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Abstract: We study the topic of quantum differentiability on quantum Euclidean d-
dimensional spaces (otherwise known as Moyal d-spaces), and we find conditions that
are necessary and sufficient for the singular values of the quantised differential d̄x to
have decay O(n−α) for 0 < α ≤ 1

d . This result is substantially more difficult than the
analogous problems for Euclidean space and for quantum d-tori.

1. Introduction

Quantum Euclidean spaces were first introduced by a number of authors, including
Groenewold [28] and Moyal [47], for the study of quantum mechanics in phase space.
The constructions of Groenewold and Moyal were later abstracted into more general
canonical commutation relation (CCR) algebras, and have since become fundamental
in mathematical physics. Under the names Moyal planes or Moyal-Groenewold planes,
these algebras play the role of a central and motivating example in noncommutative
geometry [5,22]. As geometrical spaces with noncommutating spatial coordinates, non-
commutative Euclidean spaces have appeared frequently in the mathematical physics
literature [21], in the contexts of string theory [61] and noncommutative field theory
[48].

Quantum Euclidean spaces have also been studied as an interesting noncommutative
setting for classical and harmonic analysis, and for this we refer the reader to recent
work such as [24,39,46,67].

Connes introduced the quantised calculus in [8] as a replacement for the algebra of
differential forms for applications in a noncommutative setting, and afterwards this point
of view found application to mathematical physics [9]. Connes successfully applied his
quantised calculus in providing a formula for the Hausdorff measure of Julia sets and for
limit sets of Quasi-Fuchsian groups in the plane [10, Chapter 4, Sect. 3.γ ] (for a more
recent exposition see [14,17]).
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Following [8], quantised calculus may be defined defined in terms of a Fredholm
module. The idea behind a Fredholm module has its origins with Atiyah’s work on
K -homology [2], and further details can be found in, for example, [33, Chapter 8].

A Fredholmmodule can be defined with the following data: a separable Hilbert space
H , a unitary self-adjoint operator F on H and a C∗-algebra A represented on H such
that the commutator [F, a] is a compact operator on H for all a in A. The quantised
differential of a ∈ A is then defined to be the operator d̄a = i[F, a].

It is suggestive to think of the compact operators on H as being analogous to “in-
finitesimals”, and one can measure the “size” or “order” of an infinitesimal T in terms
of its singular value sequence:

μ(n, T ) := inf{‖T − R‖ : rank(R) ≤ n}
where ‖ · ‖ is the operator norm.

A problem of particular interest in quantised calculus is to precisely quantify the
asymptotics of the sequence {μ(n,d̄a)}∞n=0 in terms of a. In operator theoretic language,
we seek conditions underwhich the operator d̄a is in some ideal of the algebra of bounded
operators on H . Of the greatest importance are Schatten-von Neumann Lp ideals, the
Schatten-Lorentz Lp,∞ spaces and the Macaev-Dixmier idealM1,∞ (c.f. Sect. 2.1 and
[42, Sect. 2.6]).

The link between quantised calculus and geometry is discussed by Connes in [9]. A
model example for quantised calculus is to take a compact d-dimensional Riemannian
spin manifold M (with d ≥ 2) with Dirac operator D, and define H to be the Hilbert
space of pointwise almost-everywhere equivalence classes of square integrable sections
of the spinor bundle. The algebra A = C(M) of continuous functions on M acts by
pointwise multiplication on H , and one defines F as a difference of spectral projections:

F := χ[0,∞)(D) − χ(−∞,0)(D).

One then has d̄ f = i[F, M f ], where M f is the operator on H of pointwise multipli-
cation by f ∈ C(M). In quantised calculus the immediate question is to determine the
relationship between the degree of differentiability of f ∈ C(M) and the rate of decay
of the singular values of d̄ f . In general, we have the following inclusion [9, Theorem
3.1]:

f ∈ C∞(M) ⇒ | d̄ f |d ∈ M1,∞.

This corresponds to the implication:

f ∈ C∞(M) ⇒ sup
n≥0

1

log(2 + n)

n∑

j=0

μ( j,d̄ f )d < ∞.

It is possible to specify evenmore precise details about the asymptotics of {μ( j,d̄ f )} j≥0.
Suppose that ω is an extended limit (a continuous linear functional on the space of
bounded sequences �∞(N) which extends the limit functional). If ω is invariant under
dilations (in the sense of [42, Definition 6.2.4]) then [9, Theorem 3.3] states that:

ω

⎛

⎝

⎧
⎨

⎩
1

log(2 + n)

n∑

j=0

μ( j,d̄ f )d

⎫
⎬

⎭

∞

n=0

⎞

⎠ = cd

∫

M
|d f ∧ �d f |d/2 (1.1)

where cd is a known constant, d is the exterior differential and � denotes the Hodge star
operator associated to the orientiation of M . The quantity on the left hand side of (1.1)
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is precisely the Dixmier trace trω(| d̄ f |d). According to Connes, this formula “shows
how to pass from quantized 1-forms to ordinary forms, not by a classical limit, but by a
direct application of the Dixmier trace” [9, Page 676].

When working with particular manifolds, rather than general compact manifolds,
it is possible to specify with even greater precision the relationship between f and
the singular values of d̄ f . In the one dimensional cases of the circle and the line, the
appropriate choice for F turns out to be the Hilbert transform (see [10, Chapter 4,
Sect. 3.α]) and the commutators of pointwise multiplication operators and the Hilbert
transform are very well understood. If f is a function on either the line R or the circle
T, necessary and sufficient conditions for d̄ f to be in virtually every named operator
ideal are known (see the discussion at the end of Chapter 6 of [50]).

In higher dimensions (in particularT
d andR

d for d ≥ 2), an appropriate choice for F
is given by a linear combination of Riesz transforms [12,41]. Commutators of pointwise
multiplication operators and Riesz transforms are well studied in classical harmonic
analysis, and Janson and Wolff [35] determined necessary and sufficient conditions for
such a commutator to be inLp for all p ∈ (0,∞). An evenmore precise characterisation
was obtained by Rochberg and Semmes [60].

If f ∈ C∞(Td), let ∇ f = (∂1 f, ∂2 f, . . . , ∂d f ) be the gradient vector of f , and let

‖∇ f ‖2 =
(∑d

j=1 |∂ j f |2
) 1

2
. Then as a special case of (1.1), we have the following:

trω(| d̄ f |d) = kd

∫

Td
‖∇ f (t)‖d2dm(t), (1.2)

where kd > 0 is a known constant, and m denotes the flat (Haar) measure on T
d . A

similar integral formula can also be obtained in the non-compact setting of R
d [41,

Theorem 2].
Despite having been heavily studied in the commutative setting, quantum differen-

tiability in the strictly noncommutative setting is still largely unexplored. Recently the
authors have established a characterisation of the Ld,∞-ideal membership of quantised
differentials for noncommutative tori [45]. The primary result of [45] is as follows. Let θ
be an antisymmetric real d×d matrix with d > 2, and consider the noncommutative tori
T
d
θ . In this setting, there is a conventional choice of Fredholm module and an associated

quantised calculus [25, Sect. 12.3]. An element x ∈ L2(T
d
θ ) belongs to the (noncommu-

tative) homogeneous Sobolev space Ẇ 1
d (Td

θ ) if and only if its quantised differential d̄x
has bounded extension in Ld,∞. The quantum torus analogue of (1.2) is also obtained
as [45, Theorem 1.2]: for x ∈ Ẇ 1

d (Td
θ ), there is a certain constant cd such that for any

continuous normalised trace ϕ on L1,∞ we have

ϕ(| d̄x |d) = cd

∫

Sd−1
τ

⎛

⎝
( d∑

j=1

|∂ j x − s j

d∑

k=1

sk∂k x |2
) d

2

⎞

⎠ ds, (1.3)

where τ is the standard trace on the algebra L∞(Td
θ ), and the integral is over the d −

1-sphere S
d−1 with respect to its rotation invariant measure ds. To the best of our

knowledge, these resultswere the first concerning quantumdifferentiability in the strictly
noncommutative setting.

The primary task of this paper is to determine similar results for noncommutative
Euclidean spaces. A number of major obstacles make this task far more difficult than



494 E. McDonald, F. Sukochev, X. Xiong

for noncommutative tori. In particular, the methods of [45] were facilitated by a well-
developed theory of pseudodifferential operators on noncommutative tori [29,30]. How-
ever, despite recent advances [24,38,46], the theory of pseudodifferential operators for
noncommutative Euclidean spaces is still in its infancy and it is not clear how to directly
adapt the existing theory to this problem. It has therefore been necessary for us to in-
troduce new arguments based on operator theory rather than pseudodifferential operator
theory (see Sect. 5).

Another difficulty with R
d
θ compared to T

d
θ is that the nature of the required analysis

changes dramatically with θ . For example, the range of the canonical trace τ on the
algebra L∞(Td

θ ) on projections is [0, 1], while for the canonical trace on L∞(Rd
θ ) the

range of the trace on projections is either [0,∞] if det(θ) = 0 or instead ranges over
integral multiples of (2π)d/2| det(θ)|1/2 if det(θ) �= 0.

Anoteworthy side effect of our self-contained approach is thatwe obtain in an abstract
manner the following commutator estimates for quantum Euclidean spaces: Let θ be
the Laplace operator associated to the noncommutative Euclidean spaceR

d
θ (see Sect. 2.2

for complete definitions). For an appropriate class of smooth elements x ∈ L∞(Rd
θ ), if

α, β ∈ R are such that α < β + 1, then we have

[(1 − θ)
α/2, x](1 − θ)

−β/2 ∈ L d
β−α+1 ,∞.

In the classical (commutative) case, this estimate follows almost immediately from the
calculus and the mapping properties of pseudodifferential operators (see [41, Lemma
13]).

1.1. Main results on quantum differentiability. In this section we state the main results
of this paper. Heretofore unexplained notation which we use will be defined in Sect. 2.

Let θ be an antisymmetric real d × d matrix, where d ≥ 2.
Our first main result provides sufficient conditions for d̄x ∈ Ld,∞:

Theorem 1.1. If x ∈ L p(R
d
θ ) ∩ Ẇ 1

d (Rd
θ ) for some d ≤ p < ∞, then d̄x has bounded

extension, and the extension is in Ld,∞.

The space Ẇ 1
d (Rd

θ ) is a noncommutative homogeneous Sobolev space defined with
respect to the partial derivatives ∂ j , j = 1, . . . , d (these notions will be defined and
discussed in Sect. 3). The a priori assumption x ∈ L p(R

d
θ ) for some d ≤ p < ∞

may not be necessary, however we have been unable to remove it. One reason for this
difficulty is that there is no clear replacement for the use of the Poincaré inequality in
the noncommutative situation. See Proposition 3.15.

With Theorem 1.1, we can prove our second main result, the following trace formula:

Theorem 1.2. Let x ∈ L p(R
d
θ )∩Ẇ 1

d (Rd
θ ) for some d ≤ p < ∞. Then there is a constant

cd depending only on the dimension d such that for any continuous normalised trace ϕ

on L1,∞ we have:

ϕ(| d̄x |d) = cd

∫

Sd−1
τθ

⎛

⎝
( d∑

j=1

|∂ j x − s j

d∑

k=1

sk∂k x |2
) d

2

⎞

⎠ ds.

Here, the integral over S
d−1 is taken with respect to the rotation-invariant measure ds

on S
d−1, and s = (s1, . . . , sd).
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Here τθ is the canonical trace on the algebra L∞(Rd
θ ) (see Sect. 2.2). Although the

above integral formula is identical in appearance to (1.3), the proof involves different
techniques.

The next corollary is a direct application of Theorem 1.2. The proof is the same as
[45, Corollary 1.3], so we omit the details.

Corollary 1.3. Let x ∈ L p(R
d
θ ) ∩ Ẇ 1

d (Rd
θ ) for some d ≤ p < ∞. Then there are

constants cd and Cd depending only on d such that for any continuous normalised trace
ϕ on L1,∞ we have

cd‖x‖dẆ 1
d

≤ ϕ(| d̄x |d) ≤ Cd‖x‖dẆ 1
d
.

Sinceϕ vanishes on the trace classL1, Corollary 1.3 immediately yields the following
noncommutative version of the p ≤ d component of [35, Theorem 1]:

Corollary 1.4. If x ∈ L p(R
d
θ ) for some d ≤ p < ∞ and d̄x has bounded extension in

Lq for some q ≤ d, then x is a constant.

As a converse to Theorem 1.1, we prove our third main result: the necessity of the
condition x ∈ Ẇ 1

d (Rd
θ ) for d̄x ∈ Ld,∞.

Theorem 1.5. Suppose that d > 2, and let x ∈ Ld(R
d
θ ) + L∞(Rd

θ ). If d̄x has bounded
extension in Ld,∞, then x ∈ Ẇ 1

d (Rd
θ ), and there is a constant cd > 0 depending only on

d such that

cd‖x‖Ẇ 1
d

≤ ‖ d̄x‖Ld,∞ .

For d = 2, the same conclusion holds under the assumption that x ∈ L∞(R2
θ ).

Note that in the strictly noncommutative det(θ) �= 0 case, the assumed conditions on x
in Theorem 1.5 are the same for d = 2 and d > 2, since Ld(R

d
θ ) ⊂ L∞(Rd

θ ) in that
case.

It is worth noting that one may consider the commutative (θ = 0) case in Theorems
1.1, 1.2 and 1.5 and in this case the results obtained are very similar to those of [41].
The only difference being in the integrability assumptions: in [41], boundedness was
assumed, and here we assume p-integrability for some d ≤ p < ∞. Nonetheless the
proofs we give here are independent to those of [41].

1.2. Main commutator estimate. As a byproduct of the proof of Theorem 1.2, we obtain
a commutator estimate on quantum Euclidean spaces. In Sect. 2.2 we will introduce
a certain smooth subalgebra A(Rd

θ ) of L∞(Rd
θ ) (see Proposition 2.5), and let Jθ =

(1 − θ)
1/2 denote the quantum Bessel potential defined in Sect. 3.

Theorem 1.6. Let α, β ∈ R, and let x ∈ A(Rd
θ ). Then if α < β + 1:

[Jα
θ , x]J−β

θ ∈ L d
β−α+1 ,∞.

On the other hand if α = β + 1, then the operator

[Jα
θ , x]J−β

θ

has bounded extension.
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This estimate is to be compared with the Cwikel type estimates provided in [39]. Using
the latter estimates, one candeduce that Jα

θ x J
−β
θ ∈ L d

β−α
,∞ and x Jα−β

θ ∈ L d
β−α

,∞, how-

ever showing that the difference of these two operators is in the smaller ideal L d
β−α+1 ,∞

requires additional argument.
If we consider the classical (commutative) setting, the result of Theorem 1.6 would

follow from a standard application of pseudodifferential operator calculus: x is viewed
as an order 0 pseudo-differential operator, while Jα

θ is of order α. It follows that the com-

mutator [Jα
θ , x] is of order α−1, and thus [Jα

θ , x]J−β
θ is of order α−β −1. From there,

a short argument can be used to show that the result of Theorem 1.6 holds (an argument
of precisely this nature was used in [41, Lemma 13]). It likely is possible to carry out
a similar argument in the noncommutative setting using the quantum pseudodifferential
operator theory of [24], however we have found the direct argument to be insightful.

The layout of this paper is the following. In the following section we introduce
notation, terminology and required background material concerning operator ideals and
analysis on quantum Euclidean spaces, and we also recount some elementary properties
such as the dilation action and Cwikel type estimates. Section 4 is devoted to the proof
of Theorem 1.1. Section 5 concerns our proof of Theorem 1.6, and is the most technical
component of the paper. The final section, Sect. 6, completes the proofs of Theorems
1.2 and 1.5.

2. Notation and Preliminary Results

We will occasionally use the notation A � B to indicate that A ≤ CB for some
0 ≤ C < ∞, and use subscripts to indicate dependence on constants. E.g., A �d B
means that A ≤ Cd B for a constant Cd depending on d.

2.1. Operators, ideals and traces. The following material is standard; for more details
we refer the reader to [42,63]. Let H be a complex separable Hilbert space, and letB(H)

denote the set of all bounded operators on H , and letK(H) denote the ideal of compact
operators on H . Given T ∈ K(H), the sequence of singular valuesμ(T ) = {μ(k, T )}∞k=0
is defined as:

μ(k, T ) = inf{‖T − R‖ : rank(R) ≤ k}.
Equivalently, μ(T ) is the sequence of eigenvalues of |T | arranged in non-increasing
order with multiplicities.

Let p ∈ (0,∞). The Schatten class Lp is the set of operators T in K(H) such that
μ(T ) is p-summable, i.e. in the sequence space �p. If p ≥ 1 then theLp norm is defined
as:

‖T ‖p := ‖μ(T )‖�p =
( ∞∑

k=0

μ(k, T )p

)1/p

.

With this norm Lp is a Banach space, and an ideal of B(H).
The weak Schatten class Lp,∞ is the set of operators T such that μ(T ) is in the weak

L p-space �p,∞, with quasi-norm:

‖T ‖p,∞ = sup
k≥0

(k + 1)1/pμ(k, T ) < ∞.
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As with the Lp spaces, Lp,∞ is an ideal of B(H). We also have the following form of
Hölder’s inequality,

‖T S‖r,∞ ≤ cp,q‖T ‖p,∞‖S‖q,∞
where 1

r = 1
p + 1

q , for some constant cp,q .
An operator theoretic result whichwill be useful is theAraki-Lieb-Thirring inequality

[1, Page 169] (see also [37, Theorem 2]) which states that if A and B are bounded
operators and r ≥ 1, then:

|AB|r ≺≺log |A|r |B|r
where ≺≺log denotes logarithmic submajorisation. In particular this implies the follow-
ing inequality for the Lr,∞ quasinorm, when r ≥ 1:

‖AB‖r,∞ ≤ e‖|A|r |B|r‖1,∞ ≤ e‖A‖r−1∞ ‖A|B|r‖1,∞. (2.1)

Among ideals of particular interest is L1,∞, and we are concerned with traces on
this ideal. For more details, see [42, Sect. 5.7] and [62]. A functional ϕ : L1,∞ → C is
called a trace if it is unitarily invariant. That is, for all unitary operatorsU and T ∈ L1,∞
we have that ϕ(U∗TU ) = ϕ(T ). It follows that for all bounded operators B we have
ϕ(BT ) = ϕ(T B).

An important fact about traces is that any trace ϕ on L1,∞ vanishes on L1 [42,
Theorem 5.7.8]. A trace ϕ is called continuous if it is continuous with respect to theL1,∞
quasi-norm. It is known that not all traces on L1,∞ are continuous [43, Remark 3.1(3)].
Within the class of continuous traces on L1,∞ there are the well-known Dixmier traces
[42, Chapter 6].

Finally, we say that a trace ϕ on L1,∞ is normalised if ϕ takes the value 1 on any
compact positive operator with eigenvalue sequence { 1

n+1 }∞n=0 (any two such operators
are unitarily equivalent, and so the particular choice of operator is inessential).

2.2. Quantum Euclidean spaces.

2.2.1. Heuristic motivation. The original motivation for noncommutative Euclidean
spaces begins with the canonical commutation relations of quantum mechanics. Let
θ be a fixed antisymmetric d × d matrix. We consider the associative ∗-algebra with d
self-adjoint generators {x1, . . . , xd} satisfying the relation:

[x j , xk] = iθ j,k, 1 ≤ j, k ≤ d. (2.2)

These operators may be thought of as coordinates of some fictitious noncommutative
d-dimensional space.

At a purely formal level, if one defines:

U (t) := exp(i(t1x1 + t2x2 + · · · + td xd)), t ∈ R
d ,

and formally applies the Baker-Campbell-Hausdorff formula, one is led to the following
identity:

U (t)U (s) = exp(
i

2
(t, θs))U (t + s), t, s ∈ R

d . (2.3)

The above relation is often called theWeyl form of the canonical commutation relations,
and its representation theory is summarised by the well-known Stone-von Neumann the-
orem: provided that det(θ) �= 0, any twoC∗-algebras generated by a strongly continuous
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unitary family {U (t)}t∈Rd satisfying (2.3) are ∗-isomorphic [4, Sect. 5.2.2.2], [32, The-
orem 14.8], [68, Chapter 2, Theorem 3.1].

After fixing a concrete Hilbert space representation of (2.3), we will define L∞(Rd
θ )

as the von Neumann algebra generated by {U (t)}t∈Rd .

2.2.2. Formal definition and elementary properties. Noncommutative Euclidean spaces
admit several equivalent definitions; here we follow the approach in [39], where the
authors define L∞(Rd

θ ) as twisted group von Neumann algebra and then define function
spaces on R

d
θ as being operator spaces associated to that algebra. We refer the reader to

[39] for more details on this approach, and give a brief introduction here. Alternative
yet unitarily equivalent approaches to the definition of noncommutative Euclidean space
may also be found in the literature, see [22], [4, Sect. 5.2.2.2], [24] and [32, Chapter 14].

Define the following family of unitary operators on L2(R
d):

(U (t)ξ)(r) = e− i
2 (t,θr)ξ(r − t), ξ ∈ L2(R

d), r, t ∈ R
d . (2.4)

It is easily verified that the family {U (t)}t∈Rd is strongly continuous, and satisfies the
Weyl relation (2.3). We will write Uθ when there is need to refer to the dependence on
the matrix θ .

Definition 2.1. Let d ∈ N and θ be a fixed antisymmetric real d × d matrix. The von
Neumann subalgebra of B(L2(R

d)) generated by {U (t)}t∈Rd given in (2.4) is called a
noncommutative Euclidean space, denoted by L∞(Rd

θ ).

Taking θ = 0, this definition states that L∞(Rd
0) is the von Neumann algebra gen-

erated by the unitary group of translations on R
d , and this is ∗-isomorphic to L∞(Rd).

Therefore the algebra of essentially bounded functions on Euclidean space is recovered
as a special case of Definition 2.1.

Remark 2.2. We caution the reader that the approach taken here is the “Fourier dual”
of the approach in [22]. In the commutative case, U (t) is the operator on L2(R

d) of
translation by t ∈ R

d , and the Fourier transform provides an isomorphism with the
algebra L∞(Rd) of essentially bounded functions acting by pointwise multiplication.

The algebraic structure of L∞(Rd
θ ) is determined by the dimension of the kernel of

θ . If d = 2, then up to an orthogonal conjugation θ may be written as

θ = �

(
0 −1
1 0

)
(2.5)

for some constant � > 0. With θ given as above, the algebra L∞(Rd
θ ) is ∗-isomorphic

to the algebra of bounded linear operators on L2(R). A ∗-isomorphism can be given
explicitly by:

U (t) �→ exp(it1Mx + it2�∂x ),

where Mxξ(t) = tξ(t) for ξ ∈ L2(R) and ∂xξ = ξ ′ is the differentiation operator.
When d ≥ 2, we may up to orthogonal conjugation express an arbitrary d × d

antisymmetric real matrix as a direct sum of a zero matrix and matrices of the form (2.5)
(see Sect. 6 of [39]), ultimately leading to the following ∗-isomorphism:

L∞(Rd
θ ) ∼= L∞(Rdim(ker(θ)))⊗B(L2(R

rank(θ)/2)) (2.6)
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where ⊗ is the von Neumann algebra tensor product.1 See [27] for detailed information
about this isomorphism.

In the case where det(θ) �= 0, (2.6) reduces to:

L∞(Rd
θ ) ∼= B(L2(R

d/2)). (2.7)

2.2.3. Weyl quantisation. Let f ∈ L1(R
d). We will define U ( f ) ∈ L∞(Rd

θ ) as the
operator given by the absolutely convergent Bochner integral:

U ( f )ξ =
∫

Rd
f (t)U (t)ξ dt, ξ ∈ L2(R

d).

It should be verified first that the above integral indeed exists in the Bochner sense, and
secondly that U ( f ) ∈ L∞(Rd

θ ) as claimed.

Lemma 2.3. For f ∈ L1(R
d), the integral:

U ( f )ξ =
∫

Rd
f (t)U (t)ξ dt, ξ ∈ L2(R

d)

is absolutely convergent in the Bochner sense, and defines a bounded linear operator
U ( f ) : L2(R

d) → L2(R
d) such that U ( f ) ∈ L∞(Rd

θ ).

Proof. Recall that t �→ U (t) is strongly continuous. It follows that for all η, ξ ∈ L2(R
d),

the scalar-valued function t �→ f (t)〈η,U (t)ξ 〉 ismeasurable. Since L2(R
d) is separable,

the Pettis measurability theorem [19, Theorem II.1.2], [34, Theorem 1.19] implies that
for all ξ ∈ L2(R

d) the function t �→ f (t)U (t)ξ is measurable in the L2(R
d)-valued

Bochner sense.
Since ‖ f (t)U (t)ξ‖L2(R2) ≤ | f (t)|‖ξ‖L2(Rd ) and f ∈ L1(R

d), the integrand is
absolutely integrable, and this proves the claim that the integral is absolutely convergent
in the Bochner sense.

To see that ξ �→ U ( f )ξ is a bounded operator, one simply applies the triangle
inequality for the Bochner integral to obtain

‖U ( f )ξ‖L2(Rd ) ≤ ‖ f ‖L1(Rd )‖ξ‖L2(Rd )

so that U ( f ) ∈ B(L2(R
d)). Finally, to see that U ( f ) ∈ L∞(Rd

θ ) we will use von
Neumann’s bicommutant theorem. Suppose that X ∈ B(L2(R

d)) is a bounded linear
operator which commutes with every {U (t)}t∈Rd . Since X is bounded, it can be moved
under the integration sign:

XU ( f )ξ = X
∫

Rd
f (t)U (t)ξ dt =

∫

Rd
f (t)XU (t)ξ dt = U ( f )Xξ.

Hence X commutes with U ( f ), and thus U ( f ) commutes with every operator which
commutes with every {U (t)}t∈Rd so it follows that U ( f ) ∈ L∞(Rd

θ ). ��
1 It is meaningful to write rank(θ)/2, since the rank of an antisymmetric matrix is always even.
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We will denote U = Uθ when there is a need to refer to the dependence on θ . The
map U has other names and notations in the literature: for example composing U with
the Fourier transform determines a mapping S(Rd) → B(L2(R

d/2)) which is also
known as the Weyl quantisation map [32, Sect. 13.3]. In the det(θ) �= 0 case, the
map U is also essentially the same as the so-called Weyl transform [68, Page 138].
In [24], the map denoted there λθ is very similar to U , the only difference being that
U (t1e1)U (t2e2) · · ·U (tded) is used in place of U (t).

Assume now that f ∈ S(Rd). For ξ ∈ S(Rd), by the definition of U (t) we have:

(U ( f )ξ)(s) =
∫

Rd
f (t)e− i

2 (t,θs)ξ(s − t) dt. (2.8)

Since ξ is continuous, it is easy to see that (U ( f )ξ)(s) is continuous as a function of s.
Evaluating U ( f )ξ(s) at s = 0 yields:

(U ( f )ξ)(0) =
∫

Rd
f (t)ξ(−t) dt.

Hence, if U ( f ) = U (g) for f, g ∈ L1(R
d), it follows that:

∫

Rd
( f (t) − g(t))ξ(−t) dt = 0

for all ξ ∈ S(Rd), and thus f = g pointwise almost everywhere. It follows that U is
injective.

The class of Schwartz functions on R
d
θ is defined as the image of S(Rd) under U .

That is,

S(Rd
θ ) := {x ∈ L∞(Rd

θ ) : x =
∫

Rd
f (s)U (s)ds, for some f ∈ S(Rd)}. (2.9)

The Schwartz space S(Rd
θ ) is equipped with the topology induced by the isomorphism

U : S(Rd) → S(Rd
θ ), where S(Rd) is equipped with its canonical Fréchet topology. It

is important to note that the Fréchet topology ofS(Rd
θ ) is finer than the L p(R

d
θ ) topology

for every 1 ≤ p ≤ ∞. This follows, for example, from Proposition 2.10 below.
It is worth emphasising that in the nondegenerate case (det(θ) �= 0), the noncom-

mutativity of L∞(Rd
θ ) implies that S(Rd

θ ) has a number of properties quite unlike the
classical Schwartz space S(Rd) (for example, see Theorem 2.4 below). In terms of the
isomorphism (2.7), it is possible to select a specific basis such that S(Rd

θ ) is an algebra
of infinite matrices whose entries have rapid decay ( [26, Theorem 6] and [56, Theorem
6.11]). While we will not need the specific details of the matrix description, we do make
use of the following result, which is [22, Lemma 2.4].

Theorem 2.4. Assume that det(θ) �= 0. There exists a sequence {pn}n≥0 ⊂ S(Rd
θ ) such

that:

(i) Each pn is a projection of rank n (considered as an operator on L2(R
d/2), via

(2.7)).
(ii) We have that pn ↑ 1, where 1 is the identity operator in L∞(Rd

θ ).
(iii)

⋃
n≥0 pnL∞(Rd

θ )pn is dense in S(Rd
θ ) in its Fréchet topology.



Quantum Differentiability on Noncommutative Euclidean Spaces 501

The presence of smooth projections is a feature of analysis on quantum Euclidean spaces
in the det(θ) �= 0 case entirely distinct from analysis on Euclidean space. For our
purposes we do not need to know the precise form of the sequence {pn}n≥0, however a
description using the map U may be found in [22, Sect. 2].

One feature of the Schwartz class S(Rd) is factorisability: that is, every f ∈ S(Rd)

can be obtained as a product f = gh for g, h ∈ S(Rd) (see e.g. [72]). There is a
similar result in the case of S(Rd

θ ) when det(θ) �= 0. For the mixed case, where θ �= 0
but det(θ) = 0, the situation is less clear. We have found it more convenient to pass
to a subalgebra of S(Rd

θ ) for which we can verify (a very minor weakening of) the
factorisation property.

Proposition 2.5. There is a dense ∗-subalgebra A(Rd
θ ) ⊆ S(Rd

θ ) such that every x ∈
A(Rd

θ ) can be expressed as a finite linear combination of products of elements ofA(Rd
θ ).

That is, x = ∑n
j=1 y j z j where each y j , z j ∈ A(Rd

θ ).

Proof. In the case det(θ) �= 0, this result is provided by [26, pg. 877]. In the commutative
(θ = 0) case, this is a classical result of harmonic analysis (see e.g. [72]).

Performing a change of variables if necessary, we assume that θ is of the form:

θ =
(
0 0
0 θ ′

)

where det(θ ′) �= 0. Let d1 = dim(ker(θ)). If det(θ) �= 0, then we do not need to change
variables.

Let f ∈ S(Rd1) and g ∈ S(Rd−d1), and let f ⊗ g denote the function on R
d given

by:
( f ⊗ g)(t1, . . . , td) = f (t1, . . . , td1)g(td1+1, . . . , td), t ∈ R

d .

Then it follows readily from the definition that:

Uθ ( f ⊗ g) = U0( f )Uθ ′(g).

Every Schwartz class function φ ∈ S(Rd) can be written as an infinite linear combi-
nation:

φ =
∞∑

j=0

λ j f j ⊗ g j

where { f j }∞j=0 and {g j }∞j=0 are vanishing sequences in S(Rd1) and S(Rd−d1) respec-
tively, and

∑∞
j=0 |λ j | < ∞ (see [69, Theorem 45.1, Theorem 51.6]).

It follows that every x ∈ S(Rd
θ ) can be written as a convergent series

x =
∞∑

j=0

λ jU0( f j )Uθ ′(g j ) (2.10)

for a summable sequence {λ j }∞j=0.

We will define A(Rd
θ ) as the algebraic tensor product:

A(Rd
θ ) = S(Rd1) ⊗ S(R

d−d1
θ ′ ).

That is, we define A(Rd
θ ) to be the algebra of finite linear combinations of elements of

the form U0( f )Uθ ′(g), where f ∈ S(Rd1) and g ∈ S(Rd−d1).
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Then A(Rd
θ ) clearly has the desired factorisation property, as S(Rd1) and S(R

d−d1
θ ′ )

do. ��
From now on, we fix A(Rd

θ ) to be the dense subalgebra of S(Rd
θ ) constructed in the

proof of Proposition 2.5.
For f, g ∈ S(Rd), we compute

U ( f )∗ =
∫

Rd
f (s)U (s)∗ds =

∫

Rd
f (s)U (−s)ds

=
∫

Rd
f (−s)U (s)ds ,

and

U ( f )U (g) =
∫

Rd
f (s)U (s)ds ·

∫

Rd
g(t)U (t)dt

=
∫

Rd

∫

Rd
f (s)g(t) e

i
2 (s,θ t)U (s + t)dtds

=
∫

Rd

∫

Rd
f (s − t)g(t) e

i
2 (s,θ t)U (s)dtds

=
∫

Rd

∫

Rd
e

i
2 (s,θ t) f (s − t)g(t)dt U (s)ds.

For this reason, we define the θ -involution as

f θ (s) = f (−s), (2.11)

and the θ -convolution as

f ∗θ g(s) =
∫

Rd
e

i
2 (s,θ t) f (s − t)g(t)dt. (2.12)

Then, the above calculation shows immediately U ( f )∗ = U ( f θ ), and

U ( f )U (g) = U ( f ∗θ g). (2.13)

It is straightforward to verify that S(Rd) ∗θ S(Rd) ⊆ S(Rd). The θ -convolution ∗θ is
essentially the same as the twisted convolution of [26, Definition 1], where it was the
basis for an alternative definition of S(Rd

θ ) (as was done in [22]).

2.2.4. Measure and integration for R
d
θ . There is a canonical semifinite normal trace

τθ on L∞(Rd
θ ), essentially defined so that in the isomorphism (2.6), τθ corresponds to

integration with respect to the Lebesgue measure on the commutative part and is the
canonical operator trace tr on the noncommutative part.

Definition 2.6. If x ∈ S(Rd
θ ) is given by x = U ( f ) for f ∈ S(Rd), we define τθ (x) as:

τθ (x) = (2π)d f (0).
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SinceU is injective, τθ is indeed well-defined. The factor of (2π)d is inserted so that τθ

recovers the Lebesgue integral when θ = 0 in the following sense: let ι denote the map:

S(Rd
0) → S(Rd)

given by:

U ( f ) �→ (
s �→

∫

Rd
f (ξ) exp(i(s, ξ)) dξ

)
.

Then if f̂ denotes the Fourier transform of f ∈ S(Rd), we have

ι(U ( f̂ )) = (2π)d/2 f.

However
∫
Rd f (s) ds = (2π)d/2 f̂ (0), and so the integral of ι(U ( f̂ )) is (2π)d f̂ (0).

Lemma 2.7. The functional τθ : S(Rd
θ ) → C admits an extension to a semifinite normal

trace on L∞(Rd
θ ). If θ =

(
0 0
0 θ ′

)
where det(θ ′) �= 0 then in terms of the isomorphism

(2.6) we have:

τθ =
(∫

Rdim(ker(θ))

dt

)
⊗ (2π)rank(θ)/2| det(θ ′)|1/2tr

where tr is the classical trace on B(L2(R
dim(ker(θ ′))/2)).

When det(θ) �= 0, we have:

τθ (U ( f )) = (2π)d/2| det(θ)|1/2tr(U ( f )), f ∈ S(Rd). (2.14)

Hence in the det(θ) �= 0 case the range of τθ on projections consists of integer multiples
of (2π)d/2| det(θ)|1/2. On the other hand, when det(θ) = 0 then the range of τθ on
projections is [0,∞].

For 0 < p < ∞, the space L p(R
d
θ ) is defined to be the noncommutative Lp-space

associated to the von Neumann algebra L∞(Rd
θ ). If we define:

Np := {x ∈ L∞(Rd
θ ) : τθ (|x |p) < ∞}

then the L p space L p(R
d
θ ) is defined as the completion of Np with the (quasi)norm

‖x‖p = τθ (|x |p)1/p. This is a norm when p ≥ 1.
When det(θ) �= 0, since L∞(Rd

θ ) is ∗-isomorphic to the algebra B(L2(R
d/2)) and

τθ is a rescaling of the classical trace, the spaces L p(R
d
θ ) are precisely the Schatten

Lp-classes. Then in the nondegenerate case we have immediately L p(R
d
θ ) ⊂ Lq(R

d
θ )

when p < q, i.e.,
cθ‖x‖q ≤ ‖x‖p, x ∈ L p(R

d
θ ). (2.15)

for some constant cθ . This is in great contrast to the classical case, where L p(R
d) is not

contained in Lq(R
d) for p �= q.

The preceding computations immediately yield that the mapping (2π)−d/2U extends
to an isometry from L2(R

d) to L2(R
d
θ ) [68, Chapter 2, Lemma 3.1].

Proposition 2.8. Let f ∈ S(Rd). Then we have

‖U ( f )‖2 = (2π)d/2‖ f ‖2 .
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Proposition 2.8 permits us to extend the domain ofU from L1(R
d) to L1(R

d)+ L2(R
d).

Remark 2.9. It follows from Proposition 2.8 that the Schwartz class S(Rd
θ ) is dense in

L2(R
d
θ ). Indeed, (2π)−d/2U effects an isometric isomorphism between L2(R

d) and
L2(R

d
θ ), and since the classical Schwartz space S(Rd) is dense in L2(R

d) the density
of S(Rd

θ ) in L2(R
d
θ ) follows.

The following inequality may be thought of as the quantum Euclidean analogue of
the Hausdorff-Young inequality.

Proposition 2.10. Let 1 ≤ p ≤ 2with 1
p +

1
q = 1. Then for every f ∈ L p(R

d)∩L1(R
d),

we have U ( f ) ∈ Lq(R
d
θ ), and

‖U ( f )‖q ≤ (2π)d/2‖ f ‖p

and hence U has continuous extension from L p(R
d) to Lq(R

d
θ ).

Proof. First consider the case p = 1 and q = ∞. If ξ ∈ L2(R
d), the triangle inequality

for the Bochner integral gives us:

‖U ( f )ξ‖2 = ‖
∫

Rd
f (s)U (s)ξds‖2 ≤ ‖ f ‖1‖ξ‖2 ≤ (2π)d/2‖ f ‖1‖ξ‖2

for all f ∈ L1(R
d), and therefore,

‖U ( f )‖∞ ≤ (2π)d/2‖ f ‖1.
The case p = 2 is provided by Proposition 2.8:

‖U ( f )‖2 = (2π)d/2‖ f ‖2.
We may deduce the result for all 1 ≤ p ≤ 2 by using complex interpolation for the
couples (L1(R

d), L2(R
d)) and (L∞(Rd

θ ), L2(R
d
θ )). The complex interpolation method

for the latter couple is covered by the standard theory of interpolation of noncommutative
L p-spaces (see e.g. [52]). ��

3. Calculus on R
d
θ

Now let us recall the differential structure onR
d
θ . LetDk , 1 ≤ k ≤ d be themultiplication

operators

(Dkξ)(r) = rkξ(r), r ∈ R
d

defined on the domain domDk = {ξ ∈ L2(R
d) : ξ ∈ L2(R

d , r2k dr)}. Fixing s ∈ R
d , it

is easy to see that the unitary generatorU (s) preserves dom(Dk), and we may compute:

[Dk,U (s)] = skU (s), and eitDkU (s)e−itDk = eitskU (s) ∈ L∞(Rd
θ ), t > 0.

For general x ∈ L∞(Rd
θ ), if [Dk, x] extends to a bounded operator on L2(R

d), then we
can write

[Dk, x] = lim
t→0

eitDk xe−itDk − x

it
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with respect to the strong operator topology, and therefore [Dk, x] ∈ L∞(Rd
θ ) (see [39,

Proposition 6.12]). This operator [Dk, x] is then defined to be the derivative ∂k x of
x ∈ L∞(Rd

θ ). Evidently, ∂k anti-commutes with the adjoint operation:

∂k x
∗ = Dk x

∗ − x∗Dk = −[Dk, x]∗ = −(∂k x)
∗.

For a multi-index α ∈ N
d
0 and x ∈ L∞(Rd

θ ), if every repeated commutator [Dα j
j , [Dα j+1

j+1 ,

. . . , [Dαd
d , x]]], j = 1, . . . , d extends to a bounded operator on L2(R

d), then the mixed
partial derivative ∂αx is defined as

∂αx = [Dα1
1 , [Dα2

2 , . . . , [Dαd
d , x]]].

If ∂αx is bounded for all α, we say that x is smooth.
Note that the space of Schwartz functions S(Rd) is a core for every operator Dk ,

k = 1, . . . , d, and we may show that if x = ∫
Rd f (s)U (s)ds ∈ S(Rd

θ ), then we have

[Dk, x] =
∫

Rd
sk f (s)U (s)ds ∈ S(Rd

θ ).

Inductively, for any α ∈ N
d
0 , ∂αx ∈ S(Rd

θ ), and so by our definition the elements of
S(Rd

θ ) are smooth.
In terms of the isomorphism U : S(Rd) → S(Rd

θ ), we can compute derivatives
easily:

∂αU (φ) = U (tα11 . . . tαdd φ(t)). (3.1)

We now define the space S ′(Rd
θ ) of tempered distributions, and the associated oper-

ations.

Definition 3.1. Let S ′(Rd
θ ) be the space of continuous linear functionals on S(Rd

θ ),
which may be called the space of quantum tempered distributions.

As in the classical case, denote the pairing of T ∈ S ′(Rd
θ )with φ in S(Rd

θ ) by (T, φ),
and L1(R

d
θ ) + L∞(Rd

θ ) is embedded into S ′(Rd
θ ) by:

(x, φ) := τθ (xφ), x ∈ L1(R
d
θ ) + L∞(Rd

θ ), φ ∈ S(Rd
θ ).

For a multi-index α ∈ N
d
0 and T ∈ S(Rd

θ ), define ∂αT as the distribution (∂αT, φ) =
(−1)|α|(T, ∂αφ).

It is not hard to verify that ∂α on distributions extends ∂α on L∞(Rd
θ ), so there is no

conflict of notation.
By duality, we can extend the derivatives Dk to operators on S ′(Rd

θ ). With these
generalised derivatives, we are able to introduce the Sobolev spacesWm

p (Rd
θ ) associated

to noncommutative Euclidean space.

Definition 3.2. For a positive integer m and 1 ≤ p ≤ ∞, the space Wm
p (Rd

θ ) is the

space of x ∈ S ′(Rd
θ ) such that every partial derivative of x up to order m is in L p(R

d
θ ),

equipped with the norm

‖x‖Wm
p

=
∑

|α|≤m

‖∂αx‖p .
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The homogeneous Sobolev space Ẇm
p (Rd

θ ) consists of those x ∈ S ′(Rd
θ ) such that every

partial derivative of x of order m is in L p(R
d
θ ), equipped with the norm:

‖x‖Ẇm
p

=
∑

|α|=m

‖∂αx‖p .

We shall now record a proof that Wm
p (Rd

θ ) is a Banach space. The proof given here
largely replicates well-known arguments in the classical setting, so is only included for
the sake of completeness.

Proposition 3.3. Equipped with the above norm, Wm
p (Rd

θ ) is a Banach space for any
1 ≤ p ≤ ∞ and m ∈ N0.

Proof. It suffices to show thatWm
p (Rd

θ ) is complete. Assume that {xn}∞n=0 ⊂ Wm
p (Rd

θ ) is

a Cauchy sequence. Then for every |α| ≤ m, {∂αxn}n is a Cauchy sequence in L p(R
d
θ ),

and so is convergent in the L p-norm, so for each α there exists some yα ∈ L p(R
d
θ ) such

that ∂αxn→yα in L p(R
d
θ ). In particular xn→y0 in L p(R

d
θ ). Let us show that yα = ∂α y0

for all |α| ≤ m, and this will complete the proof.
Let φ ∈ S(Rd

θ ). Then by the definition of ∂α on S ′(Rd
θ ) we have:

(∂αxn, φ) = (−1)|α|(xn, ∂αφ).

Since xn → y0 and ∂αxn → yα in the L p-sense it follows that:

(−1)|α|(y0, ∂αφ) = lim
n→∞(∂αxn, φ) = (yα, φ).

Thus by definition, yα = ∂α y0. ��
The Laplacian θ associated with L∞(Rd

θ ) is defined on the domain dom(θ ) =
L2(R

d , |t |4dt) by
(−θξ)(t) = |t |2ξ(t).

The gradient ∇θ associated with L∞(Rd
θ ) is the operator

∇θ = (−iD1, . . . ,−iDd),

with the domain L2(R
d , t21dt) ∩ · · · ∩ L2(R

d , t2d dt).
We can see that if t ∈ R

d , then exp((t,∇θ )) is the operator on L2(R
d) given by:

(exp((t,∇θ ))ξ)(r) = exp(i(t, r))ξ(r), r ∈ R
d , ξ ∈ L2(R

d).

Strictly speaking, the operators θ and ∇θ do not depend on the matrix θ . However,
we prefer to use notation with θ to emphasise that these operators are associated with
L∞(Rd

θ ). We will have frequent need to refer to the operator (1 − θ)
1/2, which we

abbreviate as Jθ ,

Jθ := (1 − Deltaθ )
1/2.

That is, Jθ is the operator on L2(R
d) of pointwise multiplication by (1 + |t |2)1/2, with

domain L2(R
d , (1 + |t |2)dt). Classically, the operator Jθ is called the Bessel potential.
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Definition 3.4. Let N = 2�d/2� and {γ j }1≤ j≤d be self-adjoint N ×N matrices satisfying
γ jγk + γkγ j = 2δ j,k . The Dirac operator D associated with L∞(Rd

θ ) is the operator on
C

N ⊗ L2(R
d) defined by

D :=
d∑

j=1

γ j ⊗ D j .

In noncommutative geometric terms, the Dirac operator D may be used to define a
spectral triple for L∞(Rd

θ ) given by
(
1 ⊗ W∞

1 (Rd
θ ), C

N ⊗ L2(R
d),D). We refer the

reader to [22,67] for more details.
The main object in this note is the commutator

d̄x = i[sgn(D), 1⊗x], x ∈ L∞(Rd
θ ), (3.2)

which denotes the quantised differential on quantum Euclidean spaces.
More generally, if x is not necessarily bounded we may still define d̄x on the dense

subspace C
N ⊗ C∞

c (Rd). Suppose that x ∈ L p(R
d
θ ) for some 2 ≤ p < ∞. Then if

η ∈ C
N ⊗ C∞

c (Rd) with compact support K , we will have from Theorem 3.17 that
(1 ⊗ x)η = (1 ⊗ xMχK )η ∈ L2(R

d) ⊗ C
N , where χK is the characteristic function of

K . It follows that sgn(D)(1⊗ x)η ∈ C
N ⊗ L2(R

d). on the other hand, since sgn(D)η is
still a compactly supported function in C

N ⊗ L2(R
d), using the same argument we have

(1⊗x)sgn(D)η ∈ C
N ⊗L2(R

d). Thus ( d̄x)η is a well-defined element inC
N ⊗L2(R

d).

3.1. Dilation and translation. Since our quantum Euclidean spaces are generated by
noncommutating operators, we cannot realise L∞(Rd

θ ) as an algebra of functions on a
space. While there are no underlying points, there are still natural actions of translation
by t ∈ R

d and dilation by λ ∈ (0,∞).
Of the two, translation is simplest.

Definition 3.5. Suppose that x ∈ L∞(Rd
θ ). For t ∈ R

d , define Tt (x) as:

Tt (x) = exp((t,∇θ ))x exp(−(t,∇θ )).

More generally, if x ∈ S ′(Rd
θ ), define Tt ( f ) as the distribution given by

(Tt ( f ), φ) = ( f, T−tφ), φ ∈ S(Rd
θ ).

That Tt ( f ) is a well-defined distribution for all f ∈ S ′(Rd
θ ) is a straightforward

consequence of the observation that Tt is continuous in every seminorm which defines
the topology of S(Rd

θ ). Moreover, it is a trivial matter to verify that Tt is an isometry in
every L p(R

d
θ ), for 0 < p ≤ ∞.

In terms of the map U , we have:

TtU (φ) = U (ei(t,·)φ(·))
for all φ ∈ S(Rd).

As we would expect from the classical case, {Tt }t∈Rd is continuous in the L p norm
for 1 ≤ p < ∞.
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Theorem 3.6. If x ∈ L p(R
d
θ ) for 1 ≤ p < ∞, then Tt (x) → x in the L p-norm as

t → 0.

Proof. Initially consider the case when x = U ( f ) ∈ L2(R
d
θ ). It is straightforward to

see that Tt (U ( f )) = U (exp(i(t, ·) f (·))) for all f ∈ L2(R
d), and using Proposition 2.8

and the dominated convergence theorem:

‖Tt (U ( f )) −U ( f )‖2 = (2π)d/2‖ei(t,·) f (·) − f (·)‖2 → 0

as t → 0.
Suppose that 2 < p < ∞ and x ∈ L2(R

d
θ ) ∩ L∞(Rd

θ ). Using the Hölder inequality,
it follows that:

lim
t→0

‖Tt (x) − x‖p ≤ lim
t→0

‖Tt (x) − x‖1−
2
p∞ ‖Tt (x) − x‖

2
p
2

≤ (2‖x‖∞)
1− 2

p lim
t→∞ ‖Tt (x) − x‖

2
p
2

= 0.

We can extend from x ∈ L2(R
d
θ ) ∩ L∞(Rd

θ ) to all x ∈ L p(R
d
θ ) by using the norm-

density of L2(R
d
θ ) ∩ L∞(Rd

θ ) in L p(R
d
θ ). Namely, let ε > 0 and select y ∈ L2(R

d
θ ) ∩

L∞(Rd
θ ) such that ‖x − y‖p < ε. Then:

lim
t→0

‖Tt (x) − x‖p ≤ lim
t→0

‖Tt (x − y)‖p + lim
t→0

‖Tt y − y‖p + ‖y − x‖p

≤ 2ε + lim
t→0

‖Tt y − y‖p

= 2ε.

Hence, Tt x → x in the L p norm.
On the other hand, if 1 ≤ p < 2, consider x ∈ L2(R

d
θ ) ∩ L2p/(4−p)(R

d
θ ), then

Hölder’s inequality and the fact that Tt is an isometry in every L p(R
d
θ ) implies that:

‖Tt (x) − x‖p ≤ ‖Tt (x) − x‖1/22 .‖Tt (x) − x‖1/22p/(4−p)

�p ‖Tt (x) − x‖1/22 ‖x‖1/22p/(4−p).

Thus limt→0 ‖Tt (x) − x‖p = 0 for x ∈ L2(R
d
θ ) ∩ L2p/(4−p)(R

d
θ ), and this may be

extended to all x ∈ L p(R
d
θ ) by a density argument similar to the p > 2 case. ��

Theorem 3.6 only discusses the cases 1 ≤ p < ∞ since we are not aware of any
characterisation of the subspace of x ∈ L∞(Rd

θ ) such that limt→0 ‖Tt x − x‖∞ = 0.
In the classical case, this corresponds to the space of bounded uniformly continuous
functions. Using Theorem 2.10, it is possible to prove that limt→0 ‖Tt x − x‖∞ = 0 for
all x ∈ S(Rd

θ ), and for all x in the closure of S(Rd
θ ) in L∞(Rd

θ ).
We now describe the “dilation” action of R

+ on a quantum Euclidean space. A
peculiarity of the noncommutative situation is that the natural dilation semigroup does
not define an automorphism of L∞(Rd

θ ) to itself, but instead the value of θ varies.
Theheuristicmotivation for the dilationmapping is as follows.Recall thatwe consider

R
d
θ as being generated by elements {x1, . . . , xd} satisfying the commutation relation

[x j , xk] = iθ j,k .
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However this relation is not invariant under rescaling. That is, if we let λ > 0 then
the family {λx1, . . . , λxd} satisfies the relation:

[λx j , λxk] = iλ2θ j,k .

It therefore becomes clear that if we wish to define a “dilation by λ” map on R
d
θ , we

should instead consider dilation as mapping between two different noncommutative
spaces. That is, from R

d
θ to R

d
λ2θ

.
The following rigorous definition of the “dilation by λ” map follows [24]. Given

λ > 0, define the map �λ from L∞(Rd
θ ) to L∞(Rd

λ2θ
) as

�λ : Uθ (s) �→ Uλ2θ (
s

λ
). (3.3)

Recall that we include a subscript θ (or λ2θ ) to indicate the dependence on the matrix.
Denote by σλ the usual L2-norm preserving dilation on Euclidean space:

σλξ(t) = λd/2ξ(λt), ξ ∈ L2(R
d).

We have σ ∗
λ = σλ−1 . It is standard to verify that

Uθ (s) = σ ∗
λ Uλ2θ (

s

λ
) σλ. (3.4)

Moreover, by (3.4), it is evident that for every λ > 0, �λ is a ∗-isomorphism from
L∞(Rd

θ ) to L∞(Rd
λ2θ

).
The following proposition shows how the dilation �λ affects the L p norms for quan-

tum Euclidean spaces.

Proposition 3.7. Let λ > 0 and x ∈ L p(R
d
θ ), and denote ξ = λ2θ . Then for all

2 ≤ p < ∞, we have:
‖�λx‖L p(R

d
ξ ) ≤ λd/p‖x‖L p(R

d
θ )

and �λ is an isometry from L∞(Rd
θ ) to L∞(Rd

ξ ).

If in addition x ∈ W 1
p(R

d
θ ), then:

‖∂ j�λ(x)‖L p(R
d
ξ ) ≤ λd/p−1‖∂ j x‖L p(R

d
θ ) , j = 1, . . . , d. (3.5)

Proof. Aswas alreadymentioned,�λ is a∗-isomorphismbetween L∞(Rd
θ ) and L∞(Rd

ξ ),
and since a ∗-isomorphism of C∗-algebras is an isometry, it follows immediately that
�λ : L∞(Rd

θ ) → L∞(Rd
ξ ) is an isometry.

For p = 2, recall from Proposition 2.8 that the mapping (2π)−d/2Uθ (resp.
(2π)−d/2Uξ ) defines an isometry from L2(R

d
θ ) (resp. L2(R

d
ξ )) to L2(R

d). Denoting
dλ for the map dλ f (t) = f (t/λ), we have:

�λ ◦Uθ = Uξ ◦ dλ, λ > 0.

Hence�λ has the same norm betweeen L2(R
d
θ ) and L2(R

d
ξ ) as dλ does on L2(R

d). This

is easily computed to be λd/2.
Finally, the result for 2 < p < ∞ follows from complex interpolation of the couples

(L2(R
d
θ ), L∞(Rd

θ )) and (L2(R
d
ξ ), L∞(Rd

ξ )).
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We recall that the complex interpolation space (L2(R
d
θ ), L∞(Rd

θ ))η is L2/η(R
d
θ ),

where η ∈ (0, 1), and that we have:

‖�λ‖L2/η→L2/η ≤ ‖�λ‖η
L2→L2

‖�λ‖1−η
L∞→L∞ ≤ λdη/2.

Taking η = 2
p yields the desired norm bound.

The second claim follows from the easily-verified identity:

∂ j (�λ(x)) = λ−1�λ∂ j (x).

��

3.2. Approximation by smooth functions for R
d
θ . For this section, we fix ψ ∈ S(Rd)

such that
∫
Rd ψ(s) ds = 1. We do not assume thatψ is necessarily compactly supported

or positive, since it will be convenient to have some freedom in choosing ψ . For ε > 0,
define:

ψε(t) = ε−dψ(
t

ε
). (3.6)

By construction,
∫
Rd ψε(t) dt = 1. Moreover since ψ in particular has rapid decay at

infinity, the L1-norm of ψε is primarily concentrated in the ball of radius ε1/2 around
zero. That is, for each N ≥ 1, there exists a constant CN depending on ψ such that:

∫

|t |>ε1/2
|ψε(t)| dt ≤ CN εN . (3.7)

Theorem 3.8. Let 1 ≤ p < ∞. For all x ∈ L p(R
d
θ ), we have that U (ψε)x → x in the

L p(R
d
θ ) norm as ε → 0.

Proof. Let us first prove the result for p = 2 and x ∈ S(Rd
θ ). Thanks to Proposition 2.8

and (2.13), it suffices to show that for all f ∈ S(Rd):

ψε ∗θ f → f

in the norm of L2(R
d), where ∗θ is the deformed convolution (2.12).

By definition (2.12), we have that:

ψε ∗θ f (t) =
∫

Rd
e− i

2 (t,θs)ψε(s) f (t − s) ds, t ∈ R
d . (3.8)

Since by definition
∫
Rd ψε(s) ds = 1, we have:

ψε ∗θ f (t) − f (t) =
∫

Rd
e− i

2 (t,θs)ψε(s) f (t − s) − ψε(s) f (t) ds

for all t ∈ R
d . Hence,

ψε ∗θ f (t) − f (t) =
∫

Rd
e− i

2 (t,θs)ψε(s)( f (t − s) − e
i
2 (t,θs) f (t)) ds.
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Split the integral into the set |s| ≤ ε1/2 and |s| > ε1/2. Let N ≥ 1. Using (3.7) there is
a constant CN such that

|ψε ∗θ f (t) − f (t)| ≤
∫

|s|≤ε1/2
|ψε(s)| | f (t − s) − e

i
2 (t,θs) f (t)| ds

+
∫

|s|>ε1/2
|ψε(s)| | f (t − s) − e

i
2 (t,θs) f (t)| ds

≤ ‖ψ‖1 sup
|s|≤ε1/2

| f (t − s) − e
i
2 (t,θs) f (t)|

+ CN εN‖ f ‖∞.

Since f is in Schwartz class (and in particular uniformly continuous and bounded), it
follows that

lim
ε→0

|ψε ∗θ f (t) − f (t)| = 0 (3.9)

uniformly for t ∈ R
d .

Returning to (3.8), we can use the triangle inequality to deduce that:

|ψε ∗θ f (t)| ≤
∫

Rd
|ψε(s)|| f (t − s)| ds.

That is, |ψε ∗θ f | ≤ |ψε| ∗ | f |. Using Young’s convolution inequality, this implies that:

‖ψε ∗θ f ‖2 ≤ ‖ψ‖1‖ f ‖2.
Thus ψε ∗θ f − f ∈ L2(R

d). Let δ > 0 and select a compact set K ⊂ R
d such that

‖(ψε ∗θ f − f )χRd\K ‖2 < δ. Since we have uniform pointwise convergence (3.9), it
follows that:

lim
ε→0

‖ψε ∗θ f − f ‖2 ≤ lim
ε→0

‖(ψε ∗θ f − f )χK ‖2 + δ = δ.

However δ > 0 is arbitrary and therefore:

lim
ε→0

‖ψε ∗θ f − f ‖2 = 0.

This completes the proof for x ∈ S(Rd
θ ).

Now we may complete the proof for p = 2 by using the density of S(Rd
θ ) in L2(R

d
θ )

(Remark 2.9). Suppose that x ∈ L2(R
d
θ ) and y ∈ S(Rd

θ ) is chosen such that‖y−x‖2 < ε.
Note that we have ‖U (ψε)‖∞ ≤ ‖ψε‖1 = ‖ψ1‖1 < ∞. Thus,

‖U (ψε)x − x‖2 ≤ ‖U (ψε)(x − y)‖2 + ‖U (ψε)y − y‖2 + ‖x − y‖2
≤ (‖U (ψε)‖∞ + 1)ε + ‖U (ψε)y − y‖2
→ 0

as ε → 0. This completes the proof for p = 2.
Now we may complete the proof for p �= 2 by following an identical argument to

the proof of Theorem 3.6. ��
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The p = 2 component of Theorem 3.8 may be equivalently, stated as U (ψε) → 1 in
the strong operator topology of L∞(Rd

θ ) in its representation on L2(R
d
θ ).

There is another way in which we can approximate an element x ∈ L p(R
d
θ ) using

ψε. This uses the notion of convolution:

Definition 3.9. Let x ∈ L p(R
d
θ ) for 1 ≤ p < ∞. For ψ ∈ L1(R

d) define:

ψ ∗ x :=
∫

Rd
ψ(s)T−s(x) ds

as an absolutely convergent Bochner integral.

Some remarks are in order: First, Theorem 3.6 implies that the mapping s �→ T−s(x)
is continuous from R

d to L p(R
d
θ ) with its norm topology, so for each y ∈ Lq(R

d
θ ), for

1
p +

1
q = 1, we have that s �→ τθ (yT−s(x)) is continuous and so the integrand is weakly

measurable. Since L p(R
d
θ ) is separable for p < ∞, the Pettis measurability theorem

ensures the Bochner measurability of the integrand. The triangle inequality then implies:

‖ψ ∗ x‖p ≤ ‖ψ‖1‖x‖p. (3.10)

If we instead consider p = ∞, there may be issues with Bochner measurability of the
integrand, however we will not need to be concerned with that case.

Another fact about convolution worth noting is that if x ∈ L2(R
d
θ ) is given by

x = U ( f ) for f ∈ L2(R
d), then:

ψ ∗U ( f ) = U (ψ̂ f ) (3.11)

where ψ̂ is the Fourier transform of ψ .
Note at this stage that convolution with ψ commutes with each ∂ j .

Theorem 3.10. Let x ∈ L p(R
d
θ ) for 1 ≤ p < ∞, and let ψ and ψε be as in (3.6). Then:

ψε ∗ x → x

in the L p-norm, as ε → 0.

Proof. By definition, and the fact that
∫
Rd ψε(s) ds = 1, we have:

ψε ∗ x − x =
∫

Rd
ψε(s)(T−s(x) − x) ds.

Using (3.7), let N ≥ 1 and split the integral into regions |s| ≤ ε1/2 and |s| > ε1/2 to
obtain:

‖ψε ∗ x − x‖p ≤ ‖ψ‖1 sup
|s|<ε1/2

‖Ts(x) − x‖p + 2CN εN‖x‖p .

The result now follows from Theorem 3.6. ��
We can now combine Theorems 3.8 and 3.10 to simultaneously approximate x ∈

L p(R
d
θ ) with convolution and left multiplication by mollifying functions. The proof of

the following is a straightforward consequence of the fact that ‖U (φε)‖∞ is uniformly
bounded in ε, and also the inequality (3.10).
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Corollary 3.11. Let x ∈ L p(R
d
θ ), and suppose that we have a family {xε}ε>0 ⊆ L p(R

d
θ )

such that xε → x in the L p sense as ε → 0. Then:

U (ψε)xε → x, ψε ∗ xε → x

in L p(R
d
θ ), as ε → 0.

Proof. Both estimates follow from the fact that the L1-norm ofψε is uniformly bounded
in ε. Indeed, we have:

‖U (ψε)xε − x‖p ≤ ‖U (ψε)‖∞‖xε − x‖p + ‖U (ψε)x − x‖p

≤ ‖ψ‖1‖xε − x‖p + ‖U (ψε) − x‖p

which vanishes as ε → 0 thanks to Lemma 3.8. Similarly (3.10) implies:

‖ψε ∗ xε − x‖p ≤ ‖ψε‖1‖xε − x‖p + ‖ψε ∗ x − x‖p

which again vanishes as ε → 0, due to Lemma 3.10. ��
Corollary 3.11 suffices to show that, for example, ψε ∗ (U (φε)x) → x as ε → 0 in

the L p sense, where φε ∈ S(Rd) is defined similarly to ψε.
It is shown in [24] thatS(Rd

θ ) is weak-∗ dense in L∞(Rd
θ ), and norm dense in L p(R

d
θ )

for 1 ≤ p < ∞. Corollary 3.11 combined with the following lemma gives us a specific
sequence which approximates an arbitrary x ∈ L p(R

d
θ ) by a sequence in S(Rd

θ ).

Lemma 3.12. There exist choices of ψ , φ and χ in S(Rd) with integral equal to 1 such
that for all x ∈ L p(R

d
θ ) (2 ≤ p ≤ ∞) and ε > 0 the element ψε ∗ (U (φε)U (χε)x

)
is

in the Schwartz space S(Rd
θ ).

Proof. Let us first prove that we can select χ ∈ S(Rd) such that U (χε)x ∈ L2(R
d
θ ) for

all x ∈ L p(R
d
θ ).

We refer to the isomorphism (2.6). By a change of variables if necessary, we assume
that θ is of the form:

θ =
(
0d1 0
0 θ̃

)
,

where d1 = dim(ker(θ)) and det(θ̃) �= 0. Let H = L2(R
rank(θ)/2), then L p(R

d
θ ) can be

identified with the Bochner space:

L p(R
d
θ ) = L p(R

d1;Lp(H)).

(see, e.g. [51, Chapter 3]).
Since θ̃ has trivial kernel, the corresponding Schwartz space S(R

d−d1
θ̃

) has a dense

subspace of finite rank elements as in Theorem 2.4. Select n > 0 and z ∈ L∞(R
d−d1
θ̃

)

such that pnzpn (which is in S(R
d−d1
θ̃

)) is given by Uθ̃ (ζ ), where ζ ∈ S(Rd−d1). We
may choose pnzpn such that ζ has nonzero integral, thanks to part (iii) of Theorem 2.4.

Now select η ∈ C∞
c (Rd1) with η(0) �= 0. We select χ ∈ S(Rd) such that:

Uθ (χ) = Mη ⊗Uθ̃ (ζ ) = Mη ⊗ pnzpn .

Since η and pnzpn are in the Schwartz spaces for R
d1 and R

d−d1
θ̃

respectively, we
may indeed choose χ such that Uθ (χ) = Mη ⊗ pnzpn . We will have

∫
Rd χ(t) dt =
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η(0)
∫
Rd ζ(t) dt , which by construction is not zero. Thus, rescaling η if necessary, we

may assume that
∫
Rd χ(t) dt = 1.

Then, if x ∈ L p(R
d1 ,Lp(H)), it follows thatU (χ)x is compactly supported on R

d1 ,
and takes values in PLp(H). Therefore,

U (χ)x ∈ L2(R
d1;L2(H)) = L2(R

d
θ ).

One can then deduce that U (χε)x ∈ L2(R
d
θ ) via the dilation maps �ε and �ε−1 , since

we have:
Uθ (χε) = ε−d�ε−1Uε2θ (χ)�ε.

Since U (χε)x ∈ L2(R
d
θ ), from Theorem 2.8 there exists f ∈ L2(R

d) such that
U (χε)x = U ( f ). Using (3.11) we have:

ψε ∗ (U (φε)U ( f )
) = U

(
ψ̂ε(φε ∗θ f )

)
.

It is easily shown that φε ∗θ f is smooth, and we may select ψ such that ψ̂ε is com-
pactly supported, and thus ψ̂ε(φε ∗θ f ) is smooth and compactly supported, and thus by
definition it follows that U (ψ̂ε(φε ∗θ f )) = ψε ∗ (U (φε)U ( f )) is in S(Rd

θ ). That is,

ψε ∗ (U (φε)U (χε)x) ∈ S(Rd
θ ).

��
Note that in the proof of Lemma 3.12, the function ζ was chosen such thatUθ̃ (ζ ) satisfies
certain conditions. It is for this reason that we avoided making the assumption that the
function ψ appearing in the preceding lemmas is positive or compactly supported; the
proof of Lemma 3.12 is simplified if we do not need to prove that ζ has those properties.

3.3. Density of S(Rd
θ ) and A(Rd

θ ) in Sobolev spaces. We now use the machinery of
the previous subsection to prove that A(Rd

θ ) (and by extension, S(Rd
θ )) is dense in

Wm
p (Rd

θ ) for an appropriate range of indices (m, p). Proving the density of A(Rd
θ ) in

the homogeneous Sobolev space Ẇm
p (Rd

θ ), however, presents difficulties and we have
been unable to achieve this for the full range of indices (m, p).

As in Sect. 3.2, select a Schwartz class function ψ with
∫
Rd ψ(t) dt = 1, and denote

ψε(t) = ε−dψ(t/ε). We note one further property of U (ψε):

Lemma 3.13. Let 1 ≤ j ≤ d. Then for all 2 ≤ p ≤ ∞, we have:

‖∂ jU (ψε)‖p ≤ ε
1− d

p ‖ψ1‖q .
where q satisfies 1

p + 1
q = 1.

Proof. Recall (from (3.1)) that:

∂ jU (ψε) = U (t jψε(t))

so that we may apply Proposition 2.10 to bound ‖∂ jU (ψε)‖p by:

(∫

Rd
tqj ε

−dq |ψ(
t

ε
)|qdt

)1/q
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where q is Hölder conjugate to p.
Applying the change of variable s = t

ε
, we get the norm bound:

‖∂ jU (ψε)‖p ≤ ε
1−d+ d

q ‖ψ1‖q .
��

Lemma 3.13 allows us to prove the density ofA(Rd
θ ) in the Sobolev spaces associated

to R
d
θ . We achieve this by first using Lemma 3.12 to prove that S(Rd

θ ) is dense in
Wm,p(Rd

θ ).

Proposition 3.14. Let m ≥ 0 and 1 ≤ p < ∞, and x ∈ Wm
p (Rd

θ ), and let {φε}ε>0,
{ψε}ε>0 and {χε}ε>0 be chosen as in Sect. 3.2. Then

lim
ε→0

‖ψε ∗ (U (φε)U (χε)x
)− x‖Wm

p
= 0.

In particular, S(Rd
θ ) is norm-dense in Wm

p (Rd
θ ).

Proof. For m = 0, this is already implied by Corollary 3.11.
For m = 1, we use the Leibniz rule, recalling that differentiation commutes with

convolution:

∂ j

(
ψε ∗ (U (φε)U (χε)x

))− ∂ j x

= ψε ∗
((

∂ jU (φε)
)
U (χε)x

)
+ ψε ∗

(
U (φε)

(
∂ jU (χε)

)
x
)

+
(
ψε ∗ (U (φε)U (χε)∂ j x

)− ∂ j x
)
.

Due to Corollary 3.11, the latter term vanishes in the L p-norm as ε → 0.
For the first two terms, we apply Hölder’s inequality and Lemma 3.13. For the first

summand, we apply (3.10),

‖ψε ∗
((

∂ jU (φε)
)
U (χε)x

)
‖p ≤ ‖ψε‖1‖χε‖1‖∂ jU (φε)‖∞‖x‖p

� ε‖χ‖1‖ψ‖1‖φ‖1‖x‖p

and this vanishes as ε → 0. The second summand also vanishes as ε → 0 due to an
identical argument, and this completes the case m = 1.

The cases m ≥ 2 follow similarly. ��
At the time of this writing, we are unable to prove that the inclusion A(Rd

θ ) ⊂
Ẇm

p (Rd
θ ) is dense. In the classical (commutative) setting or on quantum tori, this can

be achieved by an application of a Poincaré inequality (see, e.g., [31, Theorem 7]). To
the best of our knowledge, no adequate replacement is known in the noncommutative
setting. In the following proposition, to obtain the desired convergence in Ẇ 1

d (Rd
θ ) norm,

we have to assume additionally that x ∈ L p(R
d
θ ) for some d ≤ p < ∞. This is the

ultimate cause of the a priori assumption in the statements of Theorems 1.1, 1.2 and 1.5
that x ∈ L p(R

d
θ ) for some d ≤ p < ∞.

Proposition 3.15. If x ∈ Ẇ 1
d (Rd

θ ) ∩ L p(R
d
θ ) for some d ≤ p < ∞, then the sequence

ψε ∗ (U (φε)U (χε)x) converges to x in Ẇ 1
d -seminorm when ε → 0+.
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Proof. Let 1 ≤ j ≤ d. Applying the Leibniz rule:

∂ j

(
ψε ∗ (U (φε)U (χε)x

))− ∂ j x

= ψε ∗
((

∂ jU (φε)
)
U (χε)x

)
+ ψε ∗

(
U (φε)

(
∂ jU (χε)

)
x
)

+
(
ψε ∗ (U (φε)U (χε)∂ j x

)− ∂ j x
)
.

The latter term vanishes as ε → 0, as a consequence of Theorem 3.10.
For the first two terms, since x ∈ L p(R

d
θ ) for some p ≥ d we can apply Hölder’s

inequality. E.g. for the first term we have:
∥∥∥ψε ∗

((
∂ jU (φε)

)
U (χε)x

)∥∥∥
d

� ‖∂ jU (φε)‖q‖x‖p ,

where 1
d = 1

p + 1
q . Using Lemma 3.13, ‖∂ jU (φε)‖q → 0 as ε → 0. The second

term is handled similarly. Therefore,
∥∥∥∂ j

(
ψε ∗ (U (φε)U (χε)x

))− ∂ j x
∥∥∥
d
→0 and this

completes the proof. ��
Now using the density ofA(Rd

θ ) in S(Rd
θ ) in its Fréchet topology, we may conclude

the following key result:

Corollary 3.16. Let x ∈ L p(R
d
θ ) ∩ Ẇ 1

d (Rd
θ ) for some d ≤ p < ∞. There exists a

sequence {xn}n≥0 ⊂ A(Rd
θ ) such that for all 1 ≤ j ≤ d:

lim
n→∞ ‖∂ j xn − ∂ j x‖d = 0.

3.4. Cwikel type estimates. Let x ∈ L∞(Rd
θ ), then by definition, x is a bounded operator

in B(L2(R
d)). On the other hand, for a (Borel) function g on R

d , we may define:

Mg = g(D1, . . . ,Dd) = g(i∇θ )

via functional calculus. As Dk is merely the operator ξ(t) �→ tkξ(t), it follows that Mg
is the multiplication operator:

Mgξ(t) = g(t)ξ(t), dom(Mg) = L2(R
d , |g(t)|2 dt). (3.12)

We call operators of the form Mg Fourier multipliers of R
d
θ .

Note that if x ∈ L2(R
d
θ ), wemay still consider x as a (potentially unbounded) operator

on L2(R
d), with initial domain S(Rd).

The following theorem, quoted from [39], gives sufficient conditions for operators
of the form xMg to be in the Schatten class Lp(L2(R

d)) or the corresponding weak
Schatten classes.

Theorem 3.17. Let x ∈ L p(R
d
θ ) with 2 ≤ p < ∞.

(i) If g ∈ L p(R
d), then xMg is in Lp(L2(R

d)) and

‖xMg‖Lp �p ‖x‖p‖g‖p.
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(ii) If g ∈ L p,∞(Rd) with p > 2, then xMg is in Lp,∞(L2(R
d)) and

‖xMg‖Lp,∞ �p ‖x‖p‖g‖p,∞.

(iii) Let x ∈ Wd
1 (Rd

θ ). Then x J−d
θ ∈ L1,∞ and

‖x J−d
θ ‖L1,∞ �p Cd‖x‖Wd

1
.

Proof. Theorem 7.2 in [39] says that

‖xMg‖E(B(L2(Rd ))) �E ‖x ⊗ g‖E(L∞(Rd
θ )⊗L∞(Rd )) (3.13)

for any interpolation space E of the couple (L2, L∞). Taking E = L p in (3.13), we get
(i). For (ii), we take E = L p,∞ and use the estimate

‖x ⊗ g‖L p,∞(L∞(Rd
θ )⊗L∞(Rd )) ≤ ‖x‖p‖g‖p,∞

to immediately conclude the proof.
(iii) is merely an application of [39, Theorem 7.6]. Since the function (1 + |t |2)−d/2

is in �1,∞(L∞(Rd)),2 it follows that x J−d
θ ∈ L1,∞. ��

4. Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1, that is, that the condition x ∈⋃
d≤p<∞ L p(R

d
θ ) ∩ W 1

d (Rd
θ ) is sufficient for d̄x ∈ Ld,∞, and with an explicit norm

bound:

‖ d̄x‖d,∞ �d ‖x‖Ẇ 1
d (Rd

θ ).

The proof given here is similar to the corresponding result on quantum tori [45], relying
heavily on the Cwikel type estimate stated in the last section.

The following two lemmas are easily deduced from Theorem 3.17.

Consider the function onR
d , ξ �→ (1+|ξ |2)− d

2 .When |ξ | > 1,wehave (1+|ξ |2)− d
2 ≤

|ξ |−d . For |ξ | ≤ 1, (1+ |ξ |2)− d
2 is bounded from above by 1. Hence ξ �→ (1+ |ξ |2)− d

2 ∈
L1,∞(Rd), and so ξ �→ (1 + |ξ |2)− β

2 ∈ L d
β
,∞(Rd). Recall Jθ = (1−Deltaθ )

1/2. Then

we have:

Lemma 4.1. Consider the linear operator x J−β
θ on C

N⊗L2(R
d). If x ∈ L d

β
(Rd

θ ) with

d
β

> 2, then x J−β
θ ∈ L d

β
,∞, and

‖x J−β
θ ‖L d

β
,∞ �d,β ‖x‖ d

β
.

Lemma 4.2. Suppose that p > d
2 and x ∈ L p(R

d
θ ). If p ≥ 2, then:

∥∥∥∥

[
sgn(D) − D√

1 +D2
, 1⊗x

]∥∥∥∥Lp

�p,d ‖x‖p.

2 See [63, pp. 38] for the definition of this function space.
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Proof. Let 1 ≤ j ≤ d, and for ξ ∈ R
d define

h j (ξ) := ξ j

|ξ | − ξ j

(1 + |ξ |2) 1
2

.

Thus,

Mh j = h j (i∇θ ) = D j√−Deltaθ

− D j

(1 − Deltaθ )
1
2

Note that there is no ambiguity in writing
D j√−Deltaθ

, as this is simply Mg for g(ξ) = ξ j
|ξ | .

and so,

sgn(D) − D√
1 +D2

=
d∑

j=1

γ j ⊗
( D j√−Deltaθ

− D j

(1 − Deltaθ )
1
2

)
=

d∑

j=1

γ j ⊗ Mh j .

One can easily check that h j ∈ L p(R
d) as p > d

2 . Expanding out the commutator,

[
sgn(D) − D√

1 +D2
, 1⊗x

]
=
⎡

⎣
d∑

j=1

γ j⊗Mh j , 1⊗x

⎤

⎦ =
d∑

j=1

γ j⊗[Mh j , x].

Hence,
∥∥∥∥

[
sgn(D) − D√

1 +D2
, 1⊗x

]∥∥∥∥Lp

≤ d max
1≤ j≤d

∥∥[Mh j , x
]∥∥Lp

≤ d max
1≤ j≤d

(∥∥Mh j x
∥∥Lp

+
∥∥xMh j

∥∥Lp

)

= d max
1≤ j≤d

(‖x∗Mh j ‖Lp + ‖xMh j ‖Lp

)
.

The desired conclusion follows then from Theorem 3.17.(i). ��
The proof of the next lemma is modeled on that of [45, Lemma 4.2] and [41,

Lemma 10], via the technique of double operator integrals (see [49] and [54] and ref-
erences therein). For the convenience of the reader, let us give an brief introduction of
double operator integrals, and sketch the proof of the next lemma.

Let H be a (complex) separable Hilbert space. Let D0 and D1 be self-adjoint (poten-
tially unbounded) operators on H , and E0 and E1 be the associated spectral measures.
For all x, y ∈ L2(H), the measure (λ, μ) �→ tr(x dE0(λ) y dE1(μ)) is a countably ad-
ditive complex valued measure on R

2. We say that φ ∈ L∞(R2) is E0 ⊗ E1 integrable
if there exists an operator T D0,D1

φ ∈ B(L2(H)) such that for all x, y ∈ L2(H),

tr(x T D0,D1
φ y) =

∫

R2
φ(λ,μ)tr(x dE0(λ) y dE1(μ)).

The operator T D0,D1
φ is called the transformer. For A ∈ L2(H), we define

T D0,D1
φ (A) =

∫

R2
φ(λ,μ)dE0(λ) A dE1(μ). (4.1)

This is called a double operator integral.
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Lemma 4.3. Let x ∈ S(Rd
θ ). Then

∥∥[ D√
1 +D2

, 1⊗x
]∥∥Ld,∞ �d ‖x‖Ẇ 1

d
.

Proof. Set g(t) = t (1 + t2)− 1
2 for t ∈ R. Since all of the derivatives of x are bounded,

we may apply [3, Theorem 4.1], which asserts that:

[g(D), 1⊗x] = TD,D
g[1] ([D, 1⊗x]), (4.2)

where g[1](λ, μ) := g(λ)−g(μ)
λ−μ

= ψ1(λ, μ)ψ2(λ, μ)ψ3(λ, μ), with

ψ1 = 1 +
1 − λμ

(1 + λ2)
1
2 (1 + μ2)

1
2

, ψ2 = (1 + λ2)
1
4 (1 + μ2)

1
4

(1 + λ2)
1
2 + (1 + μ2)

1
2

,

ψ3 = 1

(1 + λ2)
1
4 (1 + μ2)

1
4

.

It follows that

TD,D
g[1] = TD,D

ψ1
TD,D

ψ2
TD,D

ψ3
. (4.3)

[41, Lemma 8] ensures the boundedness of the transformer TD,D
ψ2

, on both L1 and L∞.
For k = 1, 3 the function ψk can be written as a linear combination of products of
bounded functions of λ and of μ, and from this it follows that TD,D

ψk
is also a bounded

linear map on L1 and L∞; see e.g. [54, Corollary 2] and [58, Corollary 2.4]. Then
by real interpolation of (L1,L∞) (see [20]), the transformers TD,D

ψk
with k = 1, 2, 3

are bounded linear transformations from Ld,∞ to Ld,∞. Using (4.2) and the product
representation of g in (4.3), we have

‖[g(D), 1⊗x]‖Ld,∞ ≤ ‖TD,D
ψ1

‖Ld,∞→Ld,∞‖TD,D
ψ2

‖Ld,∞→Ld,∞

× ‖TD,D
ψ3

([D, 1⊗x])‖Ld,∞

�d ‖TD,D
ψ3

([D, 1⊗x])‖Ld,∞ .

Since ψ3(λ, μ) = (1 + λ2)−1/4(1 + μ2)−1/4, by (4.1), we have

TD,D
ψ3

([D, 1⊗x]) = (1 +D2)−1/4[D, 1⊗x](1 +D2)−1/4.

Recalling that D = ∑d
j=1 γ j⊗D j ,

‖[g(D), 1⊗x]‖Ld,∞ �d ‖(1 +D2)−1/4[D, 1⊗x](1 +D2)−1/4‖Ld,∞

�d

d∑

j=1

‖(1 +D2)−1/4[γ j⊗D j , 1⊗x](1 +D2)−1/4‖Ld,∞ .

But by definition, [γ j⊗D j , 1⊗x] = γ j⊗∂ j x , thus we obtain

‖(1 +D2)−1/4[γ j⊗D j , 1⊗x](1 +D2)−1/4‖Ld,∞ = ‖J−1/2
θ ∂ j x J−1/2

θ ‖Ld,∞ .
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Here the first norm ‖ · ‖Ld,∞ is the norm of Ld,∞(CN ⊗ L2(R
d)), and the second one is

the norm ofLd,∞(L2(R
d)), and Jθ = (1−Deltaθ )

1/2.We are reduced to estimating the
quantity ‖J−1/2

θ ∂ j x J−1/2
θ ‖Ld,∞ . By polar decomposition, for every j , there is a partial

isometry Vj on L2(R
d) such that

∂ j x = Vj |∂ j x | = Vj |∂ j x | 12 |∂ j x | 12 .
Taking β = 1

2 , and recalling that x is such that ‖Vj |∂ j x | 12 ‖2d ≤ ‖ |∂ j x | 12 ‖2d =
‖∂ j x‖

1
2
d < ∞, since 2d > 2, we may apply Lemma 4.1.(ii) to get

‖|∂ j x | 12 J−1/2
θ ‖L2d,∞ = ‖J−1/2

θ |∂ j x | 12 ‖L2d,∞ �d ‖ |∂ j x | 12 ‖2d
and

‖J−1/2
θ Vj |∂ j x | 12 ‖L2d,∞ �d ‖Vj |∂ j x | 12 ‖2d �d ‖ |∂ j x | 12 ‖2d .

Thus, by Hölder’s inequality for weak Schatten classes,

‖J−1/2
θ ∂ j x J−1/2

θ ‖Ld,∞ �d ‖ |∂ j x | 12 ‖22d �d ‖∂ j x‖d .
Combining the preceding estimates, we arrive at

‖[g(D), 1⊗x]‖Ld,∞ �d

d∑

j=1

‖∂ j x‖d �d ‖x‖Ẇ 1
d
,

which completes the proof. ��
Now we are able to complete the proof of Theorem 1.1.

Proof of Theorem 1.1. Lemmas 4.2, 4.3 and the inequality ‖T ‖d,∞ ≤ ‖T ‖d yield:

‖ d̄x‖Ld,∞ �d ‖[g(D), 1⊗ x]‖d,∞ + ‖[sgn(D) − g(D), 1⊗ x]‖d,∞ �d ‖x‖d + ‖x‖Ẇ 1
d
,

(4.4)
for all x ∈ S(Rd

θ ), and with constants independent of θ . We are going to get rid of the
dependence on ‖x‖d by a dilation argument as follows. Let λ > 0 and �λ : L∞(Rd

θ ) →
L∞(Rd

λ2θ
) be the ∗-isomorphism defined in (3.3). By (3.4), for x ∈ L∞(Rd

θ ), we have

�λ(x) = σλxσ ∗
λ . Since the operator

D j√−Deltaθ
, viewed as a Fourier multiplier on R

d ,

commutes with σλ (and σ ∗
λ ), we have

d̄
(
�λ(x)

) = i[sgn(D), 1⊗�λ(x)] = i[sgn(D), 1⊗σλxσ
∗
λ ]

= iσλ[sgn(D), 1⊗x]σ ∗
λ = σλd̄x σ ∗

λ .

Whence, ‖ d̄(�λ(x)
)‖Ld,∞ = ‖ d̄x‖Ld,∞ . Applying (4.4) to �λ(x) ∈ L∞(Rd

λ2θ
), we

obtain

‖ d̄(�λ(x)
)‖Ld,∞ �d ‖�λ(x)‖d + Bd‖�λ(x)‖Ẇ 1

d
.

By virtue of Proposition 3.7, we return back to x ∈ L∞(Rd
θ ):

‖ d̄x‖Ld,∞ = ‖ d̄(�λ(x)
)‖Ld,∞ �d λ‖x‖d + ‖x‖Ẇ 1

d
.
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Letting λ → 0 completes the proof of Theorem 1.1 for x ∈ S(Rd
θ ).

The general case x ∈ Ẇ 1
d (Rd

θ ) ∩ ⋃d≤p<∞ L p(R
d
θ ) is achieved by approximation.

By Proposition 3.15, select a sequence {xn} in S(Rd
θ ) such that xn→x in Ẇ 1

d seminorm.
Corollary 3.11 implies thatwe can choose this sequence such thatwe also have that xn→x
in the L p(R

d
θ )-sense. For these Schwartz elements xn , we have ‖ d̄xm − d̄xn‖Ld,∞ �d

‖xm − xn‖Ẇ 1
d
, so {d̄xn} is Cauchy in Ld,∞, and thus converges to some limit (say, L) in

the Ld,∞ quasinorm.
Let η ∈ L2(R

d) be compactly supported, and let K ⊂ R
d be a compact set containing

the support of η. Then (xn − x)η = (xn − x)MχK η. We have:

‖(xn − x)η‖2 = ‖(xn − x)χKη‖2 ≤ ‖(xn − x)MχK ‖∞‖η‖2 ≤ ‖(xn − x)χK ‖Lp‖η‖2.
Theorem 3.17 implies that ‖(xn − x)MχK ‖Lp �p,K ‖xn − x‖p, and since we have

selected the sequence to converge in the L p(R
d
θ ) sense:

lim
n→∞ ‖(xn − x)η‖2 = 0. (4.5)

Similarly, if ξ ∈ C
N ⊗ L2(R

d) is compactly supported, then sgn(D)ξ is still compactly
supported and we have:

lim
n→∞ ‖1 ⊗ (xn − x)sgn(D)ξ‖2 = 0. (4.6)

Combining (4.5) and (4.6) implies that ( d̄xn)ξ → ( d̄x)ξ for all compactly supported
ξ ∈ C

N ⊗ L2(R
d). Since we know that d̄xn → L in the Ld,∞ topology, it follows that

d̄x = L , and therefore d̄x ∈ Ld,∞.
To complete the proof, we note that for these Schwartz elements xn ,

‖ d̄xn‖Ld,∞ �d ‖xn‖Ẇ 1
d
.

Upon taking the limit n→∞ we arrive at:

‖ d̄x‖Ld,∞ �d ‖x‖Ẇ 1
d
.

��

5. Commutator Estimates for R
d
θ

This section is devoted to the proof of Theorem 1.6, which is an essential ingredient
for our proof of Theorem 1.2 i.e., the computation of ϕ(| d̄x |d) when x ∈ L∞(Rd

θ ) ∩
Ẇ 1

d (Rd
θ ) and ϕ is a continuous normalised trace on L1,∞. One powerful tool used in

[45] for quantum tori is the theory of noncommutative pseudodifferential operators. The
proof in [45] proceeds by viewing the quantised differential d̄x = i[sgn(D), 1⊗x] as
a pseudodifferential operator, then determining its (principal) symbol and order, and
finally appealing to Connes’ trace formula as obtained in [46].

Despite the development of pseudodifferential operators onquantumEuclidean spaces
in [24,38], we have found it instructive to attempt a direct proof of Theorem 1.6. This
has two main advantages: first, it makes the present text self-contained, and more im-
portantly the methods presented below are based only on operator theory and can be
generalised to settings where no pseudodifferential calculus is available.
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For potential future utility we will prove Theorem 1.6 for the full range of parameters
(α, β), although ultimately we will only need certain specific choices of α and β.

Let A(Rd
θ ) ⊆ S(Rd

θ ) be a factorisable subalgebra as in Proposition 2.5.
The main target of this section is to give the proof of Theorem 1.6, which is technical

and somewhat tedious, and so is divided into several steps presented in the following
subsections.

5.1. Commutator identities. The following integral formula will be useful: let ζ < 1
and η > 1 − ζ . Then for all t > 0 we have

∫ ∞

0

1

λζ (t + λ)η
dλ = t1−ζ−η B(η + ζ − 1, 1 − ζ ) (5.1)

where B(·, ·) is the Beta function.
For an operator T ∈ B(L2(R

d)), let Lθ (T ) := J−1
θ [J 2θ , T ] whenever it is defined,

and define δθ (T ) := [Jθ , T ] similarly. Inductively, for k ∈ N we define Lk
θ (T ) =

Lθ (L
k−1
θ (T )) and δkθ (T ) = δθ (δ

k−1
θ (T )). We also make the convention that L0

θ (T ) = T
and δ0θ (T ) = T . Note that Lθ (T )J−1

θ = Lθ (T J−1
θ ).

The following theorem states that to prove that δθ (T ) is in a certain ideal, it suffices
to show that Lk

θ (T ) is in that ideal for all k ≥ 0. The essential idea behind the proof
goes back to [15, Appendix B]. Here some extra care is needed for the quasi-Banach
cases 0 < p ≤ 1. We make use of the theory of integration of functions valued in
quasi-Banach developed by Turpin andWaelbroeck [36,70,71]. We will refer the reader
to [40] for results in the precise form we need.

Theorem 5.1. Let T be an operator on L2(R
d) which maps the Schwartz class S(Rd)

into S(Rd). Assume that Lk
θ (T ) is defined for all k ≥ 0.

(i) If Lk
θ (T ) has bounded extension for all k ≥ 0, then δkθ (T ) has bounded extension for

all k ≥ 0.
(ii) Similarly if p > 0 and Lk

θ (T ) ∈ Lp,∞ for all k ≥ 0, then δkθ (T ) ∈ Lp,∞ for all
k ≥ 0.

Proof. Taking η = 1 and ζ = 1/2 in (5.1) yields

J−1
θ = 1

π

∫ ∞

0

1

λ1/2(λ + J 2θ )
dλ. (5.2)

Here since (λ + J 2θ )−1 has bounded extension for all λ ≥ 0, the integrand is a norm-
continuous function of λ and the integral converges in operator norm; see e.g. [6, pp 701].
Since by assumption T has bounded extension and maps S(Rd) to S(Rd), for any
ξ ∈ S(Rd) ⊂ dom(J 2θ ), multiplying by J 2θ and taking the commutator with T gives us

[Jθ , T ]ξ = 1

π

∫ ∞

0
λ−1/2

[
J 2θ

λ + J 2θ
, T

]
ξ dλ,
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where the integrand on the right converges in the L2(R
d)-valued Bochner sense. We

manipulate the integrand as follows

δθ (T )ξ = [Jθ , T ] ξ = 1

π

∫ ∞

0
λ1/2(λ + J 2θ )−1[J 2θ , T ](λ + J 2θ )−1 ξ dλ

= 1

π

∫ ∞

0
λ1/2

Jθ
λ + J 2θ

Lθ (T )(λ + J 2θ )−1 ξ dλ

= 1

π

∫ ∞

0
λ1/2

Jθ
(λ + J 2θ )2

Lθ (T ) ξ dλ

+
1

π

∫ ∞

0
λ1/2

Jθ
λ + J 2θ

[Lθ (T ), (λ + J 2θ )−1] ξ dλ

= 1

π

∫ ∞

0
λ1/2

Jθ
(λ + J 2θ )2

dλ · Lθ (T ) ξ

+
1

π

∫ ∞

0
λ1/2

J 2θ
(λ + J 2θ )2

L2
θ (T )

1

λ + J 2θ
ξ dλ.

= 1

2
Lθ (T ) ξ +

1

π

∫ ∞

0
λ1/2

J 2θ
(λ + J 2θ )2

L2
θ (T )

1

λ + J 2θ
ξ dλ.

In the last equality above, we have used the fact that

∫ ∞

0
λ1/2

Jθ
(λ + J 2θ )2

dλ = π

2
1B(L2(Rd )),

which is deduced from (5.1) by taking ζ = −1/2 and η = 2. Also note that all the
integrands above converge in L2(R

d).
Now if L2

θ (T ) has bounded extension, we have

∥∥∥∥∥
J 2θ

(λ + J 2θ )2
L2

θ (T )
1

λ + J 2θ

∥∥∥∥∥∞
≤ ‖L2

θ (T )‖∞
1

4λ(λ + 1)
.

Hence,

‖δθ (T )‖∞ ≤ 1

2
‖Lθ (T )‖∞ + C‖L2

θ (T )‖∞,

where C > 0 is a certain constant. So if Lθ (T ) and L2
θ (T ) have bounded extension,

then δθ (T ) has bounded extension. Inductively, if Lk
θ (T ) has bounded extension for all

k ≥ 0, then δkθ (T ) has bounded extension for all k ≥ 0. This completes the proof of part
(i).

We turn to the proof of part (ii). If p > 1, then Lp,∞ can be given an equivalent
norm making it a Banach ideal. Then we may give the same argument as part (i), but
with the operator norm replaced by a norm for Lp,∞. On the other hand, if p ≤ 1, then
Lp,∞ cannot be given a Banach norm and therefore a more delicate argument is needed.
Taking yet more commutators, for all ξ ∈ S(Rd) we have:
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δθ (T )ξ = 1

2
Lθ (T )ξ +

1

π

∫ ∞

0
λ1/2

J 2θ
(λ + J 2θ )3

L2
θ (T )ξ dλ

+
1

π

∫ ∞

0
λ1/2

J 2θ
(λ + J 2θ )2

[L2
θ (T ), (λ + J 2θ )−1]ξ dλ

= 1

2
Lθ (T )ξ +

B(3/2, 3/2)

π
J−1
θ L2

θ (T )ξ

+
1

π

∫ ∞

0
λ1/2

J 3θ
(λ + J 2θ )3

L3
θ (T )

1

λ + J 2θ
ξ dλ.

Iterating this process ultimately leads to the expansion, for each n ≥ 1,

δθ (T ) =
n−1∑

j=1

1

π
B( j − 1/2, 3/2)J 1− j

θ L j
θ (T ) +

1

π

∫ ∞

0
λ1/2

Jnθ
(λ + J 2θ )n

Ln
θ (T )

1

λ + J 2θ
dλ.

(5.3)
The coefficients above are obtained by a choice of η = j + 1 and ζ = −1/2 in (5.1)
yielding

∫ ∞

0
λ1/2

J j
θ

(λ + J 2θ ) j+1
dλ = B( j − 1/2, 3/2) J 1− j

θ ,

which are understood in the same meaning as (5.2).
To complete the proof of (ii), we will show that for any p > 0 we can choose n large

enough that the integral remainder term in (5.3) can be proved to be in Lp,∞. To this
end we use the non-convex integration theory of [40]. Let n > 1, and define:

In(λ) = Jnθ
(λ + J 2θ )n

, J (λ) = 1

λ + J 2θ
.

Let us show that we can choose n sufficiently large such that if X ∈ Lp,∞, then∫∞
0 λ1/2In(λ)XJ (λ) dλ is in Lp,∞. Specifically, we use [40, Corollary 3.7] combined
with [40, Proposition 3.8], which together imply that it suffices to have

∑

j∈N0

(( j + 1)1/2‖In‖C2n([ j, j+1],B(L2(Rd )))‖J ‖C2n([ j, j+1],B(L2(Rd ))))
p

p+1 < ∞ (5.4)

and n > 1
2p .

Now let us check (5.4). For 0 ≤ k ≤ 2n, we have
∥∥∥∥

∂k

∂λk
In(λ)

∥∥∥∥ = Ck,n

∥∥∥∥∥
Jnθ

(λ + J 2θ )n+k

∥∥∥∥∥

≤ Ck,n

∥∥∥∥∥
Jnθ

(λ + J 2θ )n

∥∥∥∥∥

= Ck,n

∥∥∥∥∥
1

(λJ−1
θ + Jθ )n

∥∥∥∥∥ .

Since
λJ−1

θ + Jθ ≥ max{λ + 1, 2λ1/2} 1B(L2(Rd )),
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it follows that ∥∥∥∥
∂k

∂λk
In(λ)

∥∥∥∥ ≤ Ck,n min{1, λ−n/2}.
For J (λ) the estimates are easier

∥∥∥∥
∂k

∂λk
J (λ)

∥∥∥∥ ≤ Ck
1

λ + 1
.

So if we choose n large enough, (5.4) is satisfied. Thus, if Ln
θ (T ) ∈ Lp,∞ then

1

π

∫ ∞

0
λ1/2

Jnθ
(λ + J 2θ )n

Ln
θ (T )

1

λ + J 2θ
dλ ∈ Lp,∞.

So, if all of Lθ (T ), L2
θ (T ), . . . , Ln

θ (T ) are inLp,∞ then (5.3) implies that δθ (T ) ∈ Lp,∞.
Thus by induction, if Lk

θ (T ) ∈ Lp,∞ for every k ≥ 0, then δkθ (T ) ∈ Lp,∞ for every
k ≥ 0. ��

5.2. The case α = 1. Now we commence the proof of Theorem 1.6 by first proving the
case α = 1, which is the easiest case since we can directly apply Theorem 5.1 and the
Cwikel type estimate [39].

Lemma 5.2. Let x ∈ S(Rd
θ ). The operators Lk

θ (x) have bounded extension for all k ≥ 1.
Moreover, we have

Lk
θ (x)J

−d
θ ∈ L1,∞

for all k ≥ 0.

Proof. We have

Lθ (x) = J−1
θ

d∑

j=1

[D2
j , x]

= J−1
θ

d∑

j=1

2D j [D j , x] − [D j , [D j , x]]

=
d∑

j=1

2J−1
θ D j ∂ j x − J−1

θ ∂2j x .

Since J−1
θ D j has bounded extension, it follows that Lθ (x) also has bounded extension.

Since Lθ commutes with Jθ and each D j , for k ≥ 2 we have

Lk
θ (x) =

d∑

j=1

2J−1
θ D j L

k−1
θ (∂ j x) −

d∑

j=1

J−1
θ Lk−1

θ (∂2j x).

So by induction on k, all Lk
θ (x) are bounded. Moreover, by convention L0(T ) = T , then

for all k ≥ 1 we get

Lk
θ (x)J

−d
θ =

d∑

j=1

2J−1
θ D j L

k−1
θ (∂ j x)J

−d
θ −

d∑

j=1

J−1
θ Lk−1

θ (∂2j x)J
−d
θ .

Hence Theorem 3.17(iii) ensures Lk
θ (x)J

−d
θ ∈ L1,∞. ��
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An immediate corollary of Lemma 5.2 together with Theorem 5.1(i) yields

Corollary 5.3. For all x ∈ S(Rd
θ ) and k ≥ 0, the operator δkθ (x) has bounded extension.

The main technical underpinning of Theorem 1.6 is the following Lemma:

Lemma 5.4. Let x ∈ A(Rd
θ ). Then for all β > 0 and all k ≥ 0 we have

δkθ (x)J
−β
θ ∈ Ld/β,∞.

Proof. Let T = x J−d
θ . Then from Lemma 5.2 and the fact that J−1

θ commutes with Lθ ,
we have that Lk

θ (T ) ∈ L1,∞ for all k ≥ 0. Thus, it follows from Theorem 5.1(ii) that
δkθ (T ) = δkθ (x)J

−d
θ is in L1,∞, and this proves the result for β = d.

Now if β < d, we can apply (2.1) with r = d/β, A = δkθ (x) and B = J−β
θ to obtain:

δkθ (x)J
−β
θ ∈ Ld/β,∞

thus the result is proved for for 0 < β ≤ d.
We will now complete the proof by an inductive argument, specifically by showing

that if the result holds for β then it holds for β + 1.
Suppose that the result is true for some β > 0. Then we write

δkθ (x)J
−β−1
θ = [δkθ (x), J−1

θ ]J−β
θ + J−1

θ δkθ (x)J
−β
θ

= J−1
θ [Jθ , δkθ (x)]J−β−1

θ + J−1
θ δkθ (x)J

−β
θ

= J−1
θ δk+1θ (x)J−β−1

θ + J−1
θ δkθ (x)J

−β
θ .

By the factorisation property of A(Rd
θ ) (see Proposition 2.5), we can write x as a finite

linear combination of products, x = ∑n
j=1 y j z j , where each y j , z j ∈ A(Rd

θ ). Using
the Leibniz rule on the j th summand, we deduce

δkθ (y j z j )J
−β−1
θ =

k+1∑

j=0

(
k + 1

j

)
J−1
θ δ

j
θ (y j )δ

k+1− j
θ (z j )J

−β
θ J−1

θ

+
k∑

j=0

(
k

j

)
J−1
θ δ

j
θ (y j )δ

k− j
θ (z j )J

−β
θ .

Hence by the Hölder inequality and the fact that J−1
θ is bounded,

δkθ (x)J
−β−1
θ ∈ Ld/β,∞ · Ld,∞ ⊆ Ld/(β+1),∞.

Thus the result holds for β + 1, and this completes the proof. ��
Observing that Lθ (xy) = Lθ (x)y + xLθ (y) − J−1

θ δθ (x)Lθ (y), the above proof

works for Lk
θ (x)J

−β
θ ∈ Ld/β,∞ as well. Moreover, using Proposition 2.5 and the Hölder

inequality, we easily obtain the following “two-sided” variant of Lemma 5.4:

Corollary 5.5. Let x ∈ A(Rd
θ ) and k ≥ 0. Then for all γ, β > 0 we have:

J−γ
θ Lk

θ (x)J
−β
θ ∈ L d

β+γ
,∞, J−γ

θ δkθ (x)J
−β
θ ∈ L d

β+γ
,∞.
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5.3. The case 0 ≤ α ≤ β + 1. For ζ ∈ (0, 1), taking η = 1 in (5.1) yields

s−ζ = 1

B(ζ, 1 − ζ )

∫ ∞

0

1

λζ (λ + s)
dλ.

If α = 1 − ζ , we get the useful identity for ξ ∈ S(Rd)

Jα
θ ξ = 1

B(1 − α, α)

∫ ∞

0
λα−1 Jθ

λ + Jθ
ξ dλ, (5.5)

where the integrand on the right converges in L2(R
d), as in the proof of Theorem 5.1.

The following is the α ∈ [0, 1) and β ≥ 0 case of Theorem 1.6:

Theorem 5.6. Let x ∈ A(Rd
θ ). Let α ∈ [0, 1) and β ≥ 0 then for all k ≥ 0

[Jα
θ , δkθ (x)]J−β

θ ∈ L d
β−α+1 ,∞.

Proof. It follows from (5.5) that for ξ ∈ S(Rd),

[Jα
θ , δkθ (x)] ξ = 1

B(1 − α, α)

∫ ∞

0
λα−1

[
Jθ

λ + Jθ
, δkθ (x)

]
ξ dλ

= 1

B(1 − α, α)

∫ ∞

0
λα(λ + Jθ )

−1[Jθ , δkθ (x)](λ + Jθ )
−1 ξ dλ

= 1

B(1 − α, α)

∫ ∞

0
λα(λ + Jθ )

−1δk+1θ (x)(λ + Jθ )
−1 ξ dλ

= 1

B(1 − α, α)

∫ ∞

0
λα(λ + Jθ )

−2δk+1θ (x) ξ dλ

− 1

B(1 − α, α)

∫ ∞

0
λα(λ + Jθ )

−1[(λ + Jθ )
−1, δk+1θ (x)] ξ dλ

= 1

B(1 − α, α)

∫ ∞

0
λα(λ + Jθ )

−2δk+1θ (x)ξ dλ

+
1

B(1 − α, α)

∫ ∞

0
λα(λ + Jθ )

−2δk+2θ (x)(λ + Jθ )
−1 ξ dλ.

Since J−β
θ maps S(Rd) into S(Rd), using the identity

∫∞
0 λα t1−α

(λ+t)2
dλ = B(1−α, 1+α)

which is easily deduced from (5.1) again, we have

[Jα
θ , δkθ (x)]J−β

θ ξ = α Jα−1
θ δk+1θ (x)J−β

θ ξ

+
1

B(1 − α, α)

∫ ∞

0
λα(λ + Jθ )

−2δk+20 (x)J−β
θ (λ + Jθ )

−1 ξ dλ.

= α Jα−1
θ δk+1θ (x)J−β

θ ξ

+
1

B(1 − α, α)

∫ ∞

0
λα J 1−α

θ

(λ + Jθ )2
Jα−1
θ δk+2θ (x)J−β

θ

1

λ + Jθ
ξ dλ.

Theoperator Jα−1
θ δk+1θ (x)J−β

θ is inL d
β−α+1 ,∞ due toCorollary 5.5. The second summand

is treated in the following.
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Assume initially that d
β−α+1 > 1, or equivalently α < β + 1 < d + α. Under this

condition, the ideal L d
β−α+1 ,∞ can be given a norm and we can estimate the second

summand using the triangle inequality. We have
∥∥∥∥∥

J 1−α
θ

(λ + Jθ )2

∥∥∥∥∥∞
≤ sup

t≥1

t1−α

(t + λ)2
=
{

1
(1+λ)2

, λ ≤ α+1
1−α

Cα

λα+1 λ > α+1
1−α

,
(5.6)

for a certain constant Cα . Thus,
∥∥∥∥∥λ

α J 1−α
θ

(Jθ + λ)2

∥∥∥∥∥∞

∥∥∥∥
1

λ + Jθ

∥∥∥∥∞
≤
{

1
(1+λ)3

, λ ≤ α+1
1−α

Cα

λ(1+λ)
λ > α+1

1−α
,

(5.7)

which is integrable. If α < β + 1, we get from the triangle inequality that

[Jα
θ , δkθ (x)]J−β

θ ∈ L d
β−α+1 ,∞.

Thus the result is proved if β < d + α − 1. In particular, since d ≥ 2 we have proved
the result for 0 < β ≤ 1.

To complete the proof, we need an induction argument as in the proof of Lemma 5.4.
Note first that by the assumed factorisation property ofA(Rd

θ ), for any x ∈ A(Rd
θ )we can

write x as a linear combination of products, x = ∑n
j=1 y j z j where each y j , z j ∈ A(Rd

θ ).

Suppose that β > 0 is such that [Jα
θ , δkθ (x)]J−β

θ ∈ L d
β−α+1 ,∞ for all k ≥ 0 and all

x ∈ A(Rd
θ ). Then applying the Leibniz rule to the j th summand, we have:

J−1
θ [Jα

θ , δkθ (y j z j )]J−β
θ =

k∑

l=0

(
k

l

)
J−1
θ [Jα

θ , δk−l
θ (y j )δ

l
θ (z j )]J−β

θ

=
k∑

l=0

(
k

l

)
J−1
θ δk−1

θ (y j )[Jα
θ , δlθ (z j )]J−β

θ

+
k∑

l=0

(
k

l

)
J−1
θ [Jα

θ , δlθ (y j )]δk−l
θ (z j )J

−β
θ .

Then applying the the Hölder inequality, we have

J−1
θ [Jα

θ , δkθ (x)]J−β
θ ∈ L d

1+β−α+1 ,∞. (5.8)

Now we complete the proof by showing that if the required assertion holds for β, then
it holds for β + 1. Indeed,

[Jα
θ , δkθ (x)]J−β−1

θ = [J−1
θ , [Jα

θ , δkθ (x)]]J−β
θ + J−1

θ [Jα
θ , δkθ (x)]J−β

θ

= −J−1
θ [Jα

θ , δk+1θ (x)]J−β J−1 + J−1
θ [Jα

θ , δkθ (x)]J−β
θ .

From (5.8), we conclude that

[Jα
θ , δkθ (x)]J−β−1

θ ∈ L d
β+1−α+1 ,∞.

Hence the assertion holds for all β > 0. ��
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The cases where α ≥ 1 are handled by induction on α:

Corollary 5.7. Let x ∈ A(Rd
θ ). Let α ≥ 0, β ≥ 0 satisfy α < β + 1. Then for all k ≥ 0

we have
[Jα

θ , δkθ (x)]J−β
θ ∈ L d

β−α+1 ,∞.

Proof. The case α ≤ 1 is provided by Theorem 5.6.We proceed by induction. Fix α ≥ 0
Suppose that the claim is true for all k ≥ 0 and β > α − 1. Now let β > α. Then using
the Leibniz rule and Lemma 5.4

[Jα+1
θ , δkθ (x)]J−β

θ = Jα
θ [Jθ , δkθ (x)]J−β

θ + [Jα
θ , δkθ (x)]J 1−β

θ

= [Jα
θ , [Jθ , δkθ (x)]]J−β

θ + [Jθ , δkθ (x)]Jα−β
θ + [Jα

θ , δkθ (x)]J 1−β
θ

= [Jα
θ , δk+1θ (x)]J−β

θ + δk+1θ (x)Jα−β
θ + [Jα

θ , δkθ (x)]J 1−β
θ

∈ L d
β−α+1 ,∞ + L d

β−α
,∞ + L d

β−1−α+1 ,∞
= L d

β−α
,∞,

thus proving the claim for α + 1. ��
Using the triangle inequality holds for the operator norm in place of the L d

β−α+1 ,∞
norm, the first part of the proof of Theorem 5.6 can easily be adapted to the case 0 ≤
α = β + 1.

Theorem 5.8. Let x ∈ S(Rd
θ ), and α ≥ 0. Then for all k ≥ 0 the operator:

[Jα
θ , δkθ (x)]J−α+1

θ

has bounded extension.

Proof. Beginning with the integral formula from the proof of Theorem 5.6, we have

J 1−α
θ [Jα

θ , δkθ (x)] = αδk+1θ (x) +
1

B(1 − α, α)

∫ ∞

0
λα J 1−α

θ

(Jθ + λ)2
δk+2θ (x)

1

λ + Jθ
dλ.

Thus since δk+1θ (x) and δk+2θ (x) are bounded (Corollary 5.3), we can use the triangle
inequality for operator norm and the estimates (5.6) and (5.7) from the proof of Theorem
5.6 to conclude that

J 1−α
θ [Jα

θ , δkθ (x)]
has bounded extension. Taking the adjoint yields the result. ��

5.4. Proof of Theorem 1.6. So far, we have established that Theorem 1.6 holds in the
following cases

0 ≤ α ≤ β + 1.

Indeed, Corollary 5.7 and Theorem 5.8 imply an even stronger statement: for all k ≥ 0,
we have that

{[Jα
θ , δkθ (x)]J−β

θ ∈ L d
β−α+1 ,∞, if 0 ≤ α < β + 1,

[Jα
θ , δkθ (x)]J−β

θ has bounded extension, if 0 ≤ α = β + 1 .
(5.9)
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We can conclude the proof by showing that if (5.9) holds for (α, β) and all k ≥ 0
then it holds for (α − 1, β − 1) and all k ≥ 0. This will complete the proof, since for
any α < β + 1 we can find n large enough such that 0 ≤ α + n ≤ β + n + 1 and hence
(5.9) holds for (α + n, β + n) and all k ≥ 0.

To this end, suppose that (5.9) holds for some (α, β) where α ≤ β + 1 and for all
k ≥ 0. From the Leibniz rule, we derive

[Jα−1
θ , δkθ (x)]J 1−β

θ = [Jα
θ , δkθ (x)]J−β

θ + Jα
θ [J−1

θ , δkθ (x)]J 1−β
θ

= [Jα
θ , δkθ (x)]J−β

θ − Jα−1
θ δk+1θ (x)J−β

θ

= [Jα
θ , δkθ (x)]J−β

θ − J−1
θ [Jα

θ , δk+1θ (x)]J−β
θ

− J−1
θ δk+1θ (x)Jα−β

θ

= [Jα
θ , δkθ (x)]J−β

θ − J−1
θ [Jα

θ , δk+1θ (x)]J−β
θ

− [J−1
θ , δk+1θ (x)]Jα−β

θ − δk+1θ (x)Jα−β−1
θ

= [Jα
θ , δkθ (x)]J−β

θ − J−1
θ [Jα

θ , δk+1θ (x)]J−β
θ

+ J−1
θ δk+2θ (x)Jα−β−1

θ − δk+1θ (x)Jα−β−1
θ .

Since α ≤ β + 1, it follows from Lemma 5.4 that [Jα−1
θ , δkθ (x)]J 1−β

θ is in L d
β−α+1 ,∞ if

α < β + 1 or B(L2(R
d)) if α = β + 1.

Remark 5.9. We close this section by some useful remarks.

(1) It is worth noting that if one continues the expansion in the proof of Theorem 5.6 we
have the following expansion: for all n ≥ 1 and α ∈ [0, 1],

[Jα
θ , δkθ (x)] =

n∑

j=1

B( j − α, 1 + α)

B(1 − α, α)
Jα− j
θ δ

k+ j
θ (x)

+
1

B(1 − α, α)

∫ ∞

0
λα(λ + Jθ )

−(n+1)δk+n+1θ (x)(λ + Jθ )
−1 dλ.

Here the coefficients come from the choice of ζ = −α and η = j + 1 in (5.1).
(2) Moreover one can easily deduce the “two-sided” result that:

J−γ
θ [Jα

θ , δkθ (x)]J−β
θ ∈ L d

β+γ−α+1 ,∞ (5.10)

whenever α < β+γ +1, and that the above operator has bounded extensionwhenever
α = β + γ + 1. An easy way to see how (5.10) follows from Theorem 1.6 is to use
the identity:

J−γ
θ [Jα

θ , δkθ (x)]J−β
θ = [Jα−γ

θ , δkθ (x)]J−β
θ − [J−γ

θ , δθ (x)]Jα−β
θ .

(3) The generalisation to α, β ∈ C with �(α) ≤ �(β) + 1 is immediate.
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6. Proofs of Theorems 1.2 and 1.5

As in Sect. 5, we consider the dense subalgebra A(Rd
θ ) ⊂ S(Rd

θ ) constructed in Propo-
sition 2.5.

Using Theorem 1.6 and the commutator estimates developed in Sect. 5, we are able
to establish the trace formula in Theorem 1.2, and finally prove Theorem 1.5. This will
be done by showing that for all x ∈ A(Rd

θ )

| d̄x |d − |A|d(1 +D2)−d/2 ∈ L1

for a certain bounded operator A on C
N ⊗ L2(R

d) (depending on x), and then applying
the trace formula given by [46, Theorem 6.15] to |A|d(1 +D2)−d/2.

6.1. Operator difference estimates. We begin with the construction of the above men-
tioned operator A. For 1 ≤ j, k ≤ d, denote g j,k(t) = t j tk

|t |2 on R
d . Let x ∈ S(Rd

θ ).

Define the operator A j on L2(R
d) as

A jξ := (∂ j x)ξ −
d∑

k=1

(Mgj,k∂k x)ξ

= (∂ j x)ξ −
d∑

k=1

g j,k(D1, . . . ,Dd)(∂k x)ξ, ξ ∈ L2(R
d) (6.1)

and define the operator A on C
N⊗L2(R

d)

A :=
d∑

j=1

γ j⊗A j ,

where N and γ j are the same as in Definition 3.4.
The main result in this subsection is the following theorem:

Theorem 6.1. Let x ∈ A(Rd
θ ). Then we have:

| d̄x |d − |A|d(1 +D2)−d/2 ∈ L1.

Recall that D = ∑d
j=1 γ j⊗D j , and d̄x = i[sgn(D), 1⊗x]. Let g(t) = t (1 + t2)−1/2

and write

d̄x = i[sgn(D) − g(D), 1⊗x] + i
d∑

j=1

γ j⊗[D j J
−1
θ , x].

By Lemma 4.2, [sgn(D)−g(D), 1⊗x] belongs toLp when p > d
2 . Define the auxiliary

operator Ã j for 1 ≤ j ≤ d on L2(R
d) as

Ã j := ∂ j x −
d∑

k=1

D jDk J
−2
θ ∂k x . (6.2)

The following proposition connects the commutator [D j J
−1
θ , x] with Ã j .
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Proposition 6.2. Let 1 ≤ j ≤ d, and x ∈ A(Rd
θ ). Then,

[D j J
−1
θ , x] − Ã j J

−1
θ ∈ L d

2 ,∞.

Proof. From the Leibniz rule, we have

[D j J
−1
θ , x] = ∂ j x J

−1
θ +D j [J−1

θ , x] = ∂ j x J
−1
θ − D j J

−1
θ δθ (x)J

−1
θ .

Using the integral formula (5.3) from Theorem 5.1, we have for all n ≥ 0,

δθ (x)J
−1
θ =

n−1∑

j=1

1

π
B( j − 1/2, 3/2)J 1− j

θ L j
θ (x)J

−1
θ

+
1

π

∫ ∞

0
λ1/2

Jnθ
(λ + J 2θ )n

Ln
θ (x)J

−2
θ

Jθ
λ + J 2θ

dλ.

From Corollary 5.5, we have that J 1− j
θ L j

θ (x)J
−1
θ ∈ Ld/j,∞ for every j ≥ 1. Due to a

similar argument to the proof of Lemma 5.1, we have that
∫ ∞

0
λ1/2

Jnθ
(λ + J 2θ )n

Ln
θ (x)J

−2
θ

Jθ
λ + J 2θ

dλ ∈ L d
2 ,∞

provided n is sufficiently large. So (recalling that B( 12 ,
3
2 ) = π

2 ) we obtain

[D j J
−1
θ , x] ∈ ∂ j x J

−1
θ − 1

2
D j J

−1
θ Lθ (x)J

−1
θ + L d

2 ,∞. (6.3)

By the definition of Lθ , we have:

D j J
−1
θ Lθ (x)J

−1
θ = D j J

−2
θ [J 2θ , x]J−1

θ

= D j J
−2
θ

d∑

k=1

[D2
k , x]J−1

θ

=
d∑

k=1

D j J
−2
θ (Dk∂k x + ∂k x Dk)J

−1
θ

=
d∑

k=1

D j J
−2
θ (2Dk∂k x − ∂2k x)J

−1
θ .

From Corollary 5.5, we have D j J
−2
θ ∂2k x J

−1
θ ∈ Ld/2,∞, and therefore

D j J
−1
θ Lθ (x)J

−1
θ ∈ 2

d∑

k=1

D jDk J
−2
θ ∂k x J

−1
θ + Ld/2,∞. (6.4)

Combining (6.3) and (6.4) yields:

[D j J
−1
θ , x] ∈ ∂ j x J

−1
θ −

d∑

k=1

D jDk J
−2
θ ∂k x J

−1
θ + Ld/2,∞ = Ã j J

−1
θ + Ld/2,∞

as was claimed. ��



Quantum Differentiability on Noncommutative Euclidean Spaces 533

Let us also compare Ã j J
−1
θ with A j J

−1
θ .

Proposition 6.3. Let 1 ≤ j ≤ d, and x ∈ A(Rd
θ ). Then,

A j J
−1
θ − Ã j J

−1
θ ∈ L d

2 ,∞.

Proof. By definition, A j = ∑d
k=1 Mgj,k∂k x and Ã j = ∑d

k=1 Mg̃j,k∂k x with g̃ j,k(t) =
t j tk
1+|t |2 . So we are reduced to estimating Mgj,k∂k x J

−1
θ − Mg̃j,k∂k x J

−1
θ for every k. Using

the factorisation of x as a linear combination of products yz, y, z ∈ A(Rd
θ ) (Proposition

2.5) and the Leibniz rule, we have

Mgj,k∂k(yz)J
−1
θ − Mg̃j,k∂k(yz)J

−1
θ

= (Mgj,k − Mg̃j,k )∂k y z J
−1
θ + (Mgj,k − Mg̃j,k )y ∂k z J

−1
θ .

From Lemma 5.4, both z J−1
θ and ∂k z J

−1
θ belong to Ld,∞. On the other hand, one can

easily check that g j,k − g̃ j,k ∈ L p(R
d) as p > d

2 , which yields by Theorem 3.17(i) that

(Mgj,k − Mg̃j,k )y ∈ Lp ⊂ Ld,∞, (Mgj,k − Mg̃j,k )∂k y ∈ Lp ⊂ Ld,∞.

Thus it follows from the Hölder inequality that

Mgj,k∂k x J
−1
θ − Mg̃j,k∂k x J

−1
θ ∈ Ld/2,∞,

whence the proposition. ��
For g(t) = t (1 + t2)−1/2 on R, Propositions 6.2 and 6.3 imply that

i[g(D), 1 ⊗ x] − A(1 +D2)−1/2 ∈ L d
2 ,∞. (6.5)

This – combined with Lemma 4.2 – yields:

d̄x − A(1 +D2)−1/2 ∈ L d
2 ,∞

for all x ∈ A(Rd
θ ).

Lemma 6.4. Let x ∈ A(Rd
θ ). We have

| d̄x |d − ((1 +D2)−1/2|A|2(1 +D2)−1/2)d/2 ∈ L1.

Proof. Wealready know fromLemma4.2 that i[g(D), 1⊗x]− d̄x ∈ L d
2
, which together

with (6.5) ensures that
d̄x − A(1 +D2)−1/2 ∈ L d

2 ,∞.

Taking the adjoint:

d̄x∗ − (1 +D2)−1/2A∗ ∈ L d
2 ,∞.

Recall that d̄x ∈ Ld,∞ by Theorem 1.1 (as has been proved in Sect. 4), so it follows that
A(1 +D2)−1/2 ∈ Ld,∞. Using the Hölder inequality, we have
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| d̄x |2 − (1 +D2)−1/2|A|2(1 +D2)−1/2 = d̄x∗( d̄x − A(1 +D2)−1/2)

+
(
d̄x∗ − (1 +D2)−1/2A∗)A(1 +D2)−1/2

∈ L d
3 ,∞ ⊂ L 5d

12
.

If d = 2, then we are done.
Now assume that d > 2. We appeal to a recent result from E. Ricard [57, Theorem

3.4], which says that we can take a power 1/2 to each term of the preceding inclusion
to get

| d̄x | −
(
(1 +D2)−1/2|A|2(1 +D2)−1/2

)1/2 ∈ L 5d
6 ,∞.

Next we introduce a power d:

| d̄x |d −
(
(1 +D2)−1/2|A|2(1 +D2)−1/2

)d/2

=
d−1∑

k=0

| d̄x |d−k−1
(
| d̄x | − (

(1 +D2)−1/2|A|2(1 +D2)−1/2)1/2)

×
(
(1 +D2)−1/2|A|2(1 +D2)−1/2

) k
2

∈
d−1∑

k=0

L d
d−k−1 ,∞ · L 5d

6
· L d

k ,∞ ⊂ L 5d
5d+1 ,∞ ⊂ L1.

��
By definition, |A|2 = A∗A, so we can write |A|2 as a polynomial in elements of

A(Rd
θ ) and functions of Dj , j = 1, . . . , d. It then follows from Theorem 1.6 that

[|A|2, (1 +D2)α/2](1 +D2)−β/2 ∈ L d
β−α+1 ,∞ (6.6)

for all β > 0 and α < 1. Therefore, if d = 2, letting α = −1 and β = 1 in (6.6), we
have

[|A|2, (1 +D2)−1/2](1 +D2)−1/2 ∈ L2/3,∞ ⊂ L1.

This inclusion can be combined with Lemma 6.4 to arrive at

| d̄x |2 − |A|2(1 +D2)−1 ∈ L1

which completes the proof of Theorem 6.1 for the d = 2 case.
For d > 2, we need

Proposition 6.5. Let d > 2. Then

|A|d(1 +D2)−d/2 − ((1 +D2)−1/2|A|2(1 +D2)−1/2)d/2 ∈ L1.

Proof. From [13, Theorem B.1], it suffices to show the following four conditions:

(i) |A|d−2(1 +D2)1− d
2 ∈ L d

d−2 ,∞.

(ii) (1 +D2)−1/2|A|2(1 +D2)−1/2 ∈ L d
2 ,∞.

(iii) [|A|2(1 +D2)−1/2, (1 +D2)−1/2] ∈ L d
2 ,1.
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(iv) |A|d−2[|A|2, (1 +D2)1− d
2 ](1 +D2)−1 ∈ L1.

Since d > 2, we have that |A|d−2 = |A|d−3sgn(A)A, so (i) follows immediately from
Lemma 5.4. Similarly using |A|2 = A∗A, we get also get (ii) immediately from the
Hölder inequality and the fact that A(1 + D2)−1/2 and its adjoint operator belong to
Ld,∞.

For (iii), we write:

[|A|2(1 +D2)−1/2, (1 +D2)−1/2] = [|A|2, (1 +D2)−1/2](1 +D2)−1/2

which is in L 2d
5 ,∞ due to (6.6) (with α = −1 and β = 1). Since 2d

5 < d
2 , it follows

that L2d/5,∞ ⊂ Ld/2,1 and this proves (iii). Finally, (iv) immediately follows from (6.6)
with α = 2 − d and β = 2. ��

Lemma 6.4 and Proposition 6.5 yield Theorem 6.1 for the case d > 2, and thus
complete the proof of Theorem 6.1.

6.2. Proof of Theorem1.2. Let us quote [46, Theorem6.15] in the following. LetC0(R
d
θ )

be the norm closure of S(Rd
θ ) in B(L2(R

d)). For every g ∈ C(Sd−1), as defined in
(3.12), g

( i∇θ

(−Deltaθ )1/2
) is the multiplication operator ξ(t) �→ g( t

|t | )ξ(t) in B(L2(R
d)).

Moreover, all g
( i∇θ

(−Deltaθ )1/2
) with g ∈ C(Sd−1) form a commutative C∗-subalgebra

of B(L2(R
d)). Set �(C0(R

d
θ ) + C,C(Sd−1)) to be the C∗-subalgebra of B(L2(R

d))

generated by C0(R
d
θ ) + C and all those g

( i∇θ

(−Deltaθ )1/2
)’s. Theorem 3.3 of [46] implies

that there exists a unique norm-continuous ∗-homomorphism

sym : �(C0(R
d
θ ) + C,C(Sd−1)) −→ (

C0(R
d
θ ) + C

)⊗minC(Sd−1)

which maps x ∈ C0(R
d
θ ) to x ⊗ 1 and g

( i∇θ

(−Deltaθ )

)
to 1 ⊗ g. Then [46, Theorem 6.15]

says that for every continuous normalised trace ϕ on L1,∞, every x ∈ Wd
1 (Rd

θ ), and
every T ∈ �(C0(R

d
θ ) + C,C(Sd−1)), we have

ϕ(T x(1 − Deltaθ )
−d/2) = Cd

(
τθ⊗

∫

Sd−1

)(
sym(T )(x⊗1)

)
(6.7)

where Cd is a certain constant depending only on the dimension d.
Now we are able to give the proof of Theorem 1.2.

Proof of Theorem 1.2. We will assume initially that x ∈ A(Rd
θ ). For a continuous nor-

malised trace ϕ on L1,∞, Theorem 6.1 ensures that

ϕ(| d̄x |d) = ϕ
(|A|d(1 +D2)−d/2).

But since A = ∑
j γ j⊗A j self-adjoint unitary matrices γ j , the only part that contributes

to the trace on the right hand side above is (1⊗∑ j A
∗
j A j )

d/2(1 +D2)−d/2. Hence,

ϕ(| d̄x |d) = ϕ
(
(
∑

j

A∗
j A j )

d/2(1 − Deltaθ )
−d/2).
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However, note that each A j is a linear combination of operators of multiplication by
a function x ∈ S(Rd

θ ) and Fourier multiplication by a function g ∈ C(Sd−1), and so is
in the algebra �(C0(R

d
θ ) + C,C(Sd−1)), with symbol:

sym(A j ) = ∂ j x ⊗ 1 −
d∑

k=1

s j sk ⊗ ∂k x .

Since sym is a norm-continuous ∗-homomorphism, we have

sym(
∑

j

A∗
j A j )

d/2 =
( d∑

j=1

∣∣∂ j x − s j

d∑

k=1

sk∂k x
∣∣2
)d/2

.

Since d ≥ 2, we can write:

⎛

⎝
∑

j

A∗
j A j

⎞

⎠
d/2

=
⎛

⎝
∑

j

A∗
j A j

⎞

⎠
(d−2)/2

(
∑

j

A∗
j A j ).

Recalling the definition of A j ,

A j = ∂ j x +
d∑

k=1

D jDk

−Deltaθ

∂k x .

We arrive at:

⎛

⎝
∑

j

A∗
j A j

⎞

⎠
d/2

=
⎛

⎝
∑

j

A∗
j A j

⎞

⎠
(d−2)/2

d∑

j=1

A∗
j (∂ j x −

d∑

k=1

D jDk

−Deltaθ

∂k x).

Since each ∂ j x is in Wd
1 (Rd

θ ), we can apply (6.7) to arrive finally at:

ϕ
(
(
∑

j

A∗
j A j )

d/2(1 − Deltaθ )
−d/2)

= Cd

(
τθ⊗

∫

Sd−1
ds
)
(sym(

∑

j

A∗
j A j )

(d−2)/2)(

d∑

j=1

sym(A j )
∗(∂ j x − s j

d∑

k=1

sk∂k x)))

= Cd

∫

Sd−1
τθ (

⎛

⎝
d∑

j=1

∣∣∂ j x − s j

d∑

k=1

sk∂k x
∣∣2
⎞

⎠
d/2

) ds.

By virtue of Corollary 3.16, the general case of Theorem 1.2 is done via an approxi-
mation argument, identically to the proof of [45, Theorem 1.2]. ��
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6.3. Proof of Theorem 1.5. Finally, we prove Theorem 1.5.
Recall from Theorem 1.1 that when y ∈ S(Rd

θ ) we have d̄ y ∈ Ld,∞. Then if
x ∈ L∞(Rd

θ ), we have ( d̄ y)x ∈ Ld,∞. The following lemma shows that ( d̄ y)x ∈ Ld,∞
for certain unbounded x ∈ Ld(R

d
θ ). Note that in the strictly noncommutative case of

det(θ) �= 0, the following lemma is unnecessary as then we would have Ld(R
d
θ ) ⊂

L∞(Rd
θ ).

Lemma 6.6. Let d > 2, and take x ∈ Ld(R
d
θ ) and y ∈ S(Rd

θ ). Then ( d̄ y)x has extension
in the ideal Ld,∞, with a quasi-norm bound

‖( d̄ y)x‖d,∞ �d ‖x‖d‖y‖W 1∞ .

Proof. On the dense subspace C∞
c (Rd), the operator of multiplication by x is mean-

ingful, and since d̄ y is bounded, the operator ( d̄ y)x is well-defined on the subspace
C∞
c (Rd). Let us show that there is a bounded extension in Ld,∞. Applying the Leibniz

rule:

−i( d̄ y)x = [sgn(D) − DJ−1
θ , y]x + [DJ−1

θ , y]x
= (sgn(D) − DJ−1

θ )yx − y(sgn(D) − DJ−1
θ )x + [D, y]J−1

θ x +D[J−1
θ , y]x

= (sgn(D) − DJ−1
θ )yx − y(sgn(D) − DJ−1

θ )x + [D, y]J−1
θ x

− DJ−1
θ [Jθ , y]J−1

θ x .

We know from Corollary 5.3 that [Jθ , y] has bounded extension, and since [D, y] =∑d
j=1 −iγ j ⊗ ∂ j y, the commutator [D, y] has bounded extension.

Let us first bound the terms [D, y]J−1
θ x and [Jθ , y]J−1

θ x . Since d > 2, we may
apply Lemma 4.1 to obtain:

‖[D, y]J−1
θ x‖d,∞ ≤ ‖[D, y]‖‖J−1

θ x‖d,∞ �d ‖y‖Ẇ 1∞‖x‖d .

To bound [Jθ , y]J−1
θ x , we use the fact that:

Jθ − D = 1

Jθ +D
is bounded, so again applying Lemma 4.1, it follows that:

‖[Jθ , y]‖ �d ‖y‖∞ + ‖[D, y]‖ ≤ ‖y‖W 1∞ . (6.8)

Thus,
‖[Jθ , y]J−1

θ x‖d,∞ �d ‖y‖W 1∞‖x‖d .
Denoting h(D) := sgn(D) − DJ−1

θ , we have so far:

‖( d̄ y)x‖d,∞ �d ‖h(D)yx‖d,∞ + ‖yh(D)x‖d,∞ + ‖y‖W 1∞‖x‖d . (6.9)

As was already noted in the proof of Lemma 4.2, we can write h(D) := ∑d
j=1 γ j ⊗

h j (i∇θ ) where:

h j (t) = t j
|t |(1 + |t |2)1/2(|t | + (1 + |t |2)1/2) , 1 ≤ j ≤ d.
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Thus,
sup
t∈Rd

|h j (t)|(1 + |t |2) < ∞.

It follows that h(D)Jθ has bounded extension. Lemma 4.1 then yields

‖yh(D)x‖d,∞ ≤ ‖y‖∞‖h(D)Jθ‖∞‖J−1
θ x‖d,∞

�d ‖y‖∞‖x‖d . (6.10)

Similarly,

‖h(D)yx‖d,∞ = ‖h(D)Jθ J
−1
θ y Jθ J

−1
θ x‖d,∞ �d ‖J−1

θ y Jθ‖‖J−1
θ x‖d,∞.

We can write J−1
θ y Jθ as:

J−1
θ y Jθ = −J−1

θ [Jθ , y] + y.

Applying (6.8) again allows us to bound the norm of the above by ‖y‖W 1∞ , so we arrive
at the quasinorm bound:

‖h(D)yx‖d,∞ �d ‖y‖W 1∞‖x‖d . (6.11)

Combining (6.10), (6.11) and (6.8) with (6.9) yields ‖( d̄ y)x‖d,∞ �d ‖x‖d‖y‖W 1∞
as desired. ��

Before proceeding to the proof of Theorem 1.5, we make the following remark con-
cerning integration of operator-valued functions. Let ψ ∈ S(Rd), and let x ∈ W 1

d (Rd
θ ).

Then (formally), one has:

‖ d̄(ψ ∗ x)‖d,∞ =
∥∥∥∥
∫

Rd
ψ(t) d̄(T−t (x)) dt

∥∥∥∥
d,∞

≤ ‖ψ‖1 sup
t∈Rd

‖ d̄(T−t (x))‖d,∞.

(6.12)
This formal computation is justified by the continuity of the mapping t �→ T−t (x) in
the W 1

d (Rd
θ ) norm (Theorem 3.6), which combines with Theorem 1.1 to imply that the

mapping t �→ d̄(T−t x) is continuous in the Ld,∞ topology. Since d > 1, the ideal Ld,∞
can be equipped with an equivalent Banach norm, and so the functions:

t �→ ψ(t)(T−t x), t �→ ψ(t) d̄(T−t (x))

are both Bochner measurable in the Banach spaces W 1
d (Rd

θ ) and Ld,∞ respectively.
Theorem 1.1 implies that x �→ d̄x is a bounded linear map from W 1

d (Rd
θ ) to Ld,∞, and

hence:

d̄

(∫

Rd
ψ(t)T−t (x) dt

)
=
∫

Rd
ψ(t) d̄(T−t (x)) dt

where both integrals are Bochner integrals. This justifies (6.12).
Noting that T−t both commutes with Fourier multipliers and is unitary on L2(R

d
θ ), it

follows that:
‖ d̄(T−t x)‖d,∞ = ‖ d̄x‖d,∞, t ∈ R

d

and hence (6.12) implies:

‖ d̄(ψ ∗ x)‖d,∞ �d ‖ψ‖1‖ d̄x‖d,∞, x ∈ W 1
d (Rd

θ ) (6.13)

(the constant which appears results from the necessity of switching to an equivalent
norm for Ld,∞).

We now proceed to the proof of Theorem 1.5.
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Proof of Theorem 1.5. We assume that d > 2 and x ∈ Ld(R
d
θ )+ L∞(Rd

θ ). Suppose that
d̄x ∈ Ld,∞.

From Corollary 3.11 and Lemma 3.12, we may select {ψε}ε>0, {φε}ε>0 and {χε}ε>0
such that ψε ∗ (U (φε)U (χε)x) ∈ S(Rd

θ ).
The upper bound (6.13) implies:

‖ d̄(ψε ∗ (U (φε)U (χε)x))‖d,∞ �d ‖ψε‖1‖ d̄(U (φε)U (χε)x)‖d,∞.

Expanding the commutator using the Leibniz rule, the quasi-triangle inequality and
Theorem 1.1:

‖ d̄(ψε ∗ (U (φε)U (χε)x))‖d,∞
�d ‖ψε‖1‖ d̄(U (φε)U (χε)x)‖d,∞
�d ‖ψε‖1(‖( d̄U (φε))U (χε)x‖d,∞ + ‖U (φε) d̄(U (χε))x‖d,∞
+ ‖U (φε)U (χε) d̄x‖d,∞)

�d ‖ψε‖1(‖( d̄U (φε))U (χε)x‖d,∞ + ‖U (φε) d̄(U (χε))x‖d,∞
+ ‖U (φε)‖∞‖U (χε)‖∞‖ d̄x‖d,∞).

By construction ‖ψε‖1 is constant as ε → 0, and applying Proposition 2.10, we also
have that ‖U (φε)‖∞ and ‖U (χε)‖∞ are uniformly bounded as ε → 0. We now argue
that ‖( d̄U (φε))U (χε)x‖d,∞ and ‖U (φε) d̄(U (χε))x‖d,∞ are also uniformly bounded
as ε → 0. To see this, write x as x0 + x1, where x0 ∈ L∞(Rd

θ ) and x1 ∈ Ld(R
d
θ ). Then

Theorem 1.1 and Lemma 6.6 yield the bound:

‖U (φε) d̄(U (χε))x‖d,∞ �d ‖φε‖1‖U (χε)‖Ẇ 1
d
‖x0‖∞ + ‖φε‖1‖U (χε)‖W 1∞‖x1‖d

and a similar bound for ‖( d̄U (φε))U (χε)x‖d,∞.
Due to Lemma 3.13, the seminorms ‖U (φε)‖Ẇ 1

d
and ‖U (χε)‖Ẇ 1

d
are uniformly

bounded as ε → 0. Similarly, theW 1∞-normsofU (χε) andU (ψε) are uniformlybounded
as ε → 0.

It follows that {d̄(ψε ∗(U (φε)U (χε)x)
)}ε>0 is uniformly bounded inLd,∞ as ε → 0.

Now applying Corollary 1.3 to d̄
(
ψε ∗ (U (φε)U (χε)x)

)
, it follows that {ψε ∗ (U (φε)

U (χε)x)}ε>0 is uniformly bounded in Ẇ 1
d (Rd

θ ), so for every 1 ≤ j ≤ d, {∂ j
(
ψε ∗

(U (φε)U (χε)x)
)}ε>0 is uniformly bounded in Ld(R

d
θ ). Since d ≥ 2, the space Ld(R

d
θ )

is reflexive and therefore {∂ j (ψε∗(U (φε)U (χε)x))}ε>0 has aweak limit point in Ld(R
d
θ ).

But we know from Theorem 3.11 that if y ∈ Ld/(d−1)(R
d
θ ) or y ∈ L1(R

d
θ ), then

U (χε)U (φε)(ψε ∗ y) → y in the Ld/(d−1)(R
d
θ ) sense or in the L1(R

d
θ ) sense respec-

tively; hence that ψε ∗ (U (φε)U (χε)x)→x in the the distributional sense. It follows that
the weak limit point of {∂ j (ψε ∗ (U (φε)U (χε)x))}ε>0 in Ld(R

d
θ ) must also be ∂ j x .

Therefore, ∂ j x ∈ Ld(R
d
θ ) for every 1 ≤ j ≤ d. That is, x ∈ W 1

d (Rd
θ ).

Finally, we obtain the bound on the norm using Corollary 1.3. That result implies
that there exists a constant cd > 0 such that for all continuous normalised traces ϕ on
L1,∞,

‖x‖Ẇ 1
d

�d ϕ(| d̄x |d) 1
d .

Since ϕ is continuous,
‖x‖Ẇ 1

d
�d ‖ϕ‖(L1,∞)∗‖ d̄x‖d,∞.
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Selecting a continuous normalised trace ϕ of norm 1 completes the proof for d > 2.
For d = 2, we make the stronger assumption that x ∈ L∞(Rd

θ ). This permits us to
carry out the same proof, but instead we use the bounds:

‖U (φε) d̄(U (χε))x‖2,∞ �d ‖φ‖1‖χε‖W 1
2
‖x‖∞,

‖ d̄(U (φε))U (χε)x‖2,∞ �d ‖χ‖1‖φε‖W 1
2
‖x‖∞

to prove that {d̄(ψε ∗ (U (φε)U (χε)x)} is uniformly bounded in L2,∞. ��
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