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Abstract: In this paper, we formulate and prove a version of the Stone–von Neumann
Theorem for everyC∗-dynamical system of the form (G, K(H), α), where G is a locally
compactHausdorff abelian group andH is aHilbert space. The novelty of ourwork stems
from our representation of the Weyl Commutation Relation on Hilbert K(H)-modules,
instead of just Hilbert spaces, and our introduction of two additional commutation re-
lations, which are necessary to obtain a uniqueness theorem. Along the way, we apply
one of our basic results on Hilbert C∗-modules to significantly shorten the length of Iain
Raeburn’s well-known proof of Takai–Takesaki Duality.

1. Introduction

One of the most famous mathematical results in quantum mechanics is the Stone–von
Neumann Theorem. Informally, the theorem establishes the physical equivalence of
WernerHeisenberg’smatrixmechanics andErwinSchrödinger’swavemechanics,which
was seen by Heisenberg to be an outstanding problem in the early days of quantum
mechanics [7]. The theorem was an attempt to prove that any pair (A, B) of self-adjoint
unbounded operators on a Hilbert space H that satisfies the Heisenberg Commutation
Relation on a common dense invariant subset D of their domain, i.e.,

[A|D, B|D] = i� · IdD,

is unitarily equivalent to a direct sum of copies of
(
X̂ , P̂�

)
, which are self-adjoint un-

bounded operators on L2(R) defined as follows:

Dom
(
X̂
) =
{

f ∈ L2(R)

∣
∣∣∣

∫

R

|x f (x)|2 dμ(x) < ∞
}
,

∀ f ∈ Dom
(
X̂
) : X̂( f )

df=
{

R → C

x �→ x f (x)

}
;
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Dom
(
P̂�

) = W 1,2(R),

∀ f ∈ Dom
(
P̂�

) : P̂�( f )
df= −i� · f ′.

We recall that W 1,2(R) denotes the space of weakly-differentiable square-integrable
functions on R whose weak derivative is also square-integrable. This statement about
unbounded operators is not true in general,where complications arise fromdomain issues
— a well-known counterexample involving multiplication and differentiation operators
on L2([0, 1]) is given in [12].

The Stone–vonNeumannTheoremwas first given a rigorous formulation byMarshall
Stone in 1930 [19], and it was this formulation that John von Neumann proved in 1931
[20]. The exponentiated form of the Heisenberg Commutation Relation, called the Weyl
Commutation Relation, is investigated in these papers, because it involves only one-
parameter unitary groups. More precisely, a pair (R, S) of strongly-continuous one-
parameter unitary groups on a Hilbert spaceH satisfies theWeyl Commutation Relation
if and only if

∀x, y ∈ R : S(y)R(x) = e−i�xy · R(x)S(y).

vonNeumann proved that any such pair is unitarily equivalent to a direct sum of copies of
(U,V), where U and V are strongly-continuous one-parameter unitary groups on L2(R)

defined by

∀x, y ∈ R, ∀ f ∈ L2(R) : [
U(x)
]
( f ) = f (• + �x) and

[
V(y)
]
( f ) = eiy• f.

Basically, U acts by translations, and V acts by phase modulations.
The statement of the Stone–von Neumann Theorem has undergone major revisions

in the decades since its initial formulation. GeorgeMackey appears to have been the first
to recognize its generalization to second-countable locally compact Hausdorff abelian
groups, in [10]. Nowadays, his generalization is treated as part of his theory of induced
representations of locally compact Hausdorff groups and is generally considered the
standard modern formulation of the Stone–von Neumann Theorem, which we now state.

Theorem 1. Let G be a locally compact Hausdorff abelian group. If R and S are
strongly-continuous unitary representations of G and Ĝ, respectively, on a Hilbert space
H that satisfy the Weyl Commutation Relation, i.e.,

∀x ∈ G, ∀γ ∈ Ĝ : S(γ )R(x) = γ (x) · R(x)S(γ ),

then (H, R, S)must be unitarily equivalent to a direct sum of copies of
(
L2(G),UG ,VG

)
,

where UG denotes the unitary representation of G on L2(G) by left translations, and
VG denotes the unitary representation of Ĝ on L2(G) by phase modulations, i.e.,

[
UG(x)
]
( f )

df= f
(

x−1•
)

and
[
VG(γ )
]
( f )

df= γ f

for all x ∈ G, γ ∈ Ĝ, and f ∈ L2(G).

The work of Marc Rieffel in [16,17] has revealed that Theorem 1 is actually a state-
ment about the Morita equivalence of the C∗-algebras C and C∗(G,C0(G), lt), where lt
denotes the strongly-continuous action of G on C0(G) by left translations. The theorem
thus acquires a more algebraic flavor. This Morita equivalence is a special case of a
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more general result known as Green’s Imprimitivity Theorem, which we actually need
to prove our covariant generalization of Theorem 1.

Several generalizations of the Stone–von Neumann Theorem can be found in the
literature. For example, [4] extends the theorem to measurable unitary representations
of G and Ĝ on a Hilbert space, and [13] extends the theorem to Hecke pairs using the
machinery of non-abelian duality. Although these generalizations are non-trivial and
interesting, their use of only Hilbert-space representations is a common limiting feature.

In this paper, we provide not just another incremental generalization of the Stone–
von Neumann Theorem, but a complete paradigm shift that significantly augments the
theorem’s range of applicability. By leaving the realm of Hilbert spaces and using rep-
resentations on Hilbert C∗-modules, we show that the Stone–von Neumann Theorem
is not so much about representations of locally compact Hausdorff abelian groups on
Hilbert spaces as it is about representations of abelian C∗-dynamical systems on Hilbert
C∗-modules — for every C∗-dynamical system of the form (G, K(H), α), where G is
a locally compact Hausdorff abelian group and H is a non-trivial Hilbert space, our
covariant generalization classifies up to unitary equivalence all quadruples (X, ρ, R, S)

with the following properties:

• X is a Hilbert K(H)-module.
• R and S are strongly-continuous unitary representations of G and Ĝ, respectively,
on X that satisfy the Weyl Commutation Relation.

• ρ is a non-degenerate ∗-representation of K(H) on X that obeys the following
commutation relations:

R(x)ρ(a) = ρ(αx (a))R(x) and S(γ )ρ(a) = ρ(a)S(γ )

for all x ∈ G, γ ∈ Ĝ, and a ∈ A. These relations are also called covariance relations.

Using results on non-abelian duality, one could very well generalize our covariant
version of the Stone–von Neumann Theorem to non-abelian C∗-dynamical systems, or
even quantum-group dynamical systems, but such an undertaking would take us too far
afield, so we content ourselves with presenting only the abelian case, which we feel is
already a significant advance. Further generalizations will be explored in a sequel.

This paper is organized as follows:

• Section 2 is a short preliminary section that recalls some concepts and results about
C∗-crossed products that we need. In particular, we show how to associate a Hilbert
C∗-module to a C∗-dynamical system in a canonical way. This Hilbert C∗-module
is featured in Green’s Imprimitivity Theorem and is crucial to a formulation of our
covariant generalization of the Stone–von Neumann Theorem.

• Section 3 introduces Heisenberg module representations and the Schrödinger mod-
ule representation of an abelian C∗-dynamical system (G, A, α). These concepts
allow an efficient formulation of our covariant generalization of the Stone–von Neu-
mann Theorem. We construct an injective map from the class of all Heisenberg
module representations of (G, A, α) to the class of all covariant module representa-
tions of (G,C0(G, A), lt ⊗ α), which is a C∗-dynamical system that plays a pivotal
role in Iain Raeburn’s proof of Takai–Takesaki Duality.

• Section 4 provides an overview of the properties of Hilbert K(H)-modules that
have been established in [2,3]. Hilbert K(H)-modules obviously generalize Hilbert
spaces, yet they behave much like Hilbert spaces, which makes them very desirable
to work with.
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• Section 5 contains our main result: the Covariant Stone–von Neumann Theorem
(Proposition 7).

• Section 6 explains why the Covariant Stone–von Neumann Theorem is non-trivial,
i.e., it generalizes the classical Stone–von Neumann Theorem. A basic result in this
section also allows us to shorten Raeburn’s proof of Takai–Takesaki Duality.

• The Conclusions section describes some problems that this paper was unable to
resolve. It also suggests new avenues of research that would be of interest to both
mathematicians and physicists.

• Finally, an appendix contains a proof of an approximation lemma, stated in the main
body of the paper, that would be considered folklore, but for which we were unable
to locate an adequate reference.

We assume that the reader has a reasonable working knowledge of C∗-algebras,
C∗-dynamical systems, and Hilbert C∗-modules. Throughout this paper, we adopt the
following notations and conventions:

• N denotes the set of positive integers, and for each n ∈ N, let [n]
df= N≤n .

• For a set I , let Fin(I ) denote the set of finite subsets of I .
• For a locally compact Hausdorff abelian group G, let Ĝ denote its Pontryagin dual.
• For a locally compact Hausdorff space X and a normed vector space V , let � :
C0(X) × V → C0(X, V ) be defined by

∀ f ∈ C0(X), ∀v ∈ V : f � v
df=
{

X → V
x �→ f (x) · v

}
.

Note that �[Cc(X) × V ] ⊆ Cc(X, V ).
• For a locally compactHausdorff space X and aC∗-algebra A, let � : A×C0(X, A) →
C0(X, A) be defined by

∀a ∈ A, ∀ f ∈ C0(X, A) : a � f
df=
{

X → A
x �→ a f (x)

}
.

• All Hilbert-space inner products are conjugate-linear in the first argument and linear
in the second.

• For a Hilbert spaceH and vectors v,w ∈ H, let |v〉〈w| denote the rank-one operator
on H defined by

∀x ∈ H : (|v〉〈w|)(x)
df= 〈w|x〉H · v.

• Let ProjH,K denote the orthogonal projection of a Hilbert space H onto a closed
subspace K.

• For aC∗-algebra A andHilbert A-modulesX andY, the set of adjointable/compact/unitary
operators from X to Y is denoted by L(X,Y)/K(X,Y)/U(X,Y). If X = Y, then we
write L(X)/K(X)/U(X).

• For a C∗-algebra A and a Hilbert C∗-module X (not necessarily over A), a ∗-
representation of A on X is a C∗-homomorphism ρ : A → L(X), which is then said
to be non-degenerate if and only if

Span({[ρ(a)](ζ ) | a ∈ A and ζ ∈ X})X = X.
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• For a locally compact Hausdorff group G and a Hilbert C∗-module X, a unitary
representation of G on X is a group homomorphism R from G to the group U(X) of
unitary adjointable operators on X, which is then said to be strongly continuous if
and only if the map

{
G → X
x �→ [R(x)](ζ )

}

is continuous for each ζ ∈ X.
• For a C∗-dynamical system (G, A, α), let lt denote the left G-action on C0(G, A)

by left translations, and let lt⊗ α denote the left G-action on C0(G, A) by α-twisted
left translations, which is defined by

∀x ∈ G, ∀ f ∈ C0(G, A) : (lt ⊗ α)x ( f )
df=
{

G → A

y �→ αx

(
f
(

x−1y
))
}

.

Note that (G,C0(G, A), lt ⊗ α) is also a C∗-dynamical system.

2. Preliminaries

AsC∗-crossed products will be used extensively in this paper, let us recall some concepts
in this area.

Throughout this section, we fix an arbitrary C∗-dynamical system (G, A, α), with G
not assumed to be abelian. We also fix a Haar measure μ on G.

Recall that the C-vector space Cc(G, A) can be given a convolution �G,A,α and an
involution ∗G,A,α by

∀ f, g ∈ Cc(G, A) : f �G,A,α g
df=
⎧
⎨

⎩

G → A

x �→
∫

G
f (y)αy

(
g
(

y−1x
))

dμ(y)

⎫
⎬

⎭
;

f ∗G,A,α
df=
{

G → A

x �→ �G

(
x−1
)

· αx

(
f
(

x−1
)∗)
}

,

where �G denotes the modular function of G.

Definition 1. A (G, A, α)-covariant module representation is a triple (X, ρ, R)with the
following properties:

(1) X is a Hilbert C∗-module (not necessarily over A).
(2) ρ is a non-degenerate ∗-representation of A on X.
(3) R is a strongly-continuous unitary representation of G on X.
(4) R(x)ρ(a) = ρ(αx (a))R(x) for all x ∈ G and a ∈ A.

Covariantmodule representations are used in the constructionofC∗-crossedproducts.
Given a (G, A, α)-covariantmodule representation (X, ρ, R), we can define an algebraic
∗-homomorphism ρ � R, called the integrated form of (X, ρ, R), from the convolution
∗-algebra (Cc(G, A), �G,A,α,∗G,A,α

)
to L(X) by

∀ f ∈ Cc(G, A) : (ρ � R)( f )
df=
∫

G
ρ( f (x))R(x) dμ(x).
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The full crossed product C∗(G, A, α) is defined as the C∗-algebraic completion of(
Cc(G, A), �G,A,α,∗G,A,α

)
with respect to the universal norm ‖·‖(G,A,α),u given by

‖ f ‖(G,A,α),u

df= sup
({‖(ρ � R)( f )‖L(X)

∣
∣ (X, ρ, R) is a (G, A, α)-covariant module representation

})

for all f ∈ Cc(G, A). This norm is well-defined as it is dominated by the L1-norm on
Cc(G, A).

We let η(G,A,α) denote the canonical dense linear embedding of Cc(G, A) into
C∗(G, A, α), and if A = C, in which case α is necessarily trivial, we simply write
ηG .

For a (G, A, α)-covariant module representation (X, ρ, R), we denote by ρ � R the
extension of ρ � R to a C∗-homomorphism from C∗(G, A, α) to L(X).

To (G, A, α), one can associate a special Hilbert A-module, denoted by L2(G, A, α),
in a canonical manner. Observe that Cc(G, A) is a pre-Hilbert A-module, whose right
A-action • and A-valued pre-inner product [·|·] : Cc(G, A)×Cc(G, A) → A are defined
as follows:

(1) φ • a
df=
{

G → A
x �→ φ(x)αx (a)

}
for all a ∈ A and φ ∈ Cc(G, A).

(2) [φ|ψ]
df=
∫

G
αx−1
(
φ(x)∗ψ(x)

)
dμ(x) = (φ∗G,A,α �G,A,α ψ

)
(eG) for all φ,ψ ∈

Cc(G, A).

Define L2(G, A, α) to be the Hilbert A-module obtained by completing Cc(G, A) with
respect to the norm induced by [·|·]. Let q(G,A,α) : Cc(G, A) ↪→ L2(G, A, α) denote
the canonical dense linear embedding, and if no confusion can arise, we will omit the
subscript and simply write q.

We will use q when defining operators on L2(G, A, α) to remind the reader that
unless A = C, the elements of L2(G, A, α) are generally not functions from G to A.
Having said this, we can equip L2(G, A, α) with the following structural data:

• A ∗-representation M(G,A,α) of A on L2(G, A, α) such that for all a ∈ A and
φ ∈ Cc(G, A),

[
M(G,A,α)(a)

]
(q(φ)) = q(a � φ).

• A unitary representation U(G,A,α) of G on L2(G, A, α) such that for all x ∈ G and
φ ∈ Cc(G, A),

[
U(G,A,α)(x)

]
(q(φ)) = q

(
(lt ⊗ α)x (φ)

)
.

• A unitary representation V(G,A,α) of G on L2(G, A, α) such that for all γ ∈ Ĝ and
φ ∈ Cc(G, A),

[
V(G,A,α)(γ )

]
(q(φ)) = q(γ · φ).

Proving that these representations are well-defined is a routine exercise. We refer the
reader to Chapter 4 of [22] for details. We will omit supscripts and simply write M, U,
and V if no confusion arises from doing so.

The Hilbert A-module L2(G, A, α) is the linchpin of our formulation of the covariant
Stone–von Neumann Theorem, and it is also the main player in Green’s Imprimitivity
Theorem, which we now state.
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Theorem 2 (Green’s Imprimitivity Theorem). Let (G, A, α) be a C∗-dynamical system.
Then L2(G, A, α) is a (C∗(G,C0(G, A), lt ⊗ α), A)-imprimitivity bimodule with the
following properties:

• If � denotes the non-degenerate ∗-representation of C0(G, A) on L2(G, A, α)

uniquely determined by

∀g ∈ C0(G, A), ∀φ ∈ Cc(G, A) : [�(g)](q(φ)) = q(gφ),

then
(
L2(G, A, α),�,U

)
is a (G,C0(G, A), lt ⊗ α)-covariant module representa-

tion, and the left action of C∗(G,C0(G, A), lt ⊗ α) on L2(G, A, α) is � � U.
• The left C∗(G,C0(G, A), lt ⊗ α)-valued inner product on L2(G, A, α) is uniquely
determined by

C∗(G,C0(G,A),lt⊗α)〈q(φ)|q(ψ)〉

= η(G,C0(G,A),lt⊗α)

({
G → C0(G, A)

x �→ �G

(
x−1•
)

· φ(•)αx

(
ψ
(

x−1•
)∗)
})

for all φ,ψ ∈ Cc(G, A).
• The right A-action and the right A-valued inner product on L2(G, A, α) are pre-
cisely the ones that define L2(G, A, α) as a Hilbert A-module.

Complete proofs of Green’s Imprimitivity Theorem may be found in [5,22].

Remark 1. Proposition 3.8 of [15] says that

� � U : C∗(G,C0(G, A), lt ⊗ α) → L

(
L2(G, A, α)

)

is an injective C∗-homomorphism and that Range
(
� � U
)

= K
(
L2(G, A, α)

)
.

3. Module Representations

Throughout this section, we shall fix an arbitrary C∗-dynamical system (G, A, α) with
G abelian. We shall also fix a Haar measure μ on G and a Haar measure ν on Ĝ.

Definition 2. A (G, A, α)-Heisenberg module representation is a quadruple (X, ρ, R, S)

with the following properties:

(1) X is a full Hilbert A-module.
(2) ρ is a non-degenerate ∗-representation of A on X.
(3) R is a strongly continuous representation of G on X.
(4) S is a strongly continuous representation of Ĝ on X.
(5) S(γ )R(x) = γ (x) · R(x)S(γ ) for all x ∈ G and γ ∈ Ĝ.

Hence, (R, S) satisfies the Weyl Commutation Relation for G on X.
(6) R(x)ρ(a) = ρ(αx (a))R(x) for all x ∈ G and a ∈ A.

Hence, (X, ρ, R) is a (G, A, α)-covariant module representation.
(7) S(γ )ρ(a) = ρ(a)S(γ ) for all γ ∈ Ĝ and a ∈ A.

Hence, (X, ρ, S) is a
(
Ĝ, A, ι

)
-covariant module representation, with ι denoting

the trivial action of Ĝ on A.
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Definition 3.
(
L2(G, A, α),M,U,V

)
is called the (G, A, α)-Schrödinger module rep-

resentation.

Proposition 1.
(
L2(G, A, α),M,U,V

)
is a (G, A, α)-Heisenberg module representa-

tion.

Proof. We will verify the various axioms in Definition 2.
The fullness of L2(G, A, α) as a Hilbert A − module
By Green’s Imprimitivity Theorem, L2(G, A, α) is a (C∗(G,C0(G, A), lt ⊗ α), A)-
imprimitivity bimodule, so it is a full Hilbert A-module.

For the verification of Axioms (2) through (4), we shall exploit a well-established
fact that is often used to prove Green’s Imprimitivity Theorem.
Fact Let φ ∈ Cc(G, A), and let (φi )i∈I be a net in Cc(G, A). Then lim

i∈I
q(φi ) = q(φ) in

L2(G, A, α) whenever lim
i∈I

φi = φ in the inductive limit topology on Cc(G, A), i.e., the

following two conditions hold:

(I1) (φi )i∈I converges uniformly to φ.
(I2) There exist a compact subset K of G and an index i ′ ∈ I such that Supp(φi ) ⊆ K

for all i ∈ I≥i ′ .

The non-degeneracy of M
Let φ ∈ Cc(G, A). Let (eλ)λ∈� be an approximate identity for A that is norm-bounded
by 1. We claim that lim

λ∈�

[
M(eλ)
]
(q(φ)) = q(φ) in L2(G, A, α), which is true once we

can show that lim
λ∈�

eλ � φ = φ in the inductive limit topology on Cc(G, A).

Firstly, note that (I2) is satisfied as Supp(eλ � φ) ⊆ Supp(φ) for all λ ∈ �.
Next, let ε > 0. By the continuity of φ, there exists a Supp(φ)-indexed family

(Ox )x∈Supp(φ) of open subsets of G such that for each x ∈ Supp(φ), we have x ∈ Ox

and ‖φ(x) − φ(y)‖A <
ε

3
for all y ∈ Ox .

As Supp(φ) is a compact subset of G, there exist x1, . . . , xn ∈ Supp(φ) such that

K =
n⋃

i=1

(
K ∩ Oxi

)
. Find corresponding λ1, . . . , λn ∈ I such that for any i ∈ [n], we

have ‖φ(xi ) − (eλ � φ)(xi )‖A <
ε

3
for all λ ∈ �≥λi . Then as � is a directed set, there

exists a λ′ ∈ � such that λi ≤ λ′ for all i ∈ [n].
Let y ∈ G. If y /∈ Supp(φ), then ‖(eλ � φ)(y) − φ(y)‖A = 0 for all λ ∈ �≥λ′ ; if

y ∈ Supp(φ), then we can find an i ∈ [n] so that y ∈ Oxi , in which case we have for all
λ ∈ �≥λ′ that

‖(eλ � φ)(y) − φ(y)‖A ≤ ‖(eλ � φ)(y) − (eλ � φ)(xi )‖A + ‖(eλ � φ)(xi ) − φ(xi )‖A

+ ‖φ(xi ) − φ(y)‖A

<
ε

3
+

ε

3
+

ε

3
= ε,

where we have used the fact that ‖eλ‖A ≤ 1 for all λ ∈ �. Hence, ‖eλ � φ − φ‖∞ ≤ ε

for all λ ∈ �≥λ′ , and as ε > 0 is arbitrary, we find that (eλ � φ)λ∈� converges uniformly
to φ, which means that (I1) is satisfied.
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Finally, another
ε

3
-argument yields lim

λ∈�

[
M(eλ)
]
(�) = � for all � ∈ L2(G, A, α),

soM is non-degenerate.

The strong continuity of U

Let φ ∈ Cc(G, A), and let (xi )i∈I be a net in G that converges to eG . We claim
that lim

i∈I

[
U(xi )
]
(q(φ)) = q(φ) in L2(G, A, α), which is true once we can show that

lim
i∈I

(lt ⊗ α)xi
(φ) = φ in the inductive limit topology on Cc(G, A).

Firstly, note that (I1) is satisfied as lt ⊗ α is a strongly continuous action of G on
C0(G, A), which means that

(
(lt ⊗ α)xi

(φ)
)

i∈I converges uniformly to φ.
Let K be a compact neighborhood of eG . Then there exists an i ′ ∈ I such that xi ∈ K

for all i ∈ I≥i ′ , which means that for all such i ,

Supp
(
(lt ⊗ α)xi

(φ)
) = Supp

({
G → A

x �→ αxi

(
φ
(

x−1
i y
))
})

= xi Supp(φ) ⊆ K Supp(φ).

As K Supp(φ) is a compact subset of G, we find that (I2) is satisfied.

An
ε

3
-argument now shows that lim

i∈I

[
U(xi )
]
(�) = � for all � ∈ L2(G, A, α), so U

is strongly continuous.

The strong continuity of V

Let φ ∈ Cc(G, A), and let (γi )i∈I be a net in Ĝ that converges to eĜ . We claim that
lim
i∈I

[
V(γi )
]
(q(φ)) = q(φ) in L2(G, A, α), which is true oncewe show that lim

i∈I
γi ·φ = φ

in the inductive limit topology on Cc(G, A).
Firstly, note that (I2) is satisfied as Supp(γiφ) = Supp(φ) for all i ∈ I .
As the topology on Ĝ is the compact-open topology, (γi )i∈I converges uniformly to

1 on Supp(φ), which is a compact subset of G, so (γi · φ)i∈I converges uniformly to φ

on Supp(φ) and thus on all of G. Hence, (I1) is satisfied.

An
ε

3
-argument now shows that lim

i∈I

[
V(γi )
]
(�) = � for all � ∈ L2(G, A, α), so V

is strongly continuous.

(U,V) satisfies the Weyl Commutation Relation for G on L2(G, A, α)

Observe for all x ∈ G, γ ∈ Ĝ, and φ ∈ Cc(G, A) that
[
V(γ )U(x)

]
(q(φ)) = [V(γ )

]([
U(x)
]
(q(φ))
)

= [V(γ )
]
(

q

({
G → A

y �→ αx

(
φ
(

x−1y
))
}))

= q

({
G → A

y �→ γ (y) · αx

(
φ
(

x−1y
))
})

= q

({
G → A

y �→ γ (x)γ
(

x−1y
)

· αx

(
φ
(

x−1y
))
})

= q

({
G → A

y �→ γ (x) · αx

(
γ
(

x−1y
)

· φ
(

x−1y
))
})
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= γ (x) · q

({
G → A

y �→ αx

(
γ
(

x−1y
)

· φ
(

x−1y
))
})

= γ (x) · q

({
G → A

y �→ αx

(
(γ · φ)
(

x−1y
))
})

= γ (x) · [U(x)
]
(q(γ · φ))

= γ (x) · [U(x)
]([

V(γ )
]
(q(φ))
)

= γ (x) · [U(x)V(γ )
]
(q(φ)),

so by continuity, V(γ )U(x) = γ (x) · U(x)V(γ ) for all x ∈ G and γ ∈ Ĝ.
(
L2(G, A, α),M,U

)
is a (G, A, α)-covariant module representation

Observe for all x ∈ G, a ∈ A, and φ ∈ Cc(G, A) that
[
U(x)M(a)

]
(q(φ)) = [U(x)

]([
M(a)
]
(q(φ))
)

= [U(x)
]
(

q

({
G → A
y �→ aφ(y)

}))

= q

({
G → A

y �→ αx

(
aφ
(

x−1y
))
})

= q

({
G → A

y �→ αx (a)αx

(
φ
(

x−1y
))
})

= [M(αx (a))
]
(

q

({
G → A

y �→ αx

(
φ
(

x−1y
))
}))

= [M(αx (a))
]([

U(x)
]
(q(φ))
)

= [M(αx (a))U(x)
]
(q(φ)),

so by continuity, U(x)M(a) = M(αx (a))U(x) for all x ∈ G and a ∈ A.
(
L2(G, A, α),M,V

)
is a
(
Ĝ, A, ι

)
-covariant module representation

Observe for all γ ∈ Ĝ, a ∈ A, and φ ∈ Cc(G, A) that
[
V(γ )M(a)

]
(q(φ)) = [V(γ )

]([
M(a)
]
(q(φ))
)

= [V(γ )
](

q

({
G → A
y �→ aφ(y)

}))

= q

({
G → A
y �→ γ (y) · aφ(y)

})

= q

({
G → A
y �→ a

[
(γ · φ)(y)

]
})

= [M(a)
]
(q(γ · φ))

= [M(a)
]([

V(γ )
]
(q(φ))
)

= [M(a)V(γ )
]
(q(φ)),

so by continuity, V(γ )M(a) = M(a)V(γ ) for all γ ∈ Ĝ and a ∈ A.
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The ultimate goal of this section is to establish the following proposition, which we
presently state in an imprecise form.

Proposition 2. There is an injective map from the class of (G, A, α)-Heisenberg module
representations to the class of (G,C0(G, A), lt ⊗ α)-covariant module representations.

The proposition is imprecisely stated because we have not yet specified what the
injective map is, but this will be explicated in due course.

The main tool for proving the proposition is a C∗-algebra-valued version of the
Fourier transform, which we will introduce soon. In order to show that this generalized
Fourier transform is well-defined, the following approximation lemma is indispensable.

Lemma 1. Let X be a locally compact Hausdorff space, V a normed vector space, and
D a dense subset of V . Then for any f ∈ Cc(X, V ) and ε > 0, there exist γ1, . . . , γn ∈
Cc(X) and v1, . . . , vn ∈ D such that

∀x ∈ X :
∥∥∥∥
∥

f (x) −
n∑

i=1

γi (x) · vi

∥∥∥∥
∥

V

< ε.

If λ is a regular Borel measure on X, then for any f ∈ Cc(X, V ) and ε > 0, there exist
γ1, . . . , γn ∈ Cc(X) and v1, . . . , vn ∈ D such that

∫

X

∥
∥∥∥∥

f (x) −
n∑

i=1

γi (x) · vi

∥
∥∥∥∥

V

dλ(x) < ε.

This is a folklore result that can be straightforwardly proven using partitions of unity.
To avoid disrupting the flow of this paper, we will provide a proof of it in the appendix.

Definition 4. The A-valuedgeneralized Fourier transform forG is themapF : Cc
(
Ĝ, A
)

→ C0(G, A) defined by

∀ f ∈ Cc
(
Ĝ, A
) : F( f )

df=
⎧
⎨

⎩

G → A

x �→
∫

Ĝ
x̂(γ ) · f (γ ) dν(γ )

⎫
⎬

⎭
.

We proceed to demonstrate the consistency of this definition.
When A �= C, it is not at all obviouswhy the image ofF should be inC0(G, A). To see

this, let us pick f ∈ Cc
(
Ĝ, A
)
. For every x ∈ G, the integrand of

∫

Ĝ
x̂(γ ) · f (γ ) dν(γ )

belongs to Cc
(
Ĝ, A
)
, so the integral exists. Furthermore, for all x ∈ G,

∥
∥∥∥

∫

Ĝ
x̂(γ ) · f (γ ) dν(γ )

∥
∥∥∥

A
≤
∫

Ĝ
|̂x(γ )|‖ f (γ )‖A dν(γ ) =

∫

Ĝ
‖ f (γ )‖A dν(γ ) = ‖ f ‖1,

so F( f ) is a function from G to A that is pointwise-bounded by ‖ f ‖1. To check that
it is also continuous, fix x ∈ G and ε > 0. As Supp( f ) is a compact subset of Ĝ with
respect to the compact-open topology on C(G), the Arzelà-Ascoli Theorem says that
Supp( f ) is an equicontinuous subset of C(G), so there exists an open neighborhood U
of x in G such that for all y ∈ U and γ ∈ Supp( f ),

|γ (x) − γ (y)| <
ε

1 + ‖ f ‖1
.
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Consequently, for all y ∈ U ,

‖[F( f )](x) − [F( f )](y)‖A =
∥∥∥∥

∫

Ĝ
x̂(γ ) · f (γ ) dν(γ ) −

∫

Ĝ
ŷ(γ ) · f (γ ) dν(γ )

∥∥∥∥
A

=
∥
∥∥∥

∫

Ĝ

[
γ (x) − γ (y)

] · f (γ ) dν(γ )

∥
∥∥∥

A

≤
∫

Ĝ
|γ (x) − γ (y)|‖ f (γ )‖A dν(γ )

=
∫

Supp( f )

|γ (x) − γ (y)|‖ f (γ )‖A dν(γ )

≤
∫

Supp( f )

ε

1 + ‖ f ‖1
· ‖ f (γ )‖A dν(γ )

= ε

1 + ‖ f ‖1
· ‖ f ‖1

< ε.

As x ∈ G is arbitrary, this proves thatF( f ) is continuous, so the image ofF is contained
in Cb(G, A).

Now, given an f ∈ Cc
(
Ĝ
)
and an a ∈ A, we have for all x ∈ G that

[F( f � a)](x) =
∫

Ĝ
x̂(γ ) · ( f � a)(γ ) dν(γ )

=
∫

Ĝ
x̂(γ ) · [ f (γ ) · a

]
dν(γ )

=
[∫

Ĝ
x̂(γ ) f (γ ) dν(γ )

]
· a

= f̂ (x) · a.
(
Here, f̂ denotes the Fourier transform of f.

)

As we already know that f̂ ∈ C0(G), we get F( f � a) = f̂ � a ∈ C0(G, A). Hence, as
f ∈ Cc
(
Ĝ
)
and a ∈ A are arbitrary, we obtain

F[Span(Cc
(
Ĝ
) � A
)] ⊆ Span(C0(G) � A) ⊆ C0(G, A).

Let f ∈ Cc
(
Ĝ, A
)
. Lemma 1 makes it possible to obtain a sequence ( fn)n∈N in

Span
(
Cc
(
Ĝ
) � A
)
such that lim

n→∞‖ f − fn‖1 = 0. Then because ‖F( f − fn)‖∞ ≤
‖ f − fn‖1 for all n ∈ N, we get

lim
n→∞‖F( f ) − F( fn)‖∞ = lim

n→∞‖F( f − fn)‖∞ = 0.

However, as seen above, F( fn) ∈ C0(G, A) for all n ∈ N, so because C0(G, A) is
complete with respect to the supremum norm, it follows that F( f ) ∈ C0(G, A). As
f ∈ Cc
(
Ĝ, A
)
is arbitrary, we have proven that F maps Cc

(
Ĝ, A
)
to C0(G, A).

Knowing now that F : Cc
(
Ĝ, A
) → C0(G, A) is well-defined, our next step is to

show the following.

Proposition 3. F extends to a C∗-isomorphism F : C∗(Ĝ, A, ι
)→ C0(G, A).
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Proof. It is routine to check that F : (Cc
(
Ĝ, A
)
, �Ĝ,A,ι,

∗�Ĝ,A,ι
) → C0(G, A) is a ∗-

homomorphism. As we know that F is contractive with respect to ‖·‖ν,1, the theory of
C∗-crossed products says that F extends to a C∗-homomorphism F : C∗(Ĝ, A, ι

) →
C0(G, A).

By Lemma 2.73 of [22] and the theory of C∗-tensor products, we have the series of
C∗-isomorphisms

C∗(Ĝ, A, ι
) ∼= C∗(Ĝ

)⊗ A ∼= C0(G) ⊗ A ∼= C0(G, A),

which are implemented as follows: For all f1, . . . , fn ∈ Cc
(
Ĝ
)
and a1, . . . , an ∈ A,

η(Ĝ,A,ι)

(
n∑

i=1

fi � ai

)

�→
n∑

i=1

ηĜ( fi ) � ai �→
n∑

i=1

f̂i � ai �→
n∑

i=1

f̂i � ai .

However, F
(

n∑

i=1

fi � ai

)

=
n∑

i=1

f̂i � ai , so F agrees with some C∗-isomorphism from

C∗(Ĝ, A, ι
)
toC0(G, A)on adense subset. It is therefore precisely thatC∗-isomorphism.

Definition 5. For a
(
Ĝ, A, ι

)
-covariant module representation (X, ρ, S), let

πρ,S df= ρ � S ◦ F−1 : C0(G, A) → L(X),

which is a non-degenerate ∗-representation of C0(G, A) on X.

Finally, let us tackle the main objective of this section.

Proof of Proposition 2. We divide the proof into two parts.

Defining the desired class map

Observe for all x, y ∈ G and f ∈ Cc
(
Ĝ, A
)
that

[
(lt ⊗ α)x (F( f ))

]
(y) = αx

(
[F( f )]

(
x−1y
))

= αx

(∫

Ĝ

(̂
x−1y
)
(γ ) · f (γ ) dν(γ )

)

=
∫

Ĝ

(̂
x−1y
)
(γ ) · αx ( f (γ )) dν(γ )

=
∫

Ĝ
ŷ(γ )̂x−1(γ ) · αx ( f (γ )) dν(γ )

=
∫

Ĝ
ŷ(γ ) ·
[
x̂−1 · (αx ◦ f )

]
(γ ) dν(γ )

=
[
F
(

x̂−1 · (αx ◦ f )
)]

(y).

Hence, (lt ⊗ α)x (F( f )) = F
(

x̂−1 · (αx ◦ f )
)
for all x ∈ G and f ∈ Cc

(
Ĝ, A
)
.

Given a (G, A, α)-Heisenberg module representation (X, ρ, R, S), we will exploit
the computation above to show that

(
X, πρ,S, R

)
is a (G,C0(G, A), lt ⊗ α)-covariant

module representation.



130 L. Huang, L. Ismert

Firstly, ρ is a non-degenerate ∗-representation of A onX, so ρ�S is a non-degenerate
∗-representation ofC∗(Ĝ, A, ι

)
onX, which, in turn,means thatπρ,S is a non-degenerate

∗-representation of C0(G, A) on X. Secondly, we have for all x ∈ G and f ∈ Cc
(
Ĝ, A
)

that

R(x)πρ,S(F( f )) = R(x)

[∫

Ĝ
ρ( f (γ ))S(γ ) dν(γ )

]

=
∫

Ĝ
R(x)ρ( f (γ ))S(γ ) dν(γ )

=
∫

Ĝ
ρ(αx ( f (γ )))R(x)S(γ ) dν(γ )

=
∫

Ĝ
γ
(

x−1
)

· ρ(αx ( f (γ )))S(γ )R(x) dν(γ )

=
[∫

Ĝ
γ
(

x−1
)

· ρ(αx ( f (γ )))S(γ ) dν(γ )

]
R(x)

=
[∫

Ĝ
ρ
(
γ
(

x−1
)

· αx ( f (γ ))
)

S(γ ) dν(γ )

]
R(x)

=
[∫

Ĝ
ρ
(

x̂−1(γ ) · (αx ◦ f )(γ )
)

S(γ ) dν(γ )

]
R(x)

=
[∫

Ĝ
ρ
([

x̂−1 · (αx ◦ f )
]
(γ )
)

S(γ ) dν(γ )

]
R(x)

= πρ,S
(
F
(

x̂−1 · (αx ◦ f )
))

R(x)

= πρ,S((lt ⊗ α)x (F( f ))
)
R(x).

As the image of F is dense in C0(G, A), it follows from continuity that for all x ∈ G
and f ∈ C0(G, A),

R(x)πρ,S( f ) = πρ,S((lt ⊗ α)x ( f )
)
R(x).

Hence,
(
X, πρ,S, R

)
is a (G,C0(G, A), lt ⊗ α)-covariant module representation.

We can therefore define a map from the class of (G, A, α)-Heisenberg module rep-
resentations to the class of (G,C0(G, A), lt ⊗ α)-covariant module representation ac-
cording to the rule

(X, ρ, R, S) �→
(
X, πρ,S, R

)
.

Injectivity of the class map

Let (X1, ρ1, R1, S1) and (X2, ρ2, R2, S2) be (G, A, α)-Heisenberg module representa-
tions such that

(
X1, π

ρ1,S1 , R1

)
=
(
X2, π

ρ2,S2 , R2

)
.

Clearly, X1 = X2, R1 = R2, and πρ1,S1 = πρ2,S2 . Hence,

ρ1 � S1 = πρ1,S1 ◦ F = πρ2,S2 ◦ F = ρ2 � S2,

which yields ρ1 � S1 = ρ2 � S2. By Proposition 2.39 of [22], ρ1 = ρ2 and S1 = S2.
Therefore, the proposed class map is indeed injective.
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Actually, one can show that the image of the class map above is the class of
(G,C0(G, A), lt ⊗ α)-covariant module representations whose underlying Hilbert C∗-
module is a full Hilbert A-module. However, we will have no need of this fact.

4. Hilbert K(H)-Modules

In this section, we take a brief excursion into HilbertK(H)-modules. The initial material
can be found in [2,3], but we have decided to supply our own proofs, some of which are
simpler than the original ones.

Throughout this section, we shall fix a non-trivial Hilbert space H.

Lemma 2. Let P be a rank-one projection on H. Then there exists a unique positive
linear functional f on K(H) such that P S P = f (S) · P for all S ∈ K(H).

Proof. This lemma is a simple exercise left to the reader.

LetP1 denote the set of all rank-one projections onH. Lemma 2 says that there exists
a P1-indexed family ( fP )P∈P1

of linear functionals on H such that

∀P ∈ P1, ∀S ∈ K(H) : P S P = fP (S) · P.

These linear functionals play a pivotal role in the next result.

Theorem 3. Let X be a non-trivial Hilbert K(H)-module and P a rank-one projection
on H. Then X • P is a non-trivial closed subspace of X • P that has the structure of a
Hilbert space, whose inner product 〈·|·〉X•P is given by

∀ζ, η ∈ X • P : 〈ζ |η〉X•P
df= fP
(〈ζ |η〉X

)
.

Furthermore, the norm on X • P induced by 〈·|·〉X•P coincides with the restriction of
‖·‖X to X • P.

Proof. It is clear thatX• P is a subspace ofX. AsX is non-trivial, Span(〈X|X〉X)
K(H)

is a

non-trivial ideal ofK(H), but asK(H) is a simpleC∗-algebra,wehaveSpan(〈X|X〉X)
K(H)

= K(H). Hence,

P ∈ PK(H)P

= PSpan(〈X|X〉X)
K(H)

P

⊆ P Span(〈X|X〉X)P
K(H)

= Span(〈X • P|X • P〉X)
K(H)

,

which implies that X • P is a non-trivial subspace of X.
To see that X • P is a closed subspace of X, suppose that (ζn)n∈N is a sequence in

X • P that converges to some η ∈ X. Then because ζn • P = ζn for all n ∈ N, we have

η = lim
n→∞ ζn = lim

n→∞ ζn • P =
(
lim

n→∞ ζn

)
• P = η • P.

Hence, η ∈ X • P , which proves that X • P is a non-trivial closed subspace of X.
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Clearly, 〈·|·〉X•P is a sesquilinear form on X• P , so it remains to see that it is positive
definite and complete. Let ζ ∈ X • P . Then 〈ζ |ζ 〉X is positive in K(H), so by Lemma 2,
〈ζ |ζ 〉X•P = fP (〈ζ |ζ 〉X) ≥ 0. Furthermore,

〈ζ |ζ 〉X•P = fP (〈ζ |ζ 〉X) = 0 ⇐⇒ 〈ζ |ζ 〉X = P〈ζ |ζ 〉XP = fP (〈ζ |ζ 〉X) · P = 0K(H)

⇐⇒ ζ = 0X.

A short computation now shows that ‖ζ‖X•P = ‖ζ‖X for all ζ ∈ X • P . As X • P
is a closed subspace of X, it is a Banach space with respect to the restriction of ‖·‖X to
X • P and is thus a Banach space with respect to ‖·‖X•P . Therefore, X • P equipped
with 〈·|·〉X•P is a Hilbert space, and the Hilbert-space norm on X • P is precisely the
restriction of ‖·‖X to X • P .

Theorem 4. Let X be a Hilbert K(H)-module, Y a K(H)-submodule of X that is not
necessarily closed, and P a rank-one projection on H. Then the closed K(H)-linear

span of Y • P in X is the closure Y
X

of Y in X.

Proof. As Hilbert C∗-modules are automatically non-degenerate, we have Y
X =

Span(Y • K(H))
X
. As K(H) is simple, the closure of the two-sided ideal I

df=
Span(K(H)PK(H)) of K(H) is all of K(H). Hence,

Span(Y • K(H))
X = Span(Y • I )

X
.

Given ζ1, . . . , ζn ∈ X and S1, . . . , Sn, T1, . . . , Tn ∈ K(H), observe that
n∑

i=1

ζi • (Si PTi ) =
n∑

i=1

((ζi • Si ) • P) • Ti ,

so

Y
X = Span(Y • I )

X = Span(((Y • K(H)) • P) • K(H))
X = Span((Y • P) • K(H))

X
,

which proves that Y
X
is the closure of the K(H)-linear span of Y • P in X.

The next theorem is the main result of [3], and it explains whyHilbertK(H)-modules
behave like Hilbert spaces. It says that the C∗-algebra of adjointable operators on a
Hilbert K(H)-module X is isomorphic to the C∗-algebra of bounded operators on the
Hilbert space X• P , for any rank-one projection P onH. At first sight, this seems rather
astonishing because X • P is generally a much smaller space that X itself, and it would
be hard to imagine why it should have much to say about X. However, having seen in
Theorem 4 that X • P generates a dense submodule of X, one can start to understand
why the theorem holds.

The proof given in [3] relies on concepts from an earlier paper [2], but the proof that
we give here is very direct and only depends on the previous definitions and results of
this section.

Theorem 5. Let X be a Hilbert K(H)-module and P a rank-one projection on H. Then
X • P is an invariant subspace for each T ∈ L(X), and the map

{
L(X) → B(X • P)

T �→ T |X•P

}

is a C∗-isomorphism, where X • P is viewed as a Hilbert space. Furthermore, the
restriction of this map to K(X) yields a C∗-isomorphism from K(X) to K(X • P).
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Proof. If X is trivial, then the theorem is clearly true, so let us assume henceforth that
X is non-trivial.

For each T ∈ L(X), the K(H)-linearity of T implies that X • P is an invariant
subspace of T .

It is easy to check that

{
L(X) → B(X • P)

T �→ T |X•P

}
is at least a C∗-homomorphism. To see

that it is injective, let S, T ∈ L(X) satisfy S|X•P = T |X•P . Then by the K(H)-linearity
and continuity of both S and T , theymust agree on the closedK(H)-linear span ofX• P ,
which is equal to X by Theorem 4. Hence, S = T .

Surjectivity is trickier to prove. Let L ∈ B(X • P), and let (εi )i∈I be an orthonormal

basis of X • P . For each J ∈ Fin(I ), let TJ
df=
∑

i∈J

�L(εi ),εi ∈ K(X) and L J
df=

∑

i∈J

|L(εi )〉〈εi | ∈ K(X • P); then for all ζ ∈ X • P ,

TJ (ζ ) =
∑

i∈J

�L(εi ),εi (ζ )

=
∑

i∈J

L(εi ) • 〈εi |ζ 〉X

=
∑

i∈J

L(εi ) • (P〈εi |ζ 〉XP)

=
∑

i∈J

L(εi ) • (〈εi |ζ 〉X•P · P)

=
∑

i∈J

〈εi |ζ 〉X•P · L(εi )

=
∑

i∈J

|L(εi )〉〈εi |(ζ )

= L J (ζ ),

which implies that TJ |X•P = L J . Next, for all ζ ∈ X • P ,

L(ζ ) = L

(
∑

i∈I

〈εi |ζ 〉X•P · εi

)

=
∑

i∈I

〈εi |ζ 〉X•P · L(εi ) =
∑

i∈I

|L(εi )〉〈εi |(ζ ),

so (L J )J∈Fin(I ) is a net (partially ordered by ⊆) that strongly converges to L . Also, for
all J ∈ Fin(I ),

‖L J ‖B(X•P) = sup
({‖L J (ζ )‖X•P

∣∣ ζ ∈ X • P and ‖ζ‖X•P ≤ 1
})

= sup
({‖L J (ζ )‖X•P

∣∣ ζ ∈ Span
({εi }i∈J

)
and ‖ζ‖X•P ≤ 1

})

= sup
({‖L(ζ )‖X•P

∣∣ ζ ∈ Span
({εi }i∈J

)
and ‖ζ‖X•P ≤ 1

})

≤ sup
({‖L(ζ )‖X•P

∣∣ ζ ∈ X • P and ‖ζ‖X•P ≤ 1
})

= ‖L‖B(X•P),

which gives, by the first part, ‖TJ ‖L(X) = ‖L J ‖B(X•P) ≤ ‖L‖B(X•P). Notice now that
(TJ )J∈Fin(I ) is a norm-bounded net in L(X) that strongly converges on the K(H)-linear
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span of X • P , which is dense in X. By an
ε

3
-argument, (TJ )J∈Fin(I ) strongly converges

everywhere to some T ∈ B(X). Likewise,
(
T ∗

J

)
J∈Fin(I ) strongly converges everywhere

to some S ∈ B(X). As 〈TJ (ζ )|η〉X = 〈ζ ∣∣T ∗
J (η)
〉
X for all ζ, η ∈ X and J ∈ Fin(I ), taking

limits yields 〈T (ζ )|η〉X = 〈ζ |S(η)〉X. Therefore, T ∈ L(X) and T |X•P = L , which
finishes our proof that the restriction map is a C∗-isomorphism from L(X) to B(X • P).

For the final part of the proof, observe for all ζ, η ∈ X • P , S, T ∈ K(H), and
ξ ∈ X • P that

�ζ•S,η•T (ξ) = (ζ • S) • 〈η • T |ξ 〉X
= (ζ • S) • 〈η • PT |ξ 〉X
= (ζ • S) • (T ∗ P〈η|ξ 〉X

)

= (ζ • ST ∗ P
) • 〈η|ξ 〉X

= (ζ • ST ∗ P
) • (P〈η|ξ 〉XP

)

= (ζ • ST ∗ P
) • (〈η|ξ 〉X•P · P

)

= 〈η|ξ 〉X•P · (ζ • ST ∗ P
)

= ∣∣ζ • ST ∗ P
〉〈η|(ξ),

which means that �ζ•S,η•T |X•P ∈ K(X • P). Let ζ, η ∈ X. Then by Theorem 4, we can
find

ζ1, . . . , ζm, η1, . . . , ηn ∈ X • P and S1, . . . , Sm, T1, . . . , Tn ∈ K(H)

so that
m∑

i=1

ζi • Si and
n∑

j=1

η j • Tj are arbitrarily close to ζ and η, respectively, which

ensures that

�∑m
i=1 ζi •Si ,

∑n
j=1 η j •Tj

=
m∑

i=1

n∑

j=1

�ζi •Si ,η j •Tj

is arbitrarily close to �ζ,η in K(X). Hence, by the continuity of the restriction C∗-
isomorphism,

m∑

i=1

n∑

j=1

�ζi •Si ,η j •Tj |X•P =
m∑

i=1

n∑

j=1

∣∣∣ζi • Si T
∗
j P
〉〈
η j
∣∣

is arbitrarily close to �ζ,η|X•P , which says that �ζ,η|X•P ∈ K(X • P). Therefore, the
image of K(X) under the restriction C∗-isomorphism is a non-trivial ideal in K(X • P).
AsK(X • P) is a simple C∗-algebra, this image is preciselyK(X • P). The proof is now
complete.

Using Theorem 5, we can show that every closed submodule of a Hilbert K(H)-
module has anorthogonal complement. The complementability ofHilbertK(H)-modules
has been known for a long while [11], but Theorem 5 appears to provide an expedient
proof.

Theorem 6. Let Y be a closed submodule of a Hilbert K(H)-module X. Then X =
Y ⊕ Y⊥.



The Covariant Stone–von Neumann Theorem 135

Proof. Let P be a rank-one projection onH. Then Y • P is a closed subspace of X • P .
By Theorem 5, there is a projection Q ∈ L(X) such that Q|X•P = ProjX•P,Y•P . If we
can show that Range(Q) = Y, then we are done, for a closed submodule of a Hilbert
C∗-module is complementable if it is the range of an adjointable operator (Corollary
15.3.9 of [21]). Indeed, as Q is a projection, Range(Q) is a closed submodule of X, and

Range(Q) • P = {Q(ζ ) • P | ζ ∈ X} = {Q(ζ • P) | ζ ∈ X} = Range(Q|X•P)

= Range
(
ProjX•P,Y•P

) = Y • P,

so Range(Q) = Y by Theorem 4.

Lemma 3. Let X be a non-trivial Hilbert K(H)-module and P a rank-one projection
on H. Then there is a ζ ∈ X such that 〈ζ |ζ 〉X = P.

Proof. By Theorem 3, we can find a non-zero η ∈ X • P , so 〈η|η〉X•P > 0. As

〈η|η〉X = 〈η • P|η • P〉X = P〈η|η〉XP = 〈η|η〉X•P · P,

we see that ζ
df= 1
√〈η|η〉X•P

· η satisfies 〈ζ |ζ 〉X = P .

Definition 6. Let A be a non-trivial C∗-algebra and X a non-trivial Hilbert A-module.
We say that K(X) acts irreducibly on X if and only if the only closed K(X)-invariant
A-submodules of X are {0X} and X.

Proposition 4. LetX be a non-trivial Hilbert K(H)-module. Then K(X) acts irreducibly
on X.

Proof. As X is a full Hilbert K(H)-module by the simplicity of K(H), Proposition
3.8 of [15] implies that X is a (K(X), K(H))-imprimitivity bimodule. By the Rieffel
Correspondence Theorem (Theorem 3.22 of [15]), there exists a lattice isomorphism
between

• The lattice of closed two-sided ideals of K(H), which includes
{
0K(H)

}
and K(H),

and
• The lattice of closed K(X)-invariant K(H)-submodules of X, which includes {0X}
and X.

AsK(H) is simple, the only closedK(X)-invariantK(H)-submodules ofX are therefore
{0X} and X.

The next result appears to be new, and it serves as the main bridge between the theory
of Hilbert K(H)-modules and the main result of this paper, which will be presented in
the next section. The proof that we offer here is an adaptation of Arveson’s proof of
Theorem 1.4.4 of [1].

Proposition 5. LetX andY be non-trivial Hilbert K(H)-modules. If� is a non-degenerate
∗-representation of K(X) on Y, then (Y,�) is unitarily equivalent to a direct sum of
copies of

(
X, iK(X)↪→L(X)

)
.

Proof. Fix a rank-one projection P on H, and consider

� : K(X • P)
∼=−→ K(X)

�−→ L(Y)
∼=−→ B(Y • P),
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where K(X • P)
∼=−→ K(X) and L(Y)

∼=−→ B(Y • P) come from Theorem 5. By defi-
nition, the non-degeneracy of (�,Y) means that

Y = Span({[�(T )](ζ ) | T ∈ K(X) and ζ ∈ Y})Y,

which yields

Y • P = Span({[�(T )](ζ ) | T ∈ K(X) and ζ ∈ Y})Y • P

⊆ Span({[�(T )](ζ ) | T ∈ K(X) and ζ ∈ Y}) • P
Y

= Span({[�(T )](ζ • P) | T ∈ K(X) and ζ ∈ Y})Y

= Span({[�(T )|Y•P ](η) | T ∈ K(X) and η ∈ Y • P})Y

= Span({[�(S)](η) | S ∈ K(X • P) and η ∈ Y • P})Y

= Span({[�(S)](η) | S ∈ K(X • P) and η ∈ Y • P})Y•P
(By Theorem 3.)

⊆ Y • P.

Hence, � is a non-degenerate ∗-representation of K(X • P) on the Hilbert space Y • P ,
and so the first part of Arveson’s proof says that there is a rank-one projection Q ∈
K(X • P) such that �(Q) �= 0K(Y•P).

By Theorem 5, there is a projection E ∈ K(X) such that Q = E |X•P . As �(Q) �=
0K(Y•P), it must be that�(E) �= 0L(Y), so E �= 0K(X). By Lemma 2, there exists a linear
functional fP : K(X • P) → C satisfying

∀S ∈ K(X • P) : QSQ = fP (S) · Q.

Define a linear functional g : K(X) → C by g(T )
df= fP (T |X•P ) for all T ∈ K(X);

then

ET E |X•P = (E |X•P )(T |X•P )(E |X•P ) = Q(T |X•P )Q = fP (T |X•P ) · Q

= fP (T |X•P ) · E |X•P = [g(T ) · E]|X•P .

By Theorem 5 again, we may conclude that ET E = g(T ) · E for all T ∈ K(X).
Consider the K(H)-submodule E

[
X
]
of X, which is non-trivial as E �= 0K(X), and

closed as E is a projection. Similarly,�(E)
[
Y
]
is a non-trivial closed K(H)-submodule

of Y. Hence, by Lemma 3, there exist ζ ∈ E
[
X
]
and η ∈ �(E)

[
Y
]
such that 〈ζ |ζ 〉X =

P = 〈η|η〉Y. We now claim that the map

U : Span({T (ζ • A) ∈ X | T ∈ K(X), A ∈ K(H)})
→ Span({[�(T )](η • A) ∈ Y | T ∈ K(X), A ∈ K(H)})

defined by

n∑

i=1

Ti (ζ • Ai ) �→
n∑

i=1

[�(Ti )](η • Ai )
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for all T1, . . . , Tn ∈ K(X) and A1, . . . , An ∈ K(H) is well-defined by virtue of being
an isometry. Indeed,

∥∥∥∥
∥∥

〈
n∑

i=1

[�(Ti )](η • Ai )

∣∣∣∣
∣∣

n∑

j=1

[
�
(
Tj
)](

η • A j
)
〉

Y

∥∥∥∥
∥∥

K(H)

=
∥∥∥∥∥
∥

n∑

i, j=1

〈
[�(Ti )](η • Ai )

∣∣[�
(
Tj
)](

η • A j
)〉
Y

∥∥∥∥∥
∥

K(H)

=
∥
∥∥∥∥∥

n∑

i, j=1

〈
[�(Ti )]([�(E)](η) • Ai )

∣∣[�
(
Tj
)](

[�(E)](η) • A j
)〉
Y

∥
∥∥∥∥∥

K(H)(
As η ∈ [�(E)]

[
Y
]
.
)

=
∥
∥∥∥∥∥

n∑

i, j=1

〈
[�(Ti E)](η • Ai )

∣∣[�
(
Tj E
)](

η • A j
)〉
Y

∥
∥∥∥∥∥

K(H)

=
∥∥∥
∥∥∥

n∑

i, j=1

〈[
�
(
Tj E
)∗

�(Ti E)
]
(η • Ai )

∣
∣η • A j

〉
Y

∥∥∥
∥∥∥

K(H)

=
∥∥∥∥
∥∥

n∑

i, j=1

〈[
�
(

ET ∗
j Ti E
)]

(η • Ai )

∣∣∣η • A j

〉

Y

∥∥∥∥
∥∥

K(H)

=
∥∥∥∥∥∥

n∑

i, j=1

〈[
�
(

g
(

T ∗
j Ti

)
· E
)]

(η • Ai )

∣∣∣η • A j

〉

Y

∥∥∥∥∥∥
K(H)

=
∥
∥∥∥∥∥

n∑

i, j=1

g
(

T ∗
j Ti

)
· 〈[�(E)](η • Ai )

∣∣η • A j
〉
Y

∥
∥∥∥∥∥

K(H)

=
∥∥∥
∥∥∥

n∑

i, j=1

g
(

T ∗
j Ti

)
· 〈η • Ai

∣
∣η • A j

〉
Y

∥∥∥
∥∥∥

K(H)

=
∥∥∥∥
∥∥

n∑

i, j=1

g
(

T ∗
j Ti

)
· A∗

i 〈η|η〉Y A j

∥∥∥∥
∥∥

K(H)

=
∥∥∥∥∥
∥

n∑

i, j=1

g
(

T ∗
j Ti

)
· A∗

i P A j

∥∥∥∥∥
∥

K(H)

,
(
As 〈η|η〉Y = P.

)

and a near-identical computation using 〈ζ |ζ 〉X = P also yields
∥
∥∥∥∥∥

〈
n∑

i=1

Ti (ζ • Ai )

∣
∣∣∣∣∣

n∑

j=1

Tj
(
ζ • A j
)
〉

Y

∥
∥∥∥∥∥

K(H)

=
∥
∥∥∥∥∥

n∑

i, j=1

g
(

T ∗
j Ti

)
· A∗

i P A j

∥
∥∥∥∥∥

K(H)

.
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Therefore, U is a surjective isometry. By continuity, U extends to a surjective isometry
U : X′ → Y′, where

X′ df= Span({T (ζ • A) | T ∈ K(X), A ∈ K(H)})X

and

Y′ df= Span({[�(T )](η • A) | T ∈ K(X) A ∈ K(H)})Y.

Note that X′ is a K(X)-invariant closed submodule of X and is non-trivial as ζ ∈ X′.
Also, Y′ is a �

[
K(X)
]
-invariant closed submodule of Y and is non-trivial as η ∈ Y′.

Hence, X′ = X by Proposition 4, so U : X → Y′ is a surjective isometry that, moreover,
is K(H)-linear. We may thus apply Theorem 3.5(i) of [9] to deduce that U ∈ U

(
X,Y′).

Next, we claim that U T = �(T )|Y′U for all T ∈ K(X). Fix T ∈ K(X). Then for all
T1, . . . , Tn ∈ K(X) and A1, . . . , An ∈ K(H), we have

(U T )

(
n∑

i=1

Ti (ξ • Ai )

)

= U

(
n∑

i=1

T Ti (ξ • Ai )

)

=
n∑

i=1

[�(T Ti )](η • Ai )

=
n∑

i=1

[�(T )�(Ti )](η • Ai )

= [�(T )]

(
n∑

i=1

[�(Ti )](η • Ai )

)

= [�(T )U ]

(
n∑

i=1

Ti (ξ • Ai )

)

.

By the density of Span({T (ξ • A) | T ∈ K(X), a ∈ K(H)}) in X, we obtain U T =
�(T )|Y′U as expected.

Now, define a poset (P,�) with the following properties:

• S is an element of P if and only if the following hold:
– S consists of pairs of the form (Z, V ), where Z is a non-trivial�

[
K(X)
]
-invariant

closed submodule of Y, and V ∈ U(X,Z) with T = V −1[�(T )|Z]V for all
T ∈ K(H).

– If (Z1, V1) and (Z2, V2) are distinct elements of S, then Z1 ⊥ Z2.
• For all S1,S2 ∈ P, we have S1 � S2 if and only if S1 ⊆ S2.

If C is a chain in (P,�), then
⋃

C is an upper bound for C in (P,�), so by Zorn’s

Lemma, there exists a maximal element M of (P,�). We claim that Y =
⊕

(Z,V )∈M
Z,

where the direct sum is internal. If this were not true, then
⊕

(Z,V )∈M
Z � Y. Letting



The Covariant Stone–von Neumann Theorem 139

Z′ df=
⎡

⎣
⊕

(Z,V )∈M
Z

⎤

⎦

⊥
, Theorem 6 says that Z′ is a non-trivial closed submodule of Y. A

routine verification reveals that �(T )
[
Z′] ⊆ Z′ for each T ∈ K(H) and that

{
K(X) → L

(
Z′)

T �→ �(T )|Z′

}

is a non-degenerate ∗-representation of K(X) on Z′. We may thus apply the first part of
the proof to Z′ to obtain

(
Z′′, W
)
, where

• Z′′ is a non-trivial�
[
K(X)
]
-invariant closed submodule of Z′ (and hence of Y), and

• W ∈ U
(
X,Z′′) with T = W −1[�(T )|Z′′ ]W for all T ∈ K(H).

As M �
{(
Z′′, W
)} ∪ M ∈ P, this contradicts the maximality of M. Therefore,

Y =
⊕

(Z,V )∈M
Z indeed, so

∀T ∈ K(H) : �(T ) = ⊕(Z,V )∈M�(T )|Z = ⊕(Z,V )∈MV T V −1

= [⊕(Z,V )∈MV
]
T
[
⊕(Z,V )∈MV −1

]
.

The proof is finally complete.

5. The Covariant Stone–von Neumann Theorem

In [16], Marc Rieffel used a special instance of Green’s Imprimitivity Theorem to prove
the classical Stone–von Neumann Theorem. According to him, the classical Stone–von
Neumann Theorem is a statement about the Morita equivalence of the C∗-algebra C

with the crossed product C∗(G,C0(G), lt). This gives us a more algebraic way of seeing
things, and it is precisely this point of view that guided our search for the covariant Stone–
von Neumann Theorem in the beginning. As we are dealing with Hilbert C∗-modules
instead of just Hilbert spaces, we will require the full strength of Green’s Imprimitivity
Theorem, as can be seen in our proof of the next result.

For the remainder of this section,we shall fix arbitraryC∗-dynamical systems (G, A, α)

and (G, A, β) with G abelian. We shall also fix a Haar measure μ on G and a Haar mea-
sure ν on Ĝ.

Proposition 6. Recalling the (G, A, α)-Schrödinger module representation(
L2(G, A, α),M,U,V

)
,

πM,V � U : C∗(G,C0(G, A), lt ⊗ α) → L

(
L2(G, A, α)

)

is then an injective C∗-homomorphism such thatRange
(
πM,V � U

) = K
(
L2(G, A, α)

)
.

Proof. It suffices by Remark 1 to show that πM,V = �. Let f ∈ Cc
(
Ĝ, A
)
and φ ∈

Cc(G, A). Then
[
πM,V(F( f ))

]
(q(φ)) = [(M � V)( f )

]
(q(φ))
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=
∫

Ĝ

[
M( f (γ )) ◦ V(γ )

]
(q(φ)) dν(γ )

=
∫

Ĝ
q( f (γ )(γ · φ)) dν(γ ).

The last integral looks like it should be q(F( f )φ), and indeed it is, but we have to
exercise some caution in justifying our guess. By Fubini’s Theorem, we have for all
ψ ∈ Cc(G, A) that

〈
q(ψ)

∣∣
∣∣

∫

Ĝ
q( f (γ )(γ · φ)) dν(γ )

〉

L2(G,A,α)

=
∫

Ĝ
〈q(ψ)|q( f (γ )(γ · φ))〉L2(G,A,α) dν(γ )

=
∫

Ĝ

[∫

G
αx−1
(
ψ(x)∗ f (γ )

[
γ (x) · φ(x)

])
dμ(x)

]
dν(γ )

=
∫

Ĝ

[∫

G
αx−1
(
ψ(x)∗
[
γ (x) · f (γ )φ(x)

])
dμ(x)

]
dν(γ )

=
∫

G

[∫

Ĝ
αx−1
(
ψ(x)∗
[
γ (x) · f (γ )φ(x)

])
dν(γ )

]
dμ(x)

=
∫

G
αx−1

(
ψ(x)∗
[∫

Ĝ
γ (x) · f (γ ) dν(γ )

]
φ(x)

)
dμ(x)

=
∫

G
αx−1
(
ψ(x)∗[F( f )](x)φ(x)

)
dμ(x)

= 〈q(ψ)|q(F( f )φ)〉L2(G,A,α).

This establishes the validity of our guess. Hence, πM,V(F( f )) = �(F( f )) for all
f ∈ Cc
(
Ĝ, A
)
, and as the range ofF is dense in C0(G, A), we conclude that πM,V = �.

Definition 7. Let (X, ρ, R, S) be a (G, A, α)-Heisenberg module representation and
(Y, σ, T, U ) a (G, A, β)-Heisenberg module representation. We say that (X, ρ, R, S) is
unitarily equivalent to (Y, σ, T, U ) if and only if there exists a W ∈ U(X,Y) such that

W R(x)W ∗ = T (x), W S(γ )W ∗ = U (γ ), Wρ(a)W ∗ = σ(a)

for all x ∈ G, γ ∈ Ĝ, and a ∈ A, in which case we write (X, ρ, R, S) ∼W (Y, σ, T, U ).

Definition 8. We say that (G, A, α) has the von Neumann Uniqueness Property (vNUP)
if and only if any (G, A, α)-Heisenberg module representation is unitarily equivalent to
a direct sum of copies of the (G, A, α)-Schrödinger module representation.

We are now ready to prove the main result of this paper.

Proposition 7 (The Covariant Stone–von Neumann Theorem). (G, A, α) has the vNUP
if A = K(H) for some non-trivial Hilbert space H.
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Proof. Let (X, ρ, R, S) be a (G, K(H), α)-Heisenbergmodule representation.We know
from Proposition 2 that

(
X, πρ,S, R

)
is a (G,C0(G, K(H)), lt ⊗ α)-covariant mod-

ule representation. Consequently, πρ,S � R is a non-degenerate ∗-representation of
C∗(G,C0(G, K(H)), lt ⊗ α) on X. However, Proposition 6 says that

πM,V � U : C∗(G,C0(G, K(H)), lt ⊗ α) → K

(
L2(G, K(H), α)

)

is a C∗-isomorphism, so it follows from Proposition 5 that
(
X, πρ,S � R ◦

(
πM,V � U

)−1
)

∼W

⊕

i∈I

(
L2(G, K(H), α), iK(L2(G,K(H),α))↪→L(L2(G,K(H),α))

)

for some index set I and some W ∈ U

(

X,
⊕

i∈I

L2(G, K(H), α)

)

. We thus have

[
πρ,S � R ◦

(
πM,V � U

)−1
]
(T ) = W ∗(⊕i∈I T )W,

for all T ∈ K
(
L2(G, K(H), α)

)
, or equivalently,

πρ,S � R(F) = W ∗[⊕i∈I πM,V � U(F)
]
W

for all F ∈ C∗(G,C0(G, K(H)), lt ⊗ α). It follows from Proposition 2.39 of [22] that

R(x) = W ∗[⊕i∈IU(x)
]
W and πρ,S( f ) = W ∗[⊕i∈I π

M,V( f )
]
W

for all x ∈ G and f ∈ C0(G, K(H)). However, as

πρ,S = ρ � S ◦ F−1
and πM,V = M � V ◦ F−1

,

we find that

ρ � S( f ) = W ∗[⊕i∈IM � V( f )
]
W

for all f ∈ C∗(Ĝ, K(H), ι
)
. Another application of Proposition 2.39 of [22] yields

S(γ ) = W ∗[⊕i∈IV(γ )
]
W and ρ(A) = W ∗[⊕i∈IM(a)

]
W

for all γ ∈ Ĝ and a ∈ K(H). The covariant Stone–von Neumann Theorem is hereby
established.

Our method of proof in no way depended on the classical Stone–von Neumann
Theorem, so it is a proper generalization in every way, as expressed by the corollary
below.

Corollary 1. The classical Stone–von Neumann Theorem is precisely the case when
H = C (any strongly-continuous action of a locally compact Hausdorff group on C is
necessarily trivial).
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6. The Non-Triviality of the Covariant Stone–von Neumann Theorem

Onemaynowask, “Does the covariant Stone–vonNeumannTheorem really say anything
new? Is there a unitary transformation that reduces it to the case of the trivial action of
G on K(H)?” The following result makes this question an extremely valid one.

Proposition 8. Let (G, A, α) be a C∗-dynamical system with G not assumed to be
abelian. Then there is a Hilbert A-module isomorphism � : L2(G, A, α) → L2(G, A, ι)

that satisfies

∀φ ∈ Cc(G, A) : �
(
q(G,A,α)(φ)

) = q(G,A,ι)

({
G → A
x �→ αx−1( f (x))

})
.

Proof. This is an easy verification that we leave to the reader.

Even though L2(G, A, α) is isomorphic to L2(G, A, ι), note that the covariant Stone–
von Neumann Theorem is not a statement about the unitary equivalence of Hilbert
C∗-modules, but a statement about the unitary equivalence of Heisenberg module repre-
sentations. Having said this, the next two results give a complete answer to the question
above.

Proposition 9. Let (G, A, α) and (G, A, β) be C∗-dynamical systems, with G abelian
and α �= β. Then a direct sum of copies of the (G, A, α)-Schrödinger module representa-
tion cannot be unitarily equivalent to a direct sum of copies of the (G, A, β)-Schrödinger
module representation.

Proof. By way of contradiction, suppose that there are index sets I and J such that
⊕

i∈I

(
L2(G, A, α),M(G,A,α),U(G,A,α),V(G,A,α)

)

∼W

⊕

j∈J

(
L2(G, A, β),M(G,A,β),U(G,A,β),V(G,A,β)

)

for some W ∈ U

⎛

⎝
⊕

i∈I

L2(G, A, α),
⊕

j∈J

L2(G, A, β)

⎞

⎠. Then we have for all x ∈ G and

a ∈ A that

U(G,A,α)(x)M(G,A,α)(a) = M(G,A,α)(αx (a))U(G,A,α)(x),

U(G,A,β)(x)M(G,A,β)(a) = M(G,A,β)(βx (a))U(G,A,β)(x),

W
[
⊕i∈IU(G,A,α)(x)

]
W ∗ = ⊕ j∈JU(G,A,β)(x),

W
[
⊕i∈IM(G,A,α)(a)

]
W ∗ = ⊕ j∈JM(G,A,β)(a),

so it follows that

⊕ j∈JM(G,A,β)(βx (a)) = ⊕ j∈JU(G,A,β)(x)M(G,A,β)(a)U(G,A,β)(x)−1

=
[
⊕ j∈JU(G,A,β)(x)

][
⊕ j∈JM(G,A,β)(a)

][
⊕ j∈JU(G,A,β)(x)−1

]

= W
[
⊕i∈IU(G,A,α)(x)

][
⊕i∈IM(G,A,α)(a)

][
⊕i∈IU(G,A,α)(x)−1

]
W ∗
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= W
[
⊕i∈IU(G,A,α)(x)M(G,A,α)(a)U(G,A,α)(x)−1

]
W ∗

= W
[
⊕i∈IM(G,A,α)(αx (a))

]
W ∗

= ⊕ j∈JM(G,A,β)(αx (a)),

which yields M(G,A,β)(βx (a)) = M(G,A,β)(αx (a)). Hence, for all x ∈ G, a ∈ A, and
φ ∈ Cc(G, A),

q(G,A,β)

({
G → A
y �→ αx (a)φ(y)

})
=
[
M(G,A,β)(αx (a))

](
q(G,A,β)(φ)

)

=
[
M(G,A,β)(βx (a))

](
q(G,A,β)(φ)

)

= q(G,A,β)

({
G → A
y �→ βx (a)φ(y)

})
,

from which we get (αx (a) − βx (a))φ(y) = 0A for all y ∈ G. As we can choose φ to
assume any value at any point, we obtain αx (a) = βx (a) for all x ∈ G and a ∈ A, which
contradicts α �= β.

Corollary 2. Let (G, K(H), α) and (G, K(H), β) be C∗-dynamical systems, with G
abelian, H a non-trivial Hilbert space, and α �= β. Then any (G, K(H), α)-Heisenberg
module representation cannot be unitarily equivalent to any (G, K(H), β)-Heisenberg
module representation.

Proof. This follows immediately from Propositions 7 and 9.

Corollary 2 should remind physicists of Haag’s Theorem in quantum field theory
(QFT), which posits the failure of the uniqueness of the canonical commutation relations
within QFT in general [6].

We finally arrive at a discussion of Takai–Takesaki Duality.

Theorem 7 (Takai–Takesaki Duality [14,22]). Let (G, A, α) be a C∗-dynamical system.
Then

C∗(Ĝ, C∗(G, A, α), α̂
) ∼= K

(
L2(G)
)

⊗ A,

where α̂ denotes the dual action of Ĝ on C∗(G, A, α).

In his proof of Takai–Takesaki Duality in [14], Iain Raeburn first showed that

C∗(Ĝ, C∗(G, A, α), α̂
) ∼= C∗(G,C0(G, A), lt ⊗ α).

He then formed a C∗-isomorphism C∗(Ĝ, C∗(G, A, α), α̂
) ∼= K

(
L2(G)
) ⊗ A as a

composition of a series of C∗-isomorphisms shown below, each requiring a lengthy
justification except for the last one:

C∗(G,C0(G, A), lt ⊗ α) ∼= C∗(G,C0(G, A), lt ⊗ ι) ∼= C∗(G,C0(G), lt) ⊗ A

∼= K

(
L2(G)
)

⊗ A.

His “untwisting” of α is thus performed at the level of C∗-crossed products, with the
last C∗-isomorphism being given by the classical Stone–von Neumann Theorem, which
relies on Green’s Imprimitivity Theorem. However, by taking full advantage of Green’s
Imprimitivity Theorem, we can derive a shorter proof of this C∗-isomorphism, which
“untwists” α at the level of Hilbert C∗-modules:
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Proposition 10. Let (G, A, α)be a C∗-dynamical system. Then C∗(G,C0(G, A), lt ⊗ α) ∼=
K
(
L2(G)
)⊗ A.

Proof. By Remark 1, Proposition 8, and basic results about Hilbert C∗-modules, we
have a one-line proof:

C∗(G,C0(G, A), lt ⊗ α) ∼= K

(
L2(G, A, α)

) ∼= K

(
L2(G, A, ι)

) ∼= K

(
L2(G) ⊗ AA

)

∼= K

(
L2(G)
)

⊗ A.

7. Conclusions

We would like to present here some questions and thoughts that naturally arose while
writing this paper:

(1) Is there a C∗-algebra A not C∗-isomorphic to K(H) for a Hilbert spaceH such that
any C∗-dynamical system of the form (G, A, α) has the von Neumann Uniqueness
Property?AsC∗-subalgebras ofK(H) areC∗-isomorphic to a direct sum

⊕

i∈I

K(Hi ),

where theHi ’s are Hilbert spaces, we think that a series of technical extensions can
be made to accommodate the Covariant Stone–von Neumann Theorem for such
C∗-algebras.

(2) The results of this paper suggest that quantum mechanics could be developed using
Hilbert C∗-modules as state spaces, in which case the expectations of observables
would assume values in a C∗-algebra. Can this idea be developed further?

(3) As mentioned in the introduction, we suspect that the covariant Stone–von Neumann
Theorem could be generalized to actions of non-abelian groups using techniques of
non-abelian duality.

While interesting in a purely-mathematical context, the Covariant Stone–von Neu-
mann Theorem has a rich interpretation from the perspective of quantum mechanics. By
including representations of C∗-dynamical systems, it allows for the consideration of
time-dependence of observables in addition to time-dependence of states. To contrast,
recall that a time-independent quantum system is modeled by a Hilbert space H and

a Hamiltonian Ĥ whose corresponding one-parameter unitary family,
(

e−(i t/�)·Ĥ
)

t∈R

,

determines the time evolution of the state space via

∀ψ ∈ H, ∀t ∈ R : ψ(t) = e−(i t/�)·Ĥ · ψ(0).

The time evolution of the state space determined by Ĥ can also be viewed as time

evolution of the algebraB(H) of bounded observables via

{
R → B(H)

t �→ e(i t/�)·Ĥ T e−(i t/�)·Ĥ
}
,

for all T ∈ B(H). From this perspective, one may state the time-independent version of
Ehrenfest’s Theorem:

d

dt
〈ψ |T (ψ)〉H = 〈ψ∣∣[i · Ĥ , T

]
(ψ)
〉
H.

As the Covariant Stone–von Neumann Theorem applies to C∗-dynamical systems
of the form (G, K(H), α), and as all ∗-automorphisms of K(H) are implemented via
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conjugation by unitaries, we make a convenient but natural restriction in the case when
G = R to the action αC , where C ∈ B(H) is self-adjoint, and

∀T ∈ B(H), ∀t ∈ R : αC
t (T )

df= e(i t/�)·C T e−(i t/�)·C .

The covariance conditions present in the definition of an
(
R, K(H), αC

)
-Heisenberg

module representation (X, ρ, R, S) then reduce to commutation relations between C
and the infinitesimal generators of R and S. It is in this context that we are able to get an
infinitesimal version of the Covariant Stone–von Neumann Theorem, which will appear
in a sequel to this article.

As mentioned in the introduction, a catalyst for the Stone–von Neumann Theorem
was to investigate the uniqueness of pairs (A, B) of self-adjoint Hilbert-space operators
satisfying the Heisenberg Commutation Relation. Nelson’s counterexample [12] shows
that uniqueness fails in general, and decades of research have been devoted to identifying
sufficient conditions for (A, B) that imply that

(
eis·A)

s∈R
and
(
eit ·B)

t∈R
satisfy theWeyl

Commutation Relation.
In the sequel, we follow the strategy in [8]—which takes place in the Hilbert-space

setting—to provide necessary and sufficient conditions for when a pair (A, B) of un-
bounded self-adjoint operators on a Hilbert K(H)-module yield one-parameter unitary
groups that satisfy the Weyl Commutation Relation.
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Appendix

Proof of Lemma 1. Fix f ∈ Cc(X, V ) and ε > 0. Let K
df= Supp( f ), and let

(
Up
)

p∈K
be a K -indexed sequence of open subsets of X with the following properties:

• Up is an open neighborhood of p in X for each p ∈ K .

• ‖ f (x) − f (p)‖V <
ε

3
for all x ∈ Up.

Clearly,
{
Up
}

p∈K covers K , and as K is compact, there is a finite subset F of K such

that
{
Up
}

p∈F also covers K and Up �= Up′ for distinct p, p′ ∈ F . As X is locally

compact and Hausdorff, there is a partition of unity
(
γp
)

p∈F for K that is subordinate

to
{
Up
}

p∈F , i.e.,

• γp ∈ Cc(X, [0, 1]) and Supp
(
γp
) ⊆ Up for each p ∈ F , and

•
∑

p∈F

γp(x) ≤ 1 for all x ∈ X , with equality holding for all x ∈ K .
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Define P ∈ Cc(X, V ) by

∀x ∈ X : P(x)
df=
∑

p∈F

γp(x) · f (p).

For all x ∈ X , we have f (x) =
∑

p∈F

γp(x) · f (x) (if x ∈ K , then
∑

p∈F

γp(x) = 1;

otherwise, f (x) = 0V ), so

‖ f (x) − P(x)‖V =
∥∥∥∥∥
∥

∑

p∈F

γp(x) · [ f (x) − f (p)]

∥∥∥∥∥
∥

V

≤
∑

p∈F

γp(x)‖ f (x) − f (p)‖V

≤
∑

p∈F

γp(x) · ε

3
≤ ε

3
.

As D is a dense subset of V , we can find an F-indexed sequence
(
vp
)

p∈F in D such

that
∥∥ f (p) − vp

∥∥
V <

ε

3
for each p ∈ F . Define Q ∈ Cc(X, V ) by

∀x ∈ X : Q(x)
df=
∑

p∈F

γp(x) · vp.

Then for all x ∈ X ,

‖P(x) − Q(x)‖V =
∥
∥∥∥∥∥

∑

p∈F

γp(x) · [ f (p) − vp
]
∥
∥∥∥∥∥

V

≤
∑

p∈F

γp(x)
∥∥ f (p) − vp

∥∥
V

≤
∑

p∈F

γp(x) · ε

3
≤ ε

3
.

Therefore, by the Triangle Inequality, we have for all x ∈ X that

‖ f (x) − Q(x)‖V ≤ ‖ f (x) − P(x)‖V + ‖P(x) − Q(x)‖V ≤ ε

3
+

ε

3
= 2ε

3
< ε.

As Q has the desired form, the first part of the theorem is therefore established.
LetU be an open neighborhood of K whose closure is compact (such a neighborhood ex-
ists because X is locally compact andHausdorff). ThenU is a locally compact Hausdorff
space and f |U ∈ Cc(U, V ), so we may apply the first part to find γ1, . . . , γn ∈ Cc(U )

and v1, . . . , vn ∈ D such that for all x ∈ U ,1
∥∥
∥∥∥

f |U (x) −
n∑

i=1

γi (x) · vi

∥∥
∥∥∥

V

<
ε

1 + λ(U )
.

Let γ̃1, . . . , γ̃n denote the respective extensions ofγ1, . . . , γn to X by0V . Then γ̃1, . . . , γ̃n ∈
Cc(X), and
∫

X

∥∥∥∥
∥

f (x) −
n∑

i=1

γ̃i (x) · vi

∥∥∥∥
∥

V

dλ(x) =
∫

U

∥∥∥∥
∥

f |U (x) −
n∑

i=1

γi (x) · vi

∥∥∥∥
∥

V

dλ(x)

1 The measure of a pre-compact subset, with respect to a regular Borel measure, is finite.
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≤
∫

U

ε

1 + λ(U )
dλ(x)

= λ(U ) · ε

1 + λ(U )

< ε.

The proof of the second part of the theorem is therefore established.
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