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Abstract: In a recent paper, Buckmaster and Vicol (Ann Math (2) 189(1):101–144,
2019) used the method of convex integration to construct weak solutions u to the 3D
incompressible Navier–Stokes equations such that ‖u(t)‖L2 = e(t) for a given non-
negative and smooth energy profile e : [0, T ] → R. However, it is not known whether
it is possible to extend this method to construct nonunique suitable weak solutions (that
is weak solutions satisfying the strong energy inequality (SEI) and the local energy
inequality (LEI)), Leray–Hopf weak solutions (that is weak solutions satisfying the
SEI), or at least to exclude energy profiles that are not nonincreasing. In this paper we
are concerned with weak solutions to the Navier–Stokes inequality on R3, that is vector
fields that satisfy both the SEI and the LEI (but not necessarily solve the Navier–Stokes
equations). Given T > 0 and a nonincreasing energy profile e : [0, T ] → [0,∞) we
construct weak solution to the Navier–Stokes inequality that are localised in space and
whose energy profile ‖u(t)‖L2(R3) stays arbitrarily close to e(t) for all t ∈ [0, T ]. Our
method applies only to nonincreasing energy profiles. The relevance of such solutions is
that, despite not satisfying theNavier–Stokes equations, they satisfy the partial regularity
theory of Caffarelli et al. (Commun Pure Appl Math 35(6):771–831, 1982). In fact,
Scheffer’s constructions of weak solutions to the Navier–Stokes inequality with blow-
ups (Commun Math Phys 101(1):47–85, 1985; Commun Math Phys 110(4): 525–551,
1987) show that the Caffarelli, Kohn & Nirenberg’s theory is sharp for such solutions.
Our approach gives an indication of a number of ideas used by Scheffer. Moreover, it can
be used to obtain a stronger result than Scheffer’s. Namely, we obtain weak solutions to
the Navier–Stokes inequality with both blow-up and a prescribed energy profile.

1. Introduction

The Navier–Stokes equations,

∂t u − ν�u + (u · ∇)u + ∇ p = 0,

div u = 0,
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where u denotes the velocity of a fluid, p the scalar pressure and ν > 0 the viscosity,
comprise a fundamental model for viscous, incompressible flows. In the case of the
whole space R3 the pressure function is given (at each time instant t) by the formula

p :=
3∑

i, j=1

∂i j� ∗ (ui u j ), (1.1)

where �(x) := (4π |x |)−1 denotes the fundamental solution of the Laplace equation in
R
3 and “∗” denotes the convolution. The formula above, which we shall refer to simply

as the pressure function corresponding to u, can be derived by calculating the divergence
of the Navier–Stokes equation.

The fundamental mathematical theory of the Navier–Stokes equations goes back to
the pioneering work of Leray [11] (see [14] for a comprehensive review of this paper
in more modern language), who used a Picard iteration scheme to prove existence and
uniqueness of local-in-time strong solutions. Moreover, [11] proved the global-in-time
existence (without uniqueness) ofweak solutions satisfying the strong energy inequality,

‖u(t)‖2 + 2ν
∫ t

s
‖∇u(τ )‖2dτ ≤ ‖u(s)‖2 (1.2)

for almost every s ≥ 0 and every t > s (often called Leray–Hopf weak solutions). Here
‖ · ‖ denotes the L2(R3) norm. (Hopf [8] proved an analogous result in the case of a
bounded smooth domain.) Although the fundamental question of global-in-time exis-
tence and uniqueness of strong solutions remains unresolved, many significant results
contributed to the theory of the Navier–Stokes equations during the second half of the
twentieth century. One such contribution is the partial regularity theory introduced by
Scheffer [18–22] and subsequently developed by Caffarelli, Kohn and Nirenberg [4];
see also Lin [12], Ladyzhenskaya and Seregin [10], Vasseur [25] and Kukavica [9] for
alternative approaches. This theory is concerned with so-called suitable weak solutions,
that is Leray–Hopf weak solutions that are also weak solutions of the Navier–Stokes
inequality (NSI).

Definition 1.1 (Weak solution to the Navier–Stokes inequality). A divergence-free vector
field u : R3 × (0,∞) satisfying supt>0 ‖u(t)‖ < ∞, ∇u ∈ L2(R3 × (0,∞)) is a weak
solution of the Navier–Stokes inequality with viscosity ν > 0 if it satisfies the inequality

u · (∂t u − ν�u + (u · ∇)u + ∇ p) ≤ 0 (1.3)

in a weak sense, that is

2ν
∫ ∞

0

∫

R3
|∇u|2ϕ ≤

∫ ∞

0

∫

R3

(
|u|2(∂tϕ + ν�ϕ) + (|u|2 + 2p)(u · ∇)ϕ

)
(1.4)

for all non-negative ϕ ∈ C∞
0 (R3 × (0,∞)), where p is the pressure function corre-

sponding to u (recall (1.1)).

The last inequality is usually called the local energy inequality. The existence of
global-in-time suitable weak solutions given divergence-free initial data u0 ∈ L2 was
proved by Scheffer [20] in the case of the whole space R3 and by Caffarelli et al. [4] in
the case of a bounded domain.
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In order to see that (1.4) is a weak form of the NSI (1.3), note that the NSI can be
rewritten, for smooth u and p, in the form

1

2
∂t |u|2 − ν

2
�|u|2 + ν|∇u|2 + u · ∇

(
1

2
|u|2 + p

)
≤ 0, (1.5)

where we used the calculus identity u · �u = �(|u|2/2) − |∇u|2. Multiplication by 2ϕ
and integration by parts gives (1.4).

Furthermore, setting

f := ∂t u − ν�u + (u · ∇)u + ∇ p,

one can think of theNavier–Stokes inequality (1.4) as the inhomogeneousNavier–Stokes
equations with forcing f ,

∂t u − ν�u + (u · ∇)u + ∇ p = f,

where f acts against the direction of the flow u, that is f · u ≤ 0.
The partial regularity theory gives sufficient conditions for local regularity of suitable

weak solutions in space-time. Namely, letting Qr (z) := Br (x)×(t −r2, t), a space-time
cylinder based1 at z = (x, t), the central result of this theory, proved by Caffarelli et al.
[4], is the following.

Theorem 1.2 (Partial regularity of the Navier–Stokes equations). Let u0 ∈ L2(R3) be
weakly divergence-free and let u be a suitable weak solution of the Navier–Stokes equa-
tions on R

3 with initial condition u0. There exists a universal constant ε0 > 0 such that
if

1

r2

∫

Qr

|u|3 + |p|3/2 < ε0 (1.6)

for some cylinder Qr = Qr (z), r > 0, then u is bounded in Qr/2(z).
Moreover there exists a universal constant ε1 > 0 such that if

lim sup
r→0

1

r

∫

Qr

|∇u|2 < ε1 (1.7)

then u is bounded in a cylinder Qρ(z) for some ρ > 0.

(The theorem is valid also for suitable weak solutions on a bounded smooth domain.)
Here ε0, ε1 > 0 are certain universal constants (sufficiently small).We note that the proof
of the above theorem does not actually use the fact that u is a suitable weak solution, but
merely a weak solution to the NSI (which is not the case, however, in the subsequent
alternative proofs due to Lin [12], Ladyzhenskaya and Seregin [10] and Vasseur [25]
mentioned above).

The partial regularity theorem (Theorem1.2) is a key ingredient in the L3,∞ regularity
criterion for the three-dimensional Navier–Stokes equations (see [6]) and the uniqueness
of Lagrangian trajectories for suitable weak solutions [17]; similar ideas have also been
used for other models, such as the surface growth model ∂t u + uxxxx + ∂xx u2

x = 0 [15],
which can serve as a “one-dimensional model” of the Navier–Stokes equations [1,2].

1 Note that here we use the convention of “nonanticipating” cylinders; namely that Q is based at a point
(x, t) when (x, t) lies on the upper lid of the cylinder.
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A key fact about the partial regularity theory is that the quantities involved in the local
regularity criteria (that is |u|3, |p|3/2 and |∇u|2), are known to be globally integrable for
any vector field satisfying supt>0 ‖u(t)‖ < ∞, ∇u ∈ L2(R3 × (0,∞)) (which follows
by interpolation, see for example, Lemma3.5 and inequality (5.7) inRobinson et al. [16]);
thus in particular for any Leray–Hopf weak solution (by (1.2)). Therefore Theorem 1.2
shows that, in a sense, if these quantities localise near a given point z ∈ R

3 × (0,∞) in
a way that is “not too bad”, then z is not a singular point, and thus there cannot be “too
many” singular points. In fact, by letting S ⊂ R

3 × (0,∞) denote the singular set, that
is

S := {(x, t) ∈ R
3 × (0,∞) : u is unbounded in any neighbourhood of (x, t)}, (1.8)

this can be made precise by estimating the “dimension” of S. Namely, a simple conse-
quence of (1.6) and (1.7) is that

dB(S) ≤ 5/3, and dH (S) ≤ 1, (1.9)

respectively,2 see Theorem 15.8 and Theorem 16.2 in Robinson et al. [16]. Here dB
denotes the box-counting dimension (also called the fractal dimension or the Minkowski
dimension) and dH denotes the Hausdorff dimension. The relevant definitions can be
found in Falconer [7], who also proves (in Proposition 3.4) the important property that
dH (K ) ≤ dB(K ) for any compact set K .

Very recently, Buckmaster and Vicol [3] proved nonuniqueness of weak solutions to
the Navier–Stokes equations on the torus T3 (rather than on R3). Their solutions belong
to the class C([0, T ]; L2(T3)), but they do not belong to the class L2((0, T ); H1(T3)).
Thus in particular these do not satisfy the energy inequality (1.2), and so they are neither
Leray–Hopf weak solutions nor weak solutions of the NSI. Moreover, the constructions
of Buckmaster and Vicol [3] include weak solutions with increasing energy ‖u(t)‖.

In this article we work towards the same goal as Buckmaster and Vicol [3], but from
a different direction. Given an open set W ⊂ R

3 and a nonincreasing energy profile
e : [0, T ] → [0,∞) we construct a weak solution to the NSI such that its energy stays
arbitrarily close to e and its support is contained in W for all times. Namely we prove
the following theorem.

Theorem 1.3 (Weak solutions to the NSI with arbitrary energy profile). Given an open
set W ⊂ R

3, ε > 0, T > 0 and a nonincreasing function e : [0, T ] → [0,∞) there exist
ν0 > 0 and a weak solution u of the NSI for all ν ∈ [0, ν0] such that supp u(t) ⊂ W for
all t ∈ [0, T ] and

|‖u(t)‖ − e(t)| ≤ ε for all t ∈ [0, T ]. (1.10)

We point out that the vector field u given by the above theorem satisfies the NSI for
all values of viscosity ν ∈ [0, ν0]. However, we emphasize that it does not satisfy the
Navier–Stokes equations (but merely the NSI).

Our approach is inspired by some ideas of Scheffer [23,24], who showed that the
bound dH (S) ≤ 1 is sharp for weak solutions of the NSI (of course, it is not known
whether it is sharp for suitable weak solutions of the NSE). His 1985 result is the
following.

2 In fact, (1.7) implies a stronger estimate than dH (S) ≤ 1; namely that P1(S) = 0, where P1(S) is the
parabolic Hausdorff measure of S (see Theorem 16.2 in Robinson et al. [16] for details).



Weak Solutions to the Navier–Stokes Inequality 37

Theorem 1.4 (Weak solution of NSI with point singularity). There exist ν0 > 0 and a
vector field u : R3×[0,∞) → R

3 that is a weak solution of the Navier–Stokes inequality
with any ν ∈ [0, ν0] such that u(t) ∈ C∞, supp u(t) ⊂ G for all t for some compact
set G � R (independent of t). Moreover u is unbounded in every neighbourhood of
(x0, T0), for some x0 ∈ R

3, T0 > 0.

It is clear, using an appropriate rescaling, that the statement of the above theorem is
equivalent to the one where ν = 1 and (x0, T0) = (0, 1). Indeed, if u is the velocity
field given by the theorem then

√
T0/ν0u(x0 +

√
T0ν0x, T0t) satisfies Theorem 1.4 with

ν0 = 1, (x0, T0) = (0, 1).
In a subsequent paper Scheffer [24] constructed weak solutions of the Navier–Stokes

inequality that blow up on a Cantor set S × {T0} with dH (S) ≥ ξ for any preassigned
ξ ∈ (0, 1).

Theorem 1.5 (Nearly one-dimensional singular set). Given ξ ∈ (0, 1) there exists ν0 >

0, a compact set G � R
3 and a function u : R3 × [0,∞) → R

3 that is a weak solution
to the Navier–Stokes inequality such that u(t) ∈ C∞, supp u(t) ⊂ G for all t , and

ξ ≤ dH (S) ≤ 1,

where S is the singular set (recall (1.8)).

The author’s previous work, [13] provides a simpler presentation of Scheffer’s con-
structions ofu fromTheorems1.4 and1.5 andprovides a new light on these constructions.
In particular he introduces the concepts of a structure (which we exploit in this article,
see below), the pressure interaction function and the geometric arrangement, which
articulate the main tools used by Scheffer to obtain a blow-up, but also describe, in a
sense, the geometry of the NSI and expose a number of degrees of freedom available in
constructing weak solutions to the NSI. Furthermore, it is shown in [13] how one can
obtain a blow-up on a Cantor set (Theorem 1.5) by a straightforward generalisation of
the blow-up at a single point (Theorem 1.4).

It turns out that the construction from Theorem 1.3 can be combined with Scheffer’s
constructions to yield a weak solution to the Navier–Stokes inequality with both the
blow-up and the prescribed energy profile.

Theorem 1.6 (Weak solutions to the NSI with blow-up and arbitrary energy profile).
Given an open set W ⊂ R

3, ε > 0, T > 0 and a nonincreasing function e : [0, T ] →
[0,∞) such that e(t) → 0 as t → T there exists ν0 > 0 and a weak solution u of the
NSI for all ν ∈ [0, ν0] such that supp u(t) ⊂ W and

|‖u(t)‖ − e(t)| ≤ ε for all t ∈ [0, T ],
and the singular set S of u is of the form

S = S′ × {T },
where S′ ⊂ R

3 is a Cantor set with dH (S′) ∈ [ξ, 1] for any preassigned ξ ∈ (0, 1).

The structure of the article is as follows. In Sect. 2 we introduce some preliminary
ideas including the notion of a structure (v, f, φ) on an open subset U of the upper
half-plane

R
2
+ := {(x1, x2) : x2 > 0}.
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In Sect. 3 we briefly sketch how the concept of a structure is used in the constructions
of Scheffer (but we will refer the reader to Ożański [13] for the full proof). We then
illustrate some useful properties of structures of the form (0, f, φ) and we show how
they can be used to generate weak solutions to the NSI on arbitrarily long time intervals.
In Sect. 4 we prove our main result, Theorem 1.3, and in Sect. 5 we prove Theorem 1.6.
In the final section (Sect. 6) we prove Lemma 4.2, which is an important ingredient of
the proof of Theorem 1.3.

2. Preliminaries

Wewill denote the L2(R3)normby‖·‖.Wedenote the space of indefinitely differentiable
functions with compact support in a set U by C∞

0 (U ). We denote the indicator function
of a set U by χU . We frequently use the convention

ht (·) ≡ h(·, t),

that is the subscript t denotes dependence on t (rather than the t-derivative, which we
denote by ∂t ).

We say that a vector field u : R3 → R
3 is axisymmetric if u(Rθ x) = Rθ (u(x)) for

any θ ∈ [0, 2π), x ∈ R
3, where

Rθ (x1, x2, x3) := (x1, x2 cosφ − x3 sin φ, x2 sin φ + x3 cosφ)

is the rotation operation around the x1 axis. We say that a scalar function q : R3 → R is
axisymmetric if

q(Rθ x) = q(x) for φ ∈ [0, 2π), x ∈ R
3.

Observe that if a vector field u ∈ C2 and a scalar function q ∈ C1 are axisymmetric
then the vector function (u · ∇)u and the scalar functions

|u|2, div u, u · ∇|u|2, u · ∇q, u · �u and
3∑

i, j=1

∂i u j∂ j ui (2.1)

are axisymmetric, see Section 3.6.2 in Ożański [13] for details.
Let U � R

2
+. Set

R(U ) := {x ∈ R
3 : x = Rφ(y, 0) for some φ ∈ [0, 2π), y ∈ U }, (2.2)

the rotation of U .
Given v = (v1, v2) ∈ C∞

0 (U ;R2) and f : R2 → [0,∞) supported in U and such
that f > |v| we define u[v, f ] : R(U ) → R

3 to be the axisymmetric vector field such
that

u[v, f ](x1, x2, 0) :=
(

v1(x1, x2), v2(x1, x2),
√

f (x1, x2)2 − |v(x1, x2)|2
)

for x2 > 0. In other words

u[v, f ](x1, ρ, φ) = v1(x1, ρ)̂x1 + v2(x1, ρ)ρ̂ +
√

f (x1, ρ)2 − |v(x1, ρ)|2 φ̂, (2.3)
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where the cylindrical coordinates x1, ρ, φ are defined using the representation
⎧
⎪⎨

⎪⎩

x1 = x1,
x2 = ρ cosφ,

x3 = ρ sin φ

and the cylindrical basis vectors x̂1, ρ̂, φ̂ are
⎧
⎪⎨

⎪⎩

x̂1(x1, ρ, φ) := (1, 0, 0),
ρ̂(x1, ρ, φ) := (0, cosφ, sin φ),

φ̂(x1, ρ, φ) := (0,− sin φ, cosφ).

(2.4)

Note that such a definition immediately gives

|u[v, f ]| = f.

Moreover, it satisfies some other useful properties, which we state in a lemma.

Lemma 2.1 (Properties of u[v, f ]).
(i) The vector field u[v, f ] is divergence free if and only if v satisfies

div(x2 v(x1, x2)) = 0 for all (x1, x2) ∈ R
2
+.

(ii) If v ≡ 0 then

�u[0, f ](x1, ρ, φ) = L f (x1, ρ)φ̂,

where

L f (x1, x2) := � f (x1, x2) +
1

x2
∂x2 f (x1, x2) − 1

x22
f (x1, x2). (2.5)

In particular

�u[0, f ](x1, x2, 0) = (0, 0, L f (x1, x2)). (2.6)

(iii) For all x1, x2 ∈ R

∂x3 |u[v, f ]|(x1, x2, 0) = 0. (2.7)

Proof. These are easy consequences of the definition (and the properties of cylindrical
coordinates), see Lemma 3.2 in Ożański [13] for details. ��

Using part (ii) we can see that the term u[0, f ] · �u[0, f ] (recall the Navier–Stokes
inequality (1.3)), which is axisymmetric (recall (2.1)), can be made non-negative by
ensuring that L f is non-negative, since

u[0, f ](x1, x2, 0) · �u[0, f ](x1, x2, 0) = f (x1, x2)L f (x1, x2) (2.8)

and f is non-negative by definition. It is not clear how to construct f such that L f ≥ 0
everywhere, but there exists a generic way of constructing f which guarantees this
property at points sufficiently close to the boundary of U if U is a rectangle. In order to
state such a construction we denote (given η > 0) the “η-subset” of U by Uη, that is

Uη := {x ∈ U : dist(x, ∂U ) > η}.
We have the following result.
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Lemma 2.2 (The edge effects).Let U � R
2
+ be an open rectangle, that is U = (a1, b1)×

(a2, b2) for some a1, a2, b1, b2 ∈ R with b1 > a1, b2 > a2 > 0. Given η > 0 there
exists δ ∈ (0, η) and f ∈ C∞

0 (R2
+; [0, 1]) such that

supp f = U , f > 0 in U with f = 1 on Uη,

L f > 0 in U \ Uδ.

Proof. See Lemma 3.15 in Ożański [13] for the proof (which is based on Section 5 in
Scheffer [23]). ��

In other words, we can construct f that equals 1 on the given η-subset of U such that
L f > 0 outside of a sufficiently large δ-subset. We will later (in Lemma 4.2) refine this
lemma to show that δ can be chosen proportional to η and that f is bounded away from
0 on Uδ .

We define p∗[v, f ] : R3 → R to be the pressure function corresponding to u[v, f ],
that is

p∗[v, f ](x) :=
∫

R3

3∑

i, j=1

∂i u j [v, f ](y)∂ j ui [v, f ](y)

4π |x − y| dy, (2.9)

and we denote its restriction to R
2 by p[v, f ],

p[v, f ](x1, x2) := p∗[v, f ](x1, x2, 0). (2.10)

Since u[v, f ] is axisymmetric, the same is true of p∗[v, f ] (recall (2.1); see also (3.22)
in Ożański [13] for a detailed verification of this fact). In particular

∂x3 p∗[v, f ](x1, x2, 0) = 0 for all x1, x2 ∈ R, (2.11)

as in Lemma 2.1 (iii) above.

2.1. A structure. We say that a triple (v, f, φ) is a structure on U � R
2
+ if v ∈

C∞
0 (U ;R2), f ∈ C∞

0 (R2
+; [0,∞)), φ ∈ C∞

0 (U ; [0, 1]) are such that supp f = U ,

supp v ⊂ {φ = 1}, div (x2 v(x1, x2)) = 0 in U

and f > |v| in U with L f > 0 in U\{φ = 1}.
Note that, given a structure (v, f, φ), we obtain an axisymmetric divergence-free

vector field u[v, f ] that is supported in R(U ) (which is, in particular, away from the x1
axis), and such that

|u[v, f ](x, 0)| = f (x) for x ∈ R
2
+.

Moreover we note that (av, f, φ) is a structure for any a ∈ (−1, 1) whenever (v, f, φ)

is, and that, given disjoint U1, U2 � R
2
+ and the corresponding structures (v1, f1, φ1),

(v2, f2, φ2), the triple (v1 + v2, f1 + f2, φ1 + φ2) is a structure on U1 ∪ U2. Observe
that the role of the cutoff function φ in the definition of a structure is to cut off the edge
effects as well as “cut in” the support of v. Namely, in R({φ < 1}) (recall that R denotes
the rotation, see (2.2)) we have L f ≥ 0 and v = 0, and so

u[v, f ] · �u[v, f ] ≥ 0 (2.12)
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and

u[v, f ] · ∇q = 0 (2.13)

for any axisymmetric function q : R3 → R. This last property (which follows from
(2.11)) is particularly useful when taking q := |u[v, f ]|2 + 2p[v, f ] as this gives one of
the terms in the Navier–Stokes inequality (1.5).

2.2. A recipe for a structure. Using Lemma 2.2 one can construct structures on sets
U � R

2
+ in the shape of a rectangle (which is the only shape we will consider in this

article) in a generic way. This can be done using the following steps.

• First construct w : U → R
2 that is weakly divergence free (that is

∫
U w · ∇ψ = 0

for every ψ ∈ C∞
0 (U )) and compactly supported in U .

For example one can take w := (x2, x1)χ1<|(x1,x2)|<2, after an appropriate rescaling
and translation (so that suppw fits inside U ); such a w is weakly divergence free due
to the fact that w · n vanishes on the boundary of its support, where n denotes the
respective normal vector to the boundary.

• Next, set v := (Jεw)/x2, where Jε denotes the standard mollification and ε > 0 is
small enough so that supp v � U .

• Then construct f by using Lemma 2.2 (with any η > 0) and multiplying by a
constant sufficiently large so that f > |v| in U .

• Finally let φ ∈ C∞
0 (U ; [0, 1]) be such that {φ = 1} contains Uδ (from Lemma 2.2)

and supp v.

3. Applications of Structures

In this section we point out two important applications of the concept of a structure.

3.1. The construction of Scheffer. Here we show how the concept of a structure is used
in the Scheffer construction, Theorem 1.4, which we will only use later in proving
Theorem 1.6.

We show below how Theorem 1.4 can be proved in a straightforward way using the
following theorem.

Theorem 3.1. There exist a set U � R
2
+, a structure (v, f, φ) and T > 0 with the

following property: there exist smooth time-dependent extensions vt , ft (t ∈ [0, T ]) of
v, f , respectively, such that v0 = v, f0 = f , (vt , ft , φ) is a structure on U for each
t ∈ [0, T ]. Moreover, for some ν0 > 0 the vector field

u(t) := u[vt , ft ]
satisfies the NSI (1.3) in the classical sense for all ν ∈ [0, ν0] and t ∈ [0, T ] as well as
admits a large gain in magnitude of the form

|u(τ x + z, T )| ≥ τ−1 |u(x, 0)| , x ∈ R
3, (3.1)

for some τ ∈ (0, 1), z ∈ R
3.

Proof. See Section 3.3 in Ożański [13] (particularly Proposition 3.8 therein) for a de-
tailed proof. ��
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In fact, the set U (from the theorem above) is of the form U = U1 ∪ U2 for some
disjoint U1, U2 � R

2
+ and (v, f, φ) = (v1 + v2, f1 + f2, φ1 + φ2), where (v1, f1, φ1),

(v2, f2, φ2) are some structures on U1, U2, respectively. The elaborate part of the proof
of Theorem 3.1 is devoted to the careful arrangement of U1, U2 and a construction of
the corresponding structures and T > 0 which magnifies certain interaction betweenU1
and U2 via the pressure function, and thus allows (3.1). We refer the reader to Sections
3.3 and 3.4 in Ożański [13] for the full proof of Theorem 3.1. We note, however, that
the part of the theorem about the NSI is not that difficult. In fact we show in Lemma 3.3
below that any structure gives rise to infinitely many classical solutions of the NSI (on
arbitrarily long time intervals) with u[v, f ] as the initial condition.

In order to prove Theorem 1.4 we will make use of an alternative form of the local
energy inequality. Namely, the local energy inequality (1.4) is satisfied if the local energy
inequality on the time interval [S, S′],

∫

R3
|u(x, S′)|2ϕ dx −

∫

R3
|u(x, S)|2ϕ dx + 2ν

∫ S′

S

∫

R3
|∇u|2ϕ

≤
∫ S′

S

∫

R3

(
|u|2 + 2p

)
u · ∇ϕ +

∫ S′

S

∫

R3
|u|2 (∂tϕ + ν�ϕ) ,

(3.2)

holds for all S, S′ > 0 with S < S′, which is clear by taking S, S′ such that suppϕ ⊂
R
3 × (S, S′). An advantage of this alternative form of the local energy inequality is

that it demonstrates how to combine weak solutions of the Navier–Stokes inequality
one after another. Namely, (3.2) shows that a necessary and sufficient condition for
two vector fields u(1) : R3 × [t0, t1] → R

3, u(2) : R3 × [t1, t2] → R
3 satisfying the

local energy inequality on the time intervals [t0, t1], [t1, t2], respectively, to combine
(one after another) into a vector field satisfying the local energy inequality on the time
interval [t0, t2] is that

|u(2)(x, t1)| ≤ |u(1)(x, t1)| for a.e. x ∈ R
3. (3.3)

Using the above property and Theorem 3.1 we can employ a simple switching pro-
cedure to obtain Scheffer’s construction of the blow-up at a single point (i.e. the claim
of Theorem 1.4). Namely, considering

u(1)(x, t) := τ−1u(�−1(x), τ−2(t − T )),

where �(x) := τ x + z, we see that u(1) satisfies the Navier–Stokes inequality (1.3) in a
classical sense for all ν ∈ [0, ν0] and t ∈ [T , (1 + τ 2)T ], supp u(1)(t) = �(G) for all
t ∈ [T , (1 + τ 2)T ] and that (3.1) gives

∣∣∣u(1)(x, T )

∣∣∣ ≤ |u(x, T )| , x ∈ R
3 (3.4)

(and so u, u(1) can be combined “one after another”, recall (3.3)). Thus, since u(1) is larger
inmagnitude than u (by the factor of τ ) and its time of existence is [T , (1+τ 2)T ], we see
that by iterating such a switching we can obtain a vector field u that grows indefinitely
in magnitude, while its support shrinks to a point (and thus will satisfy all the claims of
Theorem 1.4), see Fig. 1. To be more precise we let t0 := 0,

t j := T
j−1∑

k=0

τ 2k for j ≥ 1, (3.5)
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T0 := lim j→∞ t j = T /(1 − τ 2), u(0) := u, and

u( j)(x, t) := τ− j u
(
�− j (x), τ−2 j (t − t j )

)
, j ≥ 1, (3.6)

see Fig. 1. As in (3.4), (3.1) gives that

supp u( j)(t) = � j (G) for t ∈ [t j , t j+1] (3.7)

and that the magnitude of the consecutive vector fields shrinks at every switching time,
that is

∣∣∣u( j)(x, t j )

∣∣∣ ≤
∣∣∣u( j−1)(x, t j )

∣∣∣ , x ∈ R
3, j ≥ 1, (3.8)

see Fig. 1.
Thus letting

u(t) :=
{

u( j)(t) if t ∈ [t j , t j+1) for some j ≥ 0,
0 if t ≥ T0,

(3.9)

we obtain a vector field that satisfies all claims of Theorem 1.4 with x0 := z/(1 − τ).
Note that u ∈ L∞((0,∞); L2(R3)) and ∇u ∈ L2(R3 × (0,∞)) (which is required by
the definition of weak solutions to the NSI, Definition 1.1) by construction (due to the
rescaling (3.6) and the fact that u(0) = u is smooth on R(U ) × [0, T ]).

Observe that by construction

‖u(t)‖p → 0 as t → T −
0 for all p ∈ [1, 3), (3.10)

since τ ∈ (0, 1). Indeed we write for any t ∈ [t j , t j+1], j ≥ 0,

‖u(t)‖p = ‖u( j)(t)‖p ≤ sup
s∈[t j ,t j+1)

‖u( j)(s)‖p

= τ− j (1−3/p) sup
s∈[t0,t1]

‖u(0)(s)‖p → 0 as j → ∞.

0 = t0 T = t1 t2 t3 T0 = limj→∞ tj

t

∥
∥u(0)(t)

∥
∥
L∞

∥
∥u(1)(t)

∥
∥
L∞

∥
∥u(2)(t)

∥
∥
L∞

‖u(t)‖L∞

G = suppu(0)(t)

Γ2(G) = suppu(2)(t)

= suppu(1)(t)
Γ(G)

x0

Fig. 1. The switching procedure: the blow-up of ‖u(t)‖∞ (left) and the shrinking support of u(t) (right) as
t → T −

0
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3.2. Structures of the Form (0, f, φ). Let U � R
2
+. We now focus on the structures on

U of the form (0, f, φ) and, for convenience, we set

u[ f ] := u[0, f ].
Roughly speaking, u[ f ] is a swirl-only axisymmetric vector field with (pointwise) mag-
nitude f . Note that for all f1, f2 with f1 < f2

∥∥∥∥u
[√

f 22 − f 21

]∥∥∥∥
2

= ‖u[ f2]‖2 − ‖u[ f1]‖2, (3.11)

which is a useful property that we will use later (in (4.14) and (4.21)). As in (2.13) we
see that

u[ f ] · ∇
(
|u[ f ]|2 + 2p[ f ]

)
= 0 in R3, (3.12)

for any f ∈ C∞
0 (R2

+; [0,∞)). Using this property we can show that given any structure
(v, f, φ) on a set U � R

2
+ there exists a time-dependent extension ft of f such that

(0, ft , φ) is a structure on U and gives rise to a classical solution to the NSI (for all
sufficiently small viscosities) that is almost constant in time. We make this precise in
the following lemma, which we will use later.

Lemma 3.2. Given ε > 0, T > 0, U � R
2
+ and a structure (v, f, φ) there exists ν0 > 0

and an axisymmetric classical solution u to the NSI for all ν ∈ [0, ν0], t ∈ [0, T ] that is
supported in R(U ) with u(0) = u[ f ] and

‖u(t) − u[ f ]‖q ≤ ε for all t ∈ [0, T ], q ∈ [1,∞]. (3.13)

Proof. Let

u(t) := u[ ft ],
where

f 2t := f 2 − δtφ

and δ > 0 is sufficiently small such that ft > 0 in U for all t ∈ [0, T ] (Note this is
possible since f is continuous and suppφ � supp f ). Clearly u(0) = u[ f ] and (3.13)
follows for q ∈ {1,∞} by taking δ sufficiently small. If q ∈ (1,∞) then (3.13) follows
using Lebesgue interpolation.

It remains to verify that u(t) satisfies the NSI. To this end let ν0 > 0 be sufficiently
small such that

ν0 |u[ ft ](x) · �u[ ft ](x)| ≤ δ

2
for x ∈ R

3, t ∈ [0, T ]. (3.14)

Due to the axisymmetry of u it is enough to verify the NSI only for points of the form
(x, 0, t), for x ∈ U , t ∈ [0, T ]. Setting p to be the pressure function corresponding to
u (that is p(t) := p∗[0, ft ]) we use (3.12) to write
∂t |u(x, 0, t)|2 = −δφ(x)

= −δφ(x) − u(x, 0, t) · ∇ (|u(x, 0, t)|2 + 2p(x, 0, t)
)

≤ 2νu(x, 0, t) · �u(x, 0, t) − u(x, 0, t) · ∇ (|u(x, 0, t)|2 + 2p(x, 0, t)
)
,

(3.15)

as required, where, in the last step, we used (2.12) for x such that φ(x) < 1 and (3.14)
for x such that φ(x) = 1. ��
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Observe that the lemma does not make any use of v. One similarly obtains the same
result, but with the claim on the initial condition u(0) = u[ f ] replaced by a condition
at a final time, namely by the pointwise inequality |u(T )| ≥ |u[ f ]| everywhere in R

3.
We thus obtain the following lemma, which we will use to prove Theorem 1.6.

Lemma 3.3. Given ε > 0, T > 0, U � P and a structure (v, f, φ) there exists ν0 > 0
and an axisymmetric classical solution u to the NSI for all ν ∈ [0, ν0] that is supported
in R(U ),

|u(x, T )| ≥ |u[ f ](x)| for all x ∈ R
3 (3.16)

and

‖u(t) − u[ f ]‖p ≤ ε for all t ∈ [0, T ], p ∈ [1,∞]. (3.17)

Proof. The lemma follows in the same way as Lemma 3.2 after replacing “ f ” in the
above proof by “(1 + ε) f ” for sufficiently small ε > 0 and then taking δ > 0 (and so
also ν0) smaller. ��

Finally, observe that if f1,t , f2,t ∈ C∞
0 (R2

+; [0,∞)) are disjointly supported (for
each t) then

p∗[0, f1,t + f2,t ] = p∗[0, f1,t ] + p∗[0, f2,t ]
and so

u[ f1,t + f2,t ] satisfies the NSI in the classical sense (3.18)

whenever each of u[ f1,t ] and u[ f2,t ] does. Indeed, this is because the term
u(x1, x2, 0) · ∇ p(x1, x2, 0) = u3(x1, x2, 0)∂3 p(x1, x2, 0) (3.19)

in the NSI vanishes (due to (2.11)). Note that (3.18) does not necessarily hold for
structures (v, f, φ) with v �= 0, as in this case the term u · ∇ p does not simplify as
in (3.19). We will use (3.18) as a substitute for linearity of the NSI in the proof of
Theorem 1.6 in Sect. 5.

4. Proof of Theorem 1.3

In this section we prove Theorem 1.3; namely given an open set W ⊂ R
3, ε > 0, T > 0

and a continuous, nonincreasing function e : [0, T ] → [0,∞) there exist ν0 > 0 and a
weak solution u of the NSI for all ν ∈ [0, ν0] such that supp u(t) ⊂ W for all t ∈ [0, T ]
and

|‖u(t)‖ − e(t)| ≤ ε for all t ∈ [0, T ]. (4.1)

(Recall that ‖ · ‖ denotes the L2(R3) norm.)
We will assume that e(t) is continuous. If e(t) is discontinuous then one can easily
incorporate the times at which e(t) has jumps into the switching procedure. This will
become clear from the proof, and we give a more detailed explanation in Sect. 4.1 below.

We can assume that e(T ) = 0, as otherwise one could extend e continuously beyond
T into a function decaying to 0 in finite time T ′ > T . Moreover, by translation in space
we can assume that W intersects the x1 axis. Let U � R

2
+ be such that R(U ) ⊂ W .
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We will construct an axisymmetric weak solution to the NSI (for all sufficiently small
viscosities) such that u(t) ∈ C∞

0 (R3), supp u(t) ⊂ R(U ) and

|‖u(t)‖ − e(t)| ≤ ε

for all t ∈ [0, T ].
Before the proof we comment on its strategy in an informal manner. Suppose for the

moment that we would like to use a similar approach as in the proof of Lemma 3.2, that
is define some rectangle U � R

2
+, a structure (v, f, φ) on it and u(t) := u[ ft ], where

f 2t := f 2 − (C − De(t)2)φ, (4.2)

for some constants C, D > 0, such that

‖u(t)‖ ≈ e(t)

at least for small t . In fact we could use the recipe from Sect. 2.2 to construct (v, f, φ).
In order to proceed with the calculation (that is to guarantee the NSI) we would need
to guarantee that (e(t)2)′ is bounded above by some negative constant (so that the term
with the Laplacian could be absorbed for x such that φ(x) = 1; recall the last step of
(3.15)), which is not a problem, as the following lemma demonstrates.

Lemma 4.1. Given ε > 0 and a continuous and nonincreasing function e : [0, T ] →
[0,∞) there exist ζ > 0 and ẽ : [0, T ] → [0,∞) such that ẽ ∈ C∞([0, T ]), and

e(t) ≤ ẽ(t) ≤ e(t) + ε,
d

dt
ẽ(t)2 ≤ −ζ for t ∈ [0, T ].

Proof. Extend e(t) by e(T ) for t > T and by e(0) for t < 0. Let Jδe2 denote a mollifica-
tion of e2. Since e2 is uniformly continuous Jδe2 converges to e2 in the supremum norm
as δ → 0, and so ‖Jδe2 − e2‖L∞(R) < ε/4 for sufficiently small δ. Then the function

ẽ(t) :=
√

Jδe2(t) + (ε/2 − εt/4T )

satisfies the claim of the lemma with ζ := ε/4T . ��
The problem with (4.2) is that its right-hand side can become negative for small

times3 (so that (0, ft , φ) would no longer be a structure, and so u[ ft ] would not be
well-defined). We will overcome this problem by utilising the property (3.3). Namely,
at time t1 when the right-hand side of (4.2) becomes zero we will “trim” U to obtain a
smaller set U 1, on which the right-hand side of (4.2) does not vanish, and we will define
a new structure (0, f1, φ1), with f 21 ≤ f 2 + (C − De(t1)2)φ. We will then continue the
same way (as in (4.2)) to define u(t) := u[ f1,t ] for t ≥ t1 where

f 21,t := f 2 − (C1 − D1e(t)2)φ1

for appropriately chosen C1, D1. Note that such a continuation satisfies the local energy
inequality, since (3.3) is satisfied. We will then continue in the same way to define

3 Note that the point x ∈ U at which the right-hand side of (4.2) will become negative is located close to
the ∂U since only for such x φ(x) = 1 but f (x) < max f .
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U 2, U 3, . . ., structures (0, f2, φ2), (0, f3, φ3), . . ., and u(t) := u[ fk,t ] for t ∈ [tk, tk+1],
where

f 2k,t := f 2k − (Ck − Dke(t)2)φk, (4.3)

and Ck, DK > 0 are chosen appropriately, until we reach time t = T .
Such a procedure might look innocent, but note that there is a potentially fatal flaw.

Namely, we need to use an existence result such as Lemma 2.2 in order to construct fk
as well as δk > 0; recall that δk controls the edge effect (that is L fk ≥ 0 in U k \ U k

δk
)

and that, according to the recipe from Sect. 2.2, φk is chosen so that φk = 1 on U k
δk
.

However, Lemma 2.2 gives no control of δk , and so it seems possible that δk shrinks
rapidly as k increases, and consequently

inf
U k

δk

fk → 0 rapidly as k increases.

Thus (since φk = 1 on U k
δk
) the length of the time interval [tk, tk+1]would shrink rapidly

to 0 as k increases (as the right-hand side of (4.3) would become negative for some x),
and so it is not clear whether the union of all intervals,

⋃

k≥0

[tk, tk+1],

would cover [0, T ].
In order to overcome this problem we prove a sharper version of Lemma 2.2 which

states that we can choose δ = c′η and f such that f > c in Uδ , where the constants
c, c′ ∈ (0, 1) do not depend on the size of U .

Lemma 4.2 (The cut-off function with the edge effect on a rectangle). Let a > 0 and
U � R

2
+ be an open rectangle that is located at least a away from the x1 axis, that is

U = (a1, b1) × (a2, b2) for some a1, a2, b1, b2 ∈ R with b1 > a1, b2 > a2 > a. Given
η ∈ (0,min{1, (b1 − a1)/2, (b2 − a2)/2}) there exists f ∈ C∞

0 (R2
+; [0, 1]) such that

supp f = U , f > 0 in U with f = 1 on Uη,

L f > 0 in U \ Uc′η, with f > c in Uc′η/2,

where c, c′ ∈ (0, 1/2) depend only on a.

Proof. We prove the lemma in Appendix 6. ��
The above lemma allows us to ensure that the time interval [0, T ] can be covered by
only finitely many intervals [tk, tk+1].

We now make the above strategy rigorous.

Proof of Theorem 1.3. (Recall that we also assume that e(T ) = 0 and that U ⊂ R
2
+

is such that R(U ) ⊂ W .) Fix a > 0 such that dist(U, x1-axis) ≥ a. By applying
Lemma 4.1 we can assume that e2 is differentiable on [0, T ] with (e2(t))′ ≤ −ζ for all
t ∈ [0, T ], where ζ > 0. Let K be the smallest positive integer such that

(1 − c2)K e(0)2 < ε2,
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where c = c(a) ∈ (0, 1/2) is the constant from Lemma 4.2. For k ∈ {1, . . . , K } let
tk ∈ [0, T ] be such that

e(tk)
2 = (1 − c2)ke(0)2. (4.4)

(Note tk is uniquely determined since e(t)2 is strictly decreasing, (e(t)2)′ ≤ −ζ .) Let
also t0 := 0. Observe that the choice of K implies that

e(t)2 ≥ ε2/2 for t ∈ [t0, tK ]. (4.5)

Indeed, since e(t) is deceasing and c2 < 1/2,

e(t)2 ≥ e(tK )2 = (1 − c2)(1 − c2)K−1e(0)2 ≥ (1 − c2)ε2 ≥ ε2/2,

as required, where we used the definition of K in the second inequality.
We set

d := min
k∈{0,...,K−1}(tk+1 − tk).

Given k ∈ {0, . . . , K − 1} we will construct a classical solution uk to the NSI for all
ν ∈ [0, ν0] (where ν0 is fixed in (4.19) below) on time interval [tk, tk+1] (respectively)
such that

∣∣∣‖uk(t)‖2 − e(t)2
∣∣∣ ≤ ε2/4 for t ∈ [tk, tk+1], (4.6)

and that

|uk+1(tk+1)| ≤ |uk(tk+1)| a.e. in R3 for k = 0, . . . , K − 2 (4.7)

and
Then the claim of the theorem follows by defining

u(t) :=
{

uk(t) t ∈ [tk, tk+1), k ∈ {0, . . . , K − 1},
0 t ≥ tK .

Indeed, (4.7) implies that we can switch from uk to uk+1 at time tk+1 (k = 0, . . . , K −2),
so that u is a weak solution of the NSI for all ν ∈ [0, ν0], t ∈ [0, T ]. Moreover (4.6)
implies (4.1), since

|‖u(t)‖ − e(t)| =
∣∣∣‖u(t)‖2 − e(t)2

∣∣∣ / |‖u(t)‖ + e(t)| ≤ ε2/4e(t) ≤ ε for t ∈ [t0, tK ),

(4.8)

where we used (4.5) in the last inequality, and the claim for t ∈ [tK , T ] follows trivially.
In order to construct uk (for k = 0, . . . , K − 1) we first fix μ > 0 such that

μ‖u[χU ]‖ = e(0) (4.9)

and we set η > 0 sufficiently small such that

‖u[χU\UKη
]‖2 <

min{ε2, dζ }
8μ2 . (4.10)



Weak Solutions to the Navier–Stokes Inequality 49

Note that (4.4) and (4.9) give

e(tk) = (1 − c2)kμ2‖u[χU ]‖2. (4.11)

We now let U k := Ukη and apply Lemma 4.2 to obtain c, c′ ∈ (0, 1/2) and fk ∈
C∞
0 (P; [0, 1]) (k = 0, . . . , K − 1) such that

supp fk = U k, fk > 0 in U k with fk = 1 on U k
η = U k+1,

L fk > 0 in U k \ U k
c′η, with fk > c in U k

c′η/2. (4.12)

Recall that c, c′ are independent of k. Let φk ∈ C∞
0 (U k; [0, 1]) be such that

suppφk ⊂ U k
c′η/2 and φk = 1 on U k

c′η. (4.13)

Note that (4.10) implies that
∣∣∣‖u[ fk]‖2 − ‖u[φk]‖2

∣∣∣ ,
∣∣∣‖u[χU ]‖2 − ‖u[φk]‖2

∣∣∣ ≤ min{ε2, dζ }
8μ2 (4.14)

for all k = 0, . . . , K − 1. Indeed, as for the first of these quantities (the second one is
analogous), note that since χUkη

≤ fk, φk ≤ χU we have | f 2k − φ2
k | ≤ χU\Ukη

. Thus

∣∣∣|u[ fk]|2 − |u[φ]|2
∣∣∣ =
∣∣∣∣u
[√

| f 2k − φ2
k |
]∣∣∣∣

2

≤ |u[χU\Ukη
]|2

and (4.14) follows by integrating over R3 and using (4.10).
We will consider an affine modification Ek(t)2 of e(t)2 on the time interval [tk, tk+1]

such that

Ek(tk)
2 = (1 − c2)kμ2‖u[φk]‖2 and Ek(tk+1)

2 = (1 − c2)Ek(tk)
2. (4.15)

(Recall e(t) satifies the above conditions with ‖u[φk]‖ replaced by ‖u[χU ]‖, see (4.11).)
Namely we set

Ek(t)
2 := e(t)2 − (1 − c2)kμ2

(
‖u[χU ]‖2 − ‖u[φk]‖2

)(
1 − c2

t − tk
tk+1 − tk

)
.

Roughly speaking, Ek is a convenient modification of e that allows us to satisfy (4.7)
while not causing any trouble to either (4.6) or the NSI. For example, we see that
∣∣∣Ek(t)

2 − e(t)2
∣∣∣ = (1 − c2)kμ2

(
‖u[χU ]‖2 − ‖u[φk]‖2

)(
1 − c2

t − tk
tk+1 − tk

)

≤ (1 − c2)kε2/8

≤ ε2/8 for t ∈ [tk, tk+1]
(4.16)

where we used (4.14). This implies in particular that Ek(t) is well-defined (as e(t)2 ≥
ε2/2, recall (4.5)). Moreover , using (4.14) again

(Ek(t)
2)′ = (e(t)2)′ + (1 − c2)kμ2

(
‖u[χU ]‖2 − ‖u[φk]‖2

) c2

tk+1 − tk
≤ −ζ + (1 − c2)kc2dζ/8(tk+1 − tk)

≤ −ζ + ζ/8

< −ζ/2 for t ∈ [tk, tk+1].

(4.17)
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We can now define uk by writing

uk(t) := u[ fk,t ],
where

f 2k,t := (1 − c2)kμ2 f 2k −
(

(1 − c2)kμ2 − Ek(t)2

‖u[φk]‖2
)

φ2
k .

Observe that, due to the monotonicity of Ek (shown above) and (4.15), the last term
above can be bounded above and below

0 ≤
(

(1 − c2)kμ2 − Ek(t)2

‖u[φk]‖2
)

φ2
k ≤ c2(1 − c2)kμ2φ2

k (4.18)

for all t ∈ [tk, tk+1]. (This is the solution to the problem we discussed informally before
the proof.)

This means, in particular, that f 2k,t is nonnegative in U k (that is fk,t is well-defined

by the above formula). Indeed, this is trivial for x ∈ U k \ U k
c′η/2 (as φk(x) = 0 for such

x), and for x ∈ U k
c′η/2 we have f 2k (x) > c2 (recall Lemma 4.2) and so

f 2k,t (x) > (1 − c2)kμ2c2(1 − φk) ≥ 0,

as required.
Let ν0 > 0 be sufficiently small such that

ν0
∥∥u[ fk,t ] · �u[ fk,t ]

∥∥∞ ≤ ζ

4‖u[χU ]‖2 for t ∈ [tk, tk+1], k = 0, . . . , K − 1.

(4.19)

Having fixed ν0 we show that uk is a classical solution of the NSI with any ν ∈ [0, ν0]
on the time interval [tk, tk+1]. Namely for each such ν we can use the monotonicity of
Ek(t)2 (recall (4.17)) to obtain

∂t |uk(x, 0, t)|2 = ∂t Ek(t)2
φk(x)

‖u[φk ]‖2

≤ −ζ
φk(x)

2‖u[χU ]‖2

= −ζ
φk(x)

2‖u[χU ]‖2 − uk(x, 0, t) · ∇
(
|uk(x, 0, t)|2 + 2pk(x, 0, t)

)

≤ 2νuk(x, 0, t) · �uk(x, 0, t)−uk(x, 0, t) · ∇
(
|uk(x, 0, t)|2 + 2pk(x, 0, t)

)
,

(4.20)

as required, where we used (3.12) in the third step and, in the last step, we used (2.12)
for x such that φk(x) < 1 and (4.19) for x such that φk(x) = 1.

It remains to verify (4.6) and (4.7). As for (4.6) we use observation (3.11) to write

‖uk(t)‖2 = ‖u[ fk,t ]‖2 = (1 − c2)kμ2‖u[ fk]‖2
−
(
(1 − c2)kμ2‖u[φk]‖2 − Ek(t)

2
)

. (4.21)
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Thus
∣∣∣‖uk(t)‖2 − Ek(t)

2
∣∣∣ = (1 − c2)kμ2

∣∣∣‖u[ fk]‖2 − ‖u[φk]‖2
∣∣∣ ≤ ε2/8,

where we used (4.14). This and (4.16) give (4.6), as required.
As for (4.7) it suffices to show the claim on R(U(k+1)η) (that is on the support of

uk+1). Moreover, since both uk and uk+1 are axially symmetric (with the same axis
of symmetry, the Ox1 axis), it is enough to show the claim at the points of the form
(x, 0), where x = (x1, x2) ∈ U k+1. Recalling (from (4.12), (4.13)) that for such x
fk(x) = φk(x) = 1 ≥ fk+1(x) we obtain

|uk+1(x, 0, tk+1)|2 = f 2k+1,tk+1(x)

= (1 − c2)k+1μ2 f 2k+1(x)−
(

(1 − c2)k+1μ2− Ek+1(tk+1)2

‖u[φk+1]‖2
)

φk+1(x)2

≤ (1 − c2)k+1μ2

= (1 − c2)kμ2 − c2(1 − c2)kμ2

= (1 − c2)kμ2 f 2k (x) − c2(1 − c2)kμ2φ2
k (x)

≤ (1 − c2)kμ2 f 2k (x) −
(

(1 − c2)kμ2 − Ek(tk+1)2

‖u[φk]‖2
)

φk(x)2

= f 2k,tk+1(x)

= |uk(x, 0, tk+1)|2
where we used (4.18) twice. ��

4.1. The case of discontinuous e(t). Here we comment on how to modify the proof of
Theorem 1.3 to the case when e(t) is discontinuous.

Since e(t) is nonincreasing, it has M ≤ �3e(0)/ε� jumps by at least ε/3, where �w�
stands for the smallest integer larger or equal w ∈ R. One can modify Lemma 4.1 to be
able to assume that e in Theorem 1.3 is piecewise smooth with (e(t)2)′ ≤ −ζ , and has at
most M jumps. For such e Theorem 1.3 remains valid, by incorporating the jumps into
the choice of tk’s (so that, in particular, the cardinality of {tk} would be M + K , rather
than K ). The proof then follows in the same way as above.

5. Proof of Theorem 1.6

The construction of a weak solution to the NSI with blow-up on a Cantor set and with
an arbitrary energy profile (Theorem 1.6) is similar to the proof of the following weaker
result, where the blow-up on a Cantor set is replaced by a blow-up on a single point
x0 ∈ R

3.

Proposition 5.1. Given an open set W ⊂ R
3, ε > 0, T > 0 and a nonincreasing

function e : [0, T ] → [0,∞) such that e(t) → 0 as t → T there exists ν0 > 0 and a
weak solution u of the NSI for all ν ∈ [0, ν0] such that supp u(t) ⊂ W and

|‖u(t)‖ − e(t)| ≤ ε for all t ∈ [0, T ],
and that u is unbounded in any neighbourhood of (x0, T ) for some x0 ∈ W .
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Proof. By translationwe can assume that W intersects the x1 axis. Since W is open, there
exists x = (x1, 0, 0) and R > 0 such that B(x, R) ⊂ W . Let T ′ ∈ [0, T ] be the first time
such that e(t) ≤ ε/3 for t ∈ [T ′, T ]. Let u be given by (3.9) and let u0 be its rescaling
(i.e. u0(x, t) := λu(λx+x ′, λ2t+t ′) for sufficiently large λ > 0 and appropriately chosen
x ′ ∈ R

3, t ′ ∈ R) such that u0 is defined on time interval [T ′′, T ] for some T ′′ ∈ (T ′, T )

(rather than on [0, T0], which was the case for u), u0(T ′′) is axisymmetric (recall u was
constructed by switching between axisymmetric vector fields u( j), which have different
axes of symmetry, see (3.9)),

supp u0(t) ⊂ B(x, R) and ‖u0(t)‖ ≤ ε/3 for all t ∈ [T ′′, T ],
and that u0(t) blows up (at a point inside B(x, R)) as t → T . Note that u0 is axisym-
metric. We will denote by (v, f, φ) the structure corresponding to u0(T ′′), that is

u0(T
′′) = u[v, f ],

and we let U := { f > 0} (i.e. the set on which the structure (v, f, φ) is based).
WenowapplyLemma3.3with ε/3, T ′′ andU1, (v1, f1, φ1) to obtain an axisymmetric

classical solution u1 to the NSI on time interval [0, T ′′] (with, possibly, lower values of
viscosity than u0) that is supported in R(U ), ‖u1(t)−u0(T ′′)‖ ≤ ε/3 for all t ∈ [0, T ′′]
and

|u1(x, T ′′)| ≥ |u0(x, T ′′)| for all x ∈ R
3.

The last property guarantees that u1 and u0 can be combined (u1 for times less than T ′′
and u0 for times greater or equal T ′′) to form a weak solution of the NSI on [0, T ].
Case 1. T ′ = 0 (i.e. e(0) ≤ ε).

Then

u(t) :=
{

u1(t) t ∈ [0, T ′′],
u0(t − T ′′) t ∈ [T ′′, T ]

satisfies all the claims of Proposition 5.1.
Case 2. T ′ > 0 (i.e. when the energy profile is not small for all times).

In this case we construct another weak solution to the NSI on [0, T ′] that is disjointly
supported with u1 and whose role is to, roughly speaking, waste all the nontrivial energy
(i.e. cause the energy to decrease to ε). Namely, we fix a rectangle U2 � R

2
+ that is

disjoint with U1 and we apply Theorem 1.3 with ε/3, T ′, U2 and e2 := e − ε/3 to obtain
u2. We extend u2(t) by zero for t ≥ T ′. Then (using (3.18)) we see that

u(t) :=
{

u1(t) + u2(t) t ∈ [0, T ′′],
u0(t − T ′′) t ∈ [T ′′, T ]

satisfies all the claims of Proposition 5.1. ��
We now turn to the proof of Theorem 1.6. For this purpose we will need to use

Scheffer’s construction of a weak solution to the NSI with the singular set S satisfying
dH (S) ∈ [ξ, 1] (that is Theorem 1.5), similarly as we used u (defined in (3.9)) above.

To this end we first introduce some handy notation related to constructions of Cantor
sets.
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5.1. Constructing a Cantor set. In this section, which is based on Section 4.1 from
Ożański [13], we discuss the general concept of constructing Cantor sets.

The problemof constructingCantor sets is usually demonstrated in a one-dimensional
setting using intervals, as in the following proposition.

Proposition 5.2. Let I ⊂ R be an interval and let τ ∈ (0, 1), M ∈ N be such that
τ M < 1. Let C0 := I and consider the iteration in which in the j-th step ( j ≥ 1) the set
C j is obtained by replacing each interval J contained in the set C j−1 by M equidistant
copies of τ J , each of which is contained in J , see for example Fig. 2. Then the limiting
object

C :=
⋂

j≥0

C j

is a Cantor set whose Hausdorff dimension equals − log M/ log τ .

Proof. See Example 4.5 in Falconer [7] for a proof. ��
Thus if τ ∈ (0, 1), M ∈ N satisfy

τ ξ M ≥ 1 for some ξ ∈ (0, 1),

we obtain a Cantor set C with

dH (C) ≥ ξ. (5.1)

Note that both the above inequality and the constraint τ M < 1 (which is necessary for
the iteration described in the proposition above, see also Fig. 2) can be satisfied only for
ξ < 1. In the remainder of this section we extend the result from the proposition above
to the three-dimensional setting.

Let G ⊂ R
3 be a compact set, τ ∈ (0, 1), M ∈ N, z = (z1, z2, 0) ∈ G, X > 0 be

such that

τ ξ M ≥ 1, τ M < 1 (5.2)

and

{�n(G)}n=1,...,M is a family of pairwise disjoint subsets of G,

with conv{�n(G) : n = 1, . . . , M} ⊂ G,
(5.3)

where “conv” denotes the convex hull and

�n(x) := τ x + z + (n − 1)(X, 0, 0).

Equivalently,

�n(x1, x2, x3) = (βn(x1), γ (x2), τ x3), (5.4)

where
{

βn(x) := τ x + z1 + (n − 1)X,

γ (x) := τ x + z2,
x ∈ R, n = 1, . . . , M.

Now for j ≥ 1 let

M( j) := {m = (m1, . . . , m j ) : m1, . . . , m j ∈ {1, . . . , M}}
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z1

I

C0 :

C1 :

C2 : π1(I)

π(1,2)(I)

X X

τ |I|

0

Fig. 2. A construction of a Cantor set C on a line (here M = 3, j = 0, 1, 2)

denote the set ofmulti-indicesm. Note that in particular M(1) = {1, . . . , M}. Informally
speaking, each multiindex m ∈ M( j) plays the role of a “coordinate” which let us
identify any component of the set obtained in the j-th step of the construction of the
Cantor set. Namely, letting

πm := βm1 ◦ . . . ◦ βm j , m ∈ M( j),

that is

πm(x) = τ j x + z1
1 − τ j

1 − τ
+ X

j∑

k=1

τ k−1(mk − 1), x ∈ R (5.5)

we see that the set C j obtained in the j-th step of the construction of the Cantor set C
(from the proposition above) can be expressed simply as

C j :=
⋃

m∈M( j)

πm(I ),

see Fig. 2. Moreover, each πm(I ) can be identified by, roughly speaking, first choosing
the m1-th subinterval, then m2-th subinterval, ... , up to m j -th interval, where m =
(m1, . . . , m j ). This is demonstrated in Fig. 2 in the case when m = (1, 2) ∈ M(2).

In order to proceed with our construction of a Cantor set in three dimensions let

�m(x1, x2, x3) :=
(
πm(x1), γ

j (x2), τ
j x3
)

. (5.6)

Note that such a definition reduces to (5.4) in the case j = 1. If j = 0 then let M(0)
consist of only one element m0 and let πm0 := id. Moreover, if m ∈ M( j) and m ∈
M( j − 1) is its sub-multiindex, that is m = (m1, . . . , m j−1) (m = m0 if j = 1), then
(5.3) gives

�m(G) = �m(�m j (G)) ⊂ �m(G), (5.7)

which is a three-dimensional equivalent of the relation πm(I ) ⊂ πm(I ) (see Fig. 2). The
above inclusion and (5.3) gives that

�m(G) ∩ �m̃(G) = ∅ for m, m̃ ∈ M( j), j ≥ 1, with m �= m̃. (5.8)

Another consequence of (5.7) is that the family of sets
⎧
⎨

⎩
⋃

m∈M( j)

�m(G)

⎫
⎬

⎭
j

decreases as j increases. (5.9)
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Moreover, given j , each of the sets �m(G), m ∈ M( j), is separated from the rest by at
least τ j−1ζ , where ζ > 0 is the distance between�n(G) and�n+1(G), n = 1, . . . , M−1
(recall (5.3)).

Taking the intersection in j we obtain

S′ :=
⋂

j≥0

⋃

m∈M( j)

�m(G), (5.10)

and we now show that

ξ ≤ dH (S′) ≤ 1. (5.11)

Noting that S′ is a subset of a line, the upper bound is trivial. As for the lower bound
note that

S′ ⊃
⋂

j≥0

⋃

m∈M( j)

�m (conv{�n(G) : n = 1, . . . , M}) =: S′′.

Thus, letting I ⊂ R be the orthogonal projection of conv{�n(G) : n = 1, . . . , M}
onto the x1 axis, we see that I is an interval (as the projection of a convex set; this
is the reason why we put the extra requirement for the convex hull in (5.3)). Thus the
orthogonal projection of S′′ onto the x1 axis is

⋂

j≥0

⋃

m∈M( j)

πm(I ) = C,

where C is as in the proposition above. Thus, since the orthogonal projection onto the
x1 axis is a Lipschitz map, we obtain dH (S′′) ≥ dH (C) (as a property of Hausdorff
dimension, see, for example, Proposition 3.3 in Falconer [7]). Consequently

dH (S′) ≥ dH (S′′) ≥ dH (C) ≥ ξ,

as required (recall (5.1) for the last inequality).

5.2. Sketch of the Scheffer’s construction with a blow-up on a Cantor set. Based on the
discussion of Cantor sets above, we now briefly sketch the proof of Theorem 1.5. To
this end we fix ξ ∈ (0, 1) and we state the analogue of Theorem 3.1 in the case of the
blow-up on a Cantor set.

Theorem 5.3. There exist a set U � P, a structure (v, f, φ), T > 0, M ∈ N, τ ∈
(0, 1), z = (z1, z2, 0) ∈ G := R(U ), X > 0, ν0 > 0 with the following properties:
relations (5.2) and (5.3) are satisfied and, for each m ∈ M( j), j ≥ 0, there exist
smooth time-dependent extensions v

(m)
t , f (m)

t (t ∈ [0, T ]) of v, f , respectively, such
that v

(m)
0 = v, f (m)

0 = f , (v
(m)
t , f (m)

t , φ) is a structure on U for each t ∈ [0, T ],
u[v(m)

t , f (m)
t ] is bounded on R

3 × (0, T ) and ∇u[v(m)
t , f (m)

t ] is bounded in L2(R3 ×
(0, T )), independently of m ∈ M( j), j ≥ 0. Moreover

w( j)(x, t) :=
∑

m∈M( j)

u
[
v

(m)
t , f (m)

t

] (
π−1

m (τ j x1), x2, x3
)

(5.12)

satisfies the NSI (1.3) in the classical sense for all ν ∈ [0, ν0] and t ∈ [0, T ], and
∣∣∣w( j)(τ− jπm(y1), γ (y2), τ y3, T )

∣∣∣ ≥ τ−1|u[v, f ](y)| for y ∈ R
3, m ∈ M( j + 1).

(5.13)
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Proof. See Section 4 in Ożański [13]; there the so-called geometric arrangement in the
beginning of Section 4.2 gives U , (v, f, φ), T0, M , τ , z and X > 0, and Proposition 4.3
constructs w( j) (which is denoted by v( j)). ��

Observe that the claim of Theorem 3.1 (that is the vector field u(t) in the statement
of Theorem 3.1) is recovered by letting M := 1 and u(t) := w(0)(t).

Given the theorem above we can easily obtain Scheffer’s construction with a blow-up
on a Cantor set (that is a solution u to Theorem 1.5).

Indeed, let

u( j)(x1, x2, x3, t) := τ− jw( j)(τ− j x1, γ
− j (x2), τ

− j x3, τ
−2 j (t − t j )), (5.14)

where t0 := 0 and t j := T
∑ j−1

k=0 τ 2k , as in (3.5). Observe that

supp u( j)(t) =
⋃

m∈M( j)

�m(G), t ∈ [t j , t j+1]

(instead of �
j
1 (G), which is the case in the Scheffer’s construction with point blow-up;

recall (3.7)), which shrinks (as t → T −
0 ) to the Cantor set S′ (recall (5.10)), whose

Hausdorff dimension is greater or equal ξ (recall (5.11)). In fact, generalising the argu-
ments from Sect. 3.1 we can show that u( j) satisfies the NSI in the classical sense for all
ν ∈ [0, ν0] and t ∈ [t j , t j+1],

∣∣∣u( j)(x, t j )

∣∣∣ ≤
∣∣∣u( j−1)(x, t j )

∣∣∣ , x ∈ R
3, j ≥ 1, (5.15)

and that consequently the vector field

u(t) :=
{

u( j)(t) if t ∈ [t j , t j+1) for some j ≥ 0,
0 if t ≥ T0

(5.16)

satisfies all the claims of Theorem 1.5. We refer the reader to Section 4.2 in Ożański
[13] to a more detailed explanation. Here we prove merely (5.15), which motivates the
appearance of the rescalings that were used in (5.13) (i.e. the appearance of πm , τ , γ ).

It is sufficient to consider x ∈ ⋃m∈M( j) �m(G), as otherwise the claim is trivial.
Thus suppose that x = �m(y) for some m ∈ M( j) and y ∈ G. We obtain

∣∣∣u( j)(x, t j )

∣∣∣ = τ− j
∣∣∣w( j)(τ− j x1, γ

− j (x2), τ
− j x3, 0)

∣∣∣

= τ− j
∑

m̃∈M( j)

∣∣∣u[v, f ]
(
�−1

m̃ (x)
)∣∣∣

= τ− j |u[v, f ](y)|
≤ τ−( j−1)

∣∣∣w( j−1)
(
τ−( j−1)πm(y1), γ (y2), τ y3, T

)∣∣∣

=
∣∣∣u( j−1)

(
πm(y1), γ

j (y2), τ
j y3, t j

)∣∣∣

=
∣∣∣u( j−1)(x, t j )

∣∣∣ ,

as required, where we used (5.8) (so that �−1
m̃ (�m(y)) = y χm̃=m) in the third equality

and (5.13) in the inequality (recall also the definitions (5.14), (5.12), (5.6) of u( j), w( j),
�m , respectively).
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Furthermore, we note that u ∈ L∞((0,∞); L2(R3)) and ∇u ∈ L2(R3 × (0,∞))

(which is required by the definition of weak solutions to the NSI, Definition 1.1). Indeed,
u( j) consists of M j vector fields, each scaled by τ− j , and so the claim follows from the
fact that Mτ < 1 (so that supt∈[t j ,t j+1] ‖u( j)(t)‖2 ≈ (Mτ) j decreases to zero as j → ∞,

and
∑

j≥0

∫ t j+1
t j

‖∇u( j)(s)‖2ds ≈∑ j≥0(Mτ) j converges).

5.3. Proof of Theorem 1.6. Given u constructed in the previous section, Theorem 1.6
follows in the same way as Proposition 5.1.

6. A Sharpening of the Edge Effect Lemma (Lemma 2.2)

Here we prove Lemma 4.2 (the sharpening of the “edge effects” Lemma 2.2), which was
used in the proof of Theorem 1.3.

In order to prove the lemma we will need a certain generalisedMean Value Theorem.
For g : R → R let g[a, b] denote the finite difference of g on [a, b],

g[a, b] := g(a) − g(b)

a − b

and let g[a, b, c] denote the finite difference of g[·, b] on [a, c],

g[a, b, c] :=
(

g(a) − g(b)

a − b
− g(c) − g(b)

c − b

)
/(a − c).

Lemma 6.1 (Generalised mean value theorem). If a < b < c, g is continuous in [a, c]
and twice differentiable in (a, c) then there exists ξ ∈ (a, c) such that g[a, b, c] =
g′′(ξ)/2.

Proof. We follow the argument of Theorem 4.2 in Conte and de Boor [5]. Let

p(x) := g[a, b, c](x − b)(x − c) + g[b, c](x − c) + g(c).

Then p is a quadratic polynomial approximating g at a, b, c, that is p(a) = g(a),
p(b) = g(b), p(c) = g(c). Thus the error function e(x) := g(x) − p(x) has at least 3
zeros in [a, c]. A repeated application ofRolle’s theoremgives that e′′ has at least one zero
in (a, c). In other words, there exists ξ ∈ (a, c) such that g′′(ξ) = p′′(ξ) = 2g[a, b, c].
��
Corollary 6.2. If g ∈ C3(a − δ, a + δ) is such that g = 0 on (a − δ, a] and g′′′ > 0 on
(a, a + δ) for some a ∈ R, δ > 0 then

⎧
⎪⎨

⎪⎩

g′′(x) > 0,
0 < g′(x) < (x − a)g′′(x),

g(x) < (x − a)2g′′(x)

for x ∈ (a, a + δ).

Proof. Since g′′′ > 0 on (a, a + δ) we see that g′′ is increasing on this interval and so
also positive (as g′′(x) = 0 for x ≤ a). This also gives the first inequality in the second
claim, while the second inequality follows from the Mean Value Theorem, g′(x) =
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(x −a)g′′(ξ) < (x −a)g′′(x), where ξ ∈ (a, x). The last claim follows from the lemma
above by noting that 2a − x ∈ (a − δ, a] (so that g(2a − x) = g(a) = 0), and so

g(x) = g(2a − x) − 2g(a) + g(x) = 2(x − a)2g[2a − x, a, x]
= (x − a)2g′′(ξ) < (x − a)2g′′(x),

where ξ ∈ (2a − x, x). ��
We can now prove Lemma 4.2; that is, given a > 0, an open rectangle U � R

2
+

that is at least a away from the x1 axis (i.e. U = (a1, b1) × (a2, b2) with a2 > a) and
η ∈ (0,min{1, (b1 − a1)/2, (b2 − a2)/2}) we construct f ∈ C∞

0 (R2
+; [0, 1]) such that

supp f = U , f > 0 in U with f = 1 on Uη,

L f > 0 in U \ Uc′η, with f > c in Uc′η/2,

where c, c′ ∈ (0, 1/2) depend only on a.

Proof of Lemma 4.2. Without loss of generality we can assume that a < 1. Let h ∈
C∞(R; [0, 1]) be a nondecreasing function such that

h(x) =

⎧
⎪⎨

⎪⎩

0 x ≤ 0,

e−1/x2 x ∈ (0, 1/2),
1 x ≥ 1.

Let

Ch := ‖h‖C2([0,1]) ∈ [1,∞).

Observe that h′′′ > 0 on (0, 1/2). Let hη(x) := h(x/η) and

f (x1, x2) := f1(x1) f2(x2),

where

fi (x) := hη(x − ai )hη(bi − x), i = 1, 2,

see Fig. 3.
Clearly

f ′′′
i > 0 on (ai , ai + η/2) and f ′′′

i < 0 on (bi − η/2, bi ), i = 1, 2.

Moreover supp f = U , f > 0 in U , and f = 1 on Uη. We will show that

L f > 0 on U \ Uη′ (6.1)

ai ai + η/2 ai + η bi − η bi − η/2 bi

fi

Fig. 3. The fi ’s, i = 1, 2
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for

η′ := c′ η, (6.2)

where

c′ := a

6
√

Ch
e−9/a2 ∈ (0, 1/6). (6.3)

Note that, since c′/2 < 1/2, we have that f > (hη(c′η/2))2 = (e−4/(c′)2)2 =: c in
Uc′η/2. Thus the proof of the lemma is complete when we show (6.1).

To this end let

η′′ := a η

3
. (6.4)

Obviously η′ ≤ η′′ ≤ η ≤ 1. Letting

g1(x1) := f ′′
1 (x1),

g2(x2) := f ′′
2 (x2) + f ′

2(x2)/x2 − f2(x2)/x22 ,

we see that

L f (x1, x2) = f ′′
1 (x1) f2(x2) + f1(x1) f ′′

2 (x2) + f1(x1) f ′
2(x2)/x2 − f1(x1) f2(x2)/x22

= g1(x1) f2(x2) + f1(x1)g2(x2).

(Recall (2.5).) We need to show that the expression on the right-hand side above is
positive in U \ Uη′ . For this we first show the claim:

g2 > f ′′
2 /4 > 0 on

(
a2, a2 + η′′) ∪ (b2 − η′′, b2

)
. (6.5)

The claim follows from the corollary of the generalised Mean Value Theorem (see
Corollary 6.2), which gives that f ′

2(x2) > 0 and f2(x2) < (x2 − a2)2 f ′′
2 (x2) for x2 ∈

(a2, a2 + η′′) (since f2 is given by the rescaled exponential function e−1/x22 due to
η′′ < η/2). Thus

g2(x2) > f ′′
2 (x2) − f2(x2)/x22

> f ′′
2 (x2)

(
1 −
(

x2 − a2
x2

)2)

> f ′′
2 (x2)

(
1 −
(

η′′

a2

)2)

>
8

9
f ′′
2 (x2)

>
1

4
f ′′
2 (x2) > 0
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a1 b1
a2

b2
η′

η′′

Fig. 4. The “η′′-corners” and “η′-strips”

for such x2, where we also used the fact that η′′ < a2/3. On the other hand, applying
Corollary 6.2 to g2(b2 − ·) we obtain f ′

2(x2) > (x2 − b2) f ′′
2 (x2) and f2(x2) < (x2 −

b2)2 f ′′
2 (x2) for x2 ∈ (b2 − η′′, b2), and so

g2(x2) = f ′′
2 (x2) + f ′

2(x2)/x2 − f2(x2)/x22

> f ′′
2 (x2)

(
1 +

x2 − b2
x2

−
(

x2 − b2
x2

)2)

> f ′′
2 (x2)

(
1 − η′′

b2 − η′′ −
(

η′′

b2 − η′′

)2)

> f ′′
2 (x2)/4 > 0

for such x2, where we also used the fact that η′′/(b2 − η′′) < 1/2 (as b2 > a2 > 3η′′),
and so the claim follows.

Using the claim we see that gi , fi are positive on (ai , ai +η′′)∪(bi −η′′, bi ), i = 1, 2.
Thus

L f > 0 in
(
(a1, a1 + η′′) ∪ (b1 − η′′, b1)

)× ((a2, a2 + η′′) ∪ (b2 − η′′, b2)
)
,

that is in the “η′′-corners” of U , see Fig. 4.
Now let

m := e−9/a2 ,

M := 3Ch

η2a2 .

A direct calculation gives that

fi ≥ m, |gi | ≤ M in [ai + η′′, bi − η′′], i = 1, 2.

Moreover,

m

4
− (η′)2M > 0.

Indeed, the left-hand is side is simply e−9/a2(1/4 − 3/36) > 0.
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We will show that

L f > 0 in [a1 + η′′, b1 − η′′] × ((a2, a2 + η′) ∪ (b2 − η′, b2)
)

and in
(
(a1, a1 + η′) ∪ (b1 − η′, b1)

)× [a2 + η′′, b2 − η′′], (6.6)

that is in the “η′-strips” at ∂U between the η′′-corners, see Fig. 4. This will prove (6.1)
(and so finish the proof) as the η′-strips together with the η′′-corners contain U \ Uη′ .

In order to prove (6.6) let first x1 ∈ [a1 + η′′, b1 − η′′] and x2 ∈ (a2, a2 + η′). Then
g1(x1) > −M , g2(x2) > f ′′

2 (x2)/4 (from (6.5)), f2(x2) < (x2 − a2)2 f ′′
2 (x2) (from

Corollary 6.2), f1(x1) > m, and so

L f (x1, x2) = g1(x1) f2(x2) + f1(x1)g2(x2) > −M f2(x2) + f1(x1) f ′′
2 (x2)/4

> f ′′
2 (x2)

(
−M(x2 − a2)

2 + m/4
)

> f ′′
2 (x2)

(
m/4 − M(η′)2

)
> 0.

As for x2 ∈ (b2 −η′, b2), simply replace a2 in the above calculation by b2. The opposite
case, that is the case x1 ∈ (a1, a1 + η′) ∪ (b1 − η′, b1), x2 ∈ [a2 + η′′, b2 − η′′], follows
in the same way. ��
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