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Abstract: In this paper, we study a natural class of groups that act as affine transfor-
mations of T

N . We investigate whether these solvable, “abelian-by-cyclic," groups can
act smoothly and nonaffinely on T

N while remaining homotopic to the affine actions. In
the affine actions, elliptic and hyperbolic dynamics coexist, forcing a priori complicated
dynamics in nonaffine perturbations. We first show, using the KAM method, that any
small and sufficiently smooth perturbation of such an affine action can be conjugated
smoothly to an affine action, provided certain Diophantine conditions on the action are
met. In dimension two, under natural dynamical hypotheses, we get a complete classi-
fication of such actions; namely, any such group action by Cr diffeomorphisms can be
conjugated to the affine action byCr−ε conjugacy. Next, we show that in any dimension,
C1 small perturbations can be conjugated to an affine action via C1+ε conjugacy. The
method is a generalization of the Herman theory for circle diffeomorphisms to higher
dimensions in the presence of a foliation structure provided by the hyperbolic dynamics.
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1. Introduction

This paper is motivated by an attempt to understand the action on the 2-torus T
2 :=

R
2/Z

2 generated by the diffeomorphisms

g0(x, y) = (2x + y, x + y), g1(x, y) = (x + ρ, y), g2(x, y) = (x, y + ρ), ρ ∈ R.

Themap g0 is a hyperbolic linear automorphism, and g1, g2 are translations. They satisfy
the group relations

g0g1 = g21g2g0, g0g2 = g1g2g0, g1g2 = g2g1,

and no other relations if ρ is irrational. Broadly stated, our aim is classify all diffeomor-
phisms g0, g1, g2 satisfying these relations and no other.

To place the problem in a more general context, in this paper, we establish rigidity
properties of certain solvable group actions on the torus T

N = R
N/Z

N , for N > 1. The
solvable groups � considered here are the finitely presented, torsion-free, abelian-by-
cyclic (ABC) groups, which admit a short exact sequence

0 ↪→ Z
d → � → Z → 0.

All such groups are of the form � = �B , where B = (bi j ) is an integer valued, d × d
matrix with det(B) �= 0, and

�B = Z � Z
d =

〈
g0, g1, . . . , gd | g0gi =

⎛
⎝ d∏

j=1

g
b ji
j

⎞
⎠ g0,

[gi , g j ] = 1, i, j = 1, 2, . . . , d

〉
. (1.1)

ABC groups have been studied intensively in geometric group theory, as they present the
first case in the open problem to classify finitely generated, non-nilpotent solvable groups
up to quasi-isometry. The classification problem for ABC groups has been solved in
[FM1] (the non-polycyclic case, | det B| > 1) and [EFW1,EFW2] (the polycyclic case,
| det B| = 1), where the authors also revealed close connections between the geometry
of these groups and dynamics [FM2,EF]. Here we consider actions of polycyclic ABC
groups.

A Cr action α of a finitely generated group � with generators g1, . . . , gk on a closed
manifold M is a homomorphism α : � → Diffr (M), where Diffr (M) denotes the
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group of orientation-preserving, Ck diffeomorphisms of M . The action is determined
completely by α(g1), . . . , α(gk). The polycylic ABC groups admit natural affine actions
on tori, as follows.

Up to rearranging the standard basis for R
d , every matrix B ∈ SL(d; Z) can be

written in the form

B =
(
B̄ 0
0 Id−N

)
,

for some N ≤ d, where B̄ = (b̄i j ) ∈ SL(N ; Z), and Id−N is the (d − N ) × (d − N )

identity matrix, chosen to be maximal. In this paper, we restrict our attention to the cases
where d = K N + 1, for some K ≥ 1. Then

�B = �B̄,K :=
〈
g0, gi,k, i = 1, . . . , N , k = 1, . . . , K | [gi,k, g j,�] = 1,

g0gi,k =
⎛
⎝ N∏

j=1

g
b̄ ji
j,k

⎞
⎠ g0, i, j = 1, . . . , N , k, � = 1, . . . , K

〉
. (1.2)

Note that �B̄ = �B̄,1.
In the affine actions of �B̄,K we consider, the element g0 acts on T

N by the auto-
morphism x �→ Āx (mod Z

N ) induced by Ā ∈ SL(N , Z), and the elements gi,k, i =
1, . . . , N , k = 1, . . . , K act as translations x �→ x + ρi, j (modZ

N ), where ρi, j ∈ R
N .

Thus if we denote this action by α = αB̄,K : �B̄,K → Diffr (TN ), we have

α(g0)(x) = Āx, and α(gi,k)(x) = x + ρi, j .

The group relations in �B̄,K restrict the possible values of ρi, j ; we describe precisely
these restrictions in the next subsection.Wewill see that for a typical Ā, the affine actions
define a finite dimensional space of distinct (i.e. nonconjugate) actions on the torus.

Given such a group �B̄,K with the associated affine action ᾱ we investigate whether
there exist other actionsα : �B̄,K → Diffr (TN ) that are homotopic to ᾱ but not conjugate
to ᾱ in the group Diffr (TN ). If there are no such actions, or if such actions are proscribed
in some manner, then the group is colloquially said to be rigid (a much more precise
definition is given below).

The main rigidity results of this paper can be grouped into two classes: local and
global. Loosely speaking, local rigidity results concern those Cr actions that are Cr

perturbations of the affine action, and global results concern actions where Cr closeness
to the affine action is not assumed (although other restrictions might be present).

We obtain local rigidity results for the actions of �B̄ = �B̄,1, which imply similar
results for �B̄ = �B̄,K , K ≥ 1. To each action α on T

N sufficiently Cr close to an
affine action for some large r , we define an N × N rotation matrix ρ(α). Under suitable
hypotheses on ρ(α), if the columns of this matrix satisfy a simultaneous Diophantine
condition, then α is smoothly conjugate to the affine action with rotation matrix ρ(α).
The fact that the action α is a smooth perturbation of an affine action is crucial.

More generally, for each affine action ᾱ of �B̄,K there are K rotation matrices
ρ1(ᾱ), . . . , ρK (ᾱ). In the section on global rigidity, we consider actions α of �B̄,K

for which B̄ acts as an Anosov diffeomorphism, but the rotation matrices ρi (α) are not
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a priori well-defined. Under relatively weak additional assumptions on the action, we
obtain that the collection of ρi (α) can be defined and and forms a complete invariant of
the action, up to topological conjugacy. We then establish conditions under which this
topological conjugacy is smooth. In particular, if K is sufficiently large (depending on
the spectrum of Ā and the Anosov element α(g0)), then for almost every set of rotation
matrices ρ1(α), . . . , ρK (α), the conjugacy is smooth.

Before stating these results, we describe precisely the space of affine actions of �B̄,K
we consider.

1.1. The affine actions of�B̄,K . The following proposition can be verified directly using
the group relation (3.1). The ABC group relation imposes a restriction to the rotation
vectors as follows.

Proposition 1.1. Let Ā, B̄ ∈ SL(N , Z), and suppose that ρ1, ρ2, . . . , ρK are real-
valued, N × N matrices such that each ρ = ρi satisfies:

Āρ = ρ B̄ mod Z
N×N . (1.3)

Denote by ρi, j the j-th column of ρi . Then the affine maps

ᾱ(g0)(x) := Āx (modZ
N ), and ᾱ(gi, j )(x) := x + ρi, j (modZ

N )

define an action ᾱ = ᾱK ( Ā, ρ) : �B̄,K → SL(N , Z) � R
N on T

N .

Conversely, if α : �B̄,K → SL(N , Z) � R
N is an action on T

N with

α(g0)(x) = Āx (modZ
N ), and α(gi )(x) = x + βi, j (modZ

N ),

for some vectors βi, j ∈ R
N , then for each i = 1, . . . , K, the matrix ρi whose columns

are formed by the βi, j satisfies (1.3).

We will give more details about the set of rotation vectors satisfying (1.3) in Proposi-
tion B.1, Lemma B.2 and Theorem B.4 in Appendix B.

We further focus on the case K = 1. For Ā, B̄ ∈ SL(N , Z) and ρ ∈ MN (T), where
MN (T) denotes N × N matrices with entries in T, we denote by ᾱ( Ā, ρ) the action ᾱ

on T
N defined in Proposition 1.1. Let

Aff(�B̄, Ā) := {ᾱ( Ā, ρ) : ρ satisfies (1.3)}.
The next proposition describes faithful affine actions.

Proposition 1.2. The action α( Ā, ρ) ∈ Aff(�B̄, Ā) is faithful if and only if Ā is not
of finite order, and the column vectors ρ1, . . . , ρN of ρ are linearly independent over
Z; that is, if there exists (p1, . . . , pN ) ∈ Z

N with
∑N

i=1 piρi = 0 mod Z
N , then

p1 = · · · = pN = 0.

For Ā ∈ SL(N , Z) not of finite order, we thus define the set of faithful affine actions
by

Aff	(�B̄, Ā) := {ᾱ( Ā, ρ) ∈ Aff(�B̄, Ā) : ᾱ( Ā, ρ) is faithful}.
Proposition 1.2 reduces the problem of finding faithful actions to solving the equation
(1.3) for solution ρ with linearly independent columns over Z. We will provide more
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details in Appendix B. It may happen that the set Aff	(�B̄, Ā) is empty, for instance,
when Ā, B̄ ∈ SL(2, Z) with tr Ā �= tr B̄ (c.f. Proposition B.1(1)). It is useful to keep
in mind the following special case of abundant faithful actions. Suppose Ā = B̄ ∈
SL(N , Z) has simple spectrum, then all ρ of the form ρ = ∑N

i=1 ai Ā
i−1 for a =

(a1, . . . , aN ) ∈ R
N satisfy (1.3) (c.f. Lemma B.2). The action is not faithful when a is

a rational vector and is faithful when a is a Diophantine vector (c.f. Lemma B.3).

Proposition 1.3. Given Ā ∈ SL(N , Z), two actions ᾱ1, ᾱ2 ∈ Aff	(�B̄, Ā)are conjugate
by a homeomorphism homotopic to identity if and only if ᾱ1 = ᾱ2.

Thus actions in Aff	(�B̄, Ā) may not be locally rigid even among affine actions. Re-
turning to our original example, let

Ā =
(
2 1
1 1

)
, B̄ = Ā (1.4)

and

� Ā = 〈g0, g1, g2 | g0g1g−1
0 = g21g2, g0g2g

−1
0 = g1g2, [g1, g2] = 1〉.

Fix a0, a1 ∈ T
1, and let ρ(a0, a1) :=

(
a0 + 2a1 a1

a1 a0 + a1

)
. Then

{ᾱ( Ā, ρ(a0, a1)) : a0, a1 ∈ T
1}

defines a 2-parameter family of non-conjugate actions on T
2; in the next subsection we

explain that these are all such affine actions.
Thus thematrix ρ is a complete invariant of the faithful affine representations ᾱ( Ā, ρ)

of �B̄ . The columns of ρ are rotation vectors of the corresponding translations. We
will show that these rotation vectors, and hence the invariant ρ, extend continuously
to a neighborhood of the affine representations in such a way that ρ gives a complete
invariant under smooth conjugacy, under the hypotheses that the columns of ρ satisfy a
simultaneous Diophantine condition.

Further properties of the affine representations are discussed in Appendix C, which
also contains the proofs of the results in this section.

1.2. Local rigidity of �B̄,K actions. An action α : � → Diffr (M) is Cr,k,� locally rigid

if any sufficiently Ck small Cr perturbation α̃ is C� conjugate to α, i.e., there exists a
diffeomorphism h of M , C� close to the identity, that conjugates α̃ to α: h ◦ α(g) =
α̃(g) ◦ h for all g ∈ �. The paper of Fisher [Fi] contains background and an excellent
overview of the local rigidity problem for general group actions.

Local rigidity results for solvable group actions are relatively rare. In [DK], Dam-
janovic and Katok proved C∞,k,∞, for some large k, local rigidity for Z

n (n ≥ 2)
(abelian) higher rank partially hyperbolic actions by toral automorphisms, by introduc-
ing a new KAM iterative scheme. In [HSW] and [W1], the authors proved local rigidity
for higher rank ergodic nilpotent actions by toral automorphisms on T

N , for any even
N ≥ 6. Burslem and Wilkinson in [BW] studied the solvable Baumslag-Solitar groups

BS(1, n) := 〈a, b | aba−1 = bn; n ≥ 2〉)
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acting on T
1 and obtained a classification of such actions and a global rigidity result in

the analytic setting. Asaoka in [A1,A2] studied the local rigidity of the action on T
N

or S
N of non-polycyclic abelian-by-cyclic groups, where the cyclic factor is uniformly

expanding. There is a recent paper [W2] by Zhenqi Wang, who proves local rigidity for
certain solvable Lie group actions (without any constraints), which can be considered as
continuous time counterpart of our actions in the sense that they are solvable and there
are only two chambers.

Unless assumptions are made on the action (or the manifold), solvable group actions
are typically not locally rigid but can enjoy a form of partial local rigidity: that is, local
rigidity subject to constraints that certain invariants be preserved. The simplest example
occurs in dimension 1, where the rotation number of a single C2 circle diffeomorphism
supplies a complete topological invariant, provided that it is irrational, and a complete
smooth invariant, provided it satisfies a Diophantine condition. This result extends to
actions of higher rank abelian groups on T

1, under a simultaneous Diophantine assump-
tion on the rotation numbers of the generators of the action [M]. In fact, these results are
not just local in nature but apply to all diffeomorphisms of the circle [FK].

For higher dimensional tori, even local rigidity results of this type are scarce, one
problem being the lack of invariants analogous to the rotation number. One result in this
direction is by Damjanovic and Fayad [DF], who proved local rigidity of ergodic affine
Z
k actions on the torus that have a rank-one factor in their linear part, under certain

Diophantine conditions.

Definition 1.1. A collection of vectors v1, . . . , vm ∈ R
N is simultaneously Diophantine

if there exist τ > 0 and C > 0 such that

max
1≤i≤m

|〈vi , n〉| ≥ C

‖n‖τ
, ∀ n ∈ Z

N\{0}. (1.5)

We denote by SDC(C, τ ) the set of (v1, . . . , vm) satisfying (1.5).

For example, the matrix ρ IdN is simultaneously Diophantine if ρ is a Diophantine
number. It is known that for any for fixed τ > N − 1, the simultaneous Diophantine
vectors ⋃

C>0

SDC(C, τ )

form a full Lebesgue measure subset of T
N×m ( [P]).

Definition 1.2. Given a homeomorphism f : T
N → T

N homotopic to the identity and
preserving a probability measure μ, the vector

ρμ( f ) :=
∫
TN

( f̃ (x) − x) dμ, mod Z
N , (1.6)

where f̃ : R
N → R

N is any lift of f , is independent of the choice of lift f̃ . We call
ρμ( f ) the rotation vector of f with respect to μ.

Our main local rigidity result is:

Theorem 1.4. For any Ā, B̄ ∈ SL(N , Z) and any C, τ > 0, there exist ε > 0 and � ∈ N

such that for any ρ ∈ SDC(C, τ ) satisfying (1.3) the following holds. Let α : �B̄ →
Diff∞(TN ) be any representation satisfying



Rigidity of ABC Solvable Group Actions 1229

(1) α(g0) is homotopic to ᾱ( Ā, ρ)(g0) = Ā;
(2) max1≤i≤N ‖α(gi ) − ᾱ( Ā, ρ)(gi )‖C� < ε;
(3) there exist α(gi )-invariant probability measures μi , i = 1, . . . , N, such that the

matrix formed by the rotation vectors (ρμ1(α(g1)), . . . , ρμN (α(gN ))) is equal to ρ.

Then there exists a C∞ diffeomorphism h that is C1 close to identity such that h ◦ α =
ᾱ ◦ h. Moreover, the measure μ = h−1∗ Leb, where Leb is Haar measure on T

N , is the
unique α-invariant measure and thus satisfies ρμ(Ti ) = ρμi (Ti ) = ρi , i = 1, . . . , N .

We remark that there is no assumption on Ā and B̄ other than being in SL(N , Z), and no
smallness or hyperbolicity assumption on α(g0). The reason is that in the proof we first
apply the KAM scheme to the Z

N part of the action to find the conjugacy h then prove
that h also conjugates the α(g0) to Ā using the group relation and the ergodicity of the
Z
N action (c.f. Sect. 2). On the other hand, the assumption ρ ∈ SDC(C, τ ) satisfying

(1.3) puts some constraints on the choice of Ā and B̄, since it may happen that the affine
action is not even faithful for some choices of Ā and B̄.

We will prove in Appendix B that the simultaneously Diophantine condition is actu-
ally satisfied by a large class of matrices ρ and Ā, B̄ satisfying (1.3). One special case
is when Ā = B̄ ∈ SL(N , Z) has simple spectrum and ρ = ∑N

i=1 ai Ā
i−1, ai ∈ R,

i = 1, . . . , N . The columns of the matrix ρ are simultaneously Diophantine if the
nonvanishing ai ’s form a Diophantine vector (c.f. Lemma B.3).

Remark 1.1. We remark that the faithfulness (guaranteed by the Diophantine condition)
of the action is necessary for smooth conjugacy. For instance, consider ρ = 1/2 in (1.4)
and α(gi ) = ᾱ(gi ), i = 1, 2, and for any ε > 0,

α(g0)

[
x
y

]
=
[
2 1
1 1

] [
x
y

]
+ ε

[
sin(4πx)
sin(4πx)

]
.

One can verify that this gives rise to a � Ā action. We will see in Theorem 1.5 that for
sufficiently small ε, there exists a bi-Hölder conjugacy h satisfying h ◦ α = ᾱ ◦ h.
However, the conjugacy h is not C1. Indeed, 0 is a fixed point for both α(g0) and Ā.

The derivative D0α(g0) = Ā + 4πε

[
1 0
1 0

]
has determinant 1 but different trace than

Ā for ε �= 0, so it is not conjugate to Ā.

Since there are still faithful affine actions which do not satisfy the SDC conditions, for
which our KAM scheme does not work, it would be interesting to explore the local
rigidity of those actions. In the 2D case, [HX] gives the the topological classification
for all such actions and smooth classification for faithful actions by volume preserving
diffeomorphisms.

1.3. Global rigidity. The proof of the above local rigidity theorem is an application
of the KAM techniques for Z

N actions initiated by Moser [M] in the context of Z
N

actions by circle diffeomorphisms. The KAM technique is essentially perturbative. It
is natural to ask if our solvable group action is rigid in the nonperturbative sense, i.e.
whether it is globally rigid. A class of actions of a group, not necessarily close to a
algebraic actions, is called globally rigid if any action from this class is conjugate to an
algebraic one. There is a nonperturbative global rigidity theory for circle maps known
as Herman–Yoccoz theory. For abelian group actions by circle diffeomorphisms, the
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global version of Moser’s theorem was proved by Fayad and Khanin [FK]. These global
rigidity results rely on the Denjoy theorem stating that a C2 circle diffeomorphism with
irrational rotation number is topologically conjugate to the irrational rotation by the
rotation number.

In the higher dimensional case, there is no corresponding Herman-Yoccoz theory for
diffeomorphisms of T

N isotopic to rotations. The reason is that rotation vectors are not
well-defined in general. Even when rotation vectors are uniquely defined, they are not
the complete invariants for conjugacy analogous to rotation numbers for circle maps.
In particular, the obvious analogue of the topological conjugacy given by the Denjoy
theorem does not exist for diffeomorphisms of T

N , N > 1.
On the other hand, by a theorem of Franks (Theorem 3.1 below), Anosov diffeomor-

phisms of T
N are topologically conjugate to toral automorphisms. A diffeomorphism

f : M → M is called Anosov if there exist constants C and 0 < λ < 1 and for each
x ∈ M a splitting of the tangent space TxM = Es(x) ⊕ Eu(x) such that for every
x ∈ M , we have

• Dx f Es(x) = Es( f (x)) and Dx f Eu(x) = Eu( f (x)),
• ‖Dx f nv‖ ≤ Cλn‖v‖ for v ∈ Es(x)\{0} and n ≥ 0, and ‖Dx f nv‖ ≤ Cλ−n‖v‖
for v ∈ Eu(x)\{0} and n ≤ 0.

As the starting point of a global rigidity result of our � Ā action, we assume α(g0)
acts by an Anosov diffeomorphism homotopic to Ā. With the topological conjugacy at
hand, the next question is to show the topological conjugacy given by Franks’s theorem
also linearizes the abelian subgroup action. The new problem that arises is that for toral
diffeomorphisms homotopic to identity the rotation vector is in general not well-defined,
and it only makes sense to talk about the rotation set. When there is more than one vector
in the rotation set, the diffeomorphism cannot be conjugate to a translation.

1.3.1. Topological conjugacy The case N = 2 admits a fairly complete understanding
of the topological picture of ABC actions. In particular, the next result classifies the
ABC group actions on T

2 up to topological conjugacy when g0 acts by an Anosov
diffeomorphism and the gi , for i ≥ 1 are not too far from translations, in a sense that
we make precise.

Theorem 1.5. Let Ā, B̄ ∈ SL(2, Z) be linear Anosov and α : �B̄ → Diffr (T2), r > 1,
be a representation satisfying

(1) α(g0) is Anosov and homotopic to Ā;
(2) the sub-action generated by α(g1), . . . , α(gN ) has sub-linear oscillation (see Defini-

tion 1.3 below) in the case of trĀ=trB̄ and c-slow oscillation in the case of tr Ā �=trB̄
where c is in Remark 1.3.

Then there exist ρ satisfying (1.3) and a unique bi-Hölder homeomorphism h : T
2 → T

2

homotopic to the identity satisfying

h ◦ α = ᾱ( Ā, ρ) ◦ h.

Remark 1.2. In this theorem faithfulness of the action is not necessary, since we do not
need the rotation vectors of ᾱ(gi ) to be irrational.

The assumption on the sub-linear oscillation is removed in [HX] by introducing an
Anosov foliation Tits’ alternative. Here we give the statement and refer the readers to
[HX] for the proof.



Rigidity of ABC Solvable Group Actions 1231

Theorem 1.6 [HX]. Suppose that α : �B̄ → Diff(T2) is such that:

(1) B̄ ∈ SL(2, Z) is an Anosov linear map (i.e. B̄ has eigenvalues of norm different than
one.)

(2) The diffeomorphism α(g0) is Anosov and homotopic to Ā.

Then α is topologically conjugate to an affine action of �B̄ as in Proposition 1.1
up to finite index. More concretely, there exist a finite index subgroup �′ < �B̄ and
h ∈ Homeo(T2) such that hα(�′)h−1 is an affine action.

With the notion of c-slow oscillation, we also obtain the following result for general
N .

Theorem 1.7. Suppose N > 2. Given hyperbolic matrices Ā, B̄ ∈ SL(N , Z), there
exists 0 ≤ c < 1 such that the following holds. Let α : �B̄ → Diffr (TN ), r > 1, be a
representation satisfying

(1) α(g0) is Anosov and homotopic to Ā,
(2) the sub-action generated by α(g1), . . . , α(gN ) has c-slow oscillation (see Defini-

tion 1.3 below).

Then there exist ρ satisfying (1.3) and a unique bi-Hölder homeomorphism h : T
N →

T
N homotopic to the identity with

h ◦ α = ᾱ( Ā, ρ) ◦ h.

Remark 1.3. The constant c in Theorem 1.7 can be made explicit as follows. Suppose
Ā has eigenvalues λu1, . . . , λ

u
k and λs1, . . . , λ

s
�, k ≥ 1, � ≥ 1, k + � = N , (complex

eigenvalues and repeated eigenvalues are allowed), ordered as follows

|λs�| ≤ · · · ≤ |λs1| < 1 < |λu1 | ≤ · · · ≤ |λuk |. (1.7)

We introduce similar quantities for B̄

|μs
�′ | ≤ · · · ≤ |μs

1| < 1 < |μu
1 | ≤ · · · ≤ |μu

k′ |, �′ + k′ = N . (1.8)

Then c can be chosen to be any number satisfying

0 ≤ c < min

{
ln |λu1 |
ln |μu

k′ | ,
ln |λs1|
ln |μs

�′ |
}

. (1.9)

We next introduce the concept of sublinear deviation and c-slow deviation. Let T ∈
Diff0(TN ) and let T̃ : R

N → R
N be a lift of T . Denote by πi the projection to the i-th

component of a vector in R
N . Define the oscillation Osc(T̃ ) of T̃ by:

Osc(T̃ ) := max
x,i

{πi (T̃ (x) − x)} − min
x,i

{πi (T̃ (x) − x)}.

It is easy to see thatOsc is independent of the choice of the lift.WedefineOsc(T ) =Osc(T̃ ).

Definition 1.3. (1) For given c ∈ [0, 1), we say that the abelian group actionβ : Z
N →

Diffr0(T
N ) is of c-slow oscillation if

lim sup
‖p‖→∞

Osc(β(p))

‖p‖c < ∞.
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(2) We say the action β is of bounded oscillation if it is of 0-slow oscillation.
(3) We say the action β has sublinear oscillation if

lim sup
‖p‖→∞

Osc(β(p))

‖p‖ = 0.

Let us motivate the definition of c-slow oscillation a bit. In the circle map case, the
existence and uniqueness of rotation number relies crucially on the fact that the graph in
R
2 of every lifted orbit stays within distance 1 of a straight line, and the rotation number

is simply the slope of the line. This fact is also important in the study of Euler class
and bounded cohomology for groups acting on circle [Gh]. We say a diffeomorphism
f : T

N → T
N is of bounded deviation if there exists ρ ∈ T

N and a constant C > 0,
such that

‖ f̃ n(x) − x − nρ‖C0 ≤ C, ∀ n ∈ Z.

Being of bounded deviation implies that each orbit of f̃ stayswithin bounded distance
of the line Rρ. The concept of bounded deviation was first introduced by Morse, who
called it of class A, in the case of geodesic flows on surfaces of genus greater than 1
[Mo]. It was later shown by Hedlund that globally minimizing geodesics for an arbitrary
smooth metric on T

2 are also of bounded deviation [He]. A generalization to Gromov
hyperbolic spaces can be found in [BBI]. In the one-dimensional case, all circle maps
are of bounded deviation, from which follows immediately the existence of the rotation
number.

Being of bounded deviation does not however guarantee the existence of a conju-
gacy to a rigid translation. In the one dimensional case, a circle map with irrational
rotation number is only known to be semi-conjugate to a rotation. Denjoy’s counter-
example shows that the semi-conjugacy cannot be improved to a conjugacy without
further assumptions. In the two dimensional case, it is known [Ja] that for a conserva-
tive pseudo-rotation of bounded oscillation, the rotation vector being totally irrational
is equivalent to the existence of a semi-conjugacy to the rigid translation. Examples of
diffeomorphisms on T

2 of bounded deviation can be found in [MS], which are higher
dimensional generalizations of Denjoy’s examples on T

1.
It is easy to see that bounded deviation implies c-slow oscillation with c = 0. Sub-

linear oscillation occurs in first passage percolation (see Section 4.2 of [ADH]) where
paths minimizing a cost defined for random walks on Z

2 have c-slow oscillation with a
power law c ≤ 3/4 and conjecturally c = 2/3.

1.3.2. Smooth conjugacy The conjugacy h in Theorems 1.5 and 1.7 is only known to
be Hölder. It is natural to ask if we can improve the regularity. In hyperbolic dynamics,
there is a periodic data rigidity theory for Anosov diffeomorphisms, which implies in
the two-dimensional case that if the regularity of h is known to be C1, then h is in fact
as smooth as the Anosov diffeomorphism α(g0) (see Theorem 5.7 below).

So the problem is now to find sufficient conditions for our action to ensure that the
conjugacy h is C1. The invariant foliation structure given by the Anosov diffeomor-
phism enables us to generalize the Herman-Yoccoz theory for circle maps to the higher
dimensional setting.

To obtain higher regularity of the conjugacy, we consider a slightly different class of
ABC groups �B̄,K for some K ≥ 1.
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We introduce the following condition:

(	)ρ rationally generates T
N ,

meaning: the set
{∑N

i=1 piρi mod Z
N | (p1, . . . , pN ) ∈ Z

N
}
is dense in T

N , where ρi

denotes the i th column of ρ.

Theorem 1.8. Let Ā, B̄ ∈ SL(2, Z) with trĀ=trB̄. Given an Anosov diffeomorphism
A : T

2 → T
2 homotopic to Ā ∈ SL(2, Z), there is a C1 open set O of Anosov diffeo-

morphisms containing A, and a number K0 such that for any integer K ≥ K0, there
exists a full measure set R2,K ⊂ (T2)K such that the following holds.

Let α : �B̄,K → Diffr (T2) be a representation satisfying:

(1) α(g0) ∈ O,
(2) the sub-action generated by α(g1,1), α(g2,1) has sub-linear oscillation, and assume

in addition that ρ given by Theorem 1.5 satisfies (	).
(3) for some i : {1, . . . , K } → {1, 2}, the rotation vectors (ρi(1),1, . . . , ρi(K ),K ) lie in

R2,K , where ρ j,k is the rotation vector of α(g j,k) with respect to an invariant prob-
ability measure μ j,k , j = 1, 2 and k = 1, . . . , K.

Then there exists a unique Cr−ε conjugacy h conjugating the action α to an affine action
for ε arbitrarily small.

Theorem 1.9. Given a hyperbolic Ā ∈ SL(N , Z), N > 2, with simple real spectrum,
there exist a C1 neighborhoodO of Ā, a number 0 ≤ c < 1 and a number K0, such that
for any integer K > K0, there exists a full measure set RN ,K ⊂ (TN )K such that the
following holds.

Let α : �B̄,K → Diffr (TN ) be a representation satisfying

(1) α(g0) ∈ O;
(2) the sub-action generated by α(g1,1), . . . , α(gN ,1) has c-slow oscillation and assume

in addition that ρ given by Theorem 1.7 satisfies (	);
(3) for some i : {1, . . . , K } → {1, . . . , N }, the rotation vectors (ρi(1),1, . . . , ρi(K ),K ) lie

in RN ,K , where ρ j,k is the rotation vector of α(g j,k) with respect to an invariant
probability measure μ j,k , j = 1, . . . , N and k = 1, . . . , K.

Then there is a unique C1,ν conjugacy h conjugating α to an affine action for some
ν > 0.

In dimension 3, the regularity of the conjugacy can be improved applying the work
of Gogolev in [G2] (Theorem 5.8 below).

Corollary 1.10. Under the same assumptions as Theorem 1.9, suppose in addition that
N = 3 and r > 3. Then the conjugacy h ∈ Cr−3−ε, for arbitrarily small ε. Moreover,
there exists a κ ∈ Z such that if r /∈ (κ, κ + 3), then h ∈ Cr−ε.

Further relaxation of the assumptions of Theorem 1.9 and Corollary 1.10 is possible,
snd we discuss this in Sect. 6.3. In particular, in many cases the condition on the C1

closeness of A to Ā can be relaxed.
For the N > 2 case, the elliptic dynamics techniques in two dimensions carry over

completely. However, there are two new obstructions that come from the hyperbolic
dynamics. On the one hand, a conjugacy between two Anosov diffeomorphisms sends
(un)stable leaves to (un)stable leaves. On the other hand the affine foliations parallel
to the eigenspaces of Ā might not be sent to A-invariant foliations with smooth leaves.
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Adding to the difficulty is the fact that the regularity of the weakest stable and unstable
distributions are low (only Hölder in general). These issues present an obstacle to de-
veloping a theory of periodic data rigidity as strong as the two-dimensional setting. The
most general result [G1,GKS] in this direction for N > 2 states that if A and Ā are C1

close and have the same periodic data, then the conjugacy h is C1+ (i.e. Dh and Dh−1

are Hölder).
The paper is organized as follows. We prove the local rigidity Theorem 1.4 in Sect. 2.

All the remaining sections are devoted to the proof of the global rigidity results. In
Sect. 3, we prove that there is a common conjugacy (Theorems 1.5 and 1.7). In Sect. 4,
we prepare techniques from elliptic dynamics and hyperbolic dynamics. In Sect. 5, we
state and prove the main propositions needed for the proof of Theorems 1.8 and 1.9. In
Sect. 6, we prove the main Theorems 1.8 and 1.9. In Appendix A, we give the proof of
the number theoretic result Theorem 5.3. In Sect. 6.3, we prove the results about affine
actions stated in Sect. 1.1.

2. Local Rigidity: Proofs

In this section, we prove Theorem 1.4. Here is a sketch. Given representation α : �B̄ →
Diff∞(TN ) with (ρμ1(α(g1)), . . . , ρμN (α(gN ))) = ρ ∈ SDC(C, τ ), where μi is a
invariant probability measure of α(gi ), we can proceed as in [M] using the KAMmethod
to show that the abelian subgroup action can be smoothly conjugated to rigid translations.
Using the group relation, we can further show that this conjugacy also conjugates the
diffeomorphism α(g0) to a linear one.

The following proposition is proved by the standard KAM iteration procedure.

Proposition 2.1 (KAM for abelian group actions). Given C, τ > 0, there exist � ≥ 1
and ε0 > 0 such that the following holds.

Let T1, . . . , Tm ∈ Diff∞0 (TN ) be commuting diffeomorphisms with m > 1. Sup-
pose there exist Tk-invariant measures μk such that the rotation vectors ρμk (Tk), k =
1, . . . ,m, satisfy the simultaneous Diophantine condition with constants C, τ , and

max
1≤k≤m

‖Tk − id − ρμk (Tk)‖C� < ε0.

Then there exists a C∞ diffeomorphism h that is C1 close to the identity such that

h ◦ Tk(x) = h(x) + ρμk (Tk), x ∈ T
N , k = 1, . . . ,m.

Moreover the invariant measure μ = h−1∗ Leb, where Leb is Haar measure on T
N ,

satisfies ρμ(Tk) = ρμk (Tk), k = 1, . . . ,m.

Proof. The proof of this lemma is essentially the same as Moser [M]. A proof was
sketched by F. Rodriguez-Hertz in the case ofm = 2, N = 2 (see Theorem 6.5 of [R1]).
It is not difficult to adapt the proof to the case N > 2,m ≥ 2. The only complexity in the
case N > 1 is caused by the fact that the rotation vector is in general not uniquely defined.
Here we give a sketch of the KAM iteration procedure to explain how to incorporate the
rotation vector and invariant measure.

Given T1, . . . Tm , we want to find a conjugacy h as stated. The strategy of the KAM
iteration scheme is to find a sequence {h(n)}, n ≥ 0 of diffeomorphisms such that
limn Hn → h in the C1 topology, where Hn = h(n) ◦ · · · ◦ h(1). This limit h is a
priori only C1, but a standard argument then shows that h is smooth. Let h(0) = id, and
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for k = 1, . . . ,m, let T (n)
k (x) := HnTkH −1

n (x), for n ≥ 0. Let R(n)
k : T

N → R
N be

defined by the equation T (n)
k (x) = x + ρμk (Tk) + R(n)

k (x).

We show that for each k, the sequence R(n)
k converges to zero in the C1 topology as

n → ∞. When T (n−1)
k is known from the previous step, each h(n) is found by solving

the linearization of the equation h(n)T (n−1)
k = h(n) + ρμk (Tk). Since the equation is

not solved exactly in each step, the conjugated map T (n)
k = h(n)T (n−1)

k (h(n))−1 is not

yet the translation x �→ x + ρμk (Tk) but is closer to it than T (n−1)
k is. The standard

KAM method consists mainly of two ideas: the solvability of each linearized equation
under the Diophantine condition up to some loss of derivatives, and the convergence of
the procedure due to the quadratic smallness of R(n+1)

k compared with R(n)
k . The key

observation of [M] that will also be important here is that the commutativity enables us
to solve for one h(n) simultaneously for all k = 1, . . . ,m assuming the SDC.

Step 1: the cohomological equation and commutativity.
Write Tk(x) = x + ρk + Rk(x) for k = 1, . . . ,m, where ρk = ρμk (Tk) is the rotation

vector of Tk with respect to the given measure μk . For the sake of iteration later, we will
also label Tk = T (0)

k , Rk = R(0)
k and μk = μ

(0)
k . The vector ρk will be kept constant

independent of the super-script.
The conjugacy equation hTk = h + ρk gives

x + ρk + R(0)
k (x) + H(x + ρk + R(0)

k (x)) = x + H(x) + ρk, where h(x) = x + H(x),

whose linearization is

H(x + ρk) − H(x) = −R(0)
k (x). (2.1)

Taking Fourier expansions H(x) = ∑
n∈ZN Ĥne2π i〈n,x〉 and R(0)

k (x) = ∑
n∈ZN

R̂(0)
k,ne

2π i〈n,x〉, we get for n �= 0

Ĥn(e
2π i〈ρk ,n〉 − 1) = −R̂(0)

k,n . (2.2)

The commutativity condition TkTj = Tj Tk gives

x + ρ j + R(0)
j (x) + ρk + R(0)

k (x + ρ j + R(0)
j (x))

= x + ρk + R(0)
k (x) + ρ j + R(0)

j (x + ρk + R(0)
k (x)),

whose linearization is

R(0)
k (x + ρ j ) − R(0)

k = R(0)
j (x + ρk) − R(0)

j . (2.3)

In terms of Fourier coefficients,

R̂(0)
k,n(e

i2π〈ρ j ,n〉 − 1) = R̂(0)
j,n(e

i2π〈ρk ,n〉 − 1), n ∈ Z
N\{0}. (2.4)

The key point is that the commutativity equation (2.4) implies that the solution of the
cohomological equation (2.2) for some k also solves the same equation for all the other
j �= k.

Step 2: the Fourier cut-off and solving the cohomological equation.
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We next show how to solve the cohomological equation (2.2). By the simultaneous
Diophantine condition, there exists C > 0 such that for each n ∈ Z

N\{0}, there exists
k = k(n) ∈ {1, . . . ,m} such that |〈ρk, n〉| ≥ C

‖n‖τ where ρk = ρμk (Tk) is the rotation
vector.

We take a Fourier cutoff so that we can control higher order derivatives via lower
order derivatives. For J (0) ∈ N, we solve for Ĥn with |n| < J (0) so that we have
‖H̄ (1)‖C�+τ ≤ C(J (0))τ‖H̄ (1)‖C� , where H̄ (1)(x) := ∑

|n|≤J (0) Ĥne2π i〈n,x〉. Solving
(2.2) for k = k(n), we get

Ĥn = −(e2π i〈ρk(n),n〉 − 1)−1 R̂k(n),n, for all |n| ≤ J (0).

Denoting h(1)(x) = x + H̄ (1)(x), we get the estimate ‖H̄ (1)‖C� ≤ C‖R(0)‖C�+τ by the
SDC.

From equation (2.2) and (2.4), we get that H̄ (1) solves the following equation, for all
k:

H̄ (1)(x + ρk) − H̄ (1)(x) = −�J (0) R(0)
k + R̂(0)

k,0, (2.5)

where �J (0) denotes the projection to Fourier modes with |n| < J (0), and the constant

R̂(0)
k,0 is the 0th Fourier coefficient of R

(0)
k .

Step 3: the iteration.
Further introduce, for k = 1, . . . ,m,

T (1)
k = h(1)T (0)

k (h(1))−1 = x + ρk + R(1)
k , and μ

(1)
k = h(1)∗ μ

(0)
k ,

where R(1)
k is defined as follows. Expanding the expression h(1)T (0)

k = T (1)
k h(1), we get

for all k:

x + ρk + R(0)
k + H̄ (1)(x + ρk + R(0)

k ) = x + H̄ (1)(x) + ρk + R(1)
k ◦ h(1).

Comparing with (2.5), we obtain for all k:

R(1)
k = (H̄ (1)(x + ρk + R(0)

k ) − H̄ (1)(x + ρk)) ◦ (h(1))−1

+(R(0)
k − �J (0) R(0)

k ) ◦ (h(1))−1 + R̂(0)
k,0. (2.6)

Since the conjugation by h(1) does not change the rotation vector, we have

ρk = ρμk (Tk) = ρ
μ

(0)
k

(T (0)
k )

=
∫
TN

T̃ (0)x − x dμ
(0)
k =

∫
TN

T̃ (1)x − x dμ
(1)
k = ρ

μ
(1)
k

(T (1)
k );

from the equation ρk = ∫
T̃ (1)
k (x) − x dμ

(1)
k , we get

∫
R(1)
k dμ

(1)
k = 0, so that the j th

component j = 1, . . . , N of R(1)
k vanishes at some point x j . We see from (2.6) that

R̂(0)
k,0 is bounded by the C0 norm of the first two terms on the RHS. The remainder R(1)

k
consists of the quadratically small error discarded when deriving (2.1), as well as the
higher Fourier modes with |n| ≥ J (0) in R(0)

k . We thus obtain from (2.6) that

‖R(1)
k ‖C1 ≤ C‖H̄ (1)‖C2‖R(0)

k ‖C1 + C‖(R(0)
k − �J (0) R(0)

k )‖C1 . (2.7)
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We set ε(1) = maxk ‖R(1)
k ‖C1 .

The standard KAM method in [M] then applies by repeating the above procedure
for infinitely many steps, during which we shall let J (n) → ∞, ε(n) → 0. The loss of
derivative in (2.7) is handled in the standard way using the quadratic smallness on the
RHS of (2.7). Higher order derivative estimates are obtained by interpolation between
the C1 estimate in (2.7) and C�+τ estimate due to the Fourier cut-off for some large �.
In the limit, we get the conjugacy h in the statement. Since a collection of translations
satisfying the simultaneous Diophantine condition is uniquely ergodic on the torus, we
get the common invariant measure μ must equal h−1∗ Leb.

We next prove the final statement on the rotation vectors. On the one hand, we have
by the conjugacy that ρμk (Tk) = ρh∗μk (T̄k) and ρLeb(T̄k) = ρμ(Tk). On the other hand,
since we have T̄k(x) = x +ρμk (Tk), we get ρLeb(T̄k) = ρμk (Tk) by definition of rotation
vectors. This completes the proof. ��

Now we are ready to prove local rigidity.

Proof of Theorem 1.4 (local rigidity). Let Ti = α(gi ) and let

T̄i = ᾱ( Ā, ρ)(gi ) : x �→ x + ρμi (Ti ), i = 1, . . . , N .

Using the commutativity of the Tj and the simultaneous Diophantine condition, we
apply Proposition 2.1 to construct h that simultaneously conjugates Ti to T̄i :

h ◦ Ti = T̄i ◦ h, i = 1, . . . , N .

We then compose with h−1 on the right and h on the left on both sides of the group

relation ATi = (
∏N

j=1 T
b ji
j )A to get

hAh−1T̄i = (

N∏
j=1

T̄
b ji
j )hAh−1;

in other words,

hAh−1(x + ρ j ) = hAh−1(x) +
N∑
j=1

b jiρ j , mod Z
N , i = 1, . . . , N . (2.8)

We introduce the function F(x) = hAh−1(x) − Āx defined from T
n to T

n . We can
choose a homotopy connecting h to the identity under which F is homotopic to A − Ā.
Since A is homotopic to Ā, the image of A − Ā is homotopic to a point. Therefore we
can treat F as a continuous function fromT

n toR
n . Combined with (1.3), equation (2.8)

then gives F(x + ρi ) = F(x), mod Z
n, i = 1, . . . , N . Continuity of F implies that

F(x + ρi ) − F(x) is a constant integer vector. We may choose n ∈ Z such that nρi mod
Z
n is arbitrarily close to zero, and so by the continuity of F , this constant integer vector

has to be zero. We thus obtain that F(x + ρi ) = F(x). The Diophantine property of the
vectors ρ1, . . . , ρN implies that the action generated by the T̄i on T

N is ergodic with
respect to Leb. Since the function F(x) is invariant, there is a vector F0 ∈ R

N such that
F(x) = hAh−1(x) − Āx = F0 almost everywhere (but in fact everywhere, since F is
continuous).

To kill this constant vector F0, we introduce the translation t (x) = x + (id− Ā)−1F0.
It is easy to check that t conjugates Āx+F0 and Āx , i.e. Āt (x)+F0 = t ( Āx). Composing
the above h with t , we get the conjugacy in the statement of the theorem. ��
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3. The Existence of the Common Conjugacy

In this section, we prove Theorem 1.7. We will use the following result of Franks [Fr].

Theorem 3.1. If A : T
N → T

N is an Anosov diffeomorphism, then A is topologi-
cally conjugate to a hyperbolic toral automorphism induced by A∗ : H1(T

N , Z) →
H1(T

N , Z).

This result has been generalized to the infranilmanifold case by Manning. It is also
known ([KH] Theorem 19.1.2) that the conjugacy h is bi-Hölder; i.e. both h and h−1

are Hölder continuous.

Proof of Theorem 1.7. Suppose we are given an action α : �B̄ → Diffr (TN ) such that
α(g0) = A is Anosov and homotopic to Ā, and α(gi ) = Ti , i = 1, . . . , N has c-slow
oscillation, where c satisfies (1.9). For p = (p1, . . . , pn) ∈ Z

N , we use the notation T p

to denote
∏N

i=1 T
pi
i . ByTheorem3.1, there is a homeomorphismh such thathAh−1 = Ā.

Let Ri := hTih−1, for i = 1, . . . , N . We will show that Ri (x) = x + ρi where ρi is the
rotation vector of Ti . We lift h to h̃ : R

N → R
N and decompose

h̃(x) = x + g(x), h̃−1(x) = x + g−(x), T̃ p(x) = x + �Tp(x),

for p ∈ Z
N where g(x), g−(x) and �Tp(x) are Z

N -periodic.
For p ∈ Z

N and t ∈ T
N , we have

R̃ p(x) = h̃T̃ ph̃−1(x)

= T̃ ph̃−1(x) + g(T̃ ph̃−1(x))

= h̃−1(x) + �Tp(h̃
−1(x)) + g(T̃ ph̃−1(x))

= x + �Tp(h̃
−1(x)) + g−(x) + g(T̃ ph̃−1(x)).

Since both g− and g are uniformly bounded, it follows that if {T p} has c-slow oscillation,
then so does {Rp}. From the group relation, we obtain for p ∈ Z

N and n ∈ Z,

Ān R̃ p(x) = R̃(B̄t )n p Ān(x) + Qp,n, Ān(R̃ p(x) − x)

= (R̃(B̄t )n p − id) Ān(x) + Qp,n, (3.1)

where Qp,n is an integer vector in Z
N depending on p, n and the choice of the lifts.

For each R̃ p, p ∈ Z
N ,we take theFourier expansion R̃ p(x)−x = ∑

k∈ZN R̂k(p)e2π i〈k,x〉,
where the coefficient for k �= 0 is

R̂k(p) =
∫
TN

(R̃ p(x) − x)e−2π i〈k,x〉 dx .

The condition that {Rp} has c-slow oscillation implies that there exist C, P such that
when ‖p‖ ≥ P , we have ‖R̂k(p)‖ ≤ C‖p‖c, uniformly for all k �= 0. From equation
(3.1) we obtain that for all k ∈ Z

N\{0},
R̂k(p) = Ā−n R̂( Āt )−nk((B̄

t )n p). (3.2)

We next consider the splitting of R
N into W̄u(0) ⊕ W̄s(0), the direct sum decom-

position into unstable and stable eigenspaces of Ā. Each R̂k(p) is a vector, so we
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write R̂k(p) = (R̂k(p))u + (R̂k(p))s where (R̂k(p))u,s ∈ W̄u,s(0). Applying Ān

we get Ān R̂k(p) = Ān(R̂k(p))u + Ān(R̂k(p))s with the estimate ‖ Ān(R̂k(p))u‖ ≥
|λu1 |n‖(R̂k(p))u‖. Doing this decomposition to the equation (3.2), we obtain the follow-
ing estimate for ‖(B̄t )n p‖ ≥ P:

‖(R̂k(p))
u‖ ≤ 1

|λu1 |n
‖R̂( Āt )−nk((B̄

t )n p)‖ ≤ C
‖(B̄t )n p‖c

|λu1 |n
≤ C‖p‖c

( |μu
k′ |c

|λu1 |
)n

→ 0

as n → ∞, if c <
ln |λu1 |
ln |μu

k′ |
. Similarly, letting n → −∞ and projecting to the W̄s(0) in

the above argument, we get that the projection of R̂k(p) to W̄s(0) is also 0. Therefore
R̂k(p) = 0 for all k �= 0. This implies that each Rp(x) − x, p ∈ Z

N , is a constant.
Since a conjugacy does not change the rotation vector, we have Ri (x) = x + ρi , where
ρi the rotation vector of Ti , i = 1, . . . , N . Next we have Rp(x) = x + ρ p, p ∈ Z

N .
This completes the proof. ��

4. Preliminaries: Elliptic and Hyperbolic Dynamics

In this section, we explain and develop techniques from elliptic and hyperbolic dynamics
that we will use to prove our main results. We first introduce the framework of Herman–
Yoccoz–Katznelson–Ornstein for obtaining regularity of the conjugacy of circle maps
and generalize it to abelian group actions on T

N . Next, we state facts about Anosov
diffeomorphisms, including the invariant foliation structure and its regularity properties.

4.1. Elliptic dynamics: the framework ofHerman–Yoccoz–Katznelson–Ornstein. In this
section, we generalize to abelian group actions the framework of Herman–Yoccoz theory
for circle maps after Katznelson-Ornstein.

Definition 4.1. Let F be a continuous foliation of T
N by one-dimensional uniformly

C1 leaves F(x), x ∈ T
N , and let k ≥ 1.

(1) We denote by Hk = Hk(TN ) the group of Ck diffeomorphisms on T
N , k ∈ N.

(2) We denote by Hk
F the subgroup of diffeomorphisms in Hk preserving the foliation

F ; i.e., fF(x) = F( f (x)), ∀ f ∈ Hk
F and ∀ x ∈ T

N .
(3) The Ck norm ‖ · ‖Ck (F) on C

k(TN , R
N ) along the foliation F is defined as follows.

For ϕ ∈ Ck(TN , R
N ), let

‖ϕ‖Ck (F) :=
k∑

i=0

sup
x

‖(Di
x (ϕ|F ) ‖,

where the norm inside the summand on the right hand side is the operator norm
induced by the Euclidean metric restricted to the leaves of F .
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4.1.1. Generalization of the framework of Herman after Katznelson–Ornstein The fol-
lowing statement about circle maps was known to Herman [H]:

Suppose that f ∈ Hk(T1) takes the form f = h−1(h(x) + ρ), where h : T
1 → T

1

is a homeomorphism and ρ /∈ Q. Then h ∈ Hk if and only if the iterates { f j } j∈Z are
uniformly bounded inHk .

Following Katznelson–Ornstein [KO], we generalize this statement to abelian sub-
group actions.

Definition 4.2. A collection ofm vectors ρ1, . . . , ρm ∈ T
N is said to rationally generate

T
N if {∑m

i=1 piρi , pi ∈ Z, i = 1, . . . ,m} is dense on T
N .

Given commuting diffeomorphisms T1, . . . , Tm onT
N and p = (p1, . . . , pm) ∈ Z

m ,
we will use the abbreviation T p = ∏m

i=1 T
pi
i .

Proposition 4.1. Suppose that for some k > 0, the maps Ti ∈ Hk(TN ), i = 1, . . . ,m,
commute. Suppose also that there exists a homeomorphism h : T

N → T
N such that

Ti = h−1T̄i h, where T̄i (x) = x + ρi ,mod Z
N , i = 1, 2, . . . ,m, and ρ1, . . . , ρm

rationally generate T
N . Fix a lift h̃ : T

N → R
N of h.

Then the following equality holds for all x:

h̃(x) = const. + lim
n→∞

1

(2n + 1)N
∑

‖p‖�∞≤n

(
T̃ p(x) − ρ p

)
. (4.1)

where p = (p1, . . . , pm) ∈ Z
m, ρ = (ρ1, . . . , ρm) ∈ T

N×m and T̃ p is the lift of T p

satisfying T̃ p(0) = h̃−1(h̃(0) + ρ p).

Proof of Proposition 4.1. From T p = h−1T̄ ph, we get T p = h−1(h(x)+ρ p). We next
fix the lift T̃ p of T p that satisfies T̃ p(0) = h̃−1(h̃(0) + ρ p) to obtain

T̃ p(x) − ρ p − h̃(x) = (h̃−1 − id) ◦ (h̃(x) + ρ p).

Averaging over all p ∈ Z
m with ‖p‖�∞ ≤ n, and letting n → ∞, we get

h̃(x) = −
∫
TN

(h̃−1(x) − x)dx + lim
n→∞

1

(2n + 1)N
∑

‖p‖�∞≤n

(
T̃ p(x) − ρ p

)
,

where to get the integral, we use the fact that the affine action of Z
m via the rigid

translations T̄i , i = 1, . . . ,m is ergodic with respect to Lebesgue, combined with a
version of the Birkhoff ergodic theorem for abelian group actions (c.f. Theorem 1.1. of
[L]). ��
Corollary 4.2. Let the abelian group A = {T p : p ∈ Z

m} (< Hk(TN )) and the conju-
gacy h be as in Proposition 4.1.

(1) Let F̄ = {F̄(x), x ∈ T
N } be an affine foliation of T

N by parallel lines. Let F be the
(topological) foliation of T

N whose leaves are F(x) = h−1(F̄(h(x))), x ∈ T
N .

(2) Assume the leaves F(x) of the foliation F are uniformly C1. Note that this implies
that A < Hk

F (TN ).

If the set {T p(x) − x : p ∈ Z
m} ⊂ Ck(TN , R

N ) is precompact in the ‖ · ‖Ck (F) norm,
then h is uniformly Ck along the leaves of F . Moreover, in the case of k = 1, we also
have that h−1 is uniformly C1 along the leaves of F̄ .
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The proof of Corollary 4.2 is given in Sect. 4.1.2.
Given a continuous increasing function ψ(x) : R≥0 → R≥0 with ψ(0) = 0, we

say that a function f : (X, d) → (X ′, d ′) between two metric spaces has modulus of
continuity ψ at a point x0 ∈ X , if there exists a constant C > 0 such that

d ′( f (x0), f (y)) ≤ Cψ(d(x0, y)),

for any y ∈ X sufficiently close to x0.

Proposition 4.3. Let the abelian group A, the conjugacy h, and the foliations F , F̄ be
as in Corollary 4.2. Assume that {T p(x) − x : p ∈ Z

m} ⊂ C1(TN , R
N ) is uniformly

bounded in the ‖ · ‖C1(F) norm and that the mapping

ρ p (mod Z
N ) �→ ‖T p(x) − x‖C1(F)

has modulus of continuity ψ at ρ p = 0. Then both ‖D (h|F ) ‖ and ‖D (h−1|F̄
) ‖ have

modulus of continuity ψ with respect to the Euclidean metric.

The proof of Proposition 4.3 is given in Sect. 4.1.3.

4.1.2. Proof of Corollary 4.2 We only prove the case of k = 1. A similar argument
gives the continuity of higher derivatives.

We denote the nth Birkhoff average on the right hand side of of (4.1) by S̃n , so (4.1)
can be rephrased as h̃ = limn→∞ S̃n up to an additive constant. Since A is assumed to
be pre-compact in H1

F and the pointwise convergence is given by (4.1), we have that
{DS̃n|F : n ≥ 1} is precompact in the C0 operator norm, by Theorem 5.35 of [AB],
which states that the convex hull of compact sets is compact in a completely metrizable
locally convex space. This shows that h is differentiable along F and any subsequential
limit of {DS̃n|F : n ≥ 1} is Dh|F .

We have proved that Dh|F is continuous. To show that Dh−1|F̄ is also continuous, by
the implicit function theorem, it is enough to show that ‖Dxh|F‖ is bounded away from
zero. Fix ε > 0 such that ‖Dx0h|F‖ < ε for some x0. Then the same inequality holds
in a small neighborhood B(x0) of x0. By the ergodicity of T p, there exist finitely many
pi , i = 1, . . . , n such that ∪n

i=1T
pi (B(x0)) = T

N . This, combined with the equation

DT p(x)h|F · DxT
p|F = Dxh|F ,

implies that there exists a constant C independent of p such that

‖Dxh|F‖ < Cε, (4.2)

for all x ∈ T
N

Consider a leaf F(x) and x ′ ∈ F(x). We lift the leaf to the universal cover and
consider the image of the segment between x and x ′ under h̃, i.e. the line segment
between h̃(x) and h̃(x ′). Since h̃(x) = x + g(x) where g(x) is Z

N periodic, choosing x
and x ′ far apart on F(x) we can make ‖h̃(x ′) − h̃(x)‖ ≥ 1. Fix such a choice of x, x ′.
There is a C1 curve γx,x ′ ⊂ F(x) connecting x to x ′ with length bounded by a constant
Cx,x ′ . The image h(γx,x ′) is a C1 curve connecting h(x) and h(x ′) with length larger
than 1. Inequality (4.2) implies that

1 ≤ ‖h̃(x) − h̃(x ′)‖ ≤
∫

γx,x ′
‖Dh|F‖ ≤ εCx,x ′ .

This implies that ε > C−1
x,x ′ , and so ‖Dh|F‖ is uniformly bounded below, completing

the proof. ��
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4.1.3. Proof of Proposition 4.3 We first introduce a translation-invariant distance d1F on
A that is equivalent to theC1 normas follows (c.f. [K]). Let B1 be the set ofφ ∈ C(Tn, R)

with ‖φ‖C1(F) = 1. For f, g ∈ Hk
F , we introduce d1F ( f, g) := d1F ( f g−1, id) and

d1F ( f ) := log(max{�( f ),�( f −1}) + sup
x

‖ f (x) − x‖,
where �( f ) := supφ∈B1 ‖φ ◦ f ‖C1(F). To verify the triangle inequality, we note that

�( f g) = sup
φ∈B1

‖φ ◦ ( f g)‖C1(F) = sup
φ∈B1

∥∥∥∥∥ 1

‖φ ◦ f ‖C1(F)

φ ◦ ( f g)

∥∥∥∥∥
C1(F)

· ‖φ ◦ f ‖C1(F)

≤ sup
ψ∈B1

‖ψ ◦ g‖C1(F) sup
φ∈B1

‖φ ◦ f ‖C1(F) = �( f )�(g).

(4.3)

The chain rule implies that d1F is equivalent to the C1 distance supx ‖ f (x) − x‖C1(F).
By the assumption on the modulus of continuity ψ , the map from ρ p ∈ T

N to
C1(F) via ρ p �→ T p is continuous in the C1 norm at the point ρ p = 0. By the
translation invariance of the d1F norm, it is continuous at every point ρ p mod Z

N . From
the compactness of T

N we obtain that {T p(x), p ∈ Z
m} is pre-compact in H1

F . If
then follows from Corollary 4.2 that the functions Dh|F and Dh−1|F̄ are continuous.
Differentiating the expression T p(x) = h−1(h(x) + ρ p) along the leaf F(x), we get
that

DxT
p|F − id|F =

(
D(h(x)+ρ p)h

−1|F̄ − Dh(x)h
−1|F̄

)
· Dxh|F .

Since the LHS satisfies the modulus of continuity ψ by assumption, i.e.

‖DxT
p|F − id|F‖C0 ≤ Cψ(‖ρ p‖),

for all p with ‖ρ p‖ small, we get

‖D(h(x)+ρ p)h
−1|F̄ − Dh(x)h

−1|F̄‖C0 ≤ Cψ(‖ρ p‖)(min
x

‖Dxh|F‖)−1.

Hence Dh−1|F̄ has modulus of continuity ψ . To get the same modulus of continuity for
Dh|F , we use Dh|F · Dh−1|F̄ = id|F̄ . ��

4.2. Hyperbolic dynamics: invariant foliations of Anosov diffeomorphisms. In this sec-
tion, we recall some results from hyperbolic dynamics. Our statements concern the the
unstable objects Wu and Eu ; the stable analogues also hold.

Definition 4.3. A C1 diffeomorphism A : T
N → T

N is a Anosov diffeomorphism with
simple Mather spectrum if there exists a DA-invariant splitting of the tangent space

TxT
N = Es

�(x) ⊕ · · · ⊕ Es
1(x) ⊕ Eu

1 (x) ⊕ · · · ⊕ Eu
k (x), k + � = N , k, � ≥ 1

and numbers

μs
�

≤ μ̄s
� < · · · < μs

1
≤ μ̄s

1 < 1 < μu
1

≤ μ̄u
1 < · · · < μs

k
≤ μ̄s

k

such that for some constant C > 1,

1

C
(μu,s

i
)n ≤ ‖DAnv‖

‖v‖ ≤ C(μ̄
u,s
i )n, ∀v ∈ Eu,s

i \{0},
where i = 1, . . . , � for s and i = 1, . . . , k for u.
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The next result is classical (see [HPS]).

Proposition 4.4. For any Cr , r > 1Anosov diffeomorphism A : T
N → T

N with simple
Mather spectrum, the strong invariant distribution Eu

i≤ := Eu
i ⊕ . . . ⊕ Eu

k is uniquely

integrable, tangent to a foliation Wu
i≤ of T

N whose leaf Wu
i≤(x) passing through x is

Cr , x ∈ T
N . This gives rise to a flag of strong unstable foliations

Wu
k (x) ⊂ Wu

(k−1)≤(x) ⊂ · · · ⊂ Wu
2≤(x) ⊂ Wu

1≤(x) := Wu(x), x ∈ T
N ,

where each of the inclusions is proper andWu
i≤ sub-foliatesWu

(i−1)≤ with Cr leaves for
i = 2, . . . , k.

It is known that simple Mather spectrum is an open property in the C1 topology. In
particular, if Ā is a toral automorphism with simple real spectrum, then an Anosov
diffeormophism that is C1 close to Ā has simple Mather spectrum.

Proposition 4.5 (Hölder regularity of the invariant distribution,Theorem19.1.6 of [KH]).
For each i , the distribution Eu

i (x) is Hölder in the base point x.
The Holder exponent depends only on the expansion and contraction rates μ̄

u,s
i and

μu,s
i

.

Wedenote the weak unstable bundles for A by Eu
≤i := Eu

1 (x)⊕Eu
2 (x)⊕· · ·⊕Eu

i (x),

and that of Ā by Ēu
≤i (x) := Ēu

1 (x) ⊕ Ēu
2 (x) ⊕ · · · ⊕ Ēu

i (x), i = 1, . . . , k, x ∈ T
N .

Denote the unstable foliation of A by Wu and that of Ā by W̄u .

Proposition 4.6 (Lemma 6.1–6.3 of [G1]). Consider A a Cr Anosov diffeomorphism
that is C1 close to a linear toral automorphism Ā with simple real spectrum, and the
bi-Hölder conjugacy h given by Theorem 3.1 with h ◦ A = Ā ◦ h. Then

(1) h preserves the unstable foliation: h(Wu(x)) = W̄u(h(x)), for all x ∈ T
N ;

(2) each weak unstable distribution Eu≤i is uniquely integrable, tangent to a foliation

Wu
≤i of T

N , whose leaf Wu
≤i (x) passing through x ∈ T

N is C1+;
(3) each distribution Eu

i, j := Eu
≥i ∩ Eu

≤ j , i ≤ j , is uniquely integrable, tangent to a

foliation with C1+ leaves;
(4) h preserves the weak unstable foliations: h(Wu

≤i (x)) = W̄u
≤i (h(x)), for i = 1, . . . , k

and all x ∈ T
N .

We remark that the item (1) does not require any C1 closeness of A to Ā, and it holds
under the same assumption as Theorem 3.1.

From Proposition 4.6 we obtain a flag of weak foliations

Wu
1 ⊂ Wu≤2 ⊂ · · · ⊂ Wu

≤k−1 ⊂ Wu
≤k := Wu,

where each of the inclusions is proper and Wu
≤(i−1) sub-foliates Wu

≤i with C1+ leaves
for i = 2, . . . , k. This flag is preserved by the conjugacy h.

When the weak distributions Eu
i are known to be uniquely integrable, we have the

following proposition, which is proved by a standard graph transform technique.

Proposition 4.7. (1) Each weak unstable leaf Wu
≤i in item (2) of Proposition 4.6 is

subfoliated by Wu
i , whose leaves are uniformly C

r .
(2) Theweakest unstable leafWu

1 (x) is C1+, and its tangent distribution Eu
1 (x) is Hölder.
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5. Elliptic Regularity with the Help of an Invariant Distribution

In this section, we show how to get regularity of the conjugacy h by combining elliptic
dynamics within invariant distributions with hyperbolic dynamics.

5.1. Elliptic dynamics within invariant distributions. We start with a few preparatory
lemmas. Recall that we use the abbreviation T p = ∏m

i=1 T
pi
i , p = (p1, . . . , pm) ∈ Z

m

where Ti , i = 1, . . . ,m are commuting diffeomorphisms.

Lemma 5.1. Let F be an orientable foliation of T
N with uniformly C1 leaves of dimen-

sion one. Suppose a homeomorphism h conjugates the abelian group {T p, p ∈ Z
m} <

Diff0(TN ) to translations {T̄ p(x) = x + ρ p, p ∈ Z
m} and sends the foliation F to an

affine foliation F̄ . Denote by E(x) the one-dimensional distribution that is tangent to
the leaf F(x). Then the distribution E(x) is invariant under the DT p; that is,

DxT
p (E(x)) = E(T p(x)),

for all p ∈ Z
m and x ∈ T

N .

Proof. The straight line foliation F̄ is invariant under translations, so after the conjuga-
tion the foliation F is also invariant under {T p, p ∈ Z

m}. The lemma follows directly
by differentiating the equation T pF(x) = F(T p(x)) along the leaves. ��
Lemma 5.2. Suppose the conjugacy h in the previous Lemma 5.1 is bi-Hölder. Then
for each p ∈ Z

m\{0}, all the Lyapunov exponents of T p with respect to any invariant
probability measure are zero.

Proof. Suppose there is an invariant measure μ with at least one nonzero exponent.
Without loss of generality, assume that this exponent is negative. Pesin theory implies
that through μ-a.e. x , there are local stable manifolds, which are smoothly embedded
disks on which T n contracts distances at an exponential rate. Thus for two points y, y′
on the same local stable manifold of a point x , we have ‖T np(y) − T np(y′)‖ converges
to zero exponentially fast.

On the other hand, using the bi-Hölder conjugacy h we have

‖T np(y) − T np(y′)‖ = ‖h−1(nρ p + h(y)) − h−1(nρ p + h(y′))‖
≥ const.‖h(y) − h(y′)‖η.

where η is the Hölder exponent of h−1, which gives a contradiction. ��

5.2. A quantitative Kronecker theorem. We will need the following number theoretic
result, whose proof is postponed to the Appendix.

Theorem 5.3. Let N , K ∈ N be given. Then there exists a full measure set O in the set
MN×K (T) of matrices of N × K such that for all M ∈ O, the following holds.

For any small ε > 0, there exists a constant C such that for any y ∈ T
N and any

n ∈ N there exist q ∈ Z
N , p ∈ Z

K satisfying ‖p‖ < n, such that the following inequality
holds

‖Mp − q − y‖ ≤ Cn− K
N +ε .
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This theorem is a quantitative version of the classical Kronecker approximation theorem.
When K = 1, this is the classical Dirichlet’s simultaneous Diophantine approximation
theorem where we can set ε = 0. The N = 1 case was proved in [K].

This theorem inspires the following definition.

Definition 5.1. Suppose the m vectors ρ1, . . . , ρm ∈ T
N rationally generate T

N , and
consider the set of finite linear combinations

S := S(ρ1, . . . , ρm) =
{

m∑
i=1

piρi mod Z
N | pi ∈ Z, i = 1, . . . ,m

}
. (5.1)

For each element γ ∈ S, we denote by ‖γ ‖w the word length ‖γ ‖w := ‖p‖�1 , where
p = (p1, . . . , pm) ∈ Z

m and by ‖γ ‖ the closest Euclidean distance of γ (mod Z
N ) to

zero.
We say that S has dimension d if there exists a constant c such that for any x ∈ T

N

and any � > 0 there exists a point γ ∈ S satisfying

‖γ ‖w ≤ �, ‖γ − x‖ ≤ c�−d .

Theorem 5.3 implies that for almost every choice of vector tuple ρ1, . . . , ρm ∈ T
N , the

set S formed by linear combinations as above has dimension m/N − ε for all ε > 0
small.

5.3. Organization of the proofs of Theorem 1.8 and Theorem 1.9. To proveTheorems 1.8
and 1.9, we just need to improve the regularity of the conjugacies obtained in Theo-
rems 1.5 and 1.7, respectively. We carry this out in the following propositions.

The first proposition chooses the K0 in Theorems 1.8 and 1.9.

Proposition 5.4. Given η ∈ (0, 1) and d > 2/η2, there exists K0 such that the following
holds: for all K > K0, there exists a full measure setRN ,K ⊂ (TN )K such that the set
S generated by any tuple of vectors (ρ1, . . . , ρK ) lying inRN ,K is dense on T

N and has
dimension d.

Proof of Proposition 5.4. To satisfy the inequality 2/d < η2, we choose K0 > 2N/η2.
Applying Theorem 5.3, we get a full measure set in (TN )K , K > K0, each point of
which generates a set S of dimension d = K/N − ε satisfying 2/d < η2, where ε is
arbitrarily small. Next, removing further a zero measure set to guarantee that the vectors
rationally generate T

N , we get the full measure setRN ,K as claimed. ��
The next proposition gives the choice of η in Proposition 5.4, and will give the C1+ reg-
ularity of h along the one-dimensional leaves of a foliation after applying Corollary 4.2
and Proposition 4.3.

Proposition 5.5. Suppose

(1) the abelian group A(< Hr ) is generated by

{Ti, j | i = 1, . . . , N , j = 1, . . . , K , Ti, j Ti ′, j ′ = Ti ′, j ′Ti, j };

(2) there is an η-bi-Hölder conjugacy h such that Ti, j (x) = h−1(h(x) + ρi, j );
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(3) there is a {Ti, j }-invariant foliation F into one-dimensional C1 leaves F(x) with
tangential distributions E(x), x ∈ T

N that is η-Hölder in x. Denote by v(x) a unit
vector field tangent to F(x), x ∈ T

N ;
(4) the set S generated by the rotation vectors ρi, j has dimension d, with 2/d < η2.

For γ ∈ S, we write

Tγ :=
K∏
j=1

N∏
i=1

T
qi, j
i, j ,

whereqi, j ∈ Zare the coefficients in the linear combinationofγ , i.e.γ = ∑
j
∑

i qi, jρi, j .
Then for all γ ∈ S with ‖γ ‖ small enough, we have

|‖DxTγ v(x)‖C0 − 1| ≤ const.‖γ ‖ν

where ν ≤ η2 − 2/d.

We defer the proof to Sect. 5.4. We next cite the following well-known theorem of
Journé.

Theorem 5.6 [J]. Suppose F1, F2 are two transverse continuous foliations a manifold
M with uniformly Cn,ν leaves. Suppose that a continuous function u : M → R is
uniformly Cn,ν when restricted to each local leafF1

ε (x),F2
ε (x), x ∈ M. Then u is Cn,ν

on M.

In the 2-dimensional case, we apply Proposition 5.5 and Proposition 4.3 to get that
h is C1+ along the stable and unstable foliations of the Anosov diffeomorphism A.
Applying Theorem 5.6, we get that h is C1+ on T

2.
An application of the next result completes the proof of Theorem 1.8. More details

of the proof of Theorem 1.8 will be given in Sect. 6.1.

Theorem 5.7 [LMM,Ll]. Suppose f and g are two Cr , r > 1, Anosov diffeomorphims
T
2 that are topologically conjugated by h, i.e. f ◦ h = h ◦ g. Suppose the periodic data

of f and g coincide, namely, Dh(x) f q is conjugate to Dxgq at every q-periodic point x
of g for all q ∈ Z. Then h ∈ Cr−ε for ε arbitrarily small.

The proof of Theorem 1.9 in the N > 2 case follows from the same general strategy.
However, there is some more work needed to show that the conjugacy h sends the one-
dimensional leaves Wu,s

i to the straight lines parallel to the eigenvectors of Ā. We will
give the proof of the C1+ regularity of h in Sect. 6.2.

In dimension three, we get improved regularity (Corollary 1.10) by applying the
following result of Gogolev in [G2].

Theorem 5.8 (Addendum 1.2 of [G2]). Suppose Ā ∈ SL(3, Z) has simple real spectrum
and A : T

3 → T
3 is Cr , r > 3 that is C1 close to Ā. Suppose also that Ā and A have

the same periodic data, then there exists h : T
3 → T

3 in Cr−3−ε with h ◦ A = Ā ◦ h.

Furthermore there exists κ ∈ Z, such that if r /∈ (κ, κ + 3), then h ∈ Cr−ε, where ε is
arbitrarily small.
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5.4. Elliptic regularity in the presence of invariant distributions. In this section, we
prove Proposition 5.5.

Proof of Proposition 5.5. Let Tγ and v(x) be as in the statement, and letμ be any ergodic
measure of Tγ . We get from Lemma 5.2 that for μ-a.e. x

lim
k

1

k
log ‖Dx (Tγ )k(x)v(x)‖ =

∫
log ‖DxTγ (x)v(x)‖ dμ = 0. (5.2)

This shows that log ‖DxTγ (x)v(x)‖ vanishes at some point on T
N .

To simplify notation, we reindex the Ti, j appearing in Tγ by T1, . . . , T‖γ ‖w , and write

Tγ = ∏‖γ ‖w

i(γ )=1 Ti(γ ). (Due to the commutativity of the Ti, j ’s, the ordering of the (i, j)
appearing in i(γ ) does not matter). We also write Ti(γ )x = xi(γ ).

Consider the η-Hölder function �i(γ )(x) := log ‖DxTi(γ )+1v(x)‖. Invariance of the
distribution E implies that

log ‖DxTγ v(x)‖ = log

∥∥∥∥∥∥Dx

⎛
⎝ ‖γ ‖w∏

i(γ )=1

Ti(γ )

⎞
⎠ v(x)

∥∥∥∥∥∥ =
‖γ ‖w∑
i(γ )=1

log ‖Dxi(γ )
Ti(γ )+1v(xi(γ ))‖

=
‖γ ‖w∑
i(γ )=1

�i(γ )(xi(γ )).

To prove the lemma, it suffices to restrict attention to a neighborhood of γ = 0. We
consider a dyadic decomposition of a small neighborhood of 0 by

Dm = {γ ∈ S | c2−d(m+1)/2 < ‖γ ‖ ≤ c2−dm/2},
where c is the constant in Definition 5.1. Next, for Dm , we introduce a c2−dm-net by
defining

Sm := {γ ∈ Dm | ‖γ ‖w ≤ 2m}.
The remaining proof is split into two steps. In the first step, we prove the following

Claim 1. For any γ ∈ Sm, we have

| log ‖DxTγ v(x)‖| ≤ const.‖γ ‖η2−2/d , ∀ x ∈ T
N .

Proof of Claim 1. First, by (5.2), for any given γ ∈ Sm , there exists y ∈ T
N such that

log ‖DyTγ v(y)‖ = 0. Next, it follows from the definition of the dimension of the set S
that there exists δ ∈ S with

‖δ‖w ≤ ‖γ ‖w, ‖δ + ȳ − x̄‖ ≤ c‖γ ‖−d
w , x̄ = h(x), ȳ = h(y).

We denote yδ = Tδ y and yγ = Tγ y.
Since h is bi-Hölder, we have for all i(γ ) = 0, 1, . . . , ‖γ ‖w − 1 and i(δ) =

0, 1, . . . , ‖δ‖w − 1, the following estimates

‖xi(γ ) − (yδ)i(γ )‖ ≤ const.‖γ ‖−dη
w , and ‖yi(δ) − (yγ )i(δ)‖ ≤ const.‖γ ‖η.
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Next we estimate log ‖DxTγ v(x)‖ as follows

| log ‖DxTγ v(x)‖|
= | log ‖DxTγ v(x)‖ − log ‖Dy(Tγ Tδ)v(y)‖ + log ‖Dy(TδTγ )v(y)‖|
= | log ‖DxTγ v(x)‖ − log ‖DTδ yTγ v(Tδ y)‖

− log ‖DyTδv(y)‖ + log ‖DTγ yTδv(Tγ y)‖ + log ‖DyTγ v(y)‖|
= | log ‖DxTγ v(x)‖ − log ‖DTδ yTγ v(yδ)‖

− log ‖DyTδv(y)‖ + log ‖DTγ yTδv(yγ )‖|

=
∣∣∣ ‖γ ‖w−1∑
i(γ )=1

(�i(γ )(xi(γ )) − �i(γ )((yδ)i(γ ))) +
‖δ‖w−1∑
i(δ)=1

(�i(δ)(yi(δ)) − �i(δ)((yγ )i(δ)))

∣∣∣
≤ const.(‖γ ‖w · ‖γ ‖−η2d

w + ‖δ‖w‖γ ‖η2)

≤ const.(2m(1−η2d) + 2m‖γ ‖η2)

≤ const.(‖γ ‖2(η2−1/d) + ‖γ ‖η2−2/d)

≤ const.‖γ ‖η2−2/d . (5.3)

��
In the second step, we prove the following.

Claim 2. Suppose for any γm ∈ Sm, we have ‖ log ‖DxTγmv(x)‖‖C0 ≤ const.‖γm‖ν , for
some ν > 0 and all x. Then for any γ ∈ S, we have ‖ log ‖DxTγ v(x)‖‖C0 ≤ const.‖γ ‖ν .

Proof of Claim 2. By the definition of Dm and Sm and Definition 5.1, we get that each
annulus Dm in the dyadic decomposition is covered by at least O(2dNm/2) balls of radius
c2−dm centered at points in Sm .

We claim that for any γ ∈ S with small norm ‖γ ‖, there exists a finite number κ(γ )

and {γmk , k = 1, 2, . . . , κ(γ )} satisfying γmk ∈ Dmk , and mk+1 ≥ 2mk and γ =∑κ(γ )

k=1 γmk .

The algorithm is as follows. First find m such that γ ∈ Dm . Denote this m by m1
and find γm1 ∈ Sm1 that is closest to γ . The closest distance is bounded by c2−dm1 .
Next consider the vector γ − γm1 and repeat the above procedure to it in place of γ . We
see that γ − γm1 ∈ Dm2 for some m2 ≥ 2m1. This procedure terminates after finitely
many steps since γ ∈ S is a finite integer linear combination of the rotation vectors
ρi , i = 1, . . . ,m.

Next, let xmi = ∏κ(γ )

j=i Tγm j
(x) and xmκ(γ )+1 = x . Then

| log ‖DxTγ v(x)‖| = | log ‖Dx

∏
i

Tγmi
v(x)‖|

≤
∑
i

| log ‖Dxmi+1
Tγmi

v(xmi+1)‖|

≤ const.
κ(γ )∑
i=1

‖γmi ‖ν .

By the construction of Dm and Sm , for all γ ∈ S , we have that 1
2‖γm1‖ ≤ ‖γ ‖ ≤

2‖γm1‖, and ‖γmk‖ decays exponentially with uniform exponential rate. This gives that
| log ‖DxTγ v(x)‖| ≤ const.‖γ ‖ν for every γ ∈ S close to zero. ��
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This completes the proof of Proposition 5.5. ��

6. Proof of the Theorems

In this section, we prove Theorems 1.8 and 1.9.

6.1. Proof of Theorem 1.8.

Proof of Theorem 1.8. We first explain how to choose K0 and the open set O in the
statement of Theorem 1.8. We choose O to be a C1 neighborhood of Ā in the set of
Anosov diffeomorphisms with simple spectrum.

By Proposition 5.4, in order to determine K0, it is enough to determine η. Given Ā and
an Anosov diffeomorphsm A : T

2 → T
2 homotopic to Ā, Theorem 3.1 provides a a bi-

Hölder map h such that h ◦ A = Ā◦h. The Hölder regularity of the conjugacy h depends
on both the spectrum of Ā and the Mather spectrum of A ( [KH] Theorem 19.1.2), and
the Hölder regularity of the invariant distribution Ei (x) of the Anosov diffeomorphism
A depends on theMather spectrum of A.We choose η to be theminimum of these Hölder
exponents.

For K > K0, Proposition 5.4 supplies a full measure set R2,K in T
N×K . Given

i : {1, . . . , K } → {1, 2}, if the rotation vectors of (ρi(1),1, . . . , ρi(K ),K ) lie in R2,K ,
then the set S generated by the set of all rotation vectors {ρi, j , i = 1, 2, j = 1, . . . , K }
has dimension d ∈ (K/2, K ). For K > K0, we have 2/d < η2 by Proposition 5.4.
Moreover S is dense on T

N .
Consider now an action α : �B̄,K → Diffr (T2) with α(g0) = A : T

2 → T
2 Anosov,

and α(gi,k), i = 1, 2, k = 1, . . . , K generating an abelian subgroup action (Z2)K →
Diffr (T2). As in the hypotheses of the theorem, assume that the subgroup generated
by α(g1,1) and α(g2,1) has sublinear oscillation. Then applying Theorem 1.5 to the � Ā
action generated by α(g0), α(g1,1) and α(g2,1), we get a bi-Hölder map h linearizing
the �B̄ action.

We show that the conjugacy h given by Theorem 1.5 also linearizes the whole �B̄,K
action α. Indeed, for any diffeomorphism f that commutes with α(g1,1), α(g2,1), we
have

h f h−1(x + ρi,1) = h f h−1(x) + ρi,1,

for i = 1, 2. Since the rotation vectors ρi,1, i = 1, 2, rationally generate T
N , by taking

Fourier expansions, we get that h f h−1 is a rigid rotation by a constant vector that is the
rotation vector of f . Thus h conjugates the whole action α to an affine action by rigid
translations.

We next apply Proposition 5.5, Corollary 4.2 and Proposition 4.3 to get that the
conjugacy h is C1+ along the stable and unstable leaves of the Anosov diffeomorphism
A. By Theorem 5.6, we get that h is C1+ on T

2 and finally by Theorem 5.7, we get that
h is Cr−ε, for ε sufficiently small. ��

6.2. Proof of Theorem 1.9, the N dimensional case. The main difficulty in generalizing
the above argument to the N -dimensional case is that it is in general unknown if the
one dimensional distributions Eu

i (or Es
i ) that are invariant under DA are also invariant
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under DTγ . It is only known that the weakest stable and unstable distributions Eu
1 and

Es
1 are invariant under DTγ by Proposition 4.6 (4) and Lemma 5.1.
We cite the following Lemma from [GKS].

Lemma 6.1 (Proposition 2.4 of [GKS]). Let A, Ā and h be as in Proposition 4.6.
Suppose h is C1+ along Wu

≤i and h(Wu
j (x)) = W̄u

j (h(x)), 1 ≤ j ≤ i , then

h(Wu
i+1(x)) = W̄u

i+1(h(x)), x ∈ T
N .

Using this lemma, we now prove that h ∈ C1+ in the general case N > 2.

Proof of Theorem 1.9. The proof follows the strategy of the proof of Theorem 1.8 with
small modifications to deal with the high dimensionality.

We first choose K0 and the open set O of Anosov diffeomorphisms. Since Ā is
assumed to have simple spectrum, it has a C1 small neighborhood in which the Anosov
diffeomorphisms have simple Mather spectrum. We choose such a neighborhood and
denote it byO. We will choose K0 to satisfy 2/d < η2 using Proposition 5.4, where d is
the dimension of the set S generated by the rotation vectors ρi, j and η is a lower bound
on the Hölder exponent of the conjugacy h and all the distributions Eu,s

i , for all Anosov
diffeomorphisms in O.

Proposition 5.4 then gives a full measure set RN ,K ⊂ T
N×K . We obtain a bi-

Hölder conjugacy h that linearizes the whole action α : �B̄,K → Diffr (TN ) by applying
Theorem 1.7 and the argument in the proof of Theorem 1.8.

It remains to improve the regularity of h to C1+. To start, Proposition 4.6 (4) implies
that weakest leaves are preserved: h(Wu

1 (x)) = W̄u
1 (h(x)), for all x . Next, we apply

Lemma 5.1 to get that the weakest distribution Eu
1 is invariant under the abelian group

action generated by α(gi,k), i = 1, . . . , N , k = 1, . . . , K . Applying Proposition 5.5,
Corollary 4.2 and Proposition 4.3, we conclude that h is C1+ along the weakest leaves
Wu

1 (x). Thus the assumption of the Lemma 6.1 is satisfied with i = 1, and we conclude
that the second weakest leaves are preserved h(Wu

2 (x)) = W̄u
2 (h(x)). We next apply

Lemma 5.1, Proposition 5.5, Corollary 4.2 and Proposition 4.3 to conclude that h is C1+

along Wu
2 . By Journé’s theorem 5.6, we get that h is C1+ along the leaves Wu≤2.

Applying Lemma 6.1 inductively in i , we conclude h is C1+ along the unstable
foliationWu . Similarly, we prove that h isC1+ alongWs . Then by Journé’s theorem 5.6,
we have that h ∈ C1+. ��

6.3. Alternative assumptions. In this section, we discuss possible alternative assump-
tions for Theorem 1.9. Our technique developed in Sect. 4 relies on the existence of
foliations by one dimensional leaves that are invariant under the abelian group action.
In our proofs, the foliations are provided by the Anosov diffeomorphism. The foliations
being invariant under the abelian group action follows from the existence of a common
conjugacy h. In other words, we need that the leaves (straight lines) of the invariant
foliation of the toral automorphism Ā are mapped to the leaves of the invariant foliations
of A by the conjugacy h−1 (Proposition 4.6). This is true when N = 2 or in higher di-
mensions when we assume that A is C1 close to Ā. There are also circumstances under
which Proposition 4.6 can be proved without the C1 smallness assuption. We mention
here two main cases.

In [G1], the author considers an Anosov diffeomorphism A homotopic to a linear
map Ā with simple Mather spectrum and the property that in each connected component
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of the Mather spectrum, there lies exactly one eigenvalue of Ā. Moreover it is assumed
that the invariant distributions Eu,s

i form angles less than π/2 with the corresponding
affine distributions Ēu,s

i for the linear map Ā. (This assumption guarantees a certain
quasi-isometric property of Ws and Wu). Under these assumptions, the conclusions of
Proposition 4.6 hold [G1].

In [FPS], a similar result is shown assuming that A is isotopic to Ā along a path of
Anosov diffeomorphisms with simple Mather spectrum.
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Appendix A. Proof of Theorem 5.3

The proof was communicated to us by the user Fedja on MathOverflow
http://mathoverflow.net/questions/227817/a-quantitative-kronecker-theorem.

We need only consider matrices M = (mi j ), mi, j ∈ T, i = 1, . . . , N and j =
1, . . . , K . So MN×K (T) is identified with T

N×K endowed with Lebesgue measure.
Fix a smooth function ψ ∈ C∞(R) with suppψ ⊂ (−1, 1), ψ ≥ 0 and

∫
ψ =

1. Let ε be fixed. We next introduce rn = nεn−K/N , n ∈ N, and put �n(x) =
r−N
n

∏N
i=1 ψ(xi/rn) and consider the periodic function�n,y(x) = ∑

q∈ZN �n(x−q−y)

for each y ∈ T
N . Then we claim that

Given ε > 0, there exists a δ > 0 such that for each n ∈ N, there exists a set
Un ⊂ MN×K (T) with Leb(Un) < n−δ , and for each M /∈ Un and any y ∈ T

N , there
exists p ∈ Z

K with ‖p‖ ≤ n and �n,y(Mp) �= 0.
Assuming the claim, considering n = 2�, � ∈ N and using Borel-Cantelli, we get

Leb(lim supn Un) = 0. This means that the probability for M lying in infinitely many
Un is zero. This completes the proof of the theorem.

It remains to prove the claim. Decompose �n,y(x) into Fourier series �n,y(x) =∑
k∈ZN ck(n, y)e2π i〈k,x〉. Notice that for each x , there is only one q ∈ Z

N such that
x −q − y ∈ (−1, 1)N . It follows that ‖ck(n, y)‖ ≤ 1 for all k ∈ Z

N and c0(n, y) = 1 is
independent of n, y. Moreover, for each � > 0, there exists C� (depending only on ψ)
such that ‖ck(n, y)‖ ≤ C�r−N−�

n /‖k‖� due to the C∞ smoothness of ψ . Next for any
matrix M ∈ MN×K (T) write

Sn(M, k) :=
∑

‖p‖∞≤n

e2π i〈k,Mp〉,

�n,y(M) :=
∑

‖p‖∞≤n

�n,y(Mp) =
∑
k∈ZN

ck(n, y)Sn(M, k).

We get Sn(M, 0) = nK and for β > 0 to be determined later∣∣∣∣∣∣∣
∑

‖k‖≥r−β
n

ck(n, y)Sn(M, k)

∣∣∣∣∣∣∣ ≤ nKC�r
β�−N−�
n .

http://mathoverflow.net/questions/227817/a-quantitative-kronecker-theorem
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It remains to investigate the sum

�n,rn (M) :=
∑

0<‖k‖∞≤r−β
n

|Sn(M, k)| =
∑

0<‖k‖∞≤r−β
n

∣∣∣∣∣∣
∑

‖p‖∞≤n

e2π i〈z,p〉
∣∣∣∣∣∣ , z = Mtk.

We use the fact that |∑‖p‖∞≤n e
2π i〈z,p〉| ≤ C

∏K
j=1(min{n, ‖z j‖−1}), where ‖z j‖ is

the distance from z j to the nearest integer. Consider a map Fk : MN×K (T) → T
K via

Fk(M) = Mtk, mod Z
K , then Fk pushes forward the Lebesgue measure onMN×K (T)

to a Lebesgue measure on T
K . We immediately get that

∫
MN×K (T)

|Sn(M, k)| dLeb ≤
∫
TK

C
K∏
j=1

(min{n, ‖z j‖−1}) dz ≤ C logK n,

so there exists a set Un ⊂ MN×K (T) with Leb(Un) ≤ n−δ such that we have

�n,rn (M) ≤ Cnδr−βN
n logK n, ∀ M ∈ MN×K (T)\Un .

Note that this set Un is independent of y since �n,rn (M) is. Now we get

|�n,y(M)| ≥ nK − nKC�r
β�−N−�
n − Cnδr−βN

n logK n,

∀ M ∈ MN×K (T)\Un, ∀y ∈ T
N .

We choose rn = nεn−K/N , and β(> 1) and δ(> 0) sufficiently close to 1 and 0
respectively to satisfy the inequality (β − 1)K + 2δ < βNε for given ε, and choose �

large enough to satisfy (β − 1)� > N . Hence |�n,y(M)| ≥ 1
2n

K . This completes the
proof of the claim hence the theorem. ��

Appendix B. Affine Action and the Simultaneous Diophantine Condition

In this section, we discuss the assumption in Theorem 1.4 on Ā and ρ. We show here
how to ensure that assumption (1.3) and the Diophantine assumption ρ are satisfied
simultanously.

Given Ā, we solve equation (1.3) for ρ. Lifting (1.3) to R
N , we get the following

equation

Āρ = ρ B̄ + P, P ∈ Z
N×N . (B.1)

As usual, we first set P = 0 and consider the homogeneous equation.
The following facts can be found in [HJ], Theorem 4.4.14.

Proposition B.1. Suppose Ā, B̄ ∈ SL(n, Z).

(1) If the sets of spectrum of Ā and B̄ do not intersect, then the homogeneous equation has
zero solution and the inhomogeneous equation (B.1) is solvable with only rational
solutions. In this case, the affine action can never be faithful.

(2) If the sets of spectrumof Ā and B̄ do intersect and either Ā or B̄ is diagonalizable over
C. Denote the common eigenvalues by λ1, . . . , λk , the eigenvector for Ā associated
to λi by ai,1, . . . , ai,ni and the eigenvector for B̄

t associated to λi by bi,1, . . . , bi,mi .
Then the null space of ρ �→ Āρ − ρ B̄ is the span of

{ai, j ⊗ bi,�, j = 1, . . . , ni , � = 1, . . . ,mi , i = 1, . . . , k}.
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Proof. The first item follows from Theorem 4.4.6 of [HJ] using the properties of Kro-
necker product.

For the second statement, by Theorem 4.4.14 of [HJ], the null space of the map
ρ �→ Āρ − ρ B̄ has dimension

∑
i ni ×mi . It is clear that each matrix ai, j ⊗ bi,� where

j = 1, . . . , ni and � = 1, . . . ,mi lies in the kernal of ρ �→ Āρ −ρ B̄, and these matrices
are linearly independent, so we get the second statement. ��
In the 2D case, suppose tr Ā = tr B̄ and |tr Ā| > 2, then Ā and B̄ share the same
spectrum λ and 1/λ for some |λ| > 1. The zero space of ρ �→ Āρ − ρ B̄ is then
spanned by u Ā ⊗ u B̄t and u Ā−1 ⊗ u(B̄t )−1 , where u Ā is the eigenvector corresponding

to the eigenvalue λ. Similarly for others. If tr Ā �= tr B̄, we get that the zero space of
ρ �→ Āρ − ρ B̄ is zero.

If some of the ai, j is Diophantine, then the simultaneous Diophantine condition
is satisfied automatically. We next focus on the special case of Ā = B̄, where the
simultaneous Diophantine condition is more explicit. We recall a fact and definition
from linear algebra:

Lemma B.2 (Corollary 4.4.15 of [HJ]). Let A ∈ MN (R) where MN (R) is the set of
N × N matrices with entries in R. The set of matrices in MN (R) that commute with A
is a subspace of MN (R) with dimension at least N . The dimension is equal to N if and
only if M is non-derogatory, i.e. each eigenvalue of A has geometric multiplicity exactly
1. Thus if A is nonderogary, the centralizer Z(A) of A is

Z(A) = spanR{id, A, . . . , AN−1}.

If Ā is non-derogatory, then for any ρ satisfying Āρ = ρ Ā, we can thus write each
ρ ∈ Z( Ā) as a linear combination ρ = ∑N

i=1 ai Ā
i−1, where a = (a1, . . . , aN ) ∈ R

N .

Lemma B.3. Let ρ = ∑
ai Āi−1 for some a = (a1, . . . , aN ) and Āi−1 ∈ SL(N , Z).

Suppose the nonvanishing entries of a form a vector a′ ∈ R
k , 1 ≤ k ≤ N satisfying the

Diophantine condition: there exist C, τ > 0 such that

|〈a′,m〉| ≥ C

|m|τ , ∀ m ∈ Z
k\{0}.

Then the columns of ρ, denoted by ρ1, . . . , ρN , satisfy the simultaneous Diophantine
condition for some C ′ > 0, i.e.

max
1≤ j≤N

{|〈n, ρ j 〉|} ≥ C ′

‖n‖τ
, ∀ n ∈ Z

N\{0}. (B.2)

Proof. Denote by vij is the j-th column of Āi−1, i, j = 1, . . . , N , and by ρ j the j-th

column of ρ. Hence we have ρ j = ∑
i aiv

i
j .

Assume the vector formed by the non vanishing entries of a satisfies the Diophantine
condition and denote by I the set of indices of the non vanishing entries of the vector
a, then we have for each j
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|〈n, ρ j 〉| =
∣∣∣∣∣

N∑
i=1

ai 〈n, vij 〉
∣∣∣∣∣ ≥ C

(
∑

i∈I |〈n, vij 〉|)τ

= C

‖n‖τ (
∑

i∈I
∣∣∣〈 n

‖n‖ , vij 〉
∣∣∣)τ

≥ C

‖n‖τ (
∑

i∈I ‖vij‖)τ
(B.3)

if 〈n, vij 〉 �= 0 for some i ∈ I.
To show that the simultaneousDiophantine condition holds forρ1, . . . , ρN , it remains

to show that for each u ∈ S
N−1, there exist i ∈ I, j ∈ {1, 2, . . . , N }, such that

〈u, vij 〉 �= 0. This follows from the non-degeneracy of Ā. We fix any i ∈ I, then
vij , j = 1, 2, . . . , N , form the matrix Āi−1 which is non-degenerate. Hence the vectors

vij , j = 1, 2, . . . , N , are linearly independent. The compactness of S
N−1 implies that

there does not exists u ∈ S
N−1 that is simultaneously orthogonal to all of vij , j =

1, 2, . . . , N . ��
Next, in order to solve the inhomogeneous equation Āρ = ρ Ā + P, it is enough

produce a particular solution for given P ∈ Z
N×N in addition to the general solutions

to the homogeneous equation. Note that the (B.1) might not be solvable for some P. We
have the following result.

Theorem B.4 (Theorem 4.2.22 of [HJ]).Given matrices A, B,C ∈ MN (R). Then there
exists some X ∈ MN (R) solving the equation AX − XB = C if and only if the matrices[
A C
0 B

]
and

[
A 0
0 B

]
are similar.

So to solve (B.1), the necessary and sufficient condition is the similarity of the ma-

trices

[
Ā P
0 Ā

]
and

[
Ā 0
0 Ā

]
. Given a particular solution ρ∗(P) of (B.1). If Ā is non-

derogatory, then the general solution of (B.1) can be written as

ρ =
∑

ai Ā
i−1 + ρ∗

for some a = (a1, . . . , aN ), if ρ∗ happens to be rational, then ρ is simultaneously
Diophantine, if the nonvanishing entries of a form a Diophantine vector.

Appendix C. Affine Actions and Vanishing Lyapunov Exponents

In this appendix, we prove the results in Sect. 1.1. Proposition 1.1 is verified straight-
forwardly from the group relation. We prove Propositions 1.2 and 1.3.

Proof of Proposition 1.2. The proof of �⇒ is easy. We only prove ⇐� here. Suppose
the action is not faithful. Then there exist γ1, γ2 ∈ �B̄ with γ1 �= γ2 but α(γ1) = α(γ2).
Using the group relation, we first rewrite γi in the form γi = gmi

0 gpi , i = 1, 2, where
gp = gp1

1 . . . gpN
N . We can deduce an equation of the form α(g0)m = α(gp) with

m = m1 − m2 and p = p1 − p2 from α(γ1) = α(γ2). We pick any rational point x on
T
N and note that α(g0)mx is rational but α(gp)x is irrational unless p = 0 by the linaer

independence of ρ. If p = 0, then m = 0 since Ā is not of finite order. This implies that
γ1 = γ2. ��
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Proof of Proposition 1.3. Suppose we have two affine actions ᾱ = ᾱ( Ā, ρ) and ᾱ′ =
ᾱ( Ā, ρ′) conjugate by a homeomorphism h of the form h(x) = x + h̃(x), x ∈ T

N where
h̃ is Z

N -periodic. We want to show that ρ = ρ′. Denote by ρ j and ρ′
j the j-th column

of ρ and ρ′ respectively. We have

h(x + ρ j ) = h(x) + ρ′
j , j = 1, . . . , N .

This is equivalent to

ρ j + h̃(x + ρ j ) = h̃(x) + ρ′
j , j = 1, . . . , N .

Integrating over T
N , we get that

∫
TN h̃(x + ρ j ) dx = ∫

TN h̃(x) dx , hence ρ j = ρ′
j . ��

Proposition C.1. Suppose B̄ ∈ SL(N , Z) has no eigenvalue 1. Then for any action of
α : �B̄ → Diffr (TN ), r > 1, all the Lyapunov exponents of α(gi ), i = 1, 2 . . . , N ,

are zero with respect to any invariant measure.

Proof. We use the following Zimmer amenable reduction theorem. Fix a group action
α : � → Diff(M), and let φ : (α, M) → GL(N , R) be a cocycle, meaning that

φ(α(γ1)α(γ2), x) = φ(α(γ1), α(γ2)x)φ(α(γ2), x),

for all x ∈ M and γi ∈ �. We say that φ is cohomologous to another cocycle ψ if there
exists a measurable map h : M → GL(N , R) such that

φ(α(γ ), x)h(x) = h(α(γ )x)ψ(α(γ ), x), ∀x ∈ M, ∀ γ ∈ �.

Theorem C.2 (Theorem 1.8 of [HuK]). Let α : � → Diff(M) be an amenable group
action andφ : (α, X) → GL(N , R) a cocycle. Then there exists a cocycleψ : (α, M) →
GL(N , R) that is cohomologous φ and such that there exists a partition of X = ∪2N

i=1Xi
andψ : (α, Xi ) → Hi , where Hi is one of the 2n conjugacy classes of maximal amenable

subgroups of GL(N , R) of the form

⎡
⎢⎢⎢⎣
A1 ∗ . . . ∗
0 A2 ∗ ∗
0 0 · ·
· · · ·
0 . . . 0 Ak

⎤
⎥⎥⎥⎦, each Ai is ni × ni with

∑k
i=1 ni = N and is of the form of a scalar times an orthogonal matrix.

Wenext cite the following result on theWeyl chamber of theZ
N actions on a compact

manifold.

Theorem C.3 (Proposition 2.1 of [FKS]). Suppose μ is an ergodic measure for the
action β : Z

N → Diffr (M), r > 1. Then there are finitely many linear functionals
χ : Z

N → R, a set P of full measure and a β-invariant measurable splitting of the
tangent bundle TxM = ⊕Eχ (x), x ∈ P such that for all a ∈ Z

N and v ∈ Eχ , the
Lyapunov exponent of v is

lim
n→±∞ n−1 log ‖Dβ(an)(v)‖ = χ(a).
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With the two results, we give the proof of the proposition. Without loss of generality,
we assume μ is an ergodic measure for the action. A general invariant measure can be
decomposed into averages of ergodic measures. From the group relation we obtain

AT p = T B̄t p A

where we have α(B̄) = A, α(gi ) = Ti and T p = ∏N
i=1 T

pi
i , p = (p1, . . . , pN ) ∈ Z

N .
Applying Theorem C.2 to the cocycle Dα, we get a measurable map h : T

N →
GL(N , R) such that Dx α̂(g)(x) := h(α(g)x)Dxα(g)h−1 is of the form Hi as in Theo-
rem C.2. Thus

DÂDT̂ p = DT̂ B̄t pD Â. (C.1)

Since h is only known to bemeasurable, we denote byY the zeromeasure set of points
where h is unbounded, and by X := T

N\(∪g∈�α(g)−1(Y )), which has full measure.
For each k ∈ N, we introduce the set Xk := {x ∈ X | ‖h(x)‖ ≤ k, ‖h(x)−1‖ ≤ k}. By
Poincaré recurrence, for μ-a.e. x ∈ Xk , the T p- and T B̄t p-orbits of x will return to Xk
infinitely often. We pick such an x∗ ∈ Xk and we get that A(x∗) ∈ Xk′ for some k′. Next
we apply Poincaré recurrence to both T p and T B̄t p to obtain a subsequence {ni } ⊂ N

such that

T ni px∗ ∈ Xk, T B̄t ni p(Ax∗) ∈ Xk′ .

This implies AT ni px∗ = T B̄t ni p(Ax∗) ∈ Xk′ . This gives the estimates

‖DÂ(T ni px∗)‖ = ‖h(AT ni px∗)DA(T ni px∗)h−1(T ni px∗)‖ ≤ kk′‖DA‖C0 .

Similarly, we estimate

‖DT̂ ni p(x∗)‖ ≤ k2‖DTni p‖C0 , ‖DT̂ B̄t ni p(Ax∗)‖ ≤ k′2‖DT B̄t ni p‖C0 .

By Theorem C.2, since each α̂(g), g ∈ �B̄ has the form of Hi , we consider only the
diagonal blocks. Suppose DÂ(x) has diagonal blocks a1(x), . . . ,a j (x), and DT̂i (x) has

diagonal blocks ti,1(x), . . . , ti, j (x), where a� and ti,� are n� × n� and
∑ j

�=1 n� = N .

Similarly, we denote the diagonal blocks of DT̂ p by {tp� }. We further denote λ(a�) and
λ(tp� ) the modulus of the scalar part of a� and tp� respectively.

Equation (C.1) gives the following on the diagonal

a�t
ni p
� = tB̄

t ni p
� a�, and λ(a�)λ(tni p� ) = λ(tB̄

t ni p
� )λ(a�). (C.2)

We take log and divide by ni and let ni → ∞. Since λ(a j ) is bounded by kk′‖DA‖,
we have that lim 1

n log(a j ) → 0. Let μi, j := limni
log λ(t

ni p
i, j )

ni
, whose existence is

given by the ergodic theorem, and denote by M the matrix (μi, j ). We will show be-
low that each row of M gives rise to a Lyapunov functional χ j ,and hence by Theo-
rem C.3 and equation (C.2) we have χ j (p) = χ j (B̄t p). Choosing p to be of the form
n(1, 0, . . . , 0), n(0, 1, 0, . . . , 0), . . . , n(0, . . . , 0, 1), we get the following

M = MB̄t , i.e. M(B̄t − Id) = 0.
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Since B̄ does not have eigenvalue 1, the only solution is M = 0 so all the Lyapunov
exponents μi, j are 0.

It remains to show that each row of M is a Lyapunov functional. We apply Theo-
rem C.3 to the abelian group {T p, p ∈ Z

N }. For the linear functional χ and invariant
splitting ⊕Eχ (x) of {T p}, we get that the splitting ⊕h(x)Eχ (x) is invariant under
{DT̂ p}. So for each v ∈ Eχ (x), the Lyapunov exponent of T p at point x ∈ X along
the vector v is given by lim 1

n log ‖DxT npv‖ = χ(p) and for h(x)v ∈ h(x)Eχ (x),

the Lyapunov exponent of T̂ p at the point x along the vector h(x)v is also χ(p). This
shows that DT p and DT̂ p share the same Lyapunov functional. It remains to iden-
tify the Lyapunov exponents of each DT̂j as {μi, j }. Since DT̂ p has the form of Hi
in Theorem C.2, we get that the invariant splitting can be constructed explicitly and
inductively. We denote by e1, . . . , en the standard basis vectors of R

N . We first denote
E1 = span{e1, . . . , en1}. From the normal form in Theorem C.2, it is clear that μi,1 is
the Lyapunov exponent lim 1

n log ‖DT̂i (x∗)v‖ for any v ∈ E1. Therefore E1 is one sum-
mand in the splitting⊕hEχ and h−1E1 is one summand in the splitting⊕Eχ . The second
Lyapunov exponent μi,2 is found by acting DT̂i on the quotient R

N/E1 = (⊕hEχ )/E1,
equivalently by acting DTi on the quotient R

N/h−1E1 = (⊕Eχ )/h−1E1. We denote
by E2 = span{en1+1, . . . , en1+n2}. From the normal form in Theorem C.2, we see that
E2/E1 is the invariant subspace for the action of DT̂i on the quotient R

N/E1. This im-
plies that E2/E1 is one summand in the quotient splitting R

N/E1 = (⊕hEχ )/E1 and
equivalently h−1E2/h−1E1 is invariant under the action of DT in the quotient space
R

N/h−1E1 = (⊕Eχ )/h−1E1, therefore is a summand in the quotient space. This shows
that μi,2 as the Lyapunov exponent of the quotient action DT̂i on the quotient space
E2/E1 is also the Lyapunov exponent of the quotient action of DTi on the quotient space
h−1E2/h−1E1, therefore is one Lyapunov exponent of DTi .

Inductively, we find all the Lyapunov exponents {μi, j }. For each j , the vector
(μ1, j , . . . , μN , j ) gives rise to a Lyapunov functional χ j . ��
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