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Abstract: We provide a uniformly-positive point-wise lower bound for the two-point
function of the classical spin O(N ) model on the torus of Zd , d ≥ 3, when N ∈ N>0
and the inverse temperature β is large enough. This is a new result when N > 2 and
extends the classical result of Fröhlich et al. (Commun Math Phys 50:79–95, 1976).
Our bound follows from a new site-monotonicity property of the two-point function
which is of independent interest and holds not only for the spin O(N ) model with
arbitrary N ∈ N>0, but for a wide class of systems of interacting random walks and
loops, including the loop O(N ) model, random lattice permutations, the dimer model,
the double-dimer model, and the loop representation of the classical spin O(N ) model.

1. Introduction

We consider a system of interacting random loops and walks that reduces to several
paradigmatic models in statistical mechanics for specific choices of the parameters,
such as the loop O(N) model, random lattice-permutations, the double-dimer model,
the dimer model, and a representation of the classical spin O(N) model. The spin O(N )

model is themost well known of thesemodels, it involves the vertices of a graph carrying
(classical) spins in SN−1 ⊂ R

N that interact via their inner-product. The case N = 1 is
the Ising model, the case N = 2 is the XY or rotator model, and the case N = 3 is the
classical Heisenberg model (see [14] for an overview). The loop O(N ) model is related
to the spin O(N ) model and, in two dimensions, it is conjectured to converge to SLE
in an appropriate sense under the correct scaling and choice of parameters. It exhibits
a very rich phase diagram, (see [27] for an overview). The study of random lattice-
permutations is motivated by its connections to the quantum Bose gas [12]. In particular,
the occurrence of infinite cycles in suchpermutations is related to the occurrence ofBose–
Einstein condensation [33]. The dimer model goes back to the work of Kasteleyn [20]
and Temperley–Fisher [31] and is closely connected to the study of perfect matchings of
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a graph. It is the subject of an extensive physical and mathematical literature, we refer
the reader to [24] for a relatively recent discussion.

Uniform positivity Consider the spin O(N ) model. In the famous work of Fröhlich
et al. [13] it was shown that, for the torus TL = Z

d/LZd with d ≥ 3 and inverse
temperature β large enough, spin correlations do not decay with the distance between
the sites. This established the occurrence of a phase transition. More precisely, when
d ≥ 3, there exists a finite β0 = β0(d, N ) < ∞ such that,

lim inf
L→∞

1

|T2L |
∑

z∈T2L

〈ϕo · ϕz〉2L ,N ,β ≥ 1 − β0

β
, (1.1)

(see Theorem 4.10 for a precise formulation, this particular formulation first appears in
[10]). The result does not imply that the two-point correlation, 〈ϕo ·ϕz〉2L ,N ,β , is bounded
away from zero uniformly in L and in the choice of the site z. This has been proved
for N = 1 using Peierls’ argument [28] and N = 2 using the Messager, Miracle-Sole
inequality [26] and it is expected to be true for any N ∈ N>0. Our first main result,
Theorem 2.8, rigorously establishes this for arbitrary N ∈ N>0 when β is large and
d ≥ 3. More precisely, take TL = Z

d/LZd with d ≥ 3 and nearest-neighbour edges
and an arbitrary N ∈ N>0. We prove that there is a β0 = β0(d, N ) < ∞ such that if
β > β0 then there exists a constant C = C(β) ∈ (0, 1] such that,

∀z ∈ Z
d lim inf

L→∞ 〈ϕo · ϕz〉2L ,N ,β > C. (1.2)

Site-monotonicityOur main result is a consequence of a new site monotonicity property,
Theorem 2.4, which holds for a general soup of interacting random loops and walks that
we call the random path model (RPM) and which includes all the models mentioned
above. It extends the site-monotonicity property of Messager and Miracle-Sole [26],
which applied to the spin O(N ) model with N = 1, 2.

The RPM can be informally defined as follows. A realisation of the RPM is an
ensemble of an arbitrary collection of open and closed nearest-neighbour paths, which
we will refer to as walks and loops, respectively (see Fig. 1 for an example of such an
ensemble). For N ∈ N>0 a ‘colour’ in {1, . . . , N } is assigned to each path. Realisations
consisting of the same paths but different colour assignments are distinguished. The
weight of a realisation, denoted by w, is proportional to

β total length of paths in w
∏

x∈TL

Ux (w), (1.3)

where β ≥ 0 andUx (w) is a non-negativeweight function depending on howmany times
a walk or a loop of each colour visits the vertex x ∈ TL . All of the models mentioned
above can be obtained from specific choices of U = (Ux )x∈TL , thus the setting we
introduce allows the comparison of all such models in a unified framework. The central
quantitywe consider is the two-point function,GL ,N ,β,U (x, y),where x, y ∈ TL , x 
= y.
Informally, it is the ratio between the weight of realisations with one unique ‘long’ walk
connecting x and y and the weight of realisations without any such ‘long’ walks (‘short’
walks consisting of a single edge which we call dimers, might be present in both terms,
(Ux )x∈TL allowing). The decay or not ofGL ,N ,β,U (x, y)with |y−x | in the limit L → ∞
tells us whether or not the model exhibits long-range order. Additionally, for some
choices of U = (Ux )x∈TL , GL ,N ,β,U (x, y) corresponds to the spin–spin correlation
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Fig. 1. A realisation of the random path model. Edges that are crossed multiple times are represented by
narrowly separated parallel lines

of another model (see below). When such a correspondence is available, one might use
methods from one model to answer questions about the other. Theorem 2.4 states several
monotonicity properties of the two-point function of all models mentioned above, for
any value of the parameters. It states that the two-point function between the point
o = (0, . . . , 0) and an arbitrary ‘odd point’ on the torus does not decrease if we project
such a point onto an arbitrary coordinate axis and that the two-point function between
o and ‘odd’ points lying on a cartesian axis is non-increasing with the distance of the
point from o. From this we deduce, for example, that the two-point function between
two arbitrary sites, x, y ∈ TL , that differ by an odd amount in one of the coordinate
directions, is bounded from above by the two-point function between two neighbouring
sites. In other words, the most convenient thing for the system is that such a long walk
interacting with the ensemble of loops and dimers ends at a neighbour of its starting
point, resembling a loop or a dimer itself.

Methodology The essential feature of the weights (1.3) (which follows from our general
assumptions in Definition 2.1) is that they can be expressed as a product of ‘identical’
‘local’ functions. Due to this important property and torus symmetries, the measure can
be proved to be reflection positive for reflections ‘through edges’. Reflection positivity
is the key tool that we employ in this paper. It is a classical tool for the analysis of spin
systems and it was also used in [7] in the context of loop soups. Using this property we
obtain a new inequality involving two-point functions. Such an inequality can be viewed
as a new application of reflection positivity and all our results are derived from it. The
inequality states the following. Consider the torus TL = Z

d/LZd in dimension d ≥ 2
with L ∈ 2N and nearest-neighbour edges. Let� be a reflection of sites of TL in a plane
R bisecting edges and perpendicular to one of the cartesian vectors. R identifies two
disjoint sets, T+

L and T
−
L with TL = T

+
L ∪ T

−
L , such that �(T±

L ) = T
∓
L .
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Our inequality states that, for any such reflection �, x ∈ T
+
L , y ∈ T

−
L , and U =

(Ux )x∈TL satisfying the condition in Definition 2.1, we have that

GL ,N ,β,U (x, y) ≤ 1
2

(
GL ,N ,β,U

(
x,�(x)

)
+ GL ,N ,β,U

(
�(y), y

) )
. (1.4)

Our general monotonicity properties follow from an iterative application of this inequal-
ity, or a generalisation that involves an average over two-point functions, and an argument
by contradiction.

Our site monotonicity properties and the bound (1.1) lead to the uniformly positive
point-wise lower bound for the two-point function of the spin O(N ) model. If such a
bound was derived for other models that we mentioned above, then our monotonicity
result would also imply a corresponding result for these models.

Question Derive an infrared bound for the loop O(N ) model, random lattice permuta-
tions, or double dimer model when d ≥ 3 and β is large enough.

We shall end this section by describing the organisation of this paper. In Sect. 2 we
present the rigorous definition of the random path model, we show that this model re-
duces to, or is a representation of, other models when the weight function U is chosen
appropriately, and we state our results formally. In Sect. 3 we introduce the main tech-
nique, reflection positivity. In Sect. 4 we use this technique to derive our main theorems,
Theorems 2.4 and 2.8.

Notation

N ∈ N>0 the number of colours
G = (V, E) an undirected, simple, finite graph
e ∈ E or {x, y} ∈ E undirected edges
x ∼ y two neighbour vertices, i.e, x, y ∈ V such that {x, y} ∈ E
∂eD {v ∈ V : v 
∈ D and z ∼ v for some z ∈ D}
∂ i D {v ∈ V : v ∈ D and ∃z ∼ v s.t. z 
∈ D}
MG set of link cardinalities on G
CG(m) the set of colourings for m ∈ MG
PG(m, c) the set of pairing configurations for m ∈ MG and c ∈

CG(m)

w = (m, c, π) wire configuration with m ∈ MG , c ∈ CG(m), and π ∈
PG(m, c)

WG the set of wire configurations on G
nix (w) local occupancy of i-links
nx (w)

∑N
i=1 n

i
x

uix (w) number ofwalks of colour i having x as an extremal vertex
vix (w) number of pairings of i-links at x
tx (w) number of links incident to x which are paired at x to

another link touching x
β ∈ R≥0 inverse temperature
U = (Ux )x∈V weight function
ZG,N ,β,U (x, y) or ZL(x, y) weight of configurations with a 1-path from x to y
ZL(z) ZL(o, z), where o is the origin of the torus
GG,N ,β,U (x, y) or GL(x, y) the two-point function between x and y in the random

path model
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GL(z) GL(o, z), where o is the origin of the torus
〈ϕo · ϕz〉L ,N ,β the two-point correlation between x and y in the spin

O(N ) model

2. Definitions and Results

In this section we define the random path model (RPM), we show that, under specific
choices of the weight function, this model reduces to other paradigmatic well studied
models, for example random lattice permutations, the loop O(N ) model, the double-
dimer model, the dimer model, and a representation of the spin O(N ) model, and we
state our main results formally. The model we introduce is closely related to the one
which was introduced in [4], from which we borrow part of the notation. Note however
that our exposition presents some important differences with respect to [4]. The first
difference is that in our framework an arbitrary number of walks are present, which
is an essential aspect for obtaining our main theorems. The second difference is that a
colour is assigned to each path and two realisations consisting of the same paths but
different colour assignments are distinguished. This allows us to introduce a weight
function which depends on the colour of the path. Such a generalisation means our
model generalises the model of lattice permutations, the double-dimer model and the
dimer model, which can be seen by choosing the parameters and the weight function
appropriately.

2.1. Definitions. LetG = (V, E)be anundirected, simple, finite graph, and let N ∈ N>0.
We will refer to N as the number of colours. A realisation of the random path model can
be viewed as a collection of undirected paths (which might be closed or open). To define
a realisation we need to introduce links and pairings. A path is identified by a collection
of links, a colouring function and by pairings. A configuration of links is denoted by
m ∈ MG := N

E . More specifically

m = (
me

)
e∈E ,

where me ∈ N represents the number of links on the edge e. No constraint concerning
the parity of me is introduced.

Given a link configuration m ∈ MG , a colouring c ∈ CG(m) := {1, . . . , N }m is a
realisation which assigns an integer in {1, . . . , N } to each link, which will be called its
colour. More precisely,

c = (ce)e∈E ,

is such that ce ∈ {1, . . . , N }me , where ce(p) ∈ {1, . . . , N } is the colour of the p-th link
which is parallel to the edge e ∈ E . See Fig. 3 for an example. We will call i-link any
link which gets colour i ∈ {1, . . . , N }.

Given a link configuration, m ∈ MG , and a colouring c ∈ CG(m), a pairing π =
(πx )x∈V for m and c pairs links touching x (i.e. links on edges incident to x) in such
a way that, if two links are paired, then they have the same colour. A link touching x
can be paired to at most one other link touching x , and it is not necessarily the case that
all links touching x are paired to another link at x . Given two links, if there exists a
vertex x such that such links are paired at x, then we say that such links are paired. It
follows from these definitions that a link can be paired to at most two other links. We
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Fig. 2. Illustrations of two points x, y ∈ TL and of their reflection
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Fig. 3. A pair (m, c),m ∈ MG , c ∈ CG (m), on the graph {1, 2, 3}×{1, 2, 3}. For example, two links connect
the vertex 4 to the vertex 5, the first link is coloured red and the second link is coloured blue (here, colours
are identified by a letter, r , b or g). Pairings, which establish which links are paired at each vertex, are not
represented in the figure. There are several wiring configurations which are compatible with the pair (m, c) in
the figure. Since the link cardinalities at some vertices are odd, at least one walk must be present in each such
wiring configuration. This figure is analogous to [4, Figure 1]

remark that by definition a link cannot be paired to itself. We denote by PG(m, c) the
set of all such pairings for m ∈ MG , c ∈ CG(m). A wire configuration is an element
w = (m, c, π) such that m ∈ MG , c ∈ CG(m), π ∈ PG(m, c). We let WG be the set of
wire configurations. It follows from these definitions that any w ∈ WG can be viewed
as a collection of loops and of walks, as in Fig. 1.
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Loops and walks have no starting point and no orientation and they are formally
defined as equivalence classes of directed walks. Given w = (m, c, π) ∈ WG and
e ∈ E , let (e, p) be the p-th link at e, where p ∈ {1, . . . ,me}. A directed walk of
colour i is an ordered set of links, ((e1, p1), (e2, p2), . . . , (e�, p�)), where e j ∈ E and
p j ∈ {1, . . . ,mej }, such that (e j , p j ) is paired to (e j+1, p j+1) for each j ∈ {1, . . . , �−1}
and each link has colour i . Such a sequence is said to be closed if � > 2 and (e�, p�) is
paired to (e1, p1) or if � = 2 and (e�, p�) and (e1, p1) are paired to each other at both
their end-points. If such a sequence is not closed, then it is considered open.Two directed
closed walks are said to be equivalent if they are the same colour and it is possible to
map one sequence into the other through an inversion and/or a cyclic permutation of the
sequence. A loop of colour i is an equivalence class of directed closed walks of colour
i . Two directed open walks are said to be equivalent if they are the same colour and if
one can map one sequence into the other through an inversion of the sequence. A walk
of colour i is an equivalence class of directed open walks of colour i . When referring
to loops and walks, we will not always specify their colour. More generally, loops and
walks will be called paths.

We let uix (w) be the the number of i-links touching x which are not paired to any
other link at x . In other words, this number corresponds to the number of times a walk
starts or ends at x . Let vix (w) be the number of i-links touching x which are paired at
x to another i-link touching x , then vix (w)/2 corresponds to the number of pairings of
i-links at x . Set

nix (w) := vix (w)

2
+ uix (w). (2.1)

In other words, nix corresponds to the number of times x is visited by a loop or by a walk
of colour i . We define

nx (w) =
N∑

i=1

nix (w), (2.2)

to be the total number of times x is visited by a loop or walk. We also write

nx (w) = (n1x (w), . . . , nNx (w)), ux (w) = (u1x (w), . . . , uN
x (w)). (2.3)

Additionally we define tx (w) to be the number of links incident to x that are paired at x
with another link on the same edge. To obtain, for example, the O(N ) loop model we
need to restrict to configurations where tx (w) = 0 for each x . See Sect. 2.2 for details.

Definition 2.1. Given N ∈ N>0, an inverse temperature β ∈ R≥0, and aweight function
U : N2N+1 → R≥0, we define the non-negative measure μG,N ,β,U by

μG,N ,β,U (w) :=
∏

e∈E

βme(w)

me(w)!
∏

x∈V
Ux (w) ∀w = (m, c, π) ∈ WG, (2.4)

whereUx (w) := U
(
nx (w),ux (w), tx (w)

)
for each x ∈ V . Given a function f : WG →

R, we use the same notation for the expectation of f , μG,N ,β,U ( f ) := ∑
w∈WG f (w)

μG,N ,β,U (w).
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Thus, the weight function Ux might depend not only on the total number of times x is
visited by paths of any given colour, but also on whether such paths are walks or loops.
Note that μG,N ,β,U is not necessarily a probability measure and it does not necessarily
have finite mass for all choices of N ∈ N>0 and U . In Sect. 2.2 we will prove that the
random path model is equivalent to other models for certain choices of the parameters
and the weight function, for which it is simple to deduce that the measure has finite mass,
and hence so is for μG,N ,β,U . General sufficient conditions to ensure that μG,N ,β,U has
finite mass can also be found in [4, Proposition 3.1]. Finally, note that the factorial term
in the denominator of (2.4), which was not present in the informal definition (1.3), could
be incorporated into the weight function.

We now introduce one of the central quantities, the two-point function.

Definition 2.2. For any set A ⊂ V , define SA as the set of configurations w ∈ WG such
that u1x (w) = 1 for any x ∈ A and u1z (w) = 0 for any z ∈ V\A. Moreover, for any
vertex x ∈ V , define Rx as the set of configurations w ∈ WG such that u1x (w) = 2 and
u1z (w) = 0 for any z ∈ V\{x}. We define ZG,N ,β,U (A) := μG,N ,β,U (SA). By a slight
abuse of notation, we write ZG,N ,β,U (x, y) when A = {x, y} such that x 
= y, and we
define ZG,N ,β,U (x, x) := μG,N ,β,U (Rx ) for any x ∈ V . Finally, we define the two-point
functions,

GG,N ,β,U (A) := ZG,N ,β,U (A)

ZG,N ,β,U (∅)
∀A ⊂ V,

GG,N ,β,U (x, y) := ZG,N ,β,U (x, y)

ZG,N ,β,U (∅)
∀x, y ∈ V.

We use the convention that if μG,N ,β,U (S∅) = 0, then ZG,N ,β,U (∅) := 1. This way the
two-point function is always well-defined. Sometimes, for a lighter notation, we will
omit the sub-scripts and, in the case that our graph is the torus TL = Z

d/LZd , we will
write ZL ,N ,β,U = ZG,N ,β,U and GL ,N ,β,U = GG,N ,β,U .

The quantity ZG,N ,β,U (A), can be viewed as a sum over realisations w ∈ WG
weighted by (2.4) such that there is precisely one unoriented 1-walk start (or end) point
at each vertex x ∈ A, and no unoriented 1-walk start (or end) point at each vertex
x 
∈ A. In some of the special cases considered in Sect. 2.2, such walks of colour 1
will interact with an arbitrary number of loops of colour i ∈ {1, . . . , N }. This is the
case for the loop O(N ) model and of the loop representation of the spin O(N ) model.
In other special cases, they will interact not only with an arbitrary number of loops of
colour i ∈ {1, . . . , N }, but also with an arbitrary number of walks consisting of only
one edge and having colour 3. This is the case of random lattice permutations and of the
double-dimer model. Note that if A contains an odd number of vertices, then necessarily
ZG,N ,β,U (A) = 0.

2.2. Special cases. In this sectionwewill show that, under some specific assumptions on
the number of colours N ∈ N>0 and on the weight functionU , the two-point function of
the random path model corresponds to the two-point function of several classical models
in statistical mechanics. In all the models defined below, the function GG,N ,β,U (x, y) is
conjectured to exhibit different behaviours as the distance between x and y increases in
the limit of large boxes in Z

d , as the parameters in the definition of the model and the
dimension d ≥ 2 vary. We refer to the papers cited in the introduction for conjectures
and known facts. Our Theorem 2.4 below states a general site-monotonicity property
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which holds for the two-point function of all these models. In all the cases considered
below, we let G = (V, E) be an undirected, simple, finite graph, where V denotes the
vertex set and E denotes the set of undirected edges. We also denote n = (n1, . . . , nN )

and u = (u1, . . . , uN ) for ni , ui ∈ N, i = 1, . . . , N .

Spin O(N ) model To begin, we define the spin O(N ) model precisely. Fix an integer

N ∈ N>0. We denote by ϕ ∈ (SN−1)
V
the spin configurations, where SN−1 ⊂ R

N is the
unit sphere of dimension N−1. For example,S0 = {−1, 1} andS1 ⊂ R

2 is the unit circle.
Wewill oftenwrite spin configurations asϕ = (ϕx )x∈V whereϕx = (ϕ1

x , . . . , ϕ
N
x ) ∈ R

N

is the value of ϕ at the vertex x ∈ V . The hamiltonian of the spin O(N )model is defined
as

HG,N (ϕ) = −
∑

{x,y}∈E
ϕx · ϕy, (2.5)

where ϕx · ϕy denotes the usual inner product of two N -component vectors. For a
parameter β ≥ 0 known as the inverse temperature the partition function at inverse
temperature β is given by

Zspin
G,N ,β

=
( ∏

x∈V

∫

SN−1
dϕx

)
e−βHG,N (ϕ), (2.6)

where dϕx denotes the uniform probability measure on S
N−1, that is,

∫
SN−1 dϕx = 1.

We introduce an expectation operator 〈·〉G,N ,β on functions (SN−1)V → R, that assigns
the value

〈 f 〉G,N ,β = 1

Zspin
G,N ,β

( ∏

x∈V

∫

SN−1
dϕx

)
f
(
(ϕx )x∈V

)
e−βHG,N (ϕ). (2.7)

The next proposition formalises the correspondence between the correlation function
of the classical spin O(N ) model and the point-to-point function of the random path
model. Recall the definition of the two-point function, Definition 2.2.

Proposition 2.3. Let G = (V, E) be a finite graph, fix an integer N ∈ N>0. When the
weight function U : N2N+1 → R is defined as follows,

U (n,u, t) =
⎧
⎨

⎩

�( N
2 )

2n �(n+ N
2 )

if u2 = u3 = · · · uN = 0,

0 if otherwise,
(2.8)

where n = n1 + n2 + · · · + nN and there is no dependence on t, we have that, for any
β ∈ R≥0, A ⊂ V ,

〈
∏

x∈A

ϕ1
x 〉G,N ,β = GG,N ,β,U (A). (2.9)

The choice of the weight function (2.8) is such that only realisations w ∈ WG which
present no walk of colour i = 2, . . . N are allowed, and the weight depends on the
total number of times a loop of arbitrary colour or a walk of colour 1 visits the vertices.
Thus, by Definition 2.2, the point-to-point function which appears in the right-hand side
of (2.9) corresponds to the ratio between the weight of realisations w ∈ WG with an
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arbitrary number of loops and precisely one walk of colour 1 starting (or ending) at
any vertex of A, and the weight of realisations w ∈ WG with only loops. The proof of
this proposition is presented in the appendix of this paper. It is a re-adaptation of [4,
Proposition 6.3], where a different correlation function was considered.

A classical case of study is the spin O(N) model in the presence of an external
magnetic field, which corresponds to the case in which a term h

∑
x∈V ϕN

x is added to
the right-hand side of (2.5), where h ∈ R is non-zero. Proposition 2.3 can be adapted to
this case by modifying (2.8) appropriately and the monotonicity properties for the two
point functions< ϕi

x ϕi
y >G,N ,β when i = 1, . . . , N , Theorem 2.7, hold with no change

in the proof.

Loop O(N ) model The loop O(N ) model is defined as follows. Given a set A ⊂ V , we
let 	loop(A) be the set of spanning sub-graphs of G such that the degree of every vertex
in A equals one and the degree of every vertex in V\A equals zero or two. It follows
from this definition that each realisation ω ∈ 	loop(A) can be viewed as a collection
of vertex-self-avoiding vertex-disjoint loops and walks, where at every vertex of A one
walk starts (or ends), and no walk starts or ends at the vertices of V\A. Let N ∈ N>0
and β ∈ R>0 be two parameters. We define

Zloop
G,N ,β

(A) :=
∑

ω∈	loop(A)

βe(ω)N �(ω),

where e(ω) is the total number of edges and �(ω) is the total number of loops of the
graph ω ∈ 	loop(A), and we define Gloop

G,N ,β
(A) := Zloop

G,N ,β
(A)/Zloop

G,N ,β
(∅). Under the

choice of the weight function of the random path model as follows,

U (n,u, t) :=
{
1 if n ∈ {0, 1}, and t = ui = 0 for i = 2, . . . N ,

0 if otherwise,
(2.10)

where n = n1 + · · · + nN , we have that, for any A ⊂ V ,

Zloop
G,N ,β

(A) = ZG,N ,β,U (A). (2.11)

This follows as the choice ofU ensures that we have an ensemble of vertex-self-avoiding,
vertex-disjoint arbitrarily coloured loops and 1-walks, hence me(w) = 1 for any w ∈
WG that contributes to Zloop

G,N ,β
(A). From this it follows that

Gloop
G,N ,β

(A) = GG,N ,β,U (A), (2.12)

where on the right-hand side we have the point-to-point function of the random path
model. The definition of the loop O(N )model thatwe provided can be found for example
in [27] in the case of the hexagonal lattice. An alternative definition where the loops are
allowed to share the vertices but they are not allowed to share the edges is provided in
[7]. To obtain the loop O(N ) model which was defined in [7], one would need to define
the weight functionU slightly differently than (2.10). See also [8,9,16,17,32] for recent
papers.

Random lattice permutations Let 	per (∅) be the set of permutations π : V → V such
that, for every z ∈ V , either {z, π(z)} ∈ E or π(z) = z. For any pair of distinct vertices
x, y ∈ V , let 	per (x, y) be the set of functions π : V\{y} → V\{x} such that, for
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every z ∈ V , either {z, π(z)} ∈ E or π(z) = z, and, moreover, every z ∈ V\{x, y} has
precisely one input and one output in π (from this it also follows that x has precisely
one output and that y has precisely one input). This model has been studied in [1–3].

By drawing a directed edge from z to π(z) for every z such that π(z) 
= z, we see that
any π ∈ 	per (∅) can be viewed as a collection of vertex-disjoint oriented vertex-self-
avoiding loops and dimers, where a dimer is a pair of nearest-neighbour edges, z1, z2,
such that π(z1) = z2 and π(z2) = z1. Similarly, any π ∈ 	per (x, y) can be viewed
as a collection of an arbitrary number of mutually-disjoint oriented self-avoiding loops
and dimers and of one directed self-avoiding walk starting at x and ending at y. For
simplicity we will only consider sets A ⊂ V of the form {x, y} or ∅. For any α ∈ R, we
define,

Z per
G,α

(A) :=
∑

π∈	per (A)

exp
( − α e(π)

)
,

where, here, e(π) := ∑
x∈V 1{x 
= π(x)}. Moreover, we define Gper

G,α
(A) := Z per

G,α
(A)/

Z per
G,α

(∅). To represent random lattice permutations as a special case of the random path
model, we need to fix N = 3 and choose the weight function as follows,

U (n,u, t) :=

⎧
⎪⎨

⎪⎩

1 if n ∈ {0, 1} and t = u2 = u3 = n3 = 0,

β
1
2 if n = 1 and u3 = 1,

0 otherwise

(2.13)

where n = n1 + n2 + n3. Under this choice, we have that, for any α ∈ R, β = e−α and
A = {x, y} for x 
= y or A = ∅,

Z per
G,α

(A) = ZG,3,β,U (A). (2.14)

The previous correspondence holds true since, by choosing U as above, any w ∈
WG,3,β,U can be viewed as a collection of walks of length two (dimers) of colour 3,
which are weighted by β2 = e−2α as in random permutations (one factor β corre-
sponds to the edge-weight and the additional factor β corresponds to the product of the
vertex-weights associated to the end-points of the dimer), undirected loops which have
multiplicity two (as in random lattice permutations, where the loops are uncoloured but
directed and for this reason they have multiplicity two as well) and a self-avoiding walk
of colour 1 connecting x to y which does not overlap with loops and dimers. It follows
from this that

Gper
G,α

(A) = GG,3,β,U (A). (2.15)

Dimer model and double-dimer model Given G = (V, E) and A ⊂ V , let G\A be the
sub-graph of G which is obtained from G by removing all vertices of V which are in A
and all the edges which are incident to the vertices in A. A dimer cover of a graph is a
spanning sub-graph of that graph such that every vertex has degree precisely one. Let
	dim(A) be the set of dimer covers of the graph G\A (which might be the empty set in
some cases). For the dimer model, we define

Gdim
G (A) := |	dim(A)|

|	dim(∅)| . (2.16)
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In the dimer model, the quantity Gdim
G ({x, y}) is usually referred to as monomer-

monomer correlation and it is a central quantity in the study of this system. Its value
can be computed explicitly on some planar graphs G [11,20,25]. As far as we know,
on the torus of dimension d ≥ 3, our new general monotonicity property, Theorem 2.4
below, is the only known fact on the behaviour ofGdim

G ({x, y}). To explain how (2.16) is
obtained from the definition of the random path model, we introduce the double-dimer
model.

A double-dimer configuration is the union of two dimer covers [23] of G. More
precisely, consider A ⊂ V such that A contains two distinct vertices, A = {x, y}, or
A = ∅, and define

	d.d.(A) := 	dim(A) × 	dim(∅). (2.17)

Any realisation of the double-dimer model, ω = (ω1, ω2) ∈ 	d.d.(A), can be viewed as
a collection of an arbitrary number of mutually-disjoint self-avoiding loops and double-
dimers and a self-avoiding walk connecting x and y by superimposing ω1 and ω2 (a
double-dimer corresponds to the superposition of two dimers occupying the same edge).

In the double dimer model, the measure on the configuration space (2.17) is the
uniform measure. For any set A = {x, y}, define

Gd.d.
G (A) := |	d.d.(A)|

|	d.d.(∅)| = |	dim(A)||	dim(∅)|
|	dim(∅)|2 = Gdim

G (A), (2.18)

and note that the second identity follows from (2.17), while the third identity follows
from the definition (2.16) after a simplification. Recall that n = n1 + · · · nN and choose
the weight function U as follows,

U (n,u, t) :=

⎧
⎪⎨

⎪⎩

1 if n = 1 and t = u2 = u3 = n3 = 0,
1 if n = 1 and u3 = 1,
0 otherwise,

(2.19)

and note that, under this choice,

|	d.d.({x, y})| = ZG,3,1,U ({x, y}), |	d.d.(∅)| = ZG,3,1,U (∅).

Indeed, the weight function U , allows mutually-disjoint self-avoiding loops having
colour 1 or 2 and walks consisting of just one link which has colour 3 and does not
share his end-points with any other link, moreover for every vertex there exist either
one or two links which are incident to it. The value ZG,3,1,U ({x, y}) corresponds to
the number of such configurations with a ‘long’ walk of colour 1 connecting x and
y, while the value ZG,3,1,U (∅) corresponds to the number of such configurations with
no ‘long’ walk of colour 1. Thus, each loop has multiplicity two, like the loops in the
double-dimer model, and each single link has multiplicity one, like double-dimers in
the double-dimer model. Moreover, each vertex is touched by a loop or by a single link
like in the double dimer model, in which every vertex belongs to a loop or to a double-
dimer. This explains the previous two identities. From such identities we deduce that,
Gd.d.
G ({x, y}) = GG,3,1,U (x, y). Thus, it follows from this relation and from (2.18) that,

Gdim
G ({x, y}) = GG,3,1,U (x, y). (2.20)

This explains why our theorems also apply to Gdim
G ({x, y}).
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2.3. Main results. Wenowstate ourmain results.Our first two theorems generalise to the
spin O(N )modelwith arbitrary N ∈ N>0 and to all themodelswhichwere introduced in
the previous section the site-monotonicity properties which were derived by Messager
and Miracle-Sole, [26, Corollary 1] by using Lebowitz inequalities [19]. In [26], the
cases of free and ‘plus’ boundary conditions in presence of a uniform external magnetic
field when N = 1 and of free boundary conditions with no external magnetic field when
N = 2 have been considered. An alternative derivation of such monotonicity properties
has been given in [18, Theorem 3.1] in the specific case of the Ising model, N = 1.
Contrary to [26], the results of [18] also apply to periodic boundary conditions and they
are not restricted to nearest neighbour interactions. Note that, although the monotonicity
properties which have been derived in [18,26] hold for a much more restrictive class of
models, they are stronger than ours, since they do not require averaging the two point
function at two sites like in equation (2.23) below.

We use ei to denote cartesian vectors and o = (0, 0, . . . , 0) ∈ TL to denote the
origin.

Theorem 2.4 (Site-monotonicity for paths). Consider the torus TL = Z
d/LZd in di-

mension d ≥ 2 with L ∈ 2N and nearest-neighbour edges and let i ∈ {1, . . . , d}.
Assume that U is defined as in Definition 2.1, let N ∈ N>0 and β ≥ 0 be arbitrary,
suppose that the measure μ(TL ,EL ),N ,β,U defined in Definition 2.1 has finite mass. If we
write z = (z1, . . . , zd) then,

if zi ∈ 2Z + 1 GL ,N ,β,U (o, z) ≤ GL ,N ,β,U (o, zi ei ), (2.21)

if zi ∈ 2Z\{0} GL ,N ,β,U (o, z) ≤ 1

2
GL ,N ,β,U (o, (zi − 1)ei ) +

1

2
GL ,N ,β,U (o, (zi + 1)ei ).

(2.22)

Further, for y ∈ TL with y · ei = 0 (possibly y = o) the function

GL ,N ,β,U (o, y + nei ) + GL ,N ,β,U (o, nei ), (2.23)

is a non-increasing function of n for odd n in (0, L/2).

From the second statement of the previous theorem (applied when y = o) we deduce that
GL ,N ,β,U (o, nei ) is a non-increasing function of n for odd n in (0, L/2). Thuswe deduce
that, for any L ∈ 2N, any coordinate i ∈ {1, . . . , d}, and any site z = (z1, z2, . . . , zd) ∈
TL ,

GL ,N ,β,U (o, z) ≤ GL ,N ,β,U (o, zi ei ) ≤ GL ,N ,β,U (o, ei ). (2.24)

This theorem can be viewed as a statement about the geometry of random (or self-
avoiding) walks interacting with ensembles of loops and dimers. When we force a long
walk connecting two points o and z it is always the case that themost favourable thing for
the system in terms of energy–entropy balance is that such two points are neighbours,
in such a way that the walk resembles the other objects (which are loops, dimers, or
both, depending onU ). From such monotonicity properties we also deduce that, in great
generality, the two point function is not only bounded from above uniformly in the sites,
but also in the size of the torus (indeed, under the insertion of one link, which has a finite
cost, one sees that the right-hand side of (2.24) is a finite constant independent from L
times a probability). The same fact would not hold true in the absence of any interaction:
for example the two-point function between o and e1 of a self-avoiding walk weighted
by β [29] (with no loops) diverges with L when β is large enough.
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Remark 2.5. We deduce from (2.20) and from (2.24) that, when L ∈ 2N, the monomer-
monomer correlation function of the dimer model, which was defined before (2.20),
satisfies the following uniform upper bound,

∀z ∈ TL , Gdim
L ({o, z}) ≤ Gdim

L ({o, e1}) = 1

2d
, (2.25)

where the identity follows from rotational symmetry and from the fact that, when the
monomers are placed at o and e1, the monomer-monomer correlation function equals
the probability that a uniform dimer cover with no monomers has a dimer on the edge
{o, e1}. This improves the upper bound on the ratio between the number of dimer covers
with two monomers at arbitrary positions on the torus and the number of dimer covers
with nomonomers which was derived in [22, Theorem 2]. There, it was proved through a
multi-valued map principle that such a ratio, which is denoted by α, is less or equal than
L2d

4 in any dimension d ≥ 3. Using translation invariance and the fact that Gdim
L ({o, z})

is zero whenever z has even graph distance from o, we deduce from (2.25) that α ≤ L2d

8d .

Remark 2.6. The fact that Theorem 2.4 holds only for ‘odd points’ is not due to a limita-
tion of our method. Indeed, one cannot expect that such a monotonicity property holds
for any integer n (odd or even) for any weight function U satisfying the assumption of
Definition 2.1. To explain this, recall the definition of the double-dimer model. Since no
dimer cover of the graph (Z2\LZ2)\{o, 2e1} exists, we deduce that Gd.d.

L (o, 2e1) = 0.
Thus, if the previous theorem was true at any point (like Theorem 2.7 below), then
we would conclude that for any even L ∈ N and any z ∈ TL such that ‖z‖ ≥ 2,
Gd.d.

L (o, z) = 0, which is not true!

From this remark we will infer that the double-dimer model is reflection positive
for reflection through edges but not for reflection through sites. Nevertheless for some
weight functions, U , the monotonicity properties of the previous theorem hold true for
any integer n ∈ (0, L/2) (odd or even). This is the case of the spin O(N ) model with
arbitrary N ∈ N>0, as the next theorem states.

Theorem 2.7 (Site-monotonicity for spins). Consider the torus TL = Z
d/LZd in di-

mension d ≥ 2 with L ∈ 2N and nearest-neighbour edges and let i ∈ {1, . . . , d}.
Let 〈ϕo · ϕz〉L ,N ,β be the spin–spin correlation of the spin O(N) model on a torus
of side length L ∈ N, N ∈ N>0, and inverse temperature β. We have that, for any
z = (z1, . . . , zd) ∈ TL ,

〈ϕo · ϕz〉L ,N ,β ≤ 〈ϕo · ϕzi ei 〉L ,N ,β . (2.26)

Moreover, for y ∈ TL with y · ei = 0 (possibly y = o) the function

〈ϕo · ϕy+nei 〉L ,N ,β + 〈ϕo · ϕnei 〉L ,N ,β

is a non-increasing function of n for any integer n in (0, L/2].
From the previous theoremwe deduce that the two-point function of the spinO(N)model
with arbitrary N ∈ N satisfies a relation which is analogous to (2.24) at all sites (not just
those which are ‘odd’).

Our monotonicity properties imply that, if the lower bound in (1.2) is close enough
to one, which in the specific case of the spin O(N) model holds for large enough β, then
the two-point correlation function is point-wise positive, as the next theorem states.
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Theorem 2.8 (Point-wise uniform positivity). Let 〈ϕo · ϕz〉L ,N ,β be the spin–spin cor-
relation of the spin O(N) model on a torus of side length L ∈ N, with N ∈ N>0, and
inverse temperature β. Suppose that d ≥ 3, where d is the dimension of the torus. Then,
there exists β ′

0 < ∞ such that if β > β ′
0, there exists C = C(β, d, N ) > 0 and L0 < ∞

such that for any even L > L0,

〈ϕo · ϕz〉L ,N ,β ≥ C ∀z : ‖z‖∞ < L
8 . (2.27)

Note that the constant 1/8 which appears in the right-hand side of (2.27) could be
replaced by any other constant in (0, 1

4 ).

3. Reflection Positivity

The main purpose of this section is to introduce the method of reflection positivity. The
reader is encouraged to read the notes ofBiskup [5] or the book of Friedli andVelenik [14,
Chapter 10] for an introduction on this method. From now on the underlying graphG will
be a torus of side length L , (TL , EL) in dimension d ≥ 2, with edges connecting nearest-
neighbour vertices. We identify TL = Z

d/LZd with the set [0, L)d ∩ Z
d . We denote

the origin, corresponding to the vertex (0, 0, . . . , 0) ∈ TL , by o ∈ TL . Throughout the
section N ∈ N>0 and β ∈ R≥0 will be arbitrary but fixed, U will be a weight function
as in Definition 2.1, L will be an even integer and we will assume that the measure
μL ,N ,β,U which was defined in Definition 2.1 has finite mass.

We now introduce the notion of domain and restriction and, after that, we introduce
reflections. Intuitively, a function with domain D ⊂ V is a function which depends only
on how w ∈ WG looks in D or in a subset of D. More precisely, the function might only
depend on how many links emanate from the vertices of D, on the direction in which
they emanate, on which colour they have and on the pairings on vertices in D.

Domains A function f : WG → R has domain D ⊂ V if for any pair of configurations
w = (m, c, π),w′ = (m′, c′, π ′) ∈ WG such that

∀e ∈ E : e ∩ D 
= ∅, ∀z ∈ D, me = m′
e ce = c′

e πz = π ′
z

one has that f (w) = f (w′).

Restrictions For w = (m, c, π) ∈ WG define the restriction of w to D ⊂ V , wD =
(mD, cD, πD) with cD ∈ C(mD), πD ∈ PG(mD, cD), by

(i) (mD)e = me for any edge e ∈ E which has at least one end-point in D and
(mD)e = 0 otherwise,

(ii) (cD)e = ce for any edge e which has at least one end-point in D and (cD)e is the
empty function otherwise,

(iii) (πD)x = πx for any x ∈ D, and for x ∈ ∂e(D) we set (πD)x as the pairing which
leaves all links touching x unpaired.

Reflection through edges Consider a plane R, which is orthogonal to one of the cartesian
vectors ei , i ∈ {1, . . . , d}, and intersects the midpoint of Ld−1 edges of the graph
(TL , EL), i.e. R = {z ∈ R

d : z · ei = u}, for some u such that u − 1/2 ∈ Z ∩ [0, L)

and i ∈ {1, . . . , d}. See Fig. 2 for an example. Given such a plane R, we denote by
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� : TL → TL the reflection operator which reflects the vertices of TL with respect to
R, i.e. for any x = (x1, x2, . . . , xd) ∈ TL ,

�(x)k :=
{
xk if k 
= i,
2u − xk mod L if k = i.

(3.1)

Let T+
L ,T−

L ⊂ TL be the corresponding partition of the torus into two disjoint halves
such that �(T±

L ) = T
∓
L , as in Fig. 2.

Let E+
L , E−

L ⊂ EL , be the set of edges {x, y}with at least one of x, y inT+
L respectively

T
−
L . Moreover, let E R

L := E+
L ∩E−

L . Note that this set contains 2L
d−1 edges, half of them

intersecting the plane R. Further, let � : WG → WG denote the reflection operator
reflecting the configuration w = (m, c, π) with respect to R (we commit an abuse of
notation by using the same letter). More precisely we define �w = (�m,�c,�π)

where (�m){x,y} = m{�x,�y}, (�c){x,y} = c{�x,�y}, (�π)x = π�x . Given a function
f : WG → R, we also use the letter � to denote the reflection operator � which acts
on f as � f (w) := f (�w). We denote byA± the set of functions with domain T±

L and
denote by W±

G the set of configurations w ∈ WG that are obtained as a restriction of

some w′ ∈ WG to T±
L .

Projections Finally, we denote by W R
G the set of wire configurations w = (m, c, π)

such that me = 0 whenever e /∈ E R
L and, for all x ∈ TL , πx leaves all links touching

x unpaired. We also denote by PR : WG → W R
G the projection such that, for any

w = (m, c, π) ∈ WG , PR(w) = (mR, cR, π R) is defined as the wire configuration such
that mR

e = 1e∈E R
L
me and cRe = 1e∈E R

L
ce and all links are unpaired at every vertex.

In the next proof we will use the following remark.

Remark 3.1. Recall the definition of restriction. Given a triplet of configurations w′ ∈
W R

G ,w1 ∈ W+
L ,w2 ∈ W−

G such that PR(w1) = PR(w2) = w′, there exists a unique con-
figuration w ∈ WG such that wT

+
L

= w1, wT
−
L

= w2, PR(w) = w′. This configuration
is formed by concatenating w1 and w2 (concatenation includes the pairing structures of
each w j ).

Proposition 3.2. Consider the torus (TL , EL) for L ∈ 2N. Let R be a reflection plane
bisecting edges and let� be the corresponding reflection operator. Consider the random
path model with N ∈ N>0, inverse temperature β ≥ 0 and weight function U as in
Definition 2.1. For any pair of functions f, g ∈ A+, we have that,

(1) μL ,N ,β,U ( f �g) = μL ,N ,β,U (g� f ),
(2) μL ,N ,β,U ( f � f ) ≥ 0.

From this we obtain that,

μL ,N ,β,U
(
f �g

) ≤ μL ,N ,β,U
(
f � f

) 1
2 μL ,N ,β,U

(
g�g

) 1
2 . (3.2)

Proof. Throughout the proof we will write μ = μL ,N ,β,U . First we note that (3.2)
follows in the standard way from (1) and (2), since (1) and (2) show that we have a
positive semi-definite, symmetric bilinear form.

To prove (1) we note that, by Definition 2.1 and due to the symmetries of the torus,
μ(w) = μ(�w) for any w ∈ WG . Hence



Site Monotonicity and Uniform Positivity for Interacting Random 503

μ( f �g) =
∑

w∈WG

f (w)�g(w)μ(w) =
∑

�w∈WG

f (�w)�g(�w)μ(w)

=
∑

�w∈WG

g(w)� f (w)μ(w) =
∑

w∈WG

g(w)� f (w)μ(w) = μ(g� f ). (3.3)

For (2) we condition on the number of links in w crossing the reflection plane and
on their colours. We will write me(w) for the number of links parallel to the edge e of
the configuration w ∈ W . We write

μ( f � f ) =
∑

w∈W R
G

μ( f | w), (3.4)

where, for any w′ ∈ W R
G ,

μ( f | w′) :=
∑

w∈WG
PR(w)=w′

f (w)� f (w)μ(w)

=
( ∏

e∈E R
L

me(ω
′)!

βme(ω′)

) ∑

w∈WG
PR(w)=w′

f (w)
( ∏

e∈E+
L

βme(w)

me(w)!
) ( ∏

x∈T+
L

Ux (w)
)

� f (w)
( ∏

e∈E−
L

βme(w)

me(w)!
) ( ∏

x∈T−
L

Ux (w)
)
. (3.5)

Now, any w ∈ WG such that PR(w) = w′ uniquely defines w
T

±
L
, the restriction of w

to T
±
L . Thus, from Remark 3.1 we deduce that we can split the sum over w ∈ WG with

PR(w) = w′ as the product of two independent sums and continue:

μ( f | w′) =
( ∏

e∈E R
L

me(ω
′)!

βme(ω′)

)( ∑

w1∈W+
G

PR(w1)=w′

f (w1)
( ∏

e∈E+
L

βme(w1)

me(w1)!
) ( ∏

x∈T+
L

Ux (w1)
))

( ∑

w2∈W−
G

PR(w2)=w′

� f (w2)
( ∏

e∈E−
L

βme(w2)

me(w2)!
) ( ∏

x∈T+
L

Ux (w2)
))

=
( ∏

e∈E R
L

me(ω
′)!

βme(ω′)

)( ∑

w1∈W+
G

PR(w1)=w′

f (w1)
( ∏

e∈E+
L

βme(w1)

me(w1)!
) ( ∏

x∈T+
L

Ux (w1)
))2

.

(3.6)

The last equality holds true by the symmetry of the torus. Since the last expression
is non-negative, from (3.4) we conclude the proof of (2) and, thus, the proof of the
proposition. ��

Recall that uix (w) denotes the number of i-links touching x ∈ TL which are not
paired to any other link at x (i.e. the number of walks with colour i with an end-point at
x). For any field h = (hx )x∈TL ∈ R

TL , we define the very important quantity,

Zfield
L ,N ,β,U (h) := μL ,N ,β,U

( ∏

x∈TL

h
u1x (w)
x

)
, (3.7)
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using the convention that 00 = 1. We will always assume that the weight function U is
such that Zfield

L ,N ,β,U (h) is finite for any real vector h = (hx )x∈TL such that hx ≤ 1 for any
x ∈ TL . This assumption is certainly fulfilled in all the special cases considered above.
Note that Zfield

L ,N ,β,U (0) = ZL ,N ,β,U (∅) only involves configurations with no walks of

colour 1. For h = (hx )x∈TL ∈ R
TL we define its reflection �h = ((�h)x )x∈TL by

(�h)x = h�x . We also define the related fields, h± = (h±
x )x∈TL by

h±
x =

{
hx if x ∈ T

±
L ,

h�x if x ∈ T
∓
L .

(3.8)

Proposition 3.3. Under the same assumptions as Proposition 3.2, for any field h ∈ R
TL

such that Zfield
L ,N ,β,U (h) is finite, we have that,

Zfield
L ,N ,β,U (h) ≤ Zfield

L ,N ,β,U (h+)
1
2 Zfield

L ,N ,β,U (h−)
1
2 .

Proof. This is an application of Proposition 3.2. Define fh(w) := ∏
x∈TL

h
u1x (w)
x , then

we can write fh(w) = f +h (w) f −
h (w) where f ±

h (w) := ∏
x∈T±

L
h
u1x (w)
x . We have that

f ±
h ∈ A± as the function only depends on the pairings at sites in T

±
L and hence has

domain T
±
L . We have

f ±
h (w)� f ±

h (w) = f ±
h (w) f ∓

�h(w) =
∏

x∈TL

(h±
x )u

1
x (w). (3.9)

Now applying Proposition 3.2 with f = f +h and g = � f −
h completes the proof. ��

The central object of this section is the next weighted sum of two-point functions.
For any field of real values, h = (hx )x∈TL , define

Z (2)
L ,N ,β,U (h) :=

∑

x∈TL

ZL ,N ,β,U (x, y) h2x +
1

2

∑

x,y∈TL :
x 
=y

ZL ,N ,β,U (x, y)hxhy, (3.10)

as a sum over weights of configurations with a single walk of colour 1 (and an arbitrary
number of walks of colour 2, . . . n, U allowing) weighted by the products of values of
h at the end points of the 1-walk. Note that the second sum is in the right-hand side of
(3.10) is over ordered pairs of distinct sites. We have the following theorem.

Theorem 3.4. Under the same assumptions as Proposition 3.3, given an arbitrary vector
field h, we have that,

Z (2)
L ,N ,β,U (h) ≤ Z (2)

L ,N ,β,U (h+) + Z (2)
L ,N ,β,U (h−)

2
. (3.11)

Proof. Throughout the proof we will write Z∗
L ,N ,β,U = Z∗ where ∗ ∈ {field, (2)} for

a lighter notation. Take h ∈ R
TL and η > 0, we can expand Zfield(ηh) into a series of

terms in η, as follows

Zfield(ηh) = Zfield(0) + η2Z (2)(h) + Rh(η), (3.12)
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where Rh(η) is of order O(η4). Zfield(0) involves weights of configurations with nowalk
of colour 1. The second term involves the weight of configurations with one unique walk
of colour 1.More precisely, the second term is theweight of configurationswith precisely
two distinct points x, y ∈ TL such that u1x (w) = u1y(w) = 1 and u1z (w) = 0 for z ∈
TL\{x, y} orwith one point x ∈ TL such that u1x (w) = 2 and u1z (w) = 0 for z ∈ TL\{x}.
Now using Proposition 3.3 and the Taylor expansion (1 + x)1/2 = 1 + x/2 + O(x2), we
obtain that,

Zfield(0) + η2Z (2)(h) + Rh(η)

≤
[(

Zfield(0) + η2Z (2)(h+) + Rh+(η)
)(
Zfield(0) + η2Z (2)(h−) + Rh−(η)

)]
1
2

=
[(

Zfield(0)2 + η2Zfield(0)
(
Z (2)(h+) + Z (2)(h−)

)
+ O(η4)

)]
1
2

= Zfield(0) + η2
Z (2)(h+) + Z (2)(h−)

2
+ O(η4).

(3.13)

As this inequality holds for arbitrarily small η > 0 we see, by taking η sufficiently small,
that (3.11) holds, thus concluding the proof. ��

4. Proof of Theorems 2.4, 2.7, and 2.8

The main purpose of this section is to prove Theorems 2.4, 2.7, and 2.8. This section is
divided into two subsections. In the first subsectionwewill use the tools which have been
introduced in Sect. 3 to prove Theorem 2.4, which involves the random path model with
arbitrary weight function. In the second subsection we will consider only the spin O(N )

model and we will introduce a new type of reflection, reflection through sites, which is
not available for arbitrary weight functions but is in (at least) the case of the spin O(N)
model. Through this section we will always take our graph G to be the torus Zd/LZd

with d ≥ 2. We fix N ∈ N>0, β ≥ 0 and takeU such that the measure μL ,N ,β,U , which
was defined in Definition 2.1, has finite mass for any L ∈ 2N. For a lighter notation we
will suppress some indices of our quantities of interest, keeping only their dependence
on L . Also, for any z ∈ TL , we will use the notation,

ZL(z) := ZL(o, z), GL(z) := GL(o, z), (4.1)

(recall Definition 2.2).

4.1. Monotonicity for paths using reflection through edges and proof of Theorem 2.4.
The next proposition is a consequence of Theorem 3.4 and states a convexity property
for the partition function ZL(z) for sites z belonging to the cartesian axes.

Proposition 4.1. Let L ∈ 2N, let z ∈ TL and let ei be a cartesian vector. The following
inequality holds for any integer q ∈ N such that q + z · ei is odd and such that z · ei −
q, z · ei + q ∈ (0, L),

ZL(z) ≤ 1

2

(
ZL

(
(z · ei − q) ei

)
+ ZL

(
(z · ei + q) ei

))
. (4.2)
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Fig. 4. We represent three slices of a torus of side length L = 16, the dashed lines separate T+
L from T

−
L . The

vector fields equal 1 on the square vertices and 0 on the round vertices. Left: the field h is chosen as in the
proof of Proposition 4.1. Right: the field h is chosen as in the proof of Proposition 4.2

Proof. Consider the field h = (hx )x∈TL given by

hx =
{
1 if x ∈ {o, z}
0 otherwise.

(4.3)

This means h is zero except at two vertices, which are represented by a square on the
top of Fig. 4-left.

Let R be the reflection plane which is orthogonal to the vector ei and which crosses
the midpoint of the edge {p ei , (p + 1)ei }, where

p := 1

2
(z · ei − 1 + q),

which is an integer since we assumed that z · ei + q is odd. Moreover, since we assumed
that z · ei − q, z · ei + q ∈ (0, L), we deduce that p satisfies 0 ≤ p < z · ei < L . Thus,
when we perform a reflection with respect to R, we obtain two fields h+ and h− such
that

h+x =
{
1 if x ∈ {o, (2p + 1)ei },
0 otherwise,

(4.4)

h−
x =

{
1 if x ∈ {z, z + (2p + 1 − 2z · ei )ei },
0 otherwise.

(4.5)

Note that the condition 0 ≤ p < z · ei < L ensures that h+ and h− are each non-zero
at only two vertices. For a representation of h and of the reflected fields see Fig. 4-left.
Thus, from translation invariance, reflection invariance and the definition (3.10), we
deduce that,

Z (2)
L (h) = 2ZL(o) + ZL(z), (4.6)

Z (2)
L (h+) = 2ZL(o) + ZL

(
(2p + 1)ei

)
, (4.7)

Z (2)
L (h−) = 2ZL(o) + ZL

(
(2p + 1 − 2z · ei )ei

)
. (4.8)
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By applying Theorem 3.4, we conclude the proof after a cancellation of the terms 2
ZL(o). ��

The inequalities (2.21) and (2.22) in Theorem 2.4 are an immediate consequence of
the previous proposition.

Proof of (2.21) and (2.22) in Theorem 2.4. For (2.21), we apply Proposition 4.1 when
q = 0 and z · ei is odd and then divide by ZL . For (2.22), we apply Proposition 4.1 when
q = 1 and z · ei is even and positive and then divide by ZL . ��

For the remainder of this section we will work with the following sum of two point
functions. For any z ∈ TL , and any unit vector ei ∈ Z

d , we define the averaged two-point
function,

Gei
L (z) := GL(z) + GL

(
(z · ei ) ei

)

2
. (4.9)

In other words, given a point z ∈ TL and a unit vector ei ∈ Z
d , we average GL(z) with

the value of GL evaluated at the projection of z onto the cartesian axis corresponding to
ei . The reason whywe introduce the averaged two-point function is that it satisfies a very
usefulmonotonicity property.We remark that, if z lies on the cartesian axis corresponding
to ei , then the averaged two-point function Gei

L equals the two-point function, i.e,

∀k ∈ [0, L], Gei
L (k ei ) = GL(k ei ).

This means that, in this special case, the next statements also hold for the (non-averaged)
two-point function. The next proposition, applied with q = 2, will lead to the mono-
tonicity property of the averaged two-point function.

Proposition 4.2. For any L ∈ 2N, q ∈ N and z ∈ TL , such that z · ei + q is odd and
z · ei − q, z · ei + q ∈ (0, L), the following inequality holds,

Gei
L

(
z + q ei

) − Gei
L

(
z
) ≥ Gei

L

(
z
) − Gei

L

(
z − q ei

)
. (4.10)

Proof. When z ∈ TL is such that z = (z · ei )ei , then the claim follows re-arranging
the terms in Proposition 4.1 and dividing by ZL(∅). Consider now a vertex z ∈ TL
satisfying our assumptions and not lying on the Cartesian axis ei . We will prove that,
under the assumptions of the proposition,

ZL((z · ei )ei ) + ZL(z) ≤ 1

2

(
ZL((z · ei + q)ei )

+ZL((z · ei − q)ei ) + ZL(z + qei ) + ZL(z − qei )
)
, (4.11)

from which (4.10) follows after dividing by ZL(∅) and rearranging the terms (recall
the definition of the two-point function which was introduced in Definition 2.2). As in
Proposition 4.1 we need to make an appropriate choice of h. We choose the following
field,

hx =
{
1 if x ∈ {o, z, (z · ei )ei , z − (z · ei )ei },
0 otherwise,

which is represented in Fig. 4-right. As in Proposition 4.1, define

p := 1
2 (z · ei − 1 + q),
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which is an integer since we assumed that z · ei + q is odd. Let R be the reflection
plane which is orthogonal to the vector ei and which crosses the midpoint of the edge
{p ei , (p + 1)ei }. When we perform a reflection with respect to R, we obtain the fields
h+ and h− such that

h+x =
{
1 if x ∈ {o, (2p + 1)ei , z − (z · ei )ei , z + (2p + 1 − z · ei )ei },
0 otherwise,

(4.12)

h−
x =

{
1 if x ∈ {z, (z · ei )ei , (2p + 1 − z · ei )ei , z + (2p + 1 − 2z · ei )ei },
0 otherwise.

(4.13)

Indeed, by our assumptions we deduce that 0 ≤ p < z · ei < L and this ensures that
h+ and h− are each non-zero at only four vertices. See Fig. 4-right for an illustration of
these fields. Using translation and reflection invariance, we have that,

Z (2)
L (h) = 4ZL(o) + 2ZL((z · ei )ei ) + 2ZL(z − (z · ei )ei ) + 2ZL(z),

Z (2)
L (h+) = 4ZL(o) + 2ZL((2p + 1)ei ) + 2ZL(z − (z · ei )ei )

+ 2ZL(z + (2p + 1 − z · ei )ei ),
Z (2)
L (h−) = 4ZL(o) + 2ZL((2p + 1 − 2z · ei )ei ) + 2ZL(z − (z · ei )ei )

+ 2ZL(z − (2p + 1 − z · ei )ei ).

(4.14)

Now using Theorem 3.4 we obtain (4.11) and this concludes the proof. ��
An important consequence of this proposition is a proof of the second statement of

Theorem 2.4. Indeed, Proposition 4.2 establishes a form of convexity for Gei
L (y + nei )

as a function of n when y · ei = 0 and n is an odd integer in (0, L). In addition, this
function is symmetric around L/2. Hence, it has to be non-increasing up to L/2 and
non-decreasing afterwards.

Proof of (2.23) in Theorem 2.4. The proof is by contradiction. Thus, suppose that there
exists an odd integer n ∈ (0, L/2) such that Gei

L (y + nei ) > Gei
L (y + (n − 2)ei ). From,

this assumption and from an iterative application of Proposition 4.2 with q = 2 we
deduce that,

∀m ∈ (n, L) ∩ (2Z + 1) Gei
L (y + (m + 2)ei ) − Gei

L (y + mei )

≥ Gei
L (y + nei ) − Gei

L (y + (n − 2)ei ) > 0,

which in particular implies that

∀m ∈ [n − 2, L) ∩ (2Z + 1) Gei
L

(
y + (m + 2)ei ) > Gei

L (y + mei
)
,

i.e, the function Gei
L (y + mei

)
is strictly increasing with respect to the odd integers in

[n − 2, L). From this we deduce that,

Gei
L

(
y − nei

) = Gei
L

(
y + nei + (L − 2n)ei

)
> Gei

L

(
y + nei

)
.

However, the previous relation cannot hold true by torus symmetry, thus we found the
desired contradiction and concluded the proof. ��
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4.2. Monotonicity for spins using reflection through sites and proof of Theorem 2.7. In
this section we define reflections in planes of sites. It is a classical fact that the Gibbs
measure associated to the spin O(N) model is positive under reflections through sites.
We use such a notion of reflection positivity to obtain inequalities which are analogous
to those which were proved in the previous section, but which hold at ‘even’ points of
the torus.

Reflections through sitesConsider a plane, R, which is orthogonal to one of the cartesian
vectors ei , i ∈ {1, . . . , d}, and intersects Ld−1 sites of the graph (TL , EL), i.e. R = {z ∈
R
d : z ·ei = m}, for somem ∈ Z∩[0, L) and i ∈ {1, . . . , d}. See Fig. 5 for an example.

Given such a plane R, we denote by� : TL → TL the reflection operator which reflects
the vertices of TL with respect to R, i.e. for any x = (x1, x2, . . . , xd) ∈ TL ,

�(x)k :=
{
xk if k 
= i,
2m − xk mod L if k = i.

(4.15)

Let T+
L ,T−

L ⊂ TL be the corresponding decomposition of the torus into two (overlap-
ping) halves (T+

L ∪ T
−
L = TL ) such that �(T±

L ) = T
∓
L . We define T

R
L := T

+
L ∩ T

−
L ,

which has cardinality 2 Ld−1. We further define E+
L , E−

L ⊂ EL to be the set of edges
{x, y} with both x and y in T

+
L respectively T

−
L . Contrary to reflections through edges,

we have E+
L ∩ E−

L = ∅. A reflection � in a plane R through sites acts on functions
f : (SN−1)TL → R as � f (ϕ) = f (�(ϕ)) where �(ϕ)x = ϕ�(x). Let B± be the set
of bounded measurable functions f : (SN−1)TL → R depending only on spins in T

±
L .

More precisely, f ∈ B± if for any ϕ, ϕ′ ∈ (SN−1)TL such that ϕx = ϕ′
x for all x ∈ T

±
L

we have f (ϕ) = f (ϕ′).
The next proposition is classical. For a proof, see for example [14, Chapter 10].

Proposition 4.3. Consider the torus (TL , EL) for L ∈ 2N. Let R be a reflection plane
bisecting vertices and let � be the corresponding reflection operator. Let N ∈ N>0,
β ≥ 0, and let 〈·〉L ,N ,β be the expectation operator associated to the spin O(N ) [recall
(2.7)]. For any pair of functions f, g ∈ B+, we have that,

(1) 〈 f �g 〉L ,N ,β = 〈 g� f 〉L ,N ,β

(2) 〈 f � f 〉L ,N ,β ≥ 0.

From this we obtain that,

〈 f �g〉L ,N ,β ≤ 〈 f � f 〉
1
2
L ,N ,β 〈g�g〉

1
2
L ,N ,β . (4.16)

Recall from Proposition 2.3 that when U is chosen according to (2.8) we have for
x 
= y

〈ϕ1
xϕ

1
y〉L ,N ,β = GL ,N ,β,U (x, y).

Our current aim is to prove complementary results to Propositions 4.1 and 4.2 in the
context of the O(N ) spin model with reflections through sites. To begin we prove a
complementary result to Theorem 3.4. Recall that for A ⊂ TL and a reflection � we
define A± = (A ∩ T

±
L ) ∪ (�(A ∩ T

±
L )) (we use this same definition for reflections

through sites or edges).
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Proposition 4.4. Under the same assumptions of Proposition 4.3 we have

∑

x,y∈A
x 
=y

〈ϕ1
xϕ

1
y〉L ,N ,β ≤ 1

2

⎛

⎜⎜⎝
∑

x,y∈A+

x 
=y

〈ϕ1
xϕ

1
y〉L ,N ,β +

∑

x,y∈A−
x 
=y

〈ϕ1
xϕ

1
y〉L ,N ,β

⎞

⎟⎟⎠ . (4.17)

Proof. First we apply Proposition 4.3 for a plane R through sites with associated reflec-
tion operator �. For η > 0 we take

f (ϕ) =
∏

x∈A∩(T+
L\TR

L )

(
1 + ηϕ1

x

) ∏

x∈A∩TR
L

(
1 + ηϕ1

x

) 1
2 , (4.18)

1g(ϕ) =
∏

x∈A∩(T−
L \TR

L )

(
1 + ηϕ1

�x

) ∏

x∈A∩TR
L

(
1 + ηϕ1

�x

) 1
2 . (4.19)

If η ≤ 1 then these functions are non-negative and there is no issue with taking the
square root of 1 + ηϕ1

x . Note that f, g ∈ B+, hence we may use Proposition 4.3. We
have 〈 f �g〉L ,N ,β = 〈∏x∈A

(
1 + ηϕ1

x

)〉L ,N ,β , 〈 f � f 〉L ,N ,β = 〈∏x∈A+

(
1 + ηϕ1

x

)〉L ,N ,β

and 〈g�g〉L ,N ,β = 〈∏x∈A−
(
1 + ηϕ1

x

)〉L ,N ,β (here we used that A− is symmetric with
respect to R, hence we may replace ϕ1

�x with ϕ1
x in 〈g�g〉L ,N ,β ). From this we obtain

〈 f �g〉L ,N ,β = 1 + η
∑

x∈A

〈ϕ1
x 〉L ,N ,β + η2

∑

x,y∈A
x 
=y

〈ϕ1
xϕ

1
y〉L ,N ,β + O(η3)

= 1 + η2
∑

x,y∈A
x 
=y

〈ϕ1
xϕ

1
y〉L ,N ,β + O(η3),

where we used that 〈ϕ1
z 〉L ,N ,β = 0 for every z ∈ TL . We also have the corresponding

equalities for 〈 f � f 〉L ,N ,β and 〈g�g〉L ,N ,β . Now we use Proposition 4.3 and the ex-

pansion (1 + x)
1
2 = 1 + x

2 + O(x2) in the same way as in the proof of Theorem 3.4 to
obtain that

〈 f �g〉L ,N ,β

= 1 + η2
∑

x,y∈A
x 
=y

〈ϕ1
xϕ

1
y〉L ,N ,β + O(η3)

≤
((

1 + η2
∑

x,y∈A+

x 
=y

〈ϕ1
xϕ

1
y〉L ,N ,β + O(η3)

)(
1 + η2

∑

x,y∈A−
x 
=y

〈ϕ1
xϕ

1
y〉L ,N ,β + O(η3)

)) 1
2

=
(
1 + η2

( ∑

x,y∈A+

x 
=y

〈ϕ1
xϕ

1
y〉L ,N ,β +

∑

x,y∈A−
x 
=y

〈ϕ1
xϕ

1
y〉L ,N ,β

)
+ O(η3)

) 1
2

= 1 +
η2

2

( ∑

x,y∈A+

x 
=y

〈ϕ1
xϕ

1
y〉L ,N ,β +

∑

x,y∈A−
x 
=y

〈ϕ1
xϕ

1
y〉L ,N ,β

)
+ O(η4).

(4.20)
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Fig. 5. A representation of three slices of a torus of side length L = 16, the dashed line pass through the sites
of TR

L . The vector fields equal 1 on the square vertices and 0 on the round vertices

Now by inspecting the η2 term we see, by taking η sufficiently small, that the result
follows. ��
It is worth noting that in the case when A = {x, y} and the reflection plane R is such
that x ∈ T

+
L and y ∈ T

−
L Proposition 4.4 becomes

〈ϕ1
xϕ

1
y〉L ,N ,β ≤ 〈ϕ1

xϕ
1
�x 〉L ,N ,β + 〈ϕ1

�yϕ
1
y〉L ,N ,β

2
, (4.21)

and is analogous to (1.4).
Now we present our complementary results to Propositions 4.1 and 4.2. The only

difference in the statements is that ‘odd’ is replaced by ‘even’ and that the proposition
holds only for the weight functionU as in Proposition 2.3. Under this choice, the random
path model is a representation of the spin O(N) model.

Proposition 4.5. Let L ∈ 2N, let z ∈ TL be an arbitrary point such that z 
= o, let ei
be a cartesian vector, let β ≥ 0, N ∈ N>0, and let U be given by (2.8). The following
inequalities holds for any integer q ∈ N such that z · ei + q is even and such that
z · ei − q, z · ei + q ∈ (0, L)

GL ,N ,β,U (z) ≤ 1

2
GL ,N ,β,U

(
(z · ei − q) ei

)
+
1

2
GL ,N ,β,U

(
(z · ei + q) ei

)
, (4.22)

Gei
L ,N ,β,U

(
z
) − Gei

L ,N ,β,U

(
z − q ei

) ≤ Gei
L ,N ,β,U

(
z + q ei

) − Gei
L ,N ,β,U

(
z
)
. (4.23)

Proof. The inequality (4.22) follows fromProposition 4.4 appliedwith x = o, y = z and
taking the reflection in the plane R = {x ∈ R : x · ei = 1

2 (z · ei +q)}which requires that
z · ei + q is even. We have 〈ϕ1

oϕ
1
�o〉L ,N ,β = 〈ϕ1

oϕ
1
(z·ei+q)ei

〉L ,N ,β and 〈ϕ1
z ϕ

1
�z〉L ,N ,β =

〈ϕ1
z ϕ

1
z+(z·ei+q−2z·ei )ei 〉L ,N ,β = 〈ϕ1

oϕ
1
(q−z·ei )ei 〉L ,N ,β = 〈ϕ1

oϕ
1
(z·ei−q)ei

〉L ,N ,β where we
used symmetries of the torus. After applying Proposition 4.4 in the form given by (4.21)
(which requires that z · ei −q > 0 so that o and z are in different halves of the torus) and
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then using Proposition 2.3 we obtain the result. For (4.23) the result will follow from
the inequality,

〈ϕo · ϕ(z·ei )ei 〉L ,N ,β + 〈ϕo · ϕz〉L ,N ,β

≤ 1

2

(
〈ϕo · ϕ(z·ei+q) ei 〉L ,N ,β + 〈ϕo · ϕ(z·ei−q)ei 〉L ,N ,β

+ 〈ϕo · ϕz+qei 〉L ,N ,β + 〈ϕo · ϕz−qei 〉L ,N ,β

)
,

(4.24)

after rearranging (just as in the proof of Proposition 4.2) and then using Proposition 2.3
to move to the path model. We take the same plane R = {x ∈ R : x · ei = 1

2 (z · ei + q)}
with its associated reflection operator � as previously. Consider the set

A = {o, z, (z · ei )ei , z − (z · ei )ei }.
If we define A± = (A ∩ T

±
L ) ∪ (�(A ∩ T

±
L )) we have

A+ = {o, (z · ei + q)ei , z − (z · ei )ei , z + qei },
A− = {z, (z · ei )ei , qei , z + (q − z · ei )ei }.

Now recall from Proposition 2.3 that 〈ϕ1
xϕ

1
y〉L ,N ,β = GL ,N ,β,U (x, y) for an appropri-

ate choice of U . Applying Proposition 4.4 and using translation invariance we obtain
(4.24). Now we use Proposition 2.3 to move back to the random path model, giving the
result. ��

We now present the proof of Theorem 2.7. Contrary to Theorem 2.4, the statement
is proved only for the spin O(N ) model. The reflection positivity of the model for
reflections through sites allows the derivation of a full monotonicity property, which is
not just limited to odd sites.

Proof of Theorem 2.7. The first inequality follows from Theorem 2.4 at odd sites and
from a direct application of (4.21) at even sites. The proof of the second inequality
is analogous to the proof of the second inequality in Theorem 2.4. To begin, write
Gei

L = Gei
L ,N ,β,U where U is given by (2.8). From Propositions 4.2 and 4.5 with q = 1

we have that, for any y ∈ TL such that y · ei ± 1 ∈ (0, L)

Gei
L (y + ei ) − Gei

L (y) ≥ Gei
L (y) − Gei

L (y − ei ). (4.25)

Note that here we have no restriction on the parity of y · ei . Suppose that for some z
such that z · ei = 0 and some n ∈ (0, L/2],

Gei
L (z + (n + 1)ei ) > Gei

L (z + nei ).

This will lead us to a contradiction. Indeed, from (4.25) we deduce that, Gei
L (z + (n +

1)ei ) < Gei
L (z + (n + 2)ei ) < Gei

L (z + (n + 3)ei ) < · · · < Gei
L (z − (n + 1)ei ) =

Gei
L (z + (n + 1)ei ), where in the last steps we used the symmetry of the torus. This

contradiction completes the proof of the second inequality. ��
Remark 4.6. For the proof of the previous theorem we used the inequalities derived
from Proposition 3.3, which used reflection through edges in the context of interacting
paths, and those derived from Proposition 4.4, which used reflection through sites in the
context of spins. For the spin O(N) model it would be possible to derive Proposition 3.3
without using its representation as a system of interacting paths, using reflection through
edges in a classical way (see for example [14, Chapter 10]). Thus, representing the spin
O(N) model as a system of interacting paths is not really necessary for the derivation of
Theorem 2.7.
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4.3. Proof of Theorem 2.8. The main goal of this section is to present the proof of
Theorem 2.8, which is presented at the end of the section. For any z ∈ Z

d , we define
the box with z as corner, Qz := {

(x1, . . . , xd) ∈ Z
d : ∀i ∈ {1, . . . , d}, xi ≤ |zi |

or xi > L − |zi |
}
. It will be necessary to consider vertices that lie on certain d − 1

dimensional hyperplanes ofTL , but not on a cartesian axis, separately fromother vertices.
Due to this necessity we define

HL := {x = (x1, . . . , xd) ∈ TL : x1, x2, . . . , xd 
= 0 or ∃i s.t. xi 
= 0, x j = 0 ∀ j 
= i},
(4.26)

to be the set of vertices with all non-zero coordinates together with the cartesian axes.
For notational reasons, in the sequel we will omit the sub-script from 〈ϕ1

oϕ
1
z 〉L ,N ,β when

appropriate. The next proposition is a consequence of Theorem2.7 and applies to vertices
inHL .

Proposition 4.7. Under the same assumptions of Proposition 4.3, we have that, for any
z ∈ TL ∩ HL such that ‖z‖∞ ≤ L

2 ,

〈ϕ1
oϕ

1
z 〉L ,N ,β ≥ 1/N − δ �⇒ 〈ϕ1

oϕ
1
y〉L ,N ,β ≥ 1/N − 2d δ, ∀y ∈ Qz ∩ HL .

(4.27)

Proof. Assume that L ∈ 2N, z ∈ TL , 〈ϕ1
oϕ

1
z 〉 ≥ 1/N − δ, and that y ∈ Qz ∩ HL . We

will prove the statement under the assumption that z, y ∈ TL are such that z · ei > 0,
and y · ei > 0 for every i ∈ {1, . . . , d}. By the torus symmetry, this will imply (4.27)
for any z ∈ TL ∩HL and y ∈ Qz ∩HL . Also we will assume that y 
= o, in which case
the proposition trivially holds since 〈ϕ1

oϕ
1
y〉L ,N ,β = 1. If y lies on a coordinate axis then

the result is automatic by Theorem 2.7. Suppose y does not lie on a coordinate axis, for
each i ∈ {1, . . . , d}, define

Di := zi − yi ,

and note that, by assumption, Di ∈ N. Since z, y ∈ Z
d , there must exist a path of nearest

neighbour sites of Zd consisting of at most d segments,

(z10, z
1
1, . . . , z

1
D1

), (z20, z
2
1, . . . , z

2
D2

), . . . (zd0 , z
d
1 , . . . , z

d
Dd

),

such that, for each i ∈ {1, . . . , d} and j ∈ [1, Di ],
zij−1 − zij = ei , zij ∈ Z

d ,

and, for any i ∈ {1, . . . , d − 1},
ziDi

= zi+10 , z10 = z, zdDd
= y. (4.28)

See for example Fig. 6.
We claim that, for any i ∈ {1, . . . , d},

〈ϕ1
oϕ

1
ziDi

〉 ≥ 2 〈ϕ1
oϕ

1
zi0

〉 − 1/N . (4.29)

The claim implies the proposition, since, using (4.29) d times and recalling (4.28), we
obtain that,
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Fig. 6. Left: A slice of the torus and a path in Z
d consisting of two segments and connecting z ∈ TL to

y ∈ Qz are represented. We assume that the side length of the torus is much larger than 12. Right: A torus of
side length L = 12. The straight lines are the boundaries of the set S2,L (periodic boundary conditions are
taken into account) and the dark region corresponds to the set Qz

〈ϕ1
oϕ

1
y〉 = 〈ϕ1

oϕ
1
zdDd

〉 ≥ 2〈ϕ1
oϕ

1
zd0

〉 − 1/N = 2〈ϕ1
oϕ

1
zd−1
Dd−1

〉 − 1/N

≥ . . . ≥ 2d 〈ϕ1
oϕ

1
z10

〉 − (2d − 1)/N = 2d 〈ϕ1
oϕ

1
z 〉 − (2d − 1)/N ≥ 1/N − 2d δ.

We now prove (4.29). For the next inequalities we use both inequalities in Theorem 2.7
which applies as y ∈ HL so we do not use the “n=0" case,

2〈ϕ1
oϕ

1
zi0

〉 ≤ 〈ϕ1
oϕ

1
zi0

〉 + 〈ϕ1
oϕ

1
(zi0·ei )ei )

〉, 〈ϕ1
oϕ

1
zi0

〉 + 〈ϕ1
oϕ

1
(zi0·ei )ei

〉 ≤ 〈ϕ1
oϕ

1
ziDi

〉 + 〈ϕ1
oϕ

1
(ziDi

·ei )ei 〉.

Since by symmetry we have that ∀z ∈ TL , 〈ϕ1
oϕ

1
z 〉 = 〈ϕo·ϕz〉

N ≤ 1/N , combining the two
inequalities above we deduce (4.29) and conclude the proof. ��

Now we turn to vertices in TL\HL .

Proposition 4.8. Under the same assumptions of Proposition 4.3, we have that, for any
z ∈ TL ∩ HL such that ‖z‖∞ ≤ L

2 ,

〈ϕ1
oϕ

1
z 〉L ,N ,β ≥ 1/N − δ �⇒ 〈ϕ1

oϕ
1
x 〉L ,N ,β

≥ (1/N − 2d δ)

(
βe−2dβ

N

)d−2

, ∀x ∈ Qz\HL . (4.30)

Proof. To begin, recall the definition of SA, which was introduced in Definition 2.2. For
x ∈ Qz\HL consider F : S{o,x} → ∪y∼xS{o,y} that acts on w ∈ S{o,x} by removing the
last link of the 1-walk from o to x (the link incident to x). Note that F is well defined
as the 1-walk must have at least two links due to Qz\HL not containing neighbours of
o. We claim that F is a bijection. Indeed, F is injective as if two configurations differ at
the last links of their 1-walks then their images under F are in different S{o,y}’s. On the
other hand, if the configurations differ elsewhere then their images under F still differ
as these links are not changed by F . Also F is surjective as any w ∈ S{o,y}, y ∼ x , is
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the image of the configuration that coincides with w except that the 1-walk is extended
by one link on {x, y}.

Now consider the subset of configurations in S{o,x} such that there is only one link
incident to x (the last link of the 1-walk). For such a configuration μTL ,N ,β,U (w) differs
from μTL ,N ,β,U (F(w)) by a factor of (β/2)(2/N ) = β/N and F(w) has no links
incident to x . This gives

μTL ,N ,β,U (S{o,x}) ≥ β

N

∑

y∼x

μTL\{x},N ,β,U (S{o,y}), (4.31)

where we used the notation TL\A for the graph which is obtained from (TL ,EL) by
removing all the sites A ⊂ TL and all the edges which are incident to it. Now we use
the spin representation. For any ϕ ∈ (SN−1)TL we have −2d ≤ ∑

y∼x ϕx · ϕy ≤ 2d,
hence

Zspin
TL ,N ,β

〈ϕ1
oϕ

1
x 〉TL ,N ,β ≥ β

N

∑

y∼x

Zspin
TL\{x},N ,β

〈ϕ1
oϕ

1
y〉TL\{x},N ,β

≥ β

N

∑

y∼x

e−2dβ Zspin
TL ,N ,β

〈ϕ1
oϕ

1
y〉TL ,N ,β

≥ βe−2dβ

N

∑

y∼x

Zspin
TL ,N ,β

〈ϕ1
oϕ

1
y〉TL ,N ,β .

(4.32)

From which we obtain

〈ϕ1
oϕ

1
x 〉TL ,N ,β ≥ βe−2dβ

N

∑

y∼x

〈ϕ1
oϕ

1
y〉TL ,N ,β . (4.33)

Now if there is a y ∼ x such that y ∈ Qz ∩ HL then we are done by Proposition 4.7,
however this may not be the case. However, it is easily seen that for any x ∈ Qz\HL
there is a y ∈ Qz ∩HL such that ‖x− y‖1 ≤ d−2. Hence we can repeat the same bound
for y ∼ x , (and possibly y1 ∼ y etc) until we have a site with at least one neighbour in
Qz\HL and then apply Proposition 4.7 to this neighbour to obtain the result. ��

The next lemma states that, if the Cesàro mean of the two-point function is close
enough to 1/N , which is a uniform upper bound of the two-point function, then there
exists a vertex z which is ‘far enough away’ from any cartesian axis such that 〈ϕ1

oϕ
1
z 〉 is

‘reasonably close’ to 1/N as well. Define Br := {
z ∈ Z

d : ‖z‖∞ ≤ r
}
, where ‖ · ‖∞

is with respect to the torus metric.

Lemma 4.9. Suppose that d ≥ 2 and L ∈ 2N. Assume that there exists a constant
δ ∈ (0, 1) such that,

1

|TL |
∑

z∈TL

〈ϕ1
oϕ

1
z 〉 ≥ 1/N − δ. (4.34)

Then,

∀y ∈ BL/8 ∩ HL 〈ϕ1
oϕ

1
y〉 ≥ 1/N − 22d δ.

∀y ∈ BL/8\HL 〈ϕ1
oϕ

1
y〉 ≥ (1/N − 22d δ)

(
βe−2dβ

N

)d−2

.
(4.35)
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Proof. In the whole proof we will assume that d ≥ 2. For any r, L ∈ N, we define the
set

Sr,L := {
z ∈ TL : ∃i ∈ {1, . . . , d} s.t. z · ei < r or L − z · ei ≥ r

}
.

See Fig. 6 for a graphical representation of Sr,L . A simple computation shows that, if
L ∈ 2N, and r ∈ (0, L/2) ∩ N, then,

|TL\Sr,L | = (L − 2r)d . (4.36)

From now on we set r = L/8 (which may not be an integer) and L ∈ 2N. We claim
that, under the assumptions of the theorem, the following holds,

∃zL ∈ TL\Sr,L s.t. 〈ϕ1
oϕ

1
zL 〉 ≥ 1/N − 2d δ. (4.37)

The proof of claim (4.37) is by contradiction. Assume that (4.37) is false, namely that

∀z ∈ TL\Sr,L 〈ϕ1
oϕ

1
z 〉 < 1/N − 2d δ,

under the assumptions of the theorem. Then, (4.36) (and recalling that we have set
r = L/8), we obtain that,

∑

z∈TL

〈ϕ1
oϕ

1
z 〉 <

∣∣TL\Sr,L
∣∣ ( 1

N − 2dδ) + 1
N

( |TL | − ∣∣TL\Sr,L |)

= Ld
( 1

N
− 2d δ

(3
4

)d )
< Ld (

1

N
− δ).

This violates the hypothesis of the theorem and, thus, we obtain the desired contradiction.
This proves (4.37). Note that since zL ∈ TL\Sr,L , we have that z ∈ HL and QzL ⊃ Br .

From (4.37) and Propositions 4.7 and 4.8 we deduce that,

∀y ∈ BL/8 ∩ HL , 〈ϕ1
oϕ

1
y〉 ≥ 1/N − 22dδ,

∀y ∈ BL/8\HL 〈ϕ1
oϕ

1
y〉 ≥ (1/N − 22d δ)

(
βe−2dβ

N

)d−2

.

This concludes the proof. ��
The next theorem is a very classical result which was proved in [13].

Theorem 4.10 (Fröhlich et al. [13]). Consider the spin O(N ) model on the torus of side
length L identified with Zd/LZd , with inverse temperature β ≥ 0, and N ∈ N>0. When
d ≥ 3, there exists β0 < ∞ such that, for any β ≥ β0,

lim inf
L→∞:
L even

1

|TL |
∑

z∈TL

〈ϕ1
o ϕ1

z 〉L ,N ,β ≥ 1

N
− β0

N

1

β
. (4.38)

We are now ready to prove Theorem 2.8.
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Proof of Theorem 2.8. Let β0 be the same constant as in Theorem 4.10, let δ > 0 be
such that 22dδ < 1/N . If β is large enough such that β0/(Nβ) < δ, we deduce from
Theorem 4.10 that there exists L0 = L0(β, d) < ∞ such that for any even L > L0,

1

|TL |
∑

z∈TL

〈ϕ1
oϕ

1
z 〉L ,N ,β ≥ 1

N
− δ.

Since 〈ϕ1
oϕ

1
z 〉 ≤ 1/N for any z ∈ TL , applying Lemma 4.9 we deduce that for any even

L > L0, any z ∈ BL/8 ∩ HL , 〈ϕ1
oϕ

1
z 〉 ≥ 1/N − 22dδ > 0 and for any z ∈ BL/8\HL ,

〈ϕ1
oϕ

1
z 〉 ≥ (1/N − 22dδ)(βe−2dβ/N )d−2 > 0. This concludes the proof. ��
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A Proof of Proposition 2.3

Proof. For any A ⊂ Vx , define,

Zspin
N ,β (A) =

( ∏

x∈V

∫

SN−1
dϕx

) ( ∏

x∈A

ϕ1
x

)
e−βHN (ϕ). (A.1)

We will prove that, for any N ∈ N>0, A ⊂ V , β ≥ 0, under the choice of the weight
function U as in Proposition 2.3, we have that,

Zspin
N ,β (A) = ZN ,β,U (A). (A.2)

Thus, by the definition of point-to-point function, Definition 2.2, we will deduce Propo-
sition 2.3. The starting point of the expansion is the following identity, proved in [7,
Appendix A], which holds for any N ∈ N>0 and n1, n2, . . . nN ∈ N,

∫

SN−1
(ϕ1)n1 . . . (ϕN )nN dϕ =

⎧
⎨

⎩

0 if ni ∈ 2N + 1for somei ∈ {1, . . . N },
�( N

2 )
∏N

i=1(ni−1)!!
2
n
2 �

(
(n+N )/2

) otherwise,

(A.3)

where dϕ denotes the normalised uniform measure on S
N−1, n = n1 + · · · + nN , and

(ni − 1)!! is the double factorial, i.e. the number of ways to pair ni objects (hence
(−1)!! = 1). Below, we will omit all sub-scripts to lighten the notation. To begin, we
re-write the exponential as follows,

exp
{
β

∑

{x,y}∈E
ϕx · ϕy

}
=

∏

{x,y}∈E

N∏

i=1

eβϕi
xϕ

i
x . (A.4)
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For any A ⊂ V , define

MG(A) := {m ∈ MG : ∀x ∈ A,
∑

e∈E :x∈e
me ∈ 2N + 1 and

∀z ∈ V\A,
∑

e∈E :z∈e
me ∈ 2N}.

Now we expand as a Taylor series and use (A.3) to restrict the sum to the terms which
are not necessarily zero, obtaining

Zspin(A) =
∑

m1∈MG(A)

∑

m2∈MG(∅)

. . .
∑

mN∈MG(∅)

( ∏

e∈E

βm1
e+···+mN

e

m1
e ! . . .mN

e !
)

( ∏

x∈V

∫

SN−1
dϕx

) ∏

x∈V\A

(
(ϕ1

x )
q1x . . . (ϕN

x )q
N
x

)

∏

x∈A

(
(ϕ1

x )
q1x+1(ϕ2

x )
q2x . . . (ϕN

x )q
N
x

)
(A.5)

where we defined for any x ∈ V , qix (m) := ∑
e∈E :x∈e mi

e.Wenow rewrite the expression
by first summing over allm ∈ MG(A) and (m1,m2, . . .,mN ), such that,m1 ∈ MG(A),
mi ∈ MG(∅), when i ∈ {2, . . . , N }, m = ∑N

i=1 m
i , and qx = ∑N

i=1 q
i
x , obtaining,

Zspin(A) =
∑

m∈MG(A)

∏

e∈E

(βme

me!
) ∑

m1∈MG(A)

mi∈MG(∅),i≥2:∑N
i=1 m

i=m

∏

e∈E

( me!
m1

e ! . . .mN
e !

)

∏

x∈V\A

(
�( N2 )

2
qx
2 �((qx + N )/2)

N∏

i=1

(qix − 1)!!
)

∏

x∈A

(
�( N2 )

2
qx +1
2 �((qx + 1 + N )/2)

q1x !!
N∏

i=2

(qix − 1)!!
)

. (A.6)

Above, the product right after the second sum can be interpreted as the number of colour
assignments to the me links which are parallel to the edge e such that precisely mi

e links
have colour i , for each i = 1, . . . , N . Moreover, note that, if qix is an odd integer, then
qix !! is the number of ways qix links which are incident to x can be “paired" in such a
way that only one link is unpaired and the remaining (qix − 1) links are paired, while, if
qix is an even integer, then (qix − 1)!! is the number of ways such qix links can be paired.
Thus, in the next step, we replace the sum over (mi )i=1,...,N by the sum over N possible
colours for each link and the double factorial terms by the sum over all possible pairings
of the links which are incident to each vertex. Recalling the definition of nix (m, c, π),
which was given in (2.2), and putting nx (m, c, π) = ∑N

i=1 n
i
x (m, c, π), we obtain

that,
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Zspin(A) =
∑

m∈MG(A)

∏

e∈E

(
βme

me!
)

∑

c∈CG(m)

∑

π∈PG(m,c)

∏

x∈V\A

(
�(N/2)

2nx (m,c,π)�(nx (m, c, π) + N/2)

)

∏

x∈A

(
�(N/2)

2nx (m,c,π)�(nx (m, c, π) + N/2)

)
. (A.7)

In the previous expression we also used the fact that, if for a realisation (m, c, π) ∈
WG(A), qx links touch the vertex x , where x ∈ A, this means that qx +1 = 2nx (m, c, π).
Similarly, if for a realisation (m, c, π) ∈ WG(A), qx links touch the vertex x , where
x 
∈ A, then qx = 2nx (m, c, π). Plugging in the definition of the weight function Ux
(recall Definition 2.1 and the assumption of Proposition 2.3), the proof of Proposition 2.3
is concluded. ��
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