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Abstract: Weconsider analytic, vacuumspacetimes that admit compact, non-degenerate
Cauchy horizons. Many years ago we proved that, if the null geodesic generators of such
a horizon were all closed curves, then the enveloping spacetime would necessarily admit
a non-trivial, horizon-generating Killing vector field. Using a slightly extended version
of the Cauchy–Kowaleski theorem one could establish the existence of infinite dimen-
sional, analytic families of such ‘generalized Taub-NUT’ spacetimes and show that,
generically, they admitted only the single (horizon-generating) Killing field alluded to
above. In this article we relax the closure assumption and analyze vacuum spacetimes
in which the generic horizon generating null geodesic densely fills a 2-torus lying in
the horizon. In particular we show that, aside from some highly exceptional cases that
we refer to as ‘ergodic’, the non-closed generators always have this (densely 2-torus-
filling) geometrical property in the analytic setting. By extending arguments we gave
previously for the characterization of the Killing symmetries of higher dimensional,
stationary black holes we prove that analytic, 4-dimensional, vacuum spacetimes with
such (non-ergodic) compact Cauchy horizons always admit (at least) two independent,
commutingKilling vector fields ofwhich a special linear combination is horizon generat-
ing. We also discuss the conjectures that every such spacetime with an ergodic horizon
is trivially constructable from the flat Kasner solution by making certain ‘irrational’
toroidal compactifications and that degenerate compact Cauchy horizons do not exist in
the analytic case.

1. Introduction

To disprove the cosmic censorship conjecture it would suffice to establish the existence
(in a suitable function space topology) of an open set of globally hyperbolic solutions
to the vacuum Einstein equations which are all extendible, through Cauchy horizons,
beyond their maximal Cauchy developments. Analytic examples of such extendible
spacetimes include the Taubmetric on S3×R and the flat Kasner metric on T 3×R. Each
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of these solutions can be (analytically) extended through a compact Cauchy horizon to
include an acausal region containing closed timelike curves. If this feature were actually
stable against sufficiently small perturbations then cosmic censorship would be false.

To study this stability question, within the convenient framework of (real-)analytic
metrics, one can employ a straightforward generalization of the Cauchy-Kowalewski
theorem to prove the existence of infinite dimensional families of ‘generalized Taub-
NUT’ vacuum spacetimes, with a variety of spatial topologies, which each, as in the
examples mentioned above, contain a compact Cauchy horizon separating globally hy-
perbolic and acausal regions [1,2]. These families, large though they are, fail to disprove
cosmic censorship for several reasons.

First of all every such generalized Taub-NUT solution admits at least one Killing vec-
tor field—a field which is spacelike in the globally hyperbolic region, null on the Cauchy
horizon (and hence tangent to the horizon’s null geodesic generators) and timelike in the
acausal extension. Thus these particular families could not possibly fill (even densely)
an open subset of generically non-symmetric solutions in any reasonable function space
topology. Secondly, even within the circumscribed context of analytic metrics admitting
at least one Killing field they require a further special restriction upon their ‘initial data’
(which, by exploiting analyticity and the extended Cauchy-Kowalewski theorem can be
specified on the horizon itself) which, roughly speaking, corresponds to a Lagrangian
submanifold of the full set of solutions of the chosen (one-Killing-field) symmetry type.
To rigorously treat the complementary family of one-Killing field metrics (i.e., to relax
the Lagrangian submanifold restriction) has necessitated a still further generalization of
the Cauchy-Kowalewski theorem through the development of so-called Fuchsian meth-
ods [3–5] but the spacetimes obtained by these techniques may exhibit strong curvature
singularities instead of Cauchy horizons and so be inextendable beyond their maximal
Cauchy developments. Finally the generalized-Taub-NUT solutions are all (real) ana-
lytic which many might regard as an artificial restriction to place on any supposedly
physically relevant family of vacuum spacetimes.

Since the presence of a Killing field seemed to play a crucial role in the construction
of these generalized Taub-NUT spacetimes it is of interest to ask whether perhaps the
occurrence of such a field was in fact necessary for the existence of a compact Cauchy
horizon, at least in the (vacuum) analytic case. In earlier articles [6–8] we showed that
this was indeed the case provided that the null-generating geodesic curves which foliate
the horizon are all closed. While this might at first seem to be an unduly artificial
restriction upon the geometry of the horizon we now believe that it represents the least
constraining assumption and that the failure of all the null generators to be closed implies
the existence of at least a second Killing field. By contrast the known (analytic) solutions
with all closed generators need only have the single Killing field which is tangent to the
horizon’s generators.

In this paper we prove, under certain assumptions, that the occurrence of an (analytic)
compact Cauchy horizon with non-closed generators implies the existence of at least one
Killing field—always tangent to the horizon’s generators—and we have already shown
elsewhere that the presence of such aKilling fieldwith non-closed integral curves implies
the existence of a second Killing field [8]. We know of examples (see below) in which
even a third Killing field is required by the special nature of the geometry but we do not
have a systematic treatment of this case which are refer to as ‘ergodic’.

The main assumption we need, in addition to analyticity and the imposition of the
vacuum field equations is that the compact Cauchy horizon be non-degenerate in the
sense that at least one (and hence, as we prove, every in the case of a connected horizon)
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of its null geodesic generators be incomplete in one direction. In factwe donot knowof an
example of a degenerateCauchyhorizon (though compact, degenerate null hypersurfaces
which are not Cauchy horizons can certainly exist for (electro-)vacuum spacetimes)
and, in the case of closed generators we could even prove their non-existence on certain
topologies.We suspect that degenerate compactCauchyhorizonsmaynot exist in general
for analytic (electro-)vacuum spacetimes but do not have a proof of this surmise. The
second assumption we require is that the horizon be non-ergodic in the sense that it not
be densely filled by the orbit of any single geodesic generator. Examples of vacuum
spacetimes with ergodic Cauchy horizons do exist and can be created from the flat
Kasner metric through spatial compactification with an ‘irrational’ shift in the obvious
identifications to produce a toroidal horizon which each null generator densely fills.
We suspect that, up to finite covers, these solutions (which have the extra, third Killing
field alluded to above) may exhaust the vacuum ergodic horizon cases but also have no
proof of this conjecture. On the other hand the ergodic case could, to some extent, be
treated by a straightforward generalization of the techniques developed here provided
that the assumed compact Cauchy horizon admits an analytic foliation with compact
2-dimensional) leaves, transversal to the given null geodesic ‘flow’. While we also
impose the vacuum field equations it seems quite likely that our results could be readily
generalized to allow for certain types of matter sources. Indeed the original results for
closed generators were derived for the electro-vacuum field equations.

Analyticity is the final restrictive assumption that we make but this hypothesis has
a certain double-edged quality that makes it seem less objectionable than it appears at
first sight. First of all, if a genuine open set (in some suitable function space topology)
of vacuum spacetimes admitting compact Cauchy horizons did exist it would presum-
ably contain a large (perhaps densely filling) subset of analytic solutions. Thus one
could expect to probe such a set by focusing on its analytic elements. Secondly, ana-
lyticity serves, by its very rigidity, to exclude the occurrence of many exotic types of
cosmological boundaries which could otherwise occur through suitable (non-analytic)
‘fine-tuning’ of the ‘initial data’. For example in the special case of polarized Gowdy
metrics on T 3 × R one can exploit non-analyticity to produce a large variety of, highly
non-generic, cosmological boundaries involving such exotica as Kantor sets of curvature
singular regions interspersed with complementary sets of non-singular Cauchy horizon
[9]. The fine-tuning of the data needed to produce these exotica is incompatible with
analyticity so that, in concentrating on analytic solutions, one avoids being distracted by
such mathematically allowed but non-generic features. Any truly generic feature should
survive analytic approximations. Thus analyticity is actually an advantage rather than a
liability if only stable properties are of interest.

The main difficulty in treating the problem of non-closed generators considered here,
over and above those already handled for the closed generator case, is a proof that the
candidate vector field for the horizongeneratingKillingfield is in fact analytic.Otherwise
muchof the argument goes through in essentially the sameway as for the closed generator
case. The hypothetical Killing field, restricted to the horizon, is everywhere parallel to
the generators and so already determined up to a multiplicative factor. We define this
factor (in the non-degenerate case wherein every generator is incomplete to the future)
by the requirement that the future affine length of every null geodesic generator be a fixed
positive number 2/k provided one takes the initial condition for the generator starting
at an arbitrary point p of the horizon to have its tangent vector given by the hypothetical
Killing field X (p) at that point. In other words one adjusts the multiplicative factor until
each generator (taken with these rescaled initial conditions) has future length 2/k. The
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technical problem is then to prove that the needed rescaling factor is in fact analytic.
In the closed generator case we found an explicit formula for this factor from which its
analyticity was apparent but here we seem to need a more subtle argument involving the
convergence of a sequence of analytic approximations to the needed rescaling factor.
Unfortunately though since real analytic functions do not form a nice Banach space (with
the norm of uniform convergence) we have had to ‘artificially’ complexify the analytic
structure of the horizon and carry out the convergence argument in the complexified
context, extracting the desired analyticity of the real section at the end of this analysis.
While workable this complicating feature is rather disappointing in comparison with the
simplicity of the corresponding closed generator argument and so one wonders whether
perhaps a further simplification could be found for the present problem.

Our results have some natural correspondences with those for the (Killing) event
horizons of stationary black holes and one can compactify these latter horizons to obtain
examples (in certain cases) of ‘cosmological’ compact Cauchy horizons of the sort we
are interested in. In the black hole case, for which there is a natural normalization of the
Killing horizon generator, the constant k is essentially the so-called surface gravity of
the horizon [10]. It might seem that one could produce examples of degenerate Cauchy
horizons (having, by definition, k = 0) by compactifying the event horizons of extreme
black holes. The simplest (electro-vacuum) example however is provided by the extreme
Reissner-Nordstrom metric of mass M with horizon generating Killing field given, in
standard coordinates, by ∂

∂t . We can compactify the horizon at r = r+ = M to S2×S1 by
identifying the points labeled {t, θ, ϕ}with those labeled {t +�, θ, ϕ} for a fixed constant
� �= 0. However the extreme black hole metric has ∂

∂t · ∂
∂t = − (

1 − M
r

)2
so that the

generating vector field ∂
∂t , tangent to the S1 fibers, has closed timelike orbits on both

sides of the compact null surface at r = M which can therefore not be a Cauchy horizon.
A similar phenomenon occurs for the more general extreme Kerr-Newman solution.

Though the Killing field or fields we produce via the extended Cauchy-Kowalewski
theorem are possibly only determined by convergent expansions in some neighborhood
of the assumed Cauchy horizon it is straightforward to show that these automatically
propagate (as solutions of Killing’s equation) to the full maximal Cauchy development
on the globally hyperbolic side of the horizon. This follows from the well-known fact
that in (for simplicity) a vacuum spacetime any Killing field satisfies a linear hyperbolic
equation which in fact preserves the vanishing of the Killing form for the propagated
vector field [6,11].

2. Outline for the Construction of the Candidate Vector Field

2.1. Geometrical assumptions and basic constructions. We shall be considering real
analytic, time orientable, vacuum spacetimes ((4)V, g) which contain compact Cauchy
horizons. More precisely, we assume that (4)V = M × R, where M is a compact,
connected, analytic and orientable three-manifold without boundary, and that g is an
analytic, Lorentzian, Ricci-flat metric on (4)V . We also assume that ((4)V, g) admits a
compact, embedded null hypersurface N, which can be realized as a level surface of
some real analytic function τ with no critical points on a neighborhood of N, and that
N is a Cauchy horizon for one of the two open submanifolds of (4)V which N separates.
Thus we regard (4)V as a disjoint union (4)V+ ∪ N ∪ (4)V− where (4)V± = M ×R± (with
R± = {r ≷ 0} and assume that at least one of the two spacetimes ((4)V+, g+), ((4)V−, g−)

(where g+ and g− represent the restriction of g to (4)V+ and (4)V− respectively) is globally
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hyperbolic. For convenience, we may assume that the function τ has been chosen so that
N coincides with the level surface of τ having the level value τ = 0.

Since N is null and since by assumption τ has no critical points on a neighborhood of
N, the vector field (4)X determined by dτ (i.e. given in local charts by (4)Xα = gαβτ,β )
is non-vanishing on a neighborhood of N, null on the surface N and thus tangent to the
null geodesic generators of that surface. Let X designate the restriction of (4)X to the
null surface N so that X may be viewed as a vector field defined on N itself.

Since X is non-vanishing and tangent to the null geodesic generators of N, one can
always choose local coordinates {xa, x3} on suitable open subsets of N such that the
{xa |a = 1, 2} are constant along the null generators and such that X = ∂

∂x3
within each

such local chart. One can construct such charts in the following way. Choose a two-disk
D which is (analytically) embedded in N and transversal to the flow of X and let {xa}
be coordinates on D. Define coordinates {xa, x3} on a tubular neighborhood ≈ D × I
of D in N by requiring that the xa remain constant along the integral curves of X and
that x3 coincide with the natural integral curve parameter determined by X (after fixing,
say, x3 |D = k(xa) for some real analytic function k defined on D). The range of x3

may, for convenience, be allowed to vary from generator to generator with, for example,
k(xa) − δ−(xa) < x3 < k(xa) + δ+(xa) where δ± are two strictly positive real analytic
functions. On the connected components of the domains of intersection of any two such
local charts, the two sets of coordinate functions {xa, x3}, {xa′

, x3
′ } are clearly related

by a transformation of the form

x3
′ = x3 + h(xa)

xa
′ = xa

′
(xb)

(2.1)

where h is an analytic function and xa
′
(xb) a local (analytic) diffeomorphism defined

on some transversal two manifold which lies in the domains of both charts.
We shall often consider local charts of the type described above not only for the fixed

vector field X but also for other analytic vector fields defined on N which are tangent to
its null generators. IfK is some non-vanishing vector field onN tangent to the generators
of N and we set up local charts of the type described above based on K (rather than on
X), then the connected components of the domains of intersection of the new charts (say,
{x3′

, xa
′ } with K = ∂

∂x3′ ) with the old ones {x3, xa} for which X = ∂
∂x3

necessarily
admit coordinate transformations of the form

x3
′ = h(x3, xa)

xa
′ = xa

′
(xb)

(2.2)

where, as before, xa
′
(xb) is a local diffeomorphism and where ∂h

∂x3
�= 0.

Let {xa, x3} be local coordinates of the type described above defined on some domain
U ≈ D × I lying in N and adapted to some fixed non-vanishing vector field K (i.e.,
chosen so that K = ∂

∂x3
within the chart) which is tangent to the null generators of N.

Then one can always construct a local chart {t, xa, x3} on some domain (4)U of (4)V
which intersects N in U, for which the hypersurface U = N ∩ (4)U corresponds to the
level value t = 0 and in terms of which the Lorentzian metric g takes the convenient
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form

g = dt ⊗ dx3 + dx3 ⊗ dt

+ ϕ dx3 ⊗ dx3 + βa(dx
a ⊗ dx3 + dx3 ⊗ dxa)

+ μab dxa ⊗ dxb.

(2.3)

By construction, the coordinates, restricted to the null surface t = 0, coincide with
those of the original chart defined on U and because N is null and g is Lorentzian, the
metric functions obey

ϕ|t=0 = βa |t=0 = 0, (2.4)

with μab pointwise positive definite (as a 2× 2 symmetric matrix). The construction of
such local charts on suitable domains in ((4)V, g) was discussed in detail in section II
B of Ref. [6] and need not be repeated here. The local (analytic) coordinate functions
{t, xa, x3} are uniquely determined by the local chart {xa, x3} defined on U ⊂ N and
by the coordinate conditions implicit in the desired metric form (2.3).

Because of their resemblance to gaussian normal coordinates (but with ∂
∂t tangent

to null geodesics transversal to N instead of timelike ones), we called the coordinate
systems for which g takes the form (2.3) and satisfies (2.4) gaussian null coordinates. In
the present context, when we wish to emphasize that the coordinates have, in addition,
been adapted to some particular vector field tangent to the generators of N (i.e., chosen

so that ∂
∂x3

∣∣∣
t=0

coincides with the given vector field) we shall refer to them as adapted

gaussian null coordinates or agn coordinates for brevity.
TheEinstein equations arewritten out in detail in an arbitrary gaussian null coordinate

chart in Section II C of Ref. [6]. As in that reference, we shall often use the notation of
an overhead nought to signify restriction to the null surface N (labeled in gaussian null
coordinates by t = 0). Thus, for example, we shall often write μ̊ab for μab|t=0, etc., and
can therefore reexpress Eqs. (2.4) as ϕ̊ = 0, β̊a = 0.

2.2. Invariance of the transversal metric. Consider an arbitrary two-disk D which is
analytically embedded in N and which is everywhere transversal to the null generators
of that hypersurface. In a gaussian null coordinate chart which covers D, it is clear that
D has a coordinate characterization of the form,

t = 0, x3 = f (xa) (2.5)

for some real analytic function f. (Here the {xa} range over those values corresponding
to the generators which intercept D.) From Eqs. (2.3), (2.4) and (2.5) one sees that g
induces a Riemannian metric μD , given by

μD = μ̊ab|x3= f (xc)dx
a ⊗ dxb (2.6)

onD. If we letD flow along the integral curves of the vector field K = ∂
∂x3

associated (at
least locally) to the chosen chart, then we get a one-parameter family Dλ of embeddings
of D in N characterized by

t = 0, x3 = f (xa) + λ (2.7)
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and a corresponding family of metrics μDλ given by

μDλ = μ̊ab|x3= f (xc)+λdx
a ⊗ dxb. (2.8)

Here λ ranges over some open interval containing λ = 0.
Locally one can always choose a particular vector fieldK tangent to the null generators

of N such that the integral curves of K coincide with the affinely parametrized null
geodesics generating N (i.e., such that the curves {xa(λ)} defined by t (λ) = 0, xa(λ) =
constant, x3(λ) = x̊3 + λ are affinely parametrized null geodesics generating (a portion
of) N, with λ an affine parameter). K is of course not unique (since there is no canonical
normalization for λ along each generator) but can be fixed by prescribing it at each
point of some transversal two-manifold. In general, K may also not be extendable to a
globally defined vector field on N (since the affinely parametrized generators of N may
be incomplete wheras the flow of a globally defined vector field on the compactmanifold
N must be complete) but this is of no consequence in the following construction. For
any point p ∈ N choose a disk D which contains p and is everywhere transversal to the
null generators of N. Construct, on a neighborhood ofD inN, a vector field K of the type
described above and let {xα} = {t, x3, xa} be an agn coordinate chart adapted to K (i.e.,
so that ∂

∂x3
= K is thus tangent to the affinely parametrized generators of N). Now let

D flow along the integral curves of K to get a one-parameter family of embedded disks
Dλ and a corresponding family of induced Riemannian metrics μDλ as described above.

In terms of this construction, one can compute the expansion θ̂ of the null generators
at p by evaluating

θ̂ (p) =
(

∂

∂λ
�n(detμDλ)

)∣∣
∣∣ λ=λ(p)
xa=xa(p)

. (2.9)

It is not difficult to verify that this definition is independent of the particular choice of
transversal manifold D chosen through p and of the particular coordinates {xa} used to
label the generators near p. In fact, this definition of θ̂ is equivalent to the usual definition
of the expansion of the null generators of a null hypersurface.

In our case, however,N is not an arbitrary null surface. It is, by assumption a compact
Cauchy horizon in a vacuum spacetime. For such a hypersurface Hawking and Ellis have
proven the important result that θ̂ vanishes at every point p ∈ N [12,13]. Thus in an
agn coordinate chart adapted to K one has

(detμab),3
∣∣
t=0 = 0 (2.10)

at every point of N covered by the chart. However, the Einstein equation R33 = 0,
restricted to N, yields

R̊33 = 0 =
[(

�n
√
detμ

)

,33

+
1

2
ϕ,t

(
�n
√
detμ

)

,3

+
1

4
μacμbdμab,3μcd,3

]∣∣∣∣
t=0

(2.11)

in an arbitrary gaussian null coordinate chart (where (detμ) ≡ det (μab)). Combining
Eqs. (2.10) and (2.11), we see that μab,3|t=0 = 0 throughout the local chart adapted to
K.
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From this result, it follows easily that the metric μD induced upon an arbitrary disk
transversal to a given bundle of null generators of N is, in fact, independent of the disk
chosen. To see this one computes, recalling Eqs. (2.3) and (2.4), the metric induced
upon an arbitrary such disk D (satisfying t = 0, x3 = f (xa)). From the result that
μab,3|t=0 = 0 it follows that this induced metric is independent of the function f (which
embeds D in the given bundle) and hence of the particular transversal disk chosen.
Though this calculation was carried out using a special family of charts, the definition of
the induced metric is a geometrical one and thus the invariance of this metric (relative to
an arbitrary displacement along the null generators of N) is independent of any choice
of charts.

The invariance of this transversal metric will play an important role in the sections
to follow. Notice that if one starts at a transversal disk D and flows along the generators
of N, then one may eventually reach another disk D′ transversal to the same bundle of
generators which partially or completely coincides with D. Indeed, upon application of
the Poincaré recurrence theorem in the next subsection, we shall see that this always
happens and that every null generator of N is either closed or comes arbitrarily close
to closing.1 By the result of the preceding paragraph, the metric μD′ induced on D′ is
isometric to the metric μD induced upon D (since the transversal metric is invariant
under the flow which carries D to D′). If the null generators intersecting D were all
closed curves this would hardly be surprising since D would eventually coincide with
D′ and the isometry would simply be the identity map. In the non-closed case of primary
interest here, however it leads to non-trivial restrictions upon the transversal metric μD .
For example, suppose U ⊂ D is an open subset of D which, upon translation along the
generators ofN, reintersectsD in another open setU ′. There is a natural diffeomorphism
ϕU of U and U ′ defined by this translation mapping and, from the invariance of the
transversal metric, it follows that

μD|U ′ = ϕ∗
U (μD|U ) (2.12)

i.e., that (U, μD|U ) and (U ′, μD|U ′) are isometric with ϕU the isometry. Of course ϕU
may have some fixed points (corresponding to (non-generic) closed null generators) but,
for the cases of interest here, ϕU is not simply the identity map (even if U = U ′) since,
generically, the generators will not be closed. Thus open subsets of (D, μD) will be
non-trivially isometric to other open subsets of this same space and, as we shall see from
the recurrence theorem, there will be infinitely many such local isometries of (D, μD)

due to the fact that a generic generator intersecting D will reintersect D in infinitely
many distinct points.

2.3. Application of the Poincaré recurrence theorem. In this subsection we shall show
that the Poincaré recurrence theorem [14,15] can be applied to the flow on N generated
by the vector field X defined in Sect. 2.1. Using this theorem we shall then show that
every point1 p ∈ N , when mapped sufficiently far (in either direction) along the flow
of X, returns arbitrarily closely to its initial position. When combined with the isometric
character of this flow (relative to the transversal metric) derived in the previous subsec-
tion, this result will lead to very stringent restrictions upon the topological nature of the
flow.

1 As we shall elaborate in the section below this result does not follow from Poincaré recurrence alone
(which, by itself, would only imply that almost all of the trajectories either close or come arbitrarily close
to closing) but also hinges, in combination with Poincaré recurrence, on the isometric nature of the flow (on
transversal disks) derived above.
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Sinceour spacetime ((4)V, g) is, by assumption, bothnon-compact and time-orientable,
it necessarily admits a global, smooth timelike vector field V which, without loss of gen-
erality, we may assume has been normalized to unit length (i.e., to have g(V, V ) = −1).
Since V is timelike, it is necessarily transversal to the null surface N. This follows from
noting that the normalization condition, evaluated in a gaussian null coordinate chart,
reduces to

− 1 = g(V, V )|N = {2V tV 3 + μabV
aV b}|t=0 (2.13)

which clearly implies that V t is nowhere vanishing. Expressed more invariantly this
statement is equivalent to g(X, V )|N �= 0 since, in an arbitrary agn chart adapted to
X, g(X, V )|N = V t |t=0. Assume for definiteness that V t |t=0 > 0 everywhere on N
(i.e., in every agn chart adapted to X on N).

Following Hawking and Ellis [16], we define a positive definite metric g′ on (4)V by
setting

g′(Y, Z) = g(Y, Z) + 2g(Y, V )g(Z , V ) (2.14)

for any pair of vector fieldsY, Z definedon (4)V . Thismetric induces aRiemannianmetric
(3)g′ on N given, in an arbitrary gaussian null coordinate chart, by the expressions

(3)g′
33 = (2V tV t )|t=0

(3)g′
3a = (2μabV

bV t )|t=0

(3)g′
ab = (μab + 2μacV

cμbdV
d)|t=0

(2.15)

and having the natural volume element

√
det (3)g′ =

(
21/2V t

√
detμ

)∣∣∣
t=0

. (2.16)

Since X = ∂
∂x3

in an agn chart adapted to X, we have

(3)g′(X, X) = (3)g′
33 = (2V tV t )|t=0 (2.17)

as a globally defined, nowhere vanishing function on N. Using this non-vanishing func-
tion as a conformal factor, we define a second Riemannian metric (3)g on N, conformal
to (3)g′, by setting

(3)g =
(

1

V t

)2/3
∣
∣∣∣∣
t=0

(3)g′. (2.18)

The natural volume element of (3)g is thus given by

√
det (3)g =

(
1

V t

)∣∣
∣∣
t=0

√
det (3)g′

=
(
21/2

√
detμ

)∣∣
∣
t=0

(2.19)
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Computing the divergence of X with respect to the metric (3)g, we find

∇(3)g · X = 1
√
det (3)g

∂

∂xi

(√
det (3)gXi

)

=
(

1√
detμ

∂

∂x3

(√
detμ

))∣∣
∣∣
t=0

= 0

(2.20)

which vanishes by virtue of the result of Hawking and Ellis cited in the previous section
(i.e., by virtue of the invariance of the transversal metric μ̊ab relative to the flow along
X). Equation (2.20) can be equivalently expressed as

LX

(√
det (3)g

)
= 0 (2.21)

where L signifies the Lie derivative. Thus the volume element of (3)g is preserved by the
flow along X.

It follows from the above that if { f λ|λ ∈ R} is the one-parameter family of diffeo-
morphisms of N generated by X and if B is any measurable region of N with volume
(relative to (3)g) vol(B) then vol( f λB) = vol(B)∀ λ ∈ R. Since N is compact and
f λ is volume preserving, the Poincaré recurrence theorem may be applied and has the
following consequences. Let p be a point of N and U be any neighborhood of p and,
for any λ0 �= 0, consider the sequence of iterates f nλ0 (for n = 1, 2, . . .) of f ≡ f λ0

and the corresponding sequence of (equal volume) domainsU, f U, f 2U, . . . , f nU, . . ..
Poincaré’s theorem shows that there always exists an integer k > 0 such that f kU inter-
sects U and thus that, in any neighborhood U of p, there always exists a point q which
returns to U under the sequence of mappings { f n}.

The above results together with those of the previous subsection show that any point
p ∈ N eventually returns to an arbitrarily small neighborhood of p (after first leaving
that neighborhood) when followed along the flow of X. The reason is that since, by
construction, X has no zeros on N, every point p ∈ N flows without stagnation along
the integral curves of X, first leaving sufficiently small neighborhoods of p and then, by
Poincaré recurrence, returning arbitrarily closely to p.

More precisely, it follows from Poincaré recurrence and the nowhere vanishing char-
acter of X that any, arbitrarily small transversal disk through pwill contain a point q that
returns arbitrarily closely to itself under the flow. But any such pair, p and q, are, by the
isometric character of the flow established in the preceding section, locked rigidly to-
gether, a fixed metrical distance from one another, along the flow. In other words, within
an arbitrarily small, prespecified metrical distance from p there will be a point q that
returns to within an arbitrarily small, prespecified distance from itself under the flow. It
now follows from the triangle inequality that p itself must return arbitrarily closely to
itself.

It may happen that a point p may actually flow back to itself, in which case the
generator it lies on is closed, but for the generic points of interest here, the generators
will not be closed and the flow will only take p back arbitrarily closely to itself.

2.4. Implications of Poincaré recurrence for the transversal metric. Consider a null
generator γ of N which passes through a point p and let D be a disk in N, containing p,
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which is (analytically) embedded transversally to the null generators which intersect it.
If we follow γ starting at p then Poincaré recurrence shows that we will either return to
p (in which case γ is closed) or else intersect D in a sequence of points which approach
p arbitrarily closely.

The Riemannian metric μD induced upon D is analytic. Suppose for the moment
that it has non-constant scalar curvature (2)R(μD). By analyticity, (2)R(μD) has non-
zero gradient on an open dense subset of D and thus, by the implicit function theorem,
the connected level set of (2)R(μD) passing through a point p at which (2)R(μD) has
non-zero gradient is an analytic curve in D, at least sufficiently near the point p.

If γ is not closed, then it must reintersect D in an infinite sequence of points {pi }
which approach p arbitrarily closely. Furthermore, by invariance of the transversalmetric
along the flow, each of the pi must lie on the same level curve of (2)R(μD) that p does.
In fact the recurrences determined by the reintersections of γ with D must densely fill
the whole (connected) level set containing p. This follows from the fact that a recurrence
which carries p to some sufficiently nearby point p′ a metrical displacement δ from p
(along the given level set of (2)R(μD)) carries p′ (again by invariance of the transversal
metric along the flow) to a point p′′ which is displaced 2δ from p, etc. Thus one gets
recurrence by integral multiples of δ until eventually the recurrent points ‘run off the
edge’ of D. Since, however, by Poincaré recurrence, δ can be made arbitrarily small
by choosing p′ suitably from the sequence {pi } and since one gets displacements of
opposite sign by simply tracking the flow backwards, it’s clear that the recurrences of
p densely fill a (connected) component of the level set of (2)R(μD) on which p lies.
Furthermore, since each of these recurrences is induced by a local isometry of (D, μD),
as described in Sect. 2.2, it follows that if p is a point at which (2)R(μD) has non-zero
gradient, then the whole connected level set of (2)R(μD) containing p consists of points
of non-zero gradient of (2)R(μD). Thus this entire level set (and not just a portion near
p) is an analytic curve lying in D.

If, by contrast, γ is a closed generator then, by invariance ofμD , points near p have all
of their recurrences a fixed metrical distance from p, and thus all lie on metrical circles
centered at p. These circles are (at least generically) curves on which grad (2)R(μD)

is non-zero and hence are either densely filled by recurrences of points lying on them
or else consist of points which all lie on closed generators. In either case, the interior
of such a metric circle (contained in D and centered at p) is mapped repeatedly to
itself by iterations of the isometry defined by the first recurrence. This isometry either
corresponds to a ‘rational’ rotation (in which each point advances by a rational multiple
of the circumference of the circle on which it lies), in which case every point lies on a
closed generator, or to an ‘irrational’ rotation in which every metrical circle centered at
p is densely filled by the recurrences of any single point lying on it.

Thus, for the case in which (2)R(μD) is non-constant, we find that non-closed genera-
tors densely fill smooth curves lying inDwhereas closed generators are either surrounded
by other closed generators which (as a straightforward extension of the above argument
shows) fill D or else are surrounded by non-closed generators which densely fill suffi-
ciently small circles about the given point of intersection of the closed generator with
D.

Using the connectedness and compactness of N and the analyticity and invariance of
the transversal metric it is clear that one can ‘analytically extend’ the above argument
to show that either (i) every generator of N is closed ( a case which we have treated
elsewhere), or (ii) almost every generator densely fills an analytic curve lying in any
transversal embedded disk which that generator intersects. In the latter case, one may
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also have isolated instances of closed generators but these will, as we have seen, be
surrounded by densely filling generators which are thus generic.

Consider the closure in N of any one of these densely filling generators γ . Let cl(γ )

designate this subset of N. Clearly cl(γ ) intersects any disk D transversal to γ in an
analytic curve satisfying (2)R(μD) = constant (since γ itself densely fills this curve).
Locally, therefore, cl(γ ) is obtained by translating such a transversal, analytic curve
along the flow of X and thus defines an analytic surface embedded in N. Since cl(γ ) is
a closed subset of the compact set N, the embedded surface defined by cl(γ ) is thus a
compact, connected embedded sub-two-manifold of N. We want first to show that cl(γ )

is in fact also orientable and thus, since it supports a smooth, nowhere vanishing tangent
vector field (that induced by X), that it must be diffeomorphic to a two-torus.

First, note that the value of (2)R(μD) at a point p ∈ D ⊂ N is (by invariance of
the metric μD under the flow along X) independent of the choice of disk D. Any other
transversal disk containing pwould yield the same value for the scalar curvature function
at p. Thus the transversal metric, though not really defining a metric on N, nevertheless
defines an analytic function, (2)R(μ) : N → R, on N given by setting

(2)R(μ)(p) = (2)R(μD)(p) (2.22)

for any p ∈ N , whereD is any transversal disk containing p. By construction, (2)R(μ) is
constant along the generators of N and hence constant on the closure cl(γ ) of any such
generator. Indeed, each cl(γ ) is just a connected component of a level set of (2)R(μ).

At a generic point p ∈ N , the differential d(2)R(μ)(p), will by analyticity, be non-
zero and, by invariance of μ along the flow of X, this differential will be non-zero at
every point along the generator γ which passes through p. By continuity d(2)R(μ) will
thus be non-zero everywhere on cl(γ ) as well. Choosing a Riemannian metric (3)g′ on
N (such as that discussed in Sect. 2.3) one computes from d(2)R(μ) an associated vector
field, ∇(2)R(μ) which is everywhere non-zero and everywhere metrically perpendicular
to cl(γ ). Thus ∇(2)R(μ) is perpendicular to X at every point of cl(γ ). Using the metric
(3)g′ and its associated volume 3-formone can define a ‘cross-product’ ofX and∇(2)R(μ)

by taking the dual of the wedge product of the corresponding one-forms and ‘raising the
index’ of the resulting one-form. This yields another smooth vector fieldwhich is tangent
to cl(γ ), nowhere vanishing and everywhere perpendicular to X. Thus X together with
this ‘cross-product’ vector field, define an orientation for cl(γ )which is thus necessarily
orientable.

Therefore, any of the embedded two-manifolds, cl(γ ), on which d(2)R(μ) is non-
zero is (since compact, orientable and supporting a smooth non-vanishing vector field)
necessarily a two-torus. By analyticity these are generic, since d(2)R(μ) can vanish only
on isolated curves (corresponding to closed generators) or two-manifolds. The latter are
necessarily tori as well since they can be shown to be orientable by a different argument.

To see this, we need to show that the compact two-manifold cl(γ ) can be assigned a
smooth, nowhere vanishing normal field. Let p be a point in cl(γ ) and let D be a disk in
N (transversal to the flow of X as usual) which contains p as an interior point. We know
that cl(γ ) intersects D in an analytic curve and that the recurrences of p, followed to
the future along the integral curve of X through p, densely fill this curve in D. Suppose
that one of these future recurrences of p is a point p′ ∈ D ∩ cl(γ ) which lies a metrical
distance δ (as measured along the curve D ∩ cl(γ ) with respect to the metric μD) from
the point p. The point p′ is uniquely determined by the point p and the distance δ since
if, on the contrary, there were another future recurrence point p′′ of p, an equal distance
from p (but on the opposing side of the curve D∩cl(γ ) from p′), then the same isometry
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which carries p to the future to p′ would carry p′′ to the future to p. But this would imply
that γ is closed which is contrary to our assumption that cl(γ ) is a closed two-manifold
densely filled by γ .

The same isometry which uniquely carries p to p′ carries any point q ∈ D ∩ cl(γ ),
sufficiently near to p, to a uniquely determined point q ′ ∈ D ∩ cl(γ ) a metrical distance
δ from q (as measured, as before, along the curve D∩cl(γ ) by means of the metricμD).
It now follows from translating D along the flow of X and appealing to the invariance of
the transversal metric and the fact that γ densely fills cl(γ ) that any point q ∈ cl(γ ) lies
in a transversal disk Dq which also contains a uniquely defined future recurrent point q ′
which lies a metrical distance δ along Dq ∩cl(γ ) from q (as measured by the transversal
metric).

A unique vector can now be defined at q which is orthonormal (as measured relative
to the Riemannian metric (3)g′ defined on N) to the embedded two-manifold cl(γ ). To
see this, choose a disk Dq containing q (e.g., a translate along the flow of X of the
original disk D) which intersects cl(γ ) in an analytic arc which contains the unique
future recurrent point q ′ a metrical distance δ from q. By parametrizing this arc with an
orientation defined by the direction leading from q to q ′ (along the segment of length δ)
we can compute a vector at q by calculating the tangent vector at this point. This vector
depends upon the choice of disk Dq but, after taking its cross product with X (using the
metric (3)g′ as before) and normalizing to unit length, we get a uniquely defined unit
normal vector to cl(γ ) at the arbitrary point q. That this choice varies smoothly with the
choice of point q ∈ cl(γ ) can be seen as follows. The parametrized arc through q has a
smoothly varying tangent. Translating this curve along the flow of X and appealing to
the invariance of the transversal metric we can generate locally (i.e., on a neighborhood
of q in cl(γ )) a smooth tangent field to cl(γ ) which, together with the cross product and
normalization construction described above, determines a locally smooth unit normal
field to cl(γ ). However, this normal field is globally unique and thus, since smooth
on a neighborhood of any point of cl(γ ), defines a globally smooth normal direction
to cl(γ ). Thus cl(γ ) is, as before, a compact, orientable embedded two-manifold in N
which supports a nowhere vanishing vector field (e.g., X or the cross product of X with
the normal field). As such it must be a torus.

Thus the level sets of (2)R(μ) in N consist of at most a finite collection of closed
generators (by compactness of N and the fact that these circles are isolated for the cases
of interest here) together with a foliation of the complement of these circles by embedded
two-tori. Each closed generator (if any exist) lies at the core of a family of nested tori.
Each torus in the complement of the closed generators is densely filled by an integral
curve of X, i.e., by the generator γ whose closure cl(γ ) defines the chosen torus. In fact,
from the invariance of the transversal metric along the flow of X, it follows that every
integral curve of X lying in cl(γ ) is densely filling. Thus there are no fixed points (X is
nowhere zero) or periodic orbits lying in any cl(γ ) ≈ T 2.

The only cases which remain to be considered are those for which (2)R(μD) is a
constant on some transversal diskD. By analyticity it follows that (2)R(μ) is necessarily
constant everywhere on N. Evidently, there are three distinct possibilities corresponding
to the metric μD (defined on any transversal disk) being spherical ((2)R(μD) > 0),
pseudo-spherical ((2)R(μD) < 0), or flat ((2)R(μD) = 0). We shall show for the first
two of these cases that again the closure, cl(γ ), of any non-closed generator γ is an
embedded, compact two-manifold diffeomorphic to T 2. For the third case, when μD
is flat, another possibility arises, which we shall call ‘ergodic’, in which a generator γ

can densely fill N itself. That such ergodic Cauchy horizons actually occur in solutions
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of Einstein’s equations can be seen by taking the flat Kasner solution and spatially
compactifying it, with suitable identifications, to yield a vacuum spacetime defined on
T 3 × R which has a Cauchy horizon N ≈ T 3. The most obvious identification leads
to a Cauchy horizon with all generators being closed but one can exploit the spatial
homogeneity of the Kasner solution to make an ‘irrational shift’ in the coordinates of
the points being identified in such a way that the null generators of the Cauchy horizon
N now densely fill N. One can of course also do this in such a way that the generators
again only densely fill two-tori instead of T 3. Nevertheless, the ergodic case does exist.
We shall not deal with it here but mention the conjecture that every ergodic solution is
essentially equivalent to (i.e., finitely covered by) one of the ergodic flat-Kasner solutions
described above.

Assume now that (2)R(μ) is a non-zero constant on N, and let p be an arbitrary point
of N. Choose a circular transversal disk Dp(δ) centered at p and having radius δ (as
measured along radial geodesics of the spherical or pseudo-spherical metric μD). Let p
flow to the future along X until it first reintersects Dp(δ) at some interior point p′. By
assumption p′ is the first future recurrence of p to the interior of Dp(δ). Let δ − ε > 0
be the radial distance from p to p′ and let Dp′(ε/2) ⊂ Dp(δ) be a circular disk of
radius ε/2 centered at p′. We know that there is a unique isometry, determined by the
flow along X, which carries the corresponding disk Dp(ε/2) centered at p to Dp′(ε/2).
This isometry is the restriction of an orientation preserving isometry of the sphere or
pseudo-sphere to the subdomain defined by Dp(ε/2) and, as such, belongs to a uniquely
defined one-parameter subgroup of the full (spherical or pseudo-spherical) orientation
preserving isometry group.

The action of this subgroup is generated by a unique Killing field K of the manifold
(D, μD). From Killing’s equation, LKμD = 0, one gets that μD(K , K ), the squared
length of K, is constant along the orbits of the one-parameter subgroup generated by K
(i.e., LK (μD(K , K )) = 0 on D). Since μD(K , K ) is analytic and non-constant (since
we have excluded the flat case for the present), its level sets are analytic curves which
coincide with the orbits generated by K. Let cp be the orbit through p generated by
K ; this is just a connected component of the level set of μD(K , K ) determined by the
value of this function at p. What we want to show is that every future recurrence of p,
sufficiently near p, actually returns to, and in fact, densely fills, the curve cp. This will
guarantee, by arguments similar to those given above, that the closure of the orbit γ of
X through p is in fact a torus embedded in N as before.

First note that not only is p′ the first future recurrence of p to the disk Dp(δ) but also
the first recurrence of p to the smaller disk Dp(δ − ε/2). Indeed, by choosing η > 0,
small enough it is clear that we can ensure that p′ is the first future recurrence of p to
any disk of the type Dq(δ − ε/2) where the distance d(q, p) from p to q (as measured
by the metric μD) is less than η. In particular, we clearly need η < ε/2 but let us take η

sufficiently small so that the disk, Dp(η), of radius η centered at p, intersects the level
set of μD(K , K ) corresponding to the level value μD(K , K )(p) only along an arc of cp
(i.e., if this level set includes disconnected components we choose η small enough so
that Dp(η) excludes them). Further require (if necessary) that η < ε/4 so that any point
of the disk Dq(δ − ε/2), for which d(q, p) < η < ε/4, is at least a distance greater than
η from the boundary of the original disk Dp(δ). This ensures that the first recurrence
of any point q ∈ Dp(η) to the disk Dq(δ − ε/2) must be given by that isometry which
carried p to p′ (and Dp(ε/2) to Dp′(ε/2)). The reason is that, if this were not the case,
then the distinct isometry which first carries q to some q ′ ∈ Dq(δ − ε/2) would take p
to some point p′′ distinct from p′ (since we are excluding the case of a closed generator
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through p) which lies within Dp(δ) (since p′′ lies within a distance η of q ′ and every
point of Dq(δ − ε/2) is at least a distance η from the boundary of Dp(δ)). But this
contradicts the original assumption that p′ was the first future recurrence of p to Dp(δ).

Thus the first future recurrence of any q ∈ Dp(η) to the disk Dq(δ − ε/2) is in fact
that q ′ which is determined by the unique isometry which carries Dp(ε/2) to Dp′(ε/2)
(and, of course, p to p′).

Now, let q ∈ Dp(η) be some subsequent future recurrence of p to Dp(η). We want
to show that q ∈ cp so suppose this is not the case. This would mean that q and its
image q ′ (under the isometry which carries Dp(ε/2) to Dp′(ε/2)) lie on some other
level set of μD(K , K ) corresponding to a level value different from that determined by
cp (i.e., different from μD(K , K )(p)). This is impossible however, since the point q ′
represents the first future recurrence of q to Dq(δ−ε/2)whereas q is a future recurrence
of p. But the invariance of the transversal metric along the flow of X implies the triple
(q, q ′, Dq(δ − ε/2)) must be an isometric copy of the triple (p, p′, Dp(δ − ε/2)) which
results from simply translating the original triple along the flow until p gets mapped to
q, etc. However, that means that p and q (as well as p′ and q ′) must both lie on the same
level set of μD(K , K ) and hence both lie on cp.

Thus all (future) recurrences of p sufficiently near p must lie on the analytic curve
cp ⊂ Dp(δ) which contains p. A completely analogous argument shows that the same
is true for past recurrences of p. Since these recurrences must approach p or, in fact,
any of its recurrences on cp arbitrarily closely it is clear that, as before, the recurrences
of p densely fill the analytic curve cp ⊂ Dp(δ). Translating this curve along the flow
generated by X yields an analytic surface through p defined locally by the foregoing
constructions. Thus near any point p ∈ N the closure cl(γ ), of the orbit of X through
p is an analytically embedded two-dimensional submanifold of N. Since cl(γ ) is closed
in N and N is compact, cl(γ ) must as before be a compact submanifold of N which
supports a (smooth) nowhere vanishing vector field (e.g. X itself). We can now use the
same argument as that given above for those (isolated) manifolds having ∇(2)R(μ) = 0
to show that cl(γ ) is orientable and hence a torus.

This argument breaks down in the case (2)R(μ) = 0 (i.e., when μ is flat) but only if
the isometry carrying p to p′ is a pure translation (since then and only then is μD(K , K )

constant onD). The flat case still allows special cases for which cl(γ ) is a two-torus and
in those instances the arguments to follow go through equally well. But the flat case also
allows more general patterns of recurrence in which cl(γ ) is not simply a 2-manifold,
but may in fact be all of N. We shall refer to these more general cases as ‘ergodic’ and
shall not deal with them in the following. It is worth noting, however, that if an ‘ergodic’
flow on N generated by X happened to admit a global transversal foliation with closed
leaves (i.e., compact embedded two-manifolds everywhere transversal to the flow of X
and intersected by every orbit) then we could treat this case as well by a modification of
the arguments to be given below.

Thus the picture we have developed thatN contains, at most, a finite number of closed
generators and that any non-closed generator γ yields an embedded two-torus in N as
its closure applies to every case except the ergodic ones for which (2)R(μ) is necessarily
zero.

2.5. A connectiononNand someassociated ‘ribbonarguments’. Let (4)Y and (4)Z be any
two smooth vector fields on ((4)V, g) which are tangent to N (i.e., for which (4)Y t |t=0 =
(4)Zt |t=0 = 0 in an arbitrary gaussian null coordinate chart). Then, computing the
covariant derivative ∇(4)Y

(4)Z , determined by the spacetime metric g, observe that the
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resulting vector field is automatically also tangent toN as a consequence of the invariance
property of the transversal metric which was derived in Sect. 2.2 (i.e., of the result that
μ̊ab,3 = 0). This fact, which corresponds to the vanishing of the connection components
�t
i j |t=0 (for i, j = 1, 2, 3), in turn implies that N is totally geodesic (i.e., that every

geodesic of g initially tangent to N remains in N through its entire interval of existence).
If Y and Z designate the vector fields on N induced by (4)Y and (4)Z respectively, then

we can, by virtue of the above remarks, define a connection (3)� on N by means of the
following defining formula for covariant differentiation

(3)∇Y Z ≡
(
∇(4)Y

(4)Z
)∣∣∣

N
. (2.23)

Here the right hand side symbolizes the vector field naturally induced on N by∇(4)Y
(4)Z .

A straightforward computation in gaussian null coordinate charts (restricted toN) shows
that

(
(3)∇Y Z

)k = Y j Zk
, j +

(3)�k
i j Z

iY j (2.24)

where

(3)�k
i j = �k

i j |t=0 (2.25)

and where �α
βγ are the Christoffel symbols of gαβ . The components of (3)� are given

explicitly by

(3)�3
33 = −1

2
ϕ̊,t ,

(3)�3
a3 = −1

2
β̊a,t

(3)�3
ab = −1

2
μ̊ab,t ,

(3)�d
33 = 0

(3)�d
3a = 0, (3)�d

ab = (2)�̊d
ab

(2.26)

where (3)�k
i j = (3)�k

ji and where the (2)�̊d
ab are the Christoffel symbols of the invariant

transversal metric μ̊ab(xc).
A similar calculation shows that if (4)� is a one-form on ((4)V, g) and � its pull-back

to N then the pull-back of ∇(4)Y
(4)� is given by (3)∇Y� where, as expected,

(
(3)∇Y�

)

i
= Y j�i, j − (3)�k

i j Y
j�k . (2.27)

Now, recall the fixed vector field X which was introduced in Sect. 2.1, and, for
simplicity, work in agn charts adapted to X so that X = ∂

∂x3
. For an arbitrary vector field

Z defined on N we find, by a straightforward computation, that

(3)∇Z X = (ωX (Z)) X (2.28)

where ωX is a one-form given, in the agn charts adapted to X, by

ωX = −1

2
ϕ̊,t dx

3 − 1

2
β̊a,t dx

a . (2.29)
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The exterior derivative of ωX is readily found to be

dωX = − 1

2
(ϕ̊,ta − β̊a,t3)dx

a ∧ dx3

− 1

2
β̊a,tbdx

b ∧ dxa .
(2.30)

However, the Einstein equation R3b = 0, restricted to N and reduced through the use of
μ̊ab,3 = 0, becomes (c.f. Eq. (3.2) of Ref. [6]):

ϕ̊,ta − β̊a,t3 = 0. (2.31)

Thus dωX reduces to

dωX = −1

2
β̊a,tbdx

b ∧ dxa . (2.32)

In subsequent sections, we shall be studying integrals of the form

∫

γ

ωX =
∫

γ

(
−1

2
ϕ̊,t

)
dx3 (2.33)

along segments γ of integral curves of X. We shall be interested in comparing the values
of these integrals for nearby integral curves. For that purpose, the following sort of
ribbon argument will prove indispensable.

Let p and p′ be any two points ofN which can be connected by a smooth curve which
is everywhere transversal to the flow of X. Let c : I → N be such a curve defined on
the interval I = [a, b] with c(a) = p and c(b) = p′ and let � : I → R be a smooth,
strictly positive function on I. Now consider the strip or ribbon generated by letting each
point c(s) of the curve c flow along X through a parameter distance �(s) (i.e., through
a lapse of �(s) of the natural curve parameter defined by X). This construction gives an
immersion of the ribbon

r =
{
(s, t) ∈ R

2|s ∈ I, 0 ≤ t ≤ �(s)
}

(2.34)

into N which consists of connected segments of integral curves of X. In particular, the
integral curves starting at p and p′ form the edges of the ribbon whereas the initial curve
c together with its image after flow along X form the ends of the ribbon.

If i : r → N is the mapping which immerses r in N according to the above con-
struction and i∗ωX and i∗dωX are the pull-backs of ωX and dωX to r respectively, then
one sees from Eq. (2.32) and the tangency of the ribbon to the integral curves of X, that
i∗dωX = 0.

Therefore, by means of Stokes’ theorem, we get
∫

∂r
ωX =

∫

r
dωX = 0 (2.35)

for any ribbon of the type described above. Thus if γ and γ ′ designate the two edges
of r (starting from s = a and s = b respectively and oriented in the direction of
increasing t) and if σ and σ ′ designate the two ends of r defined by σ = {(s, 0)|s ∈ I }
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and σ ′ = {(s, �(s)) |s ∈ I } respectively (and oriented in the direction of increasing s)
then we get, from

∫
∂r ωX = 0, that

∫

γ

ωX −
∫

γ ′
ωX =

∫

σ

ωX −
∫

σ ′
ωX . (2.36)

Equation (2.36) will give us a means of comparing
∫
γ

ωX with
∫
γ ′ ωX provided we

can estimate the contributions to
∫
∂r ωX coming from the ends of the ribbon. As a simple

example, suppose (as we did in Ref. [6]) that every integral curve of X is closed and
choose r and i : r → N so that the image of r in N consists of a ribbon of simply closed
curves. In this case, the end contributions cancel and we get that

∫
γ

ωX = ∫
γ ′ ωX . This

result played a key role in the arguments of Ref. [6].

3. Elementary Regions and Their Analytic Foliations

In the sections to follow we shall define a ‘candidate’ vector field K on N by rescaling
X appropriately, prove its analyticity and eventually show that K propagates into the
enveloping spacetime as an analytic Killing vector field. If, for some reason, we knew a
priori that N admitted a global, analytic foliation with closed leaves that are everywhere
transverse to the flow of X then we could proceed with this analysis much as we did for
the (higher dimensional) stationary black holes of Ref. [10], working ‘globally’ on N by
directly exploiting the special structure provided by its ‘pre-existing’ analytic foliation.
Here however no such analytic foliation has been presumed to exist and indeed the very
possibility of global, closed, transversal leaves might be excluded for purely topological
reasons.2 On this account we shall decompose N, as needed, into a finite collection of
elementary regions that will each be shown to admit an analytic, transversal foliation
and carry out the aforementioned analysis first on the individual elementary regions,
much as we did for the case of closed generators in Ref. [6]. Finally, after verifying
the consistency of these constructions on overlapping domains of definitions, we shall
assemble the resulting components and ultimately arrive at a globally defined, analytic
‘candidate’ vector field K on N.

Consider any one of the analytically embedded 2-tori discussed in Sect. (2.4) that is
realized as the closure, cl(γ ), of a (non-closed but densely-torus-filling) generator γ .
This torus supports the flow of a nowhere-vanishing, analytic vector field, namely that
induced from X which, by construction, is tangential to the chosen embedded torus.

Thanks to a theorem due to M. Kontsevic (of which the proof is sketched below in
the “Appendix”) one knows that such a torus always admits an analytic foliation with
closed leaves that are everywhere transverse to the flow generated by X. We now wish
to ‘thicken’ such an embedded torus to obtain an embedded 3-manifold diffeomorphic
to A × S1 (where A is an open annulus), consisting entirely of generators of N, and to
show that this thickened torus will itself admit an analytic foliation (with leaves each
diffeomorphic to A) that is everywhere transverse to the flow generated by X. Such a
thickened torus, together with its analytic, transverse foliation, will be the first of two
types of elementary regions that we shall define.

The second type of elementary region will only be needed to cover a ‘tubular neigh-
borhood in N’ of any particular closed generator γ that might, exceptionally, occur. In

2 For example, even for the case of closed generators of N the integral curves of X might well be the fibers
of a non-trivial S1-bundle as is indeed the case for the Taub-NUT family of spacetimes.
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this case we shall ‘thicken’ γ to a solid torus diffeomrophic to D × S1 (where D is an
open disk), consisting entirely of generators sufficiently close to γ , and show that such
a solid torus admits an analytic, transversal foliation with leaves diffeomorphic to D.
For the case of a non-ergodic flow (as defined in Sect. (2.4)) every generator of N is
either closed or densely fills an embedded 2-torus. By the compactness of N such a null
hypersurface can clearly be covered by a finite collection of such elementary regions
with those of the second type only needed in the presence of closed generators.

To construct such elementary regionswe shall need an analytic, Riemannianmetric on
N. To define such ametric we slightlymodify the argument in Sect. (2.3) by now insisting
that the (normalized, timelike) vector field V, which is transverse to N in ((4)V, g), be
itself analytic. Since the timelike condition is an open one and since the normalization of
such an analytic vector field will not disturb its analyticity there is no loss of generality
involved in assuming that the induced Riemannian metric (3)g is in fact analytic on N.
Recall that the metric so defined (via Eqs. (2.13)–(2.18) in fact satisfies

LX

(√
det (3)g

)
= 0 (3.1)

on N.
As discussed in the “Appendix” one constructs an analytic, transversal foliation with

closed leaves for any one of such embedded 2-tori by showing that it always admits an
analytic, closed one-form λ with integral periods that, moreover, satisfies λ(X) > 0.
Since any such λ is locally expressible as λ = dω for some analytic function ω, the
level sets of ω define the leaves of the foliation. Thus ω provides an analytic coordinate
function that is constant on the leaves so-defined. The closure of these leaves and their
transversality to X is ensured by the integrality of the periods of λ and by the condition
that λ(X) > 0 everywhere on the torus. Any two such coordinate functions, ω and ω′,
will of course only differ by a constant on their overlapping domains of definition.

We now ‘thicken’ the chosen 2-torus by flowing along the normal geodesics of the
metric (3)g on N, much as we would in constructing a gaussian-normal neighborhood of
the given torus. By restricting the range of the (normal geodesic) flow parameter suitably
one can ensure that the resulting thickened torus is diffeomorphic to A × S1, where A
is an open annulus corresponding to a thickened leaf of the original torus, and consists
entirely of integral curves of X. By continuity, if this thickening is sufficiently restricted
the annular leaves of the foliated 3-manifold will be globally transverse to X.

We now extend the domain of definition of the analytic, coordinate function ω by
requiring it to be everywhere constant on any one of the thickened leaves. Choosing
complementary, analytic coordinates {xa} = {x1, x2} on one of these annular leaves
and holding these fixed along the flow generated by X while setting x3 = ω one gets a
convenient adapted coordinate chart for the thickened torus ≈ A × S1. Any two such
coordinate systems {xa, x3} and {xa′

, x3
′ } will be related, on their overlapping domains

of definition by a transformation of the form

x3
′ = x3 + constant

xa
′ = f a(x1, x2)

(3.2)

where the { f a} define an analytic diffeomorphism of the annulusA. Thus this first type
of elementary region consists of a thickened 2-torus foliated, on the one hand, by the
(non-closed) integral curves of X and, on the other, by annuli transverse to the flow of
X.
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The second type of elementary region results from thickening a closed generator
γ to get a solid torus with γ at its core. To construct this choose an analytic, ‘angle’
coordinate x3 to label the points of the chosen generator γ . At each point p of γ we
have a corresponding, orthogonal 2-plane in the tangent space, TpN , defined by the
metric (3)g (i.e., the orthogonal complement to the tangent vector to γ at p). By flowing
along the geodesics of (3)g in N we may thus ‘thicken’ each such point p ∈ γ to a disk
Dp which, by construction, is orthogonal to γ at p. By restricting the geodesic flow
parameter suitably (in its dependence upon p and the orthogonal direction to γ at p)
we may ensure that the γ so thickened is diffeomorphic to D × S1, consists entirely of
integral curves of X and is such that each thickened leaf, Dp, is transverse to the flow
generated by X.

By defining an analytic coordinate x3 onD×S1 by holding the chosen angular coor-
dinate for γ constant on each leaf and by choosing complementary, analytic coordinates
{xa} = {x1, x2} for any one of the transversal disks and holding these constant along
the flow of X we generate an adapted analytic coordinate system for this second type
of elementary region. Any two such coordinate systems, {xa, x3} and {xa′

, x3
′ }, will be

related by a transformation of the form

x3
′ = x3 + constant

xa
′ = ga(x1, x2)

(3.3)

on their overlapping domains of definition where now the {ga} define an analytic dif-
feomorphism of the disk.

In the following sections it will be convenient to let the symbol H designate an
arbitrary elementary region of either of the two types. By the compactness of N it is
clear that we can cover N by a finite collection of such elementary regions.

4. Nondegeneracy and Geodesic Incompleteness

In this section we shall show, using a ribbon argument, that each null geodesic generator
of N is either complete in both directions (the ‘degenerate’ case) or else that each
generator is incomplete in one direction (the non-degenerate case). More precisely, we
shall prove that if any single generator γ is incomplete in a particular direction (say that
defined byX) then every other generator of the (connected) hypersurfaceN is necessarily
incomplete in the same direction. It will then follow that if any generator is complete in
a particular direction, then all must be since otherwise one could derive a contradiction
from the first result. We shall see later that, in the non-degenerate case, the generators
which are all incomplete in one direction (say that of X) are however all complete in the
opposite direction (that of −X ).

As usual we work in adapted charts for an arbitrary fundamental regionH ⊂ N . For
the calculations to follow however, it is convenient to work with charts induced from
adapted charts on the covering space Ĥ ≈ � × R of H 3 for which the {xa | a = 1, 2}
are constant along any given generator and the range of the ‘angle’ coordinate x3 is
unwrapped from say [x̊3, x̊3 + s∗), where s∗ is the ‘recurrence time’ for x3 on H,
to cover the interval (−∞,∞). Projected back to H these induce families of charts
{x3, xa}, {x3′

, xa
′ }, etc. related, on their regions of overlap, by analytic transformations

3 Where either � ≈ A or � ≈ D depending upon the type of the elementary regionH.
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of the form

x3
′ = x3 + constant

xa
′ = f a(x1, x2).

(4.1)

By working on the covering space we simplify the notation by keeping the {xa} constant
and letting x3 range continuously over (−∞,∞) in following a given generator as
it repeatedly sweeps through the leaves of the chosen foliation of H. However, one
should keep in mind that this is just an artifice to represent calculations carried out on
the elementary region H in a simplified notation since the compactness of the closure,
cl(H), of H in N will play a key role in the arguments to follow.

Consider a null generator ofH developed from ‘initial’ conditions specified at a point
p ∈ H having coordinates {x3(p) = x̊3, xa(p) = x̊a}.4 The affine parametrization of
this generator is determined by solving the geodesic equations which, for the class of
curves in question, effectively reduce to

d2x3

dη2
− ϕ̊,t

2
(x3, xa)

(
dx3

dη

)2

= 0

xa(λ) = x̊a = constant

(4.2)

where η is an affine parameter. To complete the specification of initial conditions one
needs, of course, to give an initial velocity dx3

dη
|η̊ (taking dxa

dη
|η̊= 0).

Solving the first order equation

dv

dη
= ϕ̊,t

2
v2 (4.3)

for v := dx3
dη

to get an integral formula for v and then integrating dη

dx3
= 1

v
with respect

to x3 one derives an expression for the affine length of a segment of this null geodesic
defined on the interval [x̊3, x3]:

η(x3, x̊a) − η̊(x̊3, x̊a)

= 1

( dx
3

dη
)

∣∣∣
η̊(x̊3,x̊a)

x3∫

x̊3

dρ exp

⎡

⎢
⎣−

ρ∫

x̊3

dξ

(
ϕ̊,t

2
(ξ, x̊a)

)
⎤

⎥
⎦ .

(4.4)

Thus incompleteness of this generator, in the direction of X = ∂
∂x3

, would correspond
to the existence of the limit

lim
x3→∞

x3∫

x̊3

dρ exp

⎡

⎢
⎣−

ρ∫

x̊3

dξ

(
ϕ̊,t

2
(ξ, x̊a)

)
⎤

⎥
⎦

=
(
dx3

dη

) ∣
∣∣
η̊(x̊3,x̊a)

(
η(∞, x̊a) − η̊(x̊3, x̊a)

)
< ∞

(4.5)

4 Note that the overhead ‘nought’ above a coordinate function (e.g., x̊3 or x̊a ) signifies an initial (or
constant) value for this coordinate (along a chosen null generator of N). The same symbol above a metric
function however (e.g., ϕ̊,t or μ̊ab) denotes, as always, the restriction of this function to the null hypersurface
N. It should be clear from the context which sense is meant in the formulas to follow.
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whereas completeness (in this direction) would correspond to the divergence of this
limit. Recalling Eq. (2.33), note that the integral of the one-form ωX along the segment
γ defined above is given by

∫

γ

ωX =
x3∫

x̊3

(
−1

2
ϕ̊,t (ξ, x̊a)

)
dξ (4.6)

which thus provides an invariant representation of the basic integral arising in the above
formulas.

Suppose that the generator ‘beginning’ at p ∈ H is incomplete in the direction
of X. We want to establish convergence of the corresponding integral for any other
generator of H. Since incompleteness is an asymptotic issue (the relevant integrals
being automatically finite on any compact domain of integration) there is no essential
loss of generality in comparing only those generators that ‘start’ in the slice defined by
p. Thus we want to consider generators ‘beginning’ at points q, having x3(q) = x̊3,
and establish their incompleteness by using a suitable ribbon argument. Furthermore,
to have a ‘canonical’ way of defining our comparison ribbons it will be convenient
to localize the calculations somewhat by first looking only at generators sufficiently
near to the ‘reference’ generator. Thus, given a point p in the initial slice defined by
x3(p) = x̊3, we consider only those points q lying in this slice which, additionally, lie
within a closed geodesic ball (relative to the invariant transversal metric μ induced on
this slice) centered at p and contained within a normal neighborhood of this point. Any
such q can be connected to p by a unique geodesic lying within this geodesic ball and
such points can be conveniently labeled by normal coordinates defined at p (i.e., the
points of a corresponding, closed ball in the tangent space to the slice at p).

The unique geodesic connecting q to p provides a canonical ‘starting end’ to our
comparison ribbon for geodesics emanating from points p and q (in the direction of X)
and, from invariance of the transversal metric along the flow of X, we get an isometric
image of this connecting geodesic induced on any subsequent slice traversed along the
flow.

Let γ be the segment of the null generator beginning at p and defined on the interval
[x̊3, x3], for some x3 > x̊3, and let γ ′ be a corresponding segment of the generator
beginning at q and defined on the same interval. From the argument given in Sect. 2.5 it
follows that

∫

γ

ωX −
∫

γ ′
ωX =

∫

σ

ωX −
∫

σ ′
ωX (4.7)

where σ is the geodesic end defined in the starting slice and σ ′ its isometric image at
the ending slice.

For fixed p the integral
∫
σ

ωX varies continuously with q as q ranges over a compact
set (the closed geodesic ball centered at p described above) and thus is bounded for all
q in this ball. Furthermore the integral

∫
σ ′ ωX varies continuously with q and x3 but,

as x3 increases, the image of p under the flow ranges only over (some subset of) the
compact set given by the closure of H in N whereas the image of q remains always a
fixed geodesic distance from the image of p in the corresponding slice. Since the product
of the closure of H with this (closed) ball is compact the continuously varying integral∫
σ ′ ωX (regarded as a function of q and x3 for fixed p) is necessarily bounded no matter
how large the “unwrapped” coordinate x3 is allowed to become.
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It follows from the forgoing that for any fixed p and q as above, there exists a bounded,
continuous (in fact analytic) real-valued function δp,q(x3) such that

∫

γ ′
ωX =

∫

γ

ωX + δp,q(x
3) (4.8)

for arbitrary x3 > x̊3. But this implies that

x3∫

x̊3

dρ exp[−
ρ∫

x̊3

ϕ̊,t

2
(ξ, x̊a(q))dξ ]

=
x3∫

x̊3

dρ exp[−
ρ∫

x̊3

ϕ̊,t

2
(ξ, x̊a(p))dξ + δp,q(ρ)]

=
x3∫

x̊3

dρ exp[δp,q(ρ)] exp[−
ρ∫

x̊3

ϕ̊,t

2
(ξ, x̊a(p))dξ ].

(4.9)

From the boundedness of δp,q

− ∞ < b1 ≤ δp,q(ρ) ≤ b2 < ∞,∀ρ ∈ [x̊3,∞) (4.10)

for suitable constants b1 and b2 and it follows that

eb1
x3∫

x̊3

dρ exp[−
ρ∫

x̊3

ϕ̊,t

2
(ξ, x̊a(p))dξ ]

≤
x3∫

x̊3

dρ exp[−
ρ∫

x̊3

ϕ̊,t

2
(ξ, x̊a(q))dξ ]

≤ eb2
x3∫

x̊3

dρ exp[−
ρ∫

x̊3

ϕ̊,t

2
(ξ, x̊a(p))dξ ]

(4.11)

∀x3 ∈ [x̊3,∞). But this implies that if the limit

lim
x3→∞

∫ x3

x̊3
dρ exp[−

∫ ρ

x̊3

ϕ̊,t

2
(ξ, x̊a(p))dξ ] (4.12)

exists, then so must the limit of the monotonically increasing function
∫ x3

x̊3 dρ exp

[− ∫ ρ

x̊3
ϕ̊,t
2 (ξ, x̊a(q))dξ ] exist as x3 → ∞. Conversely, if the affine length of γ diverges,

then so must that of γ ′ by virtue of the forgoing bounds.
So far we have only considered those null generators starting within a geodesic ball

centered at a point p in the initial slice. But from the compactness and connectedness of
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N it’s clear that any of its null generators can be thus compared to the original ‘reference
generator’ through a finite collection of such ribbon arguments and thus all of them
shown either to be incomplete in the direction X or else to be complete in this direction.
Clearly the same argument can be applied in the opposite direction (i.e., that of −X )
with a corresponding conclusion. However, as we shall see later, the non-degenerate case
will always be characterized by generators that are all incomplete in one direction but
complete in the opposite direction, whereas the degenerate case will be characterized by
generators that are complete in both directions.

5. A Candidate Vector Field in the Non-degenerate Case

In this section, we focus on the non-degenerate case and, if necessary, change the sign of
X so that it points in a direction of incompleteness for the null generators of N. We now
define a vector fieldK onN, also tangent to the generators of this hypersurface, by setting
K = uX where u is a positive real-valued function on N chosen so that, for any point
p ∈ N , the null generator determined by the initial conditions (p, K (p) = u(p)X (p))
has a fixed (i.e., independent of p) future affine length given by 2

k where k is a constant
> 0. At the moment there is no preferred normalization for k so we choose its value
arbitrarily.

From Eq. (4.5) upon putting (η(∞, x̊a) − η̊(x̊3, x̊a)) = 2
k , we see that u(x3, xa) is

necessarily expressible, in an arbitrary ‘unwrapped’ elementary region Ĥ for N, by

u(x3, xa) = k

2

∞∫

x3

dρ exp

⎡

⎢
⎣−

ρ∫

x3

ϕ̊,t

2
(ξ, xa)dξ

⎤

⎥
⎦ . (5.1)

By the results of the previous section, the needed integral converges for every generator
and clearly u > 0 on Ĥ. What is not clear however, in view of the limiting procedure
needed to define the outer integral over a semi-infinite domain, is whether u is in fact
analytic and we shall need to prove that it is. We shall do this below by showing that a
sequence {ui : H → R+ | i = 1, 2, . . .} of analytic ‘approximations’ to u defined by

ui (x
3, xa) = k

2

x3+is∗∫

x3

dρ exp

⎡

⎢
⎣−

ρ∫

x3

ϕ̊,t

2
(ξ, xa)dξ

⎤

⎥
⎦ , (5.2)

where s∗ is the recurrence time introduced in Sect. 4, does indeed have an analytic limit
as i → ∞.

For the moment however, let us assume that we know thatK is analytic and introduce
newagn coordinates {x3′

, xa
′
, t ′}which are adapted toK rather than to X = ∂

∂x3
. Thuswe

seek a transformation of the form {x3′ = h(x3, xa), xa
′ = xa} which yields K = ∂

∂x3′ .
A straightforward calculation shows that h must satisfy

∂h(x3, xa)

∂x3
= 1

u(x3, xa)
=
⎧
⎨

⎩
1

k
2

∫∞
x3 dρ exp[− ∫ ρ

x3
dξ

ϕ̊,t
2 (ξ, xa)]

⎫
⎬

⎭
(5.3)

which, since the denominator is analytic by assumption and non-vanishing, yields an
analytic h upon integration.
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As was shown in Sect. III A in accordance with style used in Reference [6], a trans-
formation of the above type connects the primed and unprimed metric functions ϕ̊,t and
ϕ̊′

,t ′ via

2
∂

∂x3

(
∂h

∂x3

)
+

∂h

∂x3
ϕ̊,t =

(
∂h

∂x3

)2

ϕ̊′
,t ′ . (5.4)

Computing ∂2h
∂x3 2 from Eq. (5.3) above and substituting this and ∂h

∂x3
into the above

formula one finds that the transformed metric has

ϕ̊′
,t ′ = k = constant (5.5)

throughout any agn chart adapted to K. This argument is somewhat the reverse of that
given in Reference [6], for the case of closed generators, wherein we set ϕ̊′

,t ′ = k and

solved Eq. (5.4) for ∂h
∂x3

and then h.

In the new charts one still has ϕ̊′ = β̊ ′
α = 0 since these hold in any agn coordinate

system and, upon repeating the argument of Sect. 2.2 above, with K in place of X, we
obtain μ̊′

a′b′,3′ = 0 as well. Now evaluating the Einstein equation R3b = 0 at t = t ′ = 0
and using the foregoing, together with the new result that ϕ̊′

,t ′ = k in the primed charts,

one finds that β̊ ′
b′,t ′,3′ = 0.

Deleting primes to simplify the notation, we thus find that in agn charts adapted to
K, the metric functions obey

ϕ̊ = β̊a = μ̊ab,3 = 0, ϕ̊,t = constant �= 0, (β̊a,t ),3 = 0. (5.6)

These are the main results we shall need for the inductive argument of Sect. 7 to prove
that there is a spacetime Killing field Y such that Y |N= K .

Referring toEq. (4.4) and evaluating the integrals in the newcharts inwhich ϕ̊,t = k =
constant > 0 one sees easily that though the null generators are all incomplete towards
the ‘future’ they are in fact all complete towards the ‘past’ (where here future and past
designate simply the directions of K and −K respectively). It may seem strange at first
glance to say that any generator could have a fixed future affine length (= 2

k ) no matter
where one starts along it, but the point is that this length is here always being computed
from the geodesic initial conditions (p, K (p)). If one starts with say (q, K (q)) and later
reaches a point p on the same generator, then the tangent to the (affinely parametrized)
geodesic emanating from q will not agree with K (p) but will instead equal cK (p) for
some constant c > 1, Only upon ‘restarting’ the generator with the initial conditions
(p, K (p)) will it be found to have the same future affine length that it had when started
instead from (q, K (q)). Indeed, if the tangent to an affinely parametrized geodesic did
not increase relative to K then the generator could never be incomplete on a compact
manifold N where the integral curves of a vector field K are always complete.

Let us now return to the question of the analyticity of the ‘scale factor’ u(x3, xa).
First note that, upon combining Eqs. (5.3), (5.4) and (5.5), u satisfies the linear equation
with analytic coefficients

∂u

∂x3
− ϕ̊,t

2
u = −k

2
(5.7)

provided one takes, as initial condition specified at some x̊3,

u(x̊3, xa) = k

2

∞∫

x̊3

dρ exp[−
ρ∫

x̊3

ϕ̊,t

2
(ξ, xa)dξ ]. (5.8)
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More precisely, using an appropriate integrating factor for Eq. (5.7), namely

exp[− ∫ x3

x̊3 dξ
ϕ̊,t
2 (ξ, xa)], one easily shows that the solution to Eq. (5.7) determined by

the initial condition (5.8) is given by Eq. (5.3). But Eq. (5.7) can be viewed as a (linear,
analytic) partial differential equation to which the Cauchy Kowalewski theorem applies
[17] and guarantees the analyticity of the solution on domains corresponding (because
of linearity) to those of the coefficients (in this case ϕ̊,t (x3, xa)) provided that the initial
condition u(x̊3, xa) is analytic with respect to the {xa}. In other words, our problem
reduces to that of proving that Eq. (5.8) for fixed x̊3, defines an analytic function of the
{xa}. Thus we only need to show that the sequence of ‘approximations’

ui (x̊
3, xa) := k

2

x̊3+is∗∫

x̊3

dρ exp[−
ρ∫

x̊3

ϕ̊,t

2
(ξ, xa)dξ ],

i = 1, 2, . . .

(5.9)

converges to an analytic function of the {xa} for fixed x̊3.
However, a (pointwise) convergent sequence of analytic functions could easily con-

verge to a limit which is not even continuous much less analytic. On the other hand, the
set of continuous functions on a compact manifold forms a Banach space with respect
to the C0 norm (uniform convergence) so that one could hope at least to establish the
continuity of the limit by showing that the sequence {ui (x̊3, xa)} is Cauchy with respect
to this norm.

A much stronger conclusion is possible however, if one first complexifies the slices
x3 = constant of an arbitrary elementary regionH ⊂ N (which are each diffeomorphic
to a manifold � of the type defined previously) and extends the analytic metric func-
tions defined on N to holomorphic functions defined on this complex ‘thickening’ of
H in the {xa} directions which extend continuously to the boundary of its closure. The
space of holomorphic functions on such a complex manifold (with boundary) forms a
Banach space with respect to the C0 norm so that the limit of any Cauchy sequence
of holomorphic functions (which extend continuously to the boundary) will in fact be
holomorphic and not merely continuous [18,19]. In the following section, we shall de-
fine a certain complex ‘thickening’ of N with respect to all of its dimensions (a so-called
‘Grauert tube’) but then, in view of the discussion in the preceding paragraph, restrict
the integration variable x3 defined on an aribtrary elementary regionH to real values so
that, in effect, only the leaves of the foliation of H ≈ � × S1 are thickened.

Let us temporarily remain within the real analytic setting to sketch out the basic
idea of the argument to be given later in the holomorphic setting. This detour, though it
cannot yield more than the continuity of u(x̊3, xa) in the {xa} variables, will be easier
to understand at a first pass and will require only straightforward modification for its
adaptation to the holomorphic setting.

For any point p in the slice determined by x3(p) = x̊3 the monotonically increasing,
convergent sequence of real numbers

ui (x̊
3, xa(p)) = k

2

x̊3+is∗∫

x̊3

dρ exp[−
ρ∫

x̊3

dξ
ϕ̊,t

2
(ξ, xa(p))]

i = 1, 2, . . .

(5.10)
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is clearly a Cauchy sequence which converges to u(x̊3, xa(p)). Thus for any ε′ > 0
there exists a positive integer Q such that

| um(x̊3, xa(p)) − u�(x̊
3, xa(p)) |< ε′ ∀ m, � > Q. (5.11)

Now consider an arbitrary point q in the initial slice (i.e., having x3(q) = x̊3) that lies
within a closed geodesic ball in this slice which is centered at p (i.e., a ball of the type
used in the ribbon argument of the previous section). By the ribbon arguments given in
this last section, one easily finds that

| um(x̊3, xa(q)) − u�(x̊
3, xa(q)) |

=
∣∣∣∣
k

2

x̊3+ms∗∫

x̊3+�s∗

dρ exp[−
ρ∫

x̊3

dξ
ϕ̊,t

2
(ξ, xa(q))]

∣∣∣∣

=
∣∣∣
∣
k

2

x̊3+ms∗∫

x̊3+�s∗

dρ exp[δp,q(ρ)]exp[−
ρ∫

x̊3

dξ
ϕ̊,t

2
(ξ, xa(p))]

∣∣∣
∣

≤ eb2
∣∣∣∣
k

2

x̊3+ms∗∫

x̊3+�s∗

dρ exp[−
ρ∫

x̊3

ϕ̊,t

2
(ξ, xa(p))dξ ]

∣∣∣∣

= eb2
∣∣ um(x̊3, xa(p)) − u�(x̊

3, xa(p))
∣∣

(5.12)

for all q in this ball where b2 is a constant that depends upon p and the radius of the
chosen ball. Thus for any ε > 0 we get by choosing ε′ = e−b2ε in Eq. (5.11), that

∣∣ um(x̊3, xa(q)) − u�(x̊
3, xa(q))

∣∣ < ε ∀m, � > Q (5.13)

and for all q in the compact set defined by the chosen (closed) geodesic ball. Thus the
sequence of (real-valued) continuous functions {um(x̊3, xa(q)) | m = 1, 2, . . .} defined
on this ball is a Cauchy sequence relative to theC0-norm and hence its limit u(x̊3, xa(q))

is necessarily continuous. By covering the initial slice by a collection of overlapping
such balls, we deduce that u(x̊3, xa(q)) is globally continuous on the initial slice.

6. Analyticity of the Candidate Vector Field

Recall from Sect. 2.3 that one can define a Riemannian metric (3)g on the horizon
manifold N that satisfies LX

√
det (3)g = 0. From the discussion in Sect. 3 it is clear that

this metric can always be chosen to be analytic so that in fact (N , (3)g) is a compact,
analytic, Riemannian 3-manifold.

There is a canonical way of complexifying a compact, analytic Riemannian manifold
such as (N , (3)g)through the introduction of its so-called Grauert tubes [20].
One identifies N with the zero section of its tangent bundle T N and defines a map
� : T N → R such that �(v) is the length of the tangent vector v ∈ T N relative to the
Riemannian metric (3)g. Then, for sufficiently small s > 0, the manifold (‘Grauert tube’
of thickness s)

T sN = {v ∈ T N | �(v) < s} (6.1)
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can be shown to carry a complex structure for which holomorphic coordinates {zi } can
be defined in terms of analytic coordinates {xi } for N by setting zk = xk + iyk where
y = yk ∂

∂xk
represents a vector in T N . Analytic transformations between overlapping

charts for N extend to holomorphic transformations between corresponding charts for
T sN provided that, as we have assumed, N is compact and s is sufficiently small. For
non-compact manifolds such a holomorphic thickening need not exist for any s, no
matter how small, and further restrictions upon the manifold are in general needed in
order to define its Grauert tubes. When defined, Grauert tubes have an anti-holomorphic
involution σ : T sN → T sN given by v �→ −v.

It will be convenient to define an auxiliary, analytic Riemannian metric, gH, on each
elementary region of interestH by writing on Ĥ ≈ � × R,

gH = (gH)i j dx
i ⊗ dx j

= dx3 ⊗ dx3 + μab(x
1, x2)dxa ⊗ dxb

(6.2)

and then, as before, identifying the slice at x3 with that at x3 + s∗ via the aforementioned
analytic isometry of (�,μ). This metric is adapted to the chosen slicing of H in that
each x3 = constant slice is a totally geodesic submanifold of (H, gH) and furthermore
the integral curves of X = ∂

∂x3
, which is evidently a Killing field of gH, coincide with

the geodesics of (H, gH) normal to the x3 = constant slices.
From the special properties of the metric gH and its geodesics, it is easy to see

that if {xa | a = 1, 2} are normal coordinates for (�,μ) centered at a point q ∈ �

(with, therefore, xa(q) = 0) then, holding these constant along the flow of X and,
complementing themwith the function x3, we get normal coordinates {xi } = {(xa, x3) |
a = 1, 2} defined on a tubular domain in H centered on the orbit of X through q. By
shifting x3 by an additive constant, one can of course arrange that the origin of these
normal coordinates for this tubular domain lies at any chosenpoint along the orbit through
q. It follows from the aforementioned property of Grauert tubes that the functions

{zk} = {(zk = xk + iyk) | (y3)2 + μab(x
1, x2)ya yb < s} (6.3)

will provide, for s sufficiently small, holomorphic coordinates on a corresponding com-
plex thickening of H which we shall denote by T sH.

In the application to follow, as already mentioned in the previous section, we shall
set y3 = 0 and thus focus our attention on ‘thickenings’ of H of the restricted form
T s� × S1 which are foliated by curves of the type

za(λ) = xa(λ) + iya(λ) = x̊a + i ẙa

= constant,

z3(λ) = x̊3 + λ, y3(λ) = 0,

(6.4)

with

μab(x̊
1, x̊2)ẙa ẙb < s. (6.5)

The closure T s� × S1 ≈ T s� ×S1, of this manifold results from attaching a boundary
to T s� × S1 characterized locally by μab(x1, x2)ya yb = s at all points (x1, x2) ∈ �

and will also play a role in the considerations to follow.
Analytic tensor fields defined on N can always, in view of its compactness, be lifted

to define holomorphic fields on thickenings of the type T sHwhich, furthermore, extend



Symmetries of Cosmological Cauchy Horizons with Non-Closed Orbits 173

continuously to the boundary of T sH provided s > 0 is taken to be sufficiently small.
The needed limitation on the size of s arises from considering the radii of convergence
of the local series representations of these fields on the original analytic manifold N
but, since it is compact, a finite collection of such representations suffices to define the
field globally on N and hence a choice of s > 0 is always possible so that a given field
on N extends holomorphically to T sN . Upon restricting such a field to the manifold
T s� × S1, as defined by setting y3 = 0, one obtains a corresponding field that is
holomorphic with respect to the {za | a = 1, 2}, real analytic with respect to x3 and
which extends continuously to the boundary of T s� × S1 ≈ T s� ×S1. From our point
of view, the important thing is that such fields form a Banach space with respect to theC0

norm and hence a Cauchy sequence with respect to this norm will necessarily converge
to a holomorphic field with respect to the {za}.

To carry out ribbon arguments on the associated complex thickenings over H, we
need to lift the one form ωX , defined in Sect. 2.5, to its holomorphic correspondent
(c)ωX ,

(c)ωX = − 1

2
(c)ϕ̊,t (z

1, . . . , z3)(dx3 + idy3)

− 1

2
(c)β̊a,t (z

1, . . . , z3)(dxa + idya)
(6.6)

with
(c)ϕ̊,t (x

1, . . . , x3) = ϕ̊,t (x
1, . . . , x3)

(c)β̊a,t (x
1, . . . , x3) = β̊a,t (x

1, . . . , x3),
(6.7)

defined on a suitable T sH, where the components (c)ϕ̊,t (z1, . . . , z3) and (c)β̊a,t
(z1, . . . , z3) each satisfy the Cauchy-Riemann equations (ensuring their holomorphic-
ity)

∂

∂zk
(c)ϕ̊,t (z

1, . . . , z3)

= 1

2
(

∂

∂xk
+ i

∂

∂yk
)(c)ϕ,t (x

1, . . . , x3, y1, . . . , y3)

= 0 k = 1, . . . , 3

(6.8)

and similarly for ∂

∂zk
(c)

β̊a,t (z1, . . . , z3). As a holomorphic one-form (c)ωX has exterior
derivative

d(c)ωX = − 1

2
[ ∂

∂za
(c)ϕ̊,t − ∂

∂z3
(c)β̊a,t ]

· (dxa + idya) ∧ (dx3 + idy3)

− 1

2

∂(c)β̊a,t

∂zb
(dxb + idyb) ∧ (dxa + idya)

(6.9)

which, in view of the complexified Einstein equation (c.f., Equation (3.2) of Reference
[6]),

∂(c)ϕ̊,t

∂za(z)
− ∂(c)βa,t (z)

∂z3
= 0, (6.10)
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reduces to

d(c)ωX = −1

2

∂(c)β̊a,t

∂zb
dzb ∧ dza . (6.11)

For our purposes, it is convenient to regard Eq. (6.11) as an equation for an ordinary,
complex-valued, one form defined on a real analytic manifold of 6 dimensions with local
coordinates

{wμ | μ = 1, . . . , 6} = {x1, . . . , x3, y1, . . . , y3} (6.12)

and with (c)ωX decomposed into its real and imaginary parts as

(c)ωX = {((c)ω(r)
X (w))μ + i((c)ω(i)

X (w))μ}dwμ. (6.13)

By appealing to the Cauchy-Riemann equations satisfied by the components, it is easy
to show that the left hand side of Eq. (6.11) is equal to the ‘ordinary’ exterior derivative of
(c)ωX , as rewritten above, with respect to its 6 real coordinates {wμ} =
{x1, . . . , x3, y1, . . . , y3}. The right hand side of this equation can of course be expressed
in the analogous way — as a complex-valued two-form in the same real variables.

We are now in a position to apply Stokes’s theorem much as in the previous section,
the only real difference being that now the one-form in question, (c)ωX is complex and its
domain of definition is a 6-real-dimensional Grauert tube defined overH. We shall want
to compare integrals of (c)ωX over different curves of the type (6.4) extending from some
‘initial’ slice having x3 = constant to another such ‘final’ slice. For convenience, let us
always take one such curve (which will provide a reference ‘edge’ for our comparison
ribbon) to lie in the real section (i.e., to have ya(λ) = y3(λ) = 0) and choose normal
coordinates for (�,μ) so that points on this reference curve have xa(λ) = 0. As in the
previous section, we restrict the domain of definition of these normal coordinates to a
geodesic ball relative to the metric μ. Let p be the starting point of this curve so that, in
the chosen coordinates {xa(p) = ya(p) = y3(p) = 0, x3(p) = x̊3}.

Now suppose that q ∈ T sH is a point lying in the domain of the corresponding
(complex) chart and having x3(q) = x̊3, y3(q) = 0, μab(x1(q), x2(q))ya(q)yb(q) < s
where {x1(q), x2(q)} represents a point in the aforementioned geodesic ball centered at
p. We want a canonical way of connecting q to pwithin the initial slice x3 = x̊3 and, for
this purpose, first connect q to its projection in the real section with the ‘straight line’

xi (σ ) = xi (q) = constant

ya(σ ) = −σ ya(q), σ ∈ [−1, 0]
y3(σ ) = 0.

(6.14)

We complete the connection to p along the geodesic

xa(σ ) = (1 − σ)xa(q), σ ∈ [0, 1]
x3(σ ) = x3(p) = x3(q) = x̊3

ya(σ ) = y3(σ ) = 0.

(6.15)

This broken curve provides the starting end (at x3 = x̊3) for our comparison ribbon.
We complete the specification of such a ribbon by letting each point on the starting end
defined above, flow along the corresponding curve of the form (6.4) (i.e., holding xa
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and ya constant, y3 = 0 and letting x3 = x̊3 + λ vary until the final slice is reached).
It is easy to see, from the special form of the right hand side of Eq. (6.11) that the
corresponding two-form pulled back to such a ribbon vanishes identically and thus that
Stokes’s theorem applies to integrals of (c)ωX over its edges and ends in essentially the
same way that we discussed in Sect. 5 for ribbons confined to the real section. In other
words, the integral of (c)ωX over the edge beginning at q, differs from that over the
reference edge beginning at p only by the (difference of) the integrals over the ribbon
ends lying in the ‘initial’ and ‘final’ slices.

For our purposes, the contribution from the starting end, connecting q and p, will be
fixed whereas the contribution from the ‘final’ end (connecting the images of q and p
induced on the final slice) will vary continuously but only over a compact set (determined
by the endpoint of the edge through q which necessarily lies in T s� × S1). Thus, if as
before, we designate the edges through p and q by γ and γ ′ respectively and the initial
and final ribbon ends by σ and σ ′ respectively, then we obtain, as in the real setting,

∫

γ ′

(c)ωX =
∫

γ

(c)ωX − (

∫

σ

(c)ωX −
∫

σ ′

(c)ωX )

=
∫

γ

(c)ωX + (c)δp,q(x
3)

(6.16)

with

|(c) δp,q(ρ) |≤ b < ∞ ∀ ρ ∈ [x̊3,∞). (6.17)

The integrals of course are now in general complex in value but, given the bound above,
we are in a position to apply ribbon arguments to the complex setting in complete parallel
to those we gave in the real setting at the end of the last section. The arguments needed
are so similar to those given previously that we shall only sketch their highlights below.

For any q within the domain characterized above, we define a sequence

(c)ui (x̊
3, za(q))

= k

2

x̊3+is∗∫

x̊3

dρ exp[−
ρ∫

x̊3

dξ
ϕ̊,t

2
(ξ, za(q))] (6.18)

of holomorphic extensions (to T s� × S1) of the approximations given earlier in
Eq. (5.9) for the normalizing function u. Using ribbon arguments to compare the in-
tegrals

∫
γ ′ (c)ωX with those for the reference curves

∫
γ

(c)ωX we derive, as before, a
bound of the form

| (c)um(x̊3, za(q)) − (c)u�(x̊
3, za(q)) |

≤ eb | (c)um(x̊3, za(p)) − (c)u�(x̊
3, za(p)) |

= eb | um(x̊3, xa(p)) − u�(x̊
3, xa(p)) |

∀ �,m ≥ 0,

(6.19)

where, in the final equality, we have exploited the fact that (c)um(x̊3, za(p)) =
um(x̊3, xa(p)) by virtue of our choice that the point p always lies in the real section.
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As before, it follows immediately that for any ε > 0 there exists an integer Q > 0
such that

| (c)um(x̊3, za(q)) − (c)u�(x̊
3, za(q)) |< ε ∀ m, � > Q (6.20)

and thus that the sequence {(c)um(x̊3, za(q)) | m = 1, 2, . . .} is Cauchy with respect to
the C0 norm. Thus the sequence of approximations converges to a holomorphic limit on
the domain indicated. Repeating this argument for a (finite) collection of such domains
sufficient to cover T s� we conclude that

(c)u(x̊3, za) = k

2

∫ ∞

x̊3
dρ exp[−

∫ ρ

x̊3
dξ

ϕ̊,t

2
(ξ, za)] (6.21)

is a well-defined holomorphic function on T s� (which extends continuously to its
boundary) and that, by construction, this function reduces to the real-valued function
u(x̊3, xa) defined in the previous section. The latter is therefore necessarily a real-valued
analytic function on � which is the result we were required to prove.

The analytic functions thus defined on tubular neighborhoods of arbitrary null gener-
ators of N necessarily coincide on overlapping domains of definition. This follows from
the fact that each such u was uniquely determined by the geometrical requirement that
it ‘renormalize’ the corresponding generators to all have the same, fixed future affine
length 2/k. We may thus regard u as a globally defined analytic function on N and thus
arrive at a globally defined, analytic, candidate vector field K := uX .

7. Existence of a Killing Symmetry

We have shown that there exists a non-vanishing, analytic vector field K onN, tangent to
the null generators ofN such that, in any gaussian null coordinate chart adapted toK (i.e.,

for which K has the local expression K = ∂
∂x3

∣∣∣
t=0

), the metric functions {ϕ, βa, μab}
of that chart obey

ϕ̊ = β̊a = μ̊ab,3 = 0,

ϕ̊,t = k = constant �= 0,
(
β̊a,t

)

,3
= 0.

(7.1)

We shall show momentarily that (μ̊ab,t ),3 also vanishes and thus that all the metric
functions and their first time derivatives are independent of x3 on the initial surface
t = 0 (signified as before by an overhead ‘nought’). In the following, we shall prove
inductively that all the higher time derivatives of the metric functions are independent
of x3 at t = 0 and thus that the corresponding analytic, Lorentzian metric,

g = dt ⊗ dx3 + dx3 ⊗ dt + ϕdx3 ⊗ dx3

+ βadx
a ⊗ dx3 + βadx

3 ⊗ dxa + μabdx
a ⊗ dxb,

(7.2)

has ∂
∂x3

as a (locally defined) Killing field throughout the gaussian null coordinate chart
considered. Finally, we shall show that the collection of locally defined Killing fields,
obtained by covering a neighborhood of N by adapted gaussian null (agn) coordinate
charts and applying the construction mentioned above, fit together naturally to yield a
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spacetime Killing field Y which is analytic and globally defined on a full neighborhood
of N and which, when restricted to N, coincides with the vector field K.

Some of the results to be derived are purely local consequences of Einstein’s equa-
tions expressed in an agn coordinate chart (such as, e.g., the observation that ϕ̊,t = k
implies (β̊a,t ),3 = 0). Others, however, require a more global argument and thus de-
mand that we consider the transformations between overlapping, agn charts which cover
a neighborhood ofN in (4)V . For example, by considering the Einstein equations Rab = 0
restricted to t = 0 and reduced through the use of ϕ̊,t = k = constant , μ̊ab,3 = 0 and
(β̊a,t ),3 = 0 one can derive (as in the derivation of Eq. (3.26) of Ref. [6]) the local
equation for μ̊ab,t given by

0 = −(μ̊ab,t ),33 +
k

2
(μ̊ab,t ),3. (7.3)

Roughly speaking, we want to integrate this equation along the null generators of N and
show, as in Ref. [6], that it implies that (μ̊ab,t ),3 = 0. Now, however, since the null
generators are no longer assumed to be closed curves, this argument requires a more
invariant treatment than was necessary in Ref. [6].

First, let {xμ} = {t, x3, xa} and {xμ′ } = {t ′, x3′
, xa

′ } be any two gaussian null
coordinate charts which are adapted toK (i.e., for which K = ∂

∂x3
|t=0 and K = ∂

∂x3′ |t ′=0

on the appropriate domains of definition of the given charts). It is not difficult to see that,
if the two charts overlap on some region of N, then within that region the coordinates
must be related by transformations of the form

x3
′ = x3 + h(xa)

xa
′ = xa

′
(xb)

(7.4)

where t = t ′ = 0 since we have restricted the charts to N. Here h is an analytic function
of the coordinates {xa} labeling the null generators of N and xa

′
(xb) is a local analytic

diffeomorphism allowing relabeling of those generators within the region of overlap of
the charts.

We let {ϕ, βa, μab} designate the agn metric functions of the unprimed chart,

g = gμνdx
μ ⊗ dxν

= dt ⊗ dx3 + dx3 ⊗ dt + ϕdx3 ⊗ dx3

+ βadx
a ⊗ dx3 + βadx

3 ⊗ dxa + μabdx
a ⊗ dxb,

(7.5)

and {ϕ′, β ′
a, μ

′
ab} designate the corresponding functions in the primed chart.

In the region of (4)V in which the charts overlap, we have of course,

gμ′ν′ = ∂xα

∂xμ′
∂xβ

∂xν′ gαβ (7.6)

and, because of the gaussian null metric form,

gt ′t ′ = 0 = ∂xα

∂t ′
∂xβ

∂xt ′
gαβ

gt ′3′ = 1 = ∂xα

∂t ′
∂xβ

∂x3′ gαβ

gt ′a′ = 0 = ∂xα

∂t ′
∂xβ

∂xa′ gαβ.

(7.7)
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By virtue of the form of (7.4), we also have, of course, that ∂
∂x3

|t=0 = ∂

∂x3′ |t ′=0 on the
region of overlap (since both charts were adapted to K by assumption).

Writing out Eq. (7.7) in more detail, using the explicit form of gαβ , restricting the
result to the surface t ′ = t = 0 and making use of the transformations (7.4) which hold
on that surface, one readily derives that

(
∂t

∂t ′

)∣∣∣∣
t ′=0

= 1,

(
∂xa

∂t ′

)∣∣∣
∣
t ′=0

= (μabh,b)

∣∣
∣
t=0

(
∂x3

∂t ′

)∣∣∣∣
t ′=0

=
(

−1

2
μabh,ah,b

)∣∣∣∣
t=0

.

(7.8)

Differentiating these equations with respect to x3
′
and using the fact that μ̊ab,3 = 0 one

finds that
(

∂2xα

∂x3′
∂t ′

)∣∣∣
∣
t ′=0

= 0. (7.9)

The remaining metric transformation Eqs. (7.7), restricted to the initial surface, yield
the covariance relation

μa′b′

∣∣∣
∣
t ′=0

=
(

∂xc

∂xa′
∂xd

∂xb′ μcd

)∣∣∣
∣
t=0

(7.10)

as well as reproducing equations such as ϕ′|t ′=0 = 0, and βa′ |t ′=0 = 0 which are
common to all gaussian null coordinate systems.

Now take the first t ′ derivative of the transformation Eq. (7.6), restrict the results to
the surface t ′ = t = 0 and make use of Eqs. (7.1) to derive expressions for

{ϕ′
,t ′ , βa′,t,, μa′b′,t ′ }

∣∣
∣∣
t ′=0

(7.11)

in terms of unprimed quantities. Differentiating the resulting equations with respect to
x3

′
leads to the covariance relation

μa′b′,t ′3′

∣
∣∣∣
t ′=0

=
(

∂xc

∂xa′
∂xd

∂xb′ μcd,t3

)∣∣∣∣
t=0

(7.12)

as well as reproducing known results such as βa′,t ′3′ |t ′=0 = 0 which hold in all agn
coordinate systems.

Now in any agn coordinate chart restricted to N, we have the locally defined analytic
functions

D ≡ det (h̊ab)

det (μ̊ab)

T ≡ μ̊abh̊ab

(7.13)

where h̊ab ≡ μ̊ab,t3 and where det ( ) signifies determinant. From the covariance rela-
tions (7.10) and (7.12), however, it follows that D and T transform as scalar fields in
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passing from one agn chart to another in the initial surface N (i.e., that T = T ′ and
D = D′ in the regions of overlap). Thus D and T may be regarded as globally defined
analytic functions on N. From the Einstein equations Rab = 0, restricted to N and re-
duced by means of ϕ̊,t = k, μ̊ab,3 = 0 and β̊a,t3 = 0, one can derive Eq. (7.3) in any
agn chart, which in turn implies the following differential equations for D and T :

D,3 = kD, T,3 = k

2
T . (7.14)

The latter can be written more invariantly as LK D = kD and LK T = k
2T where LK

represents Lie differentiation along the vector field K.
Equations (7.14) show that (since k �= 0) bothD and T grow exponentially along the

integral curves of K in N. However, the Poincaré recurrence argument of Sect. 2.3 has
shown that each integral curve γ of K, when followed arbitrarily far in either direction
from any point p on γ , reapproaches p arbitrarily closely. Since D and T are globally
analytic (hence continuous) on N, their values, when followed along γ , would have to
reapproach arbitrarily closely their values at p. But this is clearly incompatible with their
exponential growth along γ . The only way to avoid this contradiction arises if D and T
vanish globally on N. We thus conclude that D = T = 0 on N and therefore, from the
defining Eq. (7.13) and the fact that μ̊ab is positive definite, that

h̊ab = μ̊ab,t3 = 0 (7.15)

on N.
Now, computing the first t ′ derivatives of Eqs. (7.7), restricting the results to the

initial surface t = t ′ = 0 and differentiating the resulting equations with respect to x3
′

one finds, upon making use of Eqs. (7.1), (7.9), and (7.15), that

∂3xα

∂x3′
∂t ′∂t ′

∣∣∣∣
t ′=0

= 0 (7.16)

whereas Eqs. (7.1), (7.2) and (7.15) show that

(
gαβ,t3

)
∣∣
∣∣
t=0

= 0. (7.17)

We now proceed inductively to extend the above results to the case of time derivatives
of arbitrarily high order. As an inductive hypothesis, suppose that, for some n ≥ 1 and
for all k such that 0 ≤ k ≤ n, we have

(
∂

∂x3

(
∂kgαβ

∂tk

))∣∣∣∣∣
t=0

= 0,

(
∂

∂x3′

(
∂k+1xα

∂t ′ k+1

))∣∣∣∣
t ′=0

= 0,

(7.18)

and recall that we also have

∂t

∂x3′

∣∣∣
∣
t ′=0

= ∂xa

∂x3′

∣∣∣
∣
t ′=0

= 0,
∂x3

∂x3′

∣∣∣
∣
t ′=0

= 1. (7.19)



180 V. Moncrief, J. Isenberg

Our aim is to prove that

(
∂

∂x3

(
∂n+1gαβ

∂tn+1

))∣∣∣∣
t=0

= 0,

(
∂

∂x3′

(
∂ n+2xα

∂t ′n+2

))∣∣
∣∣
t ′=0

= 0.

(7.20)

Note that the above imply that
(

∂

∂x3

(
∂kgαβ

∂xγ1∂xγ2 . . . ∂xγk

))∣∣
∣∣∣
t=0

= 0 (7.21)

for all 0 ≤ k ≤ n and for arbitrary γ1, γ2, . . . , γk . Furthermore, note that of the quantities(
∂

∂x3

(
∂n+1gαβ

∂xγ1 ...∂xγn+1

))∣∣∣
t=0

, only
(

∂
∂x3

(
∂n+1gαβ

∂tn+1

))∣∣∣
t=0

, may be non-zero. Now differen-

tiate the Einstein equation Rt3 = 0, n − 1 times with respect to t and set t = 0 to

derive an expression for
(

∂n+1

∂tn+1
ϕ
)∣∣∣

t=0
in terms of x3-invariant quantities. Differentiate

the equation Rtb = 0, n − 1 times with respect to t and set t = 0 to derive an ex-

pression for
(

∂n+1

∂tn+1
βb

)
|t=0, in terms of x3-invariant quantities. Next, differentiate the

equation Rab = 0, n times with respect to t, set t = 0 and use the above results for(
∂n+1

∂tn+1
ϕ
)∣∣∣

t=0
and

(
∂n+1

∂tn+1
βb

)∣∣∣
t=0

, together with those given in Eqs. (7.1) and (7.15) to

derive an equation of the form

0 =
(

∂n

∂tn
Rab

)∣∣∣∣
t=0

= − ∂

∂x3

(
∂n+1

∂tn+1
μab

)∣∣∣∣
t=0

+

(
positive

constant

)
ϕ̊,t

2

(
∂n+1

∂tn+1
μab

∣
∣∣∣
t=0

)

+
{
terms independent of x3

}
.

(7.22)

Differentiate this equation with respect to x3 to thus derive

0 = −
(

∂n+1

∂tn+1
μab

∣
∣∣∣
t=0

)

,33

+

(
positive

constant

)
k

2

(
∂n+1

∂tn+1
μab

∣∣∣∣
t=0

)

,3

(7.23)

which holds in an arbitrary agn coordinate chart.
Now define

D(n+1) ≡
det

(
h̊(n+1)
ab

)

det (μ̊cd)

T (n+1) ≡ μ̊abh̊(n+1)
ab

(7.24)
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where h̊(n+1)
ab ≡

(
∂

∂x3

(
∂n+1

∂tn+1
μab

))∣∣∣
t=0

so that Eq. (7.23) becomes

0 = −h̊(n+1)
ab,3 +

(
positive

constant

)
k

2
h̊(n+1)
ab (7.25)

and D(n+1) and T (n+1) satisfy

D(n+1)
,3 =

(
positive

constant

)
kD(n+1)

T (n+1)
,3 =

(
positive

constant

)
k

2
T (n+1)

(7.26)

in any agn coordinate chart. To extend the Poincaré recurrence argument to the quantities
D(n+1) and T (n+1) we must first show that they are globally defined analytic functions
on N.

Differentiate the transformation equation

ga′b′ ≡ μa′b′ = ∂xα

∂xa′
∂xβ

∂xb′ gαβ, (7.27)

n+1 timeswith respect to t ′, set t ′ = 0 and differentiate the result with respect to x3
′
. Use

the inductive hypothesis and the vanishing of
(

∂
∂x3

∂n+1

∂tn+1
ϕ
)∣∣∣

t=0
and

(
∂

∂x3
∂n+1

∂tn+1
βa

)∣∣∣
t=0

to show that this calculation yields the covariance relation
(

∂

∂x3′
∂n+1

∂t ′n+1
μa′b′

)∣∣
∣∣
t ′=0

=
{

∂xc

∂xa′
∂xd

∂xb′

(
∂

∂x3
∂n+1

∂tn+1
μcd

)}∣∣∣∣
t=0

(7.28)

From this and Eq. (7.10) it follows that D(n+1) and T (n+1) transform as scalar fields in
the overlap of agn charts in N and thus that these quantities are globally defined analytic
functions on N. Equations (7.26) can thus be reexpressed in the invariant form

LK D(n+1) =
(
positive

constant

)
kD(n+1)

LK T
(n+1) =

(
positive

constant

)
k

2
T (n+1)

(7.29)

and show that D(n+1) and T (n+1) grow exponentially (unless they vanish) when followed
along the integral curves of K in N (i.e., along the null generators of N). Repeating the
Poincaré recurrence argument given previously for D and T now yields a contradiction
unless D(n+1) and T (n+1) vanish globally in N. This in turn implies that

(
∂

∂x3
∂n+1

∂tn+1
μab

)∣∣∣∣
t=0

= 0 (7.30)

in every agn chart onN and, together with the results obtained above for the other metric
components, shows that

(
∂

∂x3
∂n+1

∂tn+1
gαβ

)∣∣
∣∣
t=0

= 0 (7.31)

in every such chart.
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Applying the technique of the previous paragraph to the transformation equations for

ϕ′ and β ′
a merely produces covariance relations for the quantities

(
∂

∂x3

(
∂n+1

∂tn+1
ϕ
))∣∣∣

t=0

and
(

∂
∂x3

(
∂n+1

∂tn+1
βa

))∣∣∣
t=0

which are consistent with the (already established) vanishing

of these quantities in every agn chart. To complete the inductive proof, we differentiate
the remaining transformation Eqs. (7.7) n + 1 times with respect to t ′, set t ′ = 0, use the
inductive hypothesis and the new results summarized in Eq. (7.31) to show that

(
∂

∂x3′
∂n+2

∂t ′ n+2
xα

)∣∣∣∣
t ′=0

= 0. (7.32)

This result, together with that of Eq. (7.31), completes the proof by induction.

It follows from the analyticity of g and the inductive proof given above that
(

∂
∂x3

gαβ

)

vanishes throughout any agn coordinate chart and thus that Y ≡ ∂
∂x3

is a (locally defined)
analytic Killing field throughout the given chart. In the region of overlap of any two such
charts we have the two locally defined Killing fields Y = ∂

∂x3
and Y ′ = ∂

∂x3′ and wewish

to show that, in fact, they coincide. By construction both Y and Y ′ coincide with K on
their appropriate domains of definition within the null surface N. Therefore X ≡ Y ′ −Y
is an analytic Killing field of g defined locally on the region of overlap of the two
charts which vanishes on the intersection of this region with the null surface N. This
implies that X vanishes throughout its domain of definition, however, since the Killing
equations

Xμ,t + Xt,μ − 2(4)�ν
μt Xν = 0 (7.33)

determine X uniquely from data X |t=0 (in the analytic case) and have only the trivial
solution X = 0 if X |t=0 = 0.

It follows from the above that there exists a unique analytic Killing field Y, globally
defined on a full neighborhood of N in ((4)V, g) which, when restricted to N, coincides
with the vector field K and thus is tangent to the null generators of N. In fact, one can
prove that Y extends (at least smoothly) to a Killing field defined throughout themaximal
Cauchy development of the globally hyperbolic region of ((4)V, g) whose Cauchy hori-
zon is N. The techniques for proving this were discussed at the end of section III of Ref.
[6] and need not be repeated here. One can also show, by a straightforward computation
that

{
Y β(4)∇βY

α +
k

2
Y α

}∣∣∣∣
N

= 0 (7.34)

which suggests that the constant
(− k

2

)
is the analogue, for cosmological Cauchy hori-

zons, of the surface gravity defined for stationary black hole event horizons [10,12].
We have thus proven:

Theorem 1. Let ((4)V, g) be a real analytic, time orientable, vacuum spacetime which
admits a compact, connected Cauchy horizon N that separates ((4)V, g) into open
Lorentzian submanifolds ((4)V+, g+) and ((4)V−, g−) of which one is globally hyper-
bolic and the other acausal. Assume that N is realized as a level set of some analytic
function τ : (4)V → R having no critical points in a neighborhood of N. The vector
field (4)X := gradgτ will therefore be non-vanishing on this neighborhood, null on the
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hypersurface N and thus tangent to its null geodesic generators and will naturally in-
duce (by restriction of (4)X to N) a corresponding tangent vector field X on the Cauchy
horizon itself.

In the cases referred to here as ‘non-ergodic’ the null generators of N are either closed
curves or densely fill 2-tori embedded in N and every such generator is either complete
in both the directions of X and −X (the ‘degenerate’ case) or else every generator is
incomplete in one direction (say that of X) and complete in the opposite direction (the
‘non-degenerate’ case).

Compact, non-degenerate, non-ergodic Cauchy horizons in analytic, vacuum space-
times ((4)V, g) are Killing horizons in that there always exists a non-trivial, analytic
Killing field Y, globally defined on a full neighborhood of the horizon manifold
N ⊂ ((4)V, g) which, when restricted to N, is everywhere tangent to the null generators
of this hypersurface. Y extends (at least smoothly) to a Killing field defined throughout
the maximal Cauchy development of the globally hyperbolic region of ((4)V, g) whose
Cauchy horizon is N.

By applying the results of our earlier work (cf. Ref. [8] and Sect. 8 of Ref. [10]) it is
straightforward to prove that if the null generators of N, to which the horizon generating
Killing field Y is tangent, are not all closed curves then the globally hyperbolic region
of ((4)V, g) necessarily admits at least one additional, non-trivial Killing field. This
additional Killing field commutes with Y so that the full isometry group of this (globally
hyperbolic) spacetime includes a 2-dimensional toral action.

Thus whereas non-degenerate Cauchy horizons having only closed (null geodesic)
generators are, in a geometrical sense, less ‘general’ than those admitting non-closed
generators they are, nevertheless, far less constrained analytically in that they can bound
(analytic, vacuum) globally hyperbolic spacetimes having only one-dimensional isom-
etry groups. Furthermore, if our conjecture for the (non-degenerate) ergodic case is
correct then the solution set for these is much smaller still, consisting uniquely of certain
‘irrational’ compactifications of the flat Kasner spacetime.

Finally, thoughwe could only rule out the existence of degenerate (compact, analytic)
Cauchyhorizons in some (closed-orbit) special cases [6]we conjecture that suchhorizons
do not exist at all.

It is natural to ask whether the arguments presented herein could be extended to apply
in higher spacetime dimensions. But much of the ‘technology’ employed in this article
was already developed for the analysis of higher dimensional, stationary black holes in
Ref. [10] (and, from a different,5 but somewhat related, point of view in [13]). Indeed, the
usefulness of gaussian null coordinates in an n + 1-dimensional, Lorentzian setting, the
argument for invariance of the (now n − 1 dimensional) transversal, Riemannian metric
μ̊ab dxa ⊗dxb, the applicability of the Poincaré recurrence theorem, the construction of
a natural connection on the relevant null hypersurface and the derivation of its associated
‘ribbon arguments’, the construction of the candidate vector field on the horizon and the
proof, via Grauert tube complexification, of its analyticity were all developed in detail
in this earlier reference.

So what was missing? Primarily the geometrical arguments of Sect. 2.4 herein which,
to some extent, exploit the 2-dimensional character of the transversal disks to deduce
the existence (in the non-ergodic case) of preferred two-tori that themselves are foliated

5 A key difference in the approaches of these two references is that whereas we provided an explicit
construction of the horizon generating Killing field for such black holes in [10], the authors of [13] appealed
to von Neumann’s ergodic theorem to deduce the existence of a complementary, rotation generating Killing
field.
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by the null generators of the hypersurface N. On the other hand it seems quite plausible
that, by exploiting a collection of scalar functions on the horizon, defined in terms of the
invariant transversal metric μ̊ab dxa⊗dxb, one could deduce the existence of analogous
structures in the higher dimensional cases. If so then much of the remaining argument
(for the existence of horizon generating Killing fields) should go through with only
minor modifications of the one presented herein.

In conclusion it is perhapsworth clarifyingwhy the black hole problem, even in higher
dimensions, is significantly simpler to analyze than the cosmological one considered
herein. A key difference is the extra structure inherent, a priori, in the former. This extra
structure arises primarily from the presence of the ‘pre-existing’ stationary Killing field
and from the fact that the compactification procedure exploited in [10] yields not only
a compact horizon of simple topology (namely a trivial circle bundle over a compact
manifold) but also a very convenient analytic foliation of this horizon. By contrast, in the
cosmological problem nothing is given a priori other than compactness of the horizon,
analyticity of the metric and satisfaction of the field equations. Any additional structure
must then be deduced from this rather meager input information. Even so it seems quite
plausible that natural, higher dimensional analogues of the results contained herein could
be derived with further work.
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Appendix

To show that each of our embedded 2-tori admits an analytic foliation, with closed
leaves, that is everywhere transverse to the (nowhere vanishing) flow field X it would
suffice to prove that it always admits a closed, analytic one-form λ with integral periods
such that λ(X) = λa Xa > 0 everywhere on the given torus. The closure of λ ensures
that, locally, it is expressible as λ = dμ for some analytic function μ the level curves
of which locally define the leaves of the desired foliation. That these leaves all close,
globally, is ensured by the integrality of the periods of λ whereas their transversality to
X corresponds simply to the condition that λ(X) > 0.

The following proof that such a λ always exists is due to M. Kontsevich who
kindly provided it to us in response to a question about a somewhat related theorem of
Kolmogorov’s. Note that analyticity is not needed for some of the intermediate steps
of Kontsevich’s argument but that it will be ‘reinstated’ during the final stage of the
construction.

First choose a smooth Siegel curve �̃ that is closed, non-self-intersecting and every-
where transverse to the flow of X. The existence of such curves follows from a standard
argument which is given, for example, in [21] together with a discussion of some of their
fundamental properties. The aim will be to construct an analytic foliation whose leaves
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are each homotopic to �̃ (and transversal toX). By translating �̃ along the flow generated
by X one can produce a curve, homotopic to �̃, that passes through any particular point
of the given torus and that is, of course, also transversal to X.

Any one of such Siegel curves,�, can by systematically ‘thickened’ to yield a smooth
‘ribbon’, r� , diffeomorphic to � × I� ≈ S1 × I� where I� is an open interval. Coor-
dinatize this ribbon by choosing an ‘angle’ coordinate θ� along �, with θ� ∈ [0, 2π),
and letting t be the flow parameter along the transversal flow generated by X, with
t ∈ I� := (−ε�, ε�) for some ε� > 0, taking t = 0 to correspond to the given ‘source
curve’ �.

Now define a smooth one-form α� on the torus by setting α� = 0 on the complement
of the ribbon r� but taking α� = dμ� within the ribbon where μ� is a smooth function
of t alone (i.e., independent of θ�) that smoothly andmonotonically interpolates between
the value 0 for t ∈ (−ε�,−ε�/2) and the value 1 for t ∈ (ε�/2, ε�) with derivative
satisfying ∂

∂t μ� ≥ 0 for t ∈ (−ε�, ε�) and ∂
∂t μ� > 0 for t ∈ (−ε�/2, ε�/2). The

one-form α� so-constructed will be closed, have integral periods and satisfy α�(X) ≥ 0
everywhere on the chosen torus.

In view of the compactness of the torus a finite collection, {r�i ; i = 1, . . . , k}, of
such ribbons, together with their associated closed one-forms, {α�i ; i = 1, . . . , k} will
suffice to cover the torus in such a way that

α :=
k∑

i=1

α�i

satisfies dα = 0, α(X) > 0 everywhere and has integral periods (since each of the α�i

does). It will not however be analytic since none of the individual α�i ’s are more than
smooth.

Taking, however, a Hodge decomposition of α with respect to an analytic (Rieman-
nian) metric on the torus will result in

α = h + dσ

where h is harmonic and thus analytic but where the function σ is only smooth. The
integral periods of α will all be ‘carried’ by h since of course those of dσ all vanish.
Now, however, since the condition α(X) > 0 is open one can always preserve it by
approximating σ with an analytic function ω. Thus defining

λ = h + dω

one arrives at a closed, analytic one-form with integral periods that globally satisfies the
transversality condition λ(X) > 0 and thereby determines an analytic foliation of the
torus of the type desired.
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