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Abstract: The classical de Finetti theorem in probability theory relates symmetry un-
der the permutation group with the independence of random variables. This result has
application in quantum information. Here we study states that are invariant with respect
to a natural action of the braid group, and we emphasize the pictorial formulation and
interpretation of our results. We prove a new type of de Finetti theorem for the four-
string, double-braid group acting on the parafermion algebra to braid qudits, a natural
symmetry in the quon language for quantum information.We prove that a braid-invariant
state is extremal if and only if it is a product state. Furthermore, we provide an explicit
characterization of braid-invariant states on the parafermion algebra, including finding a
distinction that depends on whether the order of the parafermion algebra is square free.
We characterize the extremal nature of product states (an inverse de Finetti theorem).
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1. Introduction

1.1. Background. The famous de Finetti theorem in classical probability theory clarifies
the relationship between permutation symmetry and the independence of a sequence of
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random variables [dF31,dF37,EL55]. Consequently an infinite sequence of symmetric
random variables can be written as a convex combination of an independent identically
distributed (i.i.d.) sequence.

Størmer [Sto69] proposed a non-commutative (quantum) version of the de Finetti the-
orem, and he demonstrated that extremal, symmetric states on infinite, tensor-productC∗
algebras can be expressed in terms of product states. Other symmetry groups yield non-
commutative formulations of de Finetti theorems, and braid invariance has been consid-
ered by Gohm and Köstler in [GK09,K10]. The de Finetti theorem has been extended to
noncommutative probability theory, with a classical probability measure being replaced
by quantum state [KS09,Cur09,Cur10,GK10,CF12,BCS12,DK14,Liu15,Liu17].

Diaconis and Freedman established a de Finetti theorem for a finite (rather than
infinite) sequence of exchangeable random variables [DF80]. This led to various types
of de Finetti theorems in statistical physics and in quantum information [HM,FLV88,
RW89,CFS02,KR05,Ren07,CK07,BL09,CT09]. König and Renner [KR05] showed
that any k-partite reduced state arising from a state on n systems that is permutation-
symmetric, with k � n, is close to a convex combination of i.i.d. n-partite states. Here
i.i.d. means that the state ϕ = ρ⊗n can be written as a product of identical copies.

This result is crucial for understanding the structure of permutation-symmetric states,
and especially for the consideration of quantum entanglement of such states [HHHH09].
The use of such states has application in quantum information processing tasks rang-
ing from entanglement testing [BrCY11], quantum key distribution [Ren05], quantum
hypothesis testing [BrP10], to quantum state tomography [Ren07], and quantum com-
plexity theory [BrCY11,LS15,BrH17].

Non-abelian statistics of quasiparticle models allow one to perform topological quan-
tum computation, such as in the zero-modemodel forMajorana fermions (the d = 2 case
of parafermions) [Kit03,NSS+08]. Parafermions, as a generalization ofMajoranas, have
recently attracted much attention in condensed matter physics [Fen12,LBRS12,YW12]
and [CAS13,MCA+14,KL14,HWL15]. We have given a natural, pictorial representa-
tion of the parafermion algebra and showed how this yields a pictorial representation of
their Clifford gates [JLW18,JLW17,LWJ17].

1.2. New results. Herewepresent a deFinetti theorem for states on parafermion algebras
of order d. In particular, we use the fact that a pair of parafermions of order d generate
the d × d matrix algebra Md(C), that we denote by PF2. Thus it is natural to consider
pairs of parafermions as a unit, and to study double braids that exchange these pairs.

The infinite parafermion algebra PF∞ is a Zd -graded, tensor product of algebras
PF2 of parafermion pairs. Here we consider the braid group B∞, as defined in Sect. 3.1,
acting on pairs of parafermions . Let SB∞ denote the states on PF∞ that are invariant
under the action of B∞. In Sects. 6–7 we prove:

Theorem 1 (de Finitti for braided parafermions). Let ϕ ∈ SB∞ be a braid-invariant state
on PF∞. Then the following are equivalent:

(1) The state ϕ is extremal in the set of states SB∞ on PF∞.
(2) The state ϕ = ρ⊗∞ is the infinite tensor product of a state ρ on PF2.

We can refine this characterization, depending on the order d of the algebra PF∞.
This results in different restrictions on ρ. As a consequence of Theorem 1, any B∞-
invariant state on PF∞ is in the closure of the convex hull of the product states. Let
PF

ϕ

∞ denote the von Neumann algebra generated by PF∞ in the Gelfand-Naimark-
Segal (GNS) construction with respect to the state ϕ ∈ SB∞ . Also let (PF

ϕ

∞)B∞ be the
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fixed point algebra under the action of the braid group B∞. The neutral subalgebra of
(PF

ϕ

∞)B∞ is the subalgebra generated by monomials in parafermions of degree zero
mod d.

It is interesting that a distinction arises in this characterization, according to whether
or not the order of the parafermion algebra is square free. (This means that d = ∏

i pi ,
where the primes pi are distinct.) Let us now suppose that the degree d of the parafermion
algebra is square free. In this case one finds that extremal, braid-invariant states are
neutral and that they give rise to a factor. One can refine Theorem 1 as follows:

Theorem 2. Let ϕ ∈ SB∞ be a braid-invariant state on a parafermion algebra PF∞ of
square-free degree d. The following are equivalent:

(1) The state ϕ is extremal in SB∞ .
(2) The state ϕ = ρ⊗∞, where ρ is a neutral state on PF2.
(3) The neutral subalgebra of (PF

ϕ

∞)B∞ = C.
(4) The algebra (PF

ϕ

∞)B∞ = C.
(5) The von Neumann algebra PF

ϕ

∞ is a factor.

In case d is not square free,we give the corresponding characterization braid-invariant
states and their von Neumann algebras in Theorems 21 and 22. As this requires some
additional terminology that we only introduce later, we postpone these statements to
Sect. 7.

A main difference is that an extremal, braid-invariant state is not necessarily neutral,
nor is the corresponding algebra necessarily a factor. It is interesting that the de Finetti
theorem suggests new methods to prove whether the von-Neumann algebra PF

ϕ

∞ is a
factor. Finally in Theorem 14 we characterize the extremal nature of product states (an
inverse de Finetti theorem).

1.3. Organization. In Sect. 2 we define parafermion algebras and their diagrammatic
representation which we call parafermion planar para algebras (PAPPA). In Sect. 3
we introduce the four-string braid group B∞ acting on the parafermion algebra. We
describe the braid using its diagrammatic representation in the PAPPA model. In Sect. 4
we introduce braid-invariant states, the action of shifts, the tail algebra, and conditional
expectaions onto the tail algebra. We also introduce the neutral part of the tail algebra,
which equals the center of the parafermion algebra. We derive the independence of the
conditional expectation onto the tail algebra. In Sect. 6 we prove the de Finetti theorem
for parafermion algebras in the case that d is square free. We show that the center of
parafermion algebra is equal to the tail algebra of the parafermion alegbra and that the
tail algebra only consists of neutral elements. In Sect. 7 we generalize our de Finetti
theorem to the case that d is not square free. In this case, the tail algebra does not equal
the center of the parafermion algebra, and the tail algebra contains non-neutral elements.
We characterize the tail algebra for extremal, braid-invariant states.

2. Parafermion Algebras and the PAPPA Model

The parafermion algebra PFm of degree d is the Zd -graded *-algebra generated by
{ c j }mj=1, with m possibly infinite. We denote the degree of a monomial A ∈ PFm by
deg(A) ∈ Zd . Since it is often useful to regard the degree as a physical “charge,” we
sometimes use this term interchangeably with “degree.”
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The generators c j of the algebra are called parafermions and satisfy the canonical
parafermion relations (CPRs)

c j ck = q ckc j , for j < k, cdj = I, c∗
j = c−1

j , (1)

where q = e
2π i
d , and i = √−1. Then PF2m is isomorphic to the tensor product of

m-copies of Md(C) through the “Jordan-Wigner” transformation,

PF2m ∼= ⊗m
k=1Md(C). (2)

Therefore, the parafermion algebra PF∞ := lim
m→∞ PFm is isomorphic to the infinite

tensor product of Md(C),

PF∞ ∼= ⊗∞
k=1Md(C). (3)

According to the charge in the parafermion algebra, it can be decomposed by charge as
PF∞ = ⊕d−1

k=0 PFk∞, where

PFk∞ = { x ∈ PF∞ | deg(x) = k } . (4)

The charge-zero subalgebra PF0∞ is called the neutral subalgebra.
We use a pictorial representation for the element cmj introduced in [JL17], where the

algebra is called PAPPA. We represent cmj by inserting the label m on the j th string
(numbered from left to right). We place the label of the string position above or below
the string, and we omit that label in case this will cause no confusion.We interpretm as a
Zd -valued charge, so we also call PAPPA a “charged-stringmodel.” The correspondence
between parafermion operators and pictures is:

cmj ←→ ... ...

j

m .

Multiplication is designated from top to bottom, corresponding to algebraic factors
written from right to left. In the PAPPA model, the charged strings satisfy the following
relations,

Multiplication:
m

n
= m + n , d = = 0 .

Para isotopy: · · ·
n

m = qmn · · ·n

m
. (5)

Twisted product: · · ·n m := ζmn · · ·n

m
. (6)

Here ζ is a chosen square root of q such that ζ d2 = 1 [JL17,JLW18].

3. The Four-String Braid Group B∞

We consider the four-string braid group generated by exchanges of pairs of adjacent
parafermions; in quantum information this corresponds to braiding adjacent qudits.
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3.1. Four string braids. The algebra generated by two consecutive generators (c j , c j+1)
is isomorphic to Md(C); in other words PF2 ∼= Md(C). Motivated by this picture, we
consider the action of braid group B∞ on the pairs of the generators (c2 j−1, c2 j ). In
particular, for the parafermion algebra PF2m , we introduce the braid group

B2m = 〈b1, b2, . . . , bm−1〉, (7)

that is generated bym−1 four-string braids. The braid b j intertwines the (2 j −1)th and
(2 j)th strings with the (2 j +1)th and (2 j +2)th strings. The following picture represents
this (negative) four-string braid action:

b j = · · · · · ·

2 j−1 2 j 2 j+1 2 j+2

. (8)

Proposition 3. Each four-string braid b j is an element of PF∞. The generators b j ∈
B∞ satisfy the double-braid relations:

b j bk = bkb j , if | j − k| > 1,

b jbkb j = bkb jbk, if | j − k| = 1. (9)

Proof. The negative four-string braid b j is the product of four two-string braids,

= . (10)

Each two-string braid can be expressed in terms of the generators of the parafermion
algebra, as shown in formula (8.1) of [JL17],

b(2)
k =

k+1k

= ω1/2

√
d

d−1∑

i=0
i

−i

k k+1

. (11)

Here ω = 1√
d

∑d−1
j=0 ζ j2 is shown to be a phase in Proposition 2.15 of [JL17]. As a

consequence the two-string braid b(2)
k is a unitary, namely b(2) ∗

j b(2)
j = I , and hence so is

the four-string braid b j . Also the left-most single braid b(2)
2 j−1 and the right-most single

braid b(2)
2 j+1 illustrated in (10) commute, so their relative vertical order does not matter.
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This decomposition shows that b j is in the algebra generated by the four parafermions
c2 j−1, c2 j , c2 j+1, c2 j+2.

The double-braid relations (9) are evident from the picture representation of the
double braid, and the fact that the single braid satisfies the three Reidermeister moves,
see §8 in [JL17] and §3.7 in [JLW18]. ��

3.2. Action of double braids on parafermions. The natural action of the double braids
B2m on the parafermion algebra PF2m is the adjoint action Ad(b j ) ∈ Aut (PF2m). The
adjoint action exchanges the pair (c2 j−1, c2 j ) with the pair (c2 j+1, c2 j+2). Thus

Ad(b j )(c
m
2 j−1c

n
2 j ) = b j (c

m
2 j−1c

n
2 j )b

−1
j = cm2 j+1c

n
2 j+2. (12)

The diagram that corresponds to this action is:

2 j−1 2 j 2 j+1 2 j+2

m

n

2 j−1 2 j 2 j+1 2 j+2

=
m

n
. (13)

This equality combines the second Reidermeister move for the braid, as well as the fact
that charges pass freely under a braid, see Theorem 8.2 in [JL17]. In a similar manner,
one can analyze the case with charges on all four strings. The composition of braids
translates a sequence of qudits; for example, Ad(b j−1b j ) acting on the j −1 and j qudit
spaces, tensored with the identity on the qudit j + 1, can be pictured as

Ad(b j−1b j )

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2 j−2 2 j−3 2 j−1 2 j 2 j+1 2 j+2

k l m n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

2 j−1 2 j 2 j+1 2 j+22 j−22 j−3

m nlk

2 j−1 2 j 2 j+1 2 j+22 j−22 j−3

=

2 j−2 2 j−3 2 j−1 2 j 2 j+1 2 j+2

k l m n .

3.3. States and automorphisms. A state ϕ on PF∞ yields by the GNS construction a
Hilbert space H , a ∗-representation π of PF∞ on H , and a cyclic vector � such that
ϕ(x) = 〈�,π(x)�〉H . For simplicity, we denote π(x) acting onH by x . We also use
x to denote an element of the von Neumann algebra PF

ϕ

∞ on H obtained by closing
PF∞/N in the sesquilinear form 〈x, y〉 = ϕ(x∗y) arising from ϕ with null space N .

If the state ϕ is invariant under a ∗-automorphism σ of PF∞, this determines a ∗-
automorphism (that we also denote as σ ) on PF

ϕ

∞ and an isometryU onH , that leaves
� invariant, and such that σ(x)� = Ux�.
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3.4. Braid-invariance and shift invariance. We are especially concerned with shifts of
pairs of generators of the parafermion algebra, as they correspond to the action of the
four-string braids. Define the double shift α ∈ End(PF∞) by

α(c j ) = c j+2, for all j ∈ N. (14)

The picture for the double shift is:

1 2 3 4 j

· · ·i1 i2 i3 i4 i j
α−→· · · i1 i2 i j−2

1 2 3 4 j

· · · . (15)

Let (PF
ϕ

∞)α denote the fixed point algebra of PF
ϕ

∞ under the shift

(PF
ϕ

∞)α := { x ∈ PF
ϕ

∞ | α(x) = x } . (16)

A state ϕ on PF∞ will be called α-shift-invariant if

ϕ = ϕ ◦ α. (17)

Let Sα denote the set of α-shift-invaraiant states on PF∞.
Similarly we say that the state ϕ on PF∞ is braid-invariant if it is invariant under the

adjoint action of the braid group B∞,

ϕ = ϕ ◦ Ad(b), (18)

for any b ∈ B∞. Let SB∞ denote the set of B∞-invariant states on PF∞.
Let (PF

ϕ

∞)B∞ denote the fixed point algebra of PF
ϕ

∞ under the adjoint action of the
braid group B∞,

(PF
ϕ

∞)B∞ := { x ∈ PF
ϕ

∞ | Ad(σ )(x) = x,∀σ ∈ B∞ } . (19)

Proposition 4. For x ∈ PF
ϕ

∞, the strong limit of consecutive braidings exists. It equals
to the shift of x,

α(x) = st.- lim
n→∞ Ad(b1b2 . . . bn)(x) ∈ PF

ϕ

∞. (20)

Any braid-invariant state is also α-shift-invariant, SB∞ ⊂ Sα .

Proof. Any element x ∈ PF2m satisfies Ad(b1b2 . . . bm)(x) = α(x), and furthermore
Ad(b1b2 . . . bn)(x) = Ad(b1b2 . . . bm)(x) for n > m. Thus (20) holds on this dense
subalgebra.

If x j ∈ PF2m j converges strongly to x ∈ PF
ϕ

∞, we claim that α(x j ) converges
strongly to a limit that we denote α(x). Let B
 = b1 · · · b
 denote the unitary trans-
formation implementing this element of the braid group on the GNS Hilbert space H .
Choose y ∈ PFk , and without loss of generality, let k < j < j ′. Then

∥
∥(α(x j ) − α(x j ′))y

∥
∥2
H =

∥
∥
∥(Bm j ′ (x j − x j ′)B

∗
m j ′ y

∥
∥
∥
2

H

= ϕ(y∗Bm j ′ (x j − x j ′)
∗(x j − x j ′)B

∗
m j ′ y)

= ϕ(ỹ∗(x j − x j ′)
∗(x j − x j ′)ỹ). (21)
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Here we use the invariance of ϕ under the braid group and the fact that ỹ = B∗
m j ′ yBm j ′

is independent of j ′ for k < j ′. Thus as a consequence of the strong convergence of
x j , the difference (21) converges to zero as j → ∞. As the y range over a dense set of
PF

ϕ

∞ this verifies (20). It also shows that ϕ is α-shift-invariant, for

ϕ(α(x)) = lim
j

ϕ(α(x j )) = lim
j

ϕ(Bm j x j B
∗
m j

) = lim
j

ϕ(x j ) = ϕ(x).

��

4. The Tail Algebra for Parafermions

We give the basic definitions of braid-invariance and the tail algebra for parafermions,
and we derive some general properties.

4.1. Fundamental concepts. Neutral states The state ϕ on PF∞ is called neutral, if it
vanishes on elements with non-zero charge, namely ϕ(x) = 0 for all x with deg(x) �= 0.
The tail algebra Let ϕ be a state on PF∞, and let Hϕ denote the Hilbert space obtained
by the GNS construction. Let PF

ϕ

∞ be the von Neumann algebra generated by the
representation of PF∞ on Hϕ . Define the tail algebra PFT of the parafermion algebra
as

PFT =
⋂

n

αn(PF
ϕ

∞). (22)

Conditional expectation Given an algebra A and a subalgebra B ⊂ A , a B − B
bimodule linear map E : A → B is a conditional expectation if for all a ∈ A and
b, b1, b2 ∈ B,

E(A ) = B, E(b) = b, and E(b1ab2) = b1E(a)b2. (23)

Charge in the tail algebra To decompose the tail algebra according to the charge, define
charge of an element in the tail algebra to be compatible with the charge of elements in
the parafermion algebra.

4.2. Properties of the tail algebra. The tail algebra can be characterized using the strong
operator topology (SOT). For the shift α defined by (14) on PF∞, define the shift-
averaging transformation

Sk = α + α2 + · · · + αk

k
. (24)

Given a state ϕ, we also have the corresponding α and Sk on PF
ϕ

∞.

Proposition 5. Let ϕ be an α-shift-invariant state on PF∞, and let x ∈ PF
ϕ

∞. Then
Sk(x) converges strongly to an element in the tail,

ET (x) = st.- lim
k→∞Sk(x). (25)

The map ET defines a normal, unital conditional expectation from PF
ϕ

∞ to PFT . Also

ET (x) = ET (α(x)), and (ET (x))∗ = ET (x∗). (26)
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Proof. Clearly ET (I ) = I , and

st.- lim
k

α(x) − α(k+1)(x)

k
= 0. (27)

So if ET (x) = st.- limk→∞ Sk(x) exists, then ET (α(x)) = ET (x), and the limit is in
the tail algebra PFT . As ‖Sk(x)‖ � ‖x‖, it is sufficient to show that limk Sk(x)A�

exists for all monomials A ∈ PF2m , with m � 1.
We first establish the limit when x is a monomial in PF2m , so that for any k > m,

and for r = −deg(x)deg(A),

αk(x)A = qr Aαk(x). (28)

At most 2m terms differ in the sums defining Sk(x)A and qr ASk(x), so1

∣
∣Sk(x)A� − qr ASk(x)�

∣
∣ � 2m

k
‖A‖ ‖x‖ |�| →k→∞ 0. (29)

Since ϕ is α-shift-invariant, there is a unitary Uα on Hϕ that implements α and leaves
� invariant, namely

UαA� = α(A)�.

Then

Sk(x)� =
(
Uα +U 2

α + · · · +Uk
α

k

)

x�. (30)

Here the unitaryUα implements α and leaves� invariant. Nowwe use the von Neumann
mean ergodic theorem, see page 407 of [RS55], to conclude that the vectors (30) converge
strongly as k → ∞. Hence any x ∈ PF2m satisfies

ET (x)� = lim
k

Sk(x)�, and ET (x)A� = qr AET (x)�. (31)

Any operator in PF2m is a finite sum of monomials, so the limit (25) exists for operators
in PF∞.

Now we show that the limit (25) extends to all x0 ∈ PF
ϕ

∞. By Kaplansky density
theorem, there are x j ∈ PF2 j , j = 1, 2, . . ., such that ‖x j‖ � ‖x0‖ and st.- lim j x j =
x0. Let 
 ∈ Zd and y j = α(x j ). Define

y j,
 = 1

d

∑

k∈Zd

qk
c−k
1 y j c

k
1. (32)

Then y j = ∑

∈Zd

y j,
, with deg(y j,
) = 
, and they satisfy

‖y j,
‖ � ‖y j‖ � ‖x0‖, and st.- lim
j
y j,
 = y0,
. (33)

Whenever k > m,
αk(y j,
)A = q−deg(A)
Aαk(y j,
). (34)

Arguing as above, we infer that
∣
∣
∣Sk(y j,
)A� − q− deg(A)
ASk(y j,
)�

∣
∣
∣ � 2m

k
‖A‖ ‖x0‖ |�| . (35)

1 We use ‖ · ‖ to denote the norm of an operator and | · | to denote the norm of a vector.
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Furthermore Sk(y0,
) has a strong limit ET (y0,
), such that

ET (y j,
)� = lim
k

Sk(y j,
)�,

ET (y j,
)A� = q−deg(A)
AET (y j,
)�.

Therefore ET (y0) exists. By (27), ET (x0) exists and

ET (x0) = ET (y0) =
∑


∈Zd

ET (y0,
). (36)

Suppose {xm} is a sequence in the unit ball of PF
ϕ

∞, and st.- lim j x j = x0. To show
that ET is normal, it is sufficient to show that lim j ET (x j ) = ET (x0). Define y j,
 as
above, so the properties above remain true. Moreover,

∣
∣Sk(y0,
)� − Sk(y j,
)�

∣
∣ =

∣
∣
∣
∣

(
Uα +U 2

α + · · · +Uk
α

k

)

(y0,
 − y j,
)�

∣
∣
∣
∣

�
∣
∣(y0,
 − y j,
)�

∣
∣ .

So

|(ET (y0,
) − ET (y j,
))�| � |(y0,
 − y j,
)�|, (37)

|(ET (y0,
) − ET (y j,
))A�| = |A(ET (y0,
) − ET (y j,
))�| (38)

� ‖A‖ |(y0,
 − y j,
)�|. (39)

Therefore,

st.- lim
j
ET (y j,
) = ET (y0,
), st.- lim

j
ET (y j ) = ET (y0), and (40)

st.- lim
j
ET (x j ) = ET (x0). (41)

Finally we verify that the map x �→ ET (x) defines a conditional expectation, by
checking the three defining relations in (23). We have shown the first identity in (26).
Note that Sk(x∗) = Sk(x)∗, so taking the limit in k we obtain the second identity
in (26). For the third identity, consider y1, y2 ∈ PFT . Then

y1Sk(x)y2 = Sk(y1xy2),

using the invariance of PFT under the shift α. As a consequence the k → ∞ limits
agree, so x �→ ET (x) does define a conditional expectation. ��
Remark 6. A combination of Theorem 2.2 in [GK09] and Proposition 7.3 in [K10] also
shows that ET is a conditional expectation onto the tail algebra.

Corollary 7. Let ϕ ∈ SB∞ , then ϕ = ϕ ◦ ET .

Proof. From Proposition 4 we infer that the state ϕ is invariant under the action of α,
and from Proposition 5 we infer that ϕ ◦ ET = ϕ. ��
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Proposition 8. The tail algebra PFT is a commutative Zd-graded von Neumann alge-
bra, with the charge-
 part denoted PFT,
,

PFT =
⊕


∈Zd

PT T,
. (42)

Moreover, PT T,
 = 0 when d � 
2.

Proof. As in the proof of Proposition 5, for any x ∈ PFT , there are y
 ∈ PF
ϕ

∞, 
 ∈ Zd ,
such that

x = α(x) =
∑


∈Zd

y
, (43)

c1y
c
−1
1 = q
y
. (44)

Define y
 to have charge 
. By Proposition 5,

x =
∑


∈Zd

ET (y
), (45)

c1z
c
−1
1 = q
ET (y
). (46)

and c1xc
−1
1 =

∑


∈Zd

q
ET (y
). (47)

Therefore, the conjugation by the first parafermion generator c1 defines an automorphism
on the tail algebra. So if x has charge 
, there are operators y j ∈ PF2( j+1) with charge

, for j � 1, such that

st.- lim
j→∞ y j = x . (48)

Then

st.- lim
j→∞ αk(y j ) = x, (49)

st.- lim
j→∞ αk(y∗

j ) = x∗. (50)

Note that
αk(y j )y

∗
j = q
2 y∗

jα
k(y j ), ∀ k > j + 1. (51)

So xy∗
j = q
2 y∗

j x . Then xαk(y∗
j ) = q
2αk(y∗

j )x , and

xx∗ = q
2x∗x . (52)

Both xx∗ and x∗x are positive operators, so q
2 = 1, namely d | 
2.
If z ∈ PFT has charge 
′, then similarly we have that d | (
′)2 and

xz = q−

′
zx . (53)

Then d2 | (

′)2. So d | 

′, and xz = zx . Therefore PFT is commutative. ��
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Proposition 9. Given a braid-invariant state ϕ ∈ SB∞ and the corresponding tail alge-
bra PFT ,

PFT = (PF
ϕ

∞)α = (PF
ϕ

∞)B∞ . (54)

This result works in a general situation, see Theorem 0.3 in [GK09]. We give a quick
proof for braided parafermions here.

Proof. We claim that (PF
ϕ

∞)α ⊂ PFT ⊂ (PF
ϕ

∞)B∞ ⊂ (PF
ϕ

∞)α . Assume x ∈
(PF

ϕ

∞)α , then x = αn(x) ∈ αn(PF
ϕ

∞) for any n, and in particular x ∈ ⋂
n αn(PF

ϕ

∞) =
PFT . For any x ∈ PFT , one has Ad(bn)(x) = x for any n as x ∈ α(PF

ϕ

∞). Thus,
x ∈ (PF

ϕ

∞)B∞ , i.e., PFT ⊂ (PF
ϕ

∞)B∞ . Moreover, (PF
ϕ

∞)B∞ ⊂ (PF
ϕ

∞)α follows
from Proposition 4. ��

Given a state ϕ ∈ SB∞ , let PFT,0 denote the neutral subalgebra of PFT , and let
Z(PF

ϕ

∞) denote the center of the von Neumann algebra PF
ϕ

∞.

Proposition 10. Let ϕ ∈ SB∞ . Then

PFT,0 = Z(PF
ϕ

∞) ⊂ PFT . (55)

Proof. Any neutral x ∈ PFT commutes with all elements in PF∞, and therefore
commutes with all elements in PF

ϕ

∞. Hence PFT,0 ⊂ Z(PF
ϕ

∞). Furthermore, we
infer from Proposition 3 that any braid b j ∈ PF∞, and also b j ∈ PF

ϕ

∞. So if x ∈
Z(PF

ϕ

∞), one has b j x = xb j , and x is invariant under the adjoint action of every b j ,
and x ∈ (PF

ϕ

∞)B∞ . Thus we infer from Proposition 9 that x ∈ (PF
ϕ

∞)α = PFT , so
PFT,0 ⊂ Z(PF

ϕ

∞) ⊂ PFT .
If x ∈ Z(PF

ϕ

∞), then c1ET (x) = ET (x)c1. Since x ∈ Z(PF
ϕ

∞) ⊂ PFT ,
c1ET (x)c−1

1 = qdeg(ET (x))ET (x). So deg(ET (x)) = 0. Hence Z(PF
ϕ

∞) ⊂ PFT,0,
and PFT,0 = Z(PF

ϕ

∞). ��
Let I be a subset I ⊂ N, and let PFI denote the parafermion algebra generated by

the ci with i ∈ I . For two subsets I, J ⊂ N, let I < J means that for i < j for all
i ∈ I, j ∈ J . Clearly if x ∈ PFI and y ∈ PFJ with I < J , then

xy = qdeg(x) deg(y) yx .

Proposition 11. Let ϕ ∈ SB∞ , and let x ∈ PFI , y ∈ PFJ , where I < J or J < I are
finite subsets of N. Then ET (xy) = ET (x)ET (y). Likewise, if xi ∈ PFIi for increasing
intervals Ii < I j for i < j , then

ET (x1 · · · xk) =
k∏

i=1

ET (xi ). (56)

Such independence is called order tail-independence in Ref. [K10], where a stronger no-
tion of independence, called full tail-independence, has also been proposed and investi-
gated. Itwas shown inTheorem8.1 in [K10] that spreadability implies tail-independence.
Here we give a quick proof for braided parafermions.
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Proof. If I < J , there exists σn ∈ B∞ such that σn(xy) = xαn(y). Thus using from
Proposition 9 and the invariance of PFT under braids,

ET (xy) = ET (σn(xy)) = ET (xαn(y)) = ET (xSk(y)) = ET (xET (y)).

Then using (26), the α-shift-invariance of PFT given in Proposition 9, and the fact that
PFT is an algebra, we infer for n, k ∈ N that

ET (xy) = ET (αn(xET (y))) = ET (αn(x)ET (y)) = ET (Sk(x)ET (y))

= ET (ET (x)ET (y)) = ET (x)ET (y).

If x and y have a given degree, then deg(ET (x)) = deg(x). So if J < I and
xy = (y∗x∗)∗, we obtain from the previous case,

ET (xy) = ET ((y∗x∗)∗) = ET (y∗x∗)∗ = (ET (y)∗ET (x)∗)∗ = ET (x)ET (y).

The general case for two elements follows by linearity for x and y a sum of components
with definite degree. The case for k ordered elements follows by iteration of the two-
element case. ��
Proposition 12. Let ϕ be an extremal state in SB∞ , then PFT,0 = C.

Proof. We show that if PFT,0 is not trivial, then ϕ is not extremal. If dim(PFT,0) �= 1,
there exists a non-trivial projection P ∈ PFT,0. By Proposition 10, PFT,0 = Z(PF

ϕ

∞).
If ϕ(P) = 0, then 0 � ϕ(x∗Px) = ϕ(Px∗x) �

√
ϕ(P)ϕ((x∗x)2) = 0. So ϕ(x∗Px) =

0, for any x ∈ PF
ϕ

∞. Therefore P = 0 in PF
ϕ

∞, a contradiction. Similarly, if ϕ(P) = 1,
then P = I , a contradiction. Therefore β = ϕ(P) ∈ (0, 1).

Proposition 9 shows P is invariant under action of B∞. Let ϕ1(·) = 1
β
ϕ(P(·)), and

let ϕ2(·) = 1
1−β

ϕ((1 − P)(·)). Then ϕ1, ϕ2 ∈ SB∞ and ϕ = βϕ1 + (1 − β)ϕ2, which
contracts with the fact that ϕ is extremal. ��

5. The Inverse de Finetti Theorem

Suppose A is a finite dimensional matrix algebra and ρ is a state on A . Let A ⊗m =
⊗m

k=1A be the mth tensor power of A and A∞ = ⊗∞
k=1A be the infinite tensor power

of A . Let SP,A∞ be the states on the infinite tensor product of A which are invariant
under the permutation group. The de Finetti theorem said that if ϕ is an extremal point
in SP,A∞ , then ϕ is the infinite product state

∏
ρ, for some state ρ onA . It was shown

by Størmer, that any symmetric product state is extremal in SP,A∞ , see Theorem 2.7 in
[Sto69] for a general result on C∗-algebras.

The tensor product of states on A is called a product state. The symmetric product
state is not an extremal point for the symmetric states on finite tensor products. We
have the following extremal condition for finite symmetric product states, which can be
considered as an inverse de Finetti theorem on finite tensors:

Theorem 13. Suppose A is a finite dimensional matrix algebra. LetS be the space of
states onA . For m � 2, takeA ⊗m = ⊗m

k=1A . For a state φ ∈ S , if μ is a probability
measure of S , such that,

φm =
∫

ρ∈S
ρmdμ(ρ)

on A ⊗m, then μ is the Dirac measure at φ.
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Proof. Take the restriction on A ⊗2, we have that

φ2 =
∫

ρ∈S
ρ2dμ(ρ).

Let Dρ be the density matrix of ρ. Then

Dφ ⊗ Dφ =
∫

ρ∈S
Dρ ⊗ Dρdμ(ρ).

Let P be the range projection of Dφ , and Q = I − P , then

∫

ρ∈S
QDρQ ⊗ QDρQdμ(ρ) = 0.

Therefore, QDρQ = 0 for almost all D. So QD = DQ = 0, and D = PDP .
Without loss of generality, we assume that P = I , then Dφ is invertible. Take Cρ =
D−1/2

φ DρD
−1/2
φ . Then

I ⊗ I =
∫

ρ∈S
Cρ ⊗ Cρdμ(ρ).

Let tr be the tracial state onA . Then taking the trace of the tensor/product in the above
formula,

∫

ρ∈S
tr(Cρ)2dμ(ρ) = tr(I )2 = 1,

∫

ρ∈S
tr(C2

ρ)dμ(ρ) = tr(I 2) = 1.

So
∫

ρ∈S
(tr(C2

ρ) − tr(Cρ)2)dμ(ρ) = 0.

Note that the covariance of Cρ is

Cov(Cρ) = tr(C2
ρ) − tr(Cρ)2 = tr((Cρ − tr(Cρ))2) � 0.

So Cov(Cρ) = 0, and Cρ = tr(Cρ) for almost all ρ. Then Dρ = tr(Cρ)Dφ . Both Dρ

and Dφ have trace one, so Dρ = Dφ . Therefore μ is a Dirac measure at ρ. ��
The above proof also applies to infinite tensors and we recover the result of Størmer

for matrix algebras:

Theorem 14. Suppose ρ is a state on a finite dimensional matrix algebra A . Then the
product state

∏
ρ is extremal in SP,A∞ .

Proof. By the de Finetti theorem, any extremal point in SP,A∞ is a product state ρ∞,
for some ρ ∈ S . Note that ρ j → ρ weakly on A iff ρ∞

j → ρ∞ weakly on A∞. Thus
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the space of infinite symmetric product states has the same weak topology asS . By the
Choquet-Bishop-de Leeuw theorem, any state in SP,A∞ is

∫

ρ∈S
ρ∞dμ(ρ),

for some probability measure μ onS . Therefore, any convex combination is also of the
above form. For a state φ ∈ S , if

φ∞ =
∫

ρ∈S
ρ∞dμ(ρ),

then

φ2 =
∫

ρ∈S
ρ2dμ(ρ).

By Theorem 13,
∫
ρ=φ

dμ(ρ) = 1. Therefore, φ∞ is extremal in SP,A∞ . ��

6. The de Finetti Theorem: Square-Free d, the Neutral Case

As explained in the introduction, there are two possible outcomes according to whether
the degree d of the parafermion algebra is square free. In this section we investigate the
square-free case. We first prove that the center of the representation of the parafermion
algebra equals the tail algebra, and that the tail algebra is neutral.

Several equivalent characterization of the extremal state in SB∞ follow from these
results, and we precisely characterize the corresponding braid-invariant states. We call
Theorem 17 the de Finetti theorem for the parafermion algebra with square-free degree
d.

Theorem 15. Let d = ∏
pi be square free, and let ϕ ∈ SB∞ be braid invariant. Then ϕ

is neutral: ϕ(x) = 0, whenever deg(x) �= 0.

Proof. Denote Cmn
i = cm2i−1c

n
2i . We first prove that for j < k,

ϕ(ET (Cmn
j )ET (Cmn

k )∗) = 0, unless m + n = 0 (mod d). (57)

Using Corollary 7, with Proposition 11, and the second identity in (26), we have

ϕ(Cmn
j (Cmn

k )∗) = ϕ(ET (Cmn
j (Cmn

k )∗)) = ϕ(ET (Cmn
j )ET (Cmn

k )∗)
= ϕ(ET (Cmn

k )ET (Cmn
k )∗) � 0. (58)

In the last line we use ϕ � 0, as well as ET (Cmn
j ) = ET (Cmn

k ). This property follows
from the first identity in (26), for

ET (Cmn
j ) = αk− j (ET (Cmn

j )) = ET (αk− j (Cmn
j )) = ET (Cmn

k ).
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On the other hand, the parafermion relations (1), and reasoning similar to the proof
of (58), show that

ϕ(Cmn
j (Cmn

k )∗) = q−(m+n)2ϕ((Cmn
k )∗Cmn

j )

= q−(m+n)2ϕ(ET ((Cmn
k )∗Cmn

j ))

= q−(m+n)2ϕ(ET ((Cmn
k )∗Cmn

j ))

= q−(m+n)2ϕ(ET (Cmn
k )∗ET (Cmn

j ))

= q−(m+n)2ϕ(ET (Cmn
k )∗ET (Cmn

k )), (59)

where ϕ(ET (Cmn
k )∗ET (Cmn

k )) � 0. Comparing (58) with (59), we infer that either

q(m+n)2 > 0, or else ϕ(Cmn
j (Cmn

k )∗) = 0.

In our case 0 � m, n � d − 1. As we assume that d is square free, (m + n)2 =
0 (mod d) is equivalent to (m + n) = 0 (mod d). Thus (57) holds.

If m + n �= 0 mod d, we have shown in addition that

ϕ(ET (Cmn
k )ET (Cmn

k )∗) = 0. (60)

So ET (Cmn
k ) = 0, and

ϕ(Cmn
j ) = ϕ(Cmn

k ) = ϕ(ET (Cmn
k )) = 0. (61)

Any element x ∈ PF∞ can be expressed as the linear combination of the products∏
k C

mknk
k , where we take the product in the order of increasing k from left to right. By

(56) we have

ϕ(
∏

k

Cmknk
k ) = ET (

∏

k

Cmknk
k ) =

∏

k

ET (Cmknk
k ) = 0, (62)

unless each (mk + nk) = 0 (mod d), for all k. ��
Corollary 16. Let d = ∏

pi be square free, and let ϕ ∈ SB∞ . Then

PFT,0 = Z(PF
ϕ

∞) = PFT = (PF
ϕ

∞)α = (PF
ϕ

∞)B∞ . (63)

Proof. With the results of Propositions 9 and 10, we only need to show that PFT,0 =
PFT . For this use the fact that we have shown in Theorem 15 that the generators of the
tail algebra are all neutral. ��
Theorem 17. (Neutral Case) Let ϕ ∈ SB∞ be a braid-invariant state on the parafermion
algebra PF∞ of square-free order d. Then (1)–(5) are equivalent conditions:

(1) The state ϕ is extremal in SB∞ .
(2) The state ϕ = ∏

j ρ is a product, where ρ is a neutral state on PF2.

(3) The neutral part of the tail algebra PFT,0 = C.
(4) The tail algebra PFT = C.
(5) The von Neumann algebra PF

ϕ

∞ is a factor.
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Proof. (1) ⇒ (3): This is established in Proposition 12.
(4) ⇒ (2): Since any element x ∈ PF∞ can be expressed as the linear combination

of the form
∏

k

Cmknk
k , we only need to prove that

ϕ(
∏

k

Cmknk
k ) =

∏

k
ϕ(Cmknk

k ). (64)

But this is a consequence of Corollary 7, which ensures that ϕ = ϕ ◦ ET , and Proposi-
tion 11, which shows that ϕ factors on non-overlapping elements of the tail algebra.

(2) ⇒ (1): Suppose ϕ = ∏
ρ = λ1ρ1 + λ2ρ2, where λ1 + λ2 = 1, λ1, λ2 > 0,

and ρ1, ρ2 ∈ SB∞ . Let A = D⊗m . Similar to the proof in Theorem 14, we have ρ1 =
ρA⊗ρA = ρ⊗2m on PF4m . Letm → ∞, we have ρ1 = ∏

ρ. Therefore
∏

ρ is extremal.
Finally the equivalence of (3), (4), and (5) follows from Corollary 16. ��
Since every state in SB∞ can be written as a limit of the convex combination of the

extremal states, such state is in the closure of the convex hull of the product states. This
is the de Finetti theorem on parafermion algebra with square-free degree.

Theorem 18. Let d be square free. Then each stateϕ ∈ SB∞ on theZd gradedparafermion
algebra is neutral, and it can be expressed as the limit of convex combinations of product
states

∏
ρ, where ρ ∈ S(PF2) is neutral.

Corollary 19. If ϕ′ = 1
2 (

∏
ρ +

∏
τ) where ρ, τ ∈ S(PF2) are distinct neutral states,

then the von Neumann algebra PF
ϕ′
∞ is not a factor.

7. The de Finetti Theorem: The Non-neutral Case

In this section, we consider the case when the square of some prime p divides d, so
d = p2d1. Let p0 denote the smallest natural number such that d|p20. Then p0 < d
and p0|d. All the preliminary results in Sect. 4 hold in this case. The difference here is
that when d contains a square, the tail algebra may not be neutral. First, we consider the
special case when the neutral part of the tail algebra is trivial.

Proposition 20. Let ϕ ∈ SB∞ and let PFT,0 = C, then there exists some m0 ∈ N, with
p0|m0, m0|d, and such that

PFT =
d
m0⊕

j=1

PFT, jm0 , and where dim(PFT, jm0) = 1. (65)

Proof. We first show that PFT has a component with a chargem > 0, only when p0|m.
Suppose that p0 does not divide m, x ∈ PFI , and ET (x) ∈ PFT,m . Then for some
k and some J > I , one has αk(x) ∈ PFJ . Using Proposition 11 and Proposition 5,
we infer ET (x∗αk(x)) = ET (x)∗ET (x) � 0 and ET (αk(x)x∗) = ET (x)ET (x)∗ � 0.
Besides, from the canonical parafermion relations, x∗αk(x) = q−m2

αk(x)x∗. Thus
either q−m2

> 0 or else ET (x) = 0. The only positive value on the unit circle in the
complex plane is 1. But the condition p0 � m means q−m2 �= 1. So ET (x) = 0, and
dim(PFT,m) = 0.
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On the other hand suppose that p0|m. We show that dim(PFT,m) � 1. In fact, for
A ∈ PFT,m , the quadratic expressions A∗A and AA∗ are both neutral. Since we have
assumed that PFT,0 = C, then A∗A = λI, and also AA∗ = λ′ I , with λ, λ′ � 0, and
equal to zero only if A = 0. But then (A∗A)2 = λ2I = λλ′

I, so λ = λ′. Therefore either
A = 0 or UA = A/ ‖A‖ is unitary.

Thus for any two non-zero elements A, B ∈ PFT,m , the neutral unitaryU∗
AUB = eiθ

is a phase, and UB = eiθUA. In particular dim(PFT,m) � 1 as claimed. Thus

PFT =
d
p0⊕

k=1

PFT,kp0 , where dim(PFT,kp0) � 1.

Since the dimension of PFT,kp0 is either 0 or 1, all kp0 such that dim(PFT,kp0) = 1
form a subgroup of Zd . There exists a smallest such number k0 that divides all k with
dim(PFT,kp0) = 1. Hence PFT can be written as

PFT =
d
m0⊕

j=1

PFT, jm0 , with dim PFT, jm0 = 1,

where m0 = k0 p0. ��
Define PF p0Z

2 = {x ∈ PF2 | deg(x) ∈ p0Z/dZ}. Then for any x, y ∈ PF p0Z
2 ,

α j (x)αk(y) = qdeg(x)deg(y)αk(y)α j (x) = αk(y)α j (x),∀ j �= k.

Therefore for any state ρ on PF2 with density matrix D in PF p0Z
2 , the product state∏

ρ is a well-defined state on PF∞.

Theorem 21. Let ϕ ∈ SB∞ . Then the following statement are equivalent:

(1′) ϕ is extremal in SB∞ .

(2′) ϕ = ∏
ρ, where ρ is a state on PF2 with a density matrix in PF p0Z

2 .

Proof. (2′) ⇒ (1′): The proof is the same as the proof of (2) ⇒ (1) in Theorem 17.
(1′) ⇒ (2′): If ϕ is extremal, then Proposition 12 shows that PFT,0 = C. Using

Proposition 20, we infer (65), and that PFT, jm0 is generated by a unitary Uj with
charge j . We can choose {Uj }, so that the set G = {Uj } is a cyclic group. The restriction
ϕG of the state ϕ to G is a convex linear combination of characters χ j on G, namely
ϕG = ∑

j λ jχ j , where λ j � 0 and
∑

j λ j = 1.

Each character χi can be extended to a state on PFT , the group algebra of G. It can
also be extended to a state on the parafermion algebra,

χi (x) := χi (ET (x)), ∀x ∈ PF
ϕ

∞ (66)

as ET is a conditional expectation. Then χi (x) = 0, for any element x ∈ PF
ϕ

∞ orthog-
onal to PFT . By Proposition 9, PFT is B∞ invariant, so χi is B∞ invariant. Since ϕ is
extremal, ϕG is equal to some character χ = χi , otherwise the state ϕ can be written as
the convex combination of the B∞-invariant states. Since χ is a character, thus

χ(ET (x)ET (y)) = χ(ET (x))χ(ET (y)). (67)
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That is, ϕ(ET (x)ET (y)) = ϕ(ET (x))ϕ(ET (y)). By Proposition 11, ϕ = ∏
ρ for some

state ρ on PF2.
Let D = ∑

k∈Zd
Dk be the density matrix of ρ, and Dk �= 0 in PFk

2 . Then
ϕ(D∗

kα(D∗
k )) = ρ(D∗

k )
2 > 0. On the other hand

ϕ(D∗
kα(D∗

k )) = qk
2
ϕ(α(D∗

k )D
∗
k ) = qk

2
ρ(D∗

k )
2.

So qk
2 = 1 and p0|k. Therefore D ∈ PF p0Z

2 . ��
Theorem 22. Given a state ϕ ∈ SB∞ , then the following statements are equivalent:

(3′) PFT,0 = C.
(4′) PF

ϕ

∞ is a factor.
(5′) ϕ = ∑

j λ jχi ◦ ∏
ρ, namely for any homogenous x ∈ PF

ϕ
,

ϕ(x) =
∑

j

λ jχi (deg(x))(
∏

ρ)(x), (68)

and the density matrix of ρ is in PF p0Z
2 .

Proof. Proposition 10 ensures the equivalence between (3′) and (4′).
(3′) ⇒ (5′): If PFT,0 = C1, then based on the proof of (1′) ⇒ (2′), the state

restricted in the cyclic group G ϕG can be expressed as the convex combination of
characters

∑
i λiχi . For any A ∈ PI and B ∈ PJ , I < J . We only need to consider the

case where m0|deg(A),m0|deg(B). Thus

ϕ(AB) = ϕ(ET (AB))

=
∑

i

λiχi (ET (AB))

=
∑

i

λiχi (deg(A)deg(B))χ0(ET (AB)).

Due to the proof of (1′) ⇒ (2′), each irreducible character corresponds to one state
which can be written as the product state. Thus, the state χ0 ◦ ET can be written as

∏
ρ,

and the density matrix of ρ is in PF p0Z
2 . Therefore ϕ = ∑

i λiχi ◦ ∏
ρ.

(5′) ⇒ (3′): Let {bk}k∈Zd be an orthonormal basis of PF2 with inner product 〈x, y〉 =
ϕ(y∗x), such that b0 = I . Since ϕ can be written as

∑
i λiχi ◦ ∏

ρ, then any element
x ∈ PFT,0 has the orthogonal decomposition

x = β0 I +
∞∑

i=1

xi , (69)

where

xi =
d−1∑

k=1

βi,kα
i−1(bk)α

i (xi,k), (70)

for some βi,k ∈ C, xi,k ∈ PF
ϕ
, such that deg(xi ) = 0 and ϕ(x∗

j xi ) = ∏
ρ(x∗

j xi ) = 0,
for i �= j . Besides, α(x) = x , which implies that xi = 0 for i � 1. That is, all the
element in PFT,0 is in proportion to the identity. Thus, we obtain (5′). ��
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Besides, the condition (2′) can always implies the condition (5′), these five conditions
can be summarized as follows.

(1′) ⇔ (2′)
⇓

(3′) ⇔ (4′) ⇔ (5′)

That is, for the extremal B∞-invariant state, the corresponding tail algebra PFT can be
decomposed as (65).

8. Summary

We have proposed and proved a new type of de Finetti theorem for the parafermion
algebra PF∞ with respect to the action of braid group B∞ that braids qudits (pairs of
parafermions). We have two results based on whether or not the degree d of the given
parafermion algebra is square free. In both cases, we characterize the extremal, braid-
invariant states, and show that these properties are equivalent to the states being product
states on

∏
PF2 ∼= ∏

Md .
In the square-free case,wehave foundother equivalent conditions for a braid-invariant

state ϕ to be extremal. It is surprising that one such condition is that the von Neumann
algebra PF

ϕ

∞ is a factor; so if ϕ is the convex combination of extremal, braid-invariant
states, then the corresponding von Neumann algebra of parafermions is not a factor.
Since the parafermion algebra has been used to establish a framework of topological
quantum information theory, the de Finetti theorem in this work can shed insight on the
topological quantum information theory.
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