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Abstract: We study stability times for a family of parameter dependent nonlinear
Schrödinger equations on the circle, close to the origin. Imposing a suitable Diophan-
tine condition (first introduced by Bourgain), we prove a rather flexible Birkhoff Normal
Form theorem, which implies, e.g., exponential and sub-exponential time estimates in
the Sobolev and Gevrey class respectively.
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1. Introduction and Main Results

We consider families of NLS equations on the circle with external parameters of the
form:

iut + uxx − V ∗ u + f (x, |u|2)u = 0, (1.1)

where i = √−1 and V∗ is a Fourier multiplier

V ∗ u =
∑

j∈Z
Vju j e

i j x ,
(
Vj
)
j∈Z ∈ w∞

q ,

living in the weighted �∞ space

w∞
q := {V = (Vj

)
j∈Z ∈ �∞ | |V |q := sup

j∈Z
|Vj |〈 j〉q < ∞}, q ≥ 0,

where 〈 j〉 := max{| j |, 1}, while f (x, y) is 2π periodic and real analytic in x and is real
analytic in y in a neighborhood of y = 0. We shall assume that f (x, y) has a zero in
y = 0. By analyticity, for some a, R > 0 we have

f (x, y) =
∞∑

d=1

f (d)(x)yd , | f |a,R :=
∞∑

d=1

| f (d)|TaR
d < ∞, (1.2)

where, given a real analytic function g(x) =
∑

j∈Z g j e
i j x , we set1 |g|2

Ta
:=
∑

j∈Z
|g j |2e2a| j |. Note that if f is independent of x (1.2) reduces to

| f |R :=
∞∑

d=1

| f (d)|Rd < ∞. (1.3)

Equation (1.1) is at least locally well-posed (say in a neighborhood of u = 0 in H1, see
e.g. Lemma 5.4) and has an elliptic fixed point at u = 0, so that an extremely natural
question is to understand stability times for small initial data. One can informally state
the problem as follows: let E ⊂ H1 be some Banach space and consider (1.1) with
initial datum u0 such that |u0|E ≤ δ � 1. By local well posedness, the solution u(t, x)
of (1.1) with such initial datum exists and is in H1.

We call stability time T = T (δ) the supremum of the times t such that for all
|u0|E ≤ δ one has u(t, ·) ∈ E with |u(t, ·)|E ≤ 2δ.

Computing the stability time T (δ) is out of reach, so the goal is to give lower (and
possibly upper) bounds.

A good comparison is with the case of a finite dimensional Hamiltonian system
with a non-degenerate elliptic fixed point, which in the standard complex symplectic
coordinates u j = 1√

2
(q j + ip j ) is described by the Hamiltonian

n∑

j=1

ω j |u j |2 + O(u3), where ω j ∈ R are the linear frequencies. (1.4)

1 Namely g is a holomorphic function on the domain Ta := {x ∈ C/2πZ : |Im x | < a} with L2-trace on
the boundary.
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Here if the frequencies ω are sufficiently non degenerate, say diophantine,2 then one can
prove exponential lower bounds on T (δ) and, if the nonlinearity satisfies some suitable
hypothesis (e.g. convexity or steepness ), even super-exponential ones. This was proved
in [MG95] (see also the recent paper [BFN15] and references therein).

The strategy for obtaining exponential bounds is made of two main steps. The first
one consists in the so-called Birkhoff normal form procedure: after N ≥ 1 steps the
Hamiltonian (1.4) is transformed into

n∑

j=1

ω j |u j |2 + Z + R , (1.5)

where Z depends only on the actions (|ui |2)ni=1 while R = O(|u|2N+3) contains terms
of order at least 2N + 3 in |u|. It is well known that this procedure generically diverges
in N, so the second step consists in finding N = N(δ) which minimizes the size of the
remainder R.

The problem of long-time stability for equations (1.1) has been studied by many au-
thors. In the context of infinite chains with a finite range coupling, we mention [BFG88].
Regarding applications to PDEs (and particularly the NLS) the first results were given
in [Bou96a] by Bourgain, who proved polynomial bounds for the stability times in the
following terms: for any N there exists p = p(N) such that initial data which are δ-small
in the H p′+p norm stay small in the H p′

norm, for times of order δ−N. Afterwards,
Bambusi in [Bam99b] proved that superanalytic initial data stay small in analytic norm,

for times of order eln(
1
δ
)1+b , where b > 0.

Following the strategy proposed in [Bam03] for the Klein–Gordon equation Bambusi
and Grébert in [BG03] first considered Eq. (1.1) on T

d and then, in [BG06], proved
polynomial bounds for a class of tame-modulus PDEs, which includes (1.1). Their main
result is that for any N  1 there exists p(N) (tending to infinity as N → ∞) such
that for all p ≥ p(N) and all δ−small initial data in H p one has T ≥ C(N, p)δ−N,
provided δ < δ0(N, p). Similar results were also proved for the Klein–Gordon equation
on tori and Zoll manifolds in [DS04,DS06,BDGS07]. Successively Faou and Grébert
in [FG13] considered the case of analytic initial data and proved subexponential bounds

of the form T ≥ eln(
1
δ
)1+b , b > 0, for classes of NLS equations in T

d (which include
(1.1) by taking d = 1). Regarding derivative NLS equations, the first results were in
[YZ14] for the semilinear case. Recently, Feola and Iandoli in [FI] prove polynomial
lower bounds for the stability times of reversible NLS equations with two derivatives in
the nonlinearity.

A closely related topic is the study of orbital stability times close to periodic or
quasi-periodic solutions of (1.1). In the case E = H1, Bambusi in [Bam99a] proved
a lower bound of the form T ≥ eδ−b

, b > 0, for perturbations of the integrable cubic
NLS close to a quasi-periodic solution. Regarding higher Sobolev norms, most results
are in the periodic case. See [FGL13] (polynomial bounds for Sobolev initial data) and
the preprint [MSW18] (subexponential bounds for Gevrey initial data).

A dual point of view is to construct special orbits for which the Sobolev norms
grow as fast as possible (thus giving an upper bound on the stability times). As far
as we are aware such results are mostly on T

2 and in parameterless cases (for instance
[CKS+10,GK15,GHP16]) and the time scales involved aremuch longer thanour stability

2 A vector ω ∈ R
n is called diophantine when it is badly approximated by rationals, i.e. it satisfies, for

some γ, τ > 0, |k · ω| ≥ γ |k|−τ , ∀k ∈ Z
n\{0} .
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times (see [Gua14] for the instability of (1.1) on T
2 and [Han14] for the instability of

the plane wave in H p with p < 1).
In this paper we propose an abstract Birkhoff normal form result (see Theorem 1.3)

on weighted sequence spaces (based on �2) and deduce from it stability estimates for
initial data in analytic, Gevrey and Sobolev class. An important difference of our ap-
proach with respect to the aforementioned papers and one of the main motivations of
our work is that we use a different diophantine non-resonance condition on the linear
frequencies, originally introduced in [Bou05] in the context of almost-periodic solutions.
More precisely set

�q :=
{

ω = (ω j
)
j∈Z ∈ R

Z, sup
j

|ω j − j2|〈 j〉q < 1/2

}
(1.6)

and, for γ > 0, define the set of “good frequencies" as

Dγ,q :=
{

ω ∈ �q : |ω · �| > γ
∏

n∈Z

1

(1 + |�n|2〈n〉2+q) . ∀� ∈ Z
Z : |�| < ∞

}
.

(1.7)

It is known that Dγ,q is large with respect to a natural probability product measure on
�q (for a proof see [Bou05] or Lemma 4.1 in the present paper). It turns out that such
diophantine conditions are very natural and easy to use in the context of PDEs on the
circle with a superlinear dispersion law. Then from now on we shall fix γ > 0, q ≥ 0
and assume that ω ∈ Dγ,q .

Remark 1.1. We note that some non-resonance condition on the frequencies is inevitable
if onewants to prove long-time stability, indeed if one takes V = 0 and f (x, |u|2) = |u|4
then one can exhibit orbits in which the Sobolev norm is unstable in times of order δ−4,
see [GT12,HP17].

At the formal level our BNF scheme is identical to the one used in finite dimensional
systems, see formula (1.5). The fact that such a scheme may be applied in an infinite
dimensional context follows from introducing a suitable norm (see Definition 1.2 and the
comments thereafter); it turns out that our norm has explicit (and for us quite surprising)
immersion properties (see Proposition 3.1) and allows good bounds on the solution of the
homological equation (see Lemma 4.2). The gist of these properties is that they ensure
that any vector field mapping a (neighborhood of) given Hilbert space in itself also maps
(smaller neighborhoods of)more regularHilbert spaces in themselves. Analogously also
the vector field solving the homological equation maps sufficiently more regular Hilbert
spaces in themselves.

To show that our procedure works in significative cases, we have computed stability
times for various regularity classes. More precisely we improve the results in [FG13]
on analytic and Gevrey initial data, see Theorem 1.1. Moreover we recover [BG06] on
Sobolev initial data, giving an explicit control on the dependence of the stability time
and of the smallness condition on the regularity, see Proposition 1.1 and the improved
estimates of Theorem 1.2.

Comments on possible generalizations. In this paper we have considered the sim-
plest possible example of dispersive PDE on the circle. One can easily see that the
same strategy can be followed word by word in more general cases provided that
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the non-linearity does not contain derivatives and that the dispersion law is super-
linear. A much more challenging question is to consider NLS models with deriva-
tives in the non-linearity. As we have mentioned a semilinear case was discussed by
[CMW]. A very promising approach to Birkhoff normal form for quasilinear PDEs
is the one of [BD18,BDG10,BDGS07,BFG88,BFG18,BFN15,BG03,BG06,Bou96a,
Bou96b,Bou05,CKS+10,CLSY,CMW,Del12] which was applied to fully-nonlinear re-
versibleNLS equations in [FI]. It seems very plausible (at least in the reversible case) that
one can adapt their methods (based on paralinearizations and paradifferential calculus)
to our setting.

A natural generalization would be the extension to higher dimensions. While the
immersion properties would work essentially in the sameway, the diophantine condition
should be adapted, for instance one could use the condition in [FG13].

Equation (1.1) contains infinitelymany external parameters. Of course onewould like
to consider parameterless equations as in the very interesting recent preprint [BFG18].
In this direction a natural question would be to understand if one could impose similar
diophantine conditions by tuning only one parameter such as the mass in the beam or
wave equations (see, e.g., [Bam03,BD18]).

Before explaining the abstract BNF procedure in detail let us describe our stability
results.

1.1. Stability results. Analytic andGevrey initial data. Our result is similar to [FG13]
in the sense that we also prove subexponential bounds on the time. We mention however
that in [FG13] the control of the Sobolev norm in time is in a lower regularity space w.r.t.
the initial datum. Recently we have been made aware of a preprint by Cong, Mi and
Wang [CMW] in which the authors give subexponential bounds for Gevrey initial data of
a model like (1.1), very similar to ours. A difference is that in their case the non linearity
contains a derivative (see the comments after Theorem 1.1) but satisfies momentum
conservation. The two results were obtained independently and contemporarily, anyway,
the overall strategies of proofs are quite different. In particular our result is a consequence
of the general Birkhoff Normal Form Theorem 1.3 and the non-resonance conditions
are different (recall (1.7)).

To state our result, let us fix 0 < θ < 1, and define the function space3

Hp,s,a :=
⎧
⎨

⎩u(x) =
∑

j∈Z
u j e

i j x ∈ L2 : |u|2p,s,a :=
∑

j∈Z

∣∣u j
∣∣2〈 j〉2pe2a| j |+2s〈 j〉θ < ∞

⎫
⎬

⎭.

(1.8)

with the assumption a ≥ 0, s > 0, p > 1/2. We remark that if a > 0 this is a space
of analytic functions, while if a = 0 the functions have Gevrey regularity. Note that
for technical reasons connected to the way in which we control the small divisors, we
cannot deal with the purely analytic case θ = 1, see Lemmas 6.1, 7.1. For this reason
we denote this result as G (Gevrey case).

Our result, stated below, depends on some constants δG,TG, explicitely defined in
Subsection A, and depending only on γ, q,a, R, | f |a,R, p, s, a, θ .

3 Actually Hp,s,a also depends on θ , however, since we think θ fixed, we omit to write explicitly the
dependence on it.
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Theorem 1.1 (Gevrey Stability). Fix any a ≥ 0, s > 0 such that a + s < a and any
p > 1/2. For any 0 < δ ≤ δG and any u0 such that

|u0|p,s,a ≤ δ,

the solution u(t) of (1.1) with initial datum u(0) = u0 exists and satisfies

|u(t)|p,s,a ≤ 2δ for all times |t | ≤ TG
δ2

e

(
ln δG

δ

)1+θ/4

.

Remark 1.2. Some comments on Theorem 1.1 are in order.

1. The main point in the proof is to verify that the abstract Birkhoff Normal Form
Theorem 1.3 is applicable. Then we put the Hamiltonian of the NLS in Birkhoff
normal form:

∑

j∈Z
ω j |u j |2 + Z + R , (1.9)

where Z depends only on the actions (|ui |2)i∈Z while R = O(|u|2N+3) is analytic in
a ball centered at zero of hp,s,a and has a zero of order at least 2N+ 3 in u = 0. Then
we find N = N(δ) which minimizes the size of the remainder R.

2. We did not make an effort to maximize the exponent 1 + θ/4 in the stability time. In
fact, by trivially modifying the proof, one could get 1 + θ/(2+). We remark that in
[CMW], in which θ = 1/2, the exponent is better, i.e. it is 1 + 1/(2+).

Sobolev initial data. Here our first goal was to recover by our methods the result
of [BG06], computing explicitly all the constants in the estimates. In particular it is
fundamental to have a good control on the dependence of the stabiliy time T on the
the regularity p. Indeed there are two natural ways of taking a small ball around zero:
reducing the size δ or increasing the regularity p. A crucial point is that, in the case
of Sobolev regularity, the number of BNF steps that one may perform is (apparently
unavoidably) tied to the regularity p. This is clearly seen in [BG06], where the number
of steps is ∼ √

p. It seemed an interesting point to verify how our approach worked in
such a case, and wether we would see the same phenomenon.

As before, our estimates depend on some constants, denoted by τS, δS,kS,TS,,
explicitly defined in “Appendix A”. These constants depend only on γ, q,a, R, | f |a,R .

Proposition 1.1 (Aquantitative version of [BG06]). ConsiderEq. (1.1)with f satisfying
(1.2) for a, R > 0. For any p ≥ 3τS + 1 and any initial datum u(0) = u0 satisfying

|u0|H p := |u0|L2 + |∂ p
x u0|L2 ≤ δ ≤ δS(kS p)

−3p (1.10)

the solution u(t) of (1.1) with initial datum u(0) = u0 exists and satisfies

|u(t)|Hp ≤ 4δ for all times |t | ≤ TS p
−5p

(
δS

δ

) 2(p−1)
τS

. (1.11)

Remark 1.3. Also in this result we just have to verify the hypotheses of Theorem 1.3.
However as it happens in [BG06] the maximum number N of steps of BNF we can
perform depends on p, in particular N = [ p−1

τS
]. This is in fact slightly better than the

previously cited paper (N ∼ p instead of
√
p). On the other hand it is not difficult to

show that the bound δ ≤ δS(kS p)−3p is essentially optimal (see Remark 10.1).
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Looking at the proof of the Theorem or even constructing other finite-dimensional mod-
els, one can see that in the traslation invariant case, the very restrictive smallness condi-
tion in (1.10) is only due to interactions between the modes 0, 1,−1 and all the others. It
then seems natural to consider initial data for which the energy on suchmodes is smaller,
namely |u0|L2 ≤ 2−pδ. We refer to this case as M, the relevant constants can be found
in “Appendix A”

Theorem 1.2. Consider Eq. (1.1)with f independent of x and satisfying (1.3) for R > 0.
For any p > 3τM + 1 and for any initial datum u(0) = u0 satisfying

|u0|H p ≤ δ ≤ δM√
p
, |u0|L2 ≤ 2−pδ (1.12)

the solution u(t) of (1.1) exists and satisfies

|u(t)|H p ≤ 8δ for all times |t | ≤ TM

(
8δM2

(p − 1)δ2

) p−1
τM

. (1.13)

Remark 1.4. Note that, since the L2 norm is a constant of motion, one trivially has
|u(t)|L2 ≤ 2−pδ. Comparing with (1.11), we see that the time estimate is more or less
the same but now it holds in a much bigger neighborhood of zero (δ ≤ p−1/2 instead of
≤ p−3p).
If one requires a stronger condition on the L2 norm, i.e., |u0|L2 ≤ 3−pδ, it turns out
that the size of the perturbation is exponentially decreasing in p and, therefore, keeping
δ fixed and sending p to infinity one immediately obtains stability.

The main difference between the Gevrey and Sobolev cases is that in the latter the
number of BNF steps N depends on the regularity, while in the former it is independent.
Thus in the Sobolev case we cannot fix both δ and p and optimize in N. What we can
do is to fix δ and find an optimal regularity p(δ), which maximizes the stability time.
It turns out that the two cases S and M behave differently. Indeed the weaker smallness
condition (1.12) allows us to take much bigger p(δ), obtaining much longer stability
times. As before our statements depend on some constants, denoted by δ̄S, δ̄M explicitly
defined in Subsection A.

Corollary 1.1 (Sobolev stability: optimization).
(S) For any 0 < δ ≤ δ̄S and any u0 such that

|u0|H p ≤ δ, p = p(δ) := 1 +
ln(δS/δ)

6 ln ln(δS/δ)
, (1.14)

the solution u(t) of (1.1) with initial datum u(0) = u0 exists and satisfies

|u(t)|H p ≤ 4δ for all times |t | ≤ TSe
ln2(δS/δ)

4τS ln ln(δS/δ) . (1.15)

(M) Assume that f in (1.1) is independent of x. For any 0 < δ ≤ δ̄M and

∀ p ≥ p(δ) := δM
2

δ2
, ∀u0 s.t. |u0|H p ≤ δ, |u0|L2 ≤ 2−pδ, (1.16)

the solution u(t) of (1.1) with initial datum u(0) = u0 exists and satisfies

|u(t)|H p ≤ 8δ for all times |t | ≤ TMe
δM

2

τMδ2 . (1.17)
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Remark 1.5. Some remarks on Corollary 1.1 are in order.
Note that (1.15) is the stability time computed in [BFG88] for short range couplings.

1. We will prove the case M only for p = p(δ), the general case being analogous4 (with
the same constants!) also if p ≥ p(δ).

2. One can easily restate Corollary 1.1 in terms of the Sobolev exponent p, instead of
δ, since the map δ → p(δ) is injective.

Remark 1.6 (finite dimensional examples). It is interesting to compute the stability times
predicted by our theorems for initial data supported on a finite number of modes. To this
purpose consider an initial datum u(0) uniformly distributed over the modes 1, . . . , j :

|u(0)
i | = ε, ∀i = 1, . . . , j.

Theorem 1.1 with a = 0, p = 1 states that if ε ≤ εG := δGe−2 jθ then u(t) stays stable,

in Gevrey norm, for times of order e(ln
εG
ε )

1+θ/4
.

Now if ε ≤ εM(p) := δM j−p−1/
√
p we have |u0|Hp < δ and |u0|L2 < 2−pδ;

then by Theorem 1.2 the solution u(t) stays stable, in H p norm, for times of order

T ∼
(

εM(p)
ε

)2(p−1)/τM
. Maximizing the time in p with fixed ε we get

p ∼ ln( δ2M
ε

)

2 ln j
, T ∼ e

(ln ε−1)2
ln j (1.18)

provided that ε � j−7τM . Explicitly we get a weaker constraint on ε and a better time
estimate. Of course one could play the same game directly with the estimate of Propo-
sition 1.1. As it should be expected the time estimate is more or less the same as 1.18
but the smallness condition is much stronger, i.e. of the type ε � e−2 jθ .

1.2. The abstract Birkhoff Normal Form. We start by setting our functional framework.
The main point is to introduce a weighted majorant norm which penalizes the terms in
the Hamiltonian which do not preserve momentum, see Definition 1.1.

Let us pass to the Fourier side via the identification

u(x) =
∑

j∈Z
u j e

i j x �→ u = (u j ) j∈Z, (1.19)

where u belongs to some complete subspace of �2. Fix the symplectic structure to be

i
∑

j

du j ∧ dū j . (1.20)

In this framework the Hamiltonian of (1.1) is

HNLS(u) := Dω + P, where

Dω :=
∑

j∈Z
ω j |u j |2,

P :=
∫

T

F(x, |u(x)|2)dx, F(x, y) :=
∫ y

0
f (x, s)ds. (1.21)

4 Indeed, thanks to the immersion property of our norms (see Proposition 6.1 below) the canonical trans-
formation putting the system in Birkhoff Normal Form (see Theorem 8.1 below) in the p-case is simply the
restriction to H p of the one of the p(δ)-case.
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We shall always work with quite regular solutions; given a real sequence w =
(w j ) j∈Z, with w j ≥ 1 let us set the Hilbert space5

hw :=
⎧
⎨

⎩u := (u j
)
j∈Z ∈ �2(C) : |u|2w :=

∑

j∈Z
w2j
∣∣u j
∣∣2 < ∞

⎫
⎬

⎭. (1.22)

As examples of hw we consider:

G) (Gevrey case)w(p, s, a) :=
(
〈 j〉pea| j |+s〈 j〉θ

)

j∈Z,which is isometrically isomorphic,

by Fourier transform, to Hp,s,a defined in (1.8).
S) (Sobolev case) w(p) := w(p, 0, 0) = (〈 j〉p) j∈Z, which is isometrically isomorphic,

by Fourier transform, to Hp,0,0 defined in (1.8) and is equivalent to H p equipped with
the norm | · |L2 + |∂ p

x · |L2 with equivalence constants independent of p (see (5.28))
M) (Modified-Sobolev case) w j = � j�p, where � j� := max{| j |, 2}; this space is equiv-

alent to H p equipped with the norm 2p| · |L2 + |∂ p
x · |L2 with equivalence constants

independent of p (see (5.30))

Here and in the following, given r > 0, by Br (hw) we mean the closed ball of radius
r centered at the origin of hw.

In the following we always consider Hamiltonians H : Br (hw) → R such that there
exists a pointwise absolutely convergent power series expansion6

H(u) =
∑

α,β∈NZ,
|α|+|β|<∞

Hα,βu
α ūβ , uα :=

∏

j∈Z
u

α j
j

with the following properties:

(i) Reality condition:

Hα,β = Hβ,α, (1.23)

this means that H is real analytic in the real and imaginary part of u (see section 2);
(ii) Mass conservation:

Hα,β = 0 if |α| �= |β|, (1.24)

namely the Hamiltonian Poisson commutes with the mass
∑

j∈Z |u j |2;
The Hamiltonian functions being defined modulo a constant term, we shall assume
without loss of generality that H(0) = 0.

We say that a Hamiltonian H as above preserves momentum when

Hα,β = 0 if π(α − β) :=
∑

j∈Z
j
(
α j − β j

) �= 0, (1.25)

namely the Hamiltonian H Poisson commutes with
∑

j∈Z j
∣∣u j
∣∣2. Note that if the non-

linearity f in Eq. (1.1) does not depend on the variable x , then the Hamiltonian P in
(1.21) preserves momentum.

5 Endowed with the scalar product (u, v)hw :=∑ j∈Z w2j u j v̄ j .

6 As usual given a vector k ∈ Z
Z, |k| :=∑ j∈Z |k j |.
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Definition 1.1 (η-majorant analytic Hamiltonians). For η ≥ 0, r > 0 let Ar,η(hw) be
the space of Hamiltonians as above such that the η-majorant

Hη(u) :=
∑

α,β∈NZ

∣∣Hα,β

∣∣eη|π(α−β)|uα ūβ (1.26)

is point-wise absolutely convergent on Br (hw). If we take η = 0 we denote H0(u) =
H(u) as the majorant of H .

The exponential weight eη|π(α−β)| is added in order to ensure that the monomials which
do not preserve momentum have an exponentially small coefficient.

Wewill say that a Hamiltonian H(u) ∈ Ar,η(hw) is η-regular if XHη
: Br (hw) → hw

and is uniformly bounded, where XHη
is the vector field associated to the η-majorant

Hamiltonian in (1.26). More precisely we give the following

Definition 1.2 (η-regular Hamiltonians). For η ≥ 0, r > 0 letHr,η(hw) be the subspace
of Ar,η(hw) of those Hamiltonians H such that

|H |Hr,η(hw) = |H |r,η,w := r−1

(
sup

|u|hw≤r

∣∣∣XHη

∣∣∣
hw

)
< ∞.

We shall show in Sect. 2 that this guarantees that the Hamiltonian flow of H exists
at least locally and generates a symplectic transformation on hw.

Remark 1.7. Definition 1.2 with η = 0, i.e. the idea of controlling an analytic function
through the sup of its Cauchy majorant, dates back to Cauchy-Kovalevskaya. In the
context of analytic functions on Hilbert spaces, this class of functions is defined and
studied, with a slightly different approach, in [Nik86] and [KP10], where it is referred
to as “normally analytic” functions.

Regarding the idea of introducing a weight which penalizes monomials which do not
preserve momentum, this was used already in [Bam03].

In our work the crucial point is that all the dependence on the parameters r, η,w of
the norm in Definition 1.2 can be encoded in the coefficients

c( j)
r,η,w(α,β) := r |α|+|β|−2eη|π(α−β)| w2j

wα+β
, wα+β =

∏

j∈Z
w

α j+β j
j (1.27)

defined for any α,β ∈ N
Z and j ∈ Z (see formula (3.1) and Lemma 3.1). This allows

us to give a simple and explicit condition which guarantees the immersion Hr,η(hw) ⊆
Hr ′,η′(hw′) in terms of the ratio of the coefficients c( j)

r,η,w(α,β), c( j)
r ′,η′,w′(α,β), see Propo-

sition 3.1.
As it is well known a Birkhoff Normal Form is achieved by an iterative procedure.

Let us describe the general step. Given a Hamiltonian

H =
∑

j∈Z
ω j |u j |2 + Z + R, (1.28)

where Z is a normal form and R has a zero of degree say 2d+2 (withd ≥ 1) at u = 0, we
look for a change of variables, which conjugates H to aHamiltonian

∑
j∈Z ω j |u j |2+Z ′+
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R′ so that now R has a zero of degree at least 2d + 4. The desired change of variables
is generated by the time one flow of a Hamiltonian S which solves the homological
equation7

{
∑

j∈Z
ω j |u j |2, S} = R.

As for the immersion properties, given8 r ′ ≤ r, η′ ≤ η and w′ ≥ w such thatHr,η(hw) ⊆
Hr ′,η′(hw′), in Proposition 4.2 and Lemma 5.2 we give a simple and explicit condition

-in terms of the ratio of the coefficients c( j)
r,η,w(α,β), c( j)

r ′,η′,w′(α,β)- which ensures that
if R ∈ Hr,η(hw) is appropriately small, then S is well defined and generates a close to
identity change of variables Br ′(hw′) → hw′ . With this procedure we start in some phase
space hw and then show the existence of the Birkhoff change of variables on a ball which
not only has a smaller radius but is taken in the stronger toplogy hw′ . Note that this is
not a smoothing change of variables: it is defined from the smaller space to itself.

Starting with a Hamiltonian as in (1.28) with a zero of order 4, in order to reach the
form (1.9) we need to perform N steps of BNF. To this purpose we make the following

Assumption 1. We say that η ≥ 0 and two weights w0 ≤ w satisfy the Birkhoff as-
sumption at step N ≥ 1 if the following holds. The exists a sequence of weights
w0 ≤ w1 ≤ · · · ≤ wN = w such that

C := max

{
1, sup

0≤n<N
sup
j,α,β

α j+β j �=0

c( j)
∗
n ,ηn+1,wn+1

(α,β)

c( j)
n ,ηn ,wn (α,β)

}
< ∞,

K := max

{
1, sup

0≤n<N
sup
j,α,β

α j+β j �=0

c( j)
∗
n ,ηn+1,wn+1

(α,β)

c( j)
n ,ηn ,wn (α,β)|ω · (α − β)|

}
< ∞,

K� := max

{
1, sup

0≤n<N
sup
j,α,β

α j+β j �=0

c( j)
∗
n ,ηN,wN

(α,β)

c( j)
n ,ηn ,wn (α,β)|ω · (α − β)|

}
< ∞, (1.29)

where

n = (2 − n

N
), ηn = (1 − n

N
)η, 0 ≤ n ≤ N, ∗

n = n+1 + n

2
, 0 ≤ n < N.

Informally speaking C < ∞ guarantees the immersion properties at each step, while
K < ∞ guarantees that one can solve the homological equation at each step. Finally
K� < ∞ guarantees that the composition of the changes of variables of all steps is well
defined and close to identity on some ball Br (hwN).

Let

Kr (hw) := {H ∈ Hr,0(hw) | H =
∑

α∈NZ

Hα,α|u|2α} (1.30)

be the subspace of normal form Hamiltonians.

7 Since ω ∈ Dγ,q , w.l.o.g. we may assume that R is in the range of the operator {∑ j∈Z ω j |u j |2, ·}.
8 As usual w ≤ w′ means that w j ≤ w′

j for every j ∈ Z.
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Theorem 1.3 (Abstract Birkhoff Normal Form). Consider a Hamiltonian of the form

H = Dω + G, Dω =
∑

j

ω j |u|2j (1.31)

with ω ∈ Dγ,q and G ∈ Hr̄ ,η(hw0), for some r̄ > 0, η ≥ 0. Assume moreover that G
has a zero of order at least 4 at u = 0. Consider N ≥ 1 and w ≥ w0 such that η,w0,w
satisfy the Birkhoff assumption at step N. Set

r̂ := min

{
r�√

Nmax{CK,K�} ,
r̄

2

}
, where r� := r̄

√
γ

211e|G|r̄ ,η,w0
. (1.32)

Then for all 0 < r ≤ r̂ there exists an invertible9 symplectic change of variables

� : Br (hw) �→ B2r (hw),

sup
u∈Br (hw)

|�(u) − u|w ≤ Ĉ1r
3 ≤ r

8
, Ĉ1 := K�

27er2�
, (1.33)

such that in the new coordinates

H ◦ � = Dω + Z + R, Z ∈ Kr (hw),

where

|Z |r,0,w ≤ Ĉ2r
2, |R|r,0,w ≤ Ĉ3r

2(N+1), with

Ĉ2 := 8|G|r̄ ,η,w0

r̄2
, Ĉ3 := γ

29er2�

(
CKN

4r2�

)N

. (1.34)

The theorem follows by a straightforward iteration, see Sect. 5.
As it is well known the bounds (1.34) imply a lower bound on the stability time; we

discuss this in Corollary 5.1 where we show that the solution u(t) of the Hamiltonian
flow of (1.31) with initial datum u(0) = u0 such that |u0|w ≤ 3r

8 exists and satisfies

|u(t)|w ≤ r for all times |t | ≤ 1

8Ĉ3r2(N+1)
.

By Theorem 1.3 and Corollary 5.1, in order to prove the stability results we only need
to define suitable sequence spaces verifying Assumption 1. In particular we consider the
three applications G,S,M introduced at page 7. Another interesting example (suggested
to us by Z. Hani) could be the space

{(
u j
) ∈ L2 : |u|2 :=

∑

j

|u j |2eln(� j�)2 < ∞
}
,

where � j� = max{| j |, 2}. In this case one may get T ≈ δln(ln(1/δ)).
A preliminary version of these results was announced in [BMP19].

9 In the sense that there exists a symplectic change of variables � : Br (hw) �→ B2r (hw) such that
� ◦ �u = � ◦ �u = u, ∀u ∈ B 7

8 r
(hw).
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Part 1. An Abstract Framework for Birkhoff Normal Form on Sequences Spaces

2. Symplectic Structure and Hamiltonian Flows

Spaces of Hamiltonians. As explained in the Introduction our wheighted spaces hw are
contained in �2(C), so we endow them with the standard symplectic structure coming
from the Hermitian product on �2(C).

We identify �2(C) with �2(R) × �2(R) through u j = (
x j + iy j

)
/
√
2 and induce on

�2(C) the structure of a real symplectic Hilbert space10 by setting, for any (u(1), u(2)) ∈
�2(C) × �2(C),

〈u(1), u(2)〉 =
∑

j

(
x (1)
j x (2)

j + y(1)
j y(2)

j

)
, ω(u(1), u(2)) =

∑

j

(
y(1)
j x (2)

j − x (1)
j y(2)

j

)
,

which are the standard scalar product and symplectic form � =∑ j dy j ∧ dx j .
For convenience and to keep track of the complex structure, one often writes the vector
fields and the differential forms in complex notation, that is

� = i
∑

j

du j ∧ dū j , X ( j)
H = i

∂

∂ ū j
H

where the one form and vector field are defined through the identification between C

and R
2, given by

du j = 1√
2

(
dx j + idy j

)
, dū j = 1√

2

(
dx j − idy j

)
,

∂

∂u j
= 1√

2

(
∂

∂x j
− i

∂

∂y j

)
,

∂

∂ ū j
= 1√

2

(
∂

∂x j
+ i

∂

∂y j

)
.

Remark 2.1. By mass conservation and since H(0) = 0, it is straightforward to prove
that the norm | · |r,η,w is increasing in the radius parameter r (see also Proposition3.1).

Note that if |H |r,η,w < ∞ then H admits an analytic extension Ĥ , that is

(u+, u−) ∈ Br (�
2(C)) × Br (�

2(C)) → Ĥ(u+, u−) : H(u) = Ĥ(u, ū),

whose Taylor series expansion is

Ĥ(u+, u−) =
∗∑

α,β∈NZ

Hα,βu
α
+u

β
−

where we denote by
∑∗ the sum restricted to those α,β : |α| = |β| < ∞.

One can see that

∂

∂ ū j
H(u) = ∂ Ĥ(u+, u−)

∂u−, j

∣∣∣
u+=ū−=u

.

Poisson structure and hamiltonian flows. The scale {Hr,η(hw)}r>0 is a Banach-
Poisson algebra in the following sense

10 We recall that given a complex Hilbert space H with a Hermitian product (·, ·), its realification is a real
symplectic Hilbert space with scalar product and symplectic form given by

〈u, v〉 = 2Re(u, v), ω(u, v) = 2Im(u, v).
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Proposition 2.1. For 0 < ρ ≤ r and η > 0 we have

|{F,G}|r,η,w ≤ 4

(
1 +

r

ρ

)
|F |r+ρ,η,w|G|r+ρ,η,w. (2.1)

Proof. It is essentially contained in [BBP13]. See in particular Lemma 2.16 of [BBP13]
with n = 0 (no action variables here) and no s and s′ (no actions variable here). Note
that the constant in Lemma 2.16 is 8, instead of 4 in the present paper, because of the
presence there of action variables which scale different from the cartesian ones (namely
(2r)2 instead of 2r ). Recall also the required properties of the space E (named hw in the
present paper) mentioned after Definition 2.5. ��

The following Lemma is a simple corollary and its proof is postponed to the appendix.

Lemma 2.1 (Hamiltonian flow). Let 0 < ρ < r , and S ∈ Hr+ρ,η(hw) with

|S|r+ρ,η,w ≤ δ := ρ

8e(r + ρ)
. (2.2)

Then the time 1-Hamiltonian flow �1
S : Br (hw) → Br+ρ(hw) is well defined, analytic,

symplectic with

sup
u∈Br (hw)

∣∣∣�1
S(u) − u

∣∣∣
hw

≤ (r + ρ)|S|r+ρ,η,w ≤ ρ

8e
. (2.3)

For any H ∈ Hr+ρ,η(hw) we have that H ◦ �1
S = e{S,·}H ∈ Hr,η(hw) and

∣∣∣e{S,·}H
∣∣∣
r,η,w

≤ 2|H |r+ρ,η,w, (2.4)
∣∣∣
(
e{S,·} − id

)
H
∣∣∣
r,η,w

≤ δ−1|S|r+ρ,η,w|H |r+ρ,η,w, (2.5)

∣∣∣
(
e{S,·} − id−{S, ·}

)
H
∣∣∣
r,η,w

≤ 1

2
δ−2|S|2r+ρ,η,w|H |r+ρ,η,w (2.6)

More generally for any h ∈ N and any sequence (ck)k∈N with |ck | ≤ 1/k!, we have
∣∣∣∣∣∣

∑

k≥h

ck ad
k
S (H)

∣∣∣∣∣∣
r,η,w

≤ 2|H |r+ρ,η,w
(|S|r+ρ,η,w/2δ

)h
, (2.7)

where adS (·) := {S, ·}.

3. Immersions for Spaces of Hamiltonians

Given two positive sequences w = (w j
)
j∈Z,w′ =

(
w′
j

)

j∈Z we write that w ≤ w′ if the
inequality holds point wise, namely

w ≤ w′ : ⇐⇒ w j ≤ w′
j , ∀ j ∈ Z.

In this way if r ′ ≤ r and w ≤ w′ then Br ′(hw′) ⊆ Br (hw). Consequently if r ′ ≤ r, η′ ≤ η

and w ≤ w′ then Ar,η(hw) ⊆ Ar ′,η′(hw′).
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We thus wish to study conditions on (r, η,w), (r∗, η′,w′) (with r∗ ≤ r ) which ensure
thatHr,η(hw) ⊆ Hr∗,η′(hw′). Note that this is not obvious at all, since we are asking that
an Hamiltonian vector field of XH ∈ Hr,η(hw), when restricted to the smaller domain
Br∗(hw′) belongs to the smaller space hw′ .

The coefficients c( j)
r,η,w(α, β). Let us start by rewriting the norm | · |r,η,w in a more

adimensional way. In this way all the dependence on the parameters r, η,w of the norm
| · |r,η,w is encoded in the coefficients (1.27).

Definition 3.1. For any H ∈ Hr,η(hw) we define a map

B1(�
2) → �2, y = (y j

)
j∈Z �→

(
Y ( j)
H (y; r, η,w)

)

j∈Z

by setting

Y ( j)
H (y; r, η,w) :=

∑

∗
|Hα,β | (α j + β j )

2
c( j)
r,η,w(α,β)yα+β−e j (3.1)

where e j is the j-th basis vector in NZ, while the coefficient c( j)
r,η,w(α,β) was defined in

(1.27). For brevity, we set

∑

∗
:=

∑

α,β:|α|=|β|
.

The momentum π(·) was defined in (1.25).

The vector field YH is a majorant analytic function on �2 which has the same norm as
H . Since the majorant analytic functions on a given space have a natural ordering this
gives us a natural criterion for immersions, as formalized in the following Lemma.

Lemma 3.1. Let r, r∗ > 0, η, η′ ≥ 0, w,w′ ∈ R
Z
+ . The following properties hold.

(i) The norm of H can be expressed as

|H |r,η,w = sup
|y|

�2≤1
|YH (y; r, η,w)|�2 (3.2)

(ii) Given H (1) ∈ Hr∗,η′,w′ and H (2) ∈ Hr,η,w,

such that for all α,β ∈ N
Z and j ∈ Z with α j + β j �= 0 one has

|H (1)
α,β

|c( j)
r∗,η′,w′(α,β) ≤ c|H (2)

α,β
|c( j)
r,η,w(α,β),

for some c > 0, then

|H (1)|r∗,η′,w′ ≤ c|H (2)|r,η,w.

Proof. See “Appendix B”. ��
As a corollary we get the following “immersion theorem” for spaces of Hamiltonians
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Proposition 3.1 (Immersion). Let r, r∗ > 0, η, η′ ≥ 0, w,w′ ∈ R
Z
+ . If

C := sup
j∈Z,α,β∈NZ

α j+β j �=0

c( j)
r∗,η′,w′(α,β)

c( j)
r,η,w(α,β)

< ∞, (3.3)

then Hr,η(hw) ⊆ Hr∗,η′(hw′), with

|H |r∗,η′,w′ ≤ C |H |r,η,w. (3.4)

In particular |·|r,η,w is increasing in r and η, namely if r∗ ≤ r and η′ ≤ η then

|H |r∗,η′,w ≤ |H |r,η,w.

Moreover, if r∗ ≤ r, w ≤ w′ and H ∈ Kr,η(hw) then

|H |r∗,η′,w′ ≤ |H |r,η,w. (3.5)

Furthermore, if H preserves momentum then

|H |r∗,η′,w′ ≤ C0|H |r,η,w, (3.6)

where

C0 := sup
j∈Z,α,β∈NZ,

α j+β j �=0,∑
i i(αi−β i )=0

c( j)
r∗,η′,w′(α,β)

c( j)
r,η,w(α,β)

< ∞, (3.7)

Proof. Inequality (3.4) directly follows fromLemma 3.1 (ii), while (3.5) follows directly
by (1.27) since in the kernelα j +β j �= 0 impliesα j +β j ≥ 2.Themomentumpreserving
case follows analogously. ��
Remark 3.1. The above immersion properties, with different norm and in a different
context, were implicitly used by Bourgain in [Bou05].

4. Small Divisors and Homological Equation

Let us consider the set of frequencies

�q :=
{

ω = (ω j
)
j∈Z ∈ R

Z, sup
j

|ω j − j2|〈 j〉q < 1/2

}
; (4.1)

this set is isomorphic to [−1/2, 1/2]Z via the identification

ξ �→ ω(ξ), where ω j (ξ) = j2 +
ξ j

〈 j〉q . (4.2)

We endow �q with the probability measure μ induced11 by the product measure on
[−1/2, 1/2]Z.

We now define the set of Diophantine frequencies, the following definition is a slight
generalization of the one given by Bourgain in [Bou05].

11 Denoting by μ the measure in �q and by ν the product measure on [−1/2, 1/2]Z, then μ(A) =
ν(ω(−1)(A)) for all sets A ⊂ �q such that ω(−1)(A) is ν-measurable.
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Definition 4.1. Given γ > 0 and q ≥ 0, we denote by Dγ,q ≡ Dμ1,μ2
γ,q the set of

μ1, μ2, γ -Diophantine frequencies

Dμ1,μ2
γ,q :=
{

ω ∈ �q : |ω · �| > γ
∏

n∈Z

1

(1 + |�n|μ1〈n〉μ2+q)
, ∀� ∈ Z

Z : 0 < |�| < ∞
}

.

(4.3)

Now we have that

Lemma 4.1. For μ1, μ2 > 1 the exists a positive constant Cmeas(μ1, μ2) such that

μ
(
�q \ Dμ1,μ2

γ,q

) ≤ Cmeas(μ1, μ2)γ.

Proof. In “Appendix C” ��
This means that, for all μ1, μ2 > 1, Diophantine frequencies are typical in �q in the
sense that they have full measure. Here and in the following we shall always assume
that

0 < γ ≤ 1, ω ∈ D2,2γ,q = Dγ,q . (4.4)

In the remaining part of this section, on appropriate source and target spaces, we will
study the invertibility of the “Lie derivative” operator

Lω : H �→ LωH :=
∑

∗
i(ω · (α − β))Hα,βu

α ūβ , (4.5)

which is nothing but the action of the Poisson bracket
{∑

j ω j
∣∣u j
∣∣2, ·
}
on H .

Recalling the definition of Kr (hw) in (1.30) we give the following

Definition 4.2. Let

Rr,η(hw) := {H ∈ Hr,η(hw) | H =
∑

α �=β

Hα,βu
α ūβ}. (4.6)

Then we have the decomposition Hr,η(hw) = Rr,η(hw) ⊕ Kr (hw) and the continuous
projections12

|�KH |r,η,w, |�RH |r,η,w ≤ |H |r,η,w. (4.7)

Obviously for diophantine frequency Rr,η(hw) and Kr (hw) represent the range and
kernel of Lω.

For any r, η,w and α,β ∈ N
Z recall the coefficient defined in (1.27)

c( j)
r,η,w(α,β) := r |α|+|β|−2eη|π(α−β)| w2j

wα+β
.

In following Lemma we consider R ∈ Rr,η(hw) and state sufficient conditions which
ensure that L−1

ω R ∈ Rr∗,η′(hw′).

12 Explicitely �KH :=∑α=β Hα,βu
α ūβ , �RH :=∑α �=β Hα,βu

α ūβ .
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Lemma 4.2 (Homological equation). Fix ω ∈ Dγ,q . Consider two ordered weights 0 <

r∗ ≤ r, 0 ≤ η′ ≤ η,w′ ≥ w, such that

K := γ sup
j∈Z,α �=β∈NZ

α j+β j �=0

c( j)
r∗,η′,w′(α,β)

c( j)
r,η,w(α,β)|ω · (α − β)|

< ∞, (4.8)

then for any R ∈ Rr,η(hw) the homological equation

LωS = R

has a unique solution S = L−1
ω R inRr∗,η′(hw′), which satisfies

∣∣∣L−1
ω R

∣∣∣
r∗,η′,w′ ≤ γ −1K |R|r,η,w. (4.9)

Similarly, if R preserves momentum, assuming only

K0 := γ sup
j∈Z,α �=β∈NZ

α j+β j �=0∑
i i(αi−β i )=0

c( j)
r∗,η′,w′(α,β)

c( j)
r,η,w(α,β)|ω · (α − β)|

< ∞, (4.10)

we have that S also preserves momentum and
∣∣∣L−1

ω R
∣∣∣
r∗,η′,w′ ≤ γ −1K0|R|r,η,w. (4.11)

Proof. Given any Hamiltonian R ∈ R, the formal solution of LS = R is given by

L−1
ω R =

∑

|α|=|β|,α �=β

1

i(ω · (α − β))
Rα,βu

α ūβ , (4.12)

where u ∈ Br∗(hw′). By Lemma 3.1 (ii) (applied to H (1) = L−1
ω R and H (2) = R) and

(4.8), we get (4.9). The momentum preserving case is analogous. ��

5. Abstract Birkhoff Normal Form

In this section we prove the abstract Birkoff normal form Theorem 1.3. We start by
defining a degree decomposition which endowsHr,η(hw)with a graded Poisson algebra
structure.

Definition 5.1 (minimal scaling degree). We say that H has minimal scaling degree
d = d(H) (at zero) if

Hα,β = 0, ∀α,β : |α| = |β| ≤ d,

Hα,β �= 0, for some α,β : |α| = |β| = d + 1.

We say that d(0) = +∞.

Essentially H has scaling degree d if and only if it has a zero of order 2d + 2 at zero,
we prefer this notation because we find it more intrinsic, it produces a graded Poisson
algebra structure and one has the following
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Lemma 5.1 If H ∈ Hr,η(hw) with d(H) ≥ d, then for all r∗ ≤ r one has

|H |r∗,η,w ≤
(
r∗

r

)2d

|H |r,η,w.

Proof. Recalling (1.27), we have

c( j)
r∗,η,w(α,β)

c( j)
r,η,w(α,β)

=
(
r∗

r

)|α|+|β|−2

.

Since |α| + |β| − 2 ≥ 2d, the inequality follows by Proposition 3.1. ��
The normal form will be proved iteratively by means of the following Lemma, which

constitutes the main step of the procedure.
Basically we start with a Hamiltonian H = Dω + Z + R with Z ∈ Kr (hw) in normal
form and R ∈ Rr,η(hw) of minimal degree d, and we consider r ′ ≤ r, η′ ≤ η,w′ ≥ w
so that Hr,η(hw) ⊆ Hr ′,η′(hw′). Then we give a sufficient condition which ensures the
existence of a change of variables � : Br ′(hw′) → Br (hw′) such that

H ◦ � = Dω + Z ′ + R′,

with Z ′, R′ ∈ Hr ′,η′(hw′) and R′ of minimal degree d + 1.

Lemma 5.2. Fix ω ∈ Dγ,q . Let r > r ′ > 0, η ≥ η′ ≥ 0, w ≤ w′. Consider

H = Dω + Z + R, Z ∈ Kr (hw), R ∈ Rr,η(hw), d(Z) ≥ 1, d(R) ≥ d ≥ 1.

Assume that (3.3) and (4.8) hold and that13

|R|r,η,w ≤ γ δ

K
, with δ := r − r ′

16er
. (5.1)

Then there exists a change of variables

� : Br ′(hw′) → Br (hw′), (5.2)

such that

H ◦ � = Dω + Z ′ + R′, Z ′ ∈ Kr ′,η′(hw′),

R′ ∈ Rr ′,η′(hw′), d(Z ′) ≥ 1, d(R′) ≥ d + 1.

Moreover14

|Z ′|r ′,η′,w′ ≤ |Z |r,η,w + (γ δ)−1K |R|r,η,w(C |R|r,η,w + |Z |r,η,w),

|R′|r ′,η′,w′ ≤ (γ δ)−1K |R|r,η,w(C |R|r,η,w + |Z |r,η,w). (5.3)

Finally, for w� ≥ w′, assume the further conditions

γ sup
j∈Z,α �=β∈NZ

α j+β j �=0

c( j)
r∗,η′,w� (α,β)

c( j)
r,η,w(α,β)|ω · (α − β)|

=: K � < ∞, r∗ := r ′ + r

2
(5.4)

13 K is the constant in (4.8).
14 C is defined in (3.3).
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and

|R|r,η,w ≤ γ δ

K �
. (5.5)

Then

�∣∣Br ′ (hw� )
: Br ′(hw� ) → Br (hw� ),

sup
u∈Br ′ (hw� )

|�(u) − u|hw�
≤ rγ −1K �|R|r,η,w. (5.6)

Moreover if R preserves momentum, assuming only that

K �
0 := γ sup

j∈Z,α �=β∈NZ

α j+β j �=0,∑
i i(αi−β i )=0

c( j)
r∗,η′,w� (α,β)

c( j)
r,η,w(α,β)|ω · (α − β)|

< ∞ (5.7)

and that (5.1), (5.5) hold with K0, K
�
0 instead of K , K � we have that R′ preserves

momentum and (5.6) holds with K �
0 instead of K �.

Proof. By Lemma 4.2 let S = L−1
ω R in Rr∗,η′(hw′) be the unique solution of the

homological equation LωS = R on Br∗(hw′). Note that d(S) ≥ d. We have

|S|r∗,η′,w′ ≤ γ −1K |R|r,η,w. (5.8)

We now apply Lemma 2.1 with (r, η,w) � (r ′, η′,w′) and ρ := r∗ − r ′. Note that (5.1)
and (5.8) imply (2.2). We define � := �1

S and compute

H ′ := H ◦ � = Dω + Z + (e{S,·} − id−{S, ·})Dω + (e{S,·} − id)(Z + R)

= Dω + Z −
∞∑

j=2

(adS) j−1

j ! R + (e{S,·} − id)(Z + R).

We now set

Z ′ = �KH ′ − Dω, R′ = �RH ′.

Since the scaling degree is additive w.r.t. Poisson brackets, we have that d(Z ′) ≥ 1 and
d(R′) ≥ d + 1. By (2.7)

|Z ′|r ′,η′,w′ ≤ |Z |r ′,η′,w′ + (γ δ)−1K |R|r,η,w(|R|r∗,η′,w′ + |Z |r∗,η′,w′),

|R′|r ′,η′,w′ ≤ (γ δ)−1K |R|r,η,w(|R|r∗,η′,w′ + |Z |r∗,η′,w′).

Since (4.8) holds we can apply Proposition 3.1: by (3.4) and (3.5) we get

|R|r∗,η′,w′ ≤ C |R|r,η,w, |Z |r∗,η′,w′ ≤ |Z |r,η,w.

(5.3) follows.
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Finally assume (5.5) and (5.4). By Lemma 4.2 let S� = L−1
ω R inRr∗,η′(hw� ) be the

solution of the homological equation LωS� = R on Br∗(hw� ) ⊆ Br∗(hw′). Since S and
S� solve the same linear equation on Br∗(hw� ), we have that

S� = S∣∣Br∗ (hw� )
.

By (4.9) we get

|S|r∗,η′,w� ≤ γ −1K �|R|r,η,w. (5.9)

We now apply Lemma 2.1 with (r, η,w) � (r ′, η′,w�) and ρ := r∗ − r ′. Note that (5.5)
and (5.9) imply (2.2). Then (5.6) follows by (2.3) and (5.9).

The momentum preserving case is analogous. ��
Theorem 1.3 follows Given η ≥ 0 and a sequence of weights w0 ≤ w1 ≤ · · · ≤ wN =

w. For any given r > 0 we set

rn = (2 − n

N
)r, ηn = (1 − n

N
)η, 0 ≤ n ≤ N, r∗

n = rn+1 + rn
2

, 0 ≤ n < N.

(5.10)

From Assumption 1 and (1.27) we have15

max

{
1, sup

0≤n<N
sup
j,α,β

α j+β j �=0

c( j)
r∗
n ,ηn+1,wn+1

(α,β)

c( j)
rn ,ηn ,wn (α,β)

}
= C < ∞, (5.11)

max

{
1, sup

0≤n<N
sup
j,α,β

α j+β j �=0

c( j)
r∗
n ,ηn+1,wn+1

(α,β)

c( j)
rn ,ηn ,wn (α,β)|ω · (α − β)|

}
= K < ∞, (5.12)

max

{
1, sup

0≤n<N
sup
j,α,β

α j+β j �=0

c( j)
r∗
n ,ηN,wN

(α,β)

c( j)
rn ,ηn ,wn (α,β)|ω · (α − β)|

}
= K� < ∞. (5.13)

For brevity we set

hn := hwn , Hn := Hrn ,ηn (hn), 0 ≤ n ≤ N,

Hn,∗ := Hr∗
n ,ηn+1(hn+1), 0 ≤ n < N, (5.14)

and, correspondingly, Rn,Kn,Rn,∗,Kn,∗ and

| · |n := | · |rn ,ηn ,wn , | · |n,∗ := | · |r∗
n ,ηn+1,wn+1 . (5.15)

Lemma 5.3. By Assumption (5.11) we have the immersion properties

H0 ⊆ H0,∗ ⊆ · · · ⊆ Hn ⊆ Hn,∗ ⊆ Hn+1 ⊆ · · · ⊆ HN, (5.16)

with estimates

H ∈ Hn �⇒ |H |n,∗ ≤ Ĉ |H |n, 0 ≤ n ≤ i ≤ N − 1

H ∈ Kn �⇒ |H |n,∗ ≤ |H |n, 0 ≤ n ≤ i ≤ N − 1. (5.17)

15 We are just using the fact that the ratio c( j)r,η,w(α, β)/c( j)r ′,η′,w′ (α, β) depends on r, r ′ only through their

ratio.
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Proof. We apply Proposition 3.1 with

r, η,w � rn, ηn,wn, r∗, η′,w′ � r∗
n , ηn+1,wn+1,

by noting that the bound (3.3) follows from (5.11). The bounds in (5.17) follow form
(3.4) and (3.5). The chain of inclusions (5.16) follows. ��
Proof of Theorem 1.3. Wewill prove the thesis inductively. Let us start by noticing that

r̂ = min

{
r̄

8
√|G|r̄ ,η,w0

√
γ δ̂

max{CK,K�} ,
r̄

2

}
, δ̂ := 1

32eN

and, for all 0 < r ≤ r̂, let us set

ε := γ −1
(
2r

r̄

)2

|G|r̄ ,η,w0 = 1

29e

(
r

r�

)2

.

From definition (1.32) we thus deduce that

8 εmax{CK,K�}δ̂−1 ≤ 1. (5.18)

Recalling the notations introduced in (5.10)–(5.15), by Lemma (5.1) we have

γ −1|G|0 ≤ ε,

hence, setting Z (0) := �KG and R(0) := �RG, from (4.7) it follows that

γ −1|Z (0)|0, γ −1|R(0)|0 ≤ ε.

We perform an iterative procedure producing a sequence of Hamiltonians, for n =
0, . . . ,N

H (n) = Dω + Z (n) + R(n),

Z (n) ∈ Kn, R(n) ∈ Rn, d(Z (n)) ≥ 1, d(R(n)) ≥ n + 1,

γ −1|Z (n)|n ≤ ε

n∑

h=0

2−h, γ −1|R(n)|n ≤ εn+1
(
4CKδ̂−1

)n (5.18)≤ 2−nε. (5.19)

Fix any k < N. Let us assume that we have constructed H (0), . . . , H (k) satisfying (5.19)
for all 0 ≤ n ≤ k. We want to apply Lemma 5.2 with

H, r, η,w � H (k), rk, ηk,wk and r ′, η′,w′,w�,d � rk+1, ηk+1,wk+1,wN, k + 1.

By construction the bounds (3.3), (4.8) and (5.4) hold since C ≤ C, K ≤ K, K � ≤ K�,
where Ĉ, K̂ , K̂ � were defined in (5.11), (5.12), (5.13). We just have to verify that (5.1)
holds, namely

|R(k)|k ≤ γ

K

rk − rk+1
16erk

.

In fact, by applying the inductive hypothesis (5.19) and the smallness condition (5.18),
we get

|R(k)|k ≤ γ
(
4CKδ̂−1

)k
εk+1 ≤ γ ε

2k
≤ γ

16eK(2N − k)
= γ

K

rk − rk+1
16erk

.
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The verification of (5.5) is completely analogous.
So, by applying Lemma 5.2 we construct a change of variable �k as in (5.2) with

�k : Brk+1(hwk+1) → Brk (hwk+1).

Let us now set

H (k+1) = Dω + Z (k+1) + R(k+1) := Hk ◦ �k

with Z (k+1) ∈ Kk+1, R(k+1) ∈ Rk+1 and d(Z (k+1)) ≥ 1, d(R(k+1)) ≥ k + 2. It remains
to prove the bounds in the second line of (5.19) (with n = k + 1). By (5.3) we have

|Z (k+1)|k+1 ≤ |Z (k)|k + (γ δ̂)−1K|R(k)|k(C|R(k)|k + |Z (k)|k),
|R(k+1)|k+1 ≤ (γ δ̂)−1K|R(k)|k(C|R(k)|k + |Z (k)|k). (5.20)

By substituting the inductive hypothesis (5.19), we have the following chain of inequal-
ities

γ −1|R(k+1)|k+1 ≤ δ̂−1ε2K(4CKδ̂−1ε)k(C(4CKδ̂−1ε)k + 2)
(5.18)≤ δ̂−1ε2K(4CKδ̂−1ε)k(C + 2)

≤ (4CKδ̂−1)k+1εk+2 = (4CKδ̂−1ε)k+1ε,

which proves the bound on R(n) in (5.19) for any n.
En passant, we note that

γ ε
(
4CKδ̂−1ε

)N = γ

29er2�

(
CKN

4r2�

)N

r2(N+1). (5.21)

Finally, using the same strategy as above, we also get

γ −1|Z (k+1)|k+1 ≤ ε

(
k∑

h=0

2−h + (4CKδ̂−1)k+1εk+1

)
(5.18)≤ ε

k+1∑

h=0

2−h,

which completes the proof of the inductive hypothesis (5.19), and remark that

ε

N∑

h=0

2−h = r2

28er2�

(
1 − 2−N−1

)
. (5.22)

By (5.6) we have

�k : Brk+1(hwN) → Brk (hwN),

sup
u∈Brk+1 (hwN )

|�k(u) − u|wN ≤ rkγ
−1K�|R(k)|k . (5.23)

In conclusion we define

� := �0 ◦ �1 ◦ · · · ◦ �N−1 : Br (hN) → B2r (hN).

Since we have

�0 ◦ �1 ◦ · · · ◦ �N−1 − id

= (�0 − id) ◦ �1 ◦ · · · ◦ �N−1 + (�1 − id) ◦ �2 ◦ · · · ◦ �N−1 + . . . �N−1 − id .
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By (5.23) we get

sup
u∈Br (hwN )

|�(u) − u|wN ≤
N−1∑

k=0

rkγ
−1K�|R(k)|k

(5.19)≤ 2rεK�
N−1∑

k=0

2−k ≤ 4rK�ε,

proving the first bound in (1.33). The second bound in (1.33) can bewritten as 8Ĉ1r2 ≤ 1,
which follows from r ≤ r̂. We finally set Z = ZN, R = RN and the estimates (1.34)
follow by (5.21)–(5.22). Of course the same reasoniong can be applied in order to
construct the inverse, i.e. a symplectic change of variables � : Br (hw) �→ B2r (hw) such
that

� ◦ �u = � ◦ �u = u, ∀u ∈ B 7
8 r

(hw). (5.24)

��
When the nonlinearity G preserves momentum Theorem 1.3 can be reformulated

under slightly weaker assumptions. More precisely, setting η = 0

C0 := max

{
1, sup

0≤n<N
sup
j,α,β,

α j+β j �=0,
π(α−β)=0

c( j)
∗
n ,0,wn+1

(α,β)

c( j)
n ,0,wn

(α,β)

}
< ∞,

K0 := max

{
1, sup

0≤n<N
sup
j,α,β,

α j+β j �=0,
π(α−β)=0

c( j)
∗
n ,0,wn+1

(α,β)

c( j)
n ,0,wn

(α,β)|ω · (α − β)|

}
< ∞,

K
�
0 := max

{
1, sup

0≤n<N
sup
j,α,β,

α j+β j �=0,
π(α−β)=0

c( j)
∗
n ,0,wN

(α,β)

c( j)
n ,0,wn

(α,β)|ω · (α − β)|

}
< ∞, (5.25)

the following holds.

Proposition 5.1. If G preserves momentum Theorem 1.3 holds word by word with
C0,K0,K

�
0 instead of C,K,K�. Moreover also the new perturbation R preserves mo-

mentum.

We note that in the case that G preserves momentum, the same result holds with
C0,K0,K

�
0 instead of C,K,K�; moreover also R preserves momentum.

We finally give the following abstract stability result, whose proof is postponed to
the “Appendix B”.

Lemma 5.4. On the Hilbert space hw consider the dynamical system

v̇ = XN + XR, v(0) = v0, |v0|w ≤ 3

4
r,

where N ∈ Ar,0(hw) and R ∈ Hr,η(hw) for some r > 0, η ≥ 0. Assume that

Re(XN , v)hw = 0.
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Then

∣∣∣|v(t)|w − |v0|w
∣∣∣ <

r

8
, ∀ |t | ≤ 1

8|R|r,η,w
. (5.26)

Corollary 5.1. Under the same assumptions of Theorem 1.3, the solution u(t) of the
Hamiltonian flow of (1.31) with initial datum u(0) = u0 such that |u0|w ≤ 3r

8 exists
and satisfies

|u(t)|w ≤ r for all times |t | ≤ 1

8Ĉ3r2(N+1)
. (5.27)

Proof. Let us consider Hamiltonian (1.31), take an initial datum |u0|w := r < 3
8 r̂ and

apply the change of vartiables of Theorem 1.3. Denoting by v(0) = �(u0) we are under
the hypotheses of Lemma 5.4 with η = 0 and we conclude

|v(t)|w ≤ 7

8
r, ∀ |t | ≤ 1

8|R|r,0,w .

Now we can apply (5.24) in order to return to the original variables and deduce that
u(t) = �v(t) satisfies

|u(t)|w ≤ r, ∀ |t | ≤ r−2(N+1)

8Ĉ3
≤ 1

8|R|r,0,w .

��

Part 2. Applications to Gevrey and Sobolev Cases

In Part 2we show how to apply the abstract BNF toGevrey and Sobolev cases. Following
the notations given in the introduction we work in the three sequence spaces defined for
the applications G,S,M, see page 7. As explained in the introduction, in order to prove
the estimates on the stability times we just need to verify that Assumption 1 holds. This
is the content of the next sections.
Let us start by setting some notations.

Case G) In the case w(p, s, a) =
(
〈 j〉pes〈 j〉θ+a| j |

)

j∈Z we denote hw(p,s,a) = hp,s,a ,

same notation for the norm of vectors | · |p,s,a . Regarding the norm of Hamiltonians we
write | · |r,η,w(p,s,a), consistently with Definition 1.2. Of course, for any 0 ≤ p ≤ p′, 0 ≤
s ≤ s′, 0 ≤ a ≤ a′ we have

hp′,s′,a′ ⊆ hp,s,a, |v|p,s,a ≤ |v|p′,s′,a′ , ∀v ∈ hp′,s′,a′ .

Case S) If a = s = 0 we denote hp,0,0 = hp , same notation for the norm of vectors
| · |p and hamiltonians | · |r,η,w(p).

Remark 5.1. Note that, via the usual Fourier identification one has:

|u|p ≤ |u(x)|L2 + |∂ p
x u(x)|L2 ≤ 2|u|p. (5.28)
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Case M) In the case w j = � j�p where
� j� := max{| j |, 2}

we denote the norm of vectors as

‖u‖2p = ‖u‖2w :=
∑

j∈Z
� j�2p|u j |2. (5.29)

Remark 5.2. Note that hw in M) and hp are the same vector space endowed with two
equivalent norms. Moreover one has

‖u‖p ≤ 2p|u(x)|L2 + |∂ p
x u(x)|L2 ≤ 2‖u‖p. (5.30)

Definition 5.2 (momentum preserving regular Hamiltonians). Given r > 0, p ≥ 0 let
Hr,p be the space of point-wise absolutely convergent Hamiltonians on ‖u‖p ≤ r which
preserves momentum and such that

‖H‖r,p := r−1

(
sup

‖u‖p≤r
‖XH‖p

)
< ∞, (5.31)

namely.16

‖ · ‖r,p = | · |Hr,0(hw), w j = � j�p
We now verify that the nonlinearities in (1.1) are bounded in the norm | · |r,η,w in the

cases S,M,G.

Proposition 5.2. Consider the correction term P = ∫
T
F(x, |u|2)dx in the NLS Hamil-

tonian (1.21), where the argument f in F satisfies(1.2). Let p > 1/2.

(i) For any a, s, η ≥ 0 such that a+η < a and any r > 0 such that17 (Calg(p)r)2 ≤ R,
we have

|P|r,η,w(p,s,a) ≤ CNem(p, s,a − a − η)
(Calg(p)r)2

R
| f |a,R < ∞ (5.32)

where f and | f |a,R are defined in 1.2.
(ii) If F is independent of18 x, for (Calg,M(p)r)2 ≤ R we have

‖P‖r,p ≤ 2p
(Calg,M(p)r)2

R
| f |R < ∞. (5.33)

This Proposition follows directly from the fact that the corresponding sequence spaces
hw are closed w.r.to convolution.

Let � : hp,s,a × hp,s,a → hp,s,a be the convolution operation defined as

( f, g) �→ f � g :=
⎛

⎝
∑

j1, j2∈Z, j1+ j2= j

f j1g j2

⎞

⎠

j∈Z
.

The map � : ( f, g) �→ f � g is continuous in the following sense:

16 Note that on the preserving momentum subspaceHr,η(hw) coincides with Hr,0(hw) for every η.
17 R is defined in (1.2) and the constants in “Appendix A”.
18 i.e. P preserves momentum and we are assuming (1.3).
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Lemma 5.5. For p > 1/2 we have

| f � g|p,s,a ≤ Calg(p)| f |p,s,a |g|p,s,a, ‖ f � g‖p ≤ Calg,M(p)‖ f ‖p‖g‖p.

(5.34)

The proof is given in “Appendix B”.

Proof of Proposition 5.2. By definition (recall (1.2) and (1.21))

F(x, y) =
∫ y

0
f (x, s)ds =

∞∑

d=2

f (d−1)(x)

d
yd =:

∞∑

d=2

F (d)(x)yd (5.35)

therefore we have

P =
∫

T

F(x, |u|2)dx =
∑

d≥2

⎛

⎝F (d) � u � · · · � u︸ ︷︷ ︸
d times

� ū � · · · � ū︸ ︷︷ ︸
d times

⎞

⎠

0

.

Toeach analytic function F (d)(x)weassociate its Fourier coefficients;wehave
(
F (d)
j

)

j∈Z∈ hp,s,a0 for a0 := a + η < a and s, p ≥ 0. Indeed

|F (d)|2p,s,a0 :=
∑

j

e2a0| j |+2s〈 j〉θ 〈 j〉2p|F (d)
j |2 (5.35)=

∑

j

e2a0| j |+2s〈 j〉θ 〈 j〉2p | f (d−1)
j |2
d2

≤ c2(p, s,a − a0)

d2
∑

j

e2a| j || f (d−1)
j |2 = c2(a − a0, s, p)

d2
| f (d−1)|2

Ta

with

c(p, s, t) := es + sup
x≥1

x pe−t x+sxθ

.

Now condition (1.2) ensures that (B.12) holds and our claim follows, by Lemma B.2,
setting a0 = a + η.
(ii) Follows from (B.14). ��

6. Immersions

The following proposition gathers the immersion properties of the norm | · |r,η,w(p,s,a)

with respect to the parameters p, s, a.

Proposition 6.1. The following inequalities hold:

(1) Variations w.r.t. the paramater p. For any 0 < ρ < r , 0 < σ < η and p1 > 0 we
have

|H |r−ρ,η−σ,w(p+p1,s,a) ≤ Cmon(r/ρ, σ, p1)|H |r,η,w(p,s,a).

(2) Variation w.r.t. the parameter s. For any 0 < σ < η we have

|H |r,η−σ,w(p,s+σ,a) ≤ |H |r,η,w(p,s,a). (6.1)
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(3) Variation w.r.t. the parameter a. For any 0 < σ < η

|H |e−σ r,η−σ,w(p,s,a+σ) ≤ e2σ |H |r,η,w(p,s,a). (6.2)

Remark 6.1. All the items in the previous Proposition describe immersion properties of
Hr,η(hp,s,a) w.r.t variations of the parameters.

In item (1) we say that if H ∈ Hr,η(hp,s,a) (i.e. if its vector field maps Br (hp,s,a) →
hp,s,a) then it is also in Hr−ρ,η−σ (hp+p1,s,a) for any ρ, σ, p1 > 0. Note however that
the norm of H in the latter space is in general much larger, we denote this constant by
Cmon.

In item (3) we have essentially the same phenomenon, only in order to increase the
analiticity parameter a � a + σ , we need to decrease the radius to e−σ r .

Item (2) gives the best bound, indeed not only Hr,η−σ (hp,s+σ,a) ⊆ Hr,η(hp,s,a) but
the norm of H in the latter space does not increase.

To prove this Proposition we show that the hypotheses of Proposition 3.1 hold. In
order to prove this, in turn we strongly rely on some notation and results introduced by
Bourgain in [Bou05] and extended later on by Cong–Li–Shi–Yuan in [CLSY] (Defini-
tion 6.1 and Lemma 6.1 below). The definitions and lemmata given below are the key
technical arguments. Many of the ideas come from Bourgain in [Bou05] in the case of
Gevrey regularity and for momentum preserving Hamiltonians, here we give a detailed
presentation adapted to our more general setting and covering also the case of Sobolev
regularity.

Definition 6.1. Given a vector v = (vi )i∈Z vi ∈ N, |v| < ∞ we denote by n̂ = n̂(v) the
vector (̂nl)l∈I (where I ⊂ N is finite) which is the decreasing rearrangement of

{N $ h > 1 repeated vh + v−h times} ∪ {1 repeated v1 + v−1 + v0 times}.
Remark 6.2. Agoodwayof envisioning this list is as follows.Given v = (vi )i∈Z consider
the monomial xv :=∏i x

vi
i . We can write uniquely

xv =
∏

i

xvi
i = x j1x j2 · · · x j|v|

then n̂(v) is the decreasing rearrangement of the list
(〈 j1〉, . . . , 〈 j|v|〉

)
.

As an example, consider the case v �= 0. Then, by construction there exists a unique
J ≥ 0 such that v j = 0 for all | j | > J and vJ + v−J �= 0 hence

v = (. . . , 0, v−J , . . . , v0, . . . , vJ , 0 . . . ).

If J = 0 then

n̂ = (1, . . . , 1︸ ︷︷ ︸
v0 times

)

otherwise we have

n̂ = ( J, . . . , J︸ ︷︷ ︸
vJ+v−J times

, J − 1, . . . , J − 1︸ ︷︷ ︸
vJ−1+v−J+1 times

, . . . , 1, . . . , 1︸ ︷︷ ︸
v1+v−1+v0 times

).
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Given α,β ∈ N
Z with 1 ≤ |α| = |β| < ∞, from now on we define

n̂ = n̂(α + β).

We set the even number

N := |α| + |β|,
which is the cardinality of n̂. We observe that, given

π =
∑

i∈Z
i
(
αi − β i

) =
∑

h>0

h
(
αh − βh − α−h + β−h

)
,

there exists a choice of σi = ±1, 0 such that

π =
∑

l

σl n̂l (6.3)

with σl �= 0 if n̂l �= 1. Hence,

n̂1 ≤ |π | +
∑

l≥2

n̂l . (6.4)

Indeed, if σ1 = ±1, the inequality follows directly from (6.3); if σ1 = 0, then n̂1 = 1
and consequently n̂l = 1∀l. Since the mass is conserved, the list n̂ has at least two
elements, and the inequality is achieved.

Lemma 6.1. Given α,β such that
∑

i i(αi − β i ) = π ∈ Z, we have that setting n̂ =
n̂(α + β)

∑

i

〈i〉θ (αi + β i ) =
∑

l≥1

n̂θ
l ≥ 2n̂θ

1 + (2 − 2θ )
∑

l≥3

n̂θ
l − θ |π |. (6.5)

Proof. In “Appendix C”. ��
The lemma abovewas proved in the simpler case ofmomentum preservingHamiltonians
in [Bou05] for θ = 1

2 and for general θ in [CLSY]. It is fundamental in discussing the
properties of Hr,η(hp,s,a) with s > 0, indeed it implies

∑

i

〈i〉θ (αi + β i ) − 2〈 j〉θ + |π(α − β)| ≥ (1 − θ)

⎛

⎝
∑

l≥3

n̂θ
l + |π |

⎞

⎠ ≥ 0 (6.6)

for all α,β such that α j + β j �= 0.

Proof of Proposition 6.1. In all that follows we shall use systematically the fact that
our Hamiltonians preserve the mass and are zero at the origin. These facts imply that
|α| = |β| ≥ 1.

Let us start by proving Item (2), which is the simplest case. We need to show that

c( j)
r,η−σ,w(p,s+σ,a)(α,β)

c( j)
r,η,w(p,s,a)(α,β)

= exp(−σ(
∑

i

〈i〉θ (αi + β i ) − 2〈 j〉θ + |π(α − β)|) ≤ 1.(6.7)

The last inequality follows by (6.6) of Lemma 6.1
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Item (1) First we assume that ρ ≤ r/2. By Proposition 3.1 for any 0 < ρ ≤ r/2 ,
0 < σ < η and p1 > 0 we need to compute

Cmon := sup
j,α,β

α j+β j �=0

c( j)
r−ρ,η−σ,w(p+p1,s,a)(α,β)

c( j)
r,η,w(p,s,a)(α,β)

= sup
j,α,β

α j+β j �=0

( 〈 j〉2
∏

i 〈i〉αi+β i

)p1

e−σ |π |
(
r − ρ

r

)|α|+|β|−2

. (6.8)

We use the notations of Definition 6.1, with n̂(α + β) ≡ n̂. Since α j + β j �= 0 we have
that 〈 j〉 ≤ n̂1. Note that

∏

i

〈i〉αi+β i =
∏

l≥1

n̂l . (6.9)

Hence

〈 j〉2
∏

i 〈i〉αi+β i
≤ n̂1∏

l≥2 n̂l
.

Let us call N = |α| + |β| ≥ 2. By (6.4) we have that

sup
j,α,β

α j+β j �=0

〈 j〉2
∏

i 〈i〉αi+β i
≤ n̂1∏

l≥2 n̂l
≤
∑N

l=2 n̂l + |π |
∏N

l=2 n̂l

≤ (N − 1)̂n2 + |π |
∏N

l=2 n̂l
≤ N + |π |
∏N

l=3 n̂l
. (6.10)

We have shown that

sup
j,α,β

α j+β j �=0

〈 j〉2
∏

i 〈i〉αi+β i
≤ N + |π |.

Since (N + |π |)p1 ≤ 2p1(N p1 + |π |p1), denoting L := ln (r/r − ρ) we repeatedly use
Lemma C.1 in order to control

sup
N≥2,π∈Z

(N + |π |)p1e−σ |π |
(
r − ρ

r

)N−2

≤ 2p1

(
sup

N≥2 ,π∈Z
N p1e−σ |π |−L(N−2) + sup

N≥2 ,π∈Z
|π |p1e−σ |π |−L(N−2)

)

≤ 2p1
(
max

{( p1
L

)p1
, 1
}
+
( p1

σ

)p1) ≤ 2p1+1 max
{( p1

L

)p1
,
( p1

σ

)p1
, 1
}

≤ 2p1+1 pp1
1 max

{(
2r

ρ

)p1
,

(
1

σ

)p1
, 1

}
= Cmon, (6.11)
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using that

L ≥ ln(1 + ρ/r) ≥ 2 ln(3/2)ρ/r ≥ ρ/2r,

which holds since we are in the case ρ ≤ r/2. This completes the proof in the case
ρ ≤ r/2.

Consider now the case r/2 < ρ < r. Using the monotonicity of the norm w.r.t. r and
the already proved case with ρ = r/2, we have

|H |r−ρ,η−σ,w(p+p1,s,a) ≤ |H |r/2,η−σ,w(p+p1,s,a)

≤ 2p1+1 max
{
(4p1)

p1 ,
( p1
eσ

)p1
, 1
}

|H |r,η,w(p,s,a)

≤ 2p1+1 pp1
1 max

{(
2r

ρ

)p1
,

(
1

σ

)p1
, 1

}
|H |r,η,w(p,s,a),

proving (1) also in the case r/2 < ρ < r.
Item (3) We proceed as in item (1) − (2),

c( j)
e−σ r,η−σ,w(p,s,a+σ)

(α,β)

c( j)
r,η,w(p,s,a)(α,β)

= exp(−σ(
∑

i

〈i〉θ (αi + β i ) − 2〈 j〉θ

+|π(α − β)| − (|α| + |β| − 2)) ≤ e2σ . (6.12)

our claim follows since, by formula (6.4), one has

∑

i

(
αi + β i

)|i | − 2| j | + |π | ≥
∑

l≥2

n̂l − n̂1 + |π | − ∣∣α0 + β0

∣∣ ≥ −(|α| + |β|).(6.13)

��
Remark 6.3. Note that a key point in Items (1) and (2) are the estimates (6.10) and (6.6)
where we control the ratio of the coefficient (1.27) in terms of {̂nl}l≥3 (namely uniformly
with respect to n̂1 and n̂2). Thismeans that if n̂3 is "big", then the normof theHamiltonian
is correspondingly small: polynomially in the Sobolev case and subexponentially in the
Gevrey one. This is a seminal property which appears in different flavors thoughout the
literature; in Proposition 6.1 we do not really need to exploit it. Instead, it will be heavily
used for a sharp control on the small divisors appearing in the Homological equation
(see proof of Proposition 7.1).

Incidentally we note that norm | · |r,η,w(p,s,a) possesses the tameness property.

Proposition 6.2.

sup
|u|p0,s,a≤r−ρ

|XH |p,s,a
|u|p,s,a ≤ Ctame(ρ, η, p)|H |r,η,w(p0,s,a).

Proof. In “Appendix B”. ��
Proposition 6.3. The norm ‖ · ‖r,p is monotone decreasing in p, namely ‖ · ‖r,p+p1 ≤
‖ · ‖r,p for any p1 > 0.
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Proof. For the norm ‖ · ‖r,p the quantity in (1.27) becomes (recall that in the norm of a
momentum preserving hamiltonian there is need of introducing the parameter η)

c( j)
r,p(α,β) := r |α|+|β|−2

(
� j�2

∏
i∈Z �i�(αi+β i)

)p

. (6.14)

By Lemma 3.1 item (ii) we only need to show that

c( j)
r,p+p1(α,β) ≤ c( j)

r,p(α,β) (6.15)

for all j , α,β with |α| = |β| ≥ 1 and α j +β j ≥ 1 (recall the momentum conservation),
namely we have to prove that

sup
j,α,β

α j+β j≥1

� j�2
∏

i�i�αi+β i
≤ 1. (6.16)

We first show that the inequality holds in the case j = 0,±1. Indeed we have

∏

i

�i�αi+β i ≥
∏

i

2αi+β i = 2
∑

i αi+β i ≥ 4

since
∑

i αi + β i ≥ 2 (by the fact that |α| = |β| ≥ 1).
Consider now the case | j | = � j� ≥ 2. Since α j + β j ≥ 1, inequality (6.16) follows by

sup
j,α,β

| j |
∏

i �= j�i�αi+β i
≤ 1. (6.17)

By momentum conservation we have

| j | ≤
∑

i �= j

|i |(αi + β i ) ≤
∑

i �= j

�i�(αi + β i ) (6.18)

and (6.17) follows if we show that

sup
j,α,β

∑
i �= j�i�(αi + β i )∏

i �= j�i�αi+β i
≤ 1, (6.19)

where we can restrict the sum and the product to the indexes i such that αi + β i ≥ 1.
This last estimates follows by the fact that given xk ≥ 1

∑
2≤k≤n kxk∏
2≤k≤n k

xk
≤ 1,

as it can be easly proved by induction over n (noting that nx ≥ nx for n ≥ 2, and any
x ≥ 1). ��
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7. Homological Equation

Now we give estimates on the solution of the homological equation

LωS := {Dω, S} = R

The constants C1, C2(r, σ, t) are defined in “Appendix A”. Note that C1 depends only on
θ .

Proposition 7.1. Let ω ∈ Dγ,q and let 0 < σ < η, 0 < ρ < r/2. For any R ∈
Rr,η(hp,s,a), the Homological equation LωS = R has a unique solution S = L−1

ω R,
which satisfies the following two bounds:

∣∣∣L−1
ω R

∣∣∣
r,η−σ,w(p,s+σ,a)

≤ γ −1eC1σ
− 3

θ |R|r,η,w(p,s,a) (G)

∣∣∣L−1
ω R

∣∣∣
r−ρ,η−σ,w(p+τ,s,a)

≤ γ −1C2(r/ρ, σ, τ )|R|r,η,w(p,s,a) (S)

hence L−1
ω R ∈ Rr,η−σ (hp,s+σ,a) ∩ Rr−ρ,η−σ (hp+τ,s,a).

If R preserves momentum R ∈ Rr,0(hw) , with w j = � j�p, the unique solution of
the Homological equation preserves momentum and satisfies

‖L−1
ω R‖r,p+τ1 ≤ γ −16τ1(46e27)2+q‖R‖r,p, (M)

so S = L−1
ω R ∈ Rr,0(hw′), with w′

j = � j�p+τ1 .

Remark 7.1. As in the abstract case we assume that XR maps Br (hp,s,a) → hp,s,a and
then show that S maps some smaller ball (because it has smaller radius or is in a stronger
topology) to itself. This can be done in two ways: if we increase the Gevrey regularity
index s � s + σ (case G) then the increase can be arbitrarily small, at the price of an
exponential increase in the bound.

If we want to keep s fixed (say that we start with s = a = 0 and want to stay in the
Sobolev class) then we have to increase the regularity p by a fixed amount. The main
difference between the cases S and M is that in the first case one has to decrease r, η and
the bound on S diverges as ρ, σ → 0. In the second case, instead we have to increase
the regularity p by a slightly larger amount but then we get a uniform bound for S.
Note that, differently from Proposition 6.1, we cannot consider the purely analytic case
(s, p fixed say to 0, 1). This is due to the fact that in (6.13) we have amuchweaker bound
for the ratio of the coefficients in (6.12), w.r.t. the one afforded by (6.6) and (6.10) for
the Gevrey and Sobolev cases.

The following Lemma is the key point in the control of the small divisors appearing
in the solution of the Homological equation. Here we strongly use the fact that we are
working with a dispersive PDE on the circle with superlinear dispersion law.

Lemma 7.1. Consider α,β ∈ N
Z with 1 ≤ |α| = |β| < ∞. If

∣∣∣∣∣
∑

i

(
αi − β i

)
i2
∣∣∣∣∣ ≤ 10

∑

i

∣∣αi − β i

∣∣, (7.1)
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then for all j such that α j + β j �= 0 one has

∑

i

∣∣αi − β i

∣∣〈i〉θ/2 ≤ C∗

(
∑

i

(
αi + β i

)〈i〉θ − 2〈 j〉θ + |π |
)

, C∗ = 13

1 − θ

(7.2)

∏

i

(1 +
∣∣αi − β i

∣∣〈i〉) ≤ e27(1 + |π |)3N 6
N∏

l=3

n̂τ0
l (7.3)

where N = |α| + |β| and π =∑i i
(
αi − β i

)
(recall (1.25).

Proof. In “Appendix C” ��
Note that

∣∣∣∣∣
∑

i

(
αi − β i

)
i2
∣∣∣∣∣ ≥ 10

∑

i

∣∣αi − β i

∣∣ �⇒ |ω · (α − β)| ≥ 1. (7.4)

Indeed denoting ω j = j2 + ξ j 〈 j〉−q with
∣∣ξ j
∣∣ ≤ 1

2 ,

|ω · (α − β)| ≥ 10
∑

j

∣∣α j − β j

∣∣− 1

2

∑

j

∣∣α j − β j

∣∣ ≥ 1.

Proof. In the following, wewill compute for each item the corresponding K , K0 defined
in (4.8) and (4.10), and show their finiteness in order to apply Lemma 4.2 and give the
explicit upper bounds entailed in Proposition 7.1 (G)–(S)–(M).

Item G) In this case by (6.7)

K = γ sup
j :α j+β j �=0

e−σ
(∑

i 〈i〉θ (αi+β i )−2〈 j〉θ+|π |)

|ω · (α − β)| .

There are two cases.
If (7.1) does not hold, then by (7.4) |ω · (α − β)| ≥ 1 and by (6.5) and (4.4) we get

γ
e−σ

(∑
i 〈i〉θ (αi+β i )−2〈 j〉θ+|π |)

|ω · (α − β)| ≤ 1

and the bound is trivially achieved.
Otherwise, let us consider the case in which (7.1) holds. By applying Lemma 7.1,

since ω ∈ Dγ,q we get:

γ
e−σ

(∑
i 〈i〉θ (αi+β i )−2〈 j〉θ+|π |)

|ω · (α − β)|
≤ e− σ

C∗
∑

i |αi−β i |〈i〉 θ
2
∏

i

(
1 + (αi − β i )

2〈i〉2+q
)

≤ exp
∑

i

[
− σ

C∗
∣∣αi − β i

∣∣〈i〉 θ
2 + ln

(
1 +
(
αi − β i

)2〈i〉2+q
)]

= exp
∑

i

fi (
∣∣αi − β i

∣∣) (7.5)
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where, for 0 < σ ≤ 1, i ∈ Z and x ≥ 0, we defined

fi (x) := − σ

C∗
x〈i〉 θ

2 + ln
(
1 + x2〈i〉2+q

)
.

In order to bound (7.5), we need the following lemma, whose proof is postponed to
“Appendix C”.

Lemma 7.2. Setting

i� :=
(
8C∗(q + 3)

σθ
ln

4C∗(q + 3)

σθ

) 2
θ

,

we get

∑

i

fi (|�i |) ≤ 7(q + 3)i� ln i� − σ

2C∗
(
n̂1(�)

) θ
2 (7.6)

for every � ∈ Z
Z with |�| < ∞.

The inequality (G) follows from plugging (7.6) into (7.5) and evaluating the constant.
Item S) In this case K in (4.8) is (recall (6.8))

K = γ sup
j :α j+β j �=0

(
1 − ρ

r

)N−2
( 〈 j〉2
∏

i 〈i〉αi+β i

)τ
e−σ |π |

|ω · (α − β)| , (7.7)

where N = |α| + |β|.
As before we consider two cases.
If (7.1) is not satisfied then(7.4) holds and the right hand side of (7.7) is bounded by

the quantity in (6.8) and it is estimated analogusly.
If (7.1) holds instead, by applying formula (6.10), Lemma 7.1 and the fact that

ω ∈ Dγ,q we get:

( 〈 j〉2
∏

i 〈i〉αi+β i

)τ
1

|ω · (α − β)| ≤
( 〈 j〉2
∏

i 〈i〉αi+β i

)τ ∏

i

(
1 + |αi − β i |2〈i〉2+q

)

≤
(
N + |π |
∏N

l=3 n̂l

)τ
⎛

⎝e27(1 + |π |)3N 6
∏

l≥3

n̂τ0
l

⎞

⎠
2+q

≤ e27(2+q)(N + |π |)τ+9(2+q) ≤ e27(2+q)(N + |π |)3τ .
By using Lemma C.1 (just like explained in detail in formula (6.11) with p1 = 3τ ), K
in (7.7) is bounded by

e27(2+q)(N + |π |)3τ
(
1 − ρ

r

)N−2
e−σ |π |

≤ e27(2+q)23τ+1(3τ)3τ max

{(
2r

ρ

)3τ

,

(
1

σ

)3τ

, 1

}
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Item M) Note that in this case the constant in (4.8) amounts to

K0 = γ sup
j∈Z,α �=β∈NZ

α j+β j �=0,
∑

i i(αi−β i )=0

( � j�2
∏

i�i�αi+β i

)τ1
γ

|ω · (α − β)| .

We have two cases. If (7.4) holds K0 ≤ γ by (6.16).
Otherwise (7.1) holds and, therefore, (7.3) (note that here π = 0) applies, giving

K0 ≤ sup

( � j�2
∏

i�i�αi+β i

)τ1∏

i

(
1 + |αi − β i |2〈i〉2+q

)

≤ sup

( � j�2
∏

i�i�αi+β i

)τ1

e27(2+q)N 6(2+q)
N∏

l=3

n̂τ0(2+q)
l

since ω ∈ Dγ,q . We claim that

N ≤ 4
N∏

l=3

�̂nl� 1
4 ln 2 . (7.8)

Indeed if N = 2, the inequality is trivial. Since N is even we have to consider only the
case N ≥ 4, which follows by Lemma C.1. Recalling (6.9) we have

∏

i

�i�αi+β i =
∏

l≥1

�̂nl�. (7.9)

Then

sup
j,α,β

α j+β j≥1

� j�2
∏

i�i�αi+β i
≤ �n̂1�2∏

l≥1�̂nl�
= �n̂1�∏

l≥2�̂nl�
≤
∑

l≥2�̂nl�∏
l≥2�̂nl�

= 1∏
l≥3�̂nl�

+

∑
l≥3�̂nl�∏
l≥2�̂nl�

,

where the last inequality holds by momentum conservation. Then19

K0 ≤ 2τ1−1

(
1∏

l≥3�̂nl�τ1
+

(
∑

l≥3�̂nl�)τ1∏
l≥2�̂nl�τ1

)
(46e27)2+q

∏

l≥3

�̂nl�τ1/2

≤ 2τ1−1(46e27)2+q
(
1 +

(
∑

l≥3�̂nl�)τ1
�̂n2�τ1

∏
l≥3�̂nl�τ1/2

)

≤ 2τ1−1(46e27)2+q
(
1 +

(�̂n3�1/2 + 4)τ1

�̂n2�τ1

)

by Lemma C.2 with a = 1/2. The estimate on K0, hence inequality (M) follows. ��
19 Using that (a + b)τ1 ≤ 2τ1−1(aτ1 + bτ1 ) for a, b ≥ 0, τ1 ≥ 1.
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8. Birkhoff Normal Form

We are now ready to apply Theorem 1.3 to the three applications G,S,M, defined in page
7. We start by verifying the assumptions.

Lemma 8.1. The following holds
G) Let s > 0, p > 1/2 and a ≥ 0. Then for all N ≥ 1, 0 < η ≤ s, w := w(p, s, a)

and w0 := w(p, s − η, a) satisfy the Birkhoff assumption at step N and in (1.29) we can
take

C = 1, K, K� ≤ e
C1
(
N
η

) 3
θ

.

S) Let τS = τ , s, a ≥ 0, p ≥ 3τS + 1 and set20 N := [ p−1
τS

]. Then η > 0, w :=
w(p, s, a) and21 w0 := w(p − NτS, s, a) satisfy the Birkhoff assumption at step N and
in (1.29) we can take

C ≤ Cmon(4N, η/N, τS), K ≤ C2(4N, η/N, τS), K� ≤ C2(4N, η/N,NτS).

M) Let τM = τ1, p ≥ 3τM + 1 and22 set N := [ p−1
τM

]. Then η = 0, w := (� j�p) j∈Z and

w0 := (� j�p−NτM
)
j∈Z satisfy the ”momentum preserving” Birkhoff assumption at step

N and in (5.25) we can take

C0 = 1, K0, K
�
0 ≤ 6τM(46e27)2+q .

Proof. G) Set

wn, j := w0, j e
nη
N 〈 j〉θ , ∀n = 1, . . . ,N.

The computation of C follows from (6.1); the ones of K,K� from Proposition 7.1.
S) Set

wn, j := w0, j 〈 j〉nτS , ∀n = 1, . . . ,N.

The computation of C follows from (6.8); the ones of K,K� from Proposition 7.1.
M) Set

wn, j := w0, j� j�nτM , ∀n = 1, . . . ,N.

The computation of C0 follows from (6.15); the ones of K0,K
�
0 again from Proposition

7.1. ��
20 [·] is the integer part.
21 Note that 1 ≤ p − NτS < 1 + τS.
22 Note that 1 ≤ p − NτM < 1 + τM.
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We now state the Birkhoff Normal Form Theorem (1.3) for the Hamiltonian in (1.21)
in the usual three cases. First we define

r(G) := min

{
δG

√
Ne

1
2C1

(
N
ηG

) 3
θ

,

√
R

2Calg(p)

}
,

δG :=
√

γ R

Calg(p)
√
211eCNem(p, s − ηG,a − a − ηG)| f |a,R

C1(G) := e
C1
(

N
ηG

) 3
θ

27eδ2G
,

C2(G) := γ

28eδ2G
,

C3(G) := γ

29eδ2G

(
Ne

C1
(

N
ηG

) 3
θ

4δ2G

)N

. (8.1)

r(S) := min

{
dS√

NC2(4N,a/2N,NτS)
,

√
R

5 · 2τS+2

}
, where

dS :=
√

γ R√
217CNem(p − NτS, 0,a/2)| f |a,R

,

C1(S) := C2(4N,a/2N,NτS)

27edS2
, C2(S) := γ

28edS2
,

C3(S) := 28CNem(p − NτS, 0,a/2)| f |a,R

eR

(
NCmon(4N,a/2N, τS)C2(4N,a/2N, τS)

4dS2

)N

,

r(M) := min

{
δM√
N

,

√
R

2τM+6

}
,

δM :=
√

γ R√
217e12τM(46e27)2+q | f |R

,

C1(M) := 1

29δ2M
, C2(M) := 2τM+8| f |R

R
,

C3(M) := 2τM+8 | f |R
R

( N

8δ2M

)N
. (8.2)

Theorem 8.1 (Birkhoff Normal Form). Under the same assumptions of Lemma 8.1 the
following holds. Consider the Hamiltonian (1.21), assuming, only in the case M, that f
does not depend on x (momentum conservation). Then for any 0 < r ≤ r there exists
two close to identity invertible symplectic change of variables

�,�−1 : Br (hw) �→ hw, sup|u|w≤r |�±1(u) − u|w ≤ C1r3 ≤ 1
8r,

� ◦ �−1u = �−1 ◦ �u = u, ∀u ∈ B 7
8 r

(hw) (8.3)
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such that in the new coordinates

H ◦ � = Dω + Z + R,

for suitable majorant analytic Hamiltonians Z , R ∈ Ar (hw), Z ∈ K, satisfying the
estimate

sup
|u|w≤r

|XZ |w ≤ C2r
3, sup

|u|w≤r
|XR |w ≤ C3r

2N+3, (8.4)

XZ (resp. XR), being the hamiltonian vector field generated by the the majorant of Z
(resp. R). Moreover, in the case M, R preserves momentum.

Proof. We use Theorem 1.3 with G � P .
G) Setting

η = ηG := min

{
a − a

2
, s

}
, r̄ :=

√
R

Calg(p)
, (8.5)

we have that

|P|r̄ ,η,w0 = |P|r̄ ,η,w(p,s−η,a)

(5.32)≤ CNem(p, s − η,a − a − η)| f |a,R . (8.6)

By (1.32) r� ≥ δG ≥ δG (see “Appendix A”). Then, recalling (1.32) and Lemma 8.1, one
can verify that

r̂ ≥ r(G), Ĉ1 ≤ C1(G), Ĉ2 ≤ C2(G), Ĉ3 ≤ C3(G)

S) Set

η := a/2, r̄ :=
√
R

Calg(p − NτS)
. (8.7)

Then Assumption 1 is satisfied by Lemma 8.1 with the same choice of N,w0,w. We have
that

|P|r̄ ,η,w0 = |P|r̄ ,a/2,w(p−NτS)

(5.32)≤ CNem(p − NτS, 0,a/2)| f |a,R . (8.8)

For the various constants we refer to “Appendix A”. Recalling τS = τ , we note that

Cmon(4N, η/N, τ ) = 22τ+1τ τNτ max {4, (1/2η)}τ = 2(4τ max {4, (1/2η)}N)τ ,

C2(4N, η/N, τ ) = 2e27(2+q)(12τ max {4, (1/2η)}N)3τ

C2(4N, η/N,Nτ) = 2e27(2+q)(6Nτ)3Nτ max
{
(8N)3Nτ , (N/η)3Nτ

}

= 2e27(2+q)(12τ max
{
4, (2η)−1

}
N2)3Nτ , (8.9)

we have that for N ≥ 3

Cmon(4N, η/N, τ )C2(4N, η/N, τ ) ≤ √C2(4N, η/N,Nτ). (8.10)

By (1.32)

r� ≥
√

γ R

Calg(p − NτS)
√
211eCNem(p − NτS, 0,a/2)| f |a,R

≥ dS.
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Then, recalling (1.32) and (8.10) one has r̂ ≥ r(S). Moreover (recall (1.34))

Ĉ1 ≤ C1(S), Ĉ2 ≤ C2(S), Ĉ3 ≤ C3(S). (8.11)

Finally the last inequality in (8.3) follows from the second bound in (1.33).
M) Set

η := 0, r̄ :=
√
R

2τM/2Calg,M(p − τMN)
≥
√

R

10 · 2τM
. (8.12)

Then Assumption 1 is satisfied by Lemma 8.1, case M, with the same choice of
N,w0,w. We have that

|P|r̄ ,0,w0 = ‖P‖r̄ ,p−τMN
(5.33)≤ 2| f |R . (8.13)

By (1.32)

r� ≥
√

γ R√
2τM+17| f |R

.

Then

r̂ ≥ r(M), Ĉ1 ≤ C1(M), Ĉ2 ≤ C2(M), Ĉ3 ≤ C3(M).

��

9. Gevrey Stability. Proof of Theorem 1.1

Actually we prove of Theorem 1.1 for the slightly longer stability time |t | ≤ 24eδ2G
γ δ2

e

(
ln δG

δ

)1+θ/4

, where δG > δG (recall “Appendix A”). We set

r := 2δ

and choose

N(r) :=
[(

2 ln
2δG
r

)θ/4
]

=
[(

2 ln
δG

δ

)θ/4
]

. (9.1)

Recalling (8.5) by Corollary 5.2 solutions of the PDE (1.1) in the space hp,s,a , corre-
spond, by Fourier identification (1.19), to orbits of the Hamiltonian System (1.21) in the
space

hw with w j = ea| j |+s〈 j〉θ 〈 j〉p.
An initial datum u0 satisfying |u0|p,s,a ≤ δ corresponds to23 u0 ∈ hw with |u0|w ≤ δ.
We claim that r ≤ 2δG implies

rNe
C1
(

N
ηG

) 3
θ

2δG
≤ 1. (9.2)

23 We still denote it by u0.
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Indeed we have

N(r) ≥ NG := max

{
16(4C1)θ

η3G
, 2

2θ+4
4−θ

}

and by (9.1) r ≤ 2δGe− 1
2 (N(r)/2)4/θ and (9.2) follows if we show that the function

N → e− 1
2 (N/2)4/θNe

C1
(

N
ηG

) 3
θ

is ≤ 1 for N ≥ NG. This is true since the function is decreasing for N ≥ NG and is ≤ 1
for N = NG. This proves the claim (9.2).

Then we apply Theorem 8.1 in the case G. Recalling (8.1), by (8.4) and (9.2)

C3(G)r2(N+1) ≤ γ r2

29eδ2G

(
r

2δG

)N(r)

= γ δ2

27eδ2G

(
δ

δG

)N(r)

≤ γ δ2

27eδ2G
e
−
(
ln δG

δ

)1+θ/4

,

since N(r) ≥
(
ln 2δG

r

)θ/4 =
(
ln δG

δ

)θ/4
. We deduce the stability time by applying

Lemma 5.1.

10. Sobolev Stability

Before proving Proposition 1.1 we add a comment on the optimality of condition (1.10).

Remark 10.1. We construct a finite dimensional Hamiltonian, which is a reduction of
(1.1) to a finite number of Fourier indices and which exhibits fast drift in a time of order
1. For instance, consider

H(u1, u j ) := (1 + V1)|u1|2 + ( j2 + Vj )|u j |2 + e−a j Re(|u1|2u1ū j ),

which is a finite dimensional model for (1.1) with f (x, |u|2) = e−a j cos(( j − 1)x)|u|2.
Consider now the initial datum u(0) = (u1(0), u j (0)) = (δ/4, | j |−pδ/4), which clearly
has Hp norm < δ. A direct computation shows that in a time T of order 1, the Sobolev
norm of u(T ) is of order

δ3e−a j j p hence greater than 4δ if δ2e−a j j p is large. Maximizing on j we get a
constraint of the form δ2e−p(a−1 p)p < 1.
Of course this pathological “fast diffusion” phenomenon comes from the fact that f
is NOT traslation invariant (and hence H does not preserve momentum). Actually, re-
stricting to translation invariant Hamiltonians would not result in signficantly weaker
constraints on the smallness of δ w.r.t. p. This can be seen in the following example.
Consider the familiy of Hamiltonians (in three degrees of freedom)

K ( j) := V0|u0|2 + (1 + V1)|u1|2 + ( j2 + Vj )|u j |2 + Re(ū j−1
0 u j

1 ū j )

with the constants of motion

L = |u0|2 + |u1|2 + |u j |2, M = |u1|2 + j |u j |2.
Following the same approach as in the previous example one shows that |u j |2 can have
a drift of order j−pδ2 j in a time T of order 1. This means that the Sobolev norm of u(T )

is of order
δ2 j j p. Maximizing on j we get a constraint of the form δep

1−
< 1.
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Proof of Proposition 1.1. As before we set r := 2δ. An initial datum u0 satisfying
|u0|L2 + |∂ p

x u0|L2 ≤ δ corresponds to24 u0 ∈ hw(p) with |u0|p ≤ δ by (5.28). We apply

the Birkhoff Normal Form Theorem 8.1 in the case S (recall that N =
[
p−1
τS

]
). Recalling

the definition of r(S) in (8.2), we verify that, for any N ≥ 1

δS(kS p)
−3p ≤ dS

2
√
NC2(4N,a/2N,Nτ)

. (10.1)

Indeed

dS
2
√
NC2(4N,a/2N,Nτ)

(8.9)= dS

2
√
2e27(2+q)/2

1√
N

1

(
√
12τNmax

{
2,a−1/2

}
)3Nτ

≥ dS
√

τ

2
√
2e27(2+q)/2

(√
12

τ
max

{
2,a−1/2

})−3(p−1)

(p − 1)−3(p−1)−1/2

= δS(kS)
−3p(p − 1)−3(p−1)−1/2

setting

δS = dS
√

τ

2
√
2e27(2+q)/2

k3S,

(10.1) follows by verifying that δS ≤ δS and noting that p−3p < (p − 1)−3(p−1)−1/2

for p > 1.
By (8.11) and (8.9)

C3(S)(2δ)2(N+1)

= δ2
210CNem(p − Nτ, 0,a/2)| f |a,R

eR
(
NCmon(4N,a/2N, τ )C2(4N,a/2N, τ )δ2

dS2

)N

= δ2
210CNem(p − Nτ, 0,a/2)| f |a,R

eR(
4e27(2+q)33τ (4max {4, (1/a)})4τ δ2

τdS2

)N

(τN)
4τ+1

τ
(τN)

≤ δ2
210CNem(p − Nτ, 0,a/2)| f |a,R

eR
(
4e27(2+q)33τ (4max {4, (1/a)})4τ δ2

τdS2

) p−1
τ

−1

(p − 1)
4τ+1

τ
(p−1)

(remember that N = [(p − 1)/τ ]). Then, noting that (p − 1)
4τ+1

τ
(p−1) < p5p for p > 1

(recall that τ ≥ 15), we get

C3(S)(2δ)2(N+1) <
1

8TS
p5p

(
δ

δS

)2 p−1
τ

.

24 We still denote it by u0.
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We conclude by applying Lemma 5.1 and (5.28)

|u(t)|L2 + |∂ p
x u(t)|L2 ≤ 2|u(t)|p ≤ 4δ, ∀ |t | ≤ TS p

−5p
(

δS

δ

) 2(p−1)
τS

,

proving (1.11). ��
Proof of Theorem 1.2. It is similar to the previous case but now we consider

hw with w j = � j�p (and | · |w = ‖ · ‖p).

Weset r = 4δ, an initial datumu0 satisfying 2p|u0|L2 , |u0|L2+|∂ p
x u0|L2 ≤ δ corresponds

to u0 ∈ hw with ‖u0‖p ≤ 2δ by (5.30). Now we can apply the Birkhoff Normal Form
Theorem 8.1 with N = [ p−1

τ1
]

4δ ≤ 4
δM√
p

≤ r(M) = min

{
δM√
N

,

√
R√

2τM+4

}
. (10.2)

Proceeding as in the case S and noting that now

8C3(M)(4δ)2(N+1) = 2τM+12 | f |R
R

(
Nδ2

2δ2M

)N

δ2

≤ 2τM+13δ2M
| f |R
R

(
p − 1

τ1
)
p−1
τ1 (

δ2

2δ2M
)
p−1
τ1

≤ 1

TM

(
(p − 1)δ2

8δM2

) p−1
τM

.

Finally by Corollary 5.1 and (5.30) we get

|u(t)|L2 + |∂ p
x u(t)|L2 ≤ 2‖u(t)‖p ≤ 8δ, ∀ |t | ≤ TM

(
8δM2

(p − 1)δ2

) p−1
τ1

,

proving (1.13). ��
Proof of Corollary 1.1. In case S we start by noticing that for 3p ln(kS p) ≤ ln(δS/δ)

the function TS
δ2

(p)−5p
(

δS
δ

) 2(p−1)
τS is increasing in p.

Let us check that p(δ) defined in (1.14) satisfies (1.10) and is ≥ 3τS + 1 namely,
passing to the logarithms and setting y := ln(δS/δ), we have to check that y

ln(y) > 6τS
and 3p ln(kS p) ≤ y. The first bound follows from the definition of δ̄S. For the second,
we have

3p ln(kS p) ≤ 3

(
1 +

1

6

y

ln(y)

)(
ln(kS) + ln(1 +

1

6

y

ln(y)
)

)
≤ y



2132 L. Biasco, J. E. Massetti, M. Procesi

provided that25

y ≥ max{kS, 40}.
Now we have to show that

TSe
ln2(δS/δ)

4τ ln ln(δS/δ) ≤ TS(p)
−5p

(
δS

δ

) 2(p−1)
τ

wich amounts to

e
y2

4τ ln y (p)5pe− 2(p−1)
τ

y ≤ 1

or equivalently

y2

4τ ln y
+ 5p ln(p) − 2(p − 1)

τ
y ≤ 0.

Assuming y
ln y > 6, we have 1 + y

6 ln y − τ
6 < p <

y
3 ln y we get

y2

4τ ln y
+ 5p ln(KS p) − 2(p − 1)

τ
y ≤ y2

4τ ln y

+
5

3

y

ln(y)
ln(

y

3 ln(y)
) − 2y(

1

6τ

y

ln(y)
− 1

6
)

≤ − y2

12τ ln y
+ 2y < 0

if y
ln(y) > 24τ > 6. Note that the last inequality holds if y ≥ 24τ 2 (recall that τ ≥ 15).

Recollecting the condition that y has to satisfy is

y ≥ max{kS, 24τ 2},
namely δ ≤ δ̄S.

M) Sincewe are assuming δ ≤ δ̄Mwehave that p defined in (1.16) satisfies p > 1+3τM.
Moreover by (1.16), the bound (1.12) holds. ThenTheorem1.2 applies and (1.17) follows
directly by (1.13). ��
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25 Note that the function

y �→ y − 3

(
1 +

1

6

y

ln(y)

)(
ln y + ln(1 +

1

6

y

ln(y)
)

)

is positive for y ≥ 40.
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Part 3. Appendices

Appendix A. Constants

In this subsection are listed all the constants appearing along the paper.We first introduce
some auxiliary constants. Given t, σ, ζ > 0, p > 1/2, 0 < θ < 1, s, q ≥ 0, we set26

Calg(p) := 2p
(∑

i∈Z
〈i〉−2p

)1/2
,

Calg,M(p) := √
2

√

2 +
2p + 1

2p − 1
,

CNem(p, s, t) := Calg(p)
(
es + sup

x≥1
x pe−t x+sxθ )

,

Cmon(t, σ, p) := 2p+1 pp max
{
(2t)p, σ−p, 1

}
,

C1 := 28 θ−1(q + 3)
(23 · 13(q + 3)

θ(1 − θ)

) 2
θ

(
ln
(23 · 13(q + 3)

θ(1 − θ)

))
2
θ
+1

, C∗ = 13/(1 − θ),

C2(t, σ, ζ ) := e27(2+q)Cmon(t, σ, 3ζ ),

τ := τ0(2 + q), τ0 := 15/2,

τ1 := 2

(
τ0 +

3

2 ln 2

)
(2 + q).

Here are the constants appearing in Theorem 1.1:

δG := min

⎧
⎨

⎩

√
R

4Calg(p)
, δGe

−
(
max

{
16(4C1)θ η−3

G ,2
2θ+4
4−θ

})4/θ⎫⎬

⎭ ,

TG := 24eδG2

γ
, where

δG :=
√

γ R

Calg(p)
√
211eCNem(p, s − ηG,a − a − ηG)| f |a,R

,

ηG := min

{
a − a

2
, s

}
.

26 Regarding CNem note that

sup
x≥1

x pe−t x+sxθ ≤ exp

⎛

⎝(1 − θ)

(
s

tθ

) 1
1−θ

⎞

⎠max

{
p

e(1 − θ)t
, e

− t (1−θ)
p

}p
.
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Here are the constants appearing in Proposition 1.1

τS := τ = 15

2
(2 + q),

δS = min
{ √

3τ τγ R

210e2τ (kSτ)4τ
√
CNem(p − NτS, 0,a/2)| f |a,R

,

√
R

2τ+5

}

kS :=
√
12

τ
max

{
2,a−1/2

}
,

TS = 26e2τ33τ (4max {4, (1/a)})4τ
τγ

.

Here are the constants in Theorem 1.2

τM := τ1 =
(
15 +

3

ln 2

)
(2 + q), δM := min

{√
τ1δM

4
,

√
R

2τ1+8

}
,

TM := R

2τ1+13δ2M| f |R
= 23e6τ1(46e27)2+q

γ
;

where, recalling 8.2,

δM =
√

γ R√
217e12τ1(46e27)2+q | f |R

.

Here are the constants appearing in Corollary 1.1:

δ̄S := δSe
−max{kS, 24τ 2}, δ̄M := δM

4τ1
.

Appendix B. Proofs of the Main Properties of the Norms

Lemma B.1. Let 0 < r1 < r. Let E be a Banach space endowed with the norm | · |E .
Let X : Br → E a vector field satisfying

sup
Br

|X |E ≤ δ0.

Then the flow �(u, t) of the vector field27 is well defined for every

|t | ≤ T := r − r1
δ0

and u ∈ Br1 with estimate

|�(u, t) − u|E ≤ δ0|t |, ∀ |t | ≤ T .

27 Namely the solution of the equation ∂t�(u, t) = X (�(u, t)) with initial datum �(u, 0) = u.
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Proof. Fix u ∈ Br1 . Let us first prove that�(u, t) exists∀ |t | ≤ T .Otherwise there exists
a time28 0 < t0 < T such that |�(u, t)|E < r for every 0 ≤ t < t0 but |�(u, t0)|E = r.
Then, by the fundamental theorem of calculus

�(u, t0) − u =
∫ t0

0
X (�(u, τ ))dτ. (B.1)

Therefore

r − r1 ≤ |�(u, t0)|E − |u|E ≤ |�(u, t0) − u|E ≤
∫ t0

0
|X (�(u, τ ))|Edτ ≤ δ0t0

< δ0T = r − r1,

which is a contradiction. Finally, for every |t | ≤ T,

|�(u, t) − u|E ≤
∣∣∣∣
∫ t

0
|X (�(u, τ ))|Edτ

∣∣∣∣ ≤ δ0|t |.

��
Proof of Lemma 2.1. For brevity we set, for every r ′ > 0

| · |r ′ := | · |r ′,η,w.

We use Lemma B.1, with E → hw, X → XS , δ0 → (r + ρ)|S|r+ρ, r → r + ρ, r1 → r,
T → 8e. Then the fact that the time 1-Hamiltonian flow �1

S : Br (hw) → Br+ρ(hw) is
well defined, analytic, symplectic follows, since for any η ≥ 0

sup
u∈Br+ρ(hw)

|XS|hw ≤ (r + ρ)|S|r+ρ <
ρ

8e
.

Regarding the estimate (2.3), again by Lemma B.1 (choosing t = 1), we get

sup
u∈Br (hw)

∣∣∣�1
S(u) − u

∣∣∣
hw

≤ (r + ρ)|S|r+ρ <
ρ

8e
.

Estimates (2.4), (2.5), (2.6) directly follow by (2.7) with h = 0, 1, 2, respectively
and ck = 1/k!, recalling that by Lie series

H ◦ �1
S = eadSH =

∞∑

k=0

adkSH

k! =
∞∑

k=0

H (k)

k! ,

where H (i) := adiS(H) = adS(H (i−1)), H (0) := H .
Let us prove (2.7). Fix k ∈ N, k > 0 and set

ri := r + ρ(1 − i

k
) , i = 0, . . . , k .

Note that, by the immersion properties of the norm (recall Remark 2.1)

|S|ri ≤ |S|r+ρ, ∀ i = 0, . . . , k. (B.2)

28 We assume t0 positive, the negative case is analogous.
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Noting that

1 +
kri
ρ

≤ k

(
1 +

r

ρ

)
, ∀ i = 0, . . . , k, (B.3)

by using k times (2.1) we have

|H (k)|r = |{S, H (k−1)}|r ≤ 4(1 +
kr

ρ
)|H (k−1)|rk−1 |S|rk−1

(B.2)≤ |H |r+ρ |S|kr+ρ4
k

k∏

i=1

(1 +
kri
ρ

)
(B.3)≤ |H |r+ρ

(
4k

(
1 +

r

ρ

)
|S|r+ρ

)k

.

Then, using kk ≤ ekk!, we get
∣∣∣∣∣∣

∑

k≥h

ck H
(k)

∣∣∣∣∣∣
r

≤
∑

k≥h

|ck ||H (k)|r ≤ |H |r+ρ

∑

k≥h

(
4e

(
1 +

r

ρ

)
|S|r+ρ

)k

= |H |r+ρ

∑

k≥h

(|S|r+ρ/2δ)k
(2.2)≤ 2|H |r+ρ(|S|r+ρ/2δ)h .

Finally, if S and H satisfy mass conservation so does each adkSH , k ≥ 1, hence H ◦ �1
S

too. ��
Proof of Lemma 3.1. We first prove (i). It is easily seen that:

X ( j)
Hη

(u) = i
∑

α,β∈NZ

∣∣Hα,β

∣∣β j e
η|π(α−β)|uα ūβ−e j .

Now

|XHη
(u)|w ≤ |XHη

(u)|w, u = (|u j |
)
j∈Z

hence, in evaluating the supremum of |XHη
|w over |u|w ≤ r we ca restrict to the case in

which u = (u j ) j∈Z has all real positive components. Hence

|H |r,η,w = r−1 sup
|u|w≤r

∣∣∣∣∣∣

( ∗∑∣∣Hα,β

∣∣β j e
η|π(α−β)||u|α+β−e j

)

j∈Z

∣∣∣∣∣∣
w

.

Then

|H |r,η,w = 1

2r
sup

|u|w≤r

∣∣∣∣
(
W ( j)

η (u)
)

j∈Z

∣∣∣∣
w

(B.4)

where

W ( j)
η (u) =

∗∑∣∣Hα,β

∣∣(α j + β j
)
eη|π(α−β)|uα+β−e j ,
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since, by the reality condition 1.23, we have
∗∑∣∣Hα,β

∣∣β j e
η|π(α−β)|uα+β−e j =

∗∑∣∣Hα,β

∣∣α j e
η|π(α−β)|uα+β−e j = 1

2
W ( j)

η (u).

By the linear map

Lr,w : �2 → hw, y j �→ r

w j
y j = u j ,

the ball of radius 1 in �2 is isomorphic to the the ball of radius r in hw, namely
Lr,w(B1(�

2)) = Br (hw). We have

Y ( j)
H (y; r, η,w) = 1

2
W ( j)

η (Lr,wy).

Then (i) follows.
In order to prove item (ii) we rely on the fact that, since we are using the η-majorant

norm, the supremum over y in the norm is achieved on the real positive cone. Moreover,
given u, v ∈ �2, if

|u j | ≤ |v j |, ∀ j ∈ Z

then |u|�2 ≤ |v|�2 . ��
Proof of Lemma 5.4. Let us look at the time evolution of |v(t)|2w. By construction and
Cauchy-Schwarz inequality

2|v(t)|w
∣∣∣∣
d

dt
|v(t)|w

∣∣∣∣ =
∣∣∣∣
d

dt
|v(t)|2w

∣∣∣∣ = 2|Re(v, v̇)hw | = 2|Re(v, XR)hw |
≤ 2|v(t)|w|XR |w ≤ 2r |v(t)|w|R|r,η,w

as long as |v(t)|w ≤ r ; namely
∣∣∣∣
d

dt
|v(t)|w

∣∣∣∣ ≤ r |R|r,η,w (B.5)

as long as |v(t)|w ≤ r.
Assume by contradiction that there exists a time29

0 < T0 <
1

8|R|r,η,w

such that
∣∣∣|v(t)|w − |v0|w

∣∣∣ <
r

8
, ∀ 0 ≤ t < T0, but

∣∣∣|v(T0)|w − |v0|w
∣∣∣ = r

8
. (B.6)

Then

|v(t)|w ≤ |v0|w +
r

8
< r ∀ 0 ≤ t ≤ T0.

By (B.5) we get
∣∣∣|v(T0)|w − |v0|w

∣∣∣ ≤ r |R|r,η,wT0 <
r

8
,

which contradicts (B.6), proving (5.26). ��
29 The case T0 < 0 is analogous.
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Proof of Lemma 5.5. We first note that (see, e.g. Lemma 17 of [BDG10]) for p > 1/2
and every sequence {xi }i∈Z, xi ≥ 0,

(
∑

i∈Z
xi

)2

≤ c
∑

i∈Z

( 〈i〉p〈 j − i〉p
〈 j〉p xi

)2

,

with c := 4p
∑

i∈Z〈i〉−2p = (Calg(p))2. Then

| f � g|2p,s,a ≤
∑

j

e2s〈 j〉θ e2a| j |〈 j〉2p
(∑

i

| fi ||g j−i |
)2

≤ c
∑

j

e2s〈 j〉θ e2a| j |∑

i

〈i〉2p〈 j − i〉2p| fi |2|g j−i |2

= c
∑

i

e2s〈i〉θ e2a|i |〈i〉2p| fi |2
∑

j

〈 j − i〉2pe2s〈 j−i〉θ e2a| j−i ||g j−i |2

= c| f |2p,s,a |g|2p,s,a .
Regarding the second estimate, we set

φ(i, j) := � j�
�i�� j − i� , ∀ i, j ∈ Z.

Note that

φ(i, j) = φ( j, i) = φ(−i,− j). (B.7)

We claim that

φ(i, j) ≤ 1. (B.8)

Indeed by (B.7) we can consider only the case j ≥ 0. Since φ(−|i |, j) ≤ φ(|i |, j) we
can consider only the case i ≥ 0. Again by (B.7) we can assume j ≥ i. In particular we
can take j > i > 0, (B.8) being trivial in the cases j = i, i = 0. We have

φ(i + 1, i) = i + 1

2�i� ≤ 3

4
, φ( j, 1) = j

2( j − 1)
≤ 1.

Then it remains also to discuss the case j − 2 ≥ i ≥ 2; we have

φ(i, j) = j

i( j − i)
= 1

i
+

1

j − i
≤ 1,

proving (B.8).
For q ≥ 0 set

cq := sup
j∈Z

∑

i∈Z
(φ(i, j))q = sup

j≥0

∑

i∈Z
(φ(i, j))q . (B.9)

We claim that

cq ≤ 4 + 2
q + 1

q − 1
< ∞, ∀ q > 1. (B.10)
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Indeed, since � j�/� j + 1� ≤ 1 and � j�/� j − 1� ≤ 3/2 for j ≥ 0, we have30

cq = sup
j≥0

⎛

⎝ � j�q
2q−1� j + 1�q +

1

2q−1 +
� j�q

2q−1� j − 1�q +
∑

i≤−2, 2≤i≤ j−2, i≥ j+2

(φ(i, j))q

⎞

⎠

≤ 23−q + sup
j≥0

⎛

⎝
∑

i≥2

� j�q
iq( j + i)q

+
∑

2≤i≤ j−2

(
1

i
+

1

( j − i)

)q
+
∑

i≥ j+2

� j�q
iq(i − j)q

⎞

⎠

≤ 23−q +
∑

i≥2

1

iq
+ 2q−1

∑

2≤i≤ j−2

(
1

iq
+

1

( j − i)q

)
+
∑

i≥ j+2

1

(i − j)q

≤ 4 + 2
q + 1

q − 1
,

using that (x + y)q ≤ 2q−1(xq + yq) for x, y ≥ 0 and that31

∑

i≥2

i−q ≤ q + 1

2q(q − 1)
.

Note that for every q, q0 ≥ 0 we have

cq0+q ≤ cq0 (B.11)

since

cq0+q := sup
j∈Z

∑

i∈Z
(φ(i, j))q0(φ(i, j))q

(B.8)≤ sup
j∈Z

∑

i∈Z
(φ(i, j))q0 = cq0 .

We now note that for p > 1/2, j ∈ Z and every sequence {xi }i∈Z, xi ≥ 0, we have by
Cauchy-Schwarz inequality

(
∑

i∈Z
xi

)2

=
(
∑

i∈Z
(φ(i, j))p(φ(i, j))−pxi

)2

≤ c2p
∑

i∈Z

(
(φ(i, j))−pxi

)2
,

with c2p defined in (B.9). Using the above inequality we get

‖ f � g‖2p ≤
∑

j

� j�2p
(∑

i

| fi ||g j−i |
)2

≤ c2p
∑

j

∑

i

�i�2p� j − i�2p| fi |2|g j−i |2

= c2p
∑

i

�i�2p| fi |2
∑

j

� j − i�2p|g j−i |2

= c2p‖ f ‖2p‖g‖2p.
The proof ends recalling (B.10). ��
30 Note that the term

(
1
i + 1

( j−i)

)q
for j = 4 and i = 2 is 1 for every q.

31 ∑
i≥2 1

−q ≤ 2−q +
∫∞
2 x−qdx .
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Lemma B.2 (Nemitskii operators). Let p > 1/2. (i) Fix s ≥ 0, a0 ≥ 0. Consider a

sequence F (d) =
(
F (d)
j

)

j∈Z ∈ hp,s,a0 , d ≥ 1, such that

∞∑

d=1

d|F (d)|p,s,a0 Rd < ∞ (B.12)

for some R > 0.
For u = (u j

)
j∈Z let ū = (u− j

)
j∈Z and consider the Hamiltonian

H(u) =
∞∑

d=1

⎛

⎝F (d) � u � · · · � u︸ ︷︷ ︸
d times

� ū � · · · � ū︸ ︷︷ ︸
d times

⎞

⎠

0

.

For all (η, a, r) such that η + a ≤ a0 and (Calg(p)r)2 ≤ R, we have that H ∈
Hr,η(hp,s,a) and

|H |r,η,w(p,s,a) ≤ r−1
∞∑

d=1

d|F (d)|p,s,a0(Calg(p)r)
2d−1 < ∞.

(ii) Analogously if F (d) are constants satisfying

∞∑

d=1

d|F (d)|Rd < ∞ (B.13)

and (Calg,M(p)r)2 ≤ R, then H ∈ Hr,p with

‖H‖r,p ≤ 2pr−1
∞∑

d=1

d|F (d)|(Calg,M(p)r)
2d−1 < ∞. (B.14)

Proof. (i) By definition the η-majorant Hamiltonian is

Hη =
∑

d

∑

j0, j1..., j2d
j0+
∑2d

i=1(−1)i ji=0

eη|π j1,..., j2d ||F (d)
j0

|u j1u j2u j3 . . . u j2d

where

π j1,..., j2d =
2d∑

i=1

(−1)i ji = − j0,

hence

Hη =
∑

d

⎛

⎝F (d)
η � u � · · · � u︸ ︷︷ ︸

d times

� ū � · · · � ū︸ ︷︷ ︸
d times

⎞

⎠

0

, F (d)
η :=

(
eη| j ||F (d)

j |
)

j∈Z
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consequently

X ( j)
Hη

=
∑

d

d

⎛

⎝F (d)
η � u � · · · � u︸ ︷︷ ︸

d times

� ū � · · · � ū︸ ︷︷ ︸
d−1 times

⎞

⎠

j

.

Moreover

|XHη
|p,s,a ≤

∑

d

d(Calg(p))
2d−1|F (d)

η |p,s,a(|u|p,s,a)2d−1.

Since

|F (d)
η |p,s,a = |F (d)|s,a+η,p ≤ |F (d)|p,s,a0

we get

|XHη
|p,s,a ≤

∑

d

d(Calg(p))
2d−1|F (d)|p,s,a0(|u|p,s,a)2d−1.

Therefore

|H |(p,s,a,0)
r,p,η = r−1

(
sup

|u|p,s,a<r

∣∣∣XHη

∣∣∣
p,s,a

)
≤ r−1

∑

d

d|F (d)|p,s,a0(Calg(p)r)
2d−1 < ∞.

(ii) The proof is analogous to point (i). ��
Proof of Proposition 6.2. Westart byTaylor expanding H in homogeneous components.
The majorant analiticity implies that for a homogeneous component of degree d one has

|H (d)|r,η,w(p,s,a) ≤ |H |r,η,,w(p,s,a).

Now let us consider the polinomialmap (homogeneous of degree d−1) XH (d) : hp,s,a →
hp,s,a ; as is habitual we identify the polynomial map with the corresponding symmetric
multilinear operator M (d−1) : hd−1

p,s,a → hp,s,a . Since we are in a Hilbert space, one has
that

|M|opp,s,a := sup
u1,...ud−1∈hp,s,a

|ui |p,s,a≤1

|M (d−1)(u1, . . . , ud−1)|p,s,a = sup
|u|p,s,a≤1

|M (d−1)(u, . . . , u)|p,s,a

= sup
|u|p,s,a≤1

|XH (d) |p,s,a ≤ r−d+2|H |r,η,w(p,s,a)

for all η ≥ 0. Now let us compute the tame norm on a homogeneous component, i.e.

sup
|u|p0,s,a≤r−ρ

|M (d−1)(ud−1)|p,s,a
|u|p,s,a = sup

|u|p0,s,a≤r−ρ

|Np
(d−1)(ud−1)|p0,s,a

|u|p,s,a
where

Np
(d−1, j)(ud−1) = 〈 j〉p−p0

∑

j1,..., jd−1

|M (d−1, j)
j1,... jd−1

|u j1 . . . u jd−1
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now setting π =∑i ji − j we have

Np
(d−1)(u1, . . . , ud−1)

≤ (d − 1)〈 j〉p−p0
∑

j1,..., jd−1:| j1|≥| ji |

|M (d−1, j)
j1,... jd−1

|u j1 . . . u jd−1

≤ (d − 1)
∑

j1,..., jd−1:| j1|≥| ji |

(
∑

i

〈 ji 〉 + |π |
)p−p0

|M (d−1, j)
j1,... jd−1

|u j1 . . . u jd−1

≤ (d − 1)2p−p0C(η, p)
∑

j1,..., jd−1

eη|π ||M (d−1, j)
j1,... jd−1

|u j1 . . . u jd−1

+ (d − 1)2p−p0(d − 1)p−p0
∑

j1,..., jd−1

|M (d−1, j)
j1,... jd−1

|〈 j1〉p−p0u j1 . . . u jd−1

which means that for any |u|p0,s,a ≤ r − ρ one has

|Np
(d−1)(ud−1)|p0,s,a

≤ (d − 1)2p−p0C(η, p)|H (d)|r−ρ,η,w(p0,s,a)|u|p0,s,a
+ 2p−p0(d − 1)p−p0+1|M|opp0,s,a(r − ρ)d−2|u|p,s,a

≤ (d − 1)2p−p0(C(η, p) + (d − 1)p−p0)(1 − ρ

r
)d−2|H |r,η,w(p0,s,a)|u|p,s,a .

We conclude that

sup
|u|p0,s,a≤r

|XH |p,s,a
|u|p,s,a ≤ 2p−p0 |H |r,η,w(p0,s,a)

∑

d≥2

(d − 1)
(
C(η, p) + (d − 1)p−p0

)
(1 − ρ

r
)d−2

and the thesis follows since the right hand side is convergent. ��

Appendix C. Small Divisor Estimates

Let us start with two techincal lemmata.

Lemma C.1. For p, β > 0 and x0 ≥ 0 we have that

max
x≥x0

x pe−βx =
{

(p/β)pe−p if x0 ≤ p/β,

x p
0 e

−βx0 if x0 > p/β.

Lemma C.2. Let 0 < a < 1 and x1 ≥ x2 ≥ · · · ≥ xN ≥ 2. Then
∑

1≤�≤N x�∏
1≤�≤N xa�

≤ x1−a
1 +

2

axa1
.

Proof. By induction over N . It is obviously true for N = 1. Assume that it hols for N
and prove it for N + 1. ��
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Proof of Lemma 6.1. The fact that this (6.5) holds true when π = 0 is proven in
[Bou96b] and [CLSY]. The bound (6.5) is equivalent to proving

∑

l≥1

n̂θ
l − 2n̂θ

1 + θ |π | − (2 − 2θ
)∑

l≥3

n̂θ
l ≥ 0. (C.1)

i.e.
∑

l≥2

n̂θ
l − n̂θ

1 + θ |π | − (2 − 2θ
)∑

l≥3

n̂θ
l ≥ 0. (C.2)

Inequality (C.2) then follows from

f (|π |) :=
∑

l≥2

n̂θ
l −

⎛

⎝|π | +
∑

l≥2

n̂l

⎞

⎠
θ

+ θ |π | − (2 − 2θ
)∑

l≥3

n̂θ
l ≥ 0, (C.3)

which we are now going to prove. We shall show that the function f (x) is increasing in
x ≥ 0; then the result follows by showing f (0) ≥ 0, which is what was proven by Yuan
and Bourgain.
We now verify that f ′(x) ≥ 0. By direct computation we see that

f ′(x) = −θ

⎛

⎝x +
∑

l≥2

n̂l

⎞

⎠
θ−1

+ θ,

so it suffices to prove that

1 ≤
⎛

⎝x +
∑

l≥2

n̂l

⎞

⎠
1−θ

, (C.4)

which is indeed true, since
∑

i≥2 n̂i ≥ n̂2 ≥ 1 holds, by mass conservation. ��
Proof of Lemma 7.1. In this subsection we will take

α,β ∈ N
Z with 1 ≤ |α| = |β| < ∞. (C.5)

Given u ∈ Z
Z, with |u| < ∞, consider the set

{
j �= 0, repeated

∣∣u j
∣∣ times

}
,

where D < ∞ is its cardinality. Define the vector m = m(u) as the reordering of the
elements of the set above such that |m1| ≥ |m2| ≥ · · · ≥ |mD| ≥ 1.Given α �= β ∈ N

Z,

with |α| = |β| < ∞ we consider m = m(α − β) and n̂ = n̂(α + β). If we denote by D
the cardinality of m and N the one of n̂ we have

D + α0 + β0 ≤ N (C.6)

and

(|m1|, . . . , |mD|, 1, . . . , 1︸ ︷︷ ︸
N−D times

) ≤ (̂n1, . . . n̂N ). (C.7)
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Set

σl = sign(αml − βml
).

For every function g defined on Z we have that
∑

i∈Z
g(i)|αi − β i | = g(0)|α0 − β0| +

∑

l≥1

g(ml),

∑

i∈Z
g(i)(αi − β i ) = g(0)(α0 − β0) +

∑

l≥1

σl g(ml). (C.8)

Lemma C.3. Assume that g defined on Z is non negative, even and not decreasing on
N. Then, if α �= β,

∑

i∈Z
g(i)|αi − β i | ≤ 2g(m1) +

∑

l≥3

g(̂nl). (C.9)

Proof. By (C.8)
∑

i∈Z
g(i)|αi − β i | = g(0)|α0 − β0| +

∑

l≥1

g(ml)

≤ g(1)(α0 + β0) + 2g(m1) +
∑

l≥3

g(ml)

and (C.9) follows by (C.6) and (C.7). ��
We denote as before the momentum by π so by (C.8)

π =
∑

i∈Z

(
αi − β i

)
i =

∑

l

σlml (C.10)

and
∑

i

(
αi − β i

)
i2 =

∑

l

σlm
2
l . (C.11)

Analogously

∑

i

∣∣αi − β i

∣∣ = D + |α0 − β0|
(C.6)≤ N . (C.12)

Finally note that

σlσl ′ = −1 �⇒ ml �= ml ′ . (C.13)

Note that

α �= β �⇒ N ≥ 3 or π �= 0, (C.14)

indeed, bymass conservation, |α| = |β| = 1 therefore if N = 2we get α−β = e j1 −e j2
so if π = 0 we have α = β. Note also that

α �= β �⇒ D ≥ 1, (C.15)

indeed, if D = 0 then αl −βl = 0 for every |l| ≥ 1 and, by mass conservation α0 = β0,
contradicting α �= β .
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Lemma C.4. Given α �= β ∈ N
Z, with 1 ≤ |α| = |β| < ∞ and satisfying (7.1), we

have32

|m1| ≤ 20|π | + 31
∑

l≥3

n̂2l . (C.16)

Proof. In the case D = 1 by (C.10) |π | = |m1| and (C.16) follows. Let us now consider
the case D = 2, i.e.

α − β = σ1em1 + σ2em2 + (α0 − β0)e0.

Let us start with the case σ1σ2 = 1. By mass conservation |σ1 + σ2| = |β0 − α0| = 2.
By (C.12) N ≥ 4. Then conditions (7.1) and (C.12) imply that

m2
1 + m2

2 ≤ 20 + 10|α0 − β0| = 40.

Then

|m1| ≤ √
40 ≤

√
40

2

N∑

�=3

n̂2�

since N ≥ 4 and n̂� ≥ 1. When σ1σ2 = −1 we have m1 �= m2, |π | = |m1 − m2| ≥ 1
and by mass conservation α0 − β0 = 0. Then

(|m1| + |m2|)(|m1| − |m2|) = m2
1 − m2

2 ≤ 20.

If |m1| > |m2| then
|m1| ≤ 20 ≤ 20|π |. (C.17)

Otherwise m1 = −m2 and, therefore, |π | = 2|m1|, completing the proof in the case
D = 2.

Let us now consider the case D ≥ 3. By (7.1), (C.11) and (C.12)

m2
1 + σ1σ2m

2
2 ≤ 10N +

D∑

l=3

m2
l ≤ 10N +

N∑

l=3

n̂2l

= 20 +
N∑

l=3

(10 + n̂2l )≤20 + 11
N∑

l=3

n̂2l
N≥3≤ 31

N∑

l=3

n̂2l .

If σ1σ2 = 1 then

|m1|, |m2| ≤
√
31
∑

l≥3

n̂2l .

If σ1σ2 = −1

(|m1| + |m2|)(|m1| − |m2|) = m2
1 − m2

2 ≤ 31
∑

l≥3

n̂2l .

32 Note that by (C.14) the r.h.s. of (C.16) is at least 20.
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Now, if |m1| �= |m2| then
|m1| + |m2| ≤ 31

∑

l≥3

n̂2l .

Conversely, if |m1| = |m2|, by (C.13), m1 �= m2, hence m1 = −m2. By substituting
this relation into (C.10), we have

2|m1| ≤ |π | +
∑

l≥3

|ml | ≤ |π | +
∑

l≥3

n̂2l ,

concluding the proof. ��
Conclusion of the proof of Lemma 7.1. As above, given α,β ∈ N

Z, with 1 ≤ |α| =
|β| < ∞ we consider m = m(α − β) and n̂ = n̂(α + β). Note that N := |α + β| ≥ 2.

We have33

∑

i

∣∣αi − β i

∣∣〈i〉θ/2 (C.9)≤ 2|m1| θ
2 +
∑

l≥3

n̂
θ
2
l

(C.16)≤ 2

⎛

⎝20|π | + 31
∑

l≥3

n̂2l

⎞

⎠

θ
2

+
∑

l≥3

n̂
θ
2
l

≤ 2(20|π |) θ
2 + 2(31)

θ
2
∑

l≥3

n̂θ
l +
∑

l≥3

n̂
θ
2
l

≤ 13

1 − θ

⎛

⎝(1 − θ)|π | + (2 − 2θ )

⎛

⎝
∑

l≥3

n̂θ
l

⎞

⎠

⎞

⎠, (C.18)

using that 1 − θ ≤ 2 − 2θ for 0 ≤ θ ≤ 1. Then by Lemma 6.1 and (C.18) we get

∑

i

∣∣αi − β i

∣∣〈i〉θ/2 ≤ 13

1 − θ

(
(1 − θ)|π | +

∑

i

〈i〉θ (αi + β i
)
+ θ |π | − 2n̂θ

1

)

≤ 13

1 − θ

[
∑

i

〈i〉θ (αi + β i
)
+ |π | − 2〈 j〉θ

]
,

proving (7.2).
Let us now prove (7.3) passing to the logarithm. We have

∑

i

ln(1 +
∣∣αi − β i

∣∣〈i〉)

=
∑

|i |≤1

ln(1 +
∣∣αi − β i

∣∣) +
∑

|i |≥2

ln(1 +
∣∣αi − β i

∣∣|i |)

≤ 3 ln(1 + N ) +
∑

|i |≥2

ln(1 +
∣∣αi − β i

∣∣|i |)

≤ 3 ln 2 + 3 ln N +
3

2

∑

|i |≥2

∣∣αi − β i

∣∣ ln |i |,

(C.19)

33 Using that for x, y ≥ 0 and 0 ≤ c ≤ 1 we get (x + y)c ≤ xc + yc.
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using that 1 + cx ≤ 3
2 x

c for c ≥ 1, x ≥ 2. If αi − β i = 0 for every |i | ≥ 2 then (7.3)
follows. Assume now that αi − β i �= 0 for some |i | ≥ 2. By (C.14) we have

N ≥ 3 or π �= 0. (C.20)

We claim that, when N ≥ 3,

ln

(
N∑

l=3

n̂2l

)
≤ ln N +

N∑

l=3

ln n̂2l . (C.21)

Let S := {3 ≤ l ≤ N , s.t. n̂l ≥ 2}. If S = ∅ we have the equality in (C.21). Otherwise∑
l∈S n̂2l ≥ 4 and34

ln

(
N∑

l=3

n̂2l

)
≤ ln

(
N +

∑

l∈S
n̂2l

)
≤ ln N +

∑

l∈S
ln n̂2l ,

proving (C.21).
We claim that

ln

(
20|π | + 31

N∑

l=3

n̂2l

)
≤ ln(1 + |π |) + ln N +

N∑

l=3

ln n̂2l + ln 20 + ln 31. (C.22)

Indeed consider first the case π = 0, then N ≥ 3 by (C.20) and (C.22) follows by
(C.21). Consider now the case |π | ≥ 1. If N < 3 (C.22) follows (there is no sum). If
N ≥ 3 we have35

ln

(
20|π | + 31

N∑

l=3

n̂2l

)
≤ ln (20|π |) + ln

(
31

N∑

l=3

n̂2l

)

≤ ln(|π |) + ln

(
N∑

l=3

n̂2l

)
+ ln 20 + ln 31.

Recalling (C.21) this complete the proof of (C.22).
Let us continue the proof of (7.3). Set g(i) := 0 if |i | ≤ 1 and g(i) := ln |i | if |i | ≥ 2
and apply (C.9) to (C.19); we get

∑

|i |≥2

∣∣αi − β i

∣∣ ln |i | ≤ 2 ln |m1| +
∑

l≥3

ln |̂nl |

(C.16)≤ 2 ln

⎛

⎝20|π | + 31
∑

l≥3

n̂2l

⎞

⎠ +
∑

l≥3

ln n̂l

(C.22)≤ 2 ln(1 + |π |) + 2 ln N + 5
N∑

l=3

ln n̂l + 16.

34 Use that ln(x + y) ≤ ln x + ln y if x, y ≥ 2.
35 Recall footnote 34.
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Inserting in (C.19) we obtain

∑

i

ln(1 +
∣∣αi − β i

∣∣〈i〉) ≤ 3 ln(1 + |π |) + 6 ln N +
15

2

N∑

l=3

ln n̂l + 27

concluding the proof of (7.3). ��
Proof of Lemma 7.2. First of all we note that

∑

i

fi (|�i |) =
∑

i s.t. �i �=0

fi (|�i |)

since fi (0) = 0. We have that36

fi (x) ≤ − σ

C∗
〈i〉 θ

2 x + 2 ln(x) + (2 + q) ln〈i〉 + 1, ∀ x ≥ 1.

We have that

max
x≥1

(
− σ

C∗
〈i〉 θ

2 x + 2 ln(x)

)
=

⎧
⎪⎪⎨

⎪⎪⎩

− σ

C∗
〈i〉 θ

2 if 〈i〉 ≥ i0,

−2 + 2 ln
2C∗
σ

− θ ln〈i〉 if 〈i〉 < i0,

where

i0 :=
(
2C∗
σ

) 2
θ

,

since the maximum is achieved for x = 1 if 〈i〉 ≥ i0 and x = 2C∗
σ 〈i〉θ/2 if 〈i〉 < i0. Note

that i0 ≥ e. Then we get
∑

i

fi (|�i |) =
∑

i s.t. �i �=0

fi (|�i |) ≤

∑

〈i〉≥i0 s.t. �i �=0

(
(2 + q) ln〈i〉 + 1 − σ

C∗
〈i〉 θ

2

)
+
∑

〈i〉<i0

(
2 ln

2C∗
σ

+
(
2 + q − θ

)
ln〈i〉

)
.

We immediately have that

∑

〈i〉<i0

(
2 ln

2C∗
σ

+
(
2 + q − θ

)
ln〈i〉

)
≤ 3i0

(
2 ln

2C∗
σ

+ (2 + q) ln i0

)

= 3

(
2 +

2

θ
(2 + q)

)(
2C∗
σ

) 2
θ

ln
2C∗
σ

.

Moreover, in the case 〈i〉 ≥ i0 ≥ e,

(2 + q) ln〈i〉 + 1 − σ

C∗
〈i〉 θ

2 ≤ (2 + q + 1) ln〈i〉 − σ

C∗
〈i〉 θ

2

= 2

θ
(2 + q + 1)

(
ln〈i〉 θ

2 − 2C〈i〉 θ
2

)

36 Using that ln(1 + y) ≤ 1 + ln y for every y ≥ 1.
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where

C := σθ

4C∗(2 + q + 1)
< 1.

Therefore

S∗ :=
∑

〈i〉≥i0 s.t. �i �=0

(
(2 + q) ln〈i〉 + 1 − σ

C∗
〈i〉 θ

2

)

satisfies

S∗ ≤
∑

〈i〉≥i0 s.t. �i �=0

2

θ
(2 + q + 1)

(
ln〈i〉 θ

2 − 2C〈i〉 θ
2

)
.

We have that37

ln〈i〉 θ
2 − 2C〈i〉 θ

2 ≤ −C〈i〉 θ
2 , when 〈i〉 ≥ i∗ :=

(
2

C
ln

1

C

) 2
θ

.

Note that

i� ≥ max{i0, i∗}.
Therefore

S∗ ≤ 2

θ
(2 + q + 1)

⎛

⎝
∑

〈i〉<i�

ln〈i〉 θ
2 −

∑

〈i〉≥i� s.t. �i �=0

(
C〈i〉 θ

2

)
⎞

⎠

≤ (2 + q + 1)

(
3i� ln i� − 2C

θ
M

θ
2
�

)

where

M� := max{|i | ≥ i�, s.t. �i �= 0}
and M� := 0 if |�i | = 0 for every |i | ≥ i�. In conclusion we get

∑

i

fi (|�i |) ≤ 3

(
2 +

2

θ
(2 + q)

)(
2C∗
σ

) 2
θ

ln
2C∗
σ

+ (2 + q + 1)

(
3i� ln i� − 2C

θ
M

θ
2
�

)

≤ 6(q + 3)i� ln i� − σ

2C∗
M

θ
2
�

≤ 7(q + 3)i� ln i� − σ

2C∗
(
n̂1(�)

) θ
2 ,

noting that n̂1(�) = M� if M� �= 0, otherwise n̂1(�) < i�, and, therefore,

σ

2C∗
(
n̂1(�)

) θ
2 <

σ

2C∗
i

θ
2
� ≤ (q + 3)i� ln i�.

��
37 Using that, for every fixed 0 < C ≤ 1, we have Cx ≥ ln x for every x ≥ 2

C ln 1
C .
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Proof of Lemma 4.1. For � ∈ Z
Z with 0 < |�| < ∞ we define

R� :=
⎧
⎨

⎩ω ∈ �q : |ω · �| ≤ γ

1 + |�0|μ1

∏

n �=0

1

(1 + |�n|μ1 |n|μ2+q)

⎫
⎬

⎭

– if � is such that �n = 0 ∀n �= 0 then

μ(R�) = γ

1 + |�0|μ1
.

– Otherwise: let s = s(�) > 0 be the smallest positive index i such that |�i |+|�−i | �= 0
and S = S(�) be the biggest. Then we have38

μ(R�) ≤ γ sq

(1 + |�0|μ1)

∏

n �=0

1

(1 + |�n|μ1 |n|μ2+q)
.

Let us write

1

1 + |�0|μ1

∏

n �=0

1

(1 + |�n|μ1 |n|μ2+q)

= 1

1 + |�0|μ1

∏

n>0

1

(1 + |�n|μ1 |n|μ2+q)

1

(1 + |�−n|μ1 |n|μ2+q)

= 1

1 + |�0|μ1

∏

s(�)≤n≤S(�)

1

(1 + |�n|μ1 |n|μ2+q)

1

(1 + |�−n|μ1 |n|μ2+q)
.

Now

μ(�q \ Dγ,q) ≤
∑

�

μ(R�) =
∑

�0

γ

1 + |�0|μ1
(C.23)

+
∑

s>0

∑

�:s(�)=S(�)=s

1

1 + |�0|μ1

γ sq

|�s |(1 + |�s |μ1 |s|μ2+q)

1

(1 + |�−s |μ1 |s|μ2+q)
(C.24)

+
∑

0<s<S

∑

�:s(�)=s,
S(�)=S

γ sq

1 + |�0|μ1

∏

s≤n≤S

1

(1 + |�n|μ1 |n|μ2+q)

1

(1 + |�−n|μ1 |n|μ2+q)
. (C.25)

Let us estimate (C.24)

∑

s>0

∑

�0∈Z

1

1 + |�0|μ1

∑

�s ,�−s∈Z|�s |+|�−s |>0

γ sq

(1 + |�s |μ1 |s|μ2+q)

1

(1 + |�−s |μ1 |s|μ2+q)

≤ c(μ1)γ
∑

s>0

sq
∑

�s ,�−s∈Z|�s |+|�−s |>0

1

(1 + |�s |μ1 |s|μ2+q)

1

(1 + |�−s |μ1 |s|μ2+q)
.

38 Assume, e.g. that �s �= 0, then |∂ξsω · �| ≥ s−q .
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Now since
∞∑

h=1

1

(1 + hμ1 |n|μ2+q)
≤

∞∑

h=1

1

hμ1 |n|μ2+q
≤ c(μ1)

|n|μ2+q

we have
∑

h∈Z

1

(1 + |h|μ1 |n|μ2+q)
≤ 1 +

2c(μ1)

|n|μ2+q
.

Then we have
∑

�s ,�−s∈Z|�s |+|�−s |>0

1

(1 + |�s |μ1 |s|μ2+q)

1

(1 + |�−s |μ1 |s|μ2+q)
≤ c1(μ1)

|s|μ2+q

and consequently (C.24) is bounded by

c2(μ1)γ
∑

s>0

|s|b ≤ c3(μ1, μ2)γ.

Regarding the third line in (C.23), we note that for all n we have

∑

�n ,�−n∈Z

1

(1 + |�n|μ1 |n|μ2+q)

1

(1 + |�−n|μ1 |n|μ2+q)
≤
(
1 + 2

c(μ1)

|n|μ2+q

)2

.

Hence
∑

�:s(�)=s,
S(�)=S

1

1 + |�0|μ1

∏

s≤n≤S

1

(1 + |�n|μ1 |n|μ2+q)

1

(1 + |�−n|μ1 |n|μ2+q)

=
∑

�0∈Z

1

1 + |�0|μ1
×

∑

�s ,�−s∈Z|�s |+|�−s |>0

1

(1 + |�s |μ1 |s|μ2+q)

1

(1 + |�−s |μ1 |s|μ2+q)

×
∑

�S ,�−S∈Z|�S |+|�−S |>0

1

(1 + |�S|μ1 |S|μ2+q)

1

(1 + |�−S|μ1 |S|μ2+q)

×
∏

s<n<S

∑

�n ,�−n∈Z

1

(1 + |�n|μ1 |n|μ2+q)

1

(1 + |�−n|μ1 |n|μ2+q)

≤ c4(μ1)

sμ2+q Sμ2+q

∏

s<n<S

(
1 + 2

c(μ1)

|n|μ2+q

)2

≤ c4(μ1)

sμ2+q Sμ2+q
exp

⎛

⎝
∑

n≥1

ln

(
1 + 2

c(μ1)

|n|μ2+q

)2
⎞

⎠

≤ c5(μ1, μ2)

sμ2+q Sμ2+q
.

Then, multiplying by γ sq and taking the
∑

0<s<S, we have that also (C.25) is bounded
by some constant Cmeas(μ1, μ2)γ . ��
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