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Abstract: By enforcing invariance under S-duality in type IIB string theory compacti-
fied on a Calabi–Yau threefold, we derive modular properties of the generating function
of BPS degeneracies of D4–D2–D0 black holes in type IIA string theory compactified on
the same space.Mathematically, these BPS degeneracies are the generalized Donaldson-
Thomas invariants counting coherent sheaves with support on a divisor D, at the large
volume attractor point. For D irreducible, this function is closely related to the elliptic
genus of the superconformal field theory obtained by wrapping M5-brane on D and is
therefore known to be modular. Instead, when D is the sum of n irreducible divisors
Di , we show that the generating function acquires a modular anomaly. We characterize
this anomaly for arbitrary n by providing an explicit expression for a non-holomorphic
modular completion in terms of generalized error functions. As a result, the generating
function turns out to be a (mixed) mock modular form of depth n − 1.

1. Introduction and Summary

The degeneracies of BPS black holes in string vacua with extended supersymmetry pos-
sess remarkable modular properties, which have been instrumental in recent progress
on explaining the statistical origin of the Bekenstein-Hawking entropy in [1] and many
subsequent works. Namely, the indices�(γ ) counting—with sign—microstates of BPS
black holes with electromagnetic charge γ may often be collected into a suitable gen-
erating function which exhibits modular invariance, providing powerful constraints on
its Fourier coefficients and enabling direct access to their asymptotic growth. When the
black holes can be realized as black strings wrapped on a circle, a natural candidate
for such a generating function is the elliptic genus of the superconformal field theory
supported by the black string, which is modular invariant by construction [2–4]. Equiva-
lently, one may consider the partition function of the effective three-dimensional gravity
living on the near-horizon geometry of the black string [5].
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In most cases however, the BPS indices depend not only on the charge γ but also
on the moduli za at spatial infinity, due to the wall-crossing phenomenon: some of
the BPS bound states with total charge γ only exist in a certain chamber in moduli
space, and decay as the moduli are varied across ‘walls of marginal stability’ which
delimit this chamber. At strong coupling where the black hole description is accurate,
this phenomenon has a transparent interpretation in terms of the (dis)appearance ofmulti-
centered black hole configurations, which can be used to derive a universal wall-crossing
formula [6–9].

In the case of four-dimensional string vacua with N = 4 supersymmetry, where the
BPS index is sensitive only to single-centered 1/4-BPS black holes and to bound states
of two 1/2-BPS black holes, the resulting moduli dependence is reflected in poles in
the generating function, requiring a suitable choice of contour for extracting the Fourier
coefficients in a given chamber [10–12]. Upon subtracting contributions of two-centered
bound states, the generating function of single-centered indices is no longer modular
in the usual sense but it transforms as a mock Jacobi form with specific ‘shadow’—a
property which is almost as constraining as standard modular invariance [13].

In four-dimensional string vacua with N = 2 supersymmetry, the situation is much
more complicated, firstly due to the fact that the moduli space of scalars receives quan-
tum corrections, and secondly due to BPS bound states potentially involving an arbitrary
number of constituents, resulting in an extremely intricate pattern of walls of marginal
stability. Thus, it does not seem plausible that a single generating function may capture
the BPS indices �(γ, za)—which are known in this context as generalized Donaldson-
Thomas (DT) invariants—in all chambers. Nevertheless, modular invariance is still ex-
pected to constrain them. In particular, D4–D2–D0 black holes in type IIA string theory
compactified on a generic compact Calabi–Yau (CY) threefold Y can be lifted to an
M5-brane wrapped on a divisor D ⊂ Y [2]. If the divisor D labelled by the D4-brane
charge pa is irreducible, the indices �(γ, za) are independent of the moduli of Y, at
least in the limit where the volume ofY is scaled to infinity, and their generating function
is known to be a holomorphic (vector valued) modular form of weight − 1

2 b2(Y) − 1
[3,4,6,14]. This includes the case of vertical, rank 1 D4–D2–D0 branes in K3-fibered
Calabi–Yau threefolds [15–17]. But if the divisor D is a sum of n effective divisors Di ,
the indices �(γ, za) do depend on the Kähler moduli za , even in the large volume limit.
In general however, the black string SCFT is supposed to capture the states associated
to a single AdS3 throat, while for generic values of the moduli multiple AdS3 throats
can contribute [18,19]. It is thus natural to consider the modular properties of the DT
invariants �(γ, za) at the large volume attractor point1

za∞(γ ) = lim
λ→+∞

(−qa + iλpa
)
, (1.1)

where only a single AdS3 throat is allowed [20]. Following [21] we denote these invari-
ants by�MSW(γ ) = �(γ, za∞(γ )) and call themMaldacena-Strominger-Witten (MSW)
invariants. As we discuss in Section 2, the DT invariants�(γ, za) can be recovered from
the MSW invariants �MSW(γ ) by using a version of the split attractor flow conjecture
[6,22] developed in [23], which we call the flow tree formula.

The case where D is the sum of two irreducible divisors was first considered in
[20,24,25], and studied more recently in [14,26]. In that case, the generating function of
MSW invariants turns out to be a mock modular form, with a specific non-holomorphic

1 Here pa and qa are D4 and D2-brane charges, respectively, and the index of qa is raised with help of the
inverse of the metric κab = κabc p

a with κabc being the triple intersection numbers on H4(Y,Z).
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completion obtained by smoothing out the sign functions entering in the bound state
contributions, recovering the prescription of [20,27]. The goal of this paper is to extend
this result to the general case where D is the sum of n irreducible divisors Di , where n
can be arbitrarily large. In such generic situation, we characterize the modular properties
of the generating function h p,μ of MSW invariants and find an explicit expression for its
non-holomorphic completion ĥ p,μ in terms of the generating functions h pi ,μi associated
to the n constituents, multiplied by certain iterated integrals introduced in [28,29] which
generalize the usual error function appearing when n = 2.2 This result implies that in
this case h p,μ is a (mixed, vector valued) mock modular form of depth n − 1, in the
sense that the antiholomorphic derivative of its modular completion is itself a linear
combination of modular completions of mock modular forms of lower depth, times
antiholomorphic modular forms (with the depth 1 case reducing to the standard mock
modular forms introduced in [27,35], and the depth 0 case to usual weakly holomorphic
modular forms; see [36, (3.16)] for a more precise definition).

In order to establish this result, we follow the same strategy as in our earlier works [14,
26] and analyze D3–D1–D(-1) instanton corrections to the metric on the hypermultiplet
moduli spaceMH in type IIB string theory compactified onY, at arbitrary order in the
instanton expansion. After reducing on a circle and T-dualizing, this moduli space is
identical to the vector multiplet moduli space in type IIA string theory compactified on
Y × S1, where it receives instanton corrections from D4–D2–D0 black holes winding
around the circle. In either case, each instanton contribution is weighted by the same
generalized DT invariant �(γ ) which counts the number of BPS black hole microstates
with electromagnetic charge γ . The modular properties of the generalized DT invariants
arefixedby requiring that the quaternion-Kähler (QK)metric onMH admits an isometric
action of SL(2,Z), which comes from S-duality in type IIB, or equivalently from large
diffeomorphisms of the torus appearing when viewing type IIA/Y × S1 as M-theory
on Y × T 2 [37]. This QK metric is most efficiently encoded in the complex contact
structure on the associated twistor space, a CP1-bundle overMH [38,39]. The latter is
specified by a set of gluing conditions determined by the DT invariants [37,40], which
can in turn be expressed in terms of the MSW invariants using the tree flow formula.

An important quantity appearing in this twistorial formulation3 is the so called contact
potential eφ , a real function onMH related to the Kähler potential on the twistor space,
and afforded by the existence of a continuous isometry unbroken by D-instantons. On
the type IIB side, eφ can be identified with the four-dimensional dilaton 1/g24. When
expressed in terms of the ten-dimensional axio-dilaton τ = c0 + i/gs (or in terms of the
modulus of the 2-torus on the M-theory side), it becomes a complicated function having
a classical contribution, a one-loop correction, and a series of instanton corrections
expressed as contour integrals on theCP1 fiber. The importance of the contact potential
stems from the fact that it must be a non-holomorphic modular form of weight (− 1

2 ,− 1
2 )

in the variable τ in order for MH to admit an isometric action of SL(2,Z) [37]. This

2 The proper setting for the indefinite theta series constructed in [28], and the associated generalized error
functions, was clarified in [30,31], where they arise by integrating the Kudla–Millson cohomological theta
series [32–34] over a suitable geodesic polyhedron in the Grassmannian of positive planes in the ambient
lattice space.

3 A familiarity with the twistorial formulation is not required for this work. Here we use only two equa-
tions relevant for the twistorial description of D-instantons: the integral equation (3.2) for certain Darboux
coordinates, which appears also in the study of four-dimensional N = 2 gauge theory on a circle [41], and the
expression for the contact potential (3.20) in terms of these Darboux coordinates. These two equations lead
to (3.15) and (3.24), respectively, which can be taken as the starting point of our analysis. Note that in the
context of gauge theories the contact potential can be interpreted as a supersymmetric index [42].



552 S. Alexandrov, B. Pioline

requirement imposes very non-trivial constraints on the instanton contributions to eφ ,
which can be used to deduce the modular properties of generating functions of DT
invariants, at each order in the instanton expansion. This strategy was used in [14] at
two-instanton order to characterize the modular behavior of the generating function of
MSW invariants in the case of a divisor equal to the sum of n = 2 irreducible divisors.
In this paper we generalize this result to all n, by analyzing the instanton expansion to
all orders. Below we summarize the main steps in our analysis and our main results.

1. First, we show that the contact potential eφ in the large volume limit, where theKähler
parameters of theCYare sent to infinity, can be expressed (see (3.24)) through another
(complex valued) function G (3.22) on the moduli space, which we call the instanton
generating function. The expansion of G in powers of DT invariants is governed
by a sum over unrooted trees decorated by charges γi (see (3.25) and (3.26)). The
modularity of the contact potential requires G to transform as a modular form of
weight (− 3

2 ,
1
2 ).

2. After expressing the DT invariants �(γ, za) through the moduli independent MSW
invariants �MSW(γ ) using the tree flow formula of [23], and expanding G in powers
of�MSW(γ ), each order in this expansion can be decomposed into a sum of products
of certain indefinite theta series and of holomorphic generating functions h pi ,μi of
the invariants �MSW(γ ) (see (4.2)), similarly to the usual decomposition of standard
Jacobi forms.Thus, themodular properties of the indefinite theta seriesϑ p,μ

(
	tot

n , n−
2
)
are tied with the modular properties of the generating functions h pi ,μi , in order

for G to be modular.
3. In order for an indefinite theta series ϑ p,μ

(
	,λ) to be modular, its kernel 	 must

satisfy a certain differential equation (D.3), which we call Vignéras’ equation [43].
By construction, the kernels 	tot

n appearing in our problem are given by iterated
contour integrals along the CP1 fiber of the twistor space, multiplied by so-called
‘tree indices’ gtr,n coming from the expression of�(γ, za) in terms of�MSW(γ ). We
evaluate the twistorial integrals in terms of the generalized error functions introduced
in [28,29], and show that the resulting kernels satisfy Vignéras’ equation away from
certain loci where they have discontinuities. Furthermore, we prove that the disconti-
nuities corresponding to walls of marginal stability cancel between the integrals and
the tree indices. But there are additional discontinuities coming from certain moduli
independent contributions to the tree index. They spoil Vignéras’ equation at the
multi-instanton level so that the theta series ϑ p,μ

(
	tot

n , n − 2
)
are not modular. In

turn, this implies that the holomorphic generating functions h pi ,μi are not modular
either.

4. However, we show that one can complete h p,μ into a non-holomorphic modular form
ĥ p,μ(τ ), by adding to it a series of corrections proportional to products of h pi ,μi with
the same total D4-brane charge p =∑i pi (see (5.1)). The non-holomorphic func-
tions Rn entering the completion are determined by the condition that the expansion
of G rewritten in terms of ĥ p,μ gives rise to a non-anomalous, modular theta series.
Equivalently, one can work with functions ĝn appearing in the expansion (5.2) of
the holomorphic generating function of DT invariants hDTp,q in powers of the non-
holomorphic functions ĥ pi ,μi .

5. Imposing the conditions for modularity, we find that ĝn can be represented in an
iterative form (5.9), ormore explicitly as a sum (5.33) over rooted treeswith valency≥
3 at each vertex (known as Schröder trees), where g(0)

n are certain locally polynomial
functions defined in (5.27), while En are smooth solutions of Vignéras’ equation
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Fig. 1. Various types of trees arising in this work.Tn,m denotes the set of unrooted trees with n vertices andm
marks distributed between the vertices.Tn≡ Tn,0 comprises the trees without marks.Tr

n is the set of rooted
trees with n vertices. Taf

n is the set of attractor flow trees with n leaves (of which we only draw the different
topologies). TS

n denotes the set of Schröder trees with n leaves. In addition, an important rôle is played by
the sets T


n,m and T

n = T


n,0 of unrooted, labelled, marked trees which are obtained from Tn,m and Tn by
assigning different labels and markings to the vertices in such way that a vertex with mv marks is decorated
by 2mv + 1 labels

constructed in terms of generalized error functions. The functions Rn are similarly
given by a sum over Schröder trees (5.34) in terms of exponentially decreasing and
non-decreasing parts of En . These equations represent the main technical result of
this work.

6. For n ≤ 5 our general formulas can be drastically simplified. In particular, the main
building blocks, the functions g(0)

n and En , can be written as a sum over a suitable
subset of flow trees, as in (5.42). In addition, we show that g(0)

n has a natural extension
including the refinement parameter conjugate to the spin J3 of the black hole.

At the end of this lengthy analysis, we thus find a modular completion of the gener-
ating functions h p,μ of MSW invariants for an arbitrary divisor, i.e. decomposable into
a sum of any number of irreducible divisors. The result is expressed through sums of
products of generalized error functions labelled by trees of various types. For the reader’s
convenience, in Fig. 1 we display the various trees which appear in our construction, up
to n = 4. Since generalized error functions are known to be related to iterated Eichler
integrals [14,44], which occur in the non-holomorphic completion of mock modular
forms, we loosely refer to the generating functions of MSW invariants as higher depth
mock modular forms, although we do not spell out the precise meaning of this notion.

An unexpected byproduct of our analysis is an interesting combinatorial identity,
relating rooted trees to the binomial coefficients, which plays a rôle in our derivation of
the modular completion. Since we are not aware of such an identity in the mathematical
literature,4 we state it here as a theorem whose proof can be found in appendix A.

Theorem 1. Let VT be the set of vertices of a rooted ordered tree T and nv(T ) is the
number of descendants of vertex v inside T plus 1 (alternatively, the number of vertices

4 Wewere informed byKaren Yeats that the special casem = n−1 appears in [45, (124)]. The denominator
in (1.2) is sometimes known as the tree factorial T ′!, see (5.20).
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Fig. 2. An example illustrating the statement of the Theorem for a tree with n = 7 vertices and subtrees with
m = 3 vertices. The subtrees are distinguished by red color. Near each vertex of the subtrees we indicated the
pair of numbers (nv(T ), nv(T ′))

of the subtree in T with the root being the vertex v and the leaves being the leaves of T ).
Then for a rooted tree T with n vertices and m < n one has

∑

T ′⊂T

∏

v∈VT ′

nv(T )

nv(T ′)
= n!

m!(n − m)! , (1.2)

where the sum goes over all subtrees with m vertices, having the same root as T (see
Fig. 2).

The organization of the paper is as follows. In Sect. 2 we review known results about
DT invariants, their expression in terms of MSW invariants, and specialize them to the
case of D4–D2–D0 black holes in type IIA string theory on a Calabi–Yau threefold. In
Sect. 3 we present the twistorial description of the D-instanton corrected hypermultiplet
moduli space in the dual type IIB string theory, evaluate the contact potential in the large
volume approximation by expressing it through a function G, and obtain the instanton
expansion for this function via unrooted labelled trees. In Sect. 4 we obtain a theta series
decomposition for each order of the expansion of G in MSW invariants and analyze
the modular anomaly of the resulting theta series, implying a modular anomaly for the
generating functions h p,μ. In Sect. 5 we construct the non-holomorphic completion
ĥ p,μ, for which the anomaly is cancelled, and determine its explicit form. Section 6 is
devoted to discussion of the obtained results. Finally, several appendices contain details
of our calculations and proofs of various propositions. In addition, in appendix G we
present explicit results up to order n = 4, and in appendix H, as an aid to the reader, we
provide an index of notations.

2. BPS Indices and Wall-Crossing

In this section, we review some aspects of BPS indices in theories with N = 2 super-
symmetry, including the tree flow formula relating themoduli-dependent index�(γ, za)
to the attractor index ��(γ ). We then apply this formalism in the context of Calabi–Yau
string vacua, and express the generalized DT invariants �(γ, za) in terms of their coun-
terparts evaluated at the large volume attractor point (1.1), known as MSW invariants.

2.1. Wall-crossing and attractor flows. The BPS index �(γ, za) counts (with sign)
micro-states of BPS black holes with total electro-magnetic charge γ = (p�, q�), for
a given value za of the moduli at spatial infinity. While �(γ, za) is a locally constant
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function over the moduli space, it can jump across real codimension one loci where
certain bound states, represented by multi-centered black hole solutions of N = 2
supergravity, become unstable. The positions of these loci, known as walls of marginal
stability, are determined by the central charge Zγ (za), a complex-valued linear function
ofγ whosemodulus gives themass of aBPS state of chargeγ , while the phase determines
the supersymmetry subalgebra preserved by the state. Since a bound state can only decay
when its mass becomes equal to the sum of masses of its constituents, it is apparent that
the walls correspond to hypersurfaces where the phases of two central charges, say
ZγL (z

a) and ZγR (za), become aligned. The bound states which may become unstable
are then those whose constituents have charges in the positive cone spanned by γL and
γR . We shall assume that the charges γL , γR have non-zero Dirac-Schwinger-Zwanziger
(DSZ) pairing 〈γL , γR〉 �= 0, since otherwise marginal bound states may form, whose
stability is hard to control.

The general relation between the values of�(γ, za) on the two sides of awall has been
found in the mathematics literature by Kontsevich–Soibelman [46] and Joyce–Song [47,
48], and justified physically in a series of works [6–9]. However, in this work we require
a somewhat different result: an expression of �(γ, za) in terms of moduli-independent
indices. One such representation, known as the Coulomb branch formula, was developed
in a series of papers [49–51] (see [52] for a review) where the moduli-independent
index is the so-called ‘single-centered invariant’ counting single-centered, spherically
symmetric BPS black holes. Unfortunately, this representation (and its inverse) is quite
involved, as it requires disentangling genuine single-centered solutions from so-called
scaling solutions, i.e.multi-centered solutionswith n ≥ 3 constituentswhich can become
arbitrarily close to each other [6,53].

A simpler alternative is to consider the attractor index, i.e. the value of the BPS index
in the attractor chamber �∗(γ ) ≡ �(γ, za� (γ )), where za� (γ ) is fixed in terms of the
charge γ via the attractor mechanism [54] (recall that for a spherically symmetric BPS
black hole with charge γ , the scalars in the vector multiplets have fixed value za� (γ ) at the
horizon independently of their value za at spatial infinity.). By definition, the attractor
indices are of course moduli independent. The problem of expressing �(γ, za) in terms
of attractor indices was addressed recently in [23], extending earlier work in [20,55].
Relying on the split attractor flow conjecture [6,22], it was argued that the rational BPS
index

�̄(γ, za) =
∑

d|γ

1

d2
�(γ/d, za) (2.1)

can be expanded in powers of �̄∗(γi ),

�̄(γ, za) =
∑

∑n
i=1 γi=γ

gtr,n({γi }, za)
n∏

i=1
�̄∗(γi ), (2.2)

where the sum runs over ordered5 decompositions of γ into sums of vectors γi ∈ +,
with + being the set of all vectors γ whose central charge Zγ (za∞) lies in a fixed
half-space defining the splitting between BPS particles (γ ∈ +) and anti-BPS particles

5 In [23] a similar formula was written as a sum over unordered decompositions, weighted by the symmetry
factor 1/|Aut{γi }|. Since gtr,n({γi }, za) is symmetric under permutations of {γi }, we can sum over all ordered
decompositions with unit weight, at the expense of inserting the factor 1/n! in its definition (2.3). In the sequel,
all similar sums are always assumed to run over ordered decompositions.
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Fig. 3. An example of attractor flow tree corresponding to the bracketing ((13)(2(45)))

(γ ∈ −+). Such decompositions correspond to contributions of multi-centered black
hole solutions with constituents carrying charges γi .

The coefficient gtr,n , called the tree index, is defined as

gtr,n({γi }, za) = 1

n!
∑

T∈Taf
n

�(T ) κ(T ), (2.3)

where the sum goes over the set Taf
n of attractor flow trees with n leaves. These are

unordered rooted binary trees6 T with vertices decorated by electromagnetic charges
γv , such that the leaves of the tree carry the constituent charges γi , and the charges
propagate along the tree according to γv = γL(v) + γR(v) at each vertex, where L(v),
R(v) are the two children7 of the vertex v (see Fig. 3). The charge carried by the root of
the tree is then the total charge γ =∑ γi . The idea of the split attractor flow conjecture
is that each tree represents a nested sequence of two-centered bound states describing a
multi-centered solution built out of constituents with charges γi . With this interpretation,
the edges of the graph represent the evolution of the moduli under attractor flow, so that
one starts from the moduli at spatial infinity za∞ ≡ za and assigns to the root v0 the
point in the moduli space zav0 where the attractor flow with charge γ crosses the wall of
marginal stability where Im

[
ZγL(v0)

Z̄γR(v0)
(zav0)

] = 0. Then one repeats this procedure
for every edge, obtaining a set of charges and moduli (γv, zav) assigned to each vertex,
with the bound state constituents and their attractor moduli (γi , zaγi ) assigned to the
leaves.

Given these data, the factor �(T ) in (2.3) is given by

�(T ) =
∏

v∈VT
�

z p(v)
γL(v)γR(v)

, �z
γLγR

= 1

2

[
sgn Im

[
ZγL Z̄γR (za)

]
+ sgn(γLR)

]
, (2.4)

6 The number of such trees is |Taf
n | = (2n− 3)!! = (2n− 3)!/[2n−2(n− 2)!] = {1, 1, 3, 15, 105, 945, ...}

for n ≥ 1.
7 This assignment requires an ordering of the children at each vertex, which can be chosen arbitrarily for

each tree. With such an ordering, and assuming that all the charges γi are distinct, the flow tree can be labelled
by a 2-bracketing of a permutation of the set {1, . . . , n}, as shown in Fig. 3.
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where VT denotes the set of vertices of T excluding the leaves, p(v) is the parent of
vertex v, and γLR = 〈γL , γR〉. This factor vanishes unless the stability condition8

γL(v)R(v) Im
[
ZγL(v)

Z̄γR(v)
(zap(v))

]
> 0 (2.5)

is satisfied for all v ∈ VT , which ensures admissibility of the flow tree T , i.e. the existence
of the corresponding nested bound state. Importantly, the sign of Im

[
ZγL(v)

Z̄γR(v)
(zap(v))

]

entering (2.4) can be computed recursively in terms of asymptotic data, without evalu-
ating the attractor flow along the edges [23]. More precisely, the signs depend only on
the stability parameters (also known as Fayet-Iliopoulos parameters)

ci (z
a) = Im

[
Zγi Z̄γ (za)

]
. (2.6)

Note that due to γ = ∑n
i=1 γi , these parameters satisfy

∑n
i=1 ci = 0. Accordingly,

we shall often denote gtr,n({γi }, za) by gtr,n({γi , ci }), and always assume that {ci } are
generic real parameters subject to the condition

∑n
i=1 ci = 0, such that no proper subset

of them sums up to zero.
The second factor in (2.3) is independent of the moduli, and given by

κ(T ) ≡ (−1)n−1
∏

v∈VT
κ(γL(v)R(v)), κ(x) = (−1)x x . (2.7)

This is simply the product of the BPS indices of the nested two-centered solutions
associated with the tree T . Note that the signs of �(T ) and κ(T ) separately depend on
the choice of ordering (γL(v), γR(v)) at each vertex, but their product is independent of
that choice.

Sometimes, it is useful to consider the refined BPS index �(γ, za, y) which carries
additional dependence on the fugacity y conjugate to the spin J3. All the above equations
remain valid in this case as well (except for the definition of the rational invariant (2.1),
which must be slightly modified, see e.g. [8, (1.3)]), but now the function κ(x) appearing
in (2.7) becomes a symmetric Laurent polynomial in y

κ(x) = (−1)x yx − y−x

y − y−1
, (2.8)

reducing to (−1)x x in the unrefined limit y → 1.
It is easy to see that the ‘flow tree formula’ (2.2) is consistent with the primitive

wall-crossing formula [6,7]

��̄(γL + γR) = −sgn(γLR) κ(γLR) �̄(γL , za) �̄(γR, za), (2.9)

which gives the jump of the BPS index due to the decay of bound states after crossing
the wall defined by a pair of primitive9 charges γL and γR . To this end, it suffices to
consider all flow trees which start with the splitting γ → γL + γR at the root of the tree.
It is also consistent with the general wall-crossing formula of [46], provided the tree
index is computed for a small generic perturbation of the DSZ matrix γi j [23]. Finally,

8 In fact, the admissibility also requires Re
[
ZγL(v)

Z̄γR(v)
(zav )

]
> 0 at each vertex. This condition will

hold automatically for the case of our interest, namely, D4–D2–D0 black holes in the large volume limit, so
we do not impose it explicitly.

9 Here, by primitive we mean that all charges with non-zero index in the two-dimensional lattice spanned
by γL and γR are linear combinations NLγL + NRγR with coefficients NL , NR of the same sign.
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it is useful to note that, assuming that all charges γi are distinct, the sum over splittings
and flow trees in (2.2) can be generated by iterating the quadratic equation [23]

�̄(γ, za) = �̄∗(γ )− 1

2

∑

γ=γL+γR〈γL ,γR〉�=0

�z
γLγR

κ(γLR) �̄(γL , zaLR) �̄(γR, zaLR), (2.10)

where zaLR is the point where the attractor flow of charge γ crosses the wall of marginal
stability Im

[
ZγL Z̄γR (zaLR)

] = 0.

2.2. Partial tree index. While the representation of the BPS index based on attractor
flows is useful for many purposes, it produces a sum of products of sign functions
depending on non-linear combinations of DSZ products γi j , which are very difficult
to work with. A solution to overcome this problem was found in [23]. The key idea
is to introduce a refined index with a fugacity y conjugate to angular momentum, and
represent it as

gtr,n({γi , ci }, y) = (−1)n−1+
∑

i< j γi j

(y − y−1)n−1
Sym

{
Ftr,n({γi , ci }) y

∑
i< j γi j

}
, (2.11)

where Sym denotes symmetrization (with weight 1/n!) with respect to the charges γi ,
and Ftr,n is the ‘partial tree index’ defined by10

Ftr,n({γi , ci }) =
∑

T∈T af-pl
n

�(T ). (2.12)

Here the sum runs over the setT af-pl
n of planarflow treeswith n leaves11 carrying ordered

charges γ1, . . . , γn . Although this is not manifest, the refined tree index (2.11) is regular
at y = 1, and its value (computed e.g. using l’Hôpital rule) reduces to the tree index
(2.3). The advantage of the representation (2.11) is that the partial tree index Ftr,n does
not involve the κ-factors (2.7) and is independent of the refinement parameter.

The partial index Ftr,n satisfies two important recursive relations. To formulate them,
let us introduce some convenient notations:

Sk =
k∑

i=1
ci , βk
 =

k∑

i=1
γi
, k
 =

k∑

i=1


∑

j=1
γi j . (2.13)

In terms of these notations, the partial index satisfies the iterative equation [23, (2.59)],

Ftr,n({γi , ci })= 1

2

n−1∑


=1

(
sgn(S
)− sgn(n
)

)
Ftr,
({γi , c(
)

i }
i=1) Ftr,n−
({γi , c(
)
i }ni=
+1),

(2.14)

10 Unlike the tree index gtr,n , the partial tree index Ftr,n is not a symmetric function of charges γi and
stability parameters ci , however we abuse notation and still denote it by Ftr,n({γi , ci }).
11 The number of such trees is the n − 1-th Catalan number |T af-pl

n | = (2n−2)!
n[(n−1)!]2 = {1, 1, 2, 5,

14, 42, 132, . . .} for n ≥ 1.
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where c(
)
i is the value of the stability parameters at the point where the attractor flow

crosses the wall for the decay γ → (γ1 + · · · + γ
, γ
+1 + · · · + γn), given by

c(
)
i = ci − βni

n


S
 . (2.15)

Importantly, c(
)
i satisfies

∑

i=1 c

(
)
i = ∑n

i=
+1 c
(
)
i = 0 so that the two factors on the

r.h.s. of (2.14) are well-defined. Note that the iterative equation (2.14) is in the spirit of
the quadratic equation (2.10).

According to [23, Prop. 2], the partial tree index satisfies another recursion

Ftr,n({γi , ci }) = F (0)
n ({ci })−

∑

n1+···+nm=n
nk≥1, m<n

Ftr,m({γ ′k, c′k})
m∏

k=1
F (0)
nk (βn, jk−1+1, . . . , βnjk ),

(2.16)

where the sum runs over ordered partitions of n, m is the number of parts, and for
k = 1, . . . ,m we defined

j0 = 0, jk = n1 + · · · + nk,

γ ′k = γ jk−1+1 + · · · + γ jk , c′k = c jk−1+1 + · · · + c jk .
(2.17)

The function appearing in (2.16) is simply a product of signs,

F (0)
n ({ci }) = 1

2n−1
n−1∏

i=1
sgn(Si ). (2.18)

This new recursive relation allows to express the partial index in a way which does not
involve sign functions depending on non-linear combinations of parameters, in contrast
to the previous relation (2.14) where such sign functions arise due to the discrete attractor
flow relation (2.15).

2.3. D4–D2–D0blackholes andBPS indices. The results presented above are applicable
in any theory withN = 2 supersymmetry. Let us now specialize to the BPS black holes
obtained as bound states of D4–D2–D0-branes in type IIA string theory compactified
on a CY threefold Y. In this case the moduli za = ba + ita (a = 1, . . . , b2(Y)) are
the complexified Kähler moduli with respect to a basis of H2(Y,Z), parametrizing
the Kähler moduli space MK(Y). The charge vectors γ ∈ Heven(Y,Q) have the form
γ = (0, pa, qa, q0) where the first entry corresponds to the D6-brane charge, which
is taken to vanish, whereas the other components, corresponding to the D4, D2 and
D0-brane charges, satisfy the following quantization conditions [56]:

pa ∈ Z, qa ∈ Z +
1

2
(p2)a, q0 ∈ Z− 1

24
pac2,a, (2.19)

where c2,a are components of the second Chern class of Y. In the second relation we
used the notations (kp)a = κabckb pc and (lkp) = κabclakb pc (recall that κabc are the
intersection numbers on H4(Y,Z)) which will be extensively used below. The lattice
of charges γ satisfying (2.19) will be denoted by . The cone + ⊂  is obtained by



560 S. Alexandrov, B. Pioline

imposing the further restriction that the D4-brane charge pa corresponds to an effective
divisor in Y and belongs to the Kähler cone, i.e.

p3 > 0, (rp2) > 0, ka p
a > 0, (2.20)

for all effective divisors raγa ∈ H+
4 (Y,Z) and effective curves kaγ a ∈ H+

2 (Y,Z),
where γa denotes irreducible divisors giving an integer basis of � = H4(Y,Z), dual to
the basis γ a of �∗ = H2(Y,Z). The charge pa induces a quadratic form κab = κabc pc

on �⊗R � Rb2 of signature (1, b2 − 1). This quadratic form allows to embed � into
�∗, but the map εa �→ κabε

b is in general not surjective, the quotient �∗/� being a
finite group of order | det κab|.

The holomorphic central charge, governing the mass of BPS states, is given by

Zγ (za) = q�X�(za)− p�F�(za), (2.21)

where X�(za) = (1, za) are the special coordinates and F� = ∂X�F(X) is the derivative
of the holomorphic prepotential F(X) on MK. In the large volume limit ta →∞, the
prepotential reduces to the classical cubic contribution

F(X) ≈ Fcl(X) = −κabc
Xa XbXc

6X0 , (2.22)

and the central charge can be approximated as

Zγ ≈ −1

2
(pt2) + i

(
qat

a + (pbt)
)
+ q0 + qab

a +
1

2
(pb2). (2.23)

Note, in particular, that it always has a large negative real part. Another useful observation
is that both quantities appearing in the definition of �z

γLγR
(2.4) are independent of the

last component q0 of the charge vector. Indeed,

〈γ, γ ′〉 = qa p
′a − q ′a pa,

Im
[
Zγ Z̄γ ′

] = − 1

2

(
(p′t2)(qa + (pb)a)t

a − (pt2)(q ′a + (p′b)a)ta
)
.

(2.24)

The BPS index �̄(γ, za) counting D4–D2–D0 black holes is given mathematically
by the generalized Donaldson-Thomas invariant, which counts12 semi-stable coherent
sheaves supported on a divisorD in the homology class paγa , with first and secondChern
numbers determined by (qa, q0). An important property of these invariants is that they
are unchanged under a combined integer shift of the Kalb-Ramond field, ba �→ ba + εa ,
and a spectral flow transformation acting on the D2 and D0 charges

qa �→ qa − κabc p
bεc, q0 �→ q0 − εaqa +

1

2
(pεε). (2.25)

The shift of ba is important since the DT invariants are only piecewise constant as
functions of the complexified Kähler moduli za = ba + ita due to wall-crossing.

In contrast, the MSW invariants �̄MSW(γ ), defined as the generalized DT invariants
�̄(γ, za) evaluated at their respective large volume attractor point (1.1), are by construc-
tion independent of the moduli, and therefore invariant under the spectral flow (2.25).

12 More precisely, the generalized DT invariant computes the weighted Euler characteristic of the mod-
uli space of semi-stable coherent sheaves [47]; in this context, the DSZ product 〈γ, γ ′〉 coincides with the
antisymmetrized Euler form.
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As a result, they only depend on pa, μa and q̂0, where we traded the electric charges
(qa, q0) for (εa, μa, q̂0). The latter comprise the spectral flow parameter εa , the residue
class μa ∈ �∗/� defined by the decomposition

qa = μa +
1

2
κabc p

b pc + κabc p
bεc, εa ∈ �, (2.26)

and the invariant charge (κab is the inverse of κab)

q̂0 ≡ q0 − 1

2
κabqaqb , (2.27)

which is invariant under (2.25). This allows to write �̄MSW(γ ) = �̄p,μ(q̂0).
An important fact is that the invariant charge q̂0 is bounded from above by q̂max

0 =
1
24 ((p

3) + c2,a pa). This allows to define two generating functions

hDTp,q(τ, z
a) =

∑

q̂0≤q̂max
0

�̄(γ, za) e
(−q̂0τ

)
, (2.28)

h p,μ(τ ) =
∑

q̂0≤q̂max
0

�̄p,μ(q̂0) e
(−q̂0τ

)
, (2.29)

where we used notation e (x) = e2π ix . Whereas the generating function of DT invariants
hDTp,q depends on the full electric charge qa and depends on the moduli za in a piecewise
constant fashion, the generating function of MSW invariants h p,μ(τ ), due to the spectral
flow symmetry, depends only on the residue class μa . This generating function will be
the central object of interest in this paper, and our main goal will be to understand its
behavior under modular transformations of τ .

In general, the MSW invariants �̄MSW(γ ) are distinct from the attractor moduli
�̄�(γ ), since the latter coincide with the generalized DT invariants �̄(γ, za) evaluated
at the true attractor point za∗(γ ) for the charge γ , while the former are the generalized
DT invariants evaluated at the large volume attractor point za∞(γ ) defined in (1.1).
Nevertheless, we claim that in the large volume limit ta → ∞, the tree flow formula
reviewed in the previous subsections still allows to express �̄(γ, za) in terms of the
MSW invariants, namely

�̄(γ, za) =
∑

∑n
i=1 γi=γ

gtr,n({γi }, za)
n∏

i=1
�̄MSW(γi ) ( Im za →∞) (2.30)

The point is that the only walls of marginal stability which extend to infinite volume are
those where the constituents carry no D6-brane charge, and that non-trivial bound states
involving constituents with D4-brane charge are ruled out at the large volume attractor
point, similarly to the usual attractor chamber. Since the r.h.s. of (2.30) is consistent
with wall-crossing in the infinite volume limit and agrees with the left-hand side at
za = za∞(γ ), it must therefore hold everywhere at large volume. Of course, some of the
states contributing to �̄MSW(γi ) may have some substructure, e.g. be realized as D6-D6
bound states, but this structure cannot be probed in the large volume limit. Importantly,
since the quantities (2.24) entering in the definition of the tree index are independent
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of the D0-brane charge q0, the flow tree formula (2.30) may be rewritten as a relation
between the generating functions,

hDTp,q(τ, z
a) =

∑

∑n
i=1 γ̌i=γ̌

gtr,n({γ̌i }, za) eπ iτQn({γ̌i })
n∏

i=1
h pi ,μi (τ ), (2.31)

where γ̌ = (pa, qa) denotes the projection of the charge vector γ on H4 ⊕ H2, and the
phase proportional to

Qn({γ̌i }) = κabqaqb −
n∑

i=1
κab
i qi,aqi,b (2.32)

appears due to the quadratic term in the definition (2.27) of the invariant charge q̂0.

3. D3-Instantons and Contact Potential

In this section, we switch to the dual setup13 of type IIB string theory compactified
on the same CY manifold Y. The DT invariants, describing the BPS degeneracies of
D4–D2–D0 black holes in type IIA, now appear as coefficients in front of the D3–D1–
D(-1) instanton effects affecting the metric on the hypermultiplet moduli space MH .
The main idea of our approach is that these instanton effects are strongly constrained by
demanding thatMH admits an isometric action of the type IIB S-duality SL(2,Z). This
constraint uniquely fixes the modular behavior of the generating functions introduced in
the previous section.Herewe recall the twistorial construction ofD-instanton corrections
to the hypermultiplet metric, describe the action of S-duality, and analyze the instanton
expansion of a particular function on MH known as contact potential.

3.1. MH and twistorial descriptionof instantons . Themoduli spaceof four-dimensional
N = 2 supergravity is a direct product of vector and hypermultiplet moduli spaces,
MV ×MH . The former is a (projective) special Kähler manifold, whereas the latter
is a quaternion-Kähler (QK) manifold. In type IIB string theory compactified on a CY
threefoldY,MH is a space of real dimension 4b2(Y)+4, which is fibered over the com-
plexified Kähler moduli spaceMK(Y) of dimension 2b2(Y). In addition to the Kähler
moduli za = ba + ita , it describes the dynamics of the ten-dimensional axio-dilaton
τ = c0 + i/gs , the Ramond-Ramond (RR) scalars ca, c̃a, c̃0, corresponding to periods of
the RR 2-form, 4-form and 6-form on a basis of H even(Y,Z), and finally, the NS-axion
ψ , dual to the Kalb-Ramond two-form B in four dimensions.

At tree-level, the QK metric onMH is obtained from the Kähler moduli spaceMK
via the c-map construction [57,58] and thus is completely determinedby the holomorphic
prepotential F(X). But this metric receives gs-corrections, both perturbative and non-
perturbative. The latter can be of two types: either from Euclidean D-branes wrapping
even dimensional cycles onY, or fromNS5-branes wrapped around the wholeY. In this
paper we shall be interested only in the effects of D3–D1–D(-1) instantons, and ignore

13 Our preference for the type IIB set-up is merely for consistency with our earlier works on hypermultiplet
moduli spaces in d = 4 Calabi–Yau vacua. The same considerations apply verbatim, with minor changes of
wording, to the vector multiplet moduli space in type IIA string theory compactified onY× S1, which is more
directly related to the counting of D4–D2–D0 black holes in four dimensions.
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the effects of NS5 and D5-instantons, which are subleading in the large volume limit.
Since NS5-instantons only mix with D5-instantons under S-duality, this truncation does
not spoil modular invariance [21].

The most concise way to describe the D-instanton corrections is to consider type IIA
string theory compactified on the mirror CY threefold Ŷ and use the twistor formalism
for quaternionic geometries [38,39]. In this approach the metric is encoded in the com-
plex contact structure on the twistor space, a CP1-bundle over MH . The D-instanton
corrected contact structure has been constructed to all orders in the instanton expansion
in [37,40], and an explicit expression for the metric has been derived recently in [59,60].
Here we will present only those elements of the construction which are relevant for the
subsequent analysis, and refer to reviews [61,62] for more details.

The crucial point is that, locally, the contact structure is determined by a set of holo-
morphic Darboux coordinates (ξ�, ξ̃�, α) on the twistor space, considered as functions
of coordinates on MH and of the stereographic coordinate t on the CP1 fiber, so that
the contact one-form takes the canonical form dα + ξ̃�dξ�. Although all Darboux co-
ordinates are important for recovering the metric, for the purposes of this paper the
coordinate α is irrelevant. Therefore, we consider only ξ� and ξ̃� which can be con-

veniently packaged into holomorphic Fourier modes Xγ = e
(
p�ξ̃� − q�ξ�

)
labelled

by a charge vector γ = (p�, q�).
At tree level, the Darboux coordinates (multiplied by t) are known to be simple

quadratic polynomials in t so that Xγ take the form14

X sf
γ (t) = e

(
τ2

2

(
Z̄γ (ūa) t − Zγ (ua)

t

)
+ p�ζ̃� − q�ζ�

)
, (3.1)

where Zγ (ua) is the central charge (2.21), now expressed in terms of the complex
structure moduli ua of the CY threefold Ŷmirror toY, ζ� and ζ̃� are periods of the RR
3-form in the type IIA formulation, and τ2 = g−1s is the inverse ten-dimensional string
coupling. At the non-perturbative level, this expression gets modified and the Darboux
coordinates are determined by the integral equation

Xγ (t) = X sf
γ (t) e

⎛

⎝ 1

8π2

∑

γ ′
σγ ′ �̄(γ ′) 〈γ, γ ′〉

∫


γ ′

dt ′

t ′
t + t ′

t − t ′
Xγ ′(t

′)

⎞

⎠ , (3.2)

where the sum goes over all charges labelling cycles wrapped by D-branes, �̄(γ ′) =
�̄(γ ′, za) is the corresponding rational Donaldson-Thomas invariant,


γ = {t ∈ CP1 : Zγ /t ∈ iR−} (3.3)

is the so called BPS ray, a contour on CP1 extending from t = 0 to t = ∞ along the
direction fixed by the central charge, and σγ is a quadratic refinement of the DSZ product
on the charge lattice , i.e. a sign factor satisfying the defining relation

σγ1σγ2 = (−1)〈γ1,γ2〉σγ1+γ2 , ∀γ1, γ2 ∈ . (3.4)

The system of integral equations (3.2) can be solved iteratively by first substituting
Xγ ′(t ′) on the r.h.s. with its zero-th order value X sf

γ ′ (t
′) in the weak coupling limit

14 The superscript ‘sf’ stands for ‘semi-flat’, which refers to the flatness of the classical geometry in the
directions along the torus fibers parametrized by ζ�, ζ̃�.
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τ2 →∞, computing the leading correction from the integral and iterating this process.
This produces an asymptotic series at weak coupling, in powers of the DT invariants
�̄(γ ). Using the saddle point method, it is easy to check that the coefficient of each
monomial

∏
i �̄(γi ) is suppressed by a factor e−πτ2

∑
i |Zγi |, corresponding to an n-

instanton effect [41,63]. Note that multi-instanton effects become of the same order
as one-instanton effects on walls of marginal stability where the phases of Zγi become
aligned, and that the wall-crossing formula ensures that the QKmetric onMH is smooth
across the walls [40,41].

3.2. D3-instantons in the large volume limit. The above construction of D-instantons
is adapted to the type IIA formulation because the equation (3.2) defines the Darboux
coordinates in terms of the type IIA fields appearing explicitly in the tree level expression
(3.1). To pass to the mirror dual type IIB formulation, one should apply the mirror
map, a coordinate transformation from the type IIA to the type IIB physical fields. This
transformation was determined in the classical limit in [64], but it also receives instanton
corrections. In order to fix the form of these corrections, we require that the metric on
MH carries an isometric action of S-duality group SL(2,Z) of type IIB string theory,

which acts on the type IIB fields by an element g =
(
a b
c d

)
in the following way

τ �→ aτ + b

cτ + d
, ta �→ |cτ + d| ta,

(
ca

ba

)
�→
(
a b
c d

)(
ca

ba

)
,

c̃a �→ c̃a − c2,aε(g),

(
c̃0
ψ

)
�→
(

d −c
−b a

)(
c̃0
ψ

)
,

(3.5)

where ε(g) is the logarithm of the multiplier system of the Dedekind eta function [56].
For this purpose, one uses the fact that any isometric action on a quaternion-Kähler

manifold (preserving the quaternionic structure) can be lifted to a holomorphic contact
transformation on twistor space. In the present case, SL(2,Z) acts on the fiber coordinate
t by a fractional-linear transformationwith τ -dependent coefficients. This transformation
takes a much simpler form when formulated in terms of another coordinate z on CP1

(not to be confused with the Kähler moduli za), which is related to t by a Cayley
transformation,

z = t + i

t − i
. (3.6)

Then the action of SL(2,Z) on the fiber is given by a simple phase rotation15

z �→ cτ̄ + d

|cτ + d| z . (3.7)

Using the holomorphy constraint for the SL(2,Z) action on the twistor space, quan-
tum corrections to the classical mirror map were computed in [21,26,66,67], in the large
volume limit where the Kähler moduli are taken to be large, ta →∞. In this limit, one
finds

15 Actually, this is true only when five-brane instanton corrections are ignored. Otherwise, the lift also gets
a non-trivial deformation [65].
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ua = ba + ita − i

2τ2

∑

γ∈+

pa
[∫


γ

dz (1− z) Hγ +
∫


−γ

dz

z3
(1− z) H−γ

]

ζ 0 = τ1, ζ a = −(ca − τ1b
a)− 3

∑

γ∈+

pa Re
∫


γ

dz z Hγ ,

ζ̃a = c̃a +
1

2
κabc b

b(cc − τ1b
c) + κabct

b
∑

γ∈+

pc Im
∫


γ

dz Hγ ,

(3.8)

where we introduced the convenient notation16

Hγ (t) = �̄(γ )

(2π)2
σγXγ (t) . (3.9)

Similar results are known for ζ̃0 and the NS-axion dual to the B-field, but will not be
needed in this paper.

Note that the integral contributions to the mirror map are written in terms of the
coordinate z (3.6). The reason for using this variable is that, in the large volume limit,
the integrals along BPS rays 
γ in (3.2) are dominated by the saddle point [21]

z′γ ≈ −i
(qa + (pb)a) ta

(pt2)
, (3.10)

for (pt2) > 0, and z′−γ = 1/z′γ in the opposite case. This shows that all integrands can
be expanded in Fourier series either around z = 0 or z = ∞, keeping constant taz or
ta/z, respectively. This allows to extract the leading order in the large volume limit in a
simple way.

Let us therefore evaluate the combined limit ta → ∞, z → 0 of the system of
integral equations (3.2), assuming that only D3–D1–D(-1) instantons contribute. As a
first step, we rewrite the tree level expression (3.1) in terms of the type IIB fields. To this
end, we restrict the charge γ to lie in the cone +, take the central charge as in (2.21)
with the cubic17 prepotential (2.22), and substitute the mirror map (3.8). Furthermore,
we change the coordinate t to z and take the combined limit. In this way one finds

X sf
γ (z) = X cl

γ (z) exp

⎡

⎣2π
∑

γ ′∈+

(tpp′)
∫


γ ′
dz′ Hγ ′

⎤

⎦ , (3.11)

where

X cl
γ (z) = e

(−q̂0τ
)
X (θ)

p,q(z) (3.12)

16 The functions Hγ have a simple geometric meaning [37,68]: they generate contact transformations (i.e.
preserving the contact structure) relating the Darboux coordinates living on patches separated by BPS rays.
In fact, these functions together with the contours 
γ are the fundamental data fixing the contact structure on
the twistor space.
17 The other contributions to the prepotential, representing perturbative α′-corrections and worldsheet in-

stantons, combine with D(-1) and D1-instantons, but are irrelevant for our discussion of D3-instantons in the
large volume limit.
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is the classical part of the Darboux coordinates which we represented as a product of
two factors: exponential of the invariant charge (2.27) and the remaining q0-independent
exponential

X (θ)
p,q(z) = e−Sclp e

(
−τ

2
(q + b)2 + ca(qa + 1

2 (pb)a) + iτ2(pt2)(z2 − 2zzγ )
)

, (3.13)

with Sclp being the leading part of the Euclidean D3-brane action in the large volume
limit given by Sclp = πτ2(pt2)− 2π ipac̃a . Next, we can approximate

dt ′

t ′
t + t ′

t − t ′
= 2dz′

1− z′2
1− zz′

z − z′
≈
⎧
⎨

⎩

2dz′
z−z′ , γ ′ ∈ +,

2(1−zz′)dz′
z′3 , γ ′ ∈ −+.

(3.14)

This shows that the contribution of γ ′ ∈ −+ is suppressed comparing to γ ′ ∈ + and
therefore can be neglected. As a result, the system of integral equations (3.2) in the large
volume limit where only D3–D1–D(-1) instantons contribute reduces to the following
system of integral equations for Hγ ,

Hγ (z) = H cl
γ (z) exp

⎡

⎣
∑

γ ′∈+

∫


γ ′
dz′ Kγ γ ′(z, z

′) Hγ ′(z
′)

⎤

⎦ . (3.15)

Here H cl
γ is the classical limit of Hγ , i.e. the function (3.9) with Xγ replaced by X cl

γ ,
the integration kernel is now

Kγ1γ2(z1, z2) = 2π

(
(tp1 p2) +

i〈γ1, γ2〉
z1 − z2

)
, (3.16)

and the BPS ray 
γ effectively extends from z′ = −∞ to z′ = +∞, going through the
saddle point (3.10) [21].

Below we shall need a perturbative solution of the integral equation (3.15). Applying
the iterative procedure outlined below (3.4), or equivalently using the Lagrange inversion
theorem, such solution can be written as a sum over rooted trees [41, §C],

Hγ1(z1) = H cl
γ1

(z1)
∞∑

n=1

⎛

⎝
n∏

i=2

∑

γi∈+

∫


γi

dzi H
cl
γi

(zi )

⎞

⎠
∑

T ∈Tr
n

A(T )

|Aut(T )| , (3.17)

where Tr
n is the set of rooted trees with n vertices and

A(T ) =
∏

e∈ET

Kγs(e),γt (e) (zs(e), zt (e)). (3.18)

A rooted tree18 T consists of n vertices joined by directed edges so that the root vertex
has only outgoing edges, whereas all other vertices have one incoming edge and an

18 We will use calligraphic letters T for trees where charges γi are assigned to vertices to distinguish them
from rooted trees T where the charges are assigned to leaves (hence T has always more than n vertices).
Similarly, we will use notations v and v for vertices of these two types of trees, respectively. Note also that
whereas VT denotes the set of all vertices, VT does not includes the leaves. An example of trees of the latter
type are attractor flow trees.
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arbitrary number of outgoing ones. We label the vertices of T by v = 1, . . . , n in an
arbitrary fashion, except for the root which is labelled by v = 1. The symmetry factor
|Aut(T )| is the order of the symmetry group which permutes the labels 2, . . . , n without
changing the topology of the tree. Each vertex is decorated by a charge vector γv and
a complex variable zv ∈ CP1. We denote the set of edges by ET , the set of vertices
by VT , and the source and target vertex of an edge e by s(e) and t (e), respectively.
Unpacking these notations, we get, at the few leading orders,

Hγ1 = H cl
γ1

+
∑

γ2

K12H
cl
γ1

H cl
γ2

+
∑

γ2,γ3

( 1
2 K12K13 + K12K23

)
H cl

γ1
H cl

γ2
H cl

γ3

+
∑

γ2,γ3,γ4

( 1
6 K12K13K14 + 1

2 K12K23K24

+K12K13K24 + K12K23K34) H
cl
γ1

H cl
γ2

H cl
γ3

H cl
γ4

+ · · · (3.19)

where we omitted the integrals and denoted Ki j = Kγi ,γ j (zi , z j ). The expansion (3.17)
is effectively a multi-instanton expansion in powers of the DT invariants �̄(γi ), which
is asymptotic to the exact solution to (3.15) in the weak coupling limit τ2 →∞.

3.3. From the contact potential to the instanton generating function. Recall that our goal
is to derive constraints imposed by S-duality on the DT invariants �̄(γ ) appearing as
coefficients in the multi-instanton expansion. To achieve this goal, rather than studying
the full metric on MH , it suffices to consider a suitable function on this moduli space
which has a non-trivial dependence on �̄(γ ) and specified transformations under S-
duality. There is a natural candidate with the above properties: the so-called contact
potential eφ , a real function which is well-defined on any quaternion-Kähler manifold
with a continuous isometry [39]. Furthermore, there is a general expression for the
contact potential in terms of Penrose-type integrals on theCP1 fiber. In the present case,
the required isometry is the shift of theNS-axion, which survives all quantum corrections
as long as NS5-instantons are switched off. The contact potential is then given by the
exact formula [37]

eφ = iτ 22
16

(
ū�F� − u� F̄�

)− χŶ

192π
+
iτ2
16

∑

γ

∫


γ

dt

t

(
t−1Zγ (ua)− t Z̄γ (ūa)

)
Hγ ,

(3.20)

where χŶ is the Euler characteristic of Ŷ. This formula indeed captures contribution
from D-instantons due to the last term proportional to Hγ .

On the other hand, in the classical, large volume limit one finds eφ = τ 22
12 (t

3), which
shows that the contact potential can be identified with the four-dimensional dilaton and
in this approximation behaves as a modular form of weight (− 1

2 ,− 1
2 ) under S-duality

transformations (3.5). In fact, one can show [37] that SL(2,Z) preserves the contact
structure, i.e. it is an isometry ofMH , only if the full non-perturbative contact potential
transforms in this way,

eφ �→ eφ

|cτ + d| . (3.21)
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Furthermore, since S-duality acts by rescaling the Kähler moduli ta and by a phase
rotation of the fiber coordinate z (see (3.7)), it preserves each order in the expansion
around the large volume limit. This implies that the large volume limit of theD3-instanton
contribution to eφ , which we denote by (eφ)D3, must itself transform as (3.21). It is this
condition that we shall exploit to derive modularity constraints on the DT invariants.

To make this condition more explicit, let us extract the D3-instanton contribution
to the function (3.20). The procedure is the same as the one used to get (3.15), and
we relegate the details of the calculation to appendix B. The result can be written in a
concise way using the complex function defined by

G =
∑

γ∈+

∫


γ

dz Hγ (z)− 1

2

∑

γ1,γ2∈+

∫


γ1

dz1

∫


γ2

dz2 Kγ1γ2(z1, z2) Hγ1(z1)Hγ2(z2)

(3.22)

and the Maass raising operator

Dh = 1

2π i

(
∂τ +

h

2iτ2
+

ita

4τ2
∂ta

)
, (3.23)

whichmapsmodular functions of weight (h, h̄) to modular functions of weight (h+2, h̄).
Then one has (generalizing [14, (4.5)] to all orders in the instanton expansion)

(eφ)D3 = τ2

2
Re
(
D− 3

2
G
)
+

1

32π2 κabct
c∂c̃aG∂c̃bG. (3.24)

It is immediate to see that (eφ)D3 transforms under S-duality as (3.21) provided the
function G transforms as a modular form of weight (− 3

2 ,
1
2 ). In order to derive the

implications of this fact, we need to express G in terms of the generalized DT invariants.
For this purpose, we substitute the multi-instanton expansion (3.17) into (3.22). We

claim that the result takes the simple form

G =
∞∑

n=1

⎡

⎣
n∏

i=1

∑

γi∈+

∫


γi

dzi H
cl
γi

(zi )

⎤

⎦Gn({γi , zi }), (3.25)

where Gn({γi , zi }) is now a sum over unrooted trees with n vertices,

Gn({γi , zi }) =
∑

T ∈Tn

A(T )

|Aut(T )| =
1

n!
∑

T ∈T

n

A(T ), (3.26)

and in the second equality we rewrote the result as a sum over unrooted labelled trees.19

To see why this is the case, observe that under the action of the Euler operator
D̂ = H cl∂H cl rescaling all functions H cl

γ , the function G maps to the first term in (3.22),
which we denote by F . Namely,

D̂ · G = F , F ≡
∑

γ∈+

∫


γ

dz Hγ , (3.27)

19 The number of such trees is |T

n | = nn−2 = {1, 1, 3, 16, 125, 1296, . . .} for n ≥ 1. Such trees also

appear in the Joyce-Song wall-crossing formula [47,48] and are conveniently labelled by their Prüfer code.
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as can be verified with the help of the integral equation (3.15). The multi-instanton
expansion of F follows immediately from (3.17),

F =
∞∑

n=1

⎛

⎝
n∏

i=1

∑

γi∈+

∫


γi

dzi H
cl
γi

(zi )

⎞

⎠
∑

T ∈Tr
n

A(T )

|Aut(T )| . (3.28)

Integrating back the action of the derivative operator D̂, we see that the sum over rooted
trees in (3.28) turns into the sum over unrooted trees in (3.26). At the first few orders
we get, using the same shorthand notation as in (3.19),

G =
∑

γ

H cl
γ +

1

2

∑

γ1,γ2

K12H
cl
γ1

H cl
γ2

+
1

2

∑

γ1,γ2,γ3

K12K23H
cl
γ1

H cl
γ2

H cl
γ3

+
∑

γ1,γ2,γ3,γ4

(
1

6
K12K13K14 +

1

2
K12K23K34

)
H cl

γ1
H cl

γ2
H cl

γ3
H cl

γ4
+ · · ·

(3.29)

The simplicity of the expansion (3.26), and the relation (3.24) to the contact potential,
show that the function G is very natural and, in some sense, more fundamental20 than
the naive instanton sum F . We shall henceforth refer to G as the ‘instanton generating
function’. In the following we shall postulate that G transforms as a modular form of
weight (− 3

2 ,
1
2 ), and analyze the consequences of this requirement for the DT invariants.

4. Theta Series Decomposition and Modularity

In this section, we use the spectral flow symmetry to decompose the instanton generating
function G into a sum of indefinite theta series multiplied by holomorphic generating
functions of MSW invariants. We then study the modular properties of these indefinite
theta series, and identify the origin of the modular anomaly.

4.1. Factorisation. To derive modularity constraints on the DT invariants, we need to
perform a theta series decomposition of the generating function G defined in (3.22).
To this end, let us make use of the fact noticed in (2.24) that the DSZ products 〈γ, γ ′〉
and hence the kernels (3.16) do not depend on the q0 charge. Choosing the quadratic
refinement σγ as in (D.5), which is also q0-independent, and using the factorization
(3.12) of X cl

γ , one can rewrite the expansion (3.25) as follows

G =
∞∑

n=1

1

(2π)2n

[
n∏

i=1

∑

pi ,qi

σpi ,qi h
DT
pi ,qi

∫


γi

dzi X (θ)
pi ,qi (zi )

]

Gn({γi , zi }), (4.1)

where the sum over the invariant charges q̂i,0 gave rise to the generating functions of DT
invariants defined in (2.28). This is not yet the desired form because these generating
functions depend non-trivially on the remaining electric charges qi,a . If it were not for
this dependence, the sum over qi,a would produce certain non-Gaussian theta series, and

20 In [14], it was noticed that the function G, denoted by F̃ in that reference and computed at second order
in the multi-instanton expansion, could be obtained from the seemingly simpler function F by halving the
coefficient of its second order contribution. Now we see that this ad hoc prescription is the consequence of
going from rooted to unrooted trees, as a result of adding the second term in (3.22).
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at each order we would have a product of this theta series and n generating functions.
Then the modular properties of the theta series would dictate the modular properties of
the generating function.

Such a theta series decomposition can be achieved by expressing the DT invariants
in terms of the MSW invariants, for which the dependence on electric charges qi,a
reduces to the dependence on the residue classes μi,a due to the spectral flow symmetry.
Substituting the expansion (2.31) of hDTp,q in terms of h p,μ, the expansion (4.1) of the
function G can be brought to the following factorized form

G =
∞∑

n=1

2− n
2

π
√
2τ2

[
n∏

i=1

∑

pi ,μi

σpi h pi ,μi

]

e−Sclp ϑ p,μ
(
	tot

n , n − 2
)
, (4.2)

where ϑ p,μ is a theta series (D.1) with parameter λ = n − 2, whose kernel has the
following structure

	tot
n (x) = Sym

⎧
⎪⎨

⎪⎩

∑

n1+···nm=n
nk≥1

	
∫

m(x′)
m∏

k=1
	

g
nk (x jk−1+1, . . . , x jk )

⎫
⎪⎬

⎪⎭
. (4.3)

Here the sum runs over ordered partitions of n, whose number of parts is denoted by
m, and we adopted notations from (2.17) for indices jk . The argument x of the kernel
encodes the electric components of the charges (shifted by the B-field and rescaled by√
2τ2) and lives in a vector space

(⊕n
i=1�i

) ⊗ R of dimension d = nb2, given by b2
copies of the lattice �, where the i-th copy �i carries the bilinear form κi,ab = κabc pci
of signature (1, b2 − 1). Therefore, ϑ p,μ is an indefinite theta series associated to the
bilinear form given explicitly in (D.4), which has signature (n, n(b2 − 1)).

Finally, the kernel (4.3) is constructed from two other functions. The first, 	
∫

n , is the
iterated integral of the coefficient Gn in the expansion (3.25),

	
∫

n (x) =
(√

2τ2
2π

)n−1 [ n∏

i=1

∫


γi

dzi
2π

Wpi (xi , zi )

]

Gn({γi , zi }), (4.4)

weighted with the Gaussian measure factor

Wp(x, z) = e−2πτ2z2(pt2)−2π i√2τ2 z (pxt) (4.5)

coming from the z-dependent part of (3.13). Although this function is written in terms
of Gn depending on full electromagnetic charge vectors γi , it is actually independent of
their q0 components. Indeed, using the result (3.26), it can be rewritten as

	
∫

n (x) = 1

n!

[
n∏

i=1

∫


γi

dzi
2π

Wpi (xi , zi )

]
∑

T ∈T

n

∏

e∈ET

K̂s(e)t (e), (4.6)

where we introduced a rescaled version of the kernel (3.16)

K̂i j (zi , z j ) =
((√

2τ2 t + i
xi − x j
zi − z j

)
pi p j

)
. (4.7)
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Note that τ2 and ta appear only in the modular invariant combination
√
2τ2 ta . In (4.3)

this function appears with the argument x′ and carries a dependence on p′ (not indicated
explicitly) which are both mb2-dimensional vectors with components (cf. (2.17))

p′ak =
jk∑

i= jk−1+1
pai , x ′ak = κ ′abk

jk∑

i= jk−1+1
κi,bcx

c
i , (4.8)

where κ ′k,ab = κabc p′ck .
The second function, 	 g

n , appears due to the expansion of DT invariants in terms of
the MSW invariants and is given by a suitably rescaled tree index

	
g
n (x) = σγ (

√
2τ2)n−1∏n

i=1 σγi

gtr,n({γi , ci }). (4.9)

It is also written in terms of functions depending on the full electromagnetic charge
vectors γi (with γ = γ1 + · · · γn). However, using (3.4), all quadratic refinements can
be expressed through (−1)〈γi ,γ j 〉 which cancel the corresponding sign factors in the tree
index (see (2.7)). Furthermore, as was noticed in the end of Sect. 2.3, the tree index is
independent of the q0 components of the charge vectors. Therefore, it can be written as a
function of pai , μi,a and xai =

√
2τ2(κab

i qi,b + ba). Then, since after cancelling the sign
factors, gtr,n becomes a homogeneous function of degree n − 1 in the D2-brane charge
qi,a , all factors of

√
2τ2 in (4.9) cancel as well.

4.2. Modularity and Vignéras’ equation. As explained in appendix D.1, the theta series
ϑ p,μ

(
	,λ

)
is a vector-valued modular form of weight (λ + d/2, 0) provided the kernel

	 satisfies Vignéras’ equation (D.3)—along with certain growth conditions which we
expect to be automatically satisfied for the kernels of interest in this work. In our case
λ = n− 2 and the dimension of the lattice is d = nb2(Y) so that the expected weight of
the theta series is (n − 2 + nb2/2, 0). It is consistent with weight (− 3

2 ,
1
2 ) of G given in

(4.2) only if h p,μ is a vector-valued holomorphicmodular form ofweight (−b2/2−1, 0).
However for this to be true, the kernel 	tot

n ought to satisfy Vignéras’ equation. Let us
examine whether or not this is the case.

To this end, we first consider the kernel	
∫

n (4.6). In appendix Ewe evaluate explicitly
the iterated integrals defining this kernel. To present the final result, let us introduce the
following d-dimensional vectors vi j , ui j :

(vi j )
a
k = δki p

a
j − δk j p

a
i such that vi j · x = (pi p j (xi − x j )),

(ui j )
a
k = δki (p j t

2)ta − δk j (pi t
2)ta such that ui j · x = (p j t

2)(pi xi t)− (pi t
2)(p j x j t),

(4.10)

where k labels the copy in ⊕n
k=1�k , a = 1, . . . , b2, and the bilinear form is given in

(D.4). The first scalar product vi j ·x corresponds to theDSZproduct 〈γi , γ j 〉, whereas the
second product ui j · x corresponds to−2 Im [Zγi Z̄γ j ] (2.24), both rescaled by

√
2τ2 and

expressed in terms of xai . From these vectors we can construct two sets of vectors which
are assigned to the edges of an unrooted labelled tree T , such as the trees appearing in
(3.26) and (4.6). Namely,

ve =
∑

i∈VT s
e

∑

j∈VT t
e

vi j , ue =
∑

i∈VT s
e

∑

j∈VT t
e

ui j , (4.11)
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where T s
e , T t

e are the two disconnected trees obtained from the tree T by removing the

edge e. Then the kernel 	
∫

n can be expressed as follows21

	
∫

n (x) = 	
∫

1 (x)

2n−1n!
∑

T ∈T

n

	̃M
n−1({ue}, {vs(e)t (e)}; x). (4.12)

Here the first factor is simply a Gaussian

	
∫

1 (x) = e
− π(pxt)2

(pt2)

2π
√
2τ2(pt2)

(4.13)

which ensures the suppression along the direction of the total charge in the charge
lattice. In the second factor one sums over unrooted labelled trees T with n vertices,
with summand given by a function 	̃M

n defined as in (D.17), upon replacing 	E
n by 	M

n
in that expression and setting m = n. Both 	E

n and 	M
n are the so-called generalized

(complementary) error functions introduced in [28] and further studied in [29], whose
definitions are recalled in (D.10), (D.11) and (D.14). The functions 	̃M

n−1 in (4.12)
depend on two sets of n − 1 d-dimensional vectors: the vectors in the first set are given
by ue defined above, whereas the vectors vs(e)t (e) in the second set coincide with vi j for
i and j corresponding to the source and target vertices of edge e of the labelled tree.

The remarkable property of the generalized error functions 	M
n−1 and their uplifted

versions 	̃M
n−1 is that, away from certain loci where these functions are discontinuous,

they satisfy Vignéras’ equation for λ = 0 and n − 1, respectively. Given that 	
∫

1 is
also a solution for λ = −1, and the vector t = (ta, . . . , ta) (such that t · x = (pxt))
is orthogonal to all vectors ue and vs(e)t (e), the kernel (4.12) satisfies this equation for
λ = n − 2.

However, as mentioned above, it fails to do so on the loci where it is discontinuous.
These discontinuities arise due to dependence of the integration contours 
γ on moduli
and electric charges. Of course, since the integrands are meromorphic functions, the
integrals do not depend on deformations of the contours provided they do not cross the
poles. But this is exactly what happens when two BPS rays, say 
γ and 
γ ′ , exchange
their positions, which in turn takes place when the phases of the corresponding central
charges Zγ and Zγ ′ align, as follows from (3.3). The loci where such alignment takes
place are nothing else but thewalls ofmarginal stability. This point will play an important
rôle in the next subsection since it makes it possible to recombine the discontinuities of
the generalized error functions with discontinuities of the tree indices.

We now turn to the action of Vignéras’ operator on 	
g
n . To this end, it is convenient

to use the representation of the tree index as a sum over attractor flow trees (2.3). Let us
assign a nb2-dimensional vector ṽv to each vertex v of a flow tree. Denoting by Iv the
set of leaves which are descendants of vertex v, we set

ṽv =
∑

i∈IL(v)

∑

j∈IR(v)

vi j . (4.14)

21 Both vectors ue and vs(e)t (e) depend on the choice of orientation of the edge e, but this ambiguity is

cancelled in the function 	̃M
n−1.
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With these definitions the kernel (4.9) can be written as

	
g
n (x) = (−1)n−1

∑

T∈Taf
n

∏

v∈VT
(ṽv, x)�

z p(v)
γL(v)γR(v)

. (4.15)

The factors �z
γLγR

are locally constant and therefore, away from the loci where they
are discontinuous, the action of Vignéras operator reduces to its action on the scalar
products (ṽv, x). For a single such factor one finds

Vλ(ṽv, x) = (ṽv, x)Vλ−1 + 2ṽv · ∂x . (4.16)

The crucial observation is that all vectors ṽv appearing in the product (4.15) for a
single tree are mutually orthogonal (ṽv, ṽv′) = 0, which is clear because 〈γL(v), γR(v)〉
is antisymmetric in charges γL(v), γR(v), whereas the factors associated with vertices
which are not descendants of v either depend on their sum or do not depend on them at
all. Therefore, one obtains

Vλ	
g
nk (x)=	

g
nk (x)Vλ−nk+1+2(−1)nk−1

∑

T∈Taf
nk

�(T )
∑

v∈VT

⎡

⎣
∏

v′∈VT \{v}
(ṽv′, x)

⎤

⎦ ṽv · ∂x .

(4.17)

Let us now evaluate the action of Vn−2 on the full kernel 	tot
n . Applying the result

(4.17), we observe that the second term vanishes on the other factors in (4.3) due to the
same reason that they either do not depend (in the case of	 g

nk′ , k
′ �= k) or depend (in the

case of 	
∫

m) only on the sum of charges entering 	
g
nk . Therefore, one finds that, away

from discontinuities of generalized error functions and �(T ), one has Vn−2 ·	tot
n = 0.

4.3. Discontinuities and the anomaly. Let us now turn to the discontinuities of 	tot
n

which we ignored so far and which spoil Vignéras’ equation and hence modularity of
the theta series. There are three potential sources of such discontinuities:

1. walls of marginal stability—at these loci 	
∫

m are discontinuous due to exchange of
integration contours and 	

g
nk jump due to factors �

z p(v)
γL(v)γR(v)

assigned to the root
vertices of attractor flow trees;

2. ‘fake walls’—these are loci in the moduli space where Im
[
ZγL(v)

Z̄γR(v)
(zap(v))

] = 0,
and hence the corresponding �-factor jumps, where v is not a root vertex—they
correspond to walls of marginal stability for the intermediate bound states appearing
in the attractor flow;

3. moduli independent loci where (ṽv, x) = 0—at these loci the factors �
z p(v)
γL(v)γR(v)

and
hence 	

g
nk are discontinuous due to the second term in (2.4).

Remarkably, the two effects due to the non-trivial charge and moduli dependence of
theDT invariants and the exchange of contours cancel each other and the functionG turns
out to be smooth at loci of the first type. This is expected because the whole construction
of D-instantons has been designed to make the resulting metric on the moduli space
smooth across these loci,which required the cancellation of these discontinuities [40,41].
Moreover, in [42] it was proven that the contact potential is also smooth, which indicates
that the function G must be smooth as well. In appendix C we present an explicit proof
of this fact based on the representation in terms of trees.
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Furthermore, in [23] it was shown that the discontinuities across ‘fakewalls’ cancel in
the sum over flow trees as well. In fact, this cancellation is explicit in the representation
of the partial tree index given by the recursive formula (2.16) where the signs responsible
for such ‘fake discontinuities’ do not arise at all. As a result, it remains to consider only
the discontinuities of the third type corresponding to the moduli independent loci.

It is straightforward to check that already for n = 2 these discontinuities are indeed
present and do spoil modularity of the theta series. For small n one can explicitly evaluate
the anomaly in Vignéras’ equation. It is given by a series of terms proportional to
δ(ṽv, x). Note that no derivatives of delta functions or products of two delta functions
arise despite the presence of the second derivative in Vignéras’ operator. This is because
each sgn(ṽv, x) from �(T ) is multiplied by (ṽv, x) from κ(T ) in (2.3) and one gets a
non-vanishing result only if the second order derivative operator acts on both factors. In
particular, this implies that the anomaly is completely characterized by the action of Vλ

on 	
g
n .

5. Modular Completion

Since the theta series ϑ p,μ(	tot
n ) are not modular for n ≥ 2, the analysis of the previous

section implies that the generating function h p,μ of the MSW invariants is not modular
either whenever the divisorD = paγa is the sum of n ≥ 2 irreducible divisors. However,
its modular anomaly has a definite structure. In particular, in [14] it was shown that for
n = 2, h p,μ must be a vector-valued mixed mock modular form, i.e. it has a non-
holomorphic completion ĥ p,μ constructed in a specific way from a set of holomorphic
modular forms and their Eichler integrals [13,35]. In this section we generalize this
result for arbitrary n, i.e. for any degree of reducibility of the divisor.

5.1. Completion of the generating function. Let us recall the notations γ̌ = (pa, qa)
and Qn from (2.32), and decompose the electric component qa using spectral flow as in
(2.26). Then we define

ĥ p,μ(τ ) = h p,μ(τ ) +
∞∑

n=2

∑

∑n
i=1 γ̌i=γ̌

Rn({γ̌i }, τ2) eπ iτQn({γ̌i })
n∏

i=1
h pi ,μi (τ ). (5.1)

We are looking for non-holomorphic functions Rn , exponentially suppressed for large
τ2, such that ĥ p,μ transforms as a modular form. The condition for this to be true can be
found along the same lines as before: one needs to rewrite the expansion of the function
G as a series in ĥ p,μ and require that at each order the coefficient is given by a modular
covariant theta series. For such a theta series decomposition to be possible however, it is
important that ĥ p,μ be invariant under the spectral flow, which implies that the functions
Rn be independent of the spectral flow parameter εa in the decomposition (2.26) of the
total charge γ̌ .22 This condition will be an important consistency requirement on our
construction.

Rather than inverting (5.1) and substituting the result into (4.2), we can consider the
generating function of DT invariants hDTp,μ and, as a first step, rewrite it as a series in
ĥ p,μ. Denoting the coefficient of such expansion by ĝn({γ̌i }, za) (with ĝ1 ≡ 1), we get

22 As a result, this parameter can be fixed to zero so that the sum over the D2-brane charges qi,a is restricted

to those which satisfy the constraint
∑n

i=1 qi,a = μa + 1
2 κabc p

b pc .
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Fig. 4. An example of Schröder tree contributing toW8. Near each vertex we showed the corresponding factor
using the shorthand notation γi+ j = γi + γ j

hDTp,q(τ, z
a) =

∑

∑n
i=1 γ̌i=γ̌

ĝn({γ̌i }; za, τ2) eπ iτQn({γ̌i })
n∏

i=1
ĥ pi ,μi (τ ). (5.2)

Comparing with (2.31), we see that the coefficients ĝn are a direct analogue of the tree
index gtr,n .23 The expansion of G in terms of ĥ p,μ is then simply obtained by replacing
gtr,n by ĝn in (4.9), which affects the kernel of the corresponding theta series. Our first
problem is to express these coefficients in terms of the functions Rn .

The result can be nicely formulated using so-called Schröder trees, which are rooted
ordered trees such that all vertices (except the leaves) have at least 2 children (see Fig. 4).
Their vertices are decorated by charges in such way that the leaves have charges γi ,
whereas the charges at other vertices are defined by the inductive rule γv =∑v′∈Ch(v) γv′
whereCh(v) is the set of children of vertex v. Note that these trees should not be confused
with flow trees, since they are not restricted to be binary nor do they carry moduli at the
vertices. We denote the set of Schröder trees24 with n leaves by TS

n .
Let us also introduce a convenient notation: for any set of functions fn({γ̌i }) depend-

ing on n charges and a given Schröder tree T , we set fv ≡ fkv ({γ̌v′ }) where v′ ∈ Ch(v)

and kv is their number. Using these notations, the expression of ĝn in terms of Rn can be
encoded into a recursive equation provided by the following proposition, whose proof
we relegate to appendix F:

Proposition 1. The coefficients ĝn are determined recursively by the following equation

ĝn({γ̌i , ci }) = −1

2
Sym

{
n−1∑


=1
�z

γ 

Lγ 


R
κ(γ 


LR) ĝ
({γ̌i , c(
)
i }
i=1) ĝn−
({γ̌i , c(
)

i }ni=
+1)

}

+Wn({γ̌i }), (5.3)

where γ 

L =

∑

i=1 γi , γ 


R =
∑n

i=
+1 γi , γ 

LR = 〈γ 


L , γ 

R〉, c(
)

i are the stability parame-
ters at the point where the attractor flow crosses the wall for the decay γ → γ 


L + γ 

R

(cf. (2.14)), and Wn are functions given by the sum over Schröder trees

23 In fact, they also depend on za only through the stability parameters (2.6), so we shall often denote them
by ĝn({γ̌i , ci }; τ2).
24 The number of Schröder trees with n leaves is the n − 1-th super-Catalan number, |TS

n | ={1, 1, 3, 11, 45, 197, 903, . . .} for n ≥ 1 (sequence A001003 on the Online Encyclopedia of Integer Se-
quences).
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Wn({γ̌i }) = Sym

⎧
⎨

⎩

∑

T∈TS
n

(−1)nT
∏

v∈VT
Rv

⎫
⎬

⎭
, (5.4)

with nT being the number of vertices of the tree T (excluding the leaves). The same
functions Wn also provide the inverse formula to (5.1), namely

h p,μ(τ ) = ĥ p,μ(τ ) +
∞∑

n=2

∑

∑n
i=1 γ̌i=γ̌

Wn({γ̌i }) eπ iτQn({γ̌i })
n∏

i=1
ĥ pi ,μi (τ ). (5.5)

What are the conditions on ĝn for the corresponding theta series to be modular? Let
us denote by 	

ĝ
n the kernel defined by ĝn analogously to (4.9), namely

	
ĝ
n (x) = σγ (

√
2τ2)n−1∏n

i=1 σγi

ĝn({γi , ci }). (5.6)

Then the above analysis implies that the modularity requires 	
ĝ
n to satisfy Vignéras

equation away from walls of marginal stability, whereas at these walls its discontinuities
should follow the same pattern as before in order to cancel the discontinuities from the
contour exchange in 	

∫

m . Thus, the completion should smoothen out the discontinu-
ities from the moduli independent signs sgn(ṽv, x), but otherwise leave the action of
Vignéras’ operator unchanged. Formally, this means that 	 ĝ

n must satisfy the following
equation

Vn−1 ·	 ĝ
n = Sym

n−1∑


=1

[
u2
 �

ĝ
n,
 δ′(u
 · x) + 2u
 · ∂x�ĝ

n,
 δ(u
 · x)
]
,

�
ĝ
n,
 =

1

2
(v
, x)	

ĝ

 	

ĝ
n−
, (5.7)

where we introduced two sets of vectors constructed from the vectors (4.10),

v
 =

∑

i=1

n∑

j=
+1

vi j , u
 =

∑

i=1

n∑

j=
+1

ui j .

(5.8)

Note that (v
, x) and (u
, x) correspond to the quantities−n
 and−S
 (2.13), respec-
tively.

To solve the above constraints, let us consider the following iterative ansatz

ĝn({γ̌i , ci }) = g(0)
n ({γ̌i , ci })

−Sym

⎧
⎪⎨

⎪⎩

∑

n1+···+nm=n
nk≥1, m<n

ĝm({γ̌ ′k, c′k})
m∏

k=1
Enk (γ̌ jk−1+1, . . . , γ̌ jk )

⎫
⎪⎬

⎪⎭
, (5.9)

where the notations for indices and primed variables are the same as in (2.17). This ansatz
is motivated by analogy with the iterative equation for the (partial) tree index (2.16). It
involves two functions to be determined below, g(0)

n and En . The former depend on the
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moduli through the variables ci (2.6), whereas the latter are moduli independent. We set
g(0)
1 = E1 = 1 and also assume that g(0)

n have discontinuities only at walls of marginal
stability, i.e. at

∑
i∈I ci = 0 for various subsets I of indices.

The unknown functions g(0)
n and En together with the functions Rn defining the

completion, or their combinations (5.4), are fixed by the conditions (5.3) and (5.7). In
appendix F we prove the following result:

Proposition 2. Let us split En = E (0)
n + E (+)

n into E (+)
n , which is the part exponentially

decreasing for large τ2, and the non-decreasing remainder E (0)
n . Then the ansatz (5.9)

satisfies the recursive equation (5.7) provided

1. the functions g(0)
n are subject to a similar recursive relation

1

4
Sym

{
n−1∑


=1

(
sgn(S
)−sgn(n
)

)
κ(n
) g

(0)

 ({γ̌i , c(
)

i }
i=1) g(0)
n−
({γ̌i , c(
)

i }ni=
+1)

}

= g(0)
n ({γ̌i , ci })−g(0)

n ({γ̌i , βni }), (5.10)

where Sk, βk
, k
 and c(
)
i were defined in (2.13), (2.15);

2. the non-decreasing part of En is fixed in terms of g(0)
n ({γ̌i , ci }) as

E (0)
n ({γ̌i }) = g(0)

n ({γ̌i , βni }); (5.11)

3. its decreasing part is given by

E (+)
n ({γ̌i }) = −Sym

⎧
⎪⎨

⎪⎩

∑

n1+···+nm=n
nk≥1, m>1

Wm({γ̌ ′k})
m∏

k=1
Enk (γ̌ jk−1+1, . . . , γ̌ jk )

⎫
⎪⎬

⎪⎭
. (5.12)

Furthermore, provided the functions En depend on electric charges qi,a only through the
DSZ products γi j and their kernels 	E

n (x) defined as in (4.9) are smooth solutions of
Vignéras’ equation,

Vn−1 ·	E
n = 0, (5.13)

then the ansatz (5.9) also satisfies the modularity constraint (5.7).

This proposition allows in principle to fix all unknown functions. Indeed, the recursive
relation (5.10) determines all g(0)

n . Then equations (5.11) and (5.12) give the two parts
of En = E (0)

n +E (+)
n in terms of g(0)

n andWn . At this point the latter are still undetermined
and are defined in terms of the unknown functions Rn . The additional constraint that
En should satisfy Vignéras’ equation links together E (0)

n and E (+)
n and thus establishes a

relation between Wn and g(0)
n . Lastly, inverting (5.4) generates a solution for Rn .

We end this discussion by making an observation which will become relevant in the
next subsection: by comparing (5.2) and (2.31), it is clear that ĝn must agree with the
tree index gtr,n in the limit τ2 →∞. In particular, gtr,n satisfies a similar ansatz as (5.9),
upon replacing En by its non-decaying part:

gtr,n({γ̌i , ci }) = g(0)
n ({γ̌i , ci })− Sym

⎧
⎪⎨

⎪⎩

∑

n1+···+nm=n
nk≥1, m<n

gtr,m({γ̌ ′k, c′k})
m∏

k=1
E (0)
nk

⎫
⎪⎬

⎪⎭
. (5.14)
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It follows that the function g(0)
n should be independent of τ2, or at least that any such

dependence should cancel in the recursion (5.14).

5.2. Generalized error functions and the completion. From the previous discussion, the
first step in the construction of the modular completion is to provide an explicit expres-
sion for g(0)

n . Once such an expression is known, all other functions can be determined
algebraically. The problem, however, is that the solution of the recursive relation (5.10) is
not unique. On the other hand, g(0)

n determines the non-decaying part E (0)
n of En , which is

strongly constrained by the fact that En must satisfy Vignéras’ equation. This restriction
turns out to be strong enough to remove the redundancy in the solution of (5.10), but it
shows that we have to solve simultaneously two problems: satisfy the recursive relation
(5.10) and ensure that it can be promoted to a solution of Vignéras’ equation. We will
do this by first constructing a solution of Vignéras’ equation with the asymptotic part
possessing the properties expected from g(0)

n , and then proving that it does satisfy the
recursive relation.

A hint towards a solution of these two problems can be found by examining the form
of the kernel	

∫

n (4.12). The point is that both	
∫

n and g
(0)
n have discontinuities at walls of

marginal stability which, as we know, must cancel each other. Furthermore, they should
recombine into a smooth solution of Vignéras’ equation. Thus,	

∫

n is expected to encode
at least part of the completion of g(0)

n . In addition, as explained in appendix D.2, the
function 	̃M

n−1, from which 	
∫

n is constructed, appears as the term with fastest decay
in the expansion similar to (D.15) of the function 	̃E

n−1 defined in (D.17) with the

arguments V = {ue}, Ṽ = {vs(e)t (e)}, which is a smooth solution of Vignéras’ equation.
This motivates us to consider the following function25

Gn({γ̌i , ci }; τ2) = (−1)
∑

i< j γi j

(
√
2τ2)n−1

	̃(0)
n (x), (5.15)

where 	̃
(0)
n (x) denotes the large x limit of the function

	̃n(x) = 1

2n−1n!
∑

T ∈T

n

	̃E
n−1({ue}, {vs(e)t (e)}; x). (5.16)

Our first goal will be to evaluate this limit explicitly.
To express the result, we need to introduce two new types of trees, beyond those

already encountered. First, we denote byT

n,m the set of marked unrooted labelled trees

with n vertices andm marks assigned to vertices (see Fig. 5). Letmv ∈ {0, . . .m} be the
number of marks carried by the vertex v, so that

∑
v mv = m. Furthermore, the vertices

are decorated by charges from the set {γ1, . . . , γn+2m} such that a vertex v with mv

marks carries 1 + 2mv charges γv,s , s = 1, . . . , 1 + 2mv and we set γv =∑1+2mv
s=1 γv,s .

Second, we defineT(3)
n to be the set of (unordered, full) rooted ternary trees with n leaves

decorated by charges γi and other vertices carrying charges defined by the inductive rule
γv = γd1(v) + γd3(v) + γd3(v) where dr (v) are the three children of vertex v (see Fig. 6).
As usual, VT denotes the set of vertices, with cardinality |VT | = 1

2 (n− 1) (not counting
the leaves).

25 Note that the sign factor (−1)
∑

i< j γi j is equal to the ratio of quadratic refinements appearing in (4.9).
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Fig. 5. An example of marked unrooted tree belonging to T

7,4 where near each vertex we showed in red an

integer counting marks

Fig. 6. An example of rooted ternary tree belonging to T(3)
9

In terms of these notations, we then have the following result proven, in appendix F:

Proposition 3. The function (5.15) is given by

Gn({γ̌i , ci }; τ2) = (−1)n−1+
∑

i< j γi j

2n−1n!

[(n−1)/2]∑

m=0

(−1)m
(4πτ2)m

∑

T ∈T

n−2m,m

∏

v∈VT
Pmv({pv,s})

×
∏

e∈ET

γs(e)t (e) sgn(Se), (5.17)

where, for each edge e joining the subtrees T s
e and T t

e ,

Se =
∑

i∈VT s
e

ci =
∑

i∈VT s
e

∑

j∈VT t
e

Im
[
Zγi Z̄γ j

]
, (5.18)

and Pm is the weight corresponding to the marks, given by

Pm({ps}) =
∑

T∈T(3)
2m+1

1

T !
∏

v∈VT
(pd1(v) pd2(v) pd3(v)). (5.19)

Here T ! is the tree factorial
T ! =

∏

v∈VT
nv(T ) , (5.20)

where nv(T ), as in Theorem 1, denotes the number of vertices (excluding the leaves) of
the subtree of T rooted at v.



580 S. Alexandrov, B. Pioline

Fig. 7. Three unrooted trees constructed from the same three subtrees

To demystify the origin of these structures, note that the sum over m in (5.17) arises
because of the contributions coming from the mutual action of covariant derivative
operators D(vs(e)t (e)) (D.16) in the definition of the function 	̃E

n−1 (D.17). Such ac-
tion is non-vanishing for any pair of intersecting edges (e1, e2) and is proportional to
(pv1 pv2 pv3) where v1, v2, v3 are the three vertices belonging to the edges. While in

appendix E it is shown that such contributions cancel in the sum over trees defining 	
∫

n

(4.12), this is not so for 	̃
(0)
n (x): instead of the identity (E.5), one has to apply the sign

identity (F.20) which produces a constant term. As a result, instead of the standard sign
factors assigned to (e1, e2), one finds the weight factor (pv1 pv2 pv3). Furthermore, the
sum over trees ensures that all other factors except for this weight depend on the charges
γv1, γv2 , γv3 only through their sum. One can keep track of such contributions by col-
lapsing the corresponding pairs of edges on the tree and marking the remaining vertices
with weights mv. Essentially, the only non-trivial point is to understand the form of the
weight factor Pm for m > 1. In this case more than one pair of joint edges collapse. The
representation (5.19) in terms of rooted ternary trees is obtained by collapsing m pairs
of edges successively, where the coefficient 1/T ! takes into account that such procedure
leads to an overcounting of different assignments of labels.

Unfortunately, the function (5.17) cannot yet be taken as an ansatz for g(0)
n because it

depends non-trivially on the modulus τ2, which is in tension with the observation made
at the end of the previous subsection. Therefore, we shall modify the function (5.16)
into a function which is still a smooth solution of Vignéras’ equation, but whose large
x limit is independent of τ2. Taking cue from the structure of (5.17), we define26

	̃E
n (x) = 1

2n−1n!
[(n−1)/2]∑

m=0

∑

T ∈T

n−2m,m

⎡

⎣
∏

v∈VT
Dmv({γ̌v,s})

⎤

⎦

×	̃E
n−2m−1({ue}, {vs(e)t (e)}; x), (5.21)

where

Dm({γ̌s}) =
∑

T ′∈T

2m+1

aT ′
∏

e∈ET ′
D(vs(e)t (v)). (5.22)

The coefficients aT are rational numbers which depend (up to a sign determined by the
orientation of edges) only on the topology of the tree. We fix them by requiring that they
satisfy the following system of equations

26 The term m = 0 in (5.21) reduces to the original function (5.16), while the terms with m > 0 are the
afore-mentioned modification.
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Fig. 8. An example of calculation of the coefficient aT for a tree with 7 vertices. We indicated in red the only
vertices which produce non-vanishing contributions to the sum over vertices. For other vertices at least one of
the trees Ts (v) has even number of vertices and hence vanishing coefficient

aT̂1 + aT̂2 − aT̂3 = aT1aT2aT3 , (5.23)

where Tr (r = 1, 2, 3) are arbitrary unrooted trees with marked vertex vr and T̂r are
the three trees constructed from Tr as shown in Fig. 7.27 This system of equations is
imposed in order to ensure certain properties of the operators (5.22) which are crucial for
the cancellation of τ2-dependent terms in the asymptotics of 	̃E

n (see (F.29)). It is readily
seen that the system (5.23) fixes all coefficients aT recursively starting from a• = 1,
a•-• = 0 and going to trees with n ≥ 3 vertices. (Starting from n = 7, the system (5.23)
is overdetermined, but it can be checked that it does have a unique solution, with aT = 0
for trees with even number of vertices.) For a generic tree, in appendix F we prove the
following

Proposition 4. For a tree T with n vertices the coefficient aT is given recursively by

aT = 1

n

∑

v∈VT
εv

nv∏

s=1
aTs (v), (5.24)

where nv is the valency of the vertex v, Ts(v) are the trees obtained from T by removing
this vertex, and εv is the sign determined by the choice of orientation of edges, εv =
(−1)n+v with n+v being the number of incoming edges at the vertex. (See Fig. 8 for an
example.)

Let us now return to the function (5.21), which is now fully specified given the
prescription (5.24) for the coefficients aT . Similarly to (5.16) (which coincides with the
m = 0 contribution in (5.21)), it is a solution of Vignéras’ equation for λ = n − 1. We
claim that in the large x asymptotics of this function, all τ2-dependent contributions,
coming from the mutual action of derivative operators D, cancel. More precisely, the
asymptotics is given by the following

27 For these equations, it is important to take into account the orientation of the edges: a change of orientation
of an edge flips the sign of aT . The equations (5.23) are written assuming the orientation shown in Fig. 7,
namely e1 = (v2, v3), e2 = (v1, v3), e3 = (v1, v2).
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Proposition 5.

lim
x→∞ 	̃E

n (x) = 1

2n−1n!
[(n−1)/2]∑

m=0

∑

T ∈T

n−2m,m

∏

v∈VT
Vmv({γ̌v,s})

×
∏

e∈ET

(vs(e)t (e), x) sgn(ue, x), (5.25)

where

Vm({γ̌s}) =
∑

T ∈T

2m+1

aT
∏

e∈ET

(vs(e)t (v), x). (5.26)

Importantly the function (5.25) is locally a homogeneous polynomial of degree n −
1. Therefore, when written in terms of charges, the τ2-dependence factorizes and is
cancelled after the same rescaling as in (5.15). This naturally leads us to the following
ansatz for the function g(0)

n , which we prove in appendix F:

Proposition 6. The function

g(0)
n ({γ̌i , ci }) = (−1)n−1+

∑
i< j γi j

2n−1n!
[(n−1)/2]∑

m=0

∑

T ∈T

n−2m,m

∏

v∈VT
Ṽmv({γ̌v,s})

×
∏

e∈ET

γs(e)t (e) sgn(Se), (5.27)

where

Ṽm({γ̌s}) =
∑

T ′∈T

2m+1

aT ′
∏

e∈ET ′
γs(e)t (e), (5.28)

satisfies the recursive equation (5.10).

Note that the same recursive equation (5.10) is also obeyed by the contribution of un-
marked trees (i.e. m = 0) to g(0)

n , which we denote by g�
n (see (F.34)). However, the

latter cannot be obtained as the large x limit of a solution of Vignéras’ equation, which
is why we have to consider the more complicated function (5.27).

Given the result for g(0)
n and the relation (5.11), one obtains an explicit expression

for the non-decreasing part of En ,

E (0)
n ({γ̌i }) = (−1)

∑
i< j γi j

2n−1n!
[(n−1)/2]∑

m=0

∑

T ∈T

n−2m,m

∏

v∈VT
Ṽmv({γ̌v,s})

×
∏

e∈ET

γs(e)t (e) sgn(e), (5.29)

where

e =
∑

i∈VT s
e

∑

j∈VT t
e

γi j . (5.30)
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From Proposition 2 we know that the kernel 	E
n corresponding to the full function En

must satisfy Vignéras’ equation and have the asymptotics captured by (5.29). But we
already know a solution of Vignéras’ equation with a very similar asymptotics, namely
the function (5.21), whose asymptotics differs only in the fact that the vectors ve are
replaced by ue. Since this replacement does not affect the proof of Vignéras’ equation,
we immediately arrive at the following result:

En({γ̌i }; τ2) = (−1)
∑

i< j γi j

(
√
2τ2)n−1

	E
n (x), (5.31)

where

	E
n (x) = 1

2n−1n!
[(n−1)/2]∑

m=0

∑

T ∈T

n−2m,m

⎡

⎣
∏

v∈VT
Dmv({γ̌v,s})

⎤

⎦

×	̃E
n−2m−1({ve}, {vs(e)t (e)}; x). (5.32)

In words, the function En is a sum over marked unrooted labelled trees of solutions
of Vignéras equation with λ = n − 1, obtained from the standard generalized error
functions 	E

n−2m−1 by acting with n − 1 raising operators.

5.3. The structure of the completion. After substituting into the iterative ansatz (5.9),
the two results (5.27) and (5.32) completely specify the coefficients of the expansion
(5.2) of the generating function of DT invariants in terms of ĥ p,μ. The result of the
iteration can in fact be written explicitly as a sum over Schröder trees. Adopting the
same notations as in Proposition 1, one has

Proposition 7. The function ĝn({γ̌i , ci }) is given by the sum over Schröder trees with n
leaves,

ĝn = Sym

⎧
⎨

⎩

∑

T∈TS
n

(−1)nT−1
(
g(0)
v0
− Ev0

) ∏

v∈VT \{v0}
Ev

⎫
⎬

⎭
, (5.33)

where v0 is the root of the tree.

We conclude that the properties of g(0)
n and En ensure that the theta series appearing

in the corresponding decomposition of G is modular so that the modularity of G requires
the function ĥ p,μ to be a vector valued (non-holomorphic) modular form of weight
(− 1

2b2 − 1, 0). The functions Rn entering the non-holomorphic completion ĥ p,μ, are
then given by the following proposition, whose proof can again be found in appendix F:

Proposition 8. Inverting the relations (5.4) and (5.12), one obtains28

Rn = Sym

⎧
⎨

⎩

∑

T∈TS
n

(−1)nT−1E (+)
v0

∏

v∈VT \{v0}
E (0)

v

⎫
⎬

⎭
. (5.34)

28 In the proof of this proposition we obtain a similar formula (F.40) for the coefficients Wn appearing in
the inverse relation (5.5).
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It is important to check that the resulting functions Rn are invariant under the spectral
flow of the total charge. This is in fact a simple consequence of the fact that the functions
En entering their definition depend on the electric charges only through theDSZ products
γi j . As follows from (2.24), all such products are invariant under the spectral flow of the
total charge, hence Rn are invariant as well.

Since E (0)
n are τ2-independent, all non-holomorphic dependence of ĥ p,μ comes from

the factor E (+)
v0 in the expression (5.34) for Rn . Expressing the holomorphic anomaly in

terms of the modular functions ĥ pi ,μi , one obtains the following

Proposition 9. The holomorphic anomaly of the completion is given by

∂τ̄ ĥ p,μ(τ ) =
∞∑

n=2

∑

∑n
i=1 γ̌i=γ̌

Jn({γ̌i }, τ2) eπ iτQn({γ̌i })
n∏

i=1
ĥ pi ,μi (τ ), (5.35)

where

Jn = i

2
Sym

⎧
⎨

⎩

∑

T∈TS
n

(−1)nT−1∂τ2Ev0

∏

v∈VT \{v0}
Ev

⎫
⎬

⎭
. (5.36)

Note that this result is consistent with the fact that τ 22 ∂τ̄ ĥ p,μ is a modular function of
weight (− 1

2b2− 3, 0). Indeed, the sum over D2-brane charges forms a theta series for a
lattice of dimension (n − 1)b2 (see footnote 22) and quadratic form −Qn of signature
(n − 1, (n − 1)(b2 − 1)). Furthermore, since

2τ2∂τ2En =
(−1)

∑
i< j γi j

(
√
2τ2)n−1

(x · ∂x − (n − 1)) 	E
n (x) (5.37)

and Vλ−2 (x · ∂x − λ) = (x · ∂x − (λ− 2)) Vλ, the function τ2Jn is a solution of Vi-
gnéras’ equationwith λ = n−3. Thus, after multiplying Eq. (5.35) by τ 22 , the theta series
generated by the sum over D2-brane charges is modular of weight ( n−12 b2 + n − 3, 0).
Combining it with n factors of ĥ pi ,μi , one recovers the correct weight for τ 22 ∂τ̄ ĥ p,μ.

In appendixGwepresent explicit expressions for various elements of our construction
up to order n = 4. Based on these results, we conjecture a general formula for the kernel
	̂tot

n of the theta series appearing in the expansion of G in terms of ĥ p,μ:

Conjecture 1. The instanton generating function has the theta series decomposition

G =
∞∑

n=1

2− n
2

π
√
2τ2

[
n∏

i=1

∑

pi ,μi

σpi ĥ pi ,μi

]

e−Sclp ϑ p,μ
(
	̂tot

n , n − 2
)
, (5.38)

where the kernels of the theta series are given by

	̂tot
n = 	

∫

1 Sym

⎧
⎨

⎩

∑

T∈TS
n

(−1)nT−1
(
	̃E

v0
−	E

v0

) ∏

v∈VT \{v0}
	E

v

⎫
⎬

⎭
. (5.39)
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Note that this result automatically implies that the theta series ϑ p,μ
(
	̂tot

n , n − 2
)
is

modular, since its kernel is a solution of Vignéras’ equation.
We end the discussion of these results by observing that the formula (5.33) allows

to obtain a new representation of the tree index gtr,n . Indeed, as observed at the end of
Sect. 5.1, gtr,n agrees with ĝn in the limit τ2 → ∞, which amounts to replacing Ev by
its non-decaying part E (0)

v in (5.33). In fact, as shown in appendix F, all contributions
due to trees with non-zero number of marks in (5.27) and (5.29) cancel in the resulting
expression, leaving only the contributions coming from the terms with m = 0. Thus,
one arrives at the following representation:

Proposition 10. The tree index gtr,n defined in (2.3) can be expressed as

gtr,n = Sym

⎧
⎨

⎩

∑

T∈TS
n

(−1)nT−1 (g�
v0
− E�

v0

) ∏

v∈VT \{v0}
E�

v

⎫
⎬

⎭
, (5.40)

where g�
n is defined in (F.34) and E�

n = g�
n({γ̌i , βni }).

Note that this representation is more explicit than the one given in Sect. 2.2 since it does
not require taking the limit y → 1.

In fact, the mechanism by which contributions of marked trees cancel in the sum over
Schröder trees, explained in the proof of Proposition 10, is very general and applies just
as well to all the above equations (5.33)–(5.39). As a result, all of them remain valid if
we replace 	̃E

n and 	E
n , respectively, by 	̃n (5.16) and by its cousin with the vectors

{ue} replaced by {ve},

	n(x) = 1

2n−1n!
∑

T ∈T

n

	̃E
n−1({ve}, {vs(e)t (e)}; x). (5.41)

Correspondingly, g(0)
n and E (0)

n should then be replaced by their asymptotics at large τ2,
given by Gn({γ̌i , ci }) and Gn({γ̌i , βni }). The proof that such replacement is possible is
completely analogous to the proof of Proposition 10, and we refrain from presenting it.
This shows that from the very beginning we could take the function Gn as the ansatz
for g(0)

n since its τ2-dependence cancels in the formula for the tree index. We could then
avoid most of complications of Sect. 5.2. However, we cannot avoid the introduction
of marked trees since they appear in the expression for Gn (5.17) anyway. Moreover,
we prefer to stick to the definition (5.27) because of two reasons. Firstly, due to its
τ2-independence, g

(0)
n might itself be interpretable as an index. Secondly, as we discuss

in the next subsection, it is related to other potentially interesting representations, which
might be at the basis of such interpretation.

5.4. Alternative representations. The construction presented above provides an explicit
expression for the completion ĥ p,μ and all other relevant quantities. Roughly, it can be
split into three levels:

1. sum over Schröder trees (5.34);
2. sum over marked unrooted labelled trees (5.32);
3. sum over unrooted labelled trees defining the weights associated to marks (5.22).
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The complication due to the appearance of marks and hence the last level arises due to
the non-orthogonality of the vectors vs(e)t (e) appearing as arguments of the generalized
error functions uplifted to solutions of Vignéras’ equation for λ = n − 1. However,
the two sums over unrooted trees are organized is such a way that all additional con-
tributions due to this non-orthogonality cancel. This suggests that there should exist a
simpler representation where the vectors appearing in the second argument of functions
	̃E

n−1(V, Ṽ; x) aremutually orthogonal from the very beginning.Belowwepresent some
results showing that such a representation does exist at least for low values of n. We then
move on to present yet another representation of the functions g(0)

n which is significantly
simpler than (5.27), although its equivalence with the latter remains conjectural.

5.4.1. Simplified representation via flow trees We have shown, analytically for n =
2, 3, 4 (see appendix G) and numerically for n = 5, that the function (5.27) can be
rewritten as

g(0)
n ({γ̌i , ci }) = Sym

⎧
⎨

⎩
dn
2n−1

∑

T∈Pn

κ(T )

n−1∏

k=1
sgn(Sk)

⎫
⎬

⎭
(n ≤ 5), (5.42)

where κ(T ) is the factor defined in (2.7), whereas dn and Pn ⊂ Taf
n are numerical

coefficients and subsets of flow trees with n leaves, respectively, which can be chosen
as follows:

d1 = 1, d2 = 1

2
, d3 = 1

6
, d4 = 1

12
, d5 = 1

30
,

P1 = {(1)}, P2 = {(12)}, P3 = {((12)3), (1(23))},
P4 = {((1(23))4), ((12)(34)), (1((23)4))},
P5 = {((((31)4)2)5), (((12)(34))5), ((1((23)4))5), (((12)3)(45)),

((12)(3(45))), (1((2(34))5)), (1((23)(45))), (1(4(2(53))))},

(5.43)

where we labelled ordered flow trees using 2-bracketings as explained in footnote 7.
Unfortunately, the simple ansatz (5.42) fails beyond the fifth order. For instance,

numerical experiments indicate that for n = 6, one should include an additional term
given by a product of n−3 = 3 sign functions. This suggests the following more general
ansatz:

Conjecture 2. The function (5.27) can be rewritten as

g(0)
n ({γ̌i , ci }) = Sym

⎧
⎪⎨

⎪⎩

∑

n1+···+nm=n
nk≥1, nk−odd

Pn,m

m−1∏

k=1
sgn(S jk )

⎫
⎪⎬

⎪⎭
, (5.44)

where as in (2.17) jk = n1 + · · · + nk and Pn,m are polynomials in κ(γi j ) homogeneous
of degree n − 1 which can be represented as sums over subsets Pn,m of flow trees with
n leaves

Pn,m = 1

2n−1
∑

T∈Pn,m

dT κ(T ) (5.45)

with some numerical coefficients dT .
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In fact, such a representation (if it exists) is highly ambiguous since there are many
linear relations between polynomials κ(T ) induced by the identity

γ12γ1+2,3 + γ23γ2+3,1 + γ31γ1+3,2 = 0, (5.46)

and even more relations after multiplication by sign functions and symmetrization. Eq.
(5.42) suggests that there should exist a choice of subsets Pn,m which leads to simple
values of the coefficients dT . However, we do not know of a procedure which would
allow to determine it systematically beyond n = 5.

The main advantage of the representation (5.44) is that the factors κ(T ) multiply-
ing the products of sign functions are proportional to

∏
v∈VT (ṽv, x) where the vectors

ṽv defined in (4.14) are all mutually orthogonal. This property allows to immediately
promote the kernel corresponding to the function (5.44), or to its value at the attractor
point

E (0)
n ({γ̌i }) = g(0)

n ({γ̌i , βni }) = Sym

⎧
⎪⎨

⎪⎩

∑

n1+···+nm=n
nk≥1, nk−odd

Pn,m

m−1∏

k=1
sgn(njk )

⎫
⎪⎬

⎪⎭
, (5.47)

to a solution of Vignéras’ equation, without going through the complicated construction
of Sect. 5.2. Indeed, both such kernels are linear combinations of terms, labelled by flow
trees, of the type (D.18) where the vectors ṽi coincide with the vectors ṽv for a given
flow tree. Due to their mutual orthogonality, the solutions of Vignéras’ equation with
λ = n − 1 with such asymptotics are given by

	E
n (x) = 1

2n−1
Sym

⎧
⎪⎨

⎪⎩

∑

n1+···+nm=n
nk≥1, nk−odd

∑

T∈Pn,m

dT 	̃E
m−1,n−1({v jk }, {ṽv}; x)

⎫
⎪⎬

⎪⎭
, (5.48)

and similarly for 	̃E
n with exchange of v jk by u jk . The vectors v
, u
 defined in (5.8)

can be seen as vectors ve, ue for the unrooted tree of trivial topology •—•– · · · –•—• .
Thus, instead of a sum over marked unrooted trees with factors themselves given by
another sum over unrooted trees as in (5.32), we arrive at a representation involving
only a sum over a suitable subset of flow trees and a single unrooted tree.29 It becomes
particularly simple in the case n ≤ 5 where, as follows from (5.42), one can drop the
sum over partitions, take m = n and equate all coefficients dT to dn .

5.4.2. Refinement Finally, there is yet an alternative way of obtaining the functions g(0)
n ,

which also sheds light on the origin of the representation (5.44). This representation is
inspired by the solution for the tree index presented in Sect. 2.2. As in that case, the idea
is to introduce a refinement parameter y, performmanipulations keeping y �= 1 and take
the limit y → 1 in the end.

Let us therefore introduce a ‘refined’ analogue of g(0)
n , which we call g(ref)

n and which
satisfies the refined version of the recursive relation (5.10) where the κ-factor is replaced

29 Of course, the function (5.48) must be equal to (5.32), which is guaranteed by the fact that they are
solutions of Vignéras’ equation with the same asymptotics.
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by its y-dependent version (2.8). This refined equation can be solved by the following
ansatz (cf. (2.11))

g(ref)
n ({γ̌i , ci }, y) = (−1)n−1+

∑
i< j γi j

(y − y−1)n−1
Sym

{
F (ref)
n ({γ̌i , ci }) y

∑
i< j γi j

}
. (5.49)

Indeed, it is easy to see that g(ref)
n satisfies (5.10) with the y-dependent κ-factor provided

F (ref)
n satisfies the recursive relation

1

2

n−1∑


=1

(
sgn(S
)− sgn(n
)

)
F (ref)


 ({γ̌i , c(
)
i }
i=1) F (ref)

n−
 ({γ̌i , c(
)
i }ni=
+1)

= F (ref)
n ({γ̌i , ci })− F (ref)

n ({γ̌i , βni }).
(5.50)

This equation is simpler than (5.10) in that it is y-independent and does not involve
any κ-factors. Furthermore, we already know one solution —the functions F (0)

n (2.18)
which can be shown to satisfy (5.50) with help of the sign identity (F.37). However, this
solution is not yet suitable because, starting from n = 3, its substitution into the r.h.s. of
(5.49) does not produce a Laurent polynomial in y, but rather a rational function with a
pole at y → 1.

The solution can be promoted to a Laurent polynomial by noting that the recursive
equation (5.50) determines F (ref)

n in terms of F (ref)
k , k < n only up to an additive constant

bn . Thus, at each order one can adjust this constant so that to ensure that g
(ref)
n given by

(5.49) is regular at y = 1. Then we arrive at the following solution

F (ref)
n ({ci }) = 1

2n−1
∑

n1+···+nm=n
nk≥1

m∏

k=1
bnk

m−1∏

k=1
sgn(S jk ), (5.51)

where as usual jk = n1+ · · ·+nk . Remarkably, this solution depends only on the stability
parameters ci , despite the fact that the recursion (5.50) also involves the DSZ products
γi j . It satisfies this recursion for arbitrary coefficients bn , as can be easily checked by
extracting contributions with the same sets of {nk} and applying the sign identity (F.37).
Moreover, for arbitrary values of these coefficients, the numerator of (5.49) evaluated at
y = 1 turns out30 to be a constant, independent of the ci ’s. The coefficients bn are then
fixed uniquely by requiring that this constant vanishes, namely

Sym F (ref)
n ({ci }) = 0 . (5.52)

Choosing one particular configuration of the moduli, say ci > 0 for i = 1, . . . , n − 1
and cn = −∑n−1

i=1 ci < 0, one finds numerically that all coefficients bn with n even
vanish,31 while those with n odd are given by

30 After this work was first released, Don Zagier communicated to us a proof of this assertion, and of the

conjecture (5.54) below, based on the more elementary observation that Sym F(0)
n ({ci }) = 21−n/n for n

even, or 0 for n odd, irrespective of the value of the ci ’s, where F(0)
n ({ci }) is defined in (2.18).

31 This follows from the fact that under the permutation ci �→ cn−i+1 one has Si �→ −Sn−i and therefore

F(ref)
n flips sign. The deeper reason for this is that the terms which are products of even and odd number of

signs cannot mix. In contrast, sign identities such as (D.12) can decrease the number of signs in a product by

even number. Thus, a constant can appear in F(ref)
n only for n odd. The same fact ensures the vanishing of the

coefficients aT in (5.22) for trees with even number of vertices.
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b1=1, b3=−1

3
, b5= 2

15
, b7=− 17

315
, b9= 62

2835
, b11=− 1382

155925
, . . .

(5.53)

We observe that these coefficients coincide with the first coefficients in the Taylor series
of tanh x = x − 1

3 x
3 + 2

15 x
5 + · · · . We therefore conjecture that this identification

continues to hold in general, so that bn is expressed in terms of the Bernoulli number
Bn+1 through

bn−1 = 2n(2n − 1)

n! Bn . (5.54)

Using the iterative equation (5.10), the constraint (5.52) and proceeding by induction,
it is easy to see that g(ref)

n defined by (5.49) and its first n− 2 derivatives with respect to
y vanish at y = 1. This ensures that g(ref)

n is smooth and its limit y → 1 is well-defined.

Conjecture 3. The function g(ref)
n , defined by (5.49), (5.51) and (5.54), reproduces the

function g(0)
n (5.27) in the unrefined limit,

lim
y→1

g(ref)
n ({γ̌i , ci }, y) = g(0)

n ({γ̌i , ci }). (5.55)

We have checked this conjecture numerically up to n = 6 evaluating the limit y → 1
using l’Hôpital’s rule. Unfortunately, the new representation of g(0)

n obtained in this way
is not helpful for the purposes of this work because it does not lead to any new represen-
tation for the completion. Nevertheless, the comparison of (5.51) and (5.44) shows that
the sum over partitions and the simple form of products of sign functions characterizing
the representation discussed in the previous subsection find their origin in the formula
for F (ref)

n . Furthermore, this construction strongly suggests that the refinement may be
compatible with S-duality, and that a suitably defined generating function of refined DT
invariants may also possess interesting modular properties, which can even be simpler
than those of the usual DT invariants.

6. Discussion

In this paper we studied the modular properties of the generating function h p,μ(τ ) of
MSW invariants encoding BPS degeneracies of D4–D2–D0 black holes in Type IIA
string theory on a Calabi–Yau threefold, with fixed D4-charge pa , D2-brane charge (up
to spectral flow)μa and invariant D0-brane charge q̂0 (defined in (2.27)) conjugate to the
modular parameter τ . These properties follow from demanding that the vector multiplet
moduli space in D = 3 (or the hypermultiplet moduli space in the dual type IIB picture)
admits an isometric action of SL(2,Z). Our main result is an explicit formula for the
non-holomorphic modular completion ĥ p,μ (5.1), where the functions Rn({γi }, τ2) are
given by Eq. (5.34), with Ev = E (0)

v + E (+)
v specified by (5.29) and (5.32). This result

applies for D4-branes wrapping a general effective divisor which may be the sum of an
arbitrary number n of irreducible divisors.

The existence of such completion was not guaranteed. We arrived at this result by
cancelling themodular anomaly of an indefinite theta series of signature (n, nb2(Y)−n)

with a complicated kernel (4.3). In particular, Vignéras’ equation encoding this anomaly
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involves Kähler moduli in a non-trivial way through the walls of marginal stability,
whereas the functions Rn in our ansatz (5.1) can only depend (non-holomorphically) on
the modular parameter τ and on the charges γi . Note also that the transformation (3.21)
of the contact potential, which was the starting point of our analysis, is only a necessary
condition for the existence of an isometric action of SL(2,Z) onMH . To demonstrate
that this condition is sufficient, one would have to construct suitable complex Darboux
coordinates on the twistor space such that, after expressing them in termsof the completed
generating function ĥ p,μ found in this paper, SL(2,Z) acts on these coordinates by a
complex contact transformation. Such coordinates were constructed at the two-instanton
level in [26], and it is an interesting challenge to extend this construction to arbitrary n.

The structure of the completion suggests that, for a divisor decomposable into a
sum of n effective divisors, the holomorphic generating function h p,μ is a mixed vector
valued mock modular form of higher depth, equal to n − 1. Such objects have recently
appeared in various mathematical and physical contexts [36,44,69–71] and correspond
to holomorphic functions whose completion is constructed from period (or Eichler)
integrals of mock modular forms of smaller depth (with depth 0 mock modular forms
being synonymous with ordinary modular forms). For instance, in the case of standard
mock modular forms of depth one, the completion is given by an Eichler integral of a
modular function [27]. In our case this structure follows from the fact that the completion
ĥ p,μ is built from the generalized error functions which have a representation in terms
of iterated period integrals [28,44]. In order to make manifest the mixed mock modular
nature of h p,μ, one should represent the antiholomorphic derivative of its completion
ĥ p,μ, computed in (5.35), as a sum of products of completions of mixed mock modular
forms of lower depth and anti-holomorphic modular forms. This is a non-trivial task
which involves the technique of lattice factorization for indefinite theta series, which we
leave for future research.

An important caveat in our construction is that we did not establish the convergence of
the various generating functions and indefinite theta series. Technically, we constructed
a theta series ϑ p,μ

(
	̂tot

n , n− 2
)
whose kernel satisfies Vignéras’ equation (D.3), but we

did not demonstrate that it decays as required by Vignéras’ criterium. (For n = 2 this is
easy to show [14] since the kernel is a product of an exponentially suppressed factor and
a difference of two error functions defined by two positive vectors.) In fact, convergence
issues already arise when expressing the generating function of DT invariants in terms
of MSW invariants in (2.31), and are related to the problem of convergence of the BPS
black hole partition function. The latter was proven to converge in the large volume limit
for the case involving up to n ≤ 3 centers in [55]. We hope that the results for the tree
index obtained in [23] will allow to extend this result to arbitrary n.

We note that many of the complications in our construction originate from the occur-
rence of polynomial factors in the kernel of theta series, which in turn can be traced to
the factors of DSZ products γi j in the wall-crossing formula. Presumably, most of these
complications would disappear if one could find a generalization of the contact potential
involving the refined DT invariants, so that all these prefactors can be traded for explicit
powers of the fugacity y, as in Sect. 5.4.2. It is possible that twistorial topological strings
[72] may provide the appropriate framework for finding such a refinement, at least in
the context of string vacua on non-compact Calabi–Yau threefolds.

On the physics side, we expect that our results will have important implications for
the physics of BPS black holes. Indeed, the mock modular property of the generating
function h p,μ will affect the growth of its Fourier coefficients [73], and should be taken
into accountwhenperformingprecision tests of themicroscopic origin of theBekenstein-
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Hawking entropy. A natural question is to understand the origin of the non-holomorphic
correction terms Rn , in terms of the quantum mechanics of n-centered black holes
[42,74]. Another outstanding question is to understand the physical significance of the
instanton generating function G defined in (3.22). Its modular properties are exactly
those expected from the elliptic genus of a superconformal field theory, except for the
fact that it is not holomorphic in τ . It is natural to expect that this non-holomorphy can
be traced to the existence of a continuum of states with a non-trivial spectral asymmetry
between bosons and fermions [75]. It would be very interesting to understand the origin
of this continuum in terms of the worldvolume theory of an M5-brane wrapped on a
reducible divisor. Moreover, for special N = 2 theories in D = 4 obtained by circle
compactification of an N = 1 theory in D = 5, G is closely related to the index
considered in [42]. It would be interesting to understand the physical origin of itsmodular
invariance in this context.

Finally, we expect that the structure found in the context of generalized DT-invariants
on Calabi–Yau threefolds will also arise in the study of other types of BPS invariants
where higher depth mock modular forms are expected to occur, such as Vafa-Witten
invariants and Donaldson invariants of four-folds with b+2 = 1 [28,69]. In particular, it
would be interesting to determine the modular completion of the generating function of
Vafa–Witten invariants on the complex projective plane computed for all ranks in [76],
generalizing the rank 3 case studied in [69], and compare with the completion found in
the present paper.
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A Proof of the Theorem

In this appendixweproveTheorem1presented in the Introduction. The crucial ingredient
is provided by the following Lemma32

Lemma 1. The number of ways of labelling the vertices of a rooted ordered tree T with
increasing labels is given by

NT = nT !
∏

v∈VT

1

nv(T )
, (A.1)

where nT is the number of vertices of the tree T .

Proof. First, let us find a recursive relation between the numbers NT . Namely, consider
a vertex v and the set of its children Ch(v). Denote by Tv the tree rooted at v and with
leaves coinciding with leaves of T , for which one has nTv = nv . Then it is clear that

32 We were informed that this lemma appears as an exercise in [77, p. 70].
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NTv =
(∑

v′∈Ch(v) nv′
)
!

∏
v′∈Ch(v) nv′ !

∏

v′∈Ch(v)

NTv′ . (A.2)

From this relation, one easily shows by recursion that (A.1) follows. Indeed, assuming
that it holds for the subtrees Tv′ and taking into account that

∑
v′∈Ch(v) nv′ = nv − 1,

the r.h.s. can be rewritten as

(nv − 1)!
∏

v′∈Ch(v)

∏

v′′∈VT
v′

1

nv′′
= nv!

∏

v′∈VTv

1

nv′
, (A.3)

which coincides with (A.1) when v is the root of T . ��
Given this Lemma, we can now rewrite the l.h.s. of (1.2) as

∑

T ′⊂T

NT ′

m!
∏

v∈VT ′
nv(T ) = n!

NT

∑

T ′⊂T

NT ′

m!
∏

Tr⊂T \T ′
NTr

nTr !
, (A.4)

where the last product goes over the subtrees which complement T ′ to the full tree T .
On the other hand, it is easy to check that the relation (A.2) is the special case m = 1 of
a more general relation

NT =
(∑

Tr⊂T \T ′ nTr
)
!

∏
Tr⊂T \T ′ nTr !

∑

T ′⊂T
NT ′

∏

Tr⊂T \T ′
NTr . (A.5)

where the sum runs over subtrees T ′ with m vertices. Taking into account that∑
Tr⊂T \T ′ nTr = n − m and substituting the resulting expression into (A.4), one re-

covers the binomial coefficient as stated in the Theorem.

B. D3-Instanton Contribution to the Contact Potential

To evaluate (eφ)D3, we first replace in (3.20) the full prepotential F by its classical, cubic
part Fcl (2.22) and take into account that the sum over γ ∈ −+ is complex conjugate
to the sum over γ ∈ +. This gives

eφ ≈ τ 22

12
(( Im u)3) +

iτ2
8

∑

γ∈+

Re
∫


γ

dt

t

(
t−1Zγ (ua)− t Z̄γ (ūa)

)
Hγ . (B.1)

Next, we substitute the quantum corrected mirror map (3.8), change the integration
variable t to z, and take the combined limit ta →∞, z → 0. Keeping only the leading
contributions, one obtains

(eφ)D3 = −τ2

2

∑

γ∈+

Re
∫


γ

dz

[
q̂0 +

1

2
(q + b)2 + 2(pt2)zzγ − 3

2
z2(pt2)

]
Hγ

−1

4

∑

γ1,γ2∈+

(tp1 p2)

(

Re
∫


γ1

dz1 Hγ1

)(

Re
∫


γ2

dz2 Hγ2

)

. (B.2)
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To further simplify this expression, we note that

0 = 1

4π

∑

γ∈+

∫


γ

dz ∂z
(
z Hγ

)

=
∑

γ∈+

∫


γ

dz

⎡

⎣ 1

4π
+ τ2(pt

2)(zzγ − z2)− i

4

∑

γ ′∈+

〈γ, γ ′〉
∫


γ ′

dz′

z − z′
Hγ ′

⎤

⎦ Hγ ,

(B.3)

where we used the integral equation (3.15). Multiplying this identity by 3/4 and adding
its real part to (B.2), one finds

(eφ)D3 = τ2

2

∑

γ∈+

Re
∫


γ

dz aγ,− 3
2
(z) Hγ

−1

4

∑

γ1,γ2∈+

[

(tp1 p2)

(

Re
∫


γ1

dz1 Hγ1

)(

Re
∫


γ2

dz2 Hγ2

)

+
3

4
Re

(∫


γ1

dz1 Hγ1

∫


γ2

dz2 Hγ2

i〈γ, γ ′〉
z − z′

)]

, (B.4)

where we introduced

aγ,h(z) = −
(
q̂0 +

1

2
(q + b)2 +

1

2
(pt2)zzγ +

h

4πτ2

)
. (B.5)

The meaning of this function is actually very simple: it gives the action of the modular
covariant derivative operator Dh (3.23) on the classical part of the Darboux coordinate
(3.12),

DhX cl
γ = aγ,h(z)X cl

γ . (B.6)

Combining this fact with equation (3.15), it is easy to check that the function (3.22)
satisfies, for any value of the weight h,

DhG =
∑

γ∈+

∫


γ

dz aγ,h(z) Hγ +
1

8τ2

∑

γ1,γ2∈+

∫


γ1

dz1

∫


γ2

dz2

[
(tp1 p2) + 2h

(
(tp1 p2) +

i〈γ1, γ2〉
z1 − z2

)]
Hγ1(z1)Hγ2(z2), (B.7)

∂c̃aG = 2π i
∑

γ∈+

pa
∫


γ

dz Hγ , (B.8)

which allows to rewrite (B.4) exactly as in (3.24).
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Fig. 9. Combination of trees showing cancellation of discontinuities across the wall of marginal stability
corresponding to the decay γv → γL + γR . The parts corresponding to attractor flow trees are drown in blue

C. Smoothness of the Instanton Generating Function

In this appendix we prove the smoothness of the function G across walls of marginal
stability. The starting point is the representation (4.2) where the potential discontinuities
are hidden in the kernel of the theta series (4.3). Given that 	

∫

m is represented as a
sum over unrooted labelled trees (4.6), whereas 	

g
nk appear as sums over flow trees

(4.15), the kernel 	tot
n can be viewed as a sum over ‘blooming trees’ which are unrooted

trees with a flow tree (the ‘flower’) growing from each vertex. Then the idea is that the
discontinuities due to flow trees (i.e. due to DT invariants) of a blooming tree with m
vertices are cancelled by the discontinuities due to exchange of integration contours in
	
∫

m+1 corresponding to blooming trees with m + 1 vertices.
Following this idea, let us consider a tree which has an attractor flow tree Tv growing

from a vertex v (see Fig. 9). We denote by Ti , i = 1, . . . , nv, the blooming subtrees
connected to this vertex and by TL and TR the two parts (whichmay be trivial) of Tv with
the total charges γL and γR so that γv = γL + γR . Together with the contribution of this
tree, we consider the contributions of the trees obtained by splitting the vertex v into two
vertices vL and vR connected by an edge, carrying charges γL and γR and all possible
allocations of the subtrees Ti to these two vertices. Different allocations are accounted
for by the sum over permutations, whilethe weight 1


!(nv−
)! takes into account the fact
that permutations between subtrees connected to one vertex are redundant. The attractor
flow trees TL and TR are then connected to vL and vR , respectively, as shown in Fig. 9.

The contribution corresponding to the first blooming tree has a discontinuity at the
wall of marginal stability for the bound state γL + γR and originating from the factor
�z

γLγR
assigned to the root vertex of Tv. The other contributions have discontinuities at

the same wall due to the exchange of the contours 
γL and 
γR for the integrals assigned
to vL and vR , respectively. They are given by the residues at the pole of the integration
kernel KγLγR . It is clear that the structure of all jumps is very similar since different
subtrees produce essentially the same weights. Let us analyze what differences may
arise.

• First, the contributions of the flow trees TL and TR could differ in the two cases
because they have different starting points for the attractor flows: for the trees on the
right side of Fig. 9 this is za ∈MK , whereas for the tree on the left this is the point
on the wall for γL + γR reached by the flow from za . But we are evaluating the dis-
continuity exactly on the wall where the two points coincide. Thus, the contributions
are the same.
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• Although the subtrees Ti give rise to the same contributions for all blooming trees
shown inFig. 9, the contributions of the edges connecting them to eithervorvL ,vR are
not exactly the same. Each of them contributes the factor given by the kernel (3.16).
After taking the residue, the z-dependence of these kernels for the trees shown on the
left and the right sides of the picture is identical. However, their charge dependence
is different: for the tree on the left they depend on γv, whereas for the trees on the
right they depend on γL or γR , depending on which vertex they are connected to. But
it is easy to see that the sums over 
 and permutations produce the standard binomial
expansion of a single product of kernels which all depend on γL + γR = γv and thus
coinciding with the contribution of the tree on the left.
• Finally, one should take into account that the discontinuity of �z

γLγR
in the first

contribution gives the factor 〈γL , γR〉. But exactly the same factor arises as the residue
of KγLγR corresponding to the additional edge.

Thus, it remains only to check that all numerical factors work out correctly. Leaving
aside the factors which are common to both contributions, we have

− (−1)〈γL ,γR〉

2

σγv

(2π)2

2m

m! + (2π i)(−2π i) σγLσγR

(2π)4

m(m + 1)

(m + 1)! . (C.1)

Here− (−1)〈γL ,γR 〉
2 comes from the factor−�z

γLγR
in Tv, the factors with quadratic refine-

ment are due to functions Hγ (3.9) assigned to v or vL , vR , (2π i) is the standard weight
of the residue, (−2π i) is the residue of KγLγR (3.16), and factorials are the weights of
the trees in the expansion (3.26). Finally, the factors 2m and m(m + 1) arise due to the
freedom to relabel charges assigned to the marked vertices: on the left these are vertex
v and the two children of the root in Tv, whereas on the right these are vL and vR . It
is immediate to check that all these numerical weights cancel, which ensures that the
functionG is continuous across walls of marginal stability.Moreover, in this cancellation
the condition that we sit on the wall was used only in locally constant factors. Therefore,
this reasoning proves not only that G is continuous, but that it is actually smooth around
these loci.

D. Indefinite Theta Series and Generalized Error Functions

D.1. Vignéras’ theorem. Let� be a d-dimensional lattice equipped with a bilinear form
(x, y) ≡ x · y, where x, y ∈ �⊗R, such that its associated quadratic form has signature
(n, d − n) and is integer valued, i.e. k2 ≡ k · k ∈ Z for k ∈ �. Furthermore, let p ∈ �
be a characteristic vector (such that k · (k+ p) ∈ 2Z, ∀ k ∈ �),μ ∈ �∗/� a glue vector,
and λ an arbitrary integer. We consider the following family of theta series

ϑ p,μ(	, λ; τ, b, c)
= τ

−λ/2
2

∑

k∈�+μ+ 1
2 p

(−1)k· p 	(
√
2τ2(k + b)) e

(
− τ

2 (k + b)2 + c · (k + 1
2 b)
)

(D.1)

defined by a kernel 	(x) such that the function f (x) ≡ 	(x) e
π
2 x2 ∈ L1(� ⊗ R) so

that the sum is absolutely convergent. Irrespective of the choice of this kernel and of the
parameter λ, any such theta series satisfies the following elliptic properties

ϑ p,μ (	, λ; τ, b + k, c) = (−1)k· p e
(− 1

2 c · k
)
ϑ p,μ (	, λ; τ, b, c) ,

ϑ p,μ (	, λ; τ, b, c + k) = (−1)k· p e
( 1
2 b · k

)
ϑ p,μ (	, λ; τ, b, c) .

(D.2)
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Now let us require that in addition the kernel satisfies the following two conditions:

1. Let D(x)be anydifferential operator of order≤ 2, and R(x) anypolynomial of degree
≤ 2. Then f (x) defined above must be such that f (x), D(x) f (x) and R(x) f (x) ∈
L2(�⊗R)

⋂
L1(�⊗R).

2. 	(x) must satisfy

Vλ ·	(x) = 0, Vλ = ∂2x + 2π (x · ∂x − λ) . (D.3)

Then in [43] it was proven that the theta series (D.1) transforms as a vector-valued mod-
ular form of weight (λ+d/2, 0) (see Theorem 2.1 in [28] for the detailed transformation
under τ → −1/τ ). We refer to Vλ as Vignéras’ operator. The simplest example is the
Siegel theta series for which the kernel is 	(x) = e−πx2+ where x+ is the projection of
x on a fixed positive plane of dimension n. This kernel is annihilated by V−n .

In this paper we apply the Vignéras’ theorem to the case of � = ⊕n
i=1�i . Thus,

the charges appearing in the description of the theta series (D.1) are of the type k =
(ka1 , . . . , k

a
n ), whereas the vectors b and c are taken with i-independent components,

namely, bai = ba , cai = ca for i = 1, . . . , n. The lattices �i carry the bilinear forms
κi,ab = κabc pci which are all of signature (1, b2 − 1). This induces a natural bilinear
form on �:

x · y =
n∑

i=1
(pi xi yi ). (D.4)

Note also that the sign factor (−1)k· p in (D.1) can be identified with the quadratic
refinement provided we choose the latter as

σγ = σp,q ≡ e
(
1

2
paqa

)
σp, σp = e

(
1

2
Aab p

a pb
)

. (D.5)

The matrix Aab, satisfying

Aab p
p − 1

2
κabc p

b pc ∈ Z for ∀pa ∈ Z , (D.6)

appears due to the non-trivial quantization of charges on the type IIB side (2.19) and
can be used to perform a symplectic rotation to identify them with mirror dual integer
charges on the type IIA side [56]. It is easy to check that the quadratic refinement (D.5)
satisfies (3.4).

D.2. Generalized error functions. An important class of solutions of Vignéras’ equation
is given by the error function and its generalizations constructed in [28] and further
elaborated in [29] (see [30,31] for a more conceptual explanation of the origin of these
functions). Let us take

M1(u) = −sgn(u)Erfc(|u|√π) = i

π

∫




dz

z
e−π z2−2π izu, (D.7)

E1(u) = sgn(u) + M1(u)

= Erf(u
√

π) =
∫

R

du′ e−π(u−u′)2sgn(u′), (D.8)
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where the contour 
 = R − iu runs parallel to the real axis through the saddle point
at z = −iu. Then, given a vector with a positive norm v2 > 0 so that |v| = √v2, we
define

	E
1 (v; x) = E1

(
v · x
|v|

)
, 	M

1 (v; x) = M1

(
v · x
|v|

)
. (D.9)

It is easy to check that the first function is a smooth solution of (D.3) with λ = 0, whereas
the second is exponentially suppressed at large x and also solves the same equation, but
only away from the locus v · x = 0 where it has a discontinuity.

Generalizing the integral representations (D.7) and (D.8), we define the generalized
(complementary) error functions

Mn(M; u) =
(

i

π

)n

| detM|−1
∫

Rn−iu
dnz

e−πztrz−2π iztru
∏

(M−1z)
, (D.10)

En(M; u) =
∫

Rn
du′ e−π(u−u′)tr(u−u′)sgn(Mtru′), (D.11)

where z = (z1, . . . , zn) and u = (u1, . . . , un) are n-dimensional vectors, M is n × n
matrix of parameters, and we used the shorthand notations

∏
z =∏n

i=1 zi and sgn(u) =∏n
i=1 sgn(ui ). The detailed properties of these functions can be found in [29]. Here we

mention only a few:

• Mn are exponentially suppressed for large u as Mn ∼ (−1)n
πn | detM|−1 e−πutru

∏
(M−1u)

,

whereas En are locally constant for large u as En ∼ sgn(Mtru).
• More generally, En can be expressed as a linear combination of Mk , k = 0, . . . , n,
multiplied by n − k sign functions, generalizing the first relation in (D.8) (see Eq.
(D.15) below for a precise statement).
• From (D.11) it follows that every identity between products of sign functions implies
an identity between generalized error functions En . Moreover, expanding the En
functions in terms of Mk’s and sign functions, one obtains similar identities for
functions Mn . For instance, the identity

(sgn(x1) + sgn(x2)) sgn(x1 + x2) = 1 + sgn(x1) sgn(x2) (D.12)

implies

E2((v1, v1 + v2); u) + E2((v2, v1 + v2); u) = 1 + E2((v1, v2); u),
M2((v1, v1 + v2); u) + M2((v2, v1 + v2); u) =M2((v1, v2); u),

(D.13)

where v1, v2 are two-dimensional vectors used to encode the 2× 2 matrix of param-
eters.

The main reason to introduce these functions is that, similarly to the usual error
and complementary error functions, they can be used to produce solutions of Vignéras’
equation on Rn,d−n . To write them down, let us consider d × n matrix V which can be
viewed as a collection of n vectors, V = (v1, . . . , vn). We assume that these vectors
span a positive definite subspace, i.e. V tr ·V is a positive definite matrix. Let B be n× d
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matrix whose rows define an orthonormal basis for this subspace. Then we define the
boosted generalized error functions

	M
n (V; x) = Mn(B · V;B · x), 	E

n (V; x) = En(B · V;B · x). (D.14)

It can be shown that both these functions satisfy Vignéras’ equation (for 	M
n one should

stay away from its discontinuities, i.e. loci where sgn((B · V)−1B · x) = 0). Moreover,
they are symmetric under permutation of the vectors vi . Since at large x one has 	E

n ∼
sgn(V tr · x) = ∏n

i=1 sgn(vi · x), one can think about this function as providing the
modular completion for (indefinite) theta series with kernel given by a product of signs.

The relation between functions En andMn mentioned above implies a similar relation
between the functions (D.14). For generic n, it takes the following form33

	E
n (V; x) =

∑

I⊆Zn

	M
|I|({vi }i∈I; x)

∏

j∈Zn\I
sgn(v j⊥I , x), (D.15)

where the sum goes over all possible subsets (including the empty set) of the set Zn =
{1, . . . , n}, |I| is the cardinality of I, and v j⊥I denotes the projection of v j orthogonal to
the subspace spannedby {vi }i∈I . The cardinality |I| can also be interpreted as the number
of directions in Rd along which the corresponding contribution has an exponential fall
off.

Finally, note that a solution of Vignéras’ equation can be uplifted to a solution of the
same equation with λ shifted to λ + 1 by acting with the differential operator

D(v) = v ·
(
x +

1

2π
∂x

)
, (D.16)

which realizes the action of the covariant derivative raising the holomorphic weight by
1. In particular, we can construct solutions with λ = m which behave for large x as
products of n sign functions. To this end, it is enough to act on 	E

n by this operator m
times. Thus, we define the uplifted boosted error function

	̃E
n,m(V, Ṽ; x) =

[
m∏

i=1
D(ṽi )

]

	E
n (V; x), (D.17)

where Ṽ = (ṽ1, . . . , ṽm) encodes the vectors contracted with the covariant derivatives.
Since the operatorsD(ṽi ) commute, (D.17) is invariant under independent permutations
of the vectors vi and ṽi . In the case where all ṽi are mutually orthogonal, one finds the
following asymptotics at large x

lim
x→∞ 	̃E

n,m(V, Ṽ; x) =
m∏

i=1
(ṽi , x)

n∏

j=1
sgn(v j , x). (D.18)

Note that the derivative ∂x in (D.17) does not act on sign functions since 	E
n is smooth

and all discontinuities due to signs are guaranteed to cancel. Similarly to (D.17), we
can also define 	̃M

n,m(V, Ṽ; x) where the action of derivatives on the discontinuities of
	M

n is ignored as well. In the particular case m = n, we will omit the second label and
simply write 	̃E

n or 	̃M
n .

33 This relation reduces to Eq. (3.53) and (6.18) in [28] for n = 2, 3, and follows from Eq. (63) in [29] for
any n.
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E. Twistorial Integrals and Generalized Error Functions

In this appendix we evaluate the kernels 	
∫

n (4.6) and show that they can be expressed
through the generalized error functions introduced in appendix D.2. To this end, let us
note the following identity

iD(vi j )
Wpi (xi , zi )Wpj (x j , z j )

zi − z j
= K̂i j Wpi (xi , zi )Wpj (x j , z j ). (E.1)

By virtue of this relation, the kernel can be represented as

	
∫

n (x) = 1

n!
∑

T ∈T

n

⎡

⎣
∏

e∈ET

D(vs(e)t (e))

⎤

⎦	T (x), (E.2)

where

	T (x) = in−1

(2π)n

[
n∏

i=1

∫


γi

dzi Wpi (xi , zi )

]
1

∏
e∈ET

(
zs(e) − zt (e)

) . (E.3)

One may think that the representation (E.2) misses contributions from the covariant
derivatives acting on each other. However, such contributions are proportional to the
scalar products of two vectors vs(e)t (e) and are non-vanishing provided the two edges
have a common vertex. If this is the case, the two edges generate the following factor

(pv1 pv2 pv3)

(zv1 − zv3)(zv2 − zv3)
, (E.4)

where v1, v2, v3 are the tree vertices joint by the edges and v3 = e1 ∩ e2. The crucial
observation is that if we pick up 3 subtrees, each with a marked vertex, there are exactly
3 ways to form a labelled tree out of them by joining the marked vertices as shown in
Fig. 7 on page 7. Each subtree contributes the same factor in all 3 cases, whereas the
joining edges and the sum over trees give rise to the vanishing factor

(p1 p2 p3)

(z1 − z3)(z2 − z3)
+

(p1 p2 p3)

(z1 − z2)(z1 − z3)
− (p1 p2 p3)

(z2 − z3)(z1 − z2)
= 0. (E.5)

This ensures that no additional contributions arise and thereby proves (E.2). Note that
for this proof it was crucial that inequivalent labelled trees enter the sum with the same
weight.

Then let us do the change of variables

zi = z′ − i(pxt)√
2τ2(pt2)

+
n−1∑

α=1
eα
i z
′
α, (E.6)

where xa = κab∑ κi,bcxci (cf. (4.8)), and eα
i are such that

n∑

i=1
pi e

α
i = 0,

n∑

i=1
pi e

α
i e

β
i = 0, α �= β (E.7)
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and we introduced the convenient notation pi = (pi t2). Labeling the n− 1 edges of the
tree by the same index α, one can rewrite the function (E.3) in the new variables as

	T (x) = in−1
√

�

(2π)n
e
− π(pxt)2

(pt2)

∫
dz′ e−2πτ2(pt2)z′2

n−1∏

α=1

×
∫

dz′α e−2πτ2 �α(z′α)2−2π i√2τ2 wαz′α
∑n−1

β=1
(
eβ

s(α) − eβ

t (α)

)
z′β

,

(E.8)

where

wα =
n∑

i=1
(pi xi t)e

α
i , �α =

n∑

i=1
pi (e

α
i )2, � = p

∏n−1
α=1 �α∏n
i=1 pi

. (E.9)

The integral over z′ is Gaussian and is easily evaluated. In the remaining integrals,
rescaling the integration variables by

√
2τ2�α , one recognizes the generalized error

functions (D.10). Thus, one obtains

	T (x) = 1

2n−1

√
�| detM|
∏n−1

α=1 �α

	
∫

1 (x) Mn−1
(
M;

{
wα

√
�α

})
(E.10)

where we used the function 	
∫

1 (4.13) and introduced the matrix M such that

M−1
αβ = (�α�β)−1/2

(
eβ

s(α) − eβ

t (α)

)
. (E.11)

A simple solution to the conditions (E.7) may be constructed as follows. Let T be a
rooted ordered binary tree with n leaves decorated by γi , i = 1 . . . n. As usual for such
trees, other vertices v carry charges given by the sum of charges of their children, i.e.
γv =∑i∈Iv

γi where Iv is the set of leaves which are descendants of v. There are n−1
such vertices which we label by index α. Then we can choose

eα
i =

∑

j∈IL(vα)

∑

k∈IR(vα)

(
δi j pk − δik p j

)
, (E.12)

which satisfy (E.7) as can be easily checked. For this choice (cf. (4.14))

wα = (ũα, x), where ũα =
∑

i∈IL(vα)

∑

j∈IR(vα)

ui j ,

�α = ũ2α = pvαpL(vα)pR(vα).

(E.13)

Note that the vectors ũα are mutually orthogonal.
In principle, any rooted binary tree T is suitable for the above construction. However,

given the unrooted treeT , there is a simple (but non-unique) choice of T which simplifies
the resulting matrix M. To define it, let us construct a partially increasing family of
subtrees of T , such that two members in this family are either disjoint, or contained in
one another. Moreover, we require that the largest subtree is T itself, while each subtree
containing more than one vertex is obtained by joining two smaller subtrees along an
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Fig. 10. An example of an unrooted labelled tree with 4 vertices and two choices of decompositions into
subtrees with the corresponding rooted binary trees. The edges are labelled e1, e2, e3 from left to right along
T

edge of T . Any such family contains 2n− 1 subtrees Tα̂ labelled by α̂ = 1, . . . , 2n− 1.
Among them, n− 1 subtrees, which we label by α = α̂ = 1, . . . , n− 1, contain several
vertices, while the remaining n subtrees with label α̂ = n, . . . , 2n − 1 have only one
vertex. For each subtree Tα , we denote by eα the edge of T which is used to reconstruct
Tα from two smaller subtrees TαL , TαR . From this data, we construct a rooted binary
tree T with n − 1 vertices in one-to-one correspondence with the subtrees Tα and n
leaves in one-to-one correspondence with the one-vertex subtrees Tα̂ with α̂ ≥ n. In this
correspondence, the two children of a vertex associated to Tα are the vertices associated
to the two subtrees TαL , TαR . The ordering at each vertex is defined to be such that
the subtree containing the source/target vertex of the corresponding edge eα is on the
left/right.34 Of course, this construction is not unique since there are many ways to
decompose T into such a set of subtrees (see Fig. 10).

Applying the above construction to this particular choice of rooted tree, one finds

√
�α�β M−1

αβ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

pvα , α = β,

εαβpL(vβ ), eα ∩ TβR �= ∅, eα � Tβ,

εαβpR(vβ), eα ∩ TβL �= ∅, eα � Tβ,

0, eα ∩ Tβ = ∅ or eα ⊂ Tβ,

(E.14)

where εαβ = −1 if the orientations of eα and eβ on the path joining them are the same
and +1 otherwise. This result shows that thematrixM−1 turns out to be triangular which
makes it much simpler to find its inverse. On the basis of (E.14), below we will prove
the following

Lemma 2. One has B · V =M and B · x =
{

wα√
�α

}
provided

B =
(

ũ1√
�1

, . . . ,
ũn−1√
�n−1

)tr

,

V = p−1
(√

�1u1, . . . ,
√

�n−1un−1
)
,

(E.15)

34 The orientation of the edges of T is fixed already in (E.2), but the full kernel 	
∫

n does not depend on its
choice.
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where the vectors uα are defined in (4.11). Moreover, the vectors ũα form an orthogonal
basis in the subspace spanned by uα .

This lemma allows to reexpress the kernel 	T (E.10) in terms of the boosted gener-
alized error function 	M

n−1 (D.14). It is important that its argument V does not depend
on the choice of the binary rooted tree T , but only on the unrooted tree T . In addition,
the function actually does not depend on the normalization of the vectors composing V .
Given also that the determinant of M is found to be

| detM| =
n−1∏

α=1

�α

pvα

=
n∏

i=1
pi

∏

v∈VT \{v0}
pv =

√√
√√p−1

n∏

i=1
pi

n−1∏

α=1
�α, (E.16)

so that the prefactor in (E.10) cancels, one arrives at

	T (x) = 1

2n−1
	
∫

1 (x)	M
n−1({ue}; x). (E.17)

Finally, since the differential operator in (E.2) commutes with functions of x due to the
orthogonality of vi j and t , one can write the kernel 	

∫

n as

	
∫

n (x) = 	
∫

1 (x)

2n−1n!
∑

T ∈T

n

⎡

⎣
∏

e∈ET

D(vs(e)t (e))

⎤

⎦	M
n−1({uα}; x). (E.18)

which is the same as (4.12).

Proof of Lemma 2. We start by proving that the vectors ũα form an orthogonal basis in
the subspace spanned by uα . Since the orthogonality is ensured by construction based
on a rooted binary tree, it remains to show that any vector uα can be decomposed as a
linear combination of ũα . To this end, we show that the determinant of the Gram matrix
constructed from the set of vectors {ũα}n−1α=1 ∪ {uβ} vanishes. This requires to calculate
the scalar product (ũα, uβ) which can be done using

(ui j , ukl) =

⎧
⎪⎨

⎪⎩

pip jpi+ j , i = k, j = l,

pip jpl , i = k, j �= l,

0, i, j �= k, l.

(E.19)

Summing i, j, k, l over appropriate subsets, it is immediate to see that (ũα, uβ) = 0 if
Tα ⊂ T s

β or T t
β , which are the two trees obtained by dividing the tree T into two parts

by cutting the edge eα . In other words, it is non-vanishing only if eβ ⊆ Tα . Then there
are two cases which give

(ũα, uβ) =
{
pLα pRα p, α = β,

pLsαβ pRα ptβ − pLtαβ pRα psβ + pLα pRα psβ = pLsαβ pRα p, eβ ⊂ Tα,
(E.20)
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where we introduced

pLα =
∑

i∈IL(vα)

pi , psβ=
∑

i∈VT s
β

pi , pLsαβ =
∑

i∈IL(vα)∩VT s
β

pi , pstαβ=
∑

i∈VT s
α
∩VT t

β

pi ,

(E.21)

and similarly for variables with labels R and t . In (E.20) in the second case we assumed
that the orientation of edges is such that eβ ⊂ T s

α and eα ⊂ T t
β . If this is not the case,

one should replace s by t , L by R and flip the sign for each change of orientation. Below
we use the same assumption, but the computation can easily be generalized to a more
general situation.

Given the result (E.20), (ũα, ũβ) = �αδαβ and (uβ, uβ) = psβ ptβ p, the determinant
of the Gram matrix is easily found to be

det Gram(ũ1, . . . , ũn−1, uβ) = p

n−1∏

α=1
�α

⎡

⎣psβ ptβ − p
∑

Tα⊇eβ

(pLsαβ)2 pRα

pvαp
L
α

⎤

⎦ . (E.22)

Note that the subtrees Tα containing the edge eβ form an ordered set so that the sum in
the square brackets goes over α
, 
 = 1, . . . ,m, such that Tα


⊂ Tα
+1 . The first element
of this set α1 = β, whereas the last corresponds to the total tree, Tαm = T . Due to
pLαm = psαm , p

R
αm
= ptαm and pLsαmβ = psβ , the first term in the square brackets together

with the term in the sum corresponding to αm gives

psβ

(

ptβ −
psβ ptαm

psαm

)

= p psβ pstαmβ

psαm
, (E.23)

where we have used that ptβ = pstαmβ + ptαm and psαm = pstαmβ + psβ . Thus, the expression
in the square brackets in (E.22) becomes

p

psαm

[

psβ pstαmβ − psαm

m−1∑


=1

(pLsα
β
)2 pRα


pvα

pLα


]

. (E.24)

The new expression in the square brackets is exactly the same as in (E.22) where tree
T was replaced by subtree T s

αm
= Tαm−1 . Thus, one can repeat the above manipulation

until one exhausts all terms in the sum. As a result, the determinant of the Gram matrix
turns out to be proportional to pstα1β . But since α1 = β, this quantity, and hence the whole
determinant, trivially vanish.

Next, we prove that (E.15) is consistent with B · x =
{

wα√
�α

}
and B · V =M. The

first relation is a direct consequence of (E.13). The second relation requires to show that
(ũα, uβ) = p�

1/2
α �

−1/2
β Mαβ or equivalently

∑
γ (ũα, uγ )

√
�γ �βM−1

γβ = p�αδαβ .

Using the result (E.14) for the matrix M−1
γβ , this relation can be written explicitly as
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pvβ (ũα, uβ) +

⎛

⎜
⎝
∑

eγ ∈ER
β

εγβpL(vβ) +
∑

eγ ∈EL
β

εγβpR(vβ)

⎞

⎟
⎠ (ũα, uγ ) = p�αδαβ, (E.25)

where EL
β = {e ∈ ET : e ∩ TβL �= ∅, e � Tβ} and similarly for ER

β .
Consider first the case α = β. From (E.20), it immediately follows that the first

term gives p�α . On the other hand, the second contribution sums over edges for which
Tα ⊆ T s

γ or T t
γ , and as noted above (E.20) this leads to vanishing of the scalar product.

Thus, in this case the relation (E.25) indeed holds.
Let us now show that it holds as well for α �= β. To this end, one should consider

several options. If Tα ∩ Tβ = ∅, then Tα ⊂ T s
β or T t

β which implies vanishing of the
first term. But the second term vanishes as well because the conditions eγ ⊆ Tα and
eγ ∩ Tβ �= ∅ are inconsistent with Tα ∩ Tβ = ∅.

Similarly, if Tα ⊂ Tβ , one has Tα ⊂ T s
β or T t

β which again leads to the vanishing
of the first term, whereas the vanishing of the second is a consequence of that eγ ⊆ Tα

implies eγ ⊂ Tβ so that the sum over eγ is empty.
It remains to consider the case Tβ ⊂ Tα . It is clear that Tβ ⊂ T s

α or T t
α . Without

loss of generality, let us assume that Tβ ⊂ T s
α and eα ⊂ T t

β . Then according to (E.20),

the first term gives pvβ p
Ls
αβ pRα p. If instead we have chosen the orientation such that

eα ⊂ T s
β , then we would find −pvβ p

Lt
αβ pRα p. Similar results are obtained for each term

in the sum of the second contribution. Again without loss of generality we assume that
for all relevant edges eγ one has eα ⊂ T t

γ , otherwise one flips their orientation. Then
the l.h.s. of (E.25) is proportional to

pvβ p
Ls
αβ +

∑

eγ ∈ER
β

εγβp
L
β pLsαγ +

∑

eγ ∈EL
β

εγβp
R
β pLsαγ . (E.26)

Let e�
α ∈ ER

β is the edge belonging to the path from Tβ to eα (which may coincide with

eα). Then our choice of orientation implies that εγβ = −1 for eγ ∈ EL
β ∪ {e�

α} and
εγβ = 1 for eγ ∈ ER

β \{e�
α}. Furthermore, one has

pLsαγ �
α
= pvβ +

∑

eγ ∈EL
β ∪ER

β \{e�
α}
pLsαγ , pLsαβ = pLβ +

∑

eγ ∈EL
β

pLsαγ . (E.27)

As a result, one finds

(pLβ + pRβ )

⎛

⎜
⎝pLβ +

∑

eγ ∈EL
β

pLsαγ

⎞

⎟
⎠− pLβ pLsαγ �

α
+

∑

eγ ∈ER
β \{e�

α}
pLβ pLsαγ −

∑

eγ ∈EL
β

pRβ pLsαγ = 0.

(E.28)

This completes the proof of the required statement (E.25).

F. Proofs of Propositions

In this appendix we prove several propositions which we stated in the main text.
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Proposition 1. To prove the recursive equation (5.3), let us note that the tree index gtr,n
satisfies a very similar equation (cf. (2.10) or (2.16)) which can be seen as the origin of
its representation (2.3) in terms of attractor flow trees. The only difference is the absence
of the last term in (5.3). Therefore, it is easy to see that this equation implies a simple
relation between ĝn and gtr,n

ĝn({γ̌i }, za) =
∑

n1+···+nm=n
nk≥1

gtr,m({γ̌ ′k}, za)
m∏

k=1
Wnk (γ̌ jk−1+1, . . . , γ̌ jk ), (F.1)

where as usual we use notations from (2.17).
Next,we substitute this relation into the expansion (5.2). The result can be represented

in the following form

hDTp,q =
∑

∑n
i=1 γ̌i=γ̌

gtr,n({γ̌i }, za) eπ iτQn({γ̌i })
n∏

i=1
hR
pi ,μi

(τ ), (F.2)

where we introduced

hR
p,μ =

∑

∑n
i=1 γ̌i=γ̌

Wn({γ̌i }) eπ iτQn({γ̌i })
n∏

i=1
ĥ pi ,μi (τ )

=
∑

∑n
i=1 γ̌i=γ̌

⎡

⎣
∑

T∈TS
n

(−1)nT
∏

v∈VT
Rv

⎤

⎦ eπ iτQn({γ̌i })

×
n∏

i=1

⎛

⎜
⎝h pi ,μi +

∞∑

ni=2

∑

∑ni
j=1 γ̌ ′j=γ̌

Rni ({γ̌ ′j }) eπ iτQni ({γ̌ ′j })
ni∏

ji=1
h p′ji ,μ

′
ji

⎞

⎟
⎠

(F.3)

and in the last relation we used the definition of Wn (5.4) and the expansion of ĥ p,μ
(5.1). The crucial observation is that if one picks up a factor Rni from the second line
of (F.3), appearing due to the expansion of ĥ pi ,μi , and combines it with the contribution
of a tree T from the first line, one finds the opposite of the contribution of another tree
obtained from T by adding ni children to its i th leaf. As a result, all such contributions
cancel and the function (F.3) reduces to the trivial term

hR
p,μ = h p,μ. (F.4)

Substituting this into (F.2), it gives back the original expansion (2.31) of the generating
function of DT invariants, which proves the recursive equation (5.3).

Finally, let us evaluate (5.2) at the attractor point za∞(γ ).At this point theDT invariants
coincide with MSW invariants so that the l.h.s. becomes the generating function h p,μ.
Meanwhile, all factors �z

γLγR
vanish at the attractor point and ĝn reduces to Wn . As a

result, the relation (5.2) reproduces (5.5), which completes the proof of the proposition.

Proposition 2. We prove Proposition 2 by induction. For n = 2 the recursive relation
(5.10) reads



606 S. Alexandrov, B. Pioline

g(0)
2 (γ̌1, γ̌2; c1)− g(0)

2 (γ̌1, γ̌2;β21) = −1

4

(
sgn(c1)− sgn(β21)

)
κ(γ12), (F.5)

where we took into account that S1 = c1 and 21 = β21 = −γ12. Since g
(0)
2 is supposed

to have discontinuities only at walls of marginal stability, it must not involve signs of
DSZ products. Therefore, we are led to take

g(0)
2 (γ̌1, γ̌2; c1) = −1

4
sgn(c1)κ(γ12). (F.6)

Then (5.11) and (5.12) imply

E2 = 1

4
sgn(γ12) κ(γ12) + R2, (F.7)

so that the ansatz (5.9) reads

ĝ2(γ̌1, γ̌2; c1) = g(0)
2 (γ̌1, γ̌2; c1)− E2(γ̌1, γ̌2)

= −1

4

[
sgn(c1) + sgn(γ12)

]
κ(γ12)− R2(γ̌1, γ̌2), (F.8)

which reproduces the recursive equation (5.3). Furthermore, in appendix D.2 it is shown
that there is a smooth solution of Vignéras’ equation which asymptotes the function
(v, x)sgn(v, x), coinciding with the (rescaled) first term in E2 for v = v12 (4.10). It is
given by

	̃E
1 (v, v; x) = v ·

(
x +

1

2π
∂x

)
Erf

(√
πv · x
|v|

)
, (F.9)

which corresponds to the following choice of R2 [14]

R2 = (−1)γ12
8π

|γ12|β 3
2

(
2τ2γ 2

12

(pp1 p2)

)

, (F.10)

where β 3
2
(x2) = 2|x |−1e−πx2 − 2πErfc(

√
π |x |). Note that the resulting E2 depends on

the electric charges only through the DSZ product γ12. Finally, it is immediate to see
that the kernel 	 ĝ

2 (5.6) satisfies (5.7).
Now we assume that (5.3) is consistent with the ansatz (5.9) for all orders up to n−1

and check it at order n. Denoting the second term in (5.9) by ĝ(+)
n and substituting this

ansatz into the r.h.s. of (5.3), one finds

Sym

{
n−1∑


=1
g

2

[
g(0)

 g(0)

n−
 − ĝ(+)

 ĝn−
 − ĝ
 ĝ

(+)
n−
 − ĝ(+)


 ĝ(+)
n−


]

ci→c(
)
i

}

+Wn, (F.11)

where

g

2 = −

1

2
�z

γ 

Lγ 


R
κ(γ 


LR) = 1

4

(
sgn(S
)− sgn(n
)

)
κ(n
). (F.12)
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In the first term proportional to g(0)

 g(0)

n−
, one can apply the relation (5.10), which

togetherwith (5.11) gives g(0)
n −E (0)

n . The other terms in the sumover 
 canbe reorganized
as follows

− Sym

⎧
⎪⎨

⎪⎩

n−1∑


=1
g

2

∑

n1+···+nm=n
nk≥1, m<n, 
∈{ jk }

ĝk0(c
(
)
i ) ĝm−k0(c

(
)
i )

m∏

k=1
Enk

⎫
⎪⎬

⎪⎭

= −Sym

⎧
⎪⎨

⎪⎩

∑

n1+···+nm=n
nk≥1, 1<m<n

⎡

⎣
m−1∑

k0=1
g
jk0
2 ĝk0(c

(
)
i ) ĝm−k0(c

(
)
i )

⎤

⎦
m∏

k=1
Enk

⎫
⎪⎬

⎪⎭
.

(F.13)

Here we first combined three contributions into one sum over splittings by adding the
condition 
 ∈ { jk}, with k0 being the index for which jk0 = 
, and then interchanged
the two sums which allows to drop the condition 
 ∈ { jk}, but adds the requirement
m > 1 (following from 
 ∈ { jk} in the previous representation). In square brackets
one recognizes the first contribution from the r.h.s. of (5.3) with n replaced by m < n.
Hence, it is subject to the induction hypothesis which allows to replace this expression
by ĝm({γ ′k}, za)− Wm({γ ′k}). Combining all contributions together, one concludes that
(F.11) is equal to

g(0)
n − E (0)

n − Sym

⎧
⎪⎨

⎪⎩

∑

n1+···+nm=n
nk≥1, 1<m<n

(
ĝm −Wm

) m∏

k=1
Enk

⎫
⎪⎬

⎪⎭
+Wn . (F.14)

The contributions involvingW ’s can be combined into one sumbydropping the condition
m < n. The resulting sum coincides with the r.h.s. of (5.12) so that these contributions
can be replaced by −E (+)

n . Combined with −E (0)
n , this gives −En and allows to drop the

conditionm > 1 in the remaining sumwith ĝm . As a result, (F.14) becomes equivalent to
the r.h.s. of (5.9), which proves the consistency of this ansatz with the recursive equation.

Finally, let us show that the ansatz satisfies themodularity constraint (5.7). The crucial
observation is that the vectors vi j and ui j (4.10) satisfy

(vi+ j,k, vi j ) = (ui+ j,k, vi j ) = 0, (F.15)

where we abused notation and denoted vi+ j,k = vik + v jk , etc. These orthogonality
relations, together with the assumption that En depend on electric charges only through
the DSZ products γi j ∼ (vi j , x), imply factorization of the action of Vignéras’ operator
on the kernel corresponding to the second term in (5.9). Indeed, all contributions of ∂2x
where two derivatives act on different factors vanish and the action reduces to the sum
of terms where Vignéras’ operator acts on one of the factors. But since it is supposed to
vanish on 	E

n , one obtains the simple result

Vn−1 ·	 ĝ
n = Vn−1 ·	 g(0)

n − Sym

⎧
⎪⎨

⎪⎩

∑

n1+···+nm=n
nk≥1, m<n

(Vm−1 ·	 ĝ
m)

m∏

k=1
	E

nk

⎫
⎪⎬

⎪⎭
. (F.16)

Since for n = 2 the constraint was already shown to hold, one can proceed by induction.
Then in the second term one can substitute the r.h.s. of (5.7), whereas the first term
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can be evaluated using the recursive relation (5.10). First of all, by the same reasoning
as above, away from discontinuities, the action of Vignéras’ operator is factorized and
actually vanishes. Furthermore, since g(0)

n have discontinuities only at walls of marginal
stability, to obtain the complete action, it is enough to consider it only on sgn(S
). Since

at S
 = 0 one has c(
)
i = ci (see (2.15)), one finds that 	

g(0)

n satisfy exactly the same
constraint as (5.7). Thus, one can rewrite (F.16) as

Vn−1 ·	 ĝ
n

= Sym
n−1∑


=1

(
u2
 �

g(0)

n,
 δ′(u
 · x) + 2u
 · ∂x�g(0)

n,
 δ(u
 · x)
)

−Sym

⎧
⎪⎨

⎪⎩

∑

n1+···+nm=n
nk≥1, 1<m<n

[
n−1∑


=1

(
u2
 �

ĝ
m,
 δ′(u
 · x)+2u
 · ∂x�ĝ

m,
 δ(u
 · x)
)
]

m∏

k=1
	E

nk

⎫
⎪⎬

⎪⎭
.

(F.17)

Note that the orthogonality relation allows to include	E
nk under the derivative in the last

term. Then one can perform the same manipulations with the sum over splittings as in
(F.13) but in the inverse direction, which directly leads to the constraint (5.7).

Proposition 3. Our goal is to find an explicit expression for 	̃
(0)
n . Using the fact that the

limit of large x of the generalized error function 	E
n is the product of n sign functions,

one immediately obtains

	̃(0)
n (x) = 1

2n−1n!
∑

T ∈T

n

⎡

⎣
∏

e∈ET

D(vs(e)t (e))

⎤

⎦

⎡

⎣
∏

e∈ET

sgn(ue, x)

⎤

⎦ , (F.18)

where D(v) are the covariant derivative operators (D.16). The action of the derivatives
∂x on the sign functions can be ignored (since the original function is smooth), however
there are additional contributions due to the mutual action of the operators D. Similar
contributions were discussed in a similar context in appendix E, where they were shown
to cancel, but here they turn out to leave a finite remainder. The contribution generated
by the mutual action of two operatorsD(vs(e)t (e)) is non-vanishing only if the two edges
e1, e2 have a common vertex. In this case it contributes the factor

(pv1 pv2 pv3)

2π
sgn(ue1, x) sgn(ue2 , x), (F.19)

where v1, v2, v3 are the tree vertices joint by the edges e1 = (v2, v3), e2 = (v1, v3).
Again, considering the three trees shown in Fig. 7, one can note that the vectors ue defined
by these trees satisfy the following relations: u(1)

e1 = −u(2)
e3 , u

(1)
e2 = u(3)

e3 , u
(2)
e2 = u(3)

e1 and

u(2)
e2 = u(1)

e1 + u(1)
e2 , where e3 = (v1, v2) and we indicated by upper index the tree with

respect to which the vector is defined. Therefore, the contributions generated by these
trees combine into
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(pv1 pv2 pv3)

2π

[
sgn(u(1)

e1 , x) sgn(u(1)
e2 , x) + sgn(u(2)

e2 , x) sgn(u(2)
e3 , x)

−sgn(u(3)
e1 , x) sgn(u(3)

e3 , x)
]

= − (pv1 pv2 pv3)

2π
, (F.20)

where we used the above relations between the vectors and the sign identity (D.12) for
xs = (u(1)

es , x), s = 1, 2, Thus, unlike in (E.5), we now get a non-vanishing result, due
to the mutual action of derivative operators.

Each pair of intersecting edges leads to a contribution which recombines the contri-
butions of the edges from the three trees into a single factor (F.20). Furthermore, the sum
over trees implies that we have to sum over all possible subtrees T1, T2, T3, in particu-
lar, over all possible allocations of different subtrees to the vertices v1, v2, v3. The sign
factors sgn(ue, x) for edges of these subtrees do not depend on this allocation, but the
factorsD(vs(e)t (e)) do depend for the edges connecting to one of these vertices. It is easy
to see that the sum over allocations effectively replaces the three vertices by a single one
labelled by the total charge pv1 + pv2 + pv3 . As a result, one obtains that the function
(F.18) can be represented as a sum over marked trees where a mark corresponds to a
collapse of a pair of intersecting edges and contributes the factor (F.20). More precisely,
one has

	̃(0)
n (x) = 1

2n−1n!
[(n−1)/2]∑

m=0

(−1)m
(2π)m

∑

T ∈T

n−2m,m

⎡

⎣
∏

v∈VT
Pmv({pv,s})

⎤

⎦

×
∏

e∈ET

(vs(e)t (e), x) sgn(ue, x), (F.21)

where

Pm({ps}) =
∑

I1∪···∪Im=Z2m+1

m∏

j=1
(p j1 p j2 p j3). (F.22)

This factor collects the weights (F.20) assigned to a vertex due to collapse of m pairs
of edges. It is represented as a sum over all possible splittings of the set Z2m+1 =
{1, . . . , 2m + 1} into union of triples I j = { j1, j2, j3} such that the labels in one triple
I j are all different, two different triples can have atmost one common label, and there are
no closed cycles in the sense that there are no subsets { jk}rk=1 such that I jk ∩ I jk+1 �= ∅
where jr+1 ≡ j1. This sum simply counts all possible splittings of a collection of 2m
joint edges into m intersecting pairs, suppressing for each pair the distinction between
the three configurations of Fig. 7.

However, the representation (F.22) is not very convenient for our purposes. An al-
ternative representation can be obtained by noting that, instead of collapsing all edges
at once, one can collapse first one pair, sum over all configurations (i.e. allocations of
subtrees), then collapse another pair, and so on. In this approach at each step the sum
over different configurations ensures that all factors assigned to the elements of the sur-
viving tree depend only on the sum of collapsing charges. As a result, one obtains a
hierarchical structure described by a rooted ternary tree T , where the leaves correspond
to the vertices of the original unrooted tree which have collapsed into one vertex with
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mv marks corresponding to the root of T . The other vertices of T are then in one-to-
one correspondence with marked vertices appearing at intermediate stages of the above
process.

This procedure gives rise to the representation (5.19) of the weight factorPm in terms
of a sum over rooted ternary trees. A non-trivial point which must be taken into account
is that the procedure leading to this representation overcounts different configurations.
As a result, each tree is weighted by the rational coefficient NT̂ /m!where T̂ is the rooted
tree obtained from T by dropping all leaves and NT̂ is the number of ways of labelling

the vertices of T̂ with increasing labels, which already appeared in appendix A. Here
the numerator takes into account that the tree T is generated NT̂ times in the collapsing
process, whereas the denominator removes the overcounting produced by specifying
the order in which the m pairs of edges are collapsed. Finally, we apply Lemma 1 from
appendixA. Since nT̂ = m, the coefficients coincideswith the inverse of the tree factorial
(5.20). Taking into account that substitution of (F.21) into (5.15) gives exactly (5.17),
this completes the proof of the proposition.

Proposition 4. Our aim is to show that the recursive formula (5.24) solves the equations
(5.23). We will proceed by induction, starting with the case n = 3 where there is a
single unrooted tree and the system (5.23) contains a single equation corresponding to
the trivial trees Tr consisting of one vertex. Thus, it is solved by a•-•-• = 1

3 consistently
with (5.24).

Let us now consider trees with n vertices assuming that for all trees with less number
of vertices (5.24) holds. We start by noting that for every vertex v ∈ VTr , among the
subtrees Tr,s(v) ⊂ Tr obtained by removing the vertex v, there is one which contains
vr , which we denote by Tr,s0(v). (If v = vr , we take Tr,s0(v) = ∅.) Since every tree T̂r
is a union of the three trees Tr , substituting (5.24) into the l.h.s. of (5.23), one obtains
that the sum over vertices of T̂r can be represented as

1

n

3∑

r=1

∑

v∈VTr
εv

(
aT̂1,r (v)

+ aT̂2,r (v)
− aT̂3,r (v)

) nv∏

s=1
s �=s0

aTr,s (v), (F.23)

where T̂r ′,r (v) is obtained from T̂r ′ by replacing Tr by Tr,s0(v). Applying the equations
(5.23), this expression gives

1

n

⎡

⎣aT2aT3
∑

v∈VT1
εv

nv∏

s=1
aT1,s (v) + aT1aT3

∑

v∈VT2
εv

nv∏

s=1
aT2,s (v)

+aT1aT2
∑

v∈VT3
εv

nv∏

s=1
aT3,s (v)

⎤

⎦ . (F.24)

Since the trees Tr have less than n vertices, they are subject to the induction hypothesis
which allows to replace the sums over vertices by nraTr where nr is the number of
vertices in Tr . Taking into account that n1 + n2 + n3 = n, the expression (F.24) reduces
to aT1aT2aT3 , which proves that the equations (5.23) are indeed satisfied.
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Proposition 5. The evaluation of the large x limit of the function 	̃E
n (x) is very similar

to the calculation done in the proof of Proposition 3. First, using the asymptotics of the
generalized error functions, we can write

lim
x→∞ 	̃E

n (x) = 1

2n−1n!
[(n−1)/2]∑

m=0

∑

T ∈T

n−2m,m

⎡

⎣
∏

v∈VT
Dmv({γ̌v,s})

⎤

⎦

×
⎡

⎣
∏

e∈ET

D(vs(e)t (e))

⎤

⎦

⎡

⎣
∏

e∈ET

sgn(ue, x)

⎤

⎦.

(F.25)

We then observe that the two last factors depend only on sums of charges appearing in
the operatorsDmv in the first factor. This implies that the vectors on which these factors
depend are orthogonal to the vectors determining the operators in (5.22). Therefore,
these operators effectively act on a constant and can be expanded as

Dm · 1 =
m∑

k=0
Vm,k, (F.26)

whereVm,k are homogeneous polynomials in x of degree 2(m−k). In particular, the high-
est degree term coincides with the function defined in (5.26), Vm,0({γ̌s}) = Vm({γ̌s}).

Next, the mutual action of the derivative operators from the product over edges in the
second factor generates contributions described by trees with pairs of collapsed edges
replaced by marks. The difference here is that the original trees were also marked. This
fact does not change the structure of the result, which is again given by a sum over
marked trees, but it affects the weight associated with marks. Denoting this weight for
a vertex with total m marks (old and new) by V tot

m , we recover the equation (5.25) in
the statement of the proposition, provided that V tot

m = Vm . We now proceed to prove the
latter identity.

The weight factor V tot
m coming from the above procedure is given by

V tot
m ({γ̌s})

= Sym

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

m∑

m0=0

(−1)m0

(2π)m0

∑

2m0+1∑

r=1
mr=m−m0

C({mr })Pm0 ({p′r })
2m0+1∏

r=1

mr∑

kr=0
Vmr ,kr (γ̌ jr−1+1, . . . , γ̌ jr )

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

,

(F.27)

where the second sum goes over all ordered decompositions ofm−m0 into non-negative
integers, C({mr }) = (2m+1)!∏

r (2mr+1)! , and we used notations similar to (2.17),

j0 = 0, jr = m1 + · · · + mr , γ ′r = γ jr−1+1 + · · · + γ jr . (F.28)

Here the first factor Pm0 arises due to collapse of m0 pairs of edges in the marked trees
one sums over in (F.25), whereas the factors given by the sums over kr are the ones
corresponding to the “old" marks assigned to that trees.
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Now let us use the equations (5.23) determining the coefficients aT . It is easy to
see that they imply the following constraint on the next-to-highest degree term in the
expansion (F.26)

Vm,1({γ̌s}) = 1

6 · 2π
∑

m1+m2+m3=m−1
mr≥0

C({mr })Sym
{

(p′1 p′2 p′3)
3∏

r=1
Vmr ({γ̌i } jri= jr−1+1)

}

,

(F.29)

where jr =∑r
s=1(2ms + 1) and p′r =

∑2mr+1
i=1 p jr−1+i . Applying this constraint recur-

sively, one can express all Vm,k for k > 0 through Vm . The idea is to replace the factors
Vmr by the operatorsDmr . Then one can realize that, extracting from the resulting func-
tion the terms homogeneous in x of order 2(m − 2) (which have two factors of (p3)),
one obtains the result for 2Vm,2. Proceeding in this way, one arrives at the representation
very similar to (F.27),

Vm,k({γ̌s}) = 1

(2π)k
Sym

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑

2k+1∑

r=1
mr=m−k

C({mr })Pk({p′r })
2k+1∏

r=1
Vmr (γ̌ jr−1+1, . . . , γ̌ jr )

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

(F.30)

Substituting it into (F.27) and using the expression (5.19) for the factors Pm through the
sum over rooted ternary trees, one can recombine all these sums in the following way

V tot
m = Sym

{ m∑

k=0

∑

2k+1∑

r=1
mr=m−k

C({mr })
∑

T∈T(3)
2k+1({γ̌ ′r })

1

T !
∑

T ′⊆T
(−1)nT ′

∏

v∈VT ′

nv(T )

nv(T ′)

×
∏

v∈VT

(pd1(v) pd2(v) pd3(v))

2π

2k+1∏

r=1
Vmr (γ̌ jr−1+1, . . . , γ̌ jr )

}
,

(F.31)

where the sum over T ′ is the sum over subtrees of T having the same root. In terms
of the variables appearing in (F.27), one can identify k = m0 +

∑
r kr and nT ′ = m0.

Thus, T ′ is the tree appearing in the decomposition of Pm0 , whereas T is its union with
2m0 + 1 trees Tr appearing in the decomposition of Pkr , i.e. T = T ′ ∪ (∪r Tr ) where Tr
are the trees rooted at leaves of T ′, Finally, we took into account that for such trees one
has

T ! = T ′!
∏

r

Tr !
∏

v∈VT ′

nv(T )

nv(T ′)
. (F.32)

Remarkably, the sum over subtrees in (F.31) factorizes and for a fixed number of
vertices nT ′ = m0 is subject to Theorem 1 where the rôle of the trees is played by rooted
ternary trees T and T ′ after stripping out their leaves. As a result, one finds for k > 0

∑

T ′⊆T
(−1)nT ′

∏

v∈VT ′

nv(T )

nv(T ′)
=

k∑

m0=0

(−1)m0k!
m0!(k − m0)! = (1− 1)k = 0. (F.33)
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Thus, the only non-vanishing contribution is the one with k = 0 which coincides with
Vm . This is what we had to show and therefore completes the proof of the proposition.

Proposition 6. For simplicity, let us first show that the recursive equation (5.10) is
satisfied by the contribution to g(0)

n ({γ̌i , ci }) given by the trees without any marks, i.e.
by the function

g�
n({γ̌i , ci }) =

(−1)n−1+
∑

i< j γi j

2n−1n!
∑

T ∈T

n

∏

e∈ET

γs(e)t (e) sgn(Se). (F.34)

Then the inclusion of marks will be straightforward because the corresponding contri-
butions can be dealt with essentially in the same way as the contribution (F.34).

To start with, we substitute g�
n into the l.h.s. of the recursive equation and decompose

n
 = −∑

i=1
∑n

j=
+1 γi j . Then the crucial observation is that this double sum, the

sum over 
 and the two sums over trees (over T


 and T


n−
) are all equivalent to a
single sum over trees with n vertices, i.e. overT


n , supplemented by the sum over edges.
Namely, one can do the following replacement

1

2
Sym

n−1∑


=1

1


!(n − 
)!
∑

TL∈T




∑

TR∈T

n−



∑

i=1

n∑

j=
+1

= 1

n!
∑

T ∈T

n

∑

e∈ET

. (F.35)

The idea is that on the l.h.s. one sums over all possible splittings of unrooted labelled
trees with n vertices into two trees with 
 and n − 
 vertices. Such splitting can be
done by cutting an edge and then i, j correspond to the labels of the vertices joined by
the cutting edge. The binomial coefficient n!


!(n−
)! takes into account that after splitting
the vertices of the first tree can have arbitrary labels from the set {1, . . . , n} and not
necessarily {1, . . . , 
}, whereas 1

2 avoids doubling due to the symmetry between TL and
TR .

It is easy to check that all factors in (5.10) fit this interpretation and the l.h.s. takes
the following form

(−1)n−1+
∑

i< j γi j

2n−1n!
∑

T ∈T

n

∏

e∈ET

γs(e)t (e)
∑

e∈ET

(
sgn(Se)− sgn(e)

)

×
∏

e′∈ET \{e}
sgn

(
Se′ − e′

e
Se

)
, (F.36)

wheree was defined in (5.30). Finally, we apply the following sign identity, established
in [23, Eq.(A.7)],

m∑

β=1

(
sgn(xβ)− 1

) m∏

α=1
α �=β

sgn(xα − xβ) =
m∏

α=1
sgn(xα)− 1, (F.37)

where one should take the label α to run over m = n − 1 edges of a tree T , identify
xα = Sα/α , and multiply it by

∏n−1
α=1 sgn(α). Then the expression (F.36) reduces to
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g�
n({γ̌i , ci }) − g�

n({γ̌i , βni }), i.e. the r.h.s. of (5.10) evaluated for function (F.34). This
proves that this function solves the recursive equation.

The generalization of this proof to the full ansatz (5.27) is elementary. Instead of the
relation (F.35), one now has

1

2
Sym

n−1∑


=1

1


!(n − 
)!
[(
−1)/2]∑

kL=0

∑

TL∈T


−2kL ,kL

[(n−
−1)/2]∑

kR=0

∑

TR∈T

n−
−2kR ,kR


∑

i=1

n∑

j=
+1

= 1

n!
[(n−1)/2]∑

k=0

∑

T ∈T

n−2k,k

∑

e∈ET

, (F.38)

which again reflects the fact the sum over marked unrooted labelled trees can be rep-
resented as a sum over all possible splittings into two such trees by cutting them along
an edge. If the cutting edge joins a marked vertex, it counts 1 + 2mv times, producing
the right factor γvLvR , which is reflected by the fact that the sums over i, j run over 


and n− 
 values, respectively. Other numerical factors work in the same way as before.
Thus, the l.h.s. of (5.10) can again be rewritten as in (F.36) with the only difference that
∑

T ∈T

n
should now be replaced by

∑[(n−1)/2]
k=0

∑
T ∈T


n−2k,k
∏

v∈VT Ṽv. Applying the

same sign identity (F.37) for m = n − 1 − 2k and the same identification for xα , one
recovers the r.h.s. of (5.10). This completes the proof of the proposition.

Proposition 7. This proposition trivially follows from (5.9).

Proposition 8. The easiest way to prove (5.34) is to substitute it into (5.4) and then check
that the result is consistent with the constraint (5.12). The substitution generates a sum
over trees which resemble the blooming trees of appendix C: these are trees with vertices
fromwhich other trees grows. But now the two types of trees, representing the ‘base’ and
the ‘flowers’, are actually the same—both of themare Schröder trees. The only difference
is that vertices of the ‘base’ carry weights E (+)

v , whereas the vertices of ‘flowers’ have
weights E (0)

v . Since the leaves of a ‘flower’ are in one-to-one correspondence with the
children of the vertex of the ‘base’ tree from which this flower grows, such blooming
trees can be equivalently represented by the usual Schröder trees obtained by replacing
the vertices of the ‘base’ by their ‘flowers’. In this way, we obtain

Wn = Sym

⎧
⎨

⎩

∑

T∈TS
n

(−1)nT
∑

∪ T ′=T

∏

T ′

⎡

⎣E (+)

v0(T ′)
∏

v∈VT ′ \{v0(T ′)}
E (0)

v

⎤

⎦

⎫
⎬

⎭
, (F.39)

where the second sum goes over decompositions of T into subtrees such that the root
v0(T ′) of a subtree T ′ is a leaf of another subtree (except, of course, the root of the total
tree).

Let us now consider a vertex v whose only children are leaves of T . Then all decom-
positions into subtrees T = ∪i T ′i can be split into pairs such that two decompositions
differ only by whether v (together with its leaves) represents a separate subtree or it is a
part of a bigger subtree. The contributions of two such decompositions into (F.39) differ
only by the factors assigned to the vertex v and therefore they combine into the factor
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Ev assigned to this vertex. As a result, Ev appears as a common factor and the vertex v

can be excluded from the following consideration. Proceeding in the same way with the
tree obtained by removing this vertex, one finds that the sum over decompositions can
be evaluated explicitly and gives

Wn = Sym

⎧
⎨

⎩

∑

T∈TS
n

(−1)nT E (+)
v0

∏

v∈VT \{v0}
Ev

⎫
⎬

⎭
. (F.40)

Given this result, the proof of the constraint (5.12) is analogous to the proof of the
relation (F.4): the contribution of each tree T (from the sum in (F.40)) and a splitting
with nk > 1 (from the sum in (5.12)) is cancelled by the contribution of another tree
obtained from T by adding nk children to its kth leaf and the same splitting but with
nk replaced by 1 + · · · + 1 (repeated nk times). The only contribution which survives is
the one generated by the tree with a single vertex and n leaves and the splitting with all
nk = 1. It is given by E (+)

n , which verifies the constraint and proves the proposition.

Proposition 9. Our starting point to prove the proposition is the formula

∂τ̄ ĥ p,μ(τ ) = i

2

∞∑

n=2

∑

∑n
i=1 γ̌i=γ̌

∂τ2 Rn({γ̌i }, τ2) eπ iτQn({γ̌i })
n∏

i=1
h pi ,μi (τ ).

(F.41)

Substituting ∂τ2 Rn following from (5.34) and the inverse formula (5.5) expressing h p,μ
in terms of the completion, with the functions Wn found in (F.40), one arrives at the
result (5.35) where the functions Jn are given by

Jn= i

2
Sym

⎧
⎨

⎩

∑

T∈TS
n

(−1)nT−1∂τ2Ev0

∑

T ′⊆T

∏

v∈VT ′ \{v0}
E (0)

v

∏

v∈LT ′
E (+)

v

∏

v∈VT \(VT ′∪LT ′ )
Ev

⎫
⎬

⎭
,

(F.42)

where the second sum goes over all subtrees T ′ of T containing its root and LT ′ is the set
of their leaves. Here the subtree T ′ corresponds to the tree in the formula (5.34) for Rn ,
whereas the subtrees starting from its leaves correspond to the trees in the expression
(F.40) for Wn . The sum over subtrees can be evaluated in the same way as the sum over
decompositions into subtrees in (F.39): the two contributions differing only by whether
the vertex v belongs to VT ′ or LT ′ combine into the factor Ev assigned to this vertex.
Performing this recombination for all vertices of the tree T , one obtains the expression
(5.36), which proves the proposition.

Proposition 10. Our goal is to prove that in the expression

gtr,n = Sym

⎧
⎨

⎩

∑

T∈TS
n

(−1)nT−1
(
g(0)
v0
− E (0)

v0

) ∏

v∈VT \{v0}
E (0)

v

⎫
⎬

⎭
, (F.43)
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Fig. 11. Combination of two Schröder trees ensuring the cancellation of contributions generated by marked
trees

following from (5.33), all contributions due to marked trees cancel leaving only con-
tributions of trees without marks, i.e with m = 0. There are several possible situations
which we need to analyze.

First, let us consider the contributions generated by non-trivial marked trees, i.e.
trees having more than one vertex and at least one mark. Let us focus on the contribution
corresponding to a vertex v with mv > 0 marks of a tree T , which appears in the sum
over marked unrooted trees living at a vertex v of a Schröder tree T . Let k = nv be
the number of children of the vertex v and γi (i = 1, . . . , k) their charges so that γs
(s = 1, . . . , 2mv+1) are the charges labelling themarked vertex v. Note that k ≥ 2mv+2
because the tree T has at least one additional vertex except v. Then the contribution we
described is cancelled by the contribution coming from another Schröder tree, which is
obtained from T by adding an edge connecting the vertex v to a new vertex v′, whose
children are the 2mv + 1 children of v in T carrying charges γs (see Fig. 11).35 Indeed,
choosing the same tree T as before in the sum over marked trees at vertex v, but now
withmv = 0, and in the sum at vertex v′ the trivial tree having one vertex andmv marks,
one gets exactly the same contribution as before, but now with an opposite sign due to
the presence of an additional vertex in the Schröder tree. Thus, all contributions from
non-trivial marked trees are cancelled.

As a result, we remain only with the contributions generated by trivial marked trees,
i.e. having only one vertex and mv marks. One has to distinguish two cases: either the
corresponding vertex v of the Schröder tree is the root or not. In the former case, this
contribution is trivially cancelled in the difference g(0)

v0 −E (0)
v0 in (F.43). In the latter case,

this is precisely the contribution used above to cancel the contributions from non-trivial
marked trees. This exhausts all possibilities and we arrive at the formula (5.40).

G. Explicit Results Up to 4th Order

In this appendix we provide explicit expressions for various functions appearing in our
construction up to the forth order. Towrite themdown,wewill use the shorthand notation
γi+ j = γi +γ j , ci+ j = ci +c j , etc. as well as indicate the arguments of functions through
their indices, for instance, Ei1···in = En(γ̌i1 , . . . , γ̌in ). These expressions are obtained by
35 The new tree is of Schröder type because its vertex v has k − 2mv ≥ 2 children and vertex v′ has

2mv + 1 ≥ 3 children.
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simple substitutions using the results found in the main text and the sets of trees shown
in Fig. 1. For n = 2 they all agree with the results of [14].

The results (5.33) and (5.34) generate the following expansions

hDTp,q = ĥ p,μ +
∑

γ̌1+γ̌2=γ̌

[
g(0)
12 − E12

]
eπ iτQ2({γ̌i })ĥ p1,μ1 ĥ p2,μ2

+
∑

∑3
i=1 γ̌i=γ̌

[
g(0)
123 − E123 − 2

(
g(0)
1+2,3 − E1+2,3

)
E12
]
eπ iτQ3({γ̌i })

3∏

i=1
ĥ pi ,μi

+
∑

∑4
i=1 γ̌i=γ̌

[
g(0)
1234 − E1234 − 2

(
g(0)
1+2+3,4 − E1+2+3,4

) (
E123 − 2E1+2,3E12

)

−3
(
g(0)
1+2,34 − E1+2,34

)
E12 +

(
g(0)
1+2,3+4 − E1+2,3+4

)
E12E34

]
eπ iτQ4({γ̌i })

×
4∏

i=1
ĥ pi ,μi + · · · , (G.1)

ĥ p,q = h p,μ +
∑

γ̌1+γ̌2=γ̌

E (+)
12 eπ iτQ2({γ̌i })h p1,μ1h p2,μ2

+
∑

∑3
i=1 γ̌i=γ̌

[
E (+)
123 − 2E (+)

1+2,3E
(0)
12

]
eπ iτQ3({γ̌i })

3∏

i=1
h pi ,μi

+
∑

∑4
i=1 γ̌i=γ̌

[
E (+)
1234 − 2E (+)

1+2+3,4

(
E (0)
123 − 2E (0)

1+2,3E
(0)
12

)
− 3E (+)

1+2,34E
(0)
12

+E (+)
1+2,3+4E

(0)
12 E

(0)
34

]
eπ iτQ4({γ̌i })

4∏

i=1
h pi ,μi + · · · , (G.2)

where the functions g(0)
n and En can be read off from (5.27), (5.32) and (5.31),

g(0)
2 = (−1)1+γ12

4
γ12 sgn(c1),

g(0)
3 = (−1)1+γ12+γ1+2,3

8
Sym

{
γ12 γ23 sgn(c1) sgn(c3) +

1

3
γ12 γ23

}
,

g(0)
4 = (−1)γ12+γ1+2,3+γ1+2+3,4

16
Sym

{
γ12γ23γ34 sgn(c1)sgn(c1+2)sgn(c4)

− 1

3
γ12γ23γ24 sgn(c1)sgn(c3)sgn(c4)− 1

3
γ12γ23γ1+2+3,4sgn(c4)

}
,

(G.3)

E12 = (−1)γ12
4
√
2τ2

	̃E
1

(
v12, v12

)

= (−1)γ12
4

[

γ12 E1

( √
2τ2γ12√

(pp1 p2)

)
+

√
(pp1 p2)

π
√
2τ2

e
− 2πτ2γ 212

(pp1 p2)

]

,
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E123 = (−1)γ12+γ1+2,3

8
Sym

{
1

2τ2
	̃E

2

(
(v1,2+3, v1+2,3), (v12, v23)

)

−1

3

(
γ12γ23 − (p1 p2 p3)

4πτ2

)}
,

E1234 = (−1)γ12+γ1+2,3+γ1+2+3,4

16
√
2τ2

×Sym

{
1

2τ2

(
	̃E

3

(
(v1,2+3+4, v1+2,3+4, v1+2+3,4), (v12, v23, v34)

)

+
1

3
	̃E

3

(
(v1,2+3+4, v1+2+4,3, v1+2+3,4), (v12, v23, v24)

))

−1

3

(
γ12γ23 − (p1 p2 p3)

4πτ2

)
	̃E

1

(
v1+2+3,4, v1+2+3,4

)}
, (G.4)

where all generalized error functions are evaluated at x = √2τ2(q + b). The last terms
appearing in the above quantities for n = 3 and n = 4 correspond to contributions of
trees with one mark (m = 1). In fact, at these orders these results can be rewritten in a
simpler form, which coincides with the representations (5.42) and (5.48) (in the latter
formula one should drop the sum over partitions and take dT = dn):

g(0)
3 = (−1)1+γ12+γ1+2,3

12
Sym

{
γ12 γ1+2,3 sgn(c1) sgn(c3)

}
,

g(0)
4 = (−1)γ12+γ1+2,3+γ1+2+3,4

96 Sym
{(
2 γ23γ1,2+3γ1+2+3,4 + γ12γ34γ1+2,3+4

)

×sgn(c1)sgn(c1+2)sgn(c4)
}
, (G.5)

E123 = (−1)γ12+γ1+2,3

24τ2
Sym

{
	̃E

2

(
(v1,2+3, v1+2,3), (v12, v1+2,3)

)}
,

E1234 = (−1)γ12+γ1+2,3+γ1+2+3,4

96(2τ2)3/2
Sym

{
2 	̃E

3

(
(v1,2+3+4, v1+2,3+4, v1+2+3,4),

×(v23, v1,2+3, v1+2+3,4)
)

+	̃E
3

(
(v1,2+3+4, v1+2,3+4, v1+2+3,4), (v12, v34, v1+2,3+4)

))}
. (G.6)

The simplest way to prove the equality of the two representations of g(0)
n is to expand the

DSZ products appearing in (G.5) into elementary γi j ’s and then, using symmetrization,
bring all their products to the form appearing in (G.3). These products are multiplied by
combinations of sign functions which can be recombined with the help of the identity
(D.12). As an example, let us perform these manipulations for n = 3:

Sym
{
γ12 γ1+2,3 sgn(c1) sgn(c3)

}
= Sym

{
γ12 γ23

(
sgn(c1)− sgn(c2)

)
sgn(c3)

}

= Sym
{
γ12 γ23

(
sgn(c1) sgn(c3) +

1

2
sgn(c1+3)

(
sgn(c1) + sgn(c3)

))}

= 1

2
Sym

{
γ12 γ23

(
3 sgn(c1) sgn(c3) + 1

)}
,

(G.7)



Black Holes and Higher Depth Mock Modular Forms 619

where we used that c2 = −(c1 + c3). This identity then shows the equality of the two
forms of g(0)

3 given above. For g(0)
4 the manipulations are very similar, but a bit more

cumbersome. The equality of the two forms of En follows from the equality of their
asymptotics E (0)

n , which is in turn ensured by the same identities as for g(0)
n .

Finally, we provide expressions for the kernels 	̂tot
n of the indefinite theta series

appearing in the expansion (5.38) of G in powers of ĥ p,μ. For the first two orders, one
has

	̂tot
1 =	

∫

1 ,

	̂tot
2 =	

∫

2 + 	
∫

1	
ĝ
2 =

1

4
	
∫

1

(
	̃E

1 (u12, v12)− 	̃E
1 (v12, v12)

)
,

(G.8)

where 	
∫

1 (x) is defined in (4.13). At the next order,

	̂tot
3 = 	

∫

3 + 2 Sym
{
	
∫

2 (x1+2, x3)	
ĝ
2 (x1, x2)

}
+ 	

∫

1	
ĝ
3 . (G.9)

To get an explicit expression in terms of smooth solutions of Vignéras’ equation, one
should use the relation (D.15). Applying it to the case n = 2 with V = (u1,2+3, u1+2,3),
using the orthogonality properties

u(1,2+3)⊥(1+2,3) = u12, u(1+2,3)⊥(1,2+3) = u23, (G.10)

and acting by the operator D(v12)D(v23), one can show that

Sym
{
	̃E

2

(
(u1,2+3, u1+2,3), (v12, v23)

)}

= Sym

{
	̃M

2

(
(u1,2+3, u1+2,3), (v12, v23)

)

+(v12, x) sgn(u12, x) 	̃M
1

(
u1+2,3, v1+2,3

)

+(v12, x) (v23, x) sgn(u1,2+3, x) sgn(u1+2,3, x)

− (p1 p2 p3)

6π

}
. (G.11)

This result allows to obtain the following representation for the kernel

	̂tot
3 = 1

8
	
∫

1 Sym

{
	̃E

2

(
(u1,2+3, u1+2,3), (v12, v23)

)− 	̃E
2

(
(v1,2+3, v1+2,3), (v12, v23)

)

−
(
	̃E

1 (u1+2,3, v1+2,3)− 	̃E
1 (v1+2,3, v1+2,3)

)
	̃E

1 (v12, v12)

}
. (G.12)

Using the identity between functions 	̃E
2 implied by the identity (G.7), the kernel

can also be rewritten as

	̂tot
3 = 1

8
	
∫

1 Sym

{
2

3

(
	̃E

2

(
(u1,2+3, u1+2,3), (v12, v1+2,3)

)

−	̃E
2

(
(v1,2+3, v1+2,3), (v12, v1+2,3)

))

−
(
	̃E

1 (u1+2,3, v1+2,3)− 	̃E
1 (v1+2,3, v1+2,3)

)
	̃E

1 (v12, v12)

}
, (G.13)
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so that the vectors appearing in the second argument of 	̃E
2 are nowmutually orthogonal.

For n = 4, the kernel is given by

	̂tot
4 =	

∫

4 + Sym
{
3	

∫

3 (x1+2, x3, x4)	
ĝ
2 (x1, x2)

+ 	
∫

2 (x1+2, x3+4)	
ĝ
2 (x1, x2)	

ĝ
2 (x3, x4)

+ 2	
∫

2 (x1+2+3, x4)	
ĝ
3 (x1, x2, x3)

}
+ 	

∫

1	
ĝ
4 .

(G.14)

Proceeding in the same way as for n = 3, obtaining a generalization of (G.11) to n = 4,
one arrives at

	̂tot
4 = 1

16
	
∫

1 Sym

{
	̃E

3

(
(u1,2+3+4, u1+2,3+4, u1+2+3,4), (v12, v23, v34)

)

−	̃E
3

(
(v1,2+3+4, v1+2,3+4, v1+2+3,4), (v12, v23, v34)

)

+
1

3

(
	̃E

3

(
(u1,2+3+4, u1+2+4,3, u1+2+3,4), (v12, v24, v34)

)

−	̃E
3

(
(v1,2+3+4, v1+2+4,3, v1+2+3,4), (v12, v24, v34)

))

−
(
	̃E

2

(
(u1+2,3+4, u1+2+3,4), (v1+2,3, v34)

)

−	̃E
2

(
(v1+2,3+4, v1+2+3,4), (v1+2,3, v34)

)

+
1

2

(
	̃E

2

(
(u1+2+4,3, u1+2+3,4), (v1+2,3, v1+2,4)

)

−	̃E
2

(
(v1+2+4,3, v1+2+3,4), (v1+2,3, v1+2,4)

)))
	̃E

1 (v12, v12)

−
(
	̃E

1 (u1+2+3,4, v1+2+3,4)− 	̃E
1 (v1+2+3,4, v1+2+3,4)

)

×	̃E
2

(
(v1,2+3, v1+2,3), (v12, v23)

)

+
(
	̃E

1 (u1+2+3,4, v1+2+3,4)− 	̃E
1 (v1+2+3,4, v1+2+3,4)

)

×	̃E
1 (v12, v12)	̃

E
1 (v1+2,3, v1+2,3)

+
1

4

(
	̃E

1 (u1+2,3+4, v1+2,3+4)− 	̃E
1 (v1+2,3+4, v1+2,3+4)

)

×	̃E
1 (v12, v12)	̃

E
1 (v34, v34)

}
. (G.15)

It is possible also to rewrite this expression in terms of generalized error functions
	̃E

n (V, Ṽ) where the vectors entering the second argument are mutually orthogonal, as
in (G.13). The reader can easily guess the result by comparing (G.4) and (G.6).

The explicit results for 	̂tot
n , n ≤ 4, presented above are the basis for the conjectural

formula (5.39). Note that all terms in these expressions have the sum of ranks of the
generalized error functions equal to n− 1. This shows that all contributions due to trees
with non-zero number of marks cancel in the sum over Schröder trees.
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H. Index of Notations

Symbol Description Appears/defined in

A(T ) contribution of tree T to the integrand of the multi-instanton
expansion of Hγ and G

(3.18)

aT coefficient of unrooted labelled tree T in Dm ({γ̌s }) (5.22), (5.24)
βk
 DSZ product 〈γ1 + · · · + γk , γ
〉 (2.13)
b2 = b2(Y) second Betti number ofY p.14
ba = Re (za) periods of the Kalb-Ramond field p.11

bn rational coefficients in the expansion of F(ref)
n (5.51), (5.54)

ci stability parameters (2.6)

c(
)i stability parameters after attractor flow (2.15)
c2,a components of the second Chern class ofY (2.19)
d = nb2 dimension of the lattice � = ⊕n

i=1�i p.47

dn , dT rational weights in the representation of g(0)
n via flow tree (5.42), (5.45)

�(T ), �z
γLγR

sign factors assigned to attractor flow tree T (2.4)
Dh Maass raising operator (3.23)
D(v) modular-covariant derivative contracted with vector v (D.16)
Dm ({γ̌s }) derivative operator assigningweight to vertices withmmarks (5.22)
En(M;u) generalized error function onRn (D.11)

En = E(0)
n + E(+)

n function encoding the modular completion (5.31), (5.29)
φ (logarithm of) contact potential onMH (3.20)
	E
n , 	

M
n boosted (complementary) error functions (D.14)

	̃E
n,m , 	̃

M
n,m uplifted boosted error functions in the kernel of Vm (denoted

by 	̃E
n , 	̃

M
n when n = m)

(D.17)

	T contribution of tree T to 	

∫

n (E.2), (E.17)

	

∫

n kernel defined by twistorial integrals (4.3), (4.12)

	E
n kernel corresponding to function En (5.32)

	̃E
n kernel promoting g(0)

n to a solution of Vignéras’ equation (5.21)

	
g
n kernel corresponding to the tree index (4.3), (4.9)

	
ĝ
n kernel corresponding to completed tree index ĝn (5.6)

	tot
n total kernel in the expansion of G in terms of h p,μ (4.3)

	̂tot
n total kernel in the expansion of G in terms of ĥ p,μ (5.39)

F(X) holomorphic prepotential p.11
Ftr,n({γi }, za) partial tree index (2.12)

F(ref)
n ({ci }) partial contribution in g(ref)

n (5.49)
F image of G under Euler operator (3.28)
 charge lattice inside Heven(Y,Q) (2.19)
+ positive cone in the charge lattice (2.20)
k
, e sums of DSZ products (2.13), (5.30)
γ = (0, pa , qa , q0) charge vector of a generic D4 (or D3) brane (2.19)
γ̌ = (pa , qa) projection of γ on H4(Y,Q)⊕ H2(Y,Q) (2.31)
γi j = 〈γi , γ j 〉 Dirac-Schwinger-Zwanziger product, or Euler pairing (2.24)

gtr,n({γi }, za) tree index, also denoted by gtr,n({γi , ci }) (2.3)

ĝn({γ̌i }, za , τ2) completed tree index, also denoted by ĝn({γ̌i , ci }) (5.2), (5.33)

g(0)
n ({γ̌i , ci }) seed term in recursion for ĝn (5.9)

g(ref)
n ({γ̌i , ci }, y) refined version of g(0)

n (5.49)
G instanton generating function (3.22)
Gn({γi , zi }) integrand in the n-instanton contribution to G (3.26)
Gn({γ̌i , ci }; τ2) large x limit of 	̃n(x) (5.15), (5.17)
hDTp,q (τ, za) generating function of DT invariants (2.28)
h p,μ(τ ) generating function of MSW invariants (2.29)
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Symbol Description Appears/defined in
ĥ p,μ(τ ) modular completion of h p,μ(τ ) (5.1)
Hγ (z) generator of contact transformation across 
γ (3.9)
Hcl

γ (z) classical, large volume limit of Hγ (z) (3.15)
κ(T ) weight of attractor flow tree T (2.7)
κ(x) BPS index of two-centered solutions (2.8)
κabc intersection numbers on a fixed basis of H4(Y) p.11
Kγ1γ2 (z1, z2) integration kernel in large volume limit (3.16)
K̂i j (zi , z j ) rescaled integration kernel in large volume limit (4.7)
Jn({γ̌i }, τ2) coefficient in the formula for the shadow of ĥ p,μ (5.35)
� = H4(Y,Z) lattice equipped with quadratic form κab = κabc p

a p.11
�i = H4(Y,Z) lattice equipped with quadratic form κi,ab = κabc p

a
i p.47

� lattice � = ⊕n
i=1�i spanned by n D1-brane charges p.47

λ eigenvalue under Vignéras’ operator (D.3)

γ BPS ray on the twistor fiber, or its large volume limit (3.3), p.18
μa residue class of qa modulo spectral flow (2.26)
Mn(M;u) generalized complementary error function onRn (D.10)
Mαβ matrix of parameters in the generalized error functions (D.10), (D.11)
MK(Y) complexified Kähler moduli space ofY p.11
MH hypermultiplet moduli space in IIB/Y, or vector multiplet

moduli space in IIA/(Y× S1) =M/(Y× T 2)

p.13

nT number of vertices of rooted tree T excluding the leaves (5.33)
nv(T ) number of descendants of the vertex v in T plus one (1.2)
nv valency of vertex v of an unrooted tree (5.24)
pa homology class of the divisor wrapped by the D3-brane (2.20)
Pm ({ps }) weight of a vertex with m marks in Gn (5.19)
q̂0 invariant D0-brane charge (2.27)
Qn({γ̌i }) difference of quadratic forms for constituents and the total

charge
(2.32)

Rn({γ̌i }, τ2) non-holomorphic correction in the completion ĥ p,μ(τ ) (5.2), (5.34)
σγ quadratic refinement (3.4), (D.5)
Sk , Se sums of stability parameters (2.13), (5.18)
Sclp classical action of a D3-instanton in large volume limit (3.13)
ϑ p,μ

(
	, λ) indefinite theta series with kernel 	 (D.1)

τ = τ1 + iτ2 4D axio-dilaton in IIA, or torus modulus in M theory p.14
t complex coordinate on the twistor fiber p.15
ta = Im (za) Kähler moduli on Y p.11
T rooted tree with charges assigned to the leaves footnote 18
T tree with charges assigned to vertices footnote 18
Tn ,T


n set of unrooted (labelled) trees with n vertices (3.26)
Tn,m ,T


n,m set of unrooted (labelled) trees with n vertices and m marks (5.17)
Tr
n set of rooted trees with n vertices (3.17)

Taf
n set of attractor flow trees with n leaves (2.3)

TS
n set of Schröder trees with n leaves (5.4)

T
(3)
2m+1 set of rooted ternary trees with n leaves (5.19)

u� = (1, ua) complex structure moduli of mirror threefold Ŷ p.15
ui j , ue , u
 vectors in Rd associated to −2 Im [Zγi Z̄γ j ], −Se and −S
 (4.10), (4.11), (5.8)

vi j , ve , v
 vectors in Rd associated to 〈γi , γ j 〉, e and −n
 (4.10), (4.11), (5.8)
VT set of vertices of rooted tree T excluding leaves p.8
Vλ Vignéras’ operator (D.3)
Vm weight of a vertex with m marks in large x limit of 	̃E

n (5.26)

Ṽm weight of a vertex with m marks in g(0)
n (5.28)

Wn({γ̌i }, τ2) coefficient in the formula for h p,μ in terms of ĥ pi ,μi (5.5)
Xγ holomorphic Fourier modes on the twistor space of MH (3.2)
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Symbol Description Appears/defined in
X sf

γ semi-flat limit of Xγ (3.1)
X cl

γ classical limit of Xγ (3.12)

X (θ)
p,q q̂0-independent part of X cl

γ (3.13)
x d-dimensional vector, argument of kernels of theta series p.47
z coordinate on the twistor fiber, after Cayley transf. (3.6)
zγ saddle point on twistor fiber (3.10)
za = ba + ita complexified Kähler moduli of Y p.14
za∗(γ ) attractor moduli for charge γ p.7
za∞(γ ) large volume attractor point for charge γ (1.1)
Zγ (za) central charge (2.21)
�(γ, za) generalized Donaldson-Thomas invariant p.12
�̄(γ, za) rational DT invariant (2.1)
�̄∗(γ ) attractor index p.7
�̄MSW(γ ) MSW invariant, also denoted by �̄p,μ(q̂0) p.12

Note in Proofs In a subsequent work [78], we extend the construction of the modu-
lar completion to the case of refined Donaldson-Thomas invariants, by exploiting the
observations made in Sect. 5.4.2 of the present paper. While it agrees with the present
construction in the unrefined limit, the refined construction turns out to be vastly simpler,
with all complications reduced to the final step of taking the limit y → 1.
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