal Ip contain
all null vectors of the Shapovalov pairing. For each n, the weight n component Ip[n] is
Rp-submodule of V Ip (k, a)[n], and the simple quotient

L Ip (k, a) = V Ip (k, a)/Ip

is again a vertex algebra over Rp. However, Ip[n] need not be a direct summand of
V Ip (k, a)[n], and the quotient need not be free.

Given a multiplicatively closed subset D ⊂ Rp, let D−1Rp denote the localization
of Rp along D, and consider the following localizations of Rp-modules

D−1V Ip (k, a) = (D−1Rp) ⊗Rp V
Ip (k, a),

D−1Ip = (D−1Rp) ⊗Rp Ip,

D−1L Ip (k, a) = (D−1Rp) ⊗Rp L
Ip (k, a). (2.7)

Lemma 2.1. There exists a multiplicatively closed subset D ⊂ Rp which is at most
countably generated, such that D−1L Ip (k, a) is a free D−1Rp-module.

Proof. For each n, since V Ip (k, a)[n] is a free Rp-module of finite rank, there ex-
ists a finitely generated multiplicative set Dn ⊂ Rp with the following property:
D−1
n V Ip (k, a)[n] has a splitting

D−1
n V Ip (k, a)[n] = D−1Ip[n] ⊕ Cn,

whereCn is a complementary D−1Rp-submodule, and both summands are free D−1Rp-
modules.

Taking D = ⋃
Dn , we see that D is at most countably generated, and as a D−1Rp-

module,

D−1V Ip (k, a) =
(⊕

n≥0

Cn

) ⊕
D−1Ip,

so that

D−1L Ip (k, a) =
⊕

n≥0

Cn,

and in particular is free. ��
In this paper, we only need the case where p(a, k) = k − k0 for some fixed level k0.

In this case, Rp is isomorphic to the ring of rational functions in a with possible poles
at a = 0, a = −1, and a = 1−k0

k0
, which we denote by C[a]{0,−1,(1−k0)/k0}. In this case,

we denote the simple quotient L Ip (k, a) by sVir(k0,a)
lrg N=4.

More generally, for a subset A ⊂ C, let C[a]A denote the ring of rational functions
in a with possible poles in A. As a special case of the above result, we have
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Corollary 2.2. For any k0 ∈ C, there exists a subset A ⊂ C which is at most countable,
such that

C[a]A ⊗C[a]{0,−1,(1−k0)/k0} sVir
(k0,a)
lrg N=4

is a free C[a]A-module.
Note that if we rescale e′, f ′, h′ by a factor of 1/a, V (k, a) is defined over the ring

of rational functions in a and k of degree at most zero in a, with possible poles at a = 0,
a = −1, and a = 1−k

k . Likewise, with this rescaling, sVir(k0,a)
lrg N=4 is defined over the

ring F of rational functions in a of degree at most zero, with possible poles at a = 0,
a = −1, or a = 1−k0

k0
Similarly, given a subset A ⊂ C, we denote by FA the ring of

rational functions in a of degree at most zero, with possible poles in A. In the language
of [CL1], Corollary 2.2 implies that FA ⊗F sVir(k0,a)

lrg N=4 is a deformable family of vertex
superalgebras. In particular, its graded character is independent of a, and coincides with
the graded character of the limit

sVir(k0,∞)
lrg N=4 = lim

a→∞ sVir(k0,a)
lrg N=4,

which is a well-defined vertex algebra over C.

2.2. The small N = 4 superconformal algebra as a limit of sVir(k,a)
lrg N=4. Regarding k

as fixed, and rescaling e′, f ′, h′ by 1/a as above, observe that in the limit sVir(k,∞)
lrg N=4,

the fields e′, f ′, h′ become central, and LC , e, f, h,G±± satisfy the following OPEs.

h(z)h(w) ∼ −2(k + 1)(z − w)−2, e(z) f (w) ∼ −(k + 1)(z − w)−2 + h(w)(z − w)−1,

h(z)e(w) ∼ 2e(w)(z − w)−1, h(z) f (w) ∼ −2 f (w)(z − w)−1. (2.8)

h(z)G±±(w) ∼ ±G±±(w)(z − w)−1, h(z)G±∓(w) ∼ ∓G±∓(w)(z − w)−1,

e(z)G−−(w) ∼ G−+(w)(z − w)−1, e(z)G+−(w) ∼ G++(w)(z − w)−1,

f (z)G++(w) ∼ G+−(w)(z − w)−1, f (z)G−+(w) ∼ G−−(w)(z − w)−1, (2.9)

LC (z)G++(w) ∼ 3

2
G++(w)(z − w)−2 +

(
1

2k
: h′G++ : − 1

k
: x ′G−+ : +∂G++

)
(w)(z − w)−1,

LC (z)G+−(w) ∼ 3

2
G+−(w)(z − w)−2 +

(
1

2k
: h′G+− : − 1

k
: x ′G−− : +∂G+m

)
(w)(z − w)−1,

LC (z)G−−(w) ∼ 3

2
G−−(w)(z − w)−2 +

(
− 1

2k
: h′G−− : − 1

k
: y′G+− : +∂G−−

)
(w)(z − w)−1,

LC (z)G−+(w) ∼ 3

2
G−+(w)(z − w)−2 +

(
− 1

2k
: h′G−+ : − 1

k
: y′G++ : +∂G−+

)
(w)(z − w)−1,

(2.10)

G++(z)G++(w) ∼ 2(: e′e :)(w)(z − w)−1, G−−(z)G−−(w) ∼ 2(: f ′ f :)(w)(z − w)−1,

G−+(z)G−+(w) ∼ −2(: f ′e :)(w)(z − w)−1, G+−(z)G+−(w) ∼ −2(: e′ f :)(w)(z − w)−1,

G++(z)G−+(w) ∼ −2ke(w)(z − w)−2 +
( : h′e : −k∂e

)
(w)(z − w)−1,

G++(z)G+−(w) ∼ 2(1 + k)e′(w)(z − w)−2 +
(− : he′ : +(1 + k)∂e′)(w)(z − w)−1,

G−−(z)G−+(w) ∼ 2(1 + k) f ′(w)(z − w)−2 +
( : h f ′ : +(1 + k)∂ f ′)(w)(z − w)−1,

G−−(z)G+−(w) ∼ −2k f (w)(z − w)−2 +
(− : h′ f : −k∂ f

)
(w)(z − w)−1,
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G++(z)G−−(w) ∼ −2k(k + 1)(z − w)−3 +
(
(k + 1)h′ + k h

)
(w)(z − w)−2

+

(
kLC − k + 1

4k
: h′h′ : − k + 1

k
: e′ f ′ : − 1

2
: hh′ : + k

2
∂h +

k + 1

2
∂h′

)
(w)(z − w)−1,

G−+(z)G+−(w) ∼ 2k(k + 1)(z − w)−3 +
(
(k + 1)h′ − k h

)
(w)(z − w)−2

+

(
− kLC +

k + 1

4k
: h′h′ : + k + 1

k
: e′ f ′ : − 1

2
: hh′ : − k

2
∂h +

k + 1

2
∂h′

)
(w)(z−w)−1.

(2.11)

Additionally, LC has central charge c = −6(k + 1). For fixed k, let Z ⊂ sVir(k,∞)
lrg N=4

denote the vertex algebra generated by e′, f ′, h′, which is a commutative Heisenberg
algebra of rank 3. Moreover, since Z is central in sVir(k,∞)

lrg N=4, it generates a vertex
algebra ideal IZ , and the quotient

Vk = sVir(k,∞)
lrg N=4/IZ ,

is a vertex algebrawith strong generators LC , e, f, h,G±±. From the above calculations,
we obtain

Lemma 2.3. We have an exact sequence of vertex algebras

0 → IZ → sVir(k,∞)
lrg N=4 → Vk → 0.

Moreover, the OPE relations (2.8)–(2.9) hold in Vk , but (2.10) and (2.11) are replaced
with

LC (z)G±±(w) ∼ 3

2
G±±(w)(z − w)−2 + ∂G±±(w)(z − w)−1,

G++(z)G++(w) ∼ 0, G−−(z)G−−(w) ∼ 0,

G−+(z)G−+(w) ∼ 0, G+−(z)G+−(w) ∼ 0,

G++(z)G+−(w) ∼ 0, G−−(z)G−+(w) ∼ 0,

G++(z)G−+(w) ∼ −2k e(w)(z − w)−2 − k ∂e(w)(z − w)−1,

G−−(z)G+−(w) ∼ −2k f (w)(z − w)−2 − k ∂ f (w)(z − w)−1,

G++(z)G−−(w) ∼ −2k(k + 1)(z − w)−3 + k h(w)(z − w)−2 +
(
kLC +

k

2
∂h

)
(w)(z − w)−1,

G−+(z)G+−(w) ∼ 2k(k + 1)(z − w)−3 − k h(w)(z − w)−2 +
( − kLC : − k

2
∂h

)
(w)(z − w)−1.

(2.12)

Therefore the generators LC , e, f, h,G±± of Vk satisfy the OPE relations of the small
N = 4 superconformal algebra at level k.

It is not apparent whether or not Vk is simple, i.e., Vk ∼= sVir(k)sm N=4. The main
example we need is the case k = 1/2, which was studied by Adamović [Ad] using a
free field realization. Later, we will see that V1/2 is indeed simple.

Remark 2.4. If instead we rescale e′, f ′, h′ by a factor of 1/
√
a, the limit sVir(k0,∞)

lrg N=4 =
lima→∞ sVir(k0,a)

lrg N=4 is still well-defined, but the fields e
′, f ′, h′ generate a nondegener-

ate rank 3 Heisenberg vertex algebra and no longer commute with Vk . In particular, the
zero modes of e′, f ′, h′ integrate to an SU (2)-action on Vk which will be needed later.
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2.3. The small N = 4 superconformal algebra at central charge −9. In this section we
discuss two realizations of the small N = 4 superconformal algebra at level k = 1/2,
which has central charge −9. The first one is due to Drazen Adamović [Ad], and the
second one appeared implicitly in [C].Note that the affine vertex operator algebra of sl(2)
then has level−3/2 and embeds conformally in the simple small N = 4 superconformal
algebra at central charge−9,whichwe callY [A–P1].Wewill derive the branching rules.

Theorem 2.5. As a module for SU (2) × V−3/2(sl(2)) the simple small N = 4 super-
conformal algebra at central charge −9 decomposes as

Y ∼=
∞⊕

m=0

ρmω ⊗ V−3/2(mω)

where V−3/2(mω) denotes the Weyl module of V−3/2(sl(2)) of highest-weight mω, ρmω

is the corresponding irreducible highest-weight representation of SU (2) and ω is the
fundamental weight of sl(2).

Proof. Let us recall the construction of Adamović. Consider the Wakimoto free field
realization of the affine vertex operator algebra of sl(2) at level −3/2. He then realizes
the simple small N = 4 superconformal algebra as a kernel of screening charges inside
an extension of the free field vertex algebra. Let us formulate this problem in terms of
a βγ vertex operator algebra together with a pair of fermionic bc-ghosts. We have the
standard operator products

β(z)γ (w) ∼ (z − w)−1 ∼ b(z)c(w).

The affine vertex operator subalgebra is then generated by

e(z) = β(z),

h(z) = −2 : γ (z)β(z) : + : b(z)c(z) :,
f (z) = − : γ (z)γ (z)β(z) : −3

2
∂γ (z)+ : γ (z)b(z)c(z) : .

We note that the conformal weight of b is 3/2 with respect to the Sugawara vector and
the one of c is −1/2. The four odd dimension 3/2 fields are

G+(z) = b(z),

G−(z) = − : γ (z)b(z) :
G

+
(z) = −2 : β(z)∂c(z) : − : ∂β(z)c(z) :

G
−
(z) = − : b(∂c)c : −2 : βγ ∂c : − : (∂β)γ c : −3

2
∂2c.

Let us call the vertex operator superalgebra generated by these fields Y . Adamović
then proves that Y is simple [Ad, Theorem 6.1] and that Y coincides with the kernel
of screenings on the βγ bc vertex operator superalgebra [Ad, Corollary 6.2]. Y is a
module for the affine vertex operator subalgebra. The level of sl(2) is generic (see e.g.
the computation of Section 3.1 of [C]) and thus every Weyl module is simple. Let ω be
the fundamental weight of sl(2) and we denote the Weyl module of weight nω at level
−3/2 by V−3/2(nω). Consider Xn :=: b∂b . . . ∂n−1b : then Xn clearly corresponds to
an sl(2) highest-weight vector of weight nω and conformal weight n2/2 + n. Recall
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also that SU (2) acts as outer automorphism group on X and since b is a highest-weight
vector for the standard representation ρω the field Xn must be one for ρnω. It follows
that

∞⊕

n=0

ρnω ⊗ V−3/2(nω) ⊂ Y.

We turn to the second construction of the small N = 4 superconformal algebra at central
charge c = −9. This construction immediately follows from [C, Corollary 5.8] together
with [C–R, Theorem 4.1]. Denote byH the rank one Heisenberg vertex operator algebra
and by Fμ the Fock module of highest-weight μ and conformal weight μ2/2. Let λ be
such that λ2 = −1. Then the case p = 2 of [C, Corollary 5.8] says that there is a simple
vertex operator algebra called W2 that satisfies

W2 ∼=
∞⊕

m=0

V−3/2(mω) ⊗ (F−mλ ⊕ F(−m+2)λ ⊕ · · · ⊕ F(m−2)λ ⊕ F−mλ

)

as V−3/2(sl(2)) ⊗ H-module. The lattice vertex operator superalgebra

V√−1Z

⊕

m∈Z
Fmλ

extends H to a vertex operator superalgebra and so by Theorem 4.1 of [C–R] (which
follows from [Li, Theorem 3.1], see also [DL])

Ỹ :=
∞⊕

m=0

(m + 1) V−3/2(mω)

extends V−3/2(sl(2)) to a larger vertex operator superalgebra. We thus see that Ỹ ⊂ Y as
V−3/2(sl(2))-module.Moreover, the fields inV−3/2(0)⊕2V−3/2(ω) corresponding to the
top level of the modules generate a vertex operator subalgebra under operator products.
Since the conformal weight of the highest-weight states of V−3/2(nω) is n2 +n they must
already close under operator products. They thus form a minimal W -superalgebra and
its simple quotient is thus Y , i.e. the small N = 4 superconformal algebra at c = −9 by
the uniqueness result [A–L, Theorem 3.1] (which generalized [ACL2, Lemma 8.2]).

Let us summarize: we have shown firstly that Ỹ ⊂ Y as V−3/2(sl(2))-modules and
secondly Y being a homomorphic image (namely the simple quotient) of a subalgebra
of Ỹ . Both statements together can only be true if Ỹ ∼= Y . ��

2.4. The large N = 4 superconformal algebra at central charge −6. We now consider
the simple algebra sVir(1/2,a)

lrg N=4,whichhas central charge−6.By [A–P1],V−(a+3)/2(sl(2))
⊗ V−(a−1+3)/2(sl(2)) embeds conformally, that is, the Virasoro field L is identified with

the sum of the Sugawara vectors for the affine sl(2) subalgebras in sVir(1/2,a)
lrg N=4. More-

over, by Corollary 2.2 in the case k0 = 1/2, we see that sVir(1/2,a)
lrg N=4 is a deformable

family of vertex operator superalgebras, that is, there exists a ring of the form FA where
A is at most countable, such that FA ⊗F sVir(1/2,a)

lrg N=4 is a free FA-module.
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Let now a be generic. The conformal weight of the top level subspace of the Weyl
moduleV−(a+3)/2(mω) ism(m+2)/(2−2a), so the conformalweight ofV−(a+3)/2(mω)⊗
V−(a−1+3)/2(m

′ω) is a half-integer for generic a if and only if m = m′ and in this case

it equals m(m + 2)/2. Since sVir(1/2,a)
lrg N=4 has finite-dimensional weight spaces and as

such must be a direct sum of Weyl modules for generic a, by our conformal weight
consideration the only possibility is

sVir(1/2,a)
lrg N=4

∼=
∞⊕

m=0

NmV−(a+3)/2(mω) ⊗ V−(a−1+3)/2(mω),

with some multiplicities Nm . On the other hand, the graded character coincides with the
one in the large a limit. It follows from Theorem 2.5 that we have Nm = 1 for all m.

Corollary 2.6. As a V−(a+3)/2(sl(2)) ⊗ V−(a−1+3)/2(sl(2))-module

sVir(1/2,a)
lrg N=4

∼=
∞⊕

m=0

V−(a+3)/2(mω) ⊗ V−(a−1+3)/2(mω).

Let us write the character of sVir(1/2,a)
lrg N=4 for generic a including Jacobi variables y, z,

It is

ch[sVir(1/2,a)
lrg N=4](y, z, q) =

∞∑

m=0

ch[V−(a+3)/2(mω)](q, y) ch[V−(a−1+3)/2(mω)](q, z)

with

ch[Vk(mω)](z, q) =
(
zm+1 − z−(m+1)

)
q

m(m+2)−12k
k+2 + 1

8

�(z)

with Weyl denominator

�(z) = q
1
8

(
z − z−1

) ∞∏

n=1

(1 − z2qn)(1 − qn)(1 − z−2qn).

The Jacobi theta function of the lattice Z is

θZ(z, q) =
∑

m∈Z
q

m2
2 zm .

Let k1 = −(a + 3)/2 and k2 = −(a−1 + 3)/2 and note that

1

k1 + 2
+

1

k2 + 2
= 2

1 − a
+

2

1 − a−1 = 2.
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We now compute

ch[sVir(1/2,a)
lrg N=4](z, w, q)

=
∞∑

m=0

ch[Vk1(m)](q, z) ch[Vk2(m)](q, w)

=
∞∑

m=0

q
(m+1)2

2
(
(zw)m+1 + (zw)−(m+1) − (zw−1)m+1 − (z−1w)m+1

)

�(z)�(w)

= θZ(zw, q) − θZ(zw−1, q)

�(z)�(w)
.

Corollary 2.7. In the case k = 1/2, the algebra V1/2 in Lemma 2.3 is simple. We
therefore obtain an exact sequence of vertex algebras

0 → IZ → sVir(1/2,∞)
lrg N=4 → sVir(1/2)sm N=4 → 0.

Here IZ ⊆ sVir(1/2,∞)
lrg N=4 is the ideal generated by the rank 3 commutative Heisenberg

algebra with generators e′, f ′, h′.

Proof. This is immediate from Lemma 2.3, Theorem 2.5, and Corollary 2.6. ��
Corollary 2.8. The character of sVir(1/2,a)

lrg N=4 converges to the meromorphic Jacobi form

ch[sVir(1/2,a)
lrg N=4](q, w, z) = θZ(zw, q) − θZ(zw−1, q)

�(z)�(w)

for |z|, |w| < |q|±1.

We note that the limit z, w → 1 is by L’Hôpital’s rule

lim
z,w→1

ch[sVir(1/2,a)
lrg N=4](q, w, z) = 1

2

θ ′′
Z
(q)

η(q)6

with η(q) the usual Dedekind eta-function and θ ′′(q) := d2

dz2
θ(z, q)|z=1. In other words

the specialized character is a holomorphicmodular form. This is a property of quasi-lisse
vertex operator algebras [AK]. We wonder:

Question 2.9. Is sVir(1/2,a)
lrg N=4 a deformable family of quasi-lisse vertex operator super-

algebras?

We remark that the super character is obtained from the character by replacing z by
−z,

sch[sVir(1/2,a)
lrg N=4](q, w, z) = ch[sVir(1/2,a)

lrg N=4](q, w,−z).
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2.5. Quantum Hamiltonian Reductions. We turn to quantum Hamiltonian reductions,
see e.g. [Ar] as a reference. We are interested in applying the quantum Hamiltonian
reduction to the affine sub algebras. For this consider two bc-ghost systems bc and b′c′
and define the fields

d(z) := b(z)e(z) + b(z), d ′(z) := b′(z)e′(z) + b′(z)

and denote their zero-modes by d0 and d ′
0. Let

Wk(a) := Hd0(V (k, a) ⊗ bc), Xk(a) := Hd ′
0
(Wk(a) ⊗ b′c′)

and let

W (a) := Hd0(sVir
(1/2,a)
lrg N=4 ⊗ bc), X (a) := Hd ′

0
(W (a) ⊗ b′c′).

Let us first compute the characters of W (a) and X (a). They are obtained by taking
the character of sVir(1/2,a)

lrg N=4 times the supercharacter of the ghosts times qk/4 and then

taking the limit of the Jacobi variable(s) to q−1/2. The supercharacter of a pair of ghosts
is

sch[bc](q, z) = q
1
12

∞∏

n=1

(1 − z2qn)(1 − z−2qn−1)

ch[W (a)](q, w) = lim
z→q−1/2

ch[sVir(1/2,a)
lrg N=4](q, w, z)sch[bc](q, z)qk1/4

= q− c
24 +

1
6
θZ(q−1/2w, q) − θZ(q−1/2w−1, q)

η(q)�(w)
(2.13)

with c = 1 + 3a−1 the central charge of the affine vertex operator superalgebra Vk2
(osp(1|2)) (k2 = −(a +3)/2). This is exactly the character of Vk2(osp(1|2)) for generic
k2. Similarly

ch[X (a)](q) = lim
z,w→q−1/2

ch[sVir(1/2,a)
lrg N=4](q, w, z)sch[bc](q, z)sch[bc](q, w)qk1/4+k2/4

= q− c
24 +

1
12

θZ(q−1, q) − θZ(1, q)

η(q)2
(2.14)

with c = 1 + 3a − 6k2 − 2 = 8 = 3(a + a−1) and this is exactly the character of the
N = 1 superconformal algebra at central charge 3/2+3(a+2+a−1) times a free fermion
vertex operator superalgebra. Note that this conclusion is obvious, since the character
of the N = 1 superconformal algebra can be obtained from the one of Vk(osp(1|2)) via
Euler-Poincaré principle and the ghosts for this type of quantum Hamiltonian reduction
do not only contain the bc-ghosts but also a pair of βγ bosonic ghosts and a free fermion
so that one sees that this Euler-Poincaré character differs from the one of X (a) by a free
fermion character.

Theorem 2.10. W (a) is isomorphic to Vk2(osp(1|2)) (k2 = −(a + 3)/2) and X (a) is
isomorphic to the N = 1 superconformal algebra at central charge 3/2+3(a +2+a−1)

times a free fermion vertex operator superalgebra.
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The Theorem follows directly from above character computation together with the
next Lemma. But firstly, the Vk(osp(1|2)) is strongly generated by even fields e′, h′, f ′
and odd fields x ′, y′ with OPEs

e′(z) f ′(w) ∼ k(z − w)−2 + h′(w)(z − w)−1, h′(z)h′(w) ∼ 2k(z − w)−2,

h′(z)e′(w) ∼ 2e′(w)(z − w)−1, h′(z) f ′(w) ∼ −2 f ′(w)(z − w)−1,

h′(z)x ′(w) ∼ x ′(w)(z − w)−1, h′(z)y′(w) ∼ −y′(w)(z − w)−1,

e′(z)y′(w) ∼ x ′(w)(z − w)−1, f ′(z)x ′(w) ∼ y′(w)(z − w)−1,

x ′(z)y′(w) ∼ k(z − w)−2 +
h′(w)

2
(z − w)−1, x ′(z)x ′(w) ∼ −e′(w)(z − w),

y′(z)y′(w) ∼ f ′(w)(z − w).

Lemma 2.11. Let k, a be generic, then Wk(a) contains V−((a+1)k+1)(osp(1|2)) as sub-
algebra and Xk(a) contains the N = 1 superconformal algebra at

c = 3(1 + 2k + 2ak)(4k + 4ak − 1)

2(2k + 2ak − 1)
,

as well as a free fermion as subalgebra.

Proof. We have d0(G−+) = 0 = d0(G++). Moreover we have d0(c) = e + 1, i.e. −e is
in the same homology class as the vacuum 1. Let us denote the class of a+1√

2a
G++ by x ′

and the one of− a+1√
2a
G−+ by y′, then using that−e(z) is in the same class as the vacuum

we get the following OPEs

h′(z)x ′(w) ∼ x ′(w)(z − w)−1, h′(z)y′(w) ∼ −y′(w)(z − w)−1,

e′(z)y′(w) ∼ x ′(w)(z − w)−1, f ′(z)x ′(w) ∼ y′(w)(z − w)−1,

x ′(z)y′(w) ∼ −((a + 1)k + 1)(z − w)−2 +
h′(w)

2
(z − w)−1,

x ′(z)x ′(w) ∼ −e′(w)(z − w),

y′(z)y′(w) ∼ f ′(w)(z − w)

but these together with the relations of e′, h′, f ′ are exactly the OPE relations of
V−((a+1)k+1)(osp(1|2)).

For the second statement, note that d ′
0(c

′) = e′ +1, so−e′ is in the same cohomology
class as the vacuum. Since x ′

(0)x
′ = −e′, it follows that the class [x ′] satisfies

[x ′](z)[x ′](w) ∼ (z − w)−1,

so it generates a free fermion algebra. Next, consider the Sugawara vector

Losp(1|2) = 1

2(3 + 2k)
: h′h′ : + 1

3 + 2k
: e′ f ′ : + 1

3 + 2k
: f ′e′ : − 1

3 + 2k
: x ′y′ :

+
1

3 + 2k
: y′x ′ :
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in Vk(osp(1|2)). We correct it by setting

L ′ = Losp(1|2) + 1

2
∂h′− : b′∂c′ : −1

2
: (∂x ′)x : .

It is straightforward to check that

d ′
0(L

′) = 0

and that

L ′(z)x ′(w) ∼ 1

2
(x ′+ : e′x ′ :)(w)(z − w)−2 + (∂x ′+ : e′∂x ′)(w)(z − w)−1.

Therefore L ′ represents a cohomology class [L ′] that commutes with [x ′]. Also, we
compute

(L ′
(0)L

′) − ∂L ′ = −1

2

(
: e′(∂2x ′)x ′ : + : (∂2x ′)x ′ :

)
− 1

2
: (∂e′)(∂x ′)x ′ :

− 1

24

(
(∂3e′)e′ : +∂3e′

)
,

(L ′
(1)L

′) − 2L ′ = −
(

: e′(∂x ′)x ′ : + : (∂x ′)x ′ :
)

+
1

8

(
: (∂e′)∂e′ : − : (∂2e′)e′ : −∂2e′

)
.

(L ′
(2)L

′) = 1

4

(
: (∂e′)e′ : +∂e′

)
,

(L ′
(3)L

′) = −3 + 10k + 6k2

3 + 2k
1 +

1

2
e′ + 1

4
: e′e′ : .

Using −[x ′] = [1] repeatedly, this shows that the class [L ′] generates a Virasoro
algebra of central charge

c = −3(1 + 2k)(5 + 4k)

2(3 + 2k)

which commutes with [x ′].
Next, define the field

ψ =
√−1√
3 + 2k

(
: h′x ′ : +2 : e′y′ : −(1 + 2k) : e′∂x ′ :

)
.

We calculate

d ′
0(ψ) = 0, (2.15)

ψ(z)x ′(w) ∼ −
√−1(1 + 2k)√

3 + 2k
(e′+ : e′e′ :)(w)(z − w)−2

−
√−1

2
√
3 + 2k

(
(2 + 4k) : (∂e′)e′ : +(5 + 4k)∂e′

)
(w)(z − w)−1. (2.16)
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This shows that the class [ψ] is well-defined and commutes with [x ′].
Next, we compute

ψ(2)ψ = 3 + 6k

3 + 2k
e′ − 4(1 + 2k)2

3 + 2k
: e′e′ : −2(1 + 2k)2

3 + 2k
: e′e′e′ :,

ψ(1)ψ = 3 + 6k

6 + 6k
∂e′ − 4(1 + 2k)2

3 + 2k
: (∂e′)e′ : −3(1 + 2k)2

3 + 2k
: (∂e′)e′e′ :,

ψ(0)ψ = 2L − d ′
0(R), (2.17)

where

R = 1

3 + 2k
: h′h′c′ : + 4

3 + 2k
: e′ f ′c : +2(1 + k)

3 + 2k
: (∂h′)c′ : − 4

3 + 2k
: x ′y′c′ :

− 2 : b′(∂c′)c′ :
− : h′∂c′ : − (3 + 4k)2

2(3 + 2k)
∂2c′ − 3(1 + 2k)

2(3 + 2k)
: (∂e′)∂c′ : + (1 + 2k)(7 + 8k)

2(3 + 2k)
: (∂2e′)c′ :

+
(1 + 2k)2

3 + 2k
: (∂e′)e′(∂c′) : + (1 + 2k)2

3 + 2k
: e′e′∂2c′ : . (2.18)

It follows that in cohomology, we have

[ψ](z)[ψ](w) ∼ − (1 + 2k)(5 + 4k)

3 + 2k
(z − w)−3 + 2[L ′](w)(z − w)−1.

It is also not difficult to check that

[L ′](z)[ψ](w) ∼ 3

2
[ψ](w)(z − w)−2 + ∂[ψ](w)(z − w)−1.

Therefore [L ′] and [ψ] generate a copy of the N = 1 algebra with central charge

c = −3(1 + 2k)(5 + 4k)

2(3 + 2k)
, which commutes with [x ′]. ��
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