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Abstract: In this paper, we study the limit measures of the empirical measures of
Lebesgue almost every point in the basin of a partially hyperbolic attractor. They are
strongly related to a notion named Gibbs u-state, which can be defined in a large class
of diffeomorphisms with less regularity and which is the same as Pesin–Sinai’s notion
for partially hyperbolic attractors of C1+α diffeomorphisms. In particular, we prove
that for partially hyperbolic C1+α diffeomorphisms with one-dimensional center, and
for Lebesgue almost every point: (1) the center Lyapunov exponent is well defined,
but (2) the sequence of empirical measures may not converge. In order to prove (2),
we build a diffeomorphism with historical behavior which is transitive (contrary to the
well-known example of Bowen). We also give some consequences on SRB measures
and large deviations.

1. Introduction

Let f be a diffeomorphism of a closed manifold M . As a general goal of dynamical
systems, we are interested in describing the asymptotic behavior of the orbits of f . In
particular, it is expected (see [Ru3,T1,T2]) that, for most systems and Lebesgue almost
every point x ∈ M , one gets convergence as n → +∞ of the sequence of empirical
measures

mx,n := 1

n

n−1∑

i=0

δ f i (x),

although there exist examples of systems where for Lebesgue a.e. x the limit does not
exist (Bowen has built such example inside the wandering set of a surface diffeomor-
phism, see [T1]; another example occurs inside the quadratic family on the interval, see
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[HK]). In a second step, onemaywonder if the set of limit measures (associated to points
in a set with full Lebesgue measure) is finite – this is clearly not satisfied when f is the
identity map. This leads to the problem of the existence of a physical measure, i.e. an
f -invariant probability measure μ such that the set {x ∈ M : mx,n → μ} has positive
Lebesgue measure.

In 1970s, Sinai, Ruelle andBowen [S,Bo,Ru1] have shown that uniformly hyperbolic
C1+α diffeomorphisms may be described by finitely many physical measures satisfying
additional geometrical properties and called SRB measures, whereas these systems in
general also possess many invariant probability measures that are not observable. In
this paper, we discuss systems satisfying a weaker form of hyperbolicity, called partial
hyperbolicity.

1.1. Empirical measures of partially hyperbolic attractors with 1D-center. A diffeo-
morphism f is C1+α , for α > 0, if it is C1 and both Df and Df −1 are α-Hölder. Let �
be an attracting compact set, i.e. it admits an open neighborhoodU such that f (U ) ⊂ U
and� = ⋂

n∈N f n(U ). Its attracting basin is the open set
⋃

n∈Z f n(U ). The set� is par-
tially hyperbolic if there exists an invariant dominated splitting T�M = Ess ⊕Ec⊕Euu

of the tangent space over �, such that Euu is uniformly expanded and Ess is uniformly
contracted, see Sect. 2.1 for more precise definition. One of the extremal bundles may
be degenerate and the splitting is then denoted by Ecs ⊕ Euu or Ess ⊕ Ecu . When �

is attracting, the bundle Ecs extends uniquely as a continuous invariant bundle over a
neighborhood of �, see [CP, Chapter 2].

Most of the works addressing existence of physical measures in the partially hyper-
bolic setting assume that the bundle Ecs (or Ecu) satisfies someweak form of contraction
(or expansion), see for instance [ABV,BV,ADLP]. In this paper we first consider the
case where the center Ec is one-dimensional and allow mixed behavior. We prove that
Lebesgue almost every point has a well defined center Lyapunov exponent. We recall
that a f -invariant probability measure μ is hyperbolic if for μ-almost every x ∈ M and
any non-zero vector v ∈ TxM , the quantity 1

n log ‖Df n(x).v‖ does not converge to 0 as
n → ∞.

Theorem A. Let f be a C1+α diffeomorphism of a closed manifold and � be an
attracting set with a partially hyperbolic splitting T�M = Ess ⊕ Ec ⊕ Euu such that
dim(Ec) = 1. Then for Lebesgue almost every point x in a neighborhood U of � the
following limit exists:

λc(x) := lim
n→+∞

1

n
log ‖Df n|Ecs (x)‖.

Moreover, if λc(x) �= 0, then x is in the basin of a hyperbolic and ergodic physical
measure.

When λc(x) = 0, the sequence of empirical measures of x may not converge, as the
following theorem shows. Contrary to Bowen’s examplementioned above, the dynamics
is non-wandering.

Theorem B. There exists a transitive diffeomorphism f ∈ Diff∞(T3) with a partially
hyperbolic splitting TT

3 = Ess ⊕ Ec ⊕ Euu, dim(Ec) = 1, such that Lebesgue al-
most every point x ∈ T

3 has a dense orbit and its sequence of empirical measures
1
n

∑n−1
i=0 δ f i (x) does not converge.



Empirical Measures of Partially Hyperbolic Attractors 727

Wedonot expect a generalization ofTheoremAwhen the center has larger dimension,
even if it admits a dominated splitting into one-dimensional subbundles. Indeed we are
not able to exclude the existence of a positive Lebesgue measure set of points whose
orbits accumulate on several non-hyperbolic measures with different stable dimensions.

1.2. Gibbs u-states revisited. We are aimed at studying the properties of the limits μ of
the empirical measures mx,n (before discussing their uniqueness). For instance, when f
is C1+α for some α > 0 and preserves a volume μ, Pesin [P] has shown that the entropy
of μ is equal to the sum of its positive Lyapunov exponents. This can be generalized as
follows (see [CCE,CaYa] and the appendix A):

Generalized Pesin’s inequality. For any C1 diffeomorphism f , if � is an invariant
compact set with a dominated splitting E ⊕ F, then for Lebesgue almost every point x
satisfying ω(x) ⊂ �, the entropy of any limit measure μ of the sequence 1

n

∑n−1
i=0 δ f i (x)

is bounded from below:

hμ( f ) ≥
∫

log | det Df |F |dμ. (1)

We stress that we only require f to be C1 and the measure μ is not known a priori.

Remark 1.1. Note that it has the following interesting consequence: for any f ∈ Diff1(M)

and any fixed point p, if | det(Df (p)| > 1, then the Dirac measure δp is not physical.
This does not hold when the map f is not a diffeomorphism, as shown in [HK, Theorem
3] for unimodal maps.

When � is an attracting set with a partially hyperbolic splitting T�M = Ecs ⊕ Euu

for a C1-diffeomorphism f , it contains each strong unstable leaf F u(x) of its points
and therefore is the support of a lamination denoted as F u . To any invariant measure
μ supported on �, an entropy hμ( f,F u) along the strong unstable lamination F u is
associated (see Definition 2.11): in this setting this has been introduced by Yang in [Y]
and forC2-diffeomorphisms it coincides with Ledrappier-Young entropy [LeYo2] along
the invariant bundle Euu . Our next result shows that it satisfies an equality similar to
Pesin’s formula.

Theorem C. For any C1 diffeomorphism f , if � is an attracting set with a partially
hyperbolic splitting Ecs ⊕ Euu, then for Lebesgue almost every point x in the basin of
�, any limit μ of the sequence { 1n

∑n−1
i=0 δ f i (x)} satisfies

hμ( f,F u) =
∫

log | det(Df |Euu )| dμ, (2)

where F u is the strong unstable lamination on � tangent to Euu.

This immediately gives the following consequence.

Corollary 1.2. Let f be a C1 diffeomorphism and� be an attracting set with a partially
hyperbolic splitting Ecs ⊕ Euu. Assume that there exists a unique measure μ on �

satisfying (2),thenμ is a physical measure;moreover its basin has full Lebesguemeasure
in the basin of �.

Remark 1.3. When there is more than one measure satisfying (2), there may not be any
physical measure, as it is the case in Theorem B.
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This motivates the following definition.

Definition 1.4. Let f be a C1 diffeomorphism, let � be an attracting set with a partially
hyperbolic splitting Ecs ⊕ Euu and let F u be the unstable lamination tangent to Euu .
An invariant probability μ supported on � is a Gibbs u-state if it satisfies (2).

When f is C1+α , this property is known to be equivalent to the fact that the dis-
integrations of μ along the unstable leaves are absolutely continuous with respect to
the Lebesgue measure along the leaves, which is the original definition of Gibbs u-
state given by Pesin and Sinai (see for instance [BDV, Chapter 11] and the Sect. 2.4).
For C1 diffeomorphisms however, an invariant measure may satisfy (2) without having
absolutely continuous disintegrations, see [RY,CQ,BMOS]. For C1 diffeomorphisms,
the Gibbs u-states satisfy some properties (well-known for smoother diffeomorphisms):
the set of Gibbs u-states is convex, compact for the weak-∗ topology and varies upper
semi-continuously with respect to the systems in C1-topology, see Sect. 2.4.

Under the C1+α smoothness hypothesis, and also assuming that � = M , Theorem C
follows from [BDV, Theorem 11.15] and Corollary 1.2 is [D, Corollary 2]. So our
main improvements is to provide a different proof with no distortion arguments which
applies to the C1-case and to show how it extends to the basin of � (where the partially
hyperbolic structure does not exist in general). Proofs of generalized Pesin’s formula
have been obtained in variousC1 settings see [M,CQ,Q,CCE,CaYa] for instance; in our
case we have to work with the entropy along an unstable lamination.

If � is an invariant compact set admitting a partially hyperbolic splitting Ecs ⊕ Euu ,
one says that a subset of T M is an unstable cone field C u if there exists a continuous
extension TUM = E ⊕ F of Ecs ⊕ Euu over a neighborhood U of �, and a continous
map θ : U → (0,+∞) such that for each x ∈ U the set C u(x) = C u ∩ TxM coincides
with the cone:

C u(x) := {v = vE + vF ∈ Ex ⊕ Fx : θ · ‖vF‖ ≥ ‖vE‖}.

This allows to state a more general version of Theorem C for (not necessarily attract-
ing) unstable laminations, which addresses the limit of empirical measures for Lebesgue
almost every point x in any disc tangent to an unstable cone fields (rather than almost
every point whose forward orbit stays in a neighborhood of �), see Theorem 5.1 in
Sect. 5. As a consequence, we prove that the construction of Gibbs u-states for C1+α-
diffeomorphisms done by Pesin and Sinai [PeSi] can be adapted toC1-diffeomorphisms.
For any disk D, one denotes by LebD the Lebesgue measure induced on D.

Corollary 1.5. Consider a C1 diffeomorphism f , an attracting set � with a partially
hyperbolic splitting Ecs ⊕ Euu and an unstable cone field C u. Then there exists a
neighborhood U of � such that for any disc D ⊂ U tangent to C u, each limit measure
μ of the sequence

1

n

n−1∑

i=0

1
LebD (D)

f i∗ LebD

satisfies the entropy formula (2).

Another important class of measures related to their observability are SRBmeasures.
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Definition 1.6. An invariant probabilityμ of aC1 diffeomorphism f is an SRB measure
if

hμ( f ) =
∫ ∑

λ+(z) dμ(z) > 0,

where
∑

λ+(z) is the sum of all the positive Lyapunov exponents of z (with multiplici-
ties).

For C1+α diffeomorphisms, this is equivalent to require that the disintegrations of μ

along its unstable manifolds are absolutely continuous (see [LeYo2,Br] but we will not
use this fact).

Corollary 1.7. Consider a C1 diffeomorphism f and an attracting set�with a partially
hyperbolic splitting T�M = Ess ⊕Ec⊕Euu such that dim(Ec) = 1. Then for Lebesgue
almost every point x in a neighborhood of �, the ω-limit of x supports an SRB measure.

This extends [CoYo] which proves (using random perturbations) that for C2 dif-
feomorphisms, attracting sets that are partially hyperbolic with one-dimensional center
support an SRB measure.

1.3. Large deviations. Our approach can also be used for bounding the large deviations
for C1-partially hyperbolic attracting sets with respect to continuous functions. (The-
orem C can also be deduced from that result by applying it to a countable and dense
subset of C0(M, R).)

Theorem D. Let f be a C1-diffeomorphism and � be an attracting set with a partially
hyperbolic splitting T�M = Ecs ⊕ Euu. Then there exists a small neighborhood U of�
such that for any continuous function ϕ : M → R and any ε > 0, there exist aε, bε > 0
such that

Leb

{
x ∈ U : d

(
1

n

n−1∑

i=0

ϕ( f i (x)), I (ϕ)

)
≥ ε

}
< aε · e−nbε for any n ∈ N,

where I (ϕ) :=
{∫

ϕ dμ : μ ∈ Minv(�, f ) satisfies hμ( f,F u)

=
∫

log | det(Df |Euu )| dμ

}
.

Some results on the existence of SRB measures and the large deviation property for
singular hyperbolic attractors are obtained in Appendix B.

Organization of the paper. This paper proceeds as follows. In Sect. 2, we state the
known results and notions used in the paper. In Sect. 3, we build increasing measurable
partitions subordinate to the strong unstable foliations and finite partitions approaching
thesemeasurable partitions. In Sect. 4, we state and prove an intermediate result to
Theorem C. In Sect. 5, we firstly give the proof of a stronger version of Theorem C
and we use it to give the proofs of Corollaries 1.5 and 1.7. Then we prove our large
deviations results. In Sect. 6, we conclude the proof of (a stronger version of) TheoremA
and we build the example (Theorem B). Appendix A is devoted to extending the entropy
inequality obtained in [CCE, Theorem 1] to a semi-local setting, whereas Appendix B
uses the results in Appendix A to prove the existence of physical measures for singular
hyperbolic attractors of C1+α-vector fields and a large deviations result.
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2. Preliminary

In this section, we collect the basic notions, tools and known results used in this paper.

2.1. Partial hyperbolicity. Let f be a C1-diffeomorphism of a closed manifold M . An
invariant splitting T�M = E ⊕ F of the tangent bundle over an invariant compact set
� is dominated, if there exists N ∈ N such that for each x ∈ �,

‖Df N |E(x)‖ · ‖Df −N |F( f N (x))‖ ≤ 1

2
.

An invariant splitting T�M = Ecs ⊕ Euu over � is partially hyperbolic, if there exists
N ∈ N such that for each x ∈ �,

‖Df N |Ecs (x)‖ · ‖Df −N |Euu( f N (x))‖ ≤ 1

2
and ‖Df −N |Euu(x)‖ ≤ 1

2
.

Thebundle Ecs then extends uniquely as a continuous invariant bundle on the set of points
whose forward orbit is included in a neighborhood of � (as the limit of the backward
iterates of a center-stable cone field, see [CP, Chapter 2]), moreover, each point x ∈ �

belongs to an injectively immersed submanifold F u(x) tangent to Euu(x), and called
strong unstable manifold. One sometimes also assumes a finer invariant decomposition
of the center-stable bundle Ecs := Ess ⊕ Ec which satisfies for each x ∈ �:

‖Df N |Ess (x)‖ · ‖Df −N |Ec( f N (x))‖ ≤ 1

2
and ‖Df N |Ess (x)‖ ≤ 1

2
.

A u-laminated set is a f -invariant compact set� endowedwith a partially hyperbolic
splitting T M |� = Ecs⊕Euu which satisfies the following property: the (strong) unstable
manifold F u(x) at each point x ∈ � tangent to Euu(x) is contained in � (this is the
case if � is an attracting set). The collection of unstable manifolds defines a lamination
called unstable lamination associated to the u-laminated set �; it is denoted byF u . For
each x ∈ � and ρ > 0, we denote by F u

ρ (x) the ball in F u(x) centered at x and of
radius ρ.

Remark 2.1. If C u
1 , C

u
2 are unstable cone fields on a neighborhood of �, the domination

implies that there exist a neighborhood U of � and N ≥ 1 such that for any x ∈
U ∩ f −1(U ) ∩ · · · ∩ f −N (U ), we have Df N (x)C u

1 (x) ⊂ C u
2 ( f N (x)).

2.2. Pseudo-physical measures. Let X be a compact metric space. We recall that the
space of probability Borel measures supported on X is a compact metric space: consider
a countable dense subset {ϕn}∞n=0 inC

0(X, R); then the distance between two probability
measures μ, ν is given by

d(μ, ν) :=
∞∑

n=0

| ∫ ϕn dμ − ∫
ϕn d ν|

2n · supx∈X |ϕn(x)| ,

and this gives the weak∗-topology on the space of probability measures (see [Wal,
Theorem 6.4].
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Let f be a homeomorphism on a compact manifoldM andMinv( f ) (orMinv(M, f ))
be the set of f -invariant probability measures. As before, given a point x ∈ M we denote
by M (x) ⊂ Minv( f ) the set of accumulation points of the measures 1

n

∑n−1
i=0 δ f i (x) as

n → +∞.
For any μ ∈ Minv( f ), we define its basin to be

Basin(μ) := {x ∈ M : M (x) = {μ}}.
The measure μ is said to be physical if Leb(Basin(μ)) > 0.

We will use a more general notion, introduced in [CE,CCE]. The invariant measure
μ is pseudo-physical if for any η > 0, one has

Leb({x ∈ M : d(M (x), μ) < η}) > 0,

i.e. there exists a limit measure ν ∈ M (x) which is η-close to μ.
A pseudo-physical measure is not necessary a physical measure. In general, for a

system, physical measures might not exist, however there always exist pseudo-physical
measures.

Theorem 2.2 (Theorems 1.3 and 1.5 in [CE]). Let f ∈ Homeo(M). The set of pseudo-
physical measures is non-empty and compact. Moreover, for Lebesgue a.e. x ∈ M, the
set M (x) is contained in the set of pseudo-physical measures.

Let D be an embedded compact C1-disc in M . Then μ is called a pseudo-physical
measure relative to D, if for any η > 0, one has

LebD({x ∈ D : d(M (x), μ) < η}) > 0.

Theorem 2.2 is generalized as follows:

Theorem 2.3. Let f ∈ Homeo(M) and D be an embedded compact C1-disc. Then the
set of pseudo-physical measures relative to D is a compact non-empty set. Moreover, for
Lebesgue a.e. x ∈ D, the setM (x) is contained in the set of pseudo-physical measures
relative to D.

Proof. By definition, μ is not pseudo-physical if and only if there exists ημ > 0 such
that

LebD({x ∈ D : d(M (x), μ) < ημ}) = 0.

Then any measure ν such that d(ν, μ) < ημ/2 is not pseudo-physical either (take
ην = ημ/2). This proves the compactness.

We nowdenote byPD the set of pseudo-physicalmeasures relative to D and consider
its complementPc

D inMinv( f ). ThenPc
D = ∪∞

n=1An , where An := {μ : d(μ,PD) ≥
1
n }. We define

Wn := {x ∈ D : M (x) ∩ An �= ∅}.
Since each measure in An is not pseudo-physical relative to D and An is compact,

there exist μ1, . . . , μl together with l positive numbers η1, . . . , ηl such that

• An ⊂ ⋃l
i=1 Bηi (μi );

• LebD({x ∈ D : d(M (x), μi ) < ηi }) = 0 for each i .
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This implies that LebD(Wn) = 0 for each n and then M (x) ⊂ PD for Lebesgue a.e.
x ∈ D. ��
Remark 2.4. This statement can be localized: if X ⊂ D is a measurable subset that has
positive measure for LebD , then μ is called a pseudo-physical measure relative to X , if
for any η > 0,

LebD
({
x ∈ X : d(M (x), μ) < η

})
> 0.

The proof of Theorem 2.3 also shows that for Lebesgue a.e. x ∈ X , the set M (x) is
contained in the set of pseudo-physical measures relative to X .

2.3. Entropy for a general measurable partition. In this part, we recall the notions of a
measurable partition, entropy of a measurable partition, and their properties from [Ro,
§1 − §5 and §9].

If α is a partition of X , we denote α(x) the element of α which contains x ∈ X .
We denote α ≺ β if β(x) ⊂ α(x) for each x ∈ X . And if (αi )i∈I is a family of
partitions, we denote by ∨i∈Iαi the partition it generates, i.e. the partition α whose
elements α(x) coincides with ∩iαi (x). When X is a metric space, the diameter of α is
Diam(α) = supx∈X Diam(α(x)).

Let α be a partition of a Borel space (X,B). It is a finite measurable partition if
it contains finitely many elements, each of them being measurable. It is a measurable
partition, if there exists a sequence of finite measurable partitions α1 ≺ α2 ≺ · · · ≺
αn ≺ · · · such that α = ∨

i∈N αi .
Let (X,B, μ) be a Lebesgue space and α be a measurable partition. We denote by

Bα the σ -algebra of the Lebesgue space X/α. Then for μ-a.e. x ∈ X , there exists a
probability measure μα

x supported on α(x) such that for any measurable set A of X :

• the map x �→ μα
x (A) isBα-measurable;

• μ(A) = ∫
μα
x (A) dμ(x).

The probability measures μα
x are called conditional measures of μ with respect to α.

Let (Ai )i∈N be all the elements of α with positive μ-measure. The entropy Hμ(α) of
the measurable partition α is defined by

Hμ(α) =
{−∑∞

i=1 μ(Ai ) · logμ(Ai ) if μ(∪∞
i=1Ai ) = 1

∞ otherwise.

Let us consider another measurable partition β. Then α induces a partition α|B of
each element B ∈ β. If μ

β
x denotes the conditional measures with respect to β, then the

mean conditional entropy of α with respect to β is defined as

Hμ(α|β) =
∫

H
μ

β
x
(α|β(x)) dμ(x).

For measurable partitions, one has the following result:

Lemma 2.5 (5.9 in [Ro]). For any three measurable partitions α, β, γ , we have

Hμ(α ∨ β|γ ) = Hμ(α|γ ) + Hμ(β|α ∨ γ ).

Lemma 2.6 (5.7 and 5.11 in [Ro]). Let α1 ≺ α2 ≺ · · · ≺ αn ≺ · · · be an increasing
sequence of measurable partitions and β be another measurable partition, then
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1. Hμ(αn|β) ↗ Hμ

( ∨∞
i=1 αi |β

);
2. if Hμ(β|α1) < ∞, then Hμ(β|αn) ↘ Hμ

(
β| ∨∞

i=1 αi
)
.

Let f be a homeomorphism of a compact metric space X preserving a probability
measure μ. Then f is an automorphism of the Lebesgue space (X,B, μ), whereB de-
notes its Borel σ -algebra. One defines the entropy hμ( f, α)with respect to a measurable
partition α:

hμ( f, α) := Hμ

( ∞∨

i=0

f i (α)
∣∣

∞∨

i=1

f i (α)

)
= Hμ

(
α
∣∣

∞∨

i=1

f i (α)

)
.

A standard argument based on Lemma 2.5 (see for instance [Ro, §7.3].) gives the fol-
lowing:

Lemma 2.7. If α is a measurable partition such that Hμ(α| f (α)) < ∞, then

hμ( f, α) = inf
1

m
Hμ

⎛

⎝
m∨

j=1

f − j (α)
∣∣α

⎞

⎠ = lim
m→∞

1

m
Hμ

⎛

⎝
m∨

j=1

f − j (α)
∣∣α

⎞

⎠ .

One can now define the metric entropy (see [Ro, 9.1]):

hμ( f ) = sup{hμ( f, α) : α is a finite measurable partition of X}
= sup{hμ( f, α) : α is a measurable partition of X}.

The following property is obtained by applying inductively Lemma 2.5.

Corollary 2.8. For any probability measure ν, any sequence of finite measurable parti-
tions {αi }i∈N and any integers 0 ≤ � < m < n,

Hν

( n−1∨

i=0

f −i (αi )
) = Hν

( �∨

i=0

f −i (αi )
)

+

[ n−�
m ]−1∑

k=0

H f �+km∗ ν

( m∨

i=1

f −i (αi+�+km)|
km+�∨

i=0

f km+�−i (αi )
)

+Hν

( n−1∨

i=�+[ n−�
m ]m+1

f −i (αi )|
�+[ n−�

m ]m∨

i=0

f −i (αi )
)
.

2.4. Entropy along an unstable lamination. In this paper, we focus on the entropy
of an invariant measure along an unstable lamination as introduced in [VY] and [Y].
Throughout this section, f is a C1-diffeomorphism of a compact manifold M and � is
a u-laminated set. As before the associated unstable lamination is denoted by F u . We
consider a probability measure μ supported on �.

A partition α of M is μ-subordinate to the unstable lamination F u of �, if for
μ-a.e. x ,

• α(x) is contained in the strong unstable leaf F u(x) of the point x , and
• α(x) contains an open neighborhood of x inF u(x).
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A partition α is increasing with respect to μ when f (α(x)) ⊃ α( f (x)) for μ almost
every point x ∈ M .

The existence of an increasing measurable partition μ-subordinate to the unstable
lamination is guaranteed by [LS, Proposition 3.1] and [Y, Lemma 3.2]:

Lemma 2.9. For any μ ∈ Minv(�, f ) there exists an increasing measurable partition
which is μ-subordinate to the unstable lamination F u.

The following result is an adapted version of Lemma 3.1.2 in [LeYo1].

Lemma 2.10. For any μ ∈ Minv(�, f ) and any two increasing measurable partitions
α1, α2 that are μ-subordinate to the unstable lamination F u, one has hμ( f, α1) =
hμ( f, α2).

One can thus define the entropy along the unstable lamination as follows.

Definition 2.11. The entropy of μ along the unstable lamination F u is

hμ( f,F u) = hμ( f, α),

where α is any increasing measurable partition μ-subordinate toF u .

Remark 2.12. 1. By definition hμ( f,F u) ≤ hμ( f ).
2. By [HHW,Proposition 2.14],μ �→ hμ( f,F u) is affine fromMinv(�, f ) to [0,∞).
3. The notion of entropy along an unstable lamination is literally different from the

one defined in [LeYo2, Sect. 7.2]. It has been proved that these two notions are the
same in the C1+α-partially hyperbolic setting, α > 1. See [VY, Proposition 2.4] for
a precise statement.

The entropy along an unstable lamination satisfies an inequality generalizing Ruelle’s
one [Ru2].

Theorem 2.13 (Theorem A in [WWZ]). Let f be a C1 diffeomorphism and � be a
u-laminated set. Then for any invariant measure μ ∈ Minv(�, f ), one has

hμ( f,F u) ≤
∫

log | det(Df |Euu )| dμ.

The entropy along an unstable lamination varies upper semi-continuously. This result
is due to [Y] (see also [HHW, Proposition 2.15].)

Theorem 2.14. Let f ∈ Diff1(M) be a partially hyperbolic diffeomorphism and {μn} be
a sequence of f -invariant measures. Assume that μn converges to μ in weak∗-topology,
then

lim sup
n→∞

hμn ( f,F
u) ≤ hμ( f,F u).

One gets the following consequence from the previous results.

Corollary 2.15. Let f be a C1 diffeomorphism and� be a u-laminated set. Then the set

Mu := {
μ ∈ Minv(�, f ) : hμ( f,F u) =

∫
log | det(Df |Euu )| dμ

}
(3)

is convex and compact. A measure belongs toMu iff each of its ergodic component does.
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In the case f is a C1+α-diffeomorphism, α > 0, Pesin and Sinai [PeSi] have intro-
duced a class of invariant measures supported on unstable laminations (which they called
Gibbs u-states): these are measures whose disintegrations along the unstable plaques of
a laminated box of the unstable lamination F u are absolutely continuous with respect
to the Lebesgue measure along the plaques, see also [BDV, Chapter 11]. The setMu is
included in this class of measures:

Theorem 2.16 (Theorem 3.4 in [L]). Let f be a C1+α diffeomorphism, α > 0. Then
for any measure μ ∈ Mu, the disintegrations along the unstable leaves are absolutely
continuous with respect to the Lebesgue measure.

Remark 2.17. The converse property also holds for anyC1-diffeomorphism (but we will
not use that property). This is a consequence of our Theorem 5.1 in Sect. 5. For that
reason we prefer to define the Gibbs u-states as the measures in the classMu , which is
also adapted to C1-diffeomorphisms.

2.5. Unstable density basis. The notion of Lebesgue density points does not behavewell
under iterations. Pugh and Shub [PuSh2] have introduced a notion of unstable density
point inside the leaves of a globally partially hyperbolic diffeomorphism, and from then
have defined Julienne density points inside themanifold.Wehere extend unstable density
points inside an attracting neighborhood of a partially hyperbolic attracting set.

Throughout this section, � is an invariant set endowed with a partially hyperbolic
splitting T�M = Ecs ⊕ Euu for a C1+α diffeomorphism f of a compact manifold M ,
α > 0 and C u is an unstable cone field on a neighborhood U of �.

A u-disc D ⊂ U is an embedded C1-disc of dimension dim(Euu) that is tangent to
an unstable cone field C u . For δ > 0 we denote by BD(z, δ) the closed δ-ball centered
at z for the metric induced on D.

We now fix δ > 0 arbitrarily and for any z ∈ D ∩ ⋂
n≥0 f −n(U ) and n ∈ N we

define

BD,n(z) := f −n(B f n(D)( f
n(z), δ)).

Theorem 2.18. Let � be an invariant set endowed with a partially hyperbolic splitting
T�M = Ecs ⊕ Euu for a C1+α diffeomorphism f , α > 0. Let C u be an unstable cone
field on a neighborhood U and D be a C1+α u-disc in the basin of �.

The collection {BD,n(z)}n∈N,z∈D is a density basis of the u-disc D: if A ⊂ D ∩⋂
n≥0 f −n(U ) is a measurable set with positive Lebesgue measure, then for Lebesgue

almost every z ∈ A,

lim
n→∞

LebD(A ∩ BD,n(z))

LebD(BD,n(z))
= 1.

Such a point z is called an unstable density point of A in D.

The proof follows [PuSh2, Theorem 3.1]. For completeness, we present it here.

Proof. Since Euu is uniformly expanded, there exist N ≥ 1 and τ > 1 such that
‖Df N (v)‖ ≥ τ for any unit vector v ∈ C u at a point x ∈ U ∩ · · · ∩ f −N (U ).

Lemma 2.19. 1. LebD(BD,n(z)) tends to zero as n → ∞.
2. For any m ∈ N, there exists a constant K > 1 such that LebD(BD,n(z)) ≤

K LebD(BD,n+m(z)).
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3. There exists � ∈ N such that Bu
D,n+�(z1) ∩ Bu

D,n+�(z2) �= ∅ ⇒ Bu
D,n+�(z1) ⊂

Bu
D,n(z2).

Proof. The first and the third items follow from the expansion along Euu . The sec-
ond uses a distortion argument: for any 0 ≤ k ≤ n and any two points x, y ∈
B f n(D)( f n(z), δ), the tangent spaces at f −k(x), f −k(y) to T f −k(B f n(D)( f n(z), δ)) get
exponentially close as k gets larger. Since f is C1+α , the determinants
| det Df |B f n (D)( f n(z),δ)| at f −k(x) and f −k(y) is exponentially close in k, which con-
cludes. ��

Let A ⊂ D∩⋂
n≥0 f −n(U ) be a measurable subset with positive Lebesgue measure

in D. For any ρ ∈ (0, 1), we denote

Aρ =
{
z ∈ A : lim inf

n→∞
LebD(A ∩ BD,n(z))

LebD(BD,n(z))
< ρ

}
.

One only needs to show that Aρ has zero Lebesgue measure.
For ε > 0, we take an open neighborhood U of Aρ such that LebD(U ) < (1 +

ε)LebD(Aρ) and we consider a covering of Aρ given by

V =
{
BD,n(z) ⊂ U : z ∈ Aρ and

LebD(A ∩ BD,n(z))

LebD(BD,n(z))
< ρ

}
.

We then build inductively a sequence {Vi } of pairwise disjoint sets in V as follows. Let
us assume that the Vj for j < i have been chosen. Since they are closed sets, and the
diameter of the BD,n(z) tend to zero, for any point z ∈ Aρ\ ∪ j<i V j there is an integer
n(z) = ni (z) such that BD,n(z)(z) ∈ V is disjoint from the Vj and we may choose the
smallest integer n(z) with this property. We choose zi ∈ Aρ\ ∪ j<i V j which minimizes
n(zi ) and we take Vi = BD,n(zi )(zi ).

Claim. The set Ãρ := Aρ\ ∪i∈N Vi has zero Lebesgue measure in D.

Proof. For any integer i and z ∈ Ãρ , we consider the integer ni (z) introduced during
the construction of Vi . The set BD,ni (z)(z) does not belong to {Vi }.

Note that by definition there exists Vk = BD,nk(zk )(zk) with k > i such that

Vk ∩ BD,ni (z)(z) �= ∅ and nk(zk) ≤ ni (z).

By the third item in Lemma 2.19,

BD,ni (z)(z) ⊂ BD,nk (zk )−�(zk).

For any k > �, let us denote Ṽk = BD,nk (zk )−�(zk). We have proved that for any integer
i ,

Ãρ ⊂
∞⋃

k=i

Ṽk .

By the second item of Lemma 2.19, there exists a constant K > 1 such that

LebD(Ṽk) < K LebD(Vk).
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Since the Vk are pairwise disjoint,
∑

k∈N LebD(Vk) converges. For each i , one has

LebD( Ãρ) ≤
∞∑

k=i

LebD(Ṽk) ≤ K ·
∞∑

k=i

LebD(Vk),

which implies that Ãρ has zero Lebesgue measure. ��
By the Claim above, one has the estimate

LebD(Aρ) =
∑

i∈N
LebD(Vi ∩ Aρ) ≤

∑

i∈N
LebD(Vi ∩ A)

≤ ρ ·
∑

i∈N
LebD(Vi ) ≤ ρ · LebD(U )

≤ ρ · (1 + ε)LebD(Aρ).

By the arbitrariness of ε and the fact that ρ < 1, one has LebD(Aρ) = 0. ��

3. Measurable Partitions Associated to an Unstable Lamination

The aim of this section is to construct finite partitions which allow to approximate the
entropy along an unstable lamination. One can find such constructions in [HHW,Y] for
global partially hyperbolic diffeomorphisms: [Y, Sect. 4] provide finite partitions which
satisfy the first two items in the theorem below; in [HHW, Propositions 2.12 and 2.13]
[HHW] the entropy along an unstable lamination is approached by the entropy of finite
partitions that are conditioned by measurable partitions. One of the novelties of the next
theorem is the third item, which will crucial in Sect. 4.

Theorem 3.1. Let f be aC1-diffeomorphismof a compactmanifold,�beau-laminated
set with an unstable cone field C u on a neighborhood U. There is r0 > 0 with the
following properties. For any μ ∈ Minv(�, f ) and any ε, ρ > 0, there exist η0 > 0, an
integer m0, and two finite measurable partitions α ≺ β of M such that

• Diam(β) ≤ Diam(α) ≤ ρ;
• any (not necessarily invariant) probability measure ν such that d(ν, μ) < η0 satis-
fies

∣∣∣∣
1

m0
Hν

(
m0∨

i=1

f −i (α)
∣∣β

)
− hμ( f,F u)

∣∣∣∣ < ε;

• for any δ > 0, there exist an open set V and an integer N ≥ 1 such that
– μ(V ) > 1 − δ;
– for any x ∈ V and any disc D tangent to D f N (C u) with x ∈ D and Diam(D) <

r0,

α(x) ∩ D = β(x) ∩ D.

The proof of Theorem 3.1 occupies the next three subsections.
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3.1. Measurable partitions μ-subordinate to an unstable lamination. In the following,
we will construct a measurable partition μ-subordinate to the strong unstable lamina-
tion. A similar construction is done in [Y] in the case of global partially hyperbolic
diffeomorphisms.
Transverse sections The unstable cone field C u is defined on a small neighborhood U
of �. The compactness of � and the transversality between Ecs, Euu give:

Lemma 3.2. There exist ρ0 > 0 and a family of compact discs (�x )x∈� in U satisfying:

• the disc �x has dimension dim(Ecs), is centered at x, and has radius larger than
ρ0;
• �x is transverse to C u;
• for any x, y ∈ � with d(x, y) < ρ0,F u

2ρ0
(y) intersects �x at a unique point, in the

interior of�x ; in particular the set∪y∈�xF
u
2ρ0

(y) contains anopenρ0-neighborhood
of x in �.

The set� is covered by balls B1, . . . , Bk of radius ρ0 centered at points x1, . . . , xk ∈
�. Set �i = �xi for simplicity.
The choice of r0.We denote by r0 > 0 a Lebesgue number of the covering {B1, . . . , Bk}:
for any x ∈ �, the ball B(x, r0) is contained in some Bi .
A finite partition A . Let λ = supx∈� ‖Df −1|Euu(x)‖ < 1. We apply the following
lemma.

Lemma 3.3 (Lemma 3.1.2 in [Y] and Proposition 3.2 in [LS]). For any 0 < λ < 1 and
ρ > 0, there is a finite measurable partition A of M such that

Diam(A ) < ρ and
∑

i∈N
μ(Bλi (∂A )) < +∞,

where Bλi (∂A ) denotes the λi -neighborhood of the boundary ∂A of the partition A .

For any ρ > 0, one gets a finite measurable partitionA of the manifold M such that

• Diam(A ) < min{ρ, r0/3, 1};
• ∑

i∈N μ(Bλi (∂A )) < +∞; in particular, μ(∂A ) = 0.

ThenA induces a finer finite partition ˜A of�. By construction, there exists an indexing
map I : ˜A �→ {1, . . . , k} such that the 2r0/3-neighborhood of each element A ∈ ˜A
in � is contained in the ball BI (A). From now on, the indexing map I is fixed.
The partition A u. Each point x ∈ � belongs to the set BI (A (x)) and there exists a
unique point y ∈ �I (A (x)) such that x ∈ F u

2ρ0
(y); we set A u(x) = A (x) ∩F u

2ρ0
(y).

This defines a measurable partition A u on �.
We note that the assumption of Lemma 2.7 is satisfied.

Lemma 3.4. Hμ(A u | f (A u)) < ∞.

Proof. Bydefinition, onehas that Hμ(A u | f (A u)) = ∫
Hμ f (A u )(x) (A u | f (A u)(x)) dμ(x).

By definition, A u and ˜A induce on each element f (A u)(x) ∈ f (A u) the same par-
tition, which is a finite partition. Hence, one has that Hμ f (A u )(x) (A u | f (A u)(x)) ≤
log # ˜A which implies Hμ(A u | f (A u)) ≤ log # ˜A . ��

We obtain a partition μ-subordinate to the unstable lamination.
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Lemma 3.5.
∨∞

j=0 f j (A u) is an increasing partition μ-subordinate to the lamination
F u.

Proof. Firstly, notice that the measurable partition
∨∞

j=0 f j (A u) is an increasing par-

tition. It is clear that for μ-a.e. x , the set
∨∞

j=0 f j (A u)(x) is contained inF u(x) since
A u(x) ⊂ F u(x).

For μ a.e. x ∈ �, one claims that there exists an integer n(x) ∈ N such that

∞∨

j=0

f j (A u)(x) =
n(x)∨

j=0

f j (A u)(x).

Now we give the proof of the claim. Since μ is an invariant measure supported on �,
one has

∞∑

j=0

μ( f j (Bλ j (∂A ))) =
∞∑

j=0

μ(Bλ j (∂A )) < ∞.

Hence, for μ-a.e. x , there is n(x) such that f − j (x) /∈ Bλ j (∂A ) for any j ≥ n(x). Let
us assume that there exists m ≥ n(x) such that

m+1∨

j=0

f j (A u)(x) �

m∨

j=0

f j (A u)(x).

Since Diam(A ) < 1, the diameter of
∨m

j=0 f j (A u)(x) is smaller than λ−m , which

implies f −m−1(x) ∈ Bλm+1(∂A ), a contradiction. The claim follows.
By the fact that μ(∂A ) = 0, for μ-a.e. x , the element A u(x) contains an open set

F u
r(x)(x) for some r(x) > 0.This implies that f m(A u)(x), andhence

∨n(x)
j=0 f j (A u)(x),

contains an open neighborhood of x inF u(x) forμ-a.e. x . By applying the claim above,
one concludes that

∨∞
j=0 f j (A u)(x) contains an open neighborhood of x inF u(x) for

μ-a.e. x . ��
In particular, Lemmas 2.7, 3.4 and 3.5, together with Definition 2.11 give:

Corollary 3.6. hμ( f,F u) = inf 1
m Hμ(

∨m
j=1 f − j (A u)|A u) = lim inf

m→∞
1
m

Hμ(
∨m

j=1 f − j (A u)|A u).

One important property of the measurable partition
∨l

i=0 f −iA u is the following:

Lemma 3.7. For μ-a.e. x ∈ M and any integer m ∈ N,

m∨

j=0

f − j (A u)(x) =
m∨

j=0

f − j (A )(x) ∩ A u(x).

Proof. SinceA ≺ A u , onegets the inclusion
∨m

i=0 f −i (A u)(x) ⊂ ∨m
i=0 f −i (A )(x)∩

A u(x). One proves the other side by induction. The case m = 0, is obvious.
Let us assume that

∨m
i=0 f −i (A )(x) ∩ A u(x) ⊂ ∨m

i=0 f −i (A u)(x). Consider any
point y in

∨m+1
i=0 f −i (A )(x) ∩ A u(x). The induction assumption implies f l(y) ∈

A u( f l(x)) for all l ∈ {0, . . . ,m}; one thus has f m+1(y) ∈ f (A u( f m(x)))∩A ( f m+1(x)).
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By the definition of A u , the point f m+1(y) belongs to f (F u
2ρ0

(z)) ∩ A ( f m+1(x))
for some point z ∈ �. Since ρ0 is small, there exists ζ ∈ �I (A ( f m+1(x))) such that
f (F u

2ρ0
(z))∩A ( f m+1(x)) = F u

2ρ0
(ζ )∩A ( f m+1(x)).Hence f m+1(y) ∈ A u( f m+1(x)).

��

3.2. Finite partitions approaching A u. We continue with the constructions of the pre-
vious subsection.

Proposition 3.8. There exist finite measurable partitions (A u
l )l∈N of M such that

• μ(∂A u
l ) = 0 for any l ∈ N;

• for μ a.e. x ∈ M, A u
l+1(x) ⊂ A u

l (x) ⊂ A (x) and A u(x) = ⋂
l∈NA u

l (x).
• for any l ∈ N and any δ > 0, there exist an open set V and an integer N such that
– μ(V ) > 1 − δ;
– for any x ∈ V and any disc D tangent to D f N (C u) with x ∈ D and Diam(D) ≤

r0,

D ∩ A u
l (x) = D ∩ A (x).

Proof. Let {Bi }i∈{1,...,k} be the open cover of � given in the previous section and
�i be the associated transverse discs. For each �i , the collection of local unstable
manifolds{F u

2ρ0
(y)}y∈�i∩� defines a measurable partition of ∪y∈�i∩�F

u
2ρ0

(y), and we
denote by μi the projection on �i of the measure μ restricted to ∪y∈�i∩�F

u
2ρ0

(y).
For each �i , there is a sequence of finite partitions Ci,1 ≺ Ci,2 ≺ · · · ≺ Ci,l ≺ · · ·

such that

• Diam(Ci,l)
l→∞−→ 0

• μi (∂Ci,l) = 0, where ∂Ci,l denotes the boundary of partition Ci,l in �i .

Then we denote by �̃i the set (� ∩ �i )\ ∪l ∂Ci,l .
Let us fix any l and any C ∈ Ci,l . For any x ∈ �̃i ∩ C , since x is an interior point

of C , there exists rx,l > 0 such that distance between F u
2ρ0

(x) and any other local leaf

F u
2ρ0

(y) with y ∈ (�̃i ∩ �)\C is larger than 3rx,l . We define the set C̃ which is the

union of the rx,l -neighborhood of the local leaf F u
2ρ0

(x) over x ∈ �̃i ∩ C .

By construction, C̃ ∩ �i is an open set in C , and has full μi -measure in C ; in
particular the boundary of C̃ ∩ �i in �i has μi -measure zero. Moreover by the choice
of the numbers rx,l , the C̃’s for different C ∈ Ci,l are pairwise disjoint. The partition
Pi,l for Bi given by

{
C̃

}
C∈Ci,l

⋃ {
Bi\

⋃

C∈Ci,l

C̃
}
,

is a finite measurable partition whose boundary in�i hasμi measure zero. Onemay also
require the condition rx,l+1 < rx,l for each x ∈ �̃i and each l: this gives Pi,l+1 ≺ Pi,l

modulo a set with zero μ measure. Since Diam(Ci,l)
l→∞−→ 0, one has ∩lPi,l(x) =

F u
2ρ0

(x) for x ∈ �̃i .
For each A ∈ A withI (A) = i , the finite partitionPi,l induces a finite measurable

partition for A, and this defines finite partitionsA u
l . The fact that ∩lPi,l(x) = F u

2ρ0
(x)

for x ∈ �̃i implies that A u
l satisfies the second item.
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Recall that for each A ∈ A with I (A) = i , one has B2r0/3(A) ⊂ Bi . For each
x ∈ A, the boundary of the set A u

l (x) is contained in ∂A and ∂Pi,l(x). The fact that
B2r0/3(A) ⊂ Bi and μ is supported on � implies that up to modulo a set of zero μ

measure, one has

∂(A u
l (x)) = ∂A ∪ {y ∈ Bi ,F

u
2ρ0(y) ∩ �̃i = ∅}.

Since μ(∂(A)) = 0 and �̃i has full μi measure, one has μ(∂(A u
l (x))) = 0.

It remains to prove the last item. We fix an integer l ∈ N and δ > 0.

Claim. For each A ∈ A with μ(A) > 0, there is an open subset VA of A and NA ≥ 1
such that

• μ(VA) > (1 − δ) · μ(A),
• for any x ∈ V andanydisc D tangent to D f NA(C u)with x ∈ D andDiam(D) ≤ r0,

D ∩ A u
l (x) = D ∩ A.

Proof of Claim. Let A ∈ A with μ(A) > 0 and let i = I (A). Since μ(∂A) = 0, there
is an open set A′ ⊂ A such that μ(A′) = μ(A).

For each C ∈ Ci,l with C̃ ∩ A �= ∅, the open set C̃ intersects C into an open subset
C ′ of C whose boundary has zero μi -measure; then for δ > 0, there exist rδ > 0 and a
compact subset C ′′ of C ′ such that

• for any x ∈ C ′′ ∩ �̃i , the 2rδ-neighborhood of F u
2ρ0

(x) is included in C̃ ;

• μi (C ′′) > μi (C ′) − δ · μ(A)
#Ci,l

.

Now, we define Ĉ as the union of the rδ-neighborhood ofF u
2ρ0

(x) over x ∈ C ′′ ∩ �̃i . By

definition, the closure of Ĉ is included in C̃ . LetVA be the union of Ĉ∩A′ over allC ∈ Ci,l

with C̃ ∩ A �= ∅. By the fact that B2r0/3(A) ⊂ Bi , one gets μ(VA) > (1 − δ) · μ(A).
Any disc of radius less or equal to r0, that isC1-close to a leafF u

2ρ0
(x) for x ∈ C ′′∩�̃i

and having a point in Bi , is contained in Ĉ . By compactness of C ′′, one deduces that
if one chooses an integer NC ≥ 1 large enough and rδ > 0 small enough, then the
following property holds: for any n ≥ NC , any disc D intersecting VA = Ĉ ∩ A′ with
diameter ≤ r0 and tangent to Df n(C u) is contained in C̃ . By definition of A u

l , for
x ∈ D one gets D ∩ A u

l (x) = D ∩ A.
Since Ci,l is finite, one concludes by taking NA = max NC over C ∈ Ci,l with

C̃ ∩ A �= ∅. ��
For each A ∈ A with μ(A) = 0, we define VA = ∅. We take V = ∪A∈A VA and
N � max NA. By the Claim above, the open set V satisfies the required properties. ��

3.3. Proof of Theorem 3.1. From Corollary 3.6, the measurable partition A u satisfies

hμ( f,F u) = lim inf
m→∞

1

m
Hμ

( m∨

j=1

f − j (A u)|A u).

Thus, for any ε > 0, there exists an integer m0 > 0 such that

∣∣ 1

m0
Hμ

( m0∨

i=1

f −i (A u)|A u) − hμ( f,F u)
∣∣ ≤ ε

3
.
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By Lemma 3.7, we have
∨m0

j=0 f − j (A u) = ∨m0
j=0 f − j (A ) ∨ A u (modulo a set with

μ-measure zero). Hence

Hμ

( m0∨

i=1

f −i (A u)|A u) = Hμ

( m0∨

i=1

f −i (A )|A u).

From Proposition 3.8, the sequence of finite measurable partitions (A u
l )l∈N satisfies

A u
l ≺ A u

l+1 ≺ A u and A u = ∨
A u

l (modulo a set with μ-measure zero). From the
second item of Lemma 2.6, there exists an integer l0 such that

∣∣ 1

m0
Hμ

( m0∨

i=1

f −i (A )|A u) − 1

m0
Hμ

( m0∨

i=1

f −i (A )|A u
l0

)∣∣ <
ε

3
.

As a consequence, one has

∣∣ 1

m0
Hμ

( m0∨

i=1

f −i (A )|A u
l0

) − hμ( f,F u)
∣∣ <

2ε

3
.

By construction, one has μ(∂(A u
l0

)) = μ(∂(A )) = 0. Thus there exists η0 > 0 such
that for any probability measure ν with d(μ, ν) < η0, one has

∣∣ 1

m0
Hν

( m0∨

i=1

f −i (A )|A u
l0

) − 1

m0
Hμ

( m0∨

i=1

f −i (A )|A u
l0

)∣∣ <
ε

3
.

To summarize, for any probability measure ν ∈ Bη0(μ), one has

∣∣ 1

m0
Hν

( m0∨

i=1

f −i (A )|A u
l0

) − hμ( f,F u)
∣∣ < ε.

Now, one only needs to take α = A and β = A u
l0

. By the choice of A in Sect. 3.1 we
have Diam(α) < ρ and by construction α ≺ β.

For any δ, the existence of V and N as in the last property of Theorem 3.1 is guar-
anteed by the third item of Proposition 3.8 for the partition A u

l0
. This ends the proof of

Theorem 3.1. ��

4. Volume Estimate for Convergent Sets of Invariant Measures

Given an invariant measure μ of f ∈ Diff1(M), we define for any n ≥ 1 and η > 0 the
(n, η)-convergent set:

Cn(μ, η) :=
{
x ∈ M : d

(
1

n

n−1∑

i=0

δ f i (x), μ

)
< η

}
.

The aim of this section is to prove:
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Theorem E. Let f be a C1-diffeomorphism of a compact manifold and � be a u-
laminated set. Then, there exist an unstable cone field C u on a neighborhood U of �

and r0 > 0 with the following property: for any μ ∈ Minv(�, f ) and ε > 0, there exist
η, c > 0 such that for each compact disc D ⊂ U tangent to C u with Diam(D) < r0
and each n ∈ N, one has

LebD
(
Cn(μ, η) ∩ D ∩

n−1⋂

i=0

f −i (U )
)

< c · exp
(
n

(
hμ( f,F u)

−
∫

log | det(Df |Euu )| dμ + ε

))
.

4.1. Preliminary choices. Choice of C u,U, r0. From the partially hyperbolicity of �,
there exist a neighborhood U of �, an unstable cone field C u defined on U , λ ∈ (0, 1)
and N ≥ 1 such that

• Df N (C u(x)) ⊂ C u( f N (x)), for any x ∈ U ∩ f −1(U ) ∩ · · · ∩ f −N (U );
• ‖Df −N (v)‖ ≤ λ for any x ∈ U and any unit vector v ∈ C u(x);
• the partially hyperbolic splitting Ecs ⊕ Euu extends to the maximal invariant set in
U .

We choose a continuous extensionψ : M → R of themap x �→ − log | det(Df |Euu )(x)|
defined on the maximal invariant set in U . We also fix a number r0 > 0 which satisfies
Theorem 3.1.
Cone field C u

ε . Let us fix ε > 0. There exist Nε, Lε ≥ 1 and ρ > 0 such that

• for any x, y ∈ M with d(x, y) < ρ, one has |ψ(x) − ψ(y)| < ε
8 ;

• the cone field C u
ε := Df NεC u defined on Uε := ∩Nε−1

i=0 f k(U ) satisfies:
– for any disc D ⊂ Uε tangent toC u

ε and any x ∈ D,
∣∣ log | det(Df |Tx Dx )|+ψ(x)

∣∣ <
ε
8 ;

– for any compact disc D ⊂ U with diameter smaller than r0 and tangent to C u ,
the set f Nε (D) ∩ ⋂Nε−1

i=0 f i (U ) is contained in at most Lε discs tangent to C u
ε of

diameter r0.

We fix an invariant measure μ on �. From the previous properties, one only needs
to prove the Theorem E for discs contained in Uε, tangent to C u

ε and with diameter
bounded by r0.

4.2. Volume estimate through pressure. Let us fix a disc D tangent to C u
ε with diameter

smaller than r0 and some integer n ≥ 0. A set X is (n, ρ)-separated if any x, y ∈ X
satisfy d( f k(x), f k(y)) > ρ for some 0 ≤ k < n. For each x ∈ D, we denote by
Bn(x, ρ) the (n, ρ)-Bowen ball in D and centered at x , that is,

Bn(x, ρ) =
n−1⋂

i=0

f −i (B( f i (x), ρ)) ∩ D.

For any n ∈ N, η > 0 and ρ > 0, let Xn,ρ be a (n, ρ)-separated set with maximal
cardinal of

Cn(μ, η) ∩ D ∩
n−1⋂

i=0

f −i (U ).
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We consider the probability measures:

νn := 1

#Xn,ρ

∑

x∈Xn,ρ

δx , μn := 1

n

n−1∑

i=0

f i∗νn = 1

#Xn,ρ

∑

x∈Xn,ρ

1

n

n−1∑

i=0

δ f i (x).

Remark 4.1. The definition of Xn,ρ and of the convexity of the ball of radius η centered
at μ in the space of probability measures gives d(μn, μ) < η.

The volume of Cn(μ, η) is estimated as follows.

Proposition 4.2. There exist cε > 0, η1 > 0 (which only depend on ε) such that for
any 0 < η < η1, and for any finite measurable partitions P0, . . . ,Pn−1 of M with
diameters smaller than ρ,

LebD
(
Cn(μ, η) ∩ D ∩

n−1⋂

i=0

f −i (U )
) ≤ cε · exp ( nε

2 + n
∫

ψ dμ + Hνn

( n−1∨

i=0

f −i (Pi )
))

.

Proof. By the choice of Xn,ρ, one has

LebD
(
Cn(μ, η) ∩ D ∩

n−1⋂

i=0

f −i (U )
) ≤

∑

x∈Xn,ρ

LebD
(
Cn(μ, η) ∩ Bn(x, ρ) ∩

n−1⋂

i=0

f −i (U )
)
.

By the definition of Uε, for any 0 ≤ i < n the point f i (y) is contained in Uε and
f i (D) ∩ ⋂i

j=0 f j (U ) is tangent to the cone field C u
ε . By the choice of ρ, for x, y in a

same (n, ρ)-Bowen ball of D,

∣∣ log | det(Df −n|T f n (y) f n(D))| − log | det(Df −n|T f n (x) f n(D))|
∣∣

≤
n∑

i=1

∣∣ log | det(Df −1|T f i (y) f
i (D))|

− log | det(Df −1|T f i (x) f
i (D))|

∣∣

≤
n∑

i=1

(|ψ( f i (x)) − ψ( f i (y))| + ε
4

) ≤ n · 3ε
8 .

We denote Snψ(z) := ∑n−1
i=0 ψ( f i (z)) for z ∈ M . Then,

LebD
(
Bn(x, ρ) ∩

n−1⋂

i=0

f −i (U )
)

≤
∫

f n
(
Bn(x,ρ)∩⋂n−1

i=0 f −i (U )
) | det(Df −n|Ty f n(D))| d Leb f n(D)(y)

≤ cε · e 3nε
8 · eSnψ(x),

where cε is an upper bound for the volume of the discs tangent to C u with diameter ρ.
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For ε > 0, there is η1 > 0 such that for any probabilitymeasures ν1, ν2, if d(ν1, ν2) <

η1, then | ∫ ψ d ν1−
∫

ψ d ν2| < ε
8 .Hence, forη < η1 and x ∈ Xn,ρ , one has | 1n Snψ(x)−∫

ψ dμ| < ε
8 . This gives the estimate

LebD
(
Cn(μ, η) ∩ D ∩

n−1⋂

i=0

f −i (U )
) ≤ cε · e nε

2 · en·∫ ψ dμ · #Xn,ρ . (4)

LetP0, . . . ,Pn−1 be finite measurable partitions with diameter smaller than ρ. By
the choice of Xn,ρ , each element of

∨n−1
i=0 f −i (Pi ) contains at most one point of Xn,ρ .

Hence,

Hνn

( n−1∨

i=0

f −i (Pi )
) =

∑

x∈Xn,ρ

−νn
( n−1∨

i=0

f −i (Pi )(x)
) · log νn

( n−1∨

i=0

f −i (Pi )(x)
)

=
∑

x∈Xn,ρ

1

#Xn,ρ

· log #Xn,ρ = log #Xn,ρ .

(5)

The relations (4) and (5) together give the required estimate. ��

4.3. Localization along unstable leaves. Theorem 3.1 associates toμ, ε/4, ρ, and gives
a number η0 > 0, two partitions α ≺ β of M and m0 ∈ N. For any 0 ≤ � < m0 < n, let
P�

0 , . . . ,P
�
n−1 be finite measurable partitions of M such that

P�
i =

{
β if i = � + km0,

α otherwise.

For these partitions, we have to estimate the quantity Hνn

(∨n−1
i=0 f −i (Pi )

)
which ap-

pears in Proposition 4.2. By Corollary 2.8 and the fact #β ≥ #α, one gets

Hνn

( n−1∨

i=0

f −i (P�
i )

) = Hνn

( �−1∨

i=0

f −i (α) ∨ f −�(β)
)

+

[ n−�
m0

]−1
∑

k=0

H
f
�+km0∗ νn

(m0−1∨

i=1

f −i (α) ∨ f −m0 (β)|
km0+�∨

i=0

f km0+�−i (P�
i )

)

+Hνn

( n−1∨

i=�+[ n−�
m0

]m0+1

f −i (P�
i )|

�+[ n−�
m0

]m0∨

i=0

f −i (P�
i )

)

≤ 2m0 · log #β +

[ n−�
m0

]−1
∑

k=0

H
f
�+km0∗ νn

(m0−1∨

i=1

f −i (α)

∨ f −m0 (β)|
km0+�∨

i=0

f km0+�−i (P�
i )

)
. (6)

The main estimate is given by the following lemma.
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Lemma 4.3. There exist η2 > 0 and N2 ≥ 1 (independent from the choice of D) such
that for any n ≥ N2, and assuming d(μn, μ) < η2, we have

m0−1∑

�=0

[ n−�
m0

]−1
∑

k=0

H
f
�+km0∗ νn

(m0−1∨

i=1

f −i (α) ∨ f −m0 (β)

∣∣∣∣
km0+�∨

i=0

f km0+�−i (P�
i )

)

−
m0−1∑

�=0

[ n−�
m0

]−1
∑

k=0

H
f
�+km0∗ νn

( m0∨

i=1

f −i (α)

∣∣∣∣
km0+�∨

i=0

f km0+�−i (P�
i )

)
≤ nε

4
.

(7)

Proof. The third item of Theorem 3.1 for δ = ε
4 log #β gives an open set Vε and nε such

that

• μ(Vε) > 1 − δ/4;
• for any disc D̃ tangent to Df nε (C u) containing x ∈ Vε and of diameter r0,

D̃ ∩ β(x) = D̃ ∩ α(x).

There exists η2 > 0 such that for any probability measure ν satisfying d(μ, ν) < η2,
one has ν(Vε) > 1 − δ/2. In particular if one assumes d(μ,μn) < η2, one gets by
Lemma 2.5:

H
f
�+km0∗ νn

(∨m0−1
i=1 f −i (α) ∨ f −m0(β)| ∨km0+�

i=0 f km0+�−i (P�
i )

)

= H
f
�+km0∗ νn

(∨m0−1
i=1 f −i (α)| ∨km0+�

i=0 f km0+�−i (P�
i )

)

+H
f
�+km0∗ νn

(
f −m0(β)| ∨m0−1

i=1 f −i (α) ∨ ∨km0+�
i=0 f km0+�−i (P�

i )
)

= H
f
�+km0∗ νn

(∨m0−1
i=1 f −i (α)| ∨km0+�

i=0 f km0+�−i (P�
i )

)

+ H
f
�+(k+1)m0∗ νn

(
β| ∨(k+1)m0+�−1

i=0 f (k+1)m0+�−i (P�
i )

)

and similarly

H
f
�+km0∗ νn

( m0∨

i=1

f −i (α)
∣∣
km0+�∨

i=0

f km0+�−i (P�
i )

)

= H
f
�+km0∗ νn

( m0−1∨

i=1

f −i (α)
∣∣
km0+�∨

i=0

f km0+�−i (P�
i )

)

+ H
f
�+(k+1)m0∗ νn

(
α
∣∣
(k+1)m0+�−1∨

i=0

f (k+1)m0+�−i (P�
i )

)
.

For notational convenience, let us denote

gk,� := f (k+1)m0+� and P�(k) =
(k+1)m0+�−1∨

i=0

f (k+1)m0+�−i (P�
i ).

In order to prove the lemma, we have to compare H(gk,�)∗νn
(
α|P�(k)

)
with

H(gk,�)∗νn
(
β|P�(k)

)
for each � ∈ {0,m0 − 1} and k ∈ {0, [ n−�

m0
] − 1}.
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For each B ∈ P�(k), let α|B and β|B be the partitions on B induced by α and β

respectively, and P��=(k) be the set of B ∈ P�(k) such that α|B �= β|B . Then since
α ≺ β,

∣∣H(gk,�)∗νn
(
α|P�(k)

) − H(gk,�)∗νn
(
β|P�(k)

)∣∣

= ∣∣
∑

B∈P��=(k)

(gk,�)∗νn(B)
(
H(gk,�)∗νn |B (α|B) − H(gk,�)∗νn |B (β|B)

)∣∣

≤ log #β ·
∑

B∈P��=(k)

(gk,�)∗νn(B).

We now localize the support of (gk,�)∗νn :

Claim. For each B ∈ P�(k), the measure (gk,�)∗νn
∣∣
B is supported on a disc DB

tangent to the cone field Dgk,�(C u). Moreover, one has Diam( f −i (DB)) < ρ for i =
1, . . . , (k + 1)m0 + �.

Proof. By the choice of B and since Diam(β) ≤ Diam(α) < ρ (first item of Theo-
rem 3.1),

Diam( f −i (B)) < ρ for i = 1, . . . , (k + 1)m0 + �.

Since νn is supported on Dwhich is tangent toC u , the image (gk,�)∗νn
∣∣
B is supported on

the union of finitely many disjoint discs in gk,�(D) of diameter ρ and tangent to the cone
field Dgk,�(C u). All backward iterates by f −i , for i ∈ [1, (k+1)m0 +�], remain ρ-close
and tangent to C u

ε ; moreover νn is supported on a single disc D. Hence (gk,�)∗νn
∣∣
B can

only be contained in a single disc. ��
For (k + 1)m0 + � ≥ nε and B ∈ P��=(k), the third item of Theorem 3.1 for DB and

Vε gives

Supp((gk,�)∗νn|B) ⊂ M\Vε.

Now, the left hand side in (7) is bounded by

m0−1∑

�=0

[ n−�
m0

]−1
∑

k=0

log #β ·
∑

B∈P ��=(k)

(gk,�)∗νn(B) ≤ log #β ·
(
nε +

m0−1∑

�=0

[ n−�
m0

]−1
∑

k=0

(gk,�)∗νn(M\Vε)

)

≤ n · log #β ·
(

μn(M\Vε) +
nε

n

)
≤ n · log #β ·

(
δ

2
+
nε

n

)
.

Byour choice of δ, this is smaller than nε
4 provided n is larger or equal to any N2 > 2nε/δ.

��

4.4. Proof of Theorem E. Let η = min{η0, η1, η2}, where η0, η1, η2 are given in The-
orem 3.1 (applied for ε/4), Proposition 4.2 and lemma 4.3 respectively. We also get cε

and N2 which do not depend on D.
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Recall (6). Applying successively Lemma 4.3, the concavity of the entropy with
respect to the measure, and the second item of Theorem 3.1 (since d(μn, μ) < η), we
get for n ≥ N2

m0−1∑

�=0

Hνn

( n−1∨

i=0

f −i (P�
i )

) ≤ 2m2
0 · log #β +

nε

4
+

m0−1∑

�=0

[ n−�
m0

]−1∑

k=0

H
f
�+km0∗ νn

( m0∨

i=1

f −i (α)|β)

≤ 2m2
0 · log #β +

nε

4
+ n · Hμn

( m0∨

i=1

f −i (α)|β)

≤ 2m2
0 · log #β +

nm0ε

2
+ n · m0 · hμ( f,F u).

Proposition 4.2 gives

LebD
(
Cn(μ, η) ∩ D ∩

n−1⋂

i=0

f −i (U )
) ≤ cε · exp (

2m0 · log #β + nε + n
∫

ψ dμ

+n · hμ( f,F u)
)
.

Choosing c � cε ·exp (
2m0 · log #β)

gives the estimate of TheoremE for any integer
n. ��

5. Existence of Gibbs u-states: Proofs of Theorems C, D and Corollaries 1.5 and
1.7

We derive some consequences of Theorem E.

5.1. Proof of Theorem C. We prove a more precise result.

Theorem C’. Consider a C1-diffeomorphism f , an u-laminated set � with a partially
hyperbolic splitting Ecs ⊕ Euu and an unstable cone field C u. Then there exists a small
neighborhood U of � such that for any disc D ⊂ U tangent to C u, and for Lebesgue
almost every point x ∈ D ∩ ⋂

n≥0 f −n(U ), any limit μ of the sequence 1
n

∑n−1
i=0 δ f i (x)

satisfies

hμ( f,F u) =
∫

log | det(Df |Euu )| dμ. (8)

Proof. The set � is u-laminated. LetU , Ĉ u and r0 > 0 be the open neighborhood of �,
the cone field defined in U and the positive number given by Theorem E respectively.
Without loss of generality, one can assume that the disc D ⊂ U tangent to C u has its
diameter no more than r0, and by Remark 2.1, that it is tangent to Ĉ u . By Theorem 2.3
and Remark 2.4, for Lebesgue a.e. x ∈ D, any μ ∈ M (x) is pseudo-physical relative
to Z := D ∩ ⋂

n≥0 f −n(U ).
There is nothing to provewhenLebD(Z) = 0. Thus,we consider the caseLebD(Z) >

0. Let us assume by contradiction that (8) does not hold. From the inequality in Theo-
rem 2.13, there exists ε > 0 such that

∫
log | det(Df |Euu )| dμ − hμ( f,F u) > 2ε. Let

η > 0 and c > 0 be the numbers given after μ, ε by Theorem E. Note that

{
x ∈ M : d(M (x), μ) < η

} =
∞⋃

l=1

∞⋂

k=1

∞⋃

n=k

Cn
(
μ, l

l+1η
) ⊂

∞⋂

k=1

∞⋃

n=k

Cn(μ, η).
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Since μ is pseudo-physical relative to Z , for η > 0, there is δ0 > 0 such that for any
k ∈ N,

LebD(Z ∩ ∪∞
n=kCn(μ, η)) > δ0.

By Theorem E, we have

LebD(Z ∩ ∪∞
n=kCn(μ, η)) ≤

∞∑

n=k

c · en(− ∫
log | det(Df |Euu )| dμ+hμ( f,F u)+ε) < c

∞∑

n=k

e−nε,

which contradicts the fact that LebD(Z ∩ ∪∞
n=kCn(μ, η)) > δ0 for any k ∈ N. ��

Observe that each point close to � admits an open neighborhood which is C∞
foliated by discs tangent to the unstable cone field C u . In order to deduce Theorem C
from Theorem 5.1, one first applies Theorem 5.1 to any disc tangent to C u then applies
Fubini’s theorem.

5.2. Proof of Corollary 1.5. Let us consider the compact and convex set introduced in
Corollary 2.15

Mu = {
μ ∈ Minv(�, f ) : hμ( f,F u) =

∫
log | det(Df |Euu )| dμ

}
.

LetU andC u be the neighborhood of� and the unstable cone field given by Theorem E.
Recall that M (x) denotes the accumulation set of the empirical measures of x . For
any disc D tangent to C u , there is a full Lebesgue measure subset D̃ ⊂ D such that
M (x) ⊂ Mu with x ∈ D̃.

Let {ni } be an increasing sequence of integers and let μ ∈ Minv(�, f ) such that

lim
i→∞

1

ni

ni−1∑

j=0

f j∗ Leb∗
D = μ,

where Leb∗
D = 1

LebD(D)
LebD denotes the normalized Lebesgue measure on D.

For any ε > 0, consider the ε-neighborhood Vε of Mu and the set

Dk = {
x ∈ D : 1

ni

ni−1∑

j=0

f j∗ δx ∈ Vε, for i ≥ k
}
.

Theorem E gives limk→∞ Leb∗
D(Dk) = 1. Take k0 so that Leb∗

D(Dk0) ≥ 1 − ε. For
i ≥ k0,

1

ni

ni−1∑

j=0

f j∗ Leb∗
D =

∫

Dk0

1

ni

ni−1∑

j=0

f j∗ δx d Leb∗
D +

∫

D\Dk0

1

ni

ni−1∑

j=0

f j∗ δx d Leb∗
D .

The choice of Dk0 and the convexity of Vε immediately give:
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Claim. For each i ≥ k0, there exists an invariant measure νi ∈ Mu such that

d

(
1

Leb∗
D(Dk0 )

∫

Dk0

1

ni

ni−1∑

j=0

f j∗ δx d Leb∗
D , νi

)
< ε.

For any continuous function ϕ : M �→ R, one has
∣∣∣∣
∫

ϕ d( 1
ni

∑ni−1
j=0 f j∗ Leb∗

D) −
∫

ϕ d νi

∣∣∣∣

=
∣∣∣∣
∫

Dk0

∫
ϕ d( 1

ni

∑ni−1
j=0 f j∗ δx ) d Leb

∗
D −

∫
ϕ d νi

+
∫

D\Dk0

∫
ϕ d( 1

ni

∑ni−1
j=0 f j∗ Leb∗

D) d Leb∗
D

∣∣∣∣

≤
∣∣∣∣
∫

ϕ d( 1
Leb∗

D(Dk0 )

∫
Dk0

1
ni

∑ni−1
j=0 f j∗ δx ) d Leb∗

D

−
∫

ϕ d νi

∣∣∣∣ +
( 1
Leb∗

D(Dk0 )
+ ε − 1

) · ‖ϕ‖

which implies

d

(
1

ni

ni−1∑

j=0

f j∗ Leb∗
D , νi

)
<

1

1 − ε
− 1 + 2ε.

Then d(μ,Mu) ≤ 1
1−ε

− 1 + 2ε, hence μ ∈ Mu sinceMu is compact. ��

5.3. Existence of SRBmeasures:Proof ofCorollary 1.7. Weprove the following stronger
result:

Corollary 5.1. Consider a C1 diffeomorphism f and an attracting set�with a partially
hyperbolic splitting T�M = Ess ⊕Ec⊕Euu such that dim(Ec) = 1. Then for Lebesgue
almost every point x in a neighborhood of �, and for each μ ∈ M (x),

• either the center Lyapunov exponent of each ergodic component ofμ is non-negative
center Lyapunov exponent; in particular, μ is an SRB measure;
• or there exist ergodic components of μ that are SRB measures with negative center
Lyapunov exponent.

Proof. From Eqs. (1) and (2) given by Theorems C and F in Appendix A, for Lebesgue
almost every point x in the attracting basin of�, each limit measureμ ∈ M (x) satisfies

hμ( f,F u) =
∫

log | det(Df |Euu )| dμ and hμ( f ) ≥
∫

log | det(Df |Ec⊕Euu )| dμ.

Corollary 2.15 gives hν( f,F u) = ∫
log | det(Df |Euu )| d ν for each ergodic component

ν of μ.
If each ergodic component ν of μ has non-negative center Lyapunov exponent, then

∫ ∑
λ+(z) d ν(z) =

∫
log | det(Df |Ec⊕Euu )| d ν.
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Combining this with (1) and Ruelle inequality, one gets

hμ( f ) ≥
∫

log | det(Df |Ec⊕Euu )| dμ =
∫ ∑

λ+(z) dμ(z) ≥ hμ( f );

therefore μ is an SRB measure.
If there are ergodic components ν with negative center Lyapunov exponent, they

satisfy
∫

log | det(Df |Euu )| d ν =
∫ ∑

λ+(z) d ν(z).

The equation (2) for ν and Ruelle inequality then give
∫ ∑

λ+(z) d ν(z) =
∫

log | det(Df |Euu )| d ν = hν( f,F
u) ≤ hν( f )

≤
∫ ∑

λ+(z) d ν(z),

therefore, ν is an SRB measure with negative center Lyapunov exponent. ��

5.4. Large deviation for continuous functions: Proof of Theorem D.
We prove a stronger version of Theorem D.

Theorem D’. Let f be aC1-diffeomorphism and� be a u-laminated set with a partially
hyperbolic splitting T�M = Ecs ⊕ Euu. Then for any continuous function ϕ : M → R

and any ε > 0, there exist a neighborhood Uε of �, a D f -invariant cone field C u on
Uε and r0, aε, bε > 0 such that for any disc D tangent to C u of diameter smaller than
r0 and any n ∈ N,

LebD

{
x ∈ D : x ∈

n−1⋂

i=0

f −i (Uε) and d

(
1

n

n−1∑

i=0

ϕ( f i (x)), I (ϕ)

)
> ε

}
< aε · e−n·bε .

(9)

As before I (ϕ) is the interval defined by

I (ϕ) :=
{∫

ϕ dμ : μ ∈ Minv(�, f ) satisfies hμ( f,F u) =
∫

log | det(Df |Euu )| dμ

}
.

This immediately implies Theorem D: when � is an attracting set, any unstable disc
in a neighborhood of � will eventually be contained in

⋂∞
i=0 f −i (Uε) one then apply

Theorem 5.4 to the unstable leaves of foliated domains covering� and Fubini Theorem.

Proof of Theorem 5.4. Let U , C u and r0 be the neighborhood of �, the Df -invariant
cone field defined in U and the positive number given by Theorem E. For ϕ : M → R

and ε > 0, let Iε ⊂ R be the ε/2-open neighborhood of I (ϕ) and I cε its complement
and let us denote

Nε :=
{
μ ∈ Minv(�, f ) :

∫
ϕ dμ ∈ I cε

}
.
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For each μ ∈ Minv(�, f ), let

bμ := 1
2

( ∫
log | det(Df |Euu )| dμ − hμ( f,F u)

)

and let ημ, cμ > 0 be the numbers given after μ, bμ by Theorem E: for each compact
disc D tangent to C u of diameter smaller than r0 and any n ∈ N, one has

Leb(D ∩
n−1⋂

i=0

f −i (U ) ∩ Cn(μ, 2ημ)) < cμ · e−nbμ. (10)

We choose the ημ small so that for any probability measure ν satisfying d(μ, ν) < η,
∣∣∣∣
∫

ϕ dμ −
∫

ϕ d ν

∣∣∣∣ <
ε

4
. (11)

Since Minv(�, f ) is a compact set, there exist μ1, . . . , μk ∈ Nε such that

Minv(�, f ) ⊂ ∪k
j=1Bημ j

(μ j ),

where Bημ j
(μ j ) denotes the ημ j -neighborhood of μ j in the space of probability mea-

sures on M . We denote η j = ημ j and c j = cμ j for simplicity. The following lemma
gives Uε. ��
Lemma 5.2. There exists a neighborhood Uε of � and an integer Nε such that for any
n ≥ Nε and any x ∈ ⋂n−1

i=0 f −i (Uε),

1

n

n−1∑

i=0

δ f i (x) ∈
⋃

i

Bηi (μi ).

Proof. Assume, on the contrary, that the 1/k-neighborhood U (1/k) of �, there exists
n arbitrarily large and x ∈ ⋂n−1

i=0 f −i (U (1/k)) such that 1
n

∑n−1
i=0 δ f i (x) �∈ ⋃

i Bηi (μi ).
Then taking the limit as n → +∞ gives an invariant measure νk on themaximal invariant
set of U (1/k) which does not belong to

⋃
i Bηi (μi ). Any limit of the νk is an invariant

measure on � that does not belong to
⋃

i Bηi (μi ), which contradicts (10). ��
We can conclude the proof of Theorem 5.4. For any x ∈ ⋂n−1

i=0 f −i (Uε) and n ≥ Nε,
there exists i0 such that 1

n

∑n−1
i=0 δ f i (x) ∈ Bηi0

(μi0), ie x ∈ Cn(μi0 , ηi0). From (11), if
one has

∣∣∣∣
1

n

n−1∑

i=0

ϕ( f i (x)) −
∫

ϕ dμ

∣∣∣∣ ≥ ε,

then

∣∣∣∣
∫

ϕ dμi0 − I (ϕ)

∣∣∣∣ ≥ ε/2, hence μi0 belongs toNε.

Let I ⊂ {1, . . . , k} such that {μ1, . . . , μk}∩Nε = {μi }i∈I . Thenwe have for n ≥ Nε

Leb

{
x ∈ D ∩

n−1⋂

i=0

f −i (Uε) :
∣∣∣∣
1

n

n−1∑

i=0

ϕ( f i (x)) −
∫

ϕ dμ

∣∣∣∣ ≥ ε

}
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≤
∑

i∈I
Leb(Cn(μi , ηi )) ≤

∑

i∈I
ci e

−nbμi .

Now, we only need to consider an upper bound a of the volume of discs tangent to
the cone field C u and with diameter smaller than r0 and to set

bε = min{bμ1 , . . . , bμk } and aε = max

{
a · eNε ·bε ,

k∑

i=1

ci

}
.

��

6. SRB Measures for C1+α Partially Hyperbolic Diffeomorphisms

We focus on C1+α-diffeomorphisms for α > 0 and partially hyperbolic sets with one-
dimensional center.

6.1. Existence of the center Lyapunov exponent: proof of TheoremA. Before TheoremA
we prove two preliminary results.

Proposition 6.1. Let f be a C1+α-diffeomorphisms, α > 0, and letμ be an ergodic SRB
measure whose support admits a partially hyperbolic splitting Ess ⊕ Ecu, and whose
Lyapunov exponents along Ecu are all positive. Then there is an open invariant set O(μ)

such that

Leb(O(μ)�Basin(μ)) = 0 and O(μ) ∩ Supp(μ) �= ∅.

In particular, for Lebesgue a.e. point x ∈ M, if ω(x) ⊃ Supp(μ) then x ∈ Basin(μ).

Remark 6.2. Kan’s example [K] shows that the basin of μ may not be essentially open
as in Proposition 6.1 when the first bundle is not uniformly contracted.

Proof. (Proof) By [L, Theorem 3.4], the disintegration ofμ along the unstablemanifolds
is absolutely continuouswith respect to the Lebesguemeasure on the unstablemanifolds.
Consequently there exists a disc D ⊂ Supp(μ) tangent to Ecu such that the basin of
μ contains a set X ⊂ D with full Lebesgue measure. The union of the strong stable
manifolds of points of D contains a nonempty open set O0 which intersects Supp(μ).
The union of the local strong stable leaves of points of X is absolutely continuous [P].
Consequently, the union of the strong stable manifolds of points of X has full Lebesgue
measure in O0. This proves that Basin(μ) has full Lebesgue measure in the open set
O(μ) := ⋃

n∈Z f n(O0). The orbit of every point x in the basin of μ, accumulates any
point of Supp(μ), hence enters in O0. Up to removing the invariant set O(μ)\Basin(μ)

(which has zero Lebesgue measure), one concludes that the orbit of Lebesgue almost
every point in Basin(μ) is contained in O(μ). Hence O(μ) and Basin(μ) coincide
modulo a set with zero Lebesgue measure. ��
Proposition 6.3. Let f be a C1+α-diffeomorphism, α > 0, and let μ be a hyperbolic
ergodic SRB measure. Then Lebesgue almost every point x ∈ M satisfying:

– ω(x) has a partially hyperbolic splitting Ecs ⊕ Euu,
– ω(x) contains Supp(μ) and the Lyapunov exponents ofμ along Ecs are all negative,
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belongs to the basin of μ.

Proof. Let us consider the setL of partially hyperbolic sets containing Supp(μ) with a
splitting Ecs ⊕ Euu , such that the Lyapunov exponents of μ along Ecs are all negative.
There exists a countable sequence (�n) in L such that any set � ∈ L is contained
in one of the �n . As a consequence, it is enough to fix a set � ∈ L and to prove the
proposition for Lebesgue almost every point x such that Supp(μ) ⊂ ω(x) ⊂ �.

Let C u be an unstable cone field on a neighborhood U of � which satisfies the
Theorem 2.18 and A := {

x ∈ U : ω(x) ⊃ Supp(μ) and f n(x) ∈ U for all n ≥ 0
}
.

Then one has f (A ) ⊂ A . It is enough to show that N := A \Basin(μ) has zero
Lebesgue measure. Assume, on the contrary, that Leb(N ) > 0. Thus, there exists a disc
D tangent to C u such that LebD(N ∩ D) > 0.

By [L, Theorem 3.4], there exists an unstable disc � in the support of μ and a set
X ⊂ � with positive Lebesgue measure such that any point in X is in the basin of μ

and has a stable manifold tangent to Ecs . By [P], up to reducing X , one can assume
that the (local) stable manifolds of points z ∈ X vary continuously with z and induce an
absolutely continuous lamination Ws

loc(X). We fix a density point z0 ∈ X of X inside
�.

In order to define unstable density basis inside D, we fix δ > 0 small. By Theo-
rem 2.18, the set of unstable density points of N ∩ D has full Lebesgue measure in
N ∩ D, and we fix x ∈ N ∩ D one of them. There exists a sequence nk → +∞ such
that f nk (x) → z0. The density basis BD,n(x) satisfy

Leb(BD,nk (x) ∩ N )

Leb(BD,nk (x))
−→
k→+∞ 1.

The definition of N , the density basis and the bounded distortion along the unstable
manifold (using the uniform expansion and the C1+α-smoothness) imply:

Leb(B f nk (D)( f nk (x), δ) ∩ N )

Leb(B f nk (D)( f nk (x), δ))
−→
k→+∞ 1. (12)

Since f nk (x) converges to z0 and the unstable cones converge to the unstable bundle
under forward iterations, the disc B f nk (D)( f nk (x), δ) gets arbitrarily close to B�(z0, δ)
for theC1-topology. The absolute continuity of the stable lamination over X implies that
for nk large enough, the Lebesgue measure ofWs

loc(X)∩ B f nk (D)( f nk (x), δ) is positive
and uniformly bounded away from zero. With (12) this implies that for k large enough
N intersects Ws

loc(X). This is a contradiction since Ws
loc(X) ⊂ Basin(μ). ��

Now, we are ready for proving the existence of the center Lyapunov exponent.

Proof of Theorem A. Let U be an attracting neighborhood of �.

Lemma 6.4. Up to shrinking U, the bundle Ec admits a (non-unique) continuous and
invariant extension to U. Moreover, for any x ∈ U we have

lim
n→+∞

‖Df n|Ec (x)‖
‖Df n|Ecs (x)‖ = 1.

Proof. Since U is an attracting neighborhood of �, the bundle Ecs can be extended
uniquely as a continuous invariant bundle on a small neighborhood U : indeed, one can
consider a continuous cone-field on � around the direction Ecs , which is contracted
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under backward iterations. It extends continuously to a neighborhood of �. The cone
field criterion (see [CP, Chapter 2]) extends Ecs at any pointwhose forward orbit remains
in U , i.e. at any point of U . Let us consider a continuous extension E ⊂ Ecs of Ec: up
to shrinking the open set U , one can assume that E is defined on U and is contained in
a center-unstable cone. Using a cut-off function, one can interpolate E with Df (E) and
get a continuous extension E ′ of Ec such that E ′( f (x)) = Df (E ′(x)) for any x ∈ U
outside a small neighborhood of f (U ). One then define Ec on U\ f (U ) as follows:
for x ∈ f n(U )\ f n+1(U ) we set Ec(x) = Df n(E ′( f −n(x))). By construction Ec is
continuous and invariant on U\�.

The dominated slitting Ecs = Ess⊕Ec and the cone field criterion (see [CP]) implies
that Df n(E ′) converges to Ec|�. Hence the extension of Ec is also continuous at points
of �. ��
The previous lemma shows that the center Lyapunov exponent of any point x ∈ U can
be studied by considering the Birkhoff averages of the continuous function

ϕ : x �→ log ‖Df |Ec (x)‖.

Propositions 6.1, 6.3 show that Lebesgue almost every point x in the set

Uh := {x ∈ U : ω(x) carries a hyperbolic ergodic SRB measure} .

belongs to the basin of a hyperbolic ergodic SRB measure μ, which by [L, Theorem
4.9] is physical. Hence the Birkhoff averages of ϕ along the forward orbit of x converge.
The limit

λc(x) := lim
n→+∞

1

n
log ‖Df n|Ec (x)‖ = lim

n→+∞
1

n
log ‖Df n|Ecs (x)‖

exists and coincides with the center Lyapunov exponent
∫
log ‖Df |Ec(x)‖ dμ(x) =∫

ϕ dμ. In particular λc(x) does not vanish.
Then for Lebesgue a.e x ∈ U\Uh , the ω-limit set of x does not carry any hyperbolic

SRBmeasures. By Corollary 5.1 this implies that each limit measure μ ∈ M (x) is SRB
and has a vanishing center exponent

∫
ϕ dμ. Since ϕ is continuous this shows that

1

n

n−1∑

k=0

ϕ( f k(x)) = 1

n
log ‖Df n|Ec(x)‖ −→

n→+∞ 0.

Hence the center Lyapunov λc(x) of x is also well-defined in this case and vanishes. ��

6.2. An example exhibiting historical behavior: proof of Theorem B. The example de-
scribed in Theorem B is obtained by compactification of a skew translation over an
Anosov system. It is well-known that the dynamics of these infinite systems share prop-
erties with theBrownianmotion onR: this will allow us to study precisely the asymptotic
of the empirical measures.
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6.2.1. Limit properties of skew translations We first state classical properties of skew
translations.

Proposition 6.5. Let A be a smooth Anosov diffeomorphism on T
2 preserving a smooth

volume m and having at least two fixed points p, q. Let φ : T
2 → R be a smooth

function with
∫

φ dm = 0 such that φ(p), φ(q) are rationally independent. Then:

(i) The measure m × Leb is ergodic for the diffeomorphism g of T
2 × R defined by

g(x, t) = (A(x), t + φ(x)). (13)

(ii) The number σ := ∑
n∈Z

∫
φ · φ ◦ An dm is well-defined and positive.

(iii) For m-almost every point x ∈ T
2, the continuous functions Xn ∈ C([0, 1]) defined

by

Xn(t) := 1√
σ · n

∫ nt

0
φ(A[s](x)) d s,

induce a random process which converges weakly to the standard Wiener measure.

Proof. Since φ(p) and φ(q) are rationally independent, there do not exist λ ∈ R and
ψ : M → R such that φ = ψ ◦ A − ψ mod [λ]. The ergodicity (i) follows from [G,
Corollary 3].

The convergence of the sum defining σ is a consequence of the exponential decay
of the correlations, see for instance [Live, Theorem 3.9]. Note that σ is non-negative,
because of

∑

n∈Z

∫
φ · φ ◦ An dm = lim

n→+∞
1

n

∫ ( n−1∑

i=0

φ ◦ Ai )2 dm.

Since φ(p) �= 0, there is no continuous solution ψ : M → R to the cohomological
equation

φ = ψ ◦ A − ψ.

Then in restriction to any A-invariant set with full measure form, there is no measurable
solution, see [Livs, Theorem9]. One deduces that σ does not vanish (see [PP, Proposition
4.12]). This gives the second item. The third item is now [D, Corollary 4] for conservative
Anosov diffeomorphisms (see also [DP, Corollary 3]). ��

6.2.2. Compactification of the skew translation We denote T = R/Z. Any skew trans-
lation over an Anosov diffeomorphism on T

2 can be embedded as a partially hyperbolic
diffeomorphism on T

3.

Proposition 6.6. Let us consider a smooth Anosov diffeomorphism A on T
2, a smooth

function φ : T
2 → R and the diffeomorphism g on T

2 × R defined by (13). Then there
exists a smooth diffeomorphism f on T

3 preserving a partially hyperbolic splitting
Ess ⊕ Ec ⊕ Euu such that:

– the foliation by circles {x} × T is preserved and tangent to Ec;
– f preserves each torus T

2 × {0} and T
2 × {1/2}, and exchanges T

2 × (0, 1/2) and
T
2 × (1/2, 1);

– the restriction of f 2 to T
2 × (0, 1/2) is smoothly conjugated to g2.
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Proof. Let X be a smooth vector field on R such that

• X (t) > 0 for t ∈ (0, 1/2) and X (0) = X (1/2) = 0,
• X is 1-periodic and satisfies X (−t) = −X (t) for each t ∈ R.

Let (�s)s∈R be the flow induced by X on R. The diffeomorphism of T
2 × R defined by

F(x, t) := (Ax,−�φ(x)(t))

satisfies F(x, t + 1) = F(x, t) − (0, 1), hence induces a smooth diffeomorphism f
on T

3. Choosing X arbitrarily close to 0, the diffeomorphism f is C1-close to the
diffeomorphism A × Id, hence is partially hyperbolic. The first two items then follow.

Note that f commutes with the involution (x, t) �→ (x,−t) hence f 2 coincides with
the diffeomorphism induced by

(x, t) �→ (A2x,�φ(A(x))+φ(x)(t)).

The map h : T
2 × R → T

2 × (0, 1/2) defined by (x, s) �→ (x,�s(1/4)) conjugates the
restriction of f 2 to T

2 × (0, 1/2) with g2 as claimed in the third item. ��

6.2.3. Historical behavior The proof of Theorem B can be concluded as follows.

Proposition 6.7. Let us consider a smooth Anosov diffeomorphism A ofT2 and a smooth
function φ : T

2 → R as in Proposition 6.5. Then the diffeomorphism f of T
3 induced

by A and φ as in Proposition 6.6 has exactly only two ergodic Gibbs u-states ν1, ν2.
Moreover, for Lebesgue almost every z ∈ T

3,

– the set of limit measures M (z) of z is the segment [ν1, ν2],
– the orbit of z is dense in T

3.

Proof. Let us recall that A preserves a smooth volume m. By absolute continuity of
the stable foliation of A, it is the unique Gibbs u-state for A and it is ergodic. The two
measures ν1 = m × δ0 and ν2 = m × δ1/2 are f -invariant and are Gibbs u-states.

Let us denote Snφ(x) = ∑n−1
j=0 φ(A j (x)) for x ∈ T

2 and n ∈ N. Then the skew
translation g defined by (13) satisfies

gn(x, t) = (An(x), t + Snφ(x)).

We introduce Gn(x) := {0 ≤ j ≤ n − 1 : S jφ(x) ≥ √
σ · n}.

Claim. For Lebesgue a.e. x ∈ T
2 and any ρ ∈ (0, 1), there exists n arbitrarily large

such that

#Gn(x) ≥ (1 − ρ) · n.

Proof. Let W = {h ∈ C0([0, 1], R) : h(0) = 0} endowed with C0-norm. We consider
a continuous function h : [0, 1] �→ [0,+∞) such that

h(0) = 0 and h(t) > 1 for t ∈ [ρ, 1].
Let 0 < ε < inf t∈[ρ,1] h(t)−1

2 be small. Since the Wiener measure has full support in
W , and since the process (Xn) inW defined in Proposition 6.5 converges to the Wiener
measure for Lebesgue almost every x ∈ T

2, there exists n arbitrarily large such that

sup
t∈[0,1]

∣∣∣∣
1√
σ · n

∫ nt

0
φ(A[s](x)) d s − h(t)

∣∣∣∣ < ε.
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In particular for any integer j ∈ {0, . . . , n}, one has
∣∣∣∣

1√
σ · n S jφ(x) − h( j/n)

∣∣∣∣ < ε.

By the definition of h and ε, this gives S jφ(x) >
√

σ · n for all j ≥ (1 − ρ) · n. ��
Claim. For Lebesgue a.e. x ∈ T

2 and all t ∈ (0, 1/2) the measure ν2 belongs toM (z)
with z = (x, t).

Proof. Let � be a continuous function on T
2 × [0, 1] and let us fix ρ > 0 small. Let us

consider the set Gn(x) for an integer n large given by the previous claim. One has the
estimate

∣∣1
n

n−1∑

i=0

�( f i (x, t)) − 1

n

n−1∑

i=0

�( f i (x, 1/2))
∣∣

≤ 1

n

∑

i∈Gn(x)

|�( f i (x, t)) − �( f i (x, 1/2))| + 1

n

∑

i /∈Gn(x)

|�( f i (x, t)) − �( f i (x, 1/2))|

≤ 1

n

∑

i∈Gn(x)

|�(Ai (x), εi · �X
Siφ(x)(t)) − �(Ai (x), 1/2)| + 2ρ · sup |�|,

where εi = +1 when i is even and −1 when i is odd.
Notice that for t ∈ (0, 1/2), ϕX

s (t) tends to 1/2 when s tends to +∞. By the arbi-
trariness of ρ and the uniform continuity of h, one deduces that the empirical measures
m(x,t),n and m(x,1/2),n are close. ��
The claim shows that ν2 ∈ M (z) for Lebesgue a.e. z ∈ T

3. Analogously, ν1 ∈ M (z).

Claim. ν1, ν2 are the unique ergodic Gibbs u-states.

Proof. Let ν be an ergodic Gibbs u-state. There is a strong unstable disc D such that for
LebD almost every (x, t) ∈ D,

lim
n→+∞

1

n

n−1∑

i=0

δ f i (x,t) = ν.

The disc D projects to an unstable arc D′ ⊂ T
2 and for Lebesgue almost every x ∈ D′,

the empirical measures converge to the projection of ν. This shows that the projection
of ν to T

2 coincides with m (the unique Gibbs u-state for A).
Let us assume by contradiction that ν is not supported on T

2 ×{0, 1/2}. In particular
for ν-almost every point z, the projection on T

2 belongs to the full m-measure set given
by the previous Claim. This implies that the set of limit measures M (z) of z contains
both ν1 and ν2. This is a contradiction since the empirical measures of z converge to ν

(by Birkhoff ergodic theorem). ��
It remains to prove the last statement of the proposition. From Proposition 6.5, the

skew translation g2 is ergodic, hence from the last item of Proposition 6.6, the orbit of
Lebesgue almost every point z ∈ T

2 × (0, 1/2) under f 2 is dense in T
2 × (0, 1/2).

Since f exchanges the regions T
2 × (0, 1/2) and T

2 × (1/2, 1), one deduces that the
orbit of Lebesgue almost every point z ∈ T

3 is dense. ��
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A. Generalized Pesin’s Inequality Under a Dominated Splitting

We sketch here the proof of the inequality (1) stated in the introduction. Recall that an
invariant splitting T�M = E ⊕ F over a compact invariant set � of a diffeomorphism
f is dominated, if there exists N ∈ N such that for all x ∈ �,

‖Df N |E(x)‖ · ‖Df −N |F( f N (x))‖ ≤ 1

2
.

Theorem F (Entropy inequality). For any C1 diffeomorphism f , for any compact in-
variant set � admitting a dominated splitting E ⊕ F, and for Lebesgue almost every
point x ∈ M, if ω(x) ⊂ �, then each limit measure μ ∈ M (x) satisfies

hμ( f ) ≥
∫

log | det Df |F |dμ. (14)

This improves1 a little bit [CCE, Theorem 1] and [CaYa, Theorem 4.1].

Corollary A.1. Let f ∈ Diff1(M) and � be an attracting set with the dominated split-
ting E ⊕ F. Then for Lebesgue a.e. x in the basin of �, each limit measure μ ∈ M (x)
satisfies (14).

Remark 1.1 follows from Corollary A.1 by considering the trivial splitting of T M .
We also obtain a large deviation result.

Theorem G (Large deviation).For anyC1 diffeomorphism f , for any invariant compact
set � admitting a dominated splitting E ⊕ F, for any continuous function ϕ : M → R

and for any ε > 0, there exist a neighborhood U of � and aε, bε > 0 such that

Leb

{
x ∈

n−1⋂

i=0

f −i (U ) : d
(
1

n

n−1∑

i=0

ϕ( f i (x)), I (ϕ)

)
≥ ε

}
< aε · e−nbε for any n ∈ N,

where I (ϕ) :=
{∫

ϕ dμ : μ ∈ Minv(�, f ) satisfies (14)

}
.

The main step in the proofs of Theorems F and G is to bound the measure of the
convergent set of invariant measures inside discs tangent to F ; then one concludes
exactly as for Theorems 5.1 and 5.4 . We are thus reduced to a statement analogous to
Theorem E.

1 [CCE] assumes the existence of a global dominated splitting and [CaYa] assumes the semi-continuity of
the entropy.
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Theorem H (Volume estimate). For any C1 diffeomorphism f and for any invariant
compact set� admitting a dominated splitting E ⊕ F, there exist a cone field C F which
is a neighborhood of the bundle F, a neighborhoodU of� and r0 > 0with the following
property: for any μ ∈ Minv(�, f ) and ε > 0, there exist η, c > 0 such that for each
compact disc D ⊂ U tangent to C F with Diam(D) < r0 and each n ∈ N, one has

LebD
(
Cn(μ, η) ∩ D ∩

n−1⋂

i=0

f −i (U )
)

< c · exp
(
n

(
hμ( f ) −

∫
log | det(Df |F )| dμ + ε

))
.

Sketch of the proof of Theorem H. As in the partially hyperbolic case, we extend con-
tinuously the bundles E, F . This allows to define a cone field C F on a neighborhoodU
of � which is a neighborhood of the bundle F . We then consider F-discs D, i.e. discs
with the dimension of F that are tangent to C F , and whose diameter is smaller than a
small constant r0 > 0.

Let μ be an invariant measure supported on � and ε > 0. For any η, ρ > 0 small,
let us consider the (n, η)-convergent set Cn(μ, η) of μ as in Sect. 4 and let Xn,ρ be a
(n, ρ)-separated subset with maximal cardinal in

Cn(μ, η) ∩ D ∩
n−1⋂

i=0

f −i (U ).

As in (4) (proof of Proposition 4.2), there exists cε > 0 (only depending on ε > 0) such
that

LebD
(
Cn(μ, η) ∩ D ∩

n−1⋂

i=0

f −i (U )
) ≤ cε · en(− ∫

log | det(Df |F )| dμ+ε) · #Xn,ρ .

The proof of the variational principle (for a homeomorphism on a compact metric space)
gives the following estimate of #Xn,ρ (see [KH, Lemma 5.2]) and concludes the proof.

��
Lemma A.2. For any invariant measure μ, and ε, ρ > 0, there exist η > 0 and n0 ≥ 1
with the following property. If X is a (n, ρ)-separated set with n ≥ n0 and

d

(
1
#X

∑

x∈X
1
n

n−1∑

k=0

δ f k (x) , μ

)
< η,

then the cardinal #X is bounded by exp(n(hμ( f ) + ε)).

Sketch of the proof of Theorem F. Let U be a small neighborhood of �, let C F be a
cone field onU and r0 > 0 as given by Theorem H. Let us consider a small disk D ⊂ U
tangent to C F with Diam(D) < r0. It is enough to prove that for LebD almost every
point

x ∈ Z := D ∩ {z : ω(z) ⊂ �, z ∈
⋃

n∈N
f −n(U )},

each limit measure μ ∈ M (x) satisfies the generalized Pesin’s inequality.
The proof follows from the same lines as the proof of Theorem 5.1. For Lebesgue almost
every point x ∈ D, any μ ∈ M (x) is pseudo-physical relative to Z . If the generalized
Pesin’s inequality is not satisfied forμ, TheoremHgives LebD(Z∩∪∞

n=kCn(μ, η)) → 0
as k → ∞. This contradicts the fact that μ is pseudo-physical relative to Z . ��
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B. Large Deviations for Singular Hyperbolic Attractors

Let X be a C1 vector field on M and (φt )t∈R be the flow generated by X . An attracting
set � is said to be singular hyperbolic, if any singularity in � is hyperbolic, and the
time-one map φ1 admits a partially hyperbolic splitting T�M = Ess ⊕ Ecu such that
Ecu is sectionally expanded (there exists t > 0 such that for any x ∈ � the area along
any 2-plane E ⊂ Ecu increases exponentially when one takes the image by Dϕt ). An
SRB measure for (φt )t∈R is a probability measure which is preserved by the flow and
which is SRB for φ1 (it is then SRB for any φt , t > 0).

The previous statements allow to recover and improve a bit the results of [LeYa].

Corollary B.1. For any C1 vector field X, any singular hyperbolic attracting set �

supports an SRB measure. More precisely, for Lebesgue almost every point x in the
basin of �, any limit measure μ ∈ M (x) is an SRB measure.

Proof. Theorem F applied to φ1 shows that for Lebesgue almost every point x in the
basin of �, any limit measure ν0 ∈ M (x) satisfies

hν0(φ1) ≥
∫

log | det Dφ1|Ecu | d ν0.

Ruelle’s inequality and the singular hyperbolicity give hν(φ1) ≤ ∫
log | det Dφ1|Ecu | d ν

for any invariant measure ν. Hence for any ergodic component of ν of ν0 and ν-a.e. point
z, one has

hν(φ1) =
∫

log | det Dφ1|Ecu | d ν =
∑

λ+(z).

The φ-invariant measure μ = ∫ 1
0 (φs)∗(ν)ds satisfies the same formula and is SRB for

(φt )t∈R. ��
With higher regularity, we also obtain the uniqueness of the SRB measure.

Theorem I. Let X be a C1+α vector field. Then any singular hyperbolic transitive at-
tractor � supports a unique SRB measure μ. Its basin has full Lebesgue measure in the
basin of �.

Proof. Corollary B.1 gives the existence.
Let μ an SRB measure: the singular hyperbolicity implies that μ is a hyperbolic

measure of the flow. More precisely, to μ-almost every point x is associated its center-
unstable set Wcu(x), which is the set of points y such that there exists an increasing
homeomorphism h of R satisfying d(φt (y), φh(t)(x)) → 0 as t → −∞. This is an
immersed submanifold tangent to Ecu

x that is foliated by unstable leavesWu(y)which are
one-codimensional inWcu(x). The unstable leaves are the images ofWu(x) by the flow.
Hence the unstable foliation is Lipschitz inside the center-unstable leaves ofμ. Applying
[LeYo1] to the diffeomorphism φ1, the disintegration of μ along the unstable leaves is
equivalent to the Lebesgue measure: the statement is given for C2 diffeomorphisms, but
the proof only uses a C1+α-regularity, once one knows that the unstable lamination is
Lipschitz along the center-unstable direction see [LeYo1, Theorem A and Sect. 4.2].

Note that any ergodic component of μ is still an SRB measure, one will thus assume
thatμ is ergodic. Forμ-almost every point x , the forward orbit of Lebesgue almost every
point y ∈ Wu(x) equidistributes towards μ. Since Wcu(x) can be obtained by flowing
the unstable manifold Wu(x), one deduces that the forward orbit of Lebesgue almost
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every point y ∈ Wcu(x) equidistributes towardsμ. The same proof as for Proposition 6.1
shows that there exists a non-empty open setU which intersects the support ofμ and has
the property that the forward orbit of Lebesgue almost every point in U equidistributes
towards μ.

If μ1, μ2 are two (ergodic) SRB measures supported on �, one associates two open
sets U1,U2. The transitivity of � implies that there exists a non-empty open subset
V ⊂ U1 having a forward iterate in U2. Hence the forward orbit of almost every point
in V equidistributes towards μ1 and μ2. This gives μ1 = μ2, hence the uniqueness of
the SRB measure.

By Corollary B.1, for Lebesgue a.e. point x in the basin of �, each limit measure of

1

t

∫ t

0
δφs (x) d s

(as t → +∞) is an SRB measure. The uniqueness of the SRB measure implies that its
basin has full Lebesgue measure in the basin of �. ��

We also deduce a large deviation estimate.

Theorem J. Let X be a C1 vector field and � be a singular hyperbolic attracting set
admitting a unique ergodic SRB measure μ. Then there exists a neighborhood U of �

such that for any continuous function ψ : M → R and any ε > 0, there exist aε > 0
and bε > 0 such that

Leb

({
x ∈ U :

∣∣∣∣
1

t

∫ t

0
ψ(φs(x)) d s −

∫
ψ dμ

∣∣∣∣ ≥ ε

})
< aε · e−tbε for any t ∈ R

+.

Proof. LetU be an attracting neighborhood of � in its basin. From the continuity of ψ ,
for any ε > 0 there exists tε large such that for any t0 > 0 small enough, any t > tε and
any x ∈ M , denoting n = [t/t0] one has

∣∣∣∣
1

t

∫ t

0
ψ(φs(x)) d s − 1

n

n−1∑

i=0

ψ ◦ φi t0(x)

∣∣∣∣ < ε/2. (15)

One can assume that t0 avoids a countable set and by [PuSh1] the measure μ is ergodic
for the map φt0 . We also notice that it is the unique SRB for φt0 on �. Indeed if ν is an
SRB measure of φt0 , then

1
t0

∫ t0
0 (φs)∗ν d s is an SRB measure for both φt0 and (φt )t∈R.

Hence 1
t0

∫ t0
0 (φs)∗ν d s = μ. But since μ is ergodic it is an extremal point of the set of

φt0 -invariant probability measures. As a consequence (φt )∗ν = μ for any t ∈ R and in
particular ν = μ.
We can then apply Theorem G to � and φt0 : there exists a neighborhood Uε of � and

a, bε > 0 such that for any n ∈ N

Leb

{
x ∈

n−1⋂

i=0

φ−i t0(U ) : d
(
1

n

n−1∑

i=0

ψ(φi t0(x)),
∫

ψ dμ

)
≥ ε/2

}
< a · e−nbε .

Combined with (15), this gives the result for points in
⋂

t≥0 φ−t (U ) and n ≥ t/t0. Since
U is an attracting neighborhood of � in its basin, there exists N ≥ 1 such that for
any x ∈ U , the image φN (x) belongs to

⋂
t≥0 φ−t (U ). One thus concludes the large

deviation estimate for any t > 0 by considering aε large enough. ��
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