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Abstract: In this paper, we investigate the small scale equidistribution properties of
randomised sums of Laplacian eigenfunctions (i.e. random waves) on a compact man-
ifold. We prove small scale expectation and variance results for random waves on all
compact manifolds. Here, “small scale” refers to balls of radius r(λ) → 0 such that
r/rPlanck → ∞, where rPlanck is the Planck scale. For balls at a larger scale (although
still r(λ) → 0) we also obtain estimates showing that the probability that a randomwave
fails to equidistribute decays exponentially with the eigenvalue.

1. Introduction

Studying the behaviour of random combinations of either plane waves or eigenfunctions
has lately proved to be an exciting research area. It is conjectured, by Berry [B] in
the 1970s, that eigenfunctions of chaotic systems such as planar domains with chaotic
billiard flow behave like randomwaves. That is, their behaviour is modelled by functions
of the form ∑

j

a j e
iλ〈x,ξ j 〉, (1.1)

where the {ξ j } are chosen as a set of equidistributed (at scale λ−1) directions on the (n−
1)-dim unit sphere Sn−1 and the coefficients a j are chosen randomly, e.g. independent
Gaussian random variables.

In the setting of manifolds where the underlying geodesic flow displays chaotic
properties equidistribution for Laplacian eigenfunctions has been studied by Shnirelman
[Sn], Zelditch [Z1], Colin de Verdière [CdV]. In particular, on manifolds with ergodic
geodesic flow such as negatively curved manifolds, there is a full density sequence of
eigenfunctions in any eigenbasis that equidistribute. Recently a number of small scale
equidistribution results were established in various settings and at various scales by Han
[Ha1,Ha2], Hezari–Rivière [HR1,HR2], Lester–Rudnick [LR], Chang–Zelditch [CZ].
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Notably on manifolds with negative curvature, equidistribution at logarithmic scales
(i.e. r = (log λ)−α for some α > 0) is established in [Ha1] and [HR1]. See also the
application of small scale equidistribution to other eigenfunction problems in Hezari
[He1,He2,He3], Sogge [So1,So2], Zelditch [Z5], etc.

As in the Euclidean case, it is interesting to study themodel case of random behaviour
on manifolds. On a compact manifoldM, the natural class of objects that replace plane
waves eiλ〈x,ξ j 〉 are eigenfunctions. That is, we consider sums

∑

λ j∈�

a j e j (x),

where � ⊂ [0,∞), the e j ’s are orthonormal Laplacian eigenfunctions on M with
eigenvalues λ2j , and the coefficients a j are prescribed in a random fashion.

The obvious first question is how to pick the set�. Notice that, because ξ j ∈ S
n−1, the

plane waves eiλ〈x,ξ j 〉 are generalised eigenfunctions of the Laplacian with eigenvalues
λ2. So on compact manfolds, initially it may seem natural to fix an eigenspace Eλ

with eigenvalue λ2 and randomise only over the eigenfunctions in Eλ, as is done in
[Ha2] on manifolds including tori and spheres. See also de Courcy-Ireland [CI1] on
spheres. However, the multiplicity of this eigenvalue may be low. In fact, in chaotic
cases such as whenM has negative curvature it is conjectured that the eigenvalues have
very low multiplicity. Indeed, on manifolds with generic metric, the eigenvalues are
simple due to Uhlenbeck [U]. Therefore, to capture the random behaviour, we allow
ourselves to randomise over eigenfunctions whose eigenvalues sit in a spectral window.
Such randomisations were introduced in Zelditch [Z3]. That is, we set � = [λ − W, λ]
for 1 ≤ W ≤ λ and consider the functions

u =
∑

λ j∈[λ−W,λ]
a j e j (x).

We point out that the spectral window width W here is allowed to depend on λ. These
randomised functions are commonly referred as “random waves”. We adopt this termi-
nology and reserve the term “random eigenfunctions” for those combinations taken over
a single eigenspace. In Zelditch [Z3], the two special cases of W = 1 and W = λ are
called the asymptotically fixed frequency ensembles and the cut-off ensembles, respec-
tively. Both of these ensembles are included in our analysis here.

Having selected a window to randomise over, we must now consider how we pick
our random variables a j in the random wave u = ∑

a j e j . We always normalize such

that E
(
‖u‖2

L2(M)

)
= 1. Some common choices of a j include independent random

variables such as Gaussian or Rademacher random variables with proper normalization
([B,CI1,CI2,Z3]) and uniform probability density on unit spheres ([BL,Ha2,M,Z2,
Z4].) The coefficients a j in the former randomisation procedure are independent so it
is straightforward to compute some probabilistic estimates such as the covariance. The
latter randomisation process is not independent however in Sect. 2.2 we show, in a rather
elementary way, that these key probabilistic estimates are asymptotically the same as
the independent case. Where the coefficients a j are chosen so that a = (a1, . . . , ad) lies
on the unit sphere Sd the randomisation procedure admits a dual interpretation, namely
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• we pick coefficients a j at random from a probability density,
• we pick an L2 normalised function at random in span λ j∈[λ−W,λ]{e j }. (Note that
here ‖u‖2

L2(M)
= ∑ |a j |2 = 1 for all random waves, whereas one can only re-

quire E

(
‖u‖2

L2(M)

)
= 1 in the case when a j are chosen as Gaussian independent

variables).

In addition, the Levy concentration of measure (Theorem 2.7) on the unit sphere serves
as an important tool to study uniform equidistribution of random waves on the whole
manifold (see Theorem 1.5.) Therefore, in this paper, we use the uniform probability
density on unit spheres and ask about the expected behaviour of random waves as well
as the variance in behaviour. In particular, we focus on small scale behaviour. We want
to understand when random waves equidistribute on small balls.

There are two parts to understanding this equidistribution. The first is to ascertain
when

E

(∫

B(x,r)
|u|2 dVol

)
→ Vol(B(x, r))

Vol(M)
as λ → ∞, (1.2)

in which B(x, r) ⊂ M is a geodesic ball with center x and radius r . However, while
the expectation value might equidistribute, it is still possible that the probability of non-
equidistribution is high. To that end we also determine, for given r = r(λ) → 0 as
λ → ∞, whether

Var

(∫

B(x,r)
|u|2dVol

)
= o

(
Vol(x, r)2

)
as λ → ∞. (1.3)

The variance estimate tells uswhetherwemay expect that a typical sumof eigenfunctions
equidistributes at scale r around x ∈ M. If the scale r in (1.2) and (1.3) is independent
of λ, i.e. equidistribution at fixed scales, the analysis follows from Zelditch [Z2,Z4] and
Maples [M] in various random settings.

At small scales r = r(λ) such that r−1 = o(λ) as λ → ∞, we are able to obtain
sufficient conditions for (1.2) and (1.3). Notice that these scales are just above the Planck
scale

rPlanck := λ−1.

Precisely, the scale r satisfies that r/rPlanck → ∞. See Theorems 1.2 and 1.3 below.
For a fixed x ∈ M, (1.2) and (1.3) tell us that probability such that the random wave

u does not equidistribute on B(x, r) decays as λ → ∞. Finally, we consider small scale
equidistribution of randomwaves uniformly on the manifold, i.e. uniformity across balls
B(x, r) of radius r and for all x ∈ M. See Theorem 1.5 below.

At this point, some details of our setup is in order. Let (M, g) be an n-dim compact,
smoothRiemannianmanifoldwithout boundary. Denote� = �g the (positive) Laplace-
Beltrami operator. Let {e j }∞j=0 be an orthonormal basis of eigenfunctions (i.e. eigenbasis)

of � with eigenvalues λ2j (counting multiplicities). That is, �e j = λ2j e j , where λ j is
called the eigenfrequency. Denote InjM the injectivity radius ofM. We assume, without
loss of generality, that InjM ≥ 1.

We define the probability space for the random waves in a similar fashion as in
Zelditch [Z3].
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Definition 1.1 (Random waves). Let

HW (λ) = span λ j∈[λ−W,λ]{e j } and NW (λ) = dimHW (λ). (1.4)

We assume that the eigenfunctions e j are real-valued. We define the random wave
uλ,a ∈ HW (λ) as

uλ,a :=
∑

λ j∈[λ−W,λ]
a j e j , for a ∈ S

NW (λ)−1. (1.5)

Here, SNW (λ)−1 is equipped with uniform probability measure μNW (λ). That is, uλ,a is a
sumof eigenfunctions inHW (λ)with randomcoefficienta ∈ S

NW (λ)−1 so‖uλ,a‖L2(M) =
1. For brevity, we also write uλ as uλ,a with the understanding that a is the random vari-
able.

Remark. One can similarly consider random waves as combinations of complex-valued
Laplacian eigenfunctions, in which case the coefficient a in (1.5) is chosen randomly
from the complex unit sphere. The analysis is similar so we omit details here.

Our first main theorem states that

Theorem 1.2. Let 1 ≤ W ≤ λ and x ∈ M.

(i) For r > 0, the expected value with respect to the probability measure μNW (λ)

E

(∫

B(x,r)
|uλ|2 dVol

)
= Vol(B(x, r))

Vol(M)

[
1 + O

(
W−1

)]
, (1.6)

where the term O
(
W−1

)
is independent of x.

(ii) For r−1 = o(λ) as λ → ∞, i.e. r/rPlanck → ∞, we have that the variance with
respect to the probability measure μNW (λ)

Var

(∫

B(x,r)
|uλ|2 dVol

)
= Vol(B(x, r))2

[
o(1) + O

(
W−2

)]
as λ → ∞, (1.7)

where the terms o(1) and O
(
W−2

)
are independent of x.

In particular, if the spectral window width W = W (λ) → ∞ as λ → ∞, then at all
scales r such that r/rPlanck → ∞,

E

(∫

B(x,r)
|uλ|2 dVol

)
= Vol(B(x, r))

Vol(M)
+ o

(
rn

)
as λ → ∞,

and

Var

(∫

B(x,r)
|uλ|2 dVol

)
= o

(
r2n

)
as λ → ∞.

We remark that more precise estimates of the o(1) and O(W−2) terms in (1.7) are
given in the proof of Theorem 1.2.

If the spectral windowwidthW is independent ofλ, e.g. the case of the asymptotically
fixed frequency ensemble when W = 1, then Theorem 1.2 does not imply small scale
equidistribution results of the random waves uλ. Instead, according to (1.6) and (1.7),
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we can only conclude that the L2 integral of uλ on the ball B(x, r) is proportional to the
normalised volume of the ball.

However, with a geometric condition on the manifoldM, we are able to recover small
scale equidistribution results. The relevant condition is that, for all x ∈ M the set of the
geodesic loop directions

Lx := {ξ ∈ S∗
M : Gt (x, ξ) = (x, η) for some t > 0 and η ∈ S∗

xM}
is of measure zero in S∗

xM . Here, S∗
xM is the cosphere space of M at x , S∗

M is the
cosphere bundle ofM and Gt (x, ξ) is the geodesic flow onM. This pointwise aperodic
condition is called the non self-focal condition. Examples ofmanifolds satisfying the non
self-focal condition include the negatively curved manifolds (i.e. all sectional curvatures
are negative everywhere). Since manifolds with negative curvature are a key class of
manifolds that we wish to understand using randomisation, making such an assumption
is not as restrictive as may first appear.

The above non self-focal condition is a natural dynamical condition to study the
precise behavior of eigenfunctions restricted to a fixed-width spectrum window. See
Sect. 2.1 for the background.

Concerning the small scale equidistribution of random waves in fixed-width spectral
windows, we prove that

Theorem 1.3 (Small scale equidistribution of random waves in fixed-width spectral
windows). Suppose that W ≥ 1 is independent of λ. Assume that, for all x ∈ M the set
of loop directions Lx is of measure zero in S∗

xM.

(i) The expectation

E

(∫

B(x,r)
|uλ|2 dVol

)
= Vol(B(x, r))

Vol(M)
+ o

(
rn

)
as λ → ∞,

where the term o (rn) is independent of x.
(ii) If in addition r−1 = o(λ), i.e. r/rPlanck → ∞, then the variance

Var

(∫

B(x,r)
|uλ|2 dVol

)
= o

(
r2n

)
as λ → ∞,

where the term o
(
r2n

)
is independent of x.

Remark. In particular, if we chooseW = 1, then uλ in Theorem 1.3 is the asymptotically
fixed frequency ensemble considered in Zelditch [Z3]. In this case, Theorem 1.3 states
that such ensembles are equidistributed at all scales r such that r/rPlanck → ∞, on
manifolds that satisfy the non self-focal condition.

Theorems 1.2 and 1.3 give sufficient conditions such that a typical randomwave uλ,a
equidistributes on the ball B(x, r) for x ∈ M and r = r(λ) such that r/rPlanck → ∞.
That is, the probability (i.e. measure in the probability space SNW (λ)−1) that uλ,a does
not equidistribute on B(x, r) decays in λ.

However, neither theorem provides a quantitative estimate of the decay of such prob-
ability, nor do they conclude equidistribution of uλ,a on the whole manifold, i.e. on balls
B(x, r) for all x ∈ M. We now address these two problems and provide a quantitative es-
timate of the probability for small scale equidistribution of randomwaves uλ,a uniformly
onM. We measure the deviation from equidistribution with an o(1) order function. That
is, we saym(λ) is an o(1) order function ifm(λ) : R+ → R

+ andm(λ) → 0 as λ → ∞.
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For the random variable a ∈ S
NW (λ)−1, we say that uλ,a equidistributes at scale

r = r(λ) to order m(λ) uniformly on M if

sup
x∈M

∣∣∣∣
∫

B(x,r)
|uλ,a |2 dVol − Vol(B(x, r))

Vol(M)

∣∣∣∣ ≤ rnm(λ). (1.8)

Therefore, the introduction ofm(λ) quantitatively characterizes the reminder term in the
equidistribution statements. In general, to make the remainder smaller (and equidistri-
bution better), we need to pick larger scale balls.

We define the exceptional set Sr (m) as the set of point in SNW (λ)−1 where (1.8) fails.

Definition 1.4. The exceptional set Sr (m) is given by

Sr (m) =
{
a ∈ S

NW (λ)−1 : ∃x ∈ M such that

∣∣∣∣
∫

B(x,r)
|uλ,a |2 dVol

−Vol(B(x, r))

Vol(M)

∣∣∣∣ ≥ rnm(λ)

}
.

In the following theorem, we prove that the exceptional set Sr (m) has exponentially
small measure in SNW (λ)−1 at certain scales that are larger than the ones in Theorems 1.2
and 1.3.

Theorem 1.5 (Uniform equidistribution of random waves at small scales). There exist
constants c, α, K > 0 depending only onM such that the following statements are true.

(i) Suppose W = W (λ) such that 1 ≤ W ≤ λ and W → ∞ as λ → ∞. Set

r1 = W− 1
2n λ− n−1

2n .

Let m(λ) ≥ KW−1 and r = r(λ) such that

max
{
W−1, α log(λ)

1
2n r1m(λ)−

1
n

}
≤ r ≤ InjM.

Then

μNW (λ)(Sr (m)) ≤ exp

(
−cr2nm(λ)2

r2n1

)
.

(ii) Suppose W = W (λ) such that 1 ≤ W ≤ λ and W → ∞ as λ → ∞. Set

r2 = W
1

2(n−1) λ− 1
2 .

Let m(λ) ≥ KW−1 and r = r(λ) such that

αr2 log(λ)
1

2(n−1)m(λ)−
1

n−1 ≤ r ≤ W−1.

Then

μNW (λ)(Sr (m)) ≤ exp

(
−cr2(n−1)m(λ)2

r2(n−1)
2

)
.
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(iii) Assume that, for all x ∈ M the set of loop directions Lx is of measure zero in S∗
xM.

Suppose that W > 0 is independent of λ. Then there exists an o(1) order function
m(λ) such that if

r ≥ α log(λ)
1

2(n−1) λ−1/2m(λ)−
1

n−1 ,

then

μNW (λ)(Sr (m)) ≤ exp
(
−cλn−1r2(n−1)m(λ)2

)
.

Remark. The generality of Thoerem 1.5 can make it difficult to parse. In the special
cases of the cut-off and asymptotically fixed ensembles, the results can be stated in a
simpler fashion.That is, Theorem1.5 concludes uniformequidistributionofuλ,a at scales
approaching λ−1/2 except an exponentially small set S ⊂ S

NW (λ)−1. More precisely,

(1) If W = λ, then uλ,a is the cut-off ensemble. By Case (i) of Theorem 1.5, with
m(λ) = (log λ)−ε for ε > 0 arbitrarily small, we have equidistribution up to scales

r such that r ≥ α log(λ)
1+2ε
2n λ−1/2.

(2) If W = 1, then uλ,a is the fixed frequency ensemble. Assume further the loopset
condition as in Case (iii) of Theorem 1.5. Then for some o(1) order function m(λ),

we have equidistribtuion up to scales r such that r ≥ α log(λ)
1
2n m(λ)−

1
n−1 λ−1/2.

Throughout this paper, A � B (A � B) means A ≤ cB (A ≥ cB) for some constant
c depending only on the manifold; A ≈ B means A � B and B � A; the constants c
and C may vary from line to line.

2. Preliminaries

A key technique in the study of randomisations of eigenfunctions is to reduce questions
about the expectation or variance of a random variable to problems involving the spectral
projection operator (see Proposition 3.1).On a compactmanifoldM, let {e j }∞j=0 be a real-

valued eigenbasis of the Laplacian � with eigenvalues λ2j . Then the spectral projection
operator onto the space

span λ j∈[0,λ]{e j }
has the kernel

E[0,λ](x, y) =
∑

λ j∈[0,λ]
e j (x)e j (y).

The highest order asymptotics of the kernel of E[0,λ] are well understood and there
are a number of estimates linking the geometry of M to the behaviour of lower order
terms. (See Theorems 2.1 and 2.4.) In Sect. 2.1, we recall these spectral estimates of the
Laplacian and their connection to underlying geometry.

In Sect. 2.2, we discuss some probabilistic estimates including the Levy concentration
ofmeasure (Theorem2.7) fromprobability theory. It is this concentration ofmeasure that
we use to prove uniformequidistribution of randomwaves at small scales inTheorem1.5.
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2.1. Spectral estimates. Let T ∗
M = {(x, ξ) : x ∈ M, ξ ∈ T ∗

x M} be the cotangent
bundle of M and | · |x be the induced metric on the cotangent space T ∗

x M. We denote
expy the exponential map at y ∈ M. Since InjM ≥ 1, expy(x) is diffeomophism if
d(x, y) is small enough. Here, d denotes the Riemannian distance on M. The next
theorem from Hörmander [Ho, Theorem 4.4] provides the estimates of the kernel E[0,λ].
Theorem 2.1 (Spectral projection kernel estimates).There is constant d0 depending only
onM such that if d(x, y) < d0, then

E[0,λ](x, y) = 1

(2π)n

∫

|ξ |gy≤λ

ei〈exp
−1
y (x),ξ〉 dξ√|gy |

+ R(x, y, λ),

where R(x, y, λ) = O(λn−1) asλ → ∞ uniformly for x, y ∈ M such that d(x, y) < d0.

Letting x = y in the above theorem, we immediately get the pointwise Weyl asymp-
totics as well as the Weyl asymptotics for the distribution of eigenvalues.

Corollary 2.2. (Pointwise Weyl asymptotics) We have that

E[0,λ](x, x) =
∑

λ j≤λ

|e j (x)|2 = cnλ
n+R(λ, x), where R(λ, x) = O(λn−1) as λ → ∞

(2.1)
uniformly for all x ∈ M. Here, cn is the volume of the unit ball in R

n. Moreover, let
N (λ) := #{ j : λ j ≤ λ}. Then

N (λ) = cnVol(M)λn + R(λ), where R(λ) = O(λn−1) as λ → ∞. (2.2)

The remainder term estimate R(λ, x) = O(λn−1) in (2.1) is sharp on the sphere
S
n . The sharp growth rate λn−1 is achieved at the poles of zonal harmonics on S

n . See
Hörmander [Ho, Section 6].

However, on somemanifolds other than the sphere, the above estimates of R(λ, x) and
R(λ)may be improved. Such improvements are related to the dynamical properties of the
geodesic flow on M. The geodesic flow Gt is the Hamiltonian flow with Hamiltonian
defined on T ∗

M as H(x, ξ) = |ξ |2x . The geodesic flow Gt preserves the Liouville
measure on T ∗

M. Denote the cosphere bundle S∗
M = {(x, ξ) ∈ T ∗

M : |ξ |x = 1}.
Then Gt acts on S∗

M by homogeneity and leaves the induced Liouville measure on
S∗
M invariant.
Denote the set of periodic geodesics on S∗

M as


 = {(x, ξ) ∈ S∗
M : Gt (x, ξ) = (x, ξ) for some t > 0}.

Duistermaat-Guillemin [DG, Theorem 3.5] proved that

Theorem 2.3 (Improved Weyl asymptotics). Assume that the set of periodic geodesics

 is of Liouville measure zero in S∗

M. Then

N (λ) = cnVol(M)λn + R(λ), where R(λ) = o(λn−1) as λ → ∞. (2.3)

To improve the pointwise Weyl law, we need a pointwise dynamical condition on
the geodesics that is similar to the one in Theorem 2.3. A geodesic loop through x is
a geodesic L(t) parametrized by arclength so that for some t0 > 0 such that L(0) =
L(t0) = x . Define the loop directions at x as

Lx := {ξ ∈ S∗
M : Gt (x, ξ) = (x, η) for some t > 0 and η ∈ S∗

xM}.
Canzani-Hanin [CH, Theorem 2] proved that
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Theorem 2.4 (Improved spectral projection estimate). Assume that Lx is of measure
zero in S∗

xM for all x ∈ M. Then

E[0,λ](x, y) = 1

(2π)n

∫

|ξ |gy<λ

ei〈exp
−1
y (x),ξ〉 dξ√|gy |

+ R(x, y, λ),

where R(x, y, λ) = o(λn−1) uniformly for all x, y ∈ M. In particular, the pointwise
Weyl asymptotic asserts that

E[0,λ](x, x) =
∑

λ j≤λ

|e j (x)|2 = cnλ
n + R(λ, x), where R(λ, x) = o(λn−1) as λ → ∞

(2.4)
uniformly for all x ∈ M.

Remark .(1). If Lx is of measure zero on S∗
xM for all x ∈ M, then the set of periodic

geodesics 
 is of Liouville measure zero on S∗
M. Hence, one has that R(λ) =

o(λn−1) as λ → ∞ as an immediate corollary of Theorem 2.4 (one can also instead
integrate (2.4) on M directly).

(2). There is a long history of works investigating the relationship between the geomet-
ric condition of the manifold and the improved pointwise Weyl asymptotic (2.4)
over (2.2). See Safarov [Sa], Sogge-Zelditch [SZ], Sogge-Toth-Zelditch [STZ], and
Canzani-Hanin [CH] for more details.

2.2. Probabilistic estimates. We define in (1.5) the random waves u = ∑
a j e j such

that the random coefficients are chosen from the unit sphere with uniform probability
measure. In this section, we gather some standard estimates of this probabilistic density.

We mention that there are different randomisation precedures ([B,CI1,CI2,Z3])
where a j are chosen as identical and independent variables with proper normalization,
e.g. Gaussian random variables or Rademacher random variables. As noted by Zelditch
[Z3, Section 0.1], choosing the random variables from the unit sphere is more intuitive.
In addition, on the spheres, the Levy concentration of measure (Theorem 2.7) is crucial
to establish the uniform equidistribution of random waves in Theorem 1.5.

Let Sd−1 ⊂ R
d be the (d−1)-dim unit sphere endowed with the uniform probability

measure μd . Write

u =
d∑

j=1

a j s j , where a = (a1, ..., ad) ∈ S
d−1 and s = (s1, ..., sd) ∈ R

d .

Notice that

|u| > t if and only if |〈(a1, ..., ad), (s1(x), ..., sd(x))〉Rd | > t.

We then have the following fact. See e.g. Burq–Lebeau [BL, Appendix A] for an ele-
mentary proof.

Lemma 2.5.

μd(|u| > t) =
⎧
⎨

⎩

(
1 − t2

|s|2
) d

2 −1
if 0 ≤ t < |s|,

0 if t ≥ |s|,
where |s| is the length of s = (s1, ..., sd) ∈ R

d .
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Because |a j |, j = 1, ..., d, has identical distribution for a ∈ S
d−1, it is obvious (since∑d

j=1 |a j |2 = |a|2 = 1 for a ∈ S
d−1) that E(|a j |2) = d−1 . Using Lemma 2.5, one can

directly compute the p-moment E(|a j |p) for p ≥ 0. Taking s as the unit vector in the
j-th axis of Rd , we have that 〈a, s〉 = a j , therefore,

E(|a j |p) =
∫

Sd−1
|a j |p da.

=
∫ ∞

0
t p−1μd(|a j | > t) dt

=
∫ 1

0
t p−1

(
1 − t2

) d
2 −1

dt

= 1

2
β

(
d

2
,
p

2

)

= cpd
− p

2 + Op

(
d− p

2 −1
)

. (2.5)

Here, β(·, ·) is the beta function and cp is a constant that depends only on p. The
asymptotic follows from the fact that if y is fixed and x large, β(x, y) ∼ �(y)x−y .

In the estimation of the variance in Theorem 1.2, we also need the expectation of
E(|ai |2|a j |2) for i �= j (see Sect. 3). If a j are chosen as independent random variables

such as in the Gaussian ensemble
∑d

j=1 a j e j , then we normalize E

(
‖u‖2

L2

)
= 1 by

setting E(|a j |2) = d−1. Hence, it is straightforward to see that E(|ai |2|a j |2) = d−2 for
i �= j from the independence of ai and a j . More generally, for 1 ≤ m ≤ d and any
j1, ..., jm ∈ {1, ..., d} distinct, we have that

E

(
|a j1 |2 · · · |a jm |2

)
= d−m .

In Lemma 2.6 below, we show that that when a j are chosen from the unit sphere Sd−1,
E

(|a j1 |2 · · · |a jm |2) = d−m + O(d−m−1), which agrees with the independent variable
case modulo lower order term.

First, let p = (p1, ..., pd) for p j ≥ 0, j = 1, ..., d. Denote |p| = p1 + · · · + pd .
Then by (2.5) and Hölder inequality, we have that

E
(|a1|p1 · · · |ad |pd

) =
∫

Sd−1
|a1|p1 · · · |ad |pd da

≤
(∫

Sd−1
|a1||p| da

) p1|p| · · ·
(∫

Sd−1
|ad ||p| da

) pd|p|

= O
(
d− |p|

2

)
. (2.6)

We now prove the following fact.

Lemma 2.6. Let 1 ≤ m ≤ d and jk ∈ {1, ..., d}, k = 1, ...,m, be distinct. Then

Am := E

(
a2j1 · · · a2jm

)
= 1

dm

(
1 + Om

(
d−1

))
.
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Proof. Since a ∈ S
d−1,

1 =
⎛

⎝
d∑

j=1

a2j

⎞

⎠
m

=
∑

jk are distinct

a2j1 · · · a2jm +
∑

others

a2j1 · · · a2jm .

The first summation on the right-hand-side has d(d − 1) · · · (d − m + 1) terms and the
second summation has Om(dm−1) terms. Note that the expectations of all the terms in
the first summation are identical. Hence, taking the expectation of both sides in the above
equation, we have that

1 = d(d − 1) · · · (d − m + 1)Am +
∑

others

E

(
a2j1 · · · a2jm

)

= d(d − 1) · · · (d − m + 1)Am + Om(dm−1)O(d−m)

where we use (2.6) to estimates the expectations in the second sum. The lemma therefore
follows. ��

To establish the uniform equidistribution of random waves in Theorem 1.5, we need
to control the probability that a function deviates from the expectation. To this end, we
use the principle of concentration of measure. It is here that the high dimensionality of
the probability spaces we consider comes into play. Concentration of measure requires
that a random variable F(a) cannot take values away from its median too often. Exactly
how close to the median depends on regularity properties of F . Let

‖F‖Lip := sup
a �=b

|F(a) − F(b)|
dist(a, b)

,

where dist(·, ·) is the geodesic distance on Sd−1. A numberM(F) is said to be a median
value of F if

μd(F ≥ M(F)) ≥ 1

2
and μd(F ≤ M(F)) ≥ 1

2
.

Levy concentration of measures [Le, Theorem 2.3, (1.10), and (1.12)] then asserts that
a Lipschitz function on S

d−1 is highly concentrated around its median value when its
dimension is large.

Theorem 2.7 (Levy concentration of measures). Consider a Lipschitz function F on
S
d−1. Then for any t > 0, we have that

μd(|F − M(F)| > t) ≤ exp

(
− (d − 2)t2

2‖F‖2Lip

)
.

3. Proofs of Theorems 1.2 and 1.3

In this section, we prove the small scale equidistribution results in Theorems 1.2 and
1.3. Recall that

HW (λ) = span λ j∈[λ−W,λ]{e j } and NW (λ) = dimHW (λ).
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We write the kernel of the spectral projection operator ontoHW (λ) as

E[λ−W,λ](x, y) =
∑

λ j∈[λ−W,λ]
e j (x)e j (y) for x, y ∈ M.

For a ∈ S
NW (λ)−1, let

uλ,a =
∑

λ j∈[λ−W,λ]
a j e j ∈ HW (λ)

be a random wave. In the following proposition, we reduce the estimates of expectation
and variance in Theorems 1.2 and 1.3 to integrals involving the spectral projection kernel
E[λ−W,λ].

Proposition 3.1 (Expectation and variance of random waves via the spectral kernel).
Let 
 ⊂ M be measurable. Write

F
(a) =
∫




|uλ,a(x)|2 dx . (3.1)

Then

(i). E(F
) = 1

NW (λ)

∫




E[λ−W,λ](x, x) dx,

and

(i i). Var(F
) = 2

NW (λ)2

(
1 + O

(
1

NW (λ)

)) ∫




∫




E2[λ−W,λ](x, y) dxdy

+O

(
s


E(F
)

NW (λ)

)
+ O

(
E(F
)2

NW (λ)

)
,

where

s
 = sup
λ j∈[λ−W,λ]

∫




e2j (x) dx . (3.2)

Proof. For simplicity of notation, we renumber the eigenbasis of HW (λ) as {e1, ...,
eNW (λ)}.

(i) To prove the expectation result, denote

eW,λ(x) = |(e1(x), ..., eNW (λ)(x))| for x ∈ M,

that is, the length of the vector (e1(x), ..., eNW (λ)(x)) ∈ R
NW (λ). Then

E(F
) =
∫

S
NW (λ)−1

∫




NW (λ)∑

i, j=1

aia j ei (x)e j (x) dxdμNW (λ).

Recall that theμd is the uniform probability measure on the sphere Sd−1. The symmetry
of the sphere ensures that

∫

S
NW (λ)−1

aia j dμNW (λ) = 0, if i �= j,
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and E
(
a2i

) = 1/NW (λ). Therefore

E(F
) = 1

NW (λ)

∫




NW (λ)∑

i=1

|ei (x)|2 dx = 1

NW (λ)

∫




E[λ−W,λ](x, x) dx .

(ii) To prove the variance result, we directly compute that

Var(F
) =
∫

S
NW (λ)−1

∣∣F
(a) − E(F
)
∣∣2 dμNW (λ)

=
∫

S
NW (λ)−1

∣∣∣∣∣∣

∫




NW (λ)∑

i, j=1

aia j ei (x)e j (x) dx − E(F
)

∣∣∣∣∣∣

2

dμNW (λ)

=
∫

S
NW (λ)−1

∫




∫




NW (λ)∑

i, j,k,l=1

aia jakalei (x)e j (x)ek(y)el(y) dxdydμNW (λ)

−2E(F
)

∫

S
NW (λ)−1

∫




NW (λ)∑

i, j=1

aia j ei (x)e j (x) dxdμNW (λ) + E(F
)2.

Note that the symmetry of the sphere gives ensures that any term containing odd powers
of the ai is zero in expectation. So the terms with even powers remains only. Hence, in
the notation of Lemma 2.6

Var(F
) =
∫

S
NW (λ)−1

∫




∫




NW (λ)∑

i, j,k,l=1

aia jakalei (x)e j (x)ek(y)el(y)

dxdydμNW (λ) − E(F
)2

= 2
∫




∫




NW (λ)∑

i, j=1
i �= j

A2ei (x)ei (y)e j (x)e j (y) dxdy

+
∫




∫




NW (λ)∑

i, j=1
i �= j

A2e
2
i (x)e

2
j (y) dxdy

+
∫




∫




NW (λ)∑

i=1

E(a4i )e
2
i (x)e

2
i (y)dxdy − E(F
)2.

Applying Lemma 2.6 with m = 2 and d = NW (λ), we have that for i �= j ,

A2 = E

(
a2i a

2
j

)
= 1

NW (λ)2

(
1 + O

(
NW (λ)−1

))
.

By (2.6),we have thatE(a4i ) = O
(
NW (λ)−2

)
.Wewill see that the diagonal contribution

NW (λ)∑

i=1

E[a4i ]ei (x)ey(y)
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makes only a small contribution to the overall computation. Therefore we can add and
subtract it from the main terms as necessary. So

Var(F
) = 2

NW (λ)2

(
1 + O

(
1

NW (λ)

)) ∫




∫




NW (λ)∑

i, j=1

ei (x)ei (y)e j (x)e j (y) dxdy

+
1

NW (λ)2

(
1 + O

(
1

NW (λ)

)) ∫




∫




NW (λ)∑

i, j=1

e2i (x)e
2
j (y)dxdy − E(F
)2

+ O

(
1

NW (λ)2

) ∫




∫




NW (λ)∑

i=1

e2i (x)e
2
i (y) dxdy

= 2

NW (λ)2

(
1 + O

(
1

NW (λ)

)) ∫




∫




E2[λ−W,λ](x, y) dxdy

+ O

(
1

NW (λ)2

) ∫




∫




NW (λ)∑

i=1

e2i (x)e
2
i (y) dxdy

+ O

(
1

NW (λ)3

) ∫




∫




NW (λ)∑

i, j=1

e2i (x)e
2
j (y)dxdy

≤ 2

NW (λ)2

(
1 + O

(
1

NW (λ)

)) ∫




∫




E2[λ−W,λ](x, y) dxdy

+ O

(
s


E(F
)

NW (λ)

)
+ O

(
E(F
)2

NW (λ)

)
.

Here, s
 is defined in (3.2) and we use the fact that

∫




∫




NW (λ)∑

i=1

e2i (x)e
2
i (y) dxdy ≤ s


∫




NW (λ)∑

i=1

e2i (x) dx = s
NW (λ)E(F
).

��
Now we prove the small scale equidistribution results of random waves in Theo-

rem 1.2.

Proof of Theorem 1.2. Since the spectral projection kernel

E[λ−W,λ] = E[0,λ] − E[0,λ−W ),

the spectral estimates of the Laplacian in Sect. 2.1 apply.
(i) To prove the expectation result we use the pointwise Weyl asymptotics in Corol-

lary 2.2 to see that

E[λ−W,λ](x, x) = E[0,λ](x, x) − E[0,λ−W )(x, x)

= cnλ
n + R(λ, x) − cn(λ − W )n − R(λ − W, x)

= ncnWλn−1 + O(λn−1).

Also from the Weyl asmptotics of the eigenvalues

NW (λ) = ncnWλn−1Vol(M) + O(λn−1). (3.3)
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Setting 
 = B(x, r) in (i) of Proposition 3.1, we conclude (1.6) in Theorem 1.2.
(ii) Toprove thevariance result,weneed theoff-diagonal descriptionof E[λ−W,λ](x, y)

of Theorem 2.1. For x, y ∈ M close enough, say d(x, y) < d0 as in Theorem 2.1,

E[λ−W,λ](x, y)= 1

(2π)n

∫

λ−W≤|ξ |gy≤λ

ei〈exp
−1
y (x),ξ〉 dξ√|gy |

+R(x, y, λ)−R(x, y, λ−W ).

(3.4)
Here, for notational simplicity, we write

R(λ,W ) = sup
d(x,y)<d0

|R(x, y, λ) − R(x, y, λ − W )|.

Hence, by Theorem 2.1
R(λ,W ) = O(λn−1). (3.5)

Since x and y are close, we can assume that they are in the same coordinate patch.
Indeed, we may assume that y is the centre of that patch and gy = Id. Therefore, the
integral in (3.4) becomes

1

(2π)n

∫

λ−W<|ξ |≤λ

ei〈exp
−1
y (x),ξ〉 dξ .

Note that the inner product here is understood by associating exp−1
y (x) with an element

of Rn so effectively what we need to calculate is

1

(2π)n

∫

λ−W≤|ξ |≤λ

ei〈z,ξ〉 dξ = 1

(2π)n

∫ λ

λ−W

∫

|ξ |=ρ

ei〈z,ξ〉 dξdρ.

That is, we need to take the inverse Fourier transform of the surfacemeasure of the sphere
of radius ρ. This is a classical problem from harmonic analysis and can be computed by
stationary phase to give

∣∣∣∣
∫

|ξ |=ρ

ei〈z,ξ〉 dξ

∣∣∣∣ ≤ cρn−1(1 + ρ|z|)− n−1
2 ,

in which c depends only on n. See e.g. Sogge [So3, Section 1.2]. Therefore,

1

(2π)n

∫

λ−W<|ξ |≤λ

ei〈exp
−1
y (x),ξ〉 dξ ≤

{
cWλn−1, if 0 ≤ |x − y| ≤ λ−1;
cWλ

n−1
2 |x − y|− n−1

2 , if λ−1 ≤ |x − y| ≤ 1.

Taking 
 = B(x0, r) in (ii) of Proposition 3.1, we compute that
∫

B(x0,r)

∫

B(x0,r)
E2[λ−W,λ](x, y) dxdy

≤ c
∫

B(x0,r)

∫

B(x0,r)∩B(x,λ−1)

W 2λ2(n−1) dydx

+ c
∫

B(x0,r)

∫

B(x0,r)\B(x,λ−1)

W 2λn−1|x − y|−(n−1) dydx

+
∫

B(x0,r)

∫

B(x0,r)
R(λ,W )2 dxdy

≤ cW 2λn−2Vol(B(x0, r)) + cW 2λn−1rVol(B(x0, r))

+ R(λ,W )2Vol(B(x0, r))
2.
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Combining with (3.3),

Var(FB(x0,r)) = 2

NW (λ)2

(
1 + O

(
1

NW (λ)

)) ∫

B(x0,r)∫

B(x0,r)
E2[λ−W,λ](x, y) dxdy

+O

(
sB(x0,r)

E(FB(x0,r))

NW (λ)

)
+ O

(
E(FB(x0,r))

2

NW (λ)

)

≤ cλ−nVol(B(x0, r)) + cλ−(n−1)rVol(B(x0, r))

+cW−2λ−2(n−1)R(λ,W )2Vol(B(x0, r))
2

+O

(
sB(x0,r)

E(FB(x0,r )

NW (λ)

)
+ O

(
E(FB(x0,r))

2

NW (λ)

)
. (3.6)

If r−1 = o(λ), then λ−n = o(rn) and so

λ−nVol(B(x0, r)) = o
(
r2n

)
and λ−(n−1)rVol(B(x0, r)) = o

(
r2n

)
.

In Section 4 we will see that, Lemma 4.2,

sB(x0,r) ≤
{
CWr if λ−1 ≤ r ≤ W−1

1 if W−1 ≤ r ≤ Inj (M).

So in either of the above cases,

sB(x0,r)
E(FB(x0,r))

NW (λ)
= o(r2n).

Therefore, (ii) in Theorem 1.2 follows from the fact that R(λ,W ) = O(λn−1) in (3.5).
��

We next provide a short proof of Theorem 1.3 in the case of fixed window length
with the help of Theorem 2.4.

Proof of Theorem 1.3. (i). To prove the expectation result, we use the improved point-
wise Weyl asymptotics in Theorem 2.4 to see that

E[λ−W,λ](x, x) = E[0,λ](x, x) − E[0,λ−W ](x, x)
= cnλ

n + R(λ, x) − cn(λ − W )n − R(λ − W, x)

= ncnWλn−1 + o(λn−1).

We also have that

NW (λ) = ncnWλn−1Vol(M) + o(λn−1).

Taking 
 = B(x, r) in (i) of Proposition 3.1, we conclude (i) in Theorem 1.3.
(ii) To prove the variance result, we only need to notice that in the last term of (3.6),

R(λ,W ) = o(λn−1) from the improvement of remainder terms provided in Theorem
2.4. ��
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4. Uniform Equidistribution

For a ball B(x, r) with a fixed x ∈ M, the expectation and variance results in Theo-
rems 1.2 and 1.3 tell us that for scales r = r(λ) such that r/rPlanck → ∞, the probability
that the random wave uλ,a does not equidistribute on B(x, r) decays in λ.

In this section, we establish a quantitative estimate of the probability for small scale
equidistribution of random waves uniformly everywhere on the manifold, i.e. on balls
all B(x, r), x ∈ M.

First for a fixed x ∈ M, we derive a quantitative estimate of the probability such that
uλ,a does not equidistribute on B(x, r). The main tool is from the Levy concentration of
measure in Theorem 2.7. We then use a covering argument to estimate the probability
for equidistribution on all balls inM.

Levy concentration of measure in Theorem 2.7 requires a Lipschitz norm estimate.
To this end, we need a result from Sogge [So1, Section 4] that limits the maximum L2

growth on a small ball. (It is actually proved for spectral clusters in [So1], which applies
to combination of eigenfunctions in the same spectral window.)

Lemma 4.1. On a compact manifold M, let u = ∑
λ j∈[λ−1,λ] a j e j . Then for all x ∈ M

and λ−1 ≤ r ≤ InjM, we have that
∫

B(x,r)
|u|2 dVol ≤ cr ||u||2L2(M)

, (4.1)

where c > 0 depending only onM.

Lemma 4.1 is of course an improvement on the trivial estimate
∫
B(x,r) |u|2 ≤ ∫

M
|u|2.

In fact, it is already sharp on S
n , as the estimate is saturated by the zonal harmonics on

balls centred at one of the poles. See Sogge [So1, Section 4] for more discussion.
Since we consider window widths W = W (λ) such that 1 ≤ W ≤ λ, we need to get

an analogous estimate to (4.1) for
∑

λ j∈[λ−W,λ]
a j e j .

We are able to use Lemma 4.1 to obtain the necessary estimates.

Lemma 4.2. Let 1 ≤ W ≤ λ. Suppose that for a j ∈ R,

u =
∑

λ j∈[λ−W,λ]
a j e j .

Then there exists a positive constant c depending only on M such that

∫

B(x,r)
|u|2 dVol ≤

{
cWr ||u||2

L2(M)
, if λ−1 ≤ r ≤ W−1,

||u||2
L2(M)

, if W−1 ≤ r ≤ InjM.
(4.2)

Proof. The inequalities in (4.2) are trivially true if r ≥ W−1 so we assume thatWr > 1.
That is, λ−1 ≤ r ≤ W−1. Also if W ∈ [λ/2, λ], then

Wr ≥ λ

2
· λ−1 ≥ 1

2
.
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Therefore (4.2) holds with c = 2.
Now we assume that W ≤ λ/2. Write

u =
∑

0≤k≤W−1

uk, where uk =
∑

λ j∈[λ−W+k,λ−W+k+1]
a j e j .

Note that eachuk is a fixedwindowspectral cluster at frequencyμk = λ−W+k+1 > λ/2
so we may apply Lemma 4.1 to each of the uk separately. Thus,

∫

B(x0,r)
|u|2 dVol =

∑

0≤m,k≤W−1

∫

B(x0,r)
uk(x)u(k+m)W−1(x) dVol,

where

(k + m)W−1 = k + m mod (W − 1).

Applying Lemma 4.1 and the Cauchy-Schwarz inequality, we have that

∫

B(x0,r)
|u|2 dVol � r

∑

0≤m,k≤W−1

||uk ||L2(M)

∣∣∣∣u(k+m)W−1

∣∣∣∣
L2(M)

� r
∑

0≤m≤W−1

⎛

⎝
∑

0≤k≤W−1

||uk ||2L2(M)

⎞

⎠
1/2

⎛

⎝
∑

0≤k≤W−1

∣∣∣∣u(k+m)W−1

∣∣∣∣2
L2(M)

⎞

⎠
1/2

� rW ||u||2L2(M)
.

��
Remark. It turns out that the above simple estimates are sharp. Spectral clusters u of
window width W in Lemma 4.2 are special cases of approximate eigenfunctions with
L2 error no greater than Wλ. That is,

∣∣∣
∣∣∣(� − λ2)u

∣∣∣
∣∣∣
L2(M)

� Wλ ||u||L2(M) .

Such functions can localize in one ball with radius r = W−1. See e.g. Tacy [T].

We now prove the following estimate on the Lipschitz norm of FB(x,r) defined in
(3.1).

Proposition 4.3. There exists a positive constant c depending only on M such that

‖FB(x,r)‖Lip ≤
{
crW, if λ−1 ≤ r ≤ W−1;
c, if W−1 ≤ r ≤ InjM.
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Proof. Given u, v ∈ HW (λ), let

u =
NW (λ)∑

j=1

a j e j and v =
NW (λ)∑

j=1

b j e j ,

where a = (a1, ..., aNW (λ)) and b = (b1, ..., bNW (λ)) are in SNW (λ)−1. We have that

∣∣FB(x,r)(a) − FB(x,r)(b)
∣∣ =

∣∣∣∣
∫

B(x,r)
|u(y)|2 dx −

∫

B(x,r)
|v(y)|2 dy

∣∣∣∣

≤
∫

B(x,r)

∣∣∣u(y)2 − v(y)2
∣∣∣ dx

=
∫

B(x,r)
|u(y) − v(y)||u(y) + v(y)| dy

≤
(∫

B(x,r)
|u(y) − v(y)|2 dy

) 1
2

(∫

B(x,r)
|u(y) + v(y)|2 dy

) 1
2

≤ ||u − v||L2(B(x,r)) ||u + v||L2(B(x,r)) .

If λ−1 ≤ r ≤ W−1, then by applying Lemma 4.2, we obtain that

||u − v||L2(B(x,r)) ≤ cr1/2W 1/2 ||u − v||L2(M) ,

and

||u + v||L2(B(x,r)) ≤ cr1/2W 1/2 ||u + v||L2(M) .

It then follows that
∣∣FB(x,r)(a) − FB(x,r)(b)

∣∣ ≤ crW ||u − v||L2(M) ||u + v||L2(M) ≤ crW ||u − v||L2(M) ,

(4.3)

since ||u + v||L2(M) ≤ ||u||L2(M) + ||v||L2(M) = 2. From

u(x) − v(x) =
NW (λ)∑

j=1

(a j − b j )e j (x),

we also have that
||u − v||L2(M) = |a − b| ≈ dist(a, b). (4.4)

Here, |a − b| is the distance of a and b in R
NW (λ) while dist(a, b) is the distance of a

and b on S
NW (λ)−1. Putting (4.4) together with (4.3),

‖FB(x,r)‖Lip = sup
a,b∈SNW (λ)−1,a �=b

∣∣FB(x,r)(a) − FB(x,r)(b)
∣∣

dist(a, b)
≤ crW.
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If W−1 ≤ r ≤ InjM, we use the trivial estimates that

||u − v||L2(B(x,r)) ≤ ||u − v||L2(M) and ||u + v||L2(B(x,r)) ≤ ||u + v||L2(M) .

Thus,
∣∣FB(x,r)(a) − FB(x,r)(b)

∣∣ ≤ ||u − v||L2(M) ||u + v||L2(M) ≤ c ||u − v||L2(M) .

In the view of (4.4) again, the Lipschitz norm of FB(x,r) when W−1 ≤ r ≤ InjM
follows. ��

We can now use Levy concentration of measure to control the probability that for a
fixed x , FB(x,r) deviates from Vol(B)/Vol(M).

Proposition 4.4. Let m(λ) be an o(1) order function (i.e. m : R+ → R
+ and m(λ) → 0

as λ → ∞). For x ∈ M, denote

Sr,x (m) =
{
a ∈ S

NW (λ)−1 :
∣∣∣∣
∫

B(x,r)
|uλ,a |2 dVol − Vol(B(x, r))

Vol(M)

∣∣∣∣ ≥ rnm(λ)

}
. (4.5)

For some c and K depending only on M, the following statements are true.

(i) Suppose W = W (λ) such that 1 ≤ W ≤ λ and W → ∞ as λ → ∞. Set

r1 = W− 1
2n λ− n−1

2n .

Then for all m(λ) ≥ KW−1 and r = r(λ) such that

max
{
W−1, r1m(λ)−

1
n

}
≤ r ≤ Inj (M),

we have that

μNW (λ)

(
Sr,x (m)

) ≤ exp

(
−cr2nm(λ)2

r2n1

)
.

(ii) Suppose W = W (λ) such that 1 ≤ W ≤ λ and W → ∞ as λ → ∞. Set

r2 = W
1

2(n−1) λ− 1
2 .

Then for all m(λ) ≥ KW−1 and r = r(λ) such that

r2m(λ)−
1

n−1 ≤ r ≤ W−1,

we have that

μNW (λ)

(
Sr,x (m)

) ≤ exp

(
−cr2(n−1)m(λ)2

r2(n−1)
2

)
.

(iii) Assume that the set of loop directions Lx is of measure zero in S∗
xM for all x ∈ M.

Suppose that W > 0 is independent of λ. Then there exists some m(λ) that is o(1)
as λ → ∞ such that for any r satisfying

λ−1/2m(λ)−
1

n−1 ≤ r ≤ Inj (M),

we have

μNW (λ)

(
Sr,x (m)

) ≤ exp
(
−Cλn−1r2(n−1)m(λ)2

)
.
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Proof. First we recall from the expectation estimate (1.6) in Theorem 1.2 that

E
(
FB(x,r)

) = E

(∫

B(x,r)
|uλ|2 dVol

)
= Vol(B(x, r))

Vol(M)

[
1 + O

(
W−1

)]
,

in which the term O
(
W−1

)
is independent of x ∈ M.

By Levy concentration of measures in Theorem 2.7, we estimate the difference be-
tween the expectation and the median.

|E(FB(x,r)) − M(FB(x,r))| =
∣∣∣∣
∫

S
NW (λ)−1

FB(x,r)(a) da − M(FB(x,r))

∣∣∣∣

≤
∫

S
NW (λ)−1

∣∣FB(x,r)(a) − M(FB(x,r))
∣∣ da

=
∫ ∞

0
μNW (λ)

(|FB(x,r)(a) − M(FB(x,r))| > t
)
dt

≤
∫ ∞

0
exp

(
− (NW (λ) − 2)t2

‖FB(x,r)‖2Lip

)
dt

≤ c‖FB(x,r)‖Lip
NW (λ)

1
2

for some absolute constant c > 0. Putting this together with the expectation (1.6), we
then have that

M(FB(x,r)) = Vol(B(x, r))

Vol(M)
+ R1 + R2,

where

R1 = O
(
W−1

)
rn and R2 = O

(
‖FB(x,r)‖Lip
NW (λ)

1
2

)
.

Now we divide into the three cases listed in the proposition.
Case (i). Since r ≥ W−1, the second inequality of Lipschitz norm estimate in Propo-

sition 4.3 applies. That is,

‖FB(x,r)‖Lip ≤ c.

Hence as r ≥ r1m(λ)− 1
n ,

R2 = O

(
‖FB(x,r)‖Lip
NW (λ)

1
2

)

= O
(
NW (λ)−

1
2

)
= O

(
W− 1

2 λ− n−1
2

)
= O(rn1 ) = O(rnm(λ)).

Therefore,

M(FB(x,r)) = Vol(B(x, r))

Vol(M)
+ O

(
rn(W−1 + m(λ))

)
. (4.6)
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Now we use the Levy concentration of measure to control deviance from the median.
Define

S̃r,x (m) =
{
a ∈ S

NW (λ)−1 :
∣∣∣∣
∫

B(x,r)
|uλ,a |2dVol − M(FB(x,r))

∣∣∣∣ ≥ rnm(λ)

}
. (4.7)

By the Levy concentration of measure in Theorem 2.7,

μNW (λ)

(
S̃r,x

(m
2

))
≤ exp

(
− (NW (λ) − 2)r2nm(λ)2

8‖FB(x,r)‖2Lip

)

≤ exp
(
−cWλn−1r2nm(λ)2

)

= exp

(
−cr2nm(λ)2

r2n1

)
,

as r1 = W− 1
2n λ− n−1

2n .
Now suppose that a ∈ Sr,x (m). Then

∣∣∣∣
∫

|uλ,a |2dVol − Vol(B(x, r))

Vol(M)

∣∣∣∣ ≥ rnm(λ).

So combining with (4.6),
∣∣∣∣
∫

B(x,r)
|uλ,a |2 dVol − M(FB(x,r))

∣∣∣∣ ≥
∣∣∣∣
∫

B(x,r)
|uλ,a |2 dVol − Vol(B(x, r))

Vol(M)

∣∣∣∣

−
∣∣∣∣
Vol(B(x, r))

Vol(M)
− M(FB(x,r))

∣∣∣∣

≥ rnm(λ) + O
(
rn(W−1 + m(λ))

)
.

If m ≥ KW−1 for some sufficiently large K , then
∣∣∣∣
∫

B(x,r)
|uλ,a |2 dVol − M(FB(x,r))

∣∣∣∣ ≥ 3rnm(λ)

4
+ O

(
rnm(λ)

)
.

Since m(λ) → 0+ as λ → ∞, we can conclude that
∣∣∣∣
∫

B(x,r)
|uλ,a |2 dVol − M(FB(x,r))

∣∣∣∣ ≥ rnm(λ)

2
,

for sufficiently large λ. That is, a ∈ S̃r,x (m/2). Therefore,

μNW (λ)(Sr,x (m)) ≤ μ
S
NW (λ)−1

(
S̃r,x

(m
2

))
≤ exp

(
−cr2nm(λ)2

r2n1

)
.

Case (ii). The reasoning follows as Case (i) however the Lipschitz norm is different.
Since r ≤ W−1, the first inequality of Lipschitz norm estimate in Proposition 4.3 applies.
That is,

‖FB(x,r)‖Lip ≤ crW.
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Hence as r ≥ r2m(λ)−
1

n−1 ,

R2 = O

(
‖FB(x,r)‖Lip
NW (λ)

1
2

)

= O

(
crW

NW (λ)
1
2

)
= O

(
rW

1
2 λ− n−1

2

)
= O(rrn−1

2 ) = O(rnm(λ)).

Note that the above equation is also independent of x ∈ M. So again,

M(FB(x,r)) = Vol(B(x, r))

Vol(M)
+ O(rn(W−1 + m(λ))).

Then with S̃r,w(m) defined as in (4.7), we have that

μNW (λ)

(
S̃r,x

(m
2

))
≤ exp

(
− (NW (λ) − 2)r2nm(λ)2

8‖FB(x,r)‖2Lip

)

≤ exp
(
−cW−1λn−1r2(n−1)m(λ)2

)

= exp

(
−cr2(n−1)m(λ)2

r2(n−1)
2

)
,

as r2 = W
1

2(n−1) λ− 1
2 . As in Case (i), a ∈ Sr,x (m) implies that a ∈ S̃r,x (m/2) so we also

have

μNW (λ)(Sr,x (m)) ≤ exp

(
−cr2(n−1)m(λ)2

r2(n−1)
2

)
.

Case (iii). Now we address the case where the window width is allowed to be fixed
but we assume that M satisfies the loop set conditions. By Theorem 1.3, there exists
some o(1) order function m(λ) so that

E
(
FB(x,r)

) = Vol(B(x, r))

Vol(M)
+ rnm(λ).

In this case asW is fixed the first Lipschitz norm estimate in Proposition 4.3 applies. So

as r ≥ λ−1/2m(λ)−
1

n−1 ,
∣∣E

(
FB(x,r)

) − M (
FB(x,r)

)∣∣ ≤ rλ− n−1
2 ≤ rnm(λ).

Therefore,

M (
FB(x,r)

) = Vol(B(x, r))

Vol(M)
+ rnm(λ) + O(rnm(λ)).

As in Case (ii), we have that for this specific m(λ),

μNW (λ)

(
S̃r,x

(m
2

))
≤ exp

(
−cλn−1r2(n−1)m(λ)2

)
.

Also by the reasoning of Case (i), if a ∈ Sr,x (m) then a ∈ S̃r,x (m/2) so

μNW (λ)(Sr,x (m)) ≤ exp
(
−cλn−1r2(n−1)m(λ)2

)
.

��
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To prove uniform equidistribution in Theorem 1.5, we use a covering lemma that is
similar to the one in Han [Ha2, Section 3.2].

Lemma 4.5. For any d > 0 there exists a family of geodesic balls that covers M:

Nd⋃

p=1

B(xp, d) ⊃ M with Nd ≤ cd−n,

where c > 0 depends only on M.

Given a cover {B(xp, d)}, note that for any r > d, {B(xp, r)} remains a cover.
Moreover, in the cover {B(xp, r)}, the centers xp of the balls are separated by distances
d < r . This enables us to efficiently approximate the L2 mass of u on B(x, r) by the
L2 mass on one of the B(xp, r). Then the set Sr (m) of all a ∈ S

NW (λ)−1 for which
equidistribution fails at some point is contained in the union of the Sr,xp (m), for which
we have estimates from Proposition 4.4. See below for the details of the proof.

Proof of Theorem 1.5. We begin by choosing a cover as in Lemma 4.5 with

d = rλ−(n−1)m(λ)2.

Then for any x ∈ M there exists an xp so that x ∈ B(xp, d). We now approximate
Vol(B(x, r)) byVol(B(xp, r)) and the L2 mass of uλ,a in B(x, r) by the one in B(xp, r),
respectively. First,

∣∣∣∣
Vol(B(x, r))

Vol(M)
− Vol(B(xp, r)

Vol(M)

∣∣∣∣ ≤ cVol
(
B(xp, r + d) \ B(xp, r − d)

)

≤ cdrn−1

≤ crnλ−(n−1)m(λ)2. (4.8)

Second, since
∣∣∣∣uλ,a

∣∣∣∣
L∞ ≤ cλ

n−1
2 (see e.g. [So3, Section 4.2]), we have that

∣∣∣∣∣

∫

B(x,r)
|uλ,a |2 dVol −

∫

B(xp,r)
|uλ,a |2 dVol

∣∣∣∣∣

≤ c
∣∣∣∣uλ,a

∣∣∣∣2
L∞ Vol

(
B(xp, r + d) \ B(xp, r − d)

)

≤ crnm(λ)2. (4.9)

We recall that

Sr (m) =
{
a ∈ S

NW (λ)−1 : ∃x ∈ M such that

∣∣∣∣
∫

B(x,r)
|uλ,a |2 dVol

−Vol(B(x, r)

Vol(M)

∣∣∣∣ ≥ rnm(λ)

}
.
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Now suppose that a ∈ Sr (m). Then by (4.8) and (4.9), there exists xp such that
∣∣∣∣∣

∫

B(xp,r)
|uλ,a |2 dVol−Vol(B(xp, r)

Vol(M)

∣∣∣∣∣ ≥
∣∣∣∣
∫

B(x,r)
|uλ,a |2 dVol − Vol(B(x, r)

Vol(M)

∣∣∣∣

−
∣∣∣∣
Vol(B(x, r))

Vol(M)
−Vol(B(xp, r)

Vol(M)

∣∣∣∣

−
∣∣∣∣∣

∫

B(x,r)
|uλ,a |2 dVol −

∫

B(xp,r)
|uλ,a |2dVol

∣∣∣∣∣

≥ rnm(λ) −
(
crnλ−(n−1)m(λ)2 + crnm(λ)2

)

≥ rnm(λ) + O(rnm(λ)2)

≥ rnm(λ)/2,

for sufficiently large λ (since m(λ) → 0+ as λ → ∞). It is then immediate that

Sr (m) ∈
Nd⋃

p=1

Sr,xp (m/2). (4.10)

Let us consider each case in the theorem separately.
Case (i). All the conditions in Proposition 4.4 are satisfied. In fact, we have a stronger

condition that r ≥ αr1m(λ)− 1
n log(λ)

1
2n . Therefore,

μNW (λ)

(
Sr,xp

(m
2

))
≤ exp

(
−cr2nm(λ)2

8r2n1

)

= exp

(
−cr2nm(λ)2

16r2n1

)
exp

(
−cr2nm(λ)2

16r2n1

)

≤ exp

(
−cα2n log λ

16

)
exp

(
−cr2nm(λ)2

16r2n1

)

≤ λ− cα2n
16 exp

(
−cr2nm(λ)2

16r2n1

)
.

Now by (4.10) we have that

μNW (λ) (Sr (m)) ≤ Ndλ
− cα2n

16 exp

(
−cr2nm(λ)2

8r2n1

)
.

Further, notice that from our initial choice of d,

Nd = cd−n = cr−nλn(n−1)m(λ)−2n ≤ cλ3n+n(n−1).

Here, we used the fact that r,m(λ) � W−1 ≥ λ−1. Since Nd grows as a power of λ we
can choose α large enough (depending only on the dimension ofM) so

Ndλ
− cα2n

16 ≤ 1.
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We arrive at the desired estimate that

μNW (λ)(Sr (m)) ≤ exp

(
−cr2nm(λ)2

16r2n1

)
.

Case (ii) follows the same reasoning with suitable adjustments (comparing r to r2)
so we omit the proof.

Case (iii). Proposition 4.4 tells us that there exists an o(1) order function m(λ) such
that for any x ,

μNW (λ)

(
Sr,x (m)

) ≤ exp
(
−cλn−1r2(n−1)m(λ)2

)
.

Provided m(λ) = O(λ−β) for some β > 0, the argument remains the same as in
Case (i).1 If the m(λ) extracted from Proposition 4.4 decays faster, we simply pick
some m̃(λ) ≤ m(λ) so that m̃(λ) = O(λ−β) for some β > 0. Note that the results of
Proposition 4.4 will also hold for m̃(λ) and we complete the proof. ��
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