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Abstract: We introduce a space of distributional 1-forms �1
α on the torus T2 for which

holonomies along axis paths are well-defined and induce Hölder continuous functions
on line segments. We show that there exists an �1

α-valued random variable A for which
Wilson loop observables of axis paths coincide in lawwith the corresponding observables
under the Yang–Mills measure in the sense of Lévy (Mem Am Math Soc 166(790),
2003). It holds furthermore that �1

α embeds into the Hölder–Besov space Cα−1 for all
α ∈ (0, 1), so that A has the correct small scale regularity expected from perturbation
theory. Our method is based on a Landau-type gauge applied to lattice approximations.
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1. Introduction

The main object of study in this paper is the Yang–Mills (YM) measure on the two-
dimensional torus T2 given formally by

dμ(A) = Z−1e−SYM(A) dA. (1.1)

Here dA denotes a formal Lebesgue measure on the affine space A of connections on
a principal G-bundle P over T2, where G is a compact, connected Lie group with Lie
algebra g. For our purposes, we will always assume P is trivial, so that after taking a
global section,A can be identified with the space �1(T2, g) of g-valued 1-forms on T2.
The constant Z is a normalisation which makes μ a probability measure, and the YM
action SYM(A) is defined by

SYM(A) =
∫

T2
|FA(x)|2 dx, (1.2)

where FA is the curvature two-form of A.
A number of authors with different techniques have investigated ways to give a

rigorous meaning to (1.1) (and its variants); a highly incomplete list is [BFS79,BS83,
GKS89,Fin91,Sen97,Ngu15]. See also [Cha19] for an extensive review on the literature
associated with this problem.

One way to understand the measure is to study the distributions of certain gauge
invariant observables. A popular class of such observables are Wilson loops defined
via holonomies, and a complete characterisation of these distributions can be found in
[Lév03], with related work going back to [Mig75,DM79,Bra80,Dri89,Wit91]. We shall
follow [Lév03,Lévy10] and treat the YM measure as a stochastic process indexed by
sufficiently regular loops in T2.

The purpose of this work is to realise the YM measure as a random distribution with
the small scale regularity one expects from perturbation theory. We show that a Landau-
type gauge applied to lattice approximations allows one to construct a (non-unique)
random variable taking values in a space of distributional 1-forms for which a class of
Wilson loops is canonically defined and has the same joint distributions as under the
YM measure.

Outline of results. The main result of this paper can be stated as follows (we explain
the notation after the theorem statement).

Theorem 1.1. Let G be a compact, connected, simply connected Lie group with Lie
algebra g. For all α ∈ ( 12 , 1), there exists an �1

α(T2, g)-valued random variable A
such that for any x ∈ T2, finite collection of axis loops γ1, . . . , γn based at x, and Ad-
invariant function f : Gn → R, it holds that f (hol(A, γ1), . . . , hol(A, γn)) is equal in
law to f applied to the corresponding holonomies under the YM measure.

An axis path is a piecewise smooth curve γ : [0, 1] → T2 formed by concatenating
a finite number of paths of the form t �→ x ± teμ for x ∈ T2 andμ ∈ {1, 2}. The Banach
space (�1

α(T2, g), | · |α) is defined in Sect. 3.3 and consists of distributional g-valued
1-forms. The main feature of this space is that axis paths integrate along elements of �1

α

to α-Hölder paths in g, which in turn can be developed into G by Young integration. For
smooth A, hol(A, γ ) is simply y(1) where y : [0, 1] → G solves the ODE

y′(t) = y(t)A(γ (t))[γ ′(t)], y(0) = 1G ,
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i.e., y is the development into G of the g-valued path
∫ ·
0 A(γ (t))[γ ′(t)] dt . The space

�1
α further encodes regularity of hol(A, γ ) as a function of γ . For instance, denoting

by d the geodesic distance on G, if γ, γ̄ parametrise parallel line segments at distance
δ, then d(hol(A, γ ), hol(A, γ̄ )) ≤ C |A|αδκ for some C, κ > 0 depending only on α.
Finally, a function f : Gn → R is said to be Ad-invariant if for all h, g1, . . . , gn ∈ G

f (hg1h
−1, . . . , hgnh

−1) = f (g1, . . . , gn).

The class of all functions A �→ f (hol(A, γ1), . . . , hol(A, γn)), where f is Ad-invariant,
is known to uniquely determine A up to gauge equivalence (at least for smooth A), see
[Sen92, Prop. 2.1.2]. This class includes the Wilson loop observables, i.e., functions
which depend only on Tr[ϕ hol(A, γ1)], . . . ,Tr[ϕ hol(A, γn)] where ϕ is any finite-
dimensional representation of G, but in general this class is strictly larger.

The article, as well as the proof of Theorem 1.1, which is given at the end of Sect. 5, is
split into three parts. The first part, given in Sect. 3, constructs the space �1

α and derives
its basic properties. In this part we work in arbitrary dimension d ≥ 1. The second part,
which can be seen as the main contribution of this paper, is given in Sect. 4 and defines a
gauge on lattice approximations through iterations of theLandaugauge

∑d
μ=1 ∂μAμ = 0

(also called the Coulomb gauge in differential geometry). We furthermore apply an axial
gauge in order to reach a small 1-form on some medium scale, after which the preceding
gauge can be applied. The third part, given in Sect. 5, again uses an axial-type gauge
together with a randomwalk argument to obtain probabilistic bounds necessary to apply
the results fromSect. 4.Weworkwith quite general discrete approximations as in [Dri89,
Sect. 7] which cover the Villain (heat kernel) and Wilson actions.

Remark 1.2. The assumption thatG is simply connected appears for topological reasons
when applying the axial gauge in Sect. 4.2 (and would not be necessary if we worked
on the square [0, 1]2 instead of T2). In fact, one does not expect to be able to represent a
realisation of the YM holonomies as a global 1-form unless the realisation is associated
to a trivial principal bundle. How to construct the YM measure associated to a specific
principal bundle was understood in [Lév06], and it would be of interest to extend our
results to this general case.

Remark 1.3. The restriction to axis paths appears superficial, and is certainly an artefact
of our proof. The construction in [Lév03] makes sense of the corresponding random
variables for any piecewise smooth embeddings γi , and this was later extended to all
boundedvariationpaths in [Lévy10]. Itwouldbeof interest to determine amore canonical
space of “test” paths in our context for which hol(A, γ ) is well-defined together with
regularity estimates. The construction in Sect. 3 could be adapted to different classes
of paths, however it is unclear how to adapt the results of Sects. 4 and 5 to yield a
satisfactory conclusion. See also Remark 3.3.

The Landau-type gauge defined in Sect. 4.1 can be loosely explained as follows: we
first apply the classical Landau gauge on low dimensional subspaces, working up to the
full dimension (for d = 2 this involves just two steps), and then propagate the procedure
from large to small scales. The advantage of this gauge is that it is relatively simple to
analyse and retains the small scale regularity expected from perturbation theory (which
is not true, e.g., for the axial gauge). The exact form of this gauge appears new (although
it is closely related to the classical Landau gauge, which is of course well-known) and its
regularity analysis can be seen as themain technical contribution of this paper.We choose
to study this gauge only in dimension d = 2 since this simplifies many arguments, and
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since this restriction is crucial for our probabilistic estimates, however we emphasise
that an analogous construction works in arbitrary dimension. See Remarks 4.6 and 4.9
for the intuition behind this gauge coming from elliptic PDEs.

While we work with approximations of the YM measure taken from [Lév03,Dri89],
we note that our analysis is closer in spirit to that of [Bal85a,Bal85c,Bal85b] (which
was subsequently used to prove ultraviolet stability of three- and four-dimensional lattice
approximations of the pure YMfield theory under the action of a renormalisation group).

Motivation and further directions. It would be of interest to extend our work to higher
dimensions to yield small scale regularity of lattice approximations to the YM measure
in d = 3. See [Cha16] for recent work on the YMmeasure in three and four dimensions.
The difficulty here is of course that the measure becomes much more singular and
requires non-trivial renormalisation. Furthermore, one does not necessarily expect from
perturbation theory that Wilson loop observables would be well-defined even for d = 3
(see Remark 3.1 and [CG15, Sect. 3.1], [Frö80, Sect. 3]). In this case one may need to
regularise the connection as propsed in [CG13,CG15] or consider smooth averages of
Wilson loops, see e.g. [Sin81, p. 819]. Another direction would be to workwith so-called
lasso variables [Gro85,Dri89]which could provemore regular in higher dimensions than
Wilson loops.

We end the introductionwith a discussion on one of themotivations behind this paper.
An important feature of the space �1

α is its embedding into �1
Cα−1 , the space of Hölder–

Besov distributions commonly used in analysis of stochastic PDEs [Hai14,GIP15], see
Corollary 3.23. The main result of this paper can thus be seen as a construction of a
candidate invariant measure (up to suitable gauge transforms) for the connection-valued
stochastic YM heat flow

∂t A = − d∗
AFA − dA d

∗
A A + ξ

=
d∑

μ=1

dxμ

(

Aμ + ξμ +

d∑
ν=1

[Aν, 2∂ν Aμ − ∂μAν] + [Aν, [Aν, Aμ]]
)
, (1.3)

where dA is the covariant derivative, FA is the curvature two-form of A, and ξ is a
space-time white noise built over the Hilbert space �1(T2, g), i.e., (ξμ)dμ=1 are iid g-
valued space-time white noises. The term dA d∗

A A, known as the DeTurck [DeT83] or
Zwanziger [Zwa81] term, is a gauge breaking termwhich renders the equation parabolic
(and the solution gauge equivalent to the solution without this term).

The YM heat flow without noise is a classical tool in geometry [DK90]; for a recent
application, see [Oh14,Oh15] where the deterministic YM heat flow was applied to
establish well-posedness of the YM equation in Minkowski space. It was also proposed
in [CG13] as a gauge invariant continuum regularisation of rough connections; one of
the motivations therein was to set up a framework in which one could define a non-linear
distributional (negative index Sobolev) space which could support the YM measure for
non-Abelian gauge groups (a goal which parallels the one of this article).

The motivation to study the stochastic dynamics arises from stochastic quantization
[DH87,BHST87]. The principle idea is to view (1.3) as the Langevin dynamics for the
Hamiltonian (1.2) of the YM model. This quantization procedure largely avoids gauge
fixing, the appearance of Faddeev–Popov ghosts, and the Gribov ambiguity, which was
one of the motivations for its introduction by Parisi–Wu [PW81]. It was furthermore
recently used to rigorously construct the scalar �4

3 measure on the torus [MW17a].
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Due to the roughness of the noise ξ and the non-linearity of the term d∗
AFA in the

non-Abelian case, equation (1.3) is classically ill-posed. The framework of regularity
structues [Hai14,CH16,BHZ19,BCCH17] however provides an automated local solu-
tion theory for this equation in dimension d < 4 (at least via smooth mollifier approx-
imations). Shen [She18] recently studied lattice approximations of the Abelian version
of this equation coupled with a Higgs field using discretizations of regularity structures
[EH17,HM18,CM18]. One also expects the equation to be amenable to paracontrolled
analysis and its discretizations [GIP15,GP17,MP17,ZZ18].

Remark 1.4. Another way to construct the YM measure as a random distribution is
through the axial gauge [Dri89]. One can verify however that this construction yields
a random distribution of regularity Cη for η < − 1

2 and that the procedure in [Hai14,
BCCH17] yields a solution theory for (1.3) only for initial conditions in Cη for η > − 1

2 .

In a similarway to [HM18], one could expect that (1.3) admits global in time solutions
for a.e. starting point from an invariant measure. In addition to [LN06], where a large
deviations principle is shown, such a result would provide a further rigorous link between
the YM measure and the YM energy functional.

Remark 1.5. Note that the termdA d∗
A A acts as a globally restoring force, and the (formal)

stable fixed points of ∂t A = − dA d∗
A A are the connections satisfying the Landau gauge∑d

μ=1 ∂μAμ = 0within the so-calledGribov region (which is well-known in the physics
literature, see [DH87, Sect. 4.2.2] or [VZ12, Sect. 4.5]). It is therefore possible that global
in time solutions could exist a.s. for arbitrary initial conditions, but it is unclear if this
should be expected. This is true for the�4 models [MW17b,MW17a], though through a
rather different mechanism. Global in time stability of the YM heat flowwithout noise is
already somewhat non-trivial, even in d = 2, 3 [Rad92], and typically uses Uhlenbeck
compactness [Uhl82,Weh04].

2. Notation and Conventions

2.1. Paths. For a set E and a function γ : [0, 1] → E , we denote by γ[0,1] ⊂ E the
image of γ . For a metric space (E, d), q ≥ 1, and a path γ : [s, t] → E , we define the
q-variation of γ by

|γ |q-var def= sup
D⊂[s,t]

( ∑
ti∈D

d(γ (ti ), γ (ti+1))
q
)1/q

,

where the supremum is taken over all finite partitions D = (s ≤ t0 < t1 < · · · < tn ≤ t)
(with tn+1

def= t for the case ti = tn in the sum above). For a sequence (γ (i))ki=1 with
γ (i) ∈ E , we denote by |γ |q-var the same quantity with the supremum taken over all

subsequences D = (t0 < · · · < tn) of {1, . . . , k} (this time with tn+1
def= k in the sum

above). We denote by Cq-var([s, t], E) the set of continuous paths γ : [s, t] → E for
which |γ |q-var < ∞. Similarly, for α ∈ [0, 1], we let Cα-Höl([s, t], E) denote the set of
paths γ : [s, t] → E for which

|γ |α-Höl def= sup
s≤u<v≤t

d(γ (u), γ (v))

|v − u|α < ∞.
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2.2. Lattices. For an integer d ≥ 1, we set [d] def= {1, . . . , d}. Let (eμ)dμ=1 be an or-

thonormal basis of Rd and let Zd denote the lattice generated by (eμ)dμ=1. We will work

primarily on the torus Td def= Rd/Zd equipped with its usual (geodesic) metric which,
by an abuse of notation, we denote by |x − y|. As a set, we will identify Td with [0, 1)d
in the usual way and write x = (x1, . . . , xd) for x ∈ Td .

Let πTd : Rd → Td denote the canonical projection. For N ≥ 0, we define the lattice
�N

def= πTd2−NZd , which we identify with {0, 2−N , . . . , (2N − 1)2−N }d as a set. We
say that x, y ∈ �N are adjacent if |x − y| = 2−N . An oriented bond, or simply bond, of
�N is an ordered pair of adjacent points α = (x, x ± 2−Neμ) ∈ �2

N where μ ∈ [d]. We
call ←−α = (x ± 2−Neμ, x) the reversal of α. We denote by BN the set of bonds of �N .
We further denote by BN the subset of bonds (x, x + 2−Neμ) ∈ BN . Note that every
α ∈ BN canonically defines a subset of Td with one-dimensional Lebesgue measure
|α| def= 2−N , and that α, ᾱ ∈ BN define the same subset of Td if and only if ᾱ = α or
ᾱ = ←−α . In the same way, we can canonically identify every α ∈ BN with a subset of
Td .

A rectangle of �N is a triplet r = (x,m2−Neμ, n2−Neν) where x ∈ �N , 1 ≤
μ < ν ≤ d, and 1 ≤ m, n < 2N with either m = 1 or n = 1. Observe that r can be
canonically identified with a subset of�N consisting of (m+1)(n+1) points, as well as a
(closed) subset of Td with two-dimensional Lebesgue measure |r | = mn2−2N . We will
freely interchange between these interpretations. If m = n = 1, we call r a plaquette.

We let GN ⊂ Td denote the grid induced by �N , that is,

GN
def= {x + ceμ | x ∈ �N , c ∈ [0, 1], μ ∈ [d]}.

2.3. 1-forms and gauge fields. For a vector space E , we let �1,(N ) = �1,(N )(Td , E)

denote the space of functions A : BN → E such that A(α) = −A(←−α ). We call elements
of �1,(N ) discrete E-valued 1-forms on �N . Note that for N̄ ≤ N , every A ∈ �1,(N )

canonically defines a function A ∈ �1,(N̄ ) (which we denote by the same letter) via

A(x, x + 2−N̄ eμ)
def=

2N−N̄−1∑
k=0

A(x + k2−Neμ, x + (k + 1)2−Neμ). (2.1)

We will often use the shorthand AN̄
μ (x)

def= A(x, x + 2−N̄ eμ).
Throughout the paper we let G be a compact, connected Lie group (not necessarily

simply connected) with Lie algebra g. We let 1G denote the identity element of G. We
equip G with the normalised Haar measure denoted in integrals by dx . We equip g with
an Ad(G) invariant inner product 〈·, ·〉 and equip G with the corresponding Riemannian
metric and geodesic distance. We fix a measurable map log : G → g with bounded
image such that exp(log x) = x for all x ∈ G and such that log is a diffeomorphism
between a neighbourhood of 1G and a neighbourhood of 0 ∈ g. We further choose
log so that log(yxy−1) = Ady log x for all x, y ∈ G and log(x) = − log(x−1) for
all x ∈ G outside a null-set (this is always possible by considering a faithful finite-
dimensional representation of G and the principal logarithm, cf. [Bal85a, Sect. A];
the last point follows from the fact if G is a compact, connected matrix group, then
{x ∈ G | −1 ∈ σ(x)} has Haar measure zero — this is obvious if G is Abelian, and the
general case follows e.g. from the Weyl integral formula [Hal15, Thm. 11.30]).
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Remark 2.1. In the sequel, when we say that a quantity depends on G, we implicitly
mean it depends also on the choice of log and inner product on g.

We denote by A(N ) the set of functions U : BN → G such that U (α) = U (←−α )−1.
Observe that every A ∈ �1,(N )(Td , g) defines an element of A(N ) viaU = exp A. Note
further that every U ∈ A(N ) canonically defines an element in A(N̄ ) for all N̄ ≤ N
exactly as in (2.1) with the sum replaced by an ordered product. We will again often use
the shorthand U N̄

μ (x)
def= U (x, x + 2−N̄ eμ).

We let G(N ) denote the set of functions g : �N → G. We call elements of G(N )

discrete gauge transforms. For U ∈ A(N ) and g ∈ G(N ), we define Ug ∈ A(N ) by

Ug(x, y)
def= g(x)U (x, y)g(y)−1.

We define the binary power of a number q ∈ [0, 1) as the smallest k ≥ 0 such that
q = ∑k

i=0 λi2−i with λi ∈ {0, 1} (if no such k exists, then the binary power of q is ∞).
For a plaquette p = (x, 2−Neμ, 2−Neν), note that there is a unique z = (z1, . . . , zd) ∈
p ∩ �N such that zμ and zν have binary power at most N − 1, and for the other three
points y ∈ p ∩ �N , at least one of yμ, yν has binary power N . We call z the origin of

p. For U ∈ A(N ), we define U (∂p)
def= U (α1) · · ·U (α4) where α1, . . . , α4 are the four

bonds oriented to traverse the boundary of p anti-clockwise starting at z when viewed
from the (μ, ν) plane.

Example 2.2. Consider d = 3, N = 2, μ = 1, ν = 3, and x = ( 14 ,
1
4 ,

1
2 ). Then the

origin of p
def= (x, 2−2e1, 2−2e3) is z = x + 2−2e1 = ( 12 ,

1
4 ,

1
2 ) and

α1 = (z, z1)
def= (z, z + 2−2e3),

α2 = (z1, z2)
def= (z1, z1 − 2−2e1),

α3 = (z2, z3)
def= (z2, x) = (z2, z2 − 2−2e3),

α4 = (z3, z) = (x, z) = (z3, z3 + 2−2e1).

In general, for a rectangle r = (x,m2−Neμ, n2−Neν), there is a unique plaquette p ⊂ r
such that neither p − 2−Neμ nor p − 2−Neν are contained in r . We define the origin

z of r as the origin of p, and define U (∂r)
def= U (α1) · · ·U (αk) where α1, . . . , αk are

the bonds in BN which traverse the boundary of r anti-clockwise starting from z when
viewed from the (μ, ν) plane.

Remark 2.3. The exact order of the bondsαi may seem arbitrary at this point (one usually
simply starts at the south-west corner of r ), but this choice will be convenient in Sect. 4.1.

3. Holonomy on Distributions

In this section we introduce spaces of distributional 1-forms on Td for which integration
along axis paths is canonically defined. We will later show that the YM measure can be
appropriately gauged fixed to have support on these spaces.
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3.1. Motivation: the Gaussian free field. From perturbation theory, we expect that in
two and three dimensions the YMmeasure can be realised as a random distribution with
the same regularity as the Gaussian free field (GFF) �. In this subsection, we present
an informal discussion about what precisely we mean by “regularity”.

Working on T2, it is well-known that � is not a function (though it is almost a
function since it belongs to everyHölder–Besov space C−κ , κ > 0). Pointwise evaluation
�(x) = 〈�, δx 〉 is therefore ill-defined.We claimhowever, that for certain regular curves
γ : [0, 1] → T2, the integral 〈�, γ 〉 = ∫ 1

0 �(γ (t))γ ′(t) dt is canonically defined.
Consider a straight line segment � = {x + t y | t ∈ [0, 1]} where x ∈ T2 and

y ∈ R2 with length |�| def= |y| < 1. For ψ ∈ C(T2), we define the Dirac delta δ� by
〈ψ, δ�〉 def= ∫ 1

0 ψ(x + t y) dt . Denoting γ (t) = x + t y, observe that if A1, A2 : T2 → R are

bounded, measurable functions, so that A = ∑2
μ=1 Aμ dxμ ∈ �1(T2, R) is a bounded,

measurable R-valued 1-form, then the integral

A(γ )
def=

∫ 1

0

2∑
μ=1

Aμ(γ (t))γ ′
μ(t) dt (3.1)

is given by 〈ψ, δ�〉 for ψ a suitable linear combination of A1, A2.
The point here is that 〈ψ, δ�〉 can make sense for sufficiently regular distributions ψ .

Specifically, writing K for the convolution kernel of 
−1/2, we have |K (x)| ∼ |x |−1,
and thus |K ∗ δ�(x)| ∼ | log d(x, �)|, where d(x, �) = inf{|x − z| | z ∈ �}. Hence

−1/2δ� is a function in L2 (with plenty of room to spare) and the evaluation 〈�, δ�〉
makes sense (as a random variable) where � = 
−1/2ξ is a GFF and ξ is an R-valued
white noise on T2.

Remark 3.1. Note that the same is not true in three dimensions. In this case K (x) ∼ |x |−2

so that K ∗δ�(x) ∼ |d(x, �)|−1, rendering the integral
∫ |K ∗δ�(x)|2 dx infinite (but only

just). This suggests that, even in the smoothest gauge, Wilson loops would a.s. not be
defined for the YM measure in dimension three, cf. [BFS80, p. 160]. We note however,
that replacing � by a suitable surface L again renders K ∗ δL(x) ∼ | log d(x, L)| so that

−1/2δL is in L2 (with plenty of room to spare).

Furthermore, one can derive growth bounds and Hölder continuity with respect to
�. To see this, note that |(K ∗ δ�)(x)| � log(d(x, �) + |�|) − log d(x, �), from which it
follows that |K ∗ δ�|2L2 � |�|2α for any α < 1 (e.g. by splitting the domain of integration

into annuli around � with radii |�|2N ). Hence 〈�, δ�〉 is a Gaussian random variable
with variance � |�|2α . Similarly, if �, �̄ are parallel line segments at distance d(�, �̄),
then, using |∇K (x)| ∼ |x |−2, one can show that |K ∗ (δ� − δ�̄)|2L2 � |�|αd(�, �̄)α .

Hence 〈�, δ� − δ�̄〉 is a Gaussian random variable with variance � |�|αd(�, �̄)α . One
can combine these two estimates in a Kolmogorov-type argument (at least for axis line
segments) to show that, for any α < 1,

|〈�, δ�〉| � |�|α and |〈�, δ� − δ�̄〉| � |�|α/2d(�, �̄)α/2 a.s.

(A more precise formulation would be that � admits a modification for which these
bounds holds.)

Sections 4 and 5 of this paper can be seen as deriving these estimates andKolmogorov
argument when� is replaced by discrete approximations of theYMmeasure (albeit with
rather different methods). The remainder of this section sets up the space in which we
will obtain weak limit points of these approximations.
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Remark 3.2. The analogue for the YM measure U (as a random holonomy) of the es-
timate |〈�, δ� − δ�̄〉| � |�|α/2d(�, �̄)α/2 takes the form | logU (∂r)| � |r |α/2 where r
is the rectangle with �, �̄ as two of its sides. This is certainly expected since the law of
U (∂r) is close to that of B|r |, where B is a G-valued Brownian motion.

Remark 3.3. We restrict attention in this article to axis line segments (and thus finite
concatenations thereof). It would be desirable to work with a more natural class of
paths along which holonomies could be defined together with similar estimates, but it
is not entirely clear what the correct “test-space” should be. For example, if A was a
random g-valued 1-form which induced the YM holonomies, one would expect that for
a.e. realisation there should exist a bounded variation path γ for which A(γ ) defined
by (3.1) does not exist (e.g., concatenations of small square loops rapidly decreasing in
size but with an increasing number of turns around each one). Thus it seems necessary
to impose some control on the derivative of γ for A(γ ) and hol(A, γ ) to be well-defined
pathwise (cf. Remark 1.3).

3.2. Functions on line segments. We formalise the above discussion by introducing a
suitable space of distributions.

Definition 3.4. We call a subset � ⊂ Td an axis line segment if � = {x+ceμ | c ∈ [0, λ]}
for some x ∈ Td , μ ∈ [d], and λ ∈ [0, 1]. In this case we define |�| def= λ and, if |�| > 0,
we say that the direction of � is μ. We let X denote the set of all axis line segments
equipped with the Hausdorff metric dH.

Note that X is a compact metric space. We introduce another distance on X .

Definition 3.5. For μ ∈ [d] let πμ : Td → T denote the projection onto the μ-th axis.
We say that �, �̄ ∈ X are parallel if they have the same directionμ ∈ [d] andπμ� = πμ�̄.
For parallel �, �̄ ∈ X we define

�(�, �̄)
def= |�|1/2d(�, �̄)1/2

where d(�, �̄)
def= inf{|x − y| | x ∈ �, y ∈ �̄}.

Note that �(�, �̄)2 is the area of the smallest rectangle with two of its sides as � and
�̄.

For the rest of the section, let E be a fixed finite-dimensional normed space.

Definition 3.6. We say that �, �̄ ∈ X are joinable if � ∪ �̄ ∈ X and |� ∪ �̄| = |�| + |�̄|.
We say that a function A : X → E is additive if for all joinable �, �̄ ∈ X , we have
A(� ∪ �̄) = A(�) + A(�̄). Let � denote the space of all additive functions A : X → E .

Definition 3.7. For A ∈ � and α ∈ [0, 1] we define

|A|α;�
def= sup

� �=�̄

|A(�) − A(�̄)|
�(�, �̄)α

,

where the supremum is taken over all distinct parallel �, �̄ ∈ X . We also define the
α-growth norm

|A|α-gr def= sup
|�|>0

|A(�)|
|�|α .

where the supremum is taken over all � ∈ X with |�| > 0.



1036 I. Chevyrev

Define |·|α def= |·|α-gr+|·|α;� and let�α denote theBanach space {A ∈ � | |A|α < ∞}
equipped with the norm | · |α .

For � ∈ X , we call a parametrisation of � a path γ : [0, 1] → Td with constant
derivative γ ′ ≡ |�|eμ such that γ[0,1] = �. Note that if |�| < 1, there is exactly one
parametrisation of �. For every A ∈ � and � ∈ X with |�| < 1, one can canonically
construct a path �A : [0, 1] → E by

�A(t)
def= A(γ[0,t]),

where γ is the unique parametrisation of �. We have the following basic result, the proof
of which is obvious.

Lemma 3.8. Let α ∈ [0, 1], � ∈ X with |�| < 1, and A ∈ �. Then |�A|α-Höl ≤
|�|α|A|α-gr.

We show next that | · |α-gr and | · |α;� bound the α
2 -Hölder norm of A with respect to

dH.

Proposition 3.9. Let α ∈ [0, 1], A ∈ �, and �, �̄ ∈ X . Then

|A(�) − A(�̄)| ≤ 21−α/2|A|α;�(|�| ∧ |�̄|)α/2dH(�, �̄)α/2 + 21+α|A|α-grdH(�, �̄)α.

We break the proof up into several elementary lemmas.

Lemma 3.10. Suppose �, �̄ ∈ X do not have the same direction. Then |�| ≤ 2dH(�, �̄).

Proof. Let μ be the direction of �. Then

|�| = |πμ(�)| ≤ 2dH(πμ�, πμ�̄) ≤ 2dH(�, �̄)

where in thefirst inequalityweused thatπμ�̄ is a single point, and in the second inequality
we used that πμ : Td → T does not increase distance. ��

Let |X | denote the Lebesgue measure of a (measurable) subset X ⊂ T, and let X�Y
denote the symmetric difference of X,Y ⊂ T.

Lemma 3.11. Let X,Y be subsets of T each with a single connected component. Then
|X�Y | ≤ 4dH(X,Y ).

Proof. Clearly X�Y has at most two connected components and every connected com-
ponent has Lebesgue measure at most 2dH(X,Y ). ��

Consider a pair �, �̄ ∈ X with the same directionμ ∈ [d]. It holds that πμ�∩πμ�̄ has
at most two connected components which we call X,Y (one or both possibly empty).
Likewise, πμ��πμ�̄ has at most two connected components, which we call U, V (one
or both possibly empty).

Lemma 3.12. Let notation be as in the preceding paragraph. Then

(a) (|X | + |Y |)d(�, �̄) ≤ (|�| ∧ |�̄|)dH(�, �̄),
(b) |U | + |V | ≤ 4dH(�, �̄).

Proof. For (a), we have |X | + |Y | ≤ |�| ∧ |�̄| and d(�, �̄) ≤ dH(�, �̄). For (b), since
πμ : Td → T does not increase distance, we have dH(πμ�, πμ�̄) ≤ dH(�, �̄). Hence, by
Lemma 3.11, |U | + |V | = |πμ��πμ�̄| ≤ 4dH(�, �̄). ��
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Proof of Proposition 3.9. Suppose �, �̄ do not have the same direction. Then clearly

|A(�) − A(�̄)| ≤ |A|α-gr(|�|α + |�̄|α),

and the conclusion follows by Lemma 3.10. Suppose now �, �̄ have the same direction.
By additivity of A, using the notation of Lemma 3.12, we have

|A(�) − A(�̄)| ≤ |A|α;�(|X |α/2 + |Y |α/2)d(�, �̄)α/2 + |A|α-gr(|U |α + |V |α),

and the conclusion follows from Lemma 3.12. ��
For completeness, we record two further lemmas the proofs of which are obvious.

Lemma 3.13 (Lower semi-continuity). Let (An)n≥1 be a sequence of E-valued functions
on X such that limn→∞ An(�) = A(�) for every � ∈ X . Then for all α ∈ [0, 1]

|A|α;� ≤ liminf
n→∞ |An|α;� and |A|α-gr ≤ liminf

n→∞ |An|α-gr.
Lemma 3.14 (Interpolation). For 0 ≤ ᾱ ≤ α ≤ 1 and a function A : X → E, it holds
that

|A|ᾱ;� ≤ |A|1−ᾱ/α

0;� |A|ᾱ/α

α;� ,

and similarly for | · |α-gr.

3.3. Additive functions from 1-forms. Let �1 denote the space of all bounded, mea-
surable E-valued one forms, i.e., all A = ∑d

μ=1 Aμ dxμ for which Aμ : Td → E is
bounded and measurable.

Consider A ∈ �1. For γ ∈ C1-var([s, t], Td), let us define

A(γ )
def=

∫ t

s
A(γ (u)) dγ (u) =

d∑
μ=1

∫ t

s
Aμ(γ (u))γ ′

μ(u) du ∈ E .

For � ∈ X with a parametrisation γ ∈ C1-var([0, 1], Td), we then define A(�)
def= A(γ )

(which is independent of the choice of parametrisation γ ). In such a way, we treat every
element of �1 as an element of �.

Note that this identification does not respect almost everywhere equality, i.e., if A = Ā
a.e. on Td , it does not necessarily hold that A(�) = Ā(�) for all � ∈ X . However, we
have the following.

Proposition 3.15. Let A ∈ �1. If A(�) = 0 for all � ∈ X , then A is a.e. zero. Conversely,
suppose A ∈ �1 is a.e. zero and that � ∈ X is a continuity point of A (as a function on
X ). Then A(�) = 0.

Proof. Let ψ ∈ C(Td , R) and μ ∈ [d], and write

〈Aμ,ψ〉 =
∫
zμ=0

∫ 1

0
Y z(t) dXz(t) dz,

where Y z ∈ C([0, 1], R) is given by Y z(t)
def= ψ(z + teμ), and Xz ∈ C1-var([0, 1], E) is

given by Xz(t)
def= ∫ t

0 Aμ(z + seμ) ds. The first claim follows by noting that Xz(t) is the
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evaluation of A at an element ofX . For the second claim, write � = {x + teμ | t ∈ [0, λ]}
for some λ ≥ 0. Let (ϕε)ε>0 be a smooth approximation of the Dirac delta δx . Denote
�y

def= {y + teμ | t ∈ [0, λ]} and consider

∫
Td

A(�y)ϕε(y) dy = 〈Aμ, ϕ̄ε〉, (3.2)

where ϕ̄ε(z)
def= ∫ λ

0 ϕε(z − teμ) dt . On the one hand, since Aμ is zero a.e., 〈Aμ, ϕ̄ε〉 = 0
for all ε > 0. On the other hand, A(�y) → A(�) as y → x since � is a continuity point
of A, so that the LHS of (3.2) converges to A(�) as ε → 0, from which it follows that
A(�) = 0. ��

As a consequence we may realise the space

�̊1
0

def= {A ∈ �1 | A is continuous as a function on X }

simultaneously as a subspace of C(X , E) and as a space of E-valued L∞ 1-forms. Note
that, by Proposition 3.9, every A ∈ �1 with |A|α < ∞ for some α > 0 is in �̊1

0.

Definition 3.16. Let �1
0 denote the closure of �̊1

0 in C(X , E) under the uniform norm.
For α ∈ (0, 1], let �1

α denote the closure of {A ∈ �1
0 | |A|α < ∞} in �α equipped with

the norm | · |α .

3.4. Embeddings. In this subsection, we show that �α is compactly embedded in �1
ᾱ

for ᾱ < α, and that the latter is continuously embedded in �1
Cᾱ−1 , the Hölder–Besov

space of distributions commonly used in anaysis of SPDEs [Hai14,GIP15].

3.4.1. Dyadic approximations and compact embeddings Fix in this section A ∈ �. We
suppose further that A(�) = 0 unless � has direction μ ∈ [d]. We construct a sequence
of functions A(N ) ∈ �1

0 (which serve as dyadic approximations to A) as follows. For
x ∈ Td and N ≥ 0, let k be the unique integer in {0, . . . , 2N − 1} such that πμx ∈
[k2−N , (k + 1)2−N ). Let �(N )

x be the unique axis line segment of length 2−N containing
x such that πμ�

(N )
x = [k2−N , (k + 1)2−N ]. We then define A(N )

μ (x)
def= 2N A(�

(N )
x ) and

A(N ) = A(N )
μ dxμ.

Lemma 3.17. Let α ∈ [0, 1]. It holds that

|A(N )|α-gr ≤ 31−α|A|α-gr, |A(N )|α;� ≤ 31−α/2|A|α;�.

Proof. For the first inequality, let us write � ∈ X as � = �1 ∪ �2 · · · ∪ �n , where �i and
�i+1 are joinable for i ∈ {1, . . . , n − 1}, and each �i is contained in a single cell, i.e., a
set of the form π−1

μ [k2−N , (k + 1)2−1]. Then
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|A(N )(�)| ≤ |A(N )(�1)| + |A(N )(�n)| +
∣∣∣
n−1∑
i=2

A(N )(�i )

∣∣∣

≤ (|�1| + |�n|)2N
(

sup
|�̄|=2−N

|A(�̄)|
)
+

∣∣∣
n−1∑
i=2

A(�i )

∣∣∣

≤ |A|α-gr
[
|�1|α + |�n|α +

( n∑
i=2

|�i |
)α]

≤ |A|α-gr31−α|�|α.

For the second inequality, let �, �̄ ∈ X be parallel. Let us decompose �, �̄ exactly as
above. Observe that

|A(N )(�1) − A(N )(�̄1)| ≤ |�1|2N sup
a,b

|A(a) − A(b)|

≤ |�1|2N |A|α;�d(�, �̄)α/22−Nα/2

≤ |A|α;�|�1|α/2d(�, �̄)α/2,

where the first supremum is taken over all parallel a, b ∈ X which are in the same cell
and for which d(a, b) = d(�, �̄). The same holds for |A(N )(�n) − A(N )(�̄n)|. For the
middle part, we simply have

∣∣∣
n−1∑
i=2

A(N )(�i ) − A(N )(�̄i )

∣∣∣ ≤ |A|α;�
( n−1∑

i=2

|�i |
)α/2

d(�, �̄)α/2.

It follows that

|A(N )(�) − A(N )(�̄)| ≤ |A|α;�31−α/2d(�, �̄)α/2|�|α/2

��
Lemma 3.18. Suppose A is continuous as a function on X . Then

lim
N→∞ sup

�∈X
|A(N )(�) − A(�)| = 0.

Proof. Since A(�) = 0 for all � ∈ X consisting of a single point, (uniform) continuity
of A on X implies limε→0 sup|�|≤ε |A(�)| = 0. The conclusion follows by additivity
and the definition of A(N ). ��
Lemma 3.19. For 0 ≤ ᾱ < α ≤ 1, the unit ball of �α is compact in �ᾱ .

Proof. Proposition 3.9 implies that α
2 -Hölder norm of A ∈ �α is bounded by � |A|α ,

hence the unit ball of�α is equicontinuous and bounded in C(X , E). SinceX is compact,
the claim follows by Arzelà–Ascoli and Lemmas 3.13 and 3.14. ��

Combining Lemmas 3.14, 3.17, 3.18, and 3.19, we obtain the following.

Proposition 3.20. For 0 ≤ ᾱ < α ≤ 1, �α is compactly embedded in �1
ᾱ .
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3.4.2. Hölder–Besov spaces For α < 0, we recall the space of distributions Cα(Td , E)

from [Hai14]. For a function ψ : Rd → R and λ ∈ (0, 1], we denote ψλ(y)
def=

λ−dψ(λ−1y). Let r
def= −�α� and Br denote the set of all smooth functionsψ ∈ C∞(Rd)

with |ψ |Cr ≤ 1 and suppψ ⊂ B(0, 1/4). Here Cr is the space of (r − 1)-times dif-
ferentiable functions with Lipschitz (r − 1)-th derivative, see [Hai14, Sect. 2.2]. For
λ ∈ (0, 1], since suppψλ has diameter at most 1/2, we can canonically treat ψλ as an
element of C∞(Td). For x ∈ Td , we then define ψλ

x (y) = ψλ(y − x). Finally, we let
(Cα(Td , E), | · |Cα ) denote the space of distributions ξ ∈ D′(Td , E) for which

|ξ |Cα
def= sup

λ∈(0,1]
sup

ψ∈Br
sup
x∈Td

|〈ξ, ψλ
x 〉|

λα
< ∞.

We analogously define (�1
Cα , | · |Cα ) as the space of distributional 1-forms

A = ∑d
μ=1 Aμ dxμ for which |A|Cα

def= ∑d
μ=1 |Aμ|Cα < ∞. For α = 0, we define

(�1
C0 , | · |C0) as the space of E-valued L∞ 1-forms, i.e., A = ∑d

μ=1 Aμ dxμ with

|A|C0
def= ∑d

μ=1 |Aμ|L∞ < ∞.

Recall the definition of �̊1
0 from Sect. 3.3, which, by Proposition 3.15, is a subspace

of �1
C0 .

Proposition 3.21. For α ∈ (0, 1], the space (�̊1
0, | · |α-gr) is continuously embedded in

(�1
Cα−1 , | · |Cα−1).

Lemma 3.22. Let A ∈ �1, α ∈ (0, 1], ψ ∈ C(Td), λ ∈ (0, 1], μ ∈ [d], and z ∈ Td .
Then

∣∣∣
∫ 1

0
Aμ(z + λteμ)ψ(z + λteμ) dt

∣∣∣ � |ψ |C1λα|A|α-gr,

with a proportionality constant depending only on α. For α = 1, we furthermore have

∣∣∣
∫ 1

0
Aμ(z + λteμ)ψ(z + λteμ) dt

∣∣∣ ≤ |ψ |L∞|A|1-gr.

Proof. Define the paths X ∈ C1-Höl([0, 1], E) by X (t) = ∫ t
0 λAμ(z + λseμ) ds and

Y ∈ C([0, 1], R) by Y (t) = ψ(z + λteμ). Observe that X = �A for � ∈ X defined

by �
def= {z + λteμ | t ∈ [0, 1]}. Since |�| = λ, it follows by the Lemma 3.8 that

|X |α-Höl ≤ λα|A|α-gr. Furthermore we have |Y |1-Höl ≤ λ|ψ |C1 and |Y |L∞ ≤ |ψ |L∞ .
Then by Young integration

∣∣∣
∫ 1

0
Y (t) dX (t)

∣∣∣ � |Y |1-Höl|X |α-Höl � |ψ |C1λα+1|A|α-gr,

and by classical Riemann–Stieltjes integration

∣∣∣
∫ 1

0
Y (t) dX (t)

∣∣∣ ≤ |Y |L∞|X |1-Höl ≤ |ψ |L∞λ|A|1-gr.

��
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Proof of Proposition 3.21. Let A ∈ �1, μ ∈ [d] and ψ ∈ C1(Rd) be a test function
with suppψ ⊂ B(0, 1/4). Let B̄(0, λ/4) be the ball of radius λ/4 centered at 0 in the
hyperplane xμ = 0. Then uniformly in λ ∈ (0, 1]

|〈Aμ,ψλ
0 〉| =

∣∣∣
∫
B(0,λ/4)

Aμ(y)ψλ
0 (y) dy

∣∣∣

≤
∫
B̄(0,λ)

dz
∣∣∣
∫ 1/4

−1/4
dtλA(z + λteμ)ψλ

0 (z + λteμ)

∣∣∣
� |ψ |C1λα−1|A|α-gr,

where the final inequality follows from Lemma 3.22 and the facts that |ψλ
0 |C1 =

λ−d−1|ψ |C1 and B̄(0, λ) ∼ λd−1. This proves the desired result for α ∈ (0, 1). For
α = 1, we have in the same way from Lemma 3.22

|〈Aμ,ψλ
0 〉| ≤ |ψ |L∞|A|1-gr,

where we now used |ψλ
0 |L∞ = λ−d |ψ |L∞ . It readily follows that |A|C0 � |A|1-gr as

desired (where we have used that L∞ is the dual of L1). ��
Corollary 3.23. For α ∈ (0, 1], �1

α is continuously embedded in �1
Cα−1 .

3.5. Lattice approximations. We will see in the following sections that lattice gauge
theory provides us with random approximations of elements in �α defined on lattices.
We show that one can take projective weak limit points of these random variables in
�α . Recall the definition of �1,(N ) and note that every A ∈ � canonically defines an
element of �1,(N ).

Definition 3.24. Let X (N ) denote the subset of all � ∈ X which are the union of bonds
in BN . For A ∈ �1,(N ), let |A|(N )

α;� , |A|(N )
α-gr, and |A|(N )

α be defined as in Definition 3.7 but

with the restriction �, �̄ ∈ X (N ).

Lemma 3.25. For any continuous A ∈ � and α ∈ [0, 1], it holds that
|A|α;� = lim

N→∞ |A|(N )
α;� and |A|α-gr; = lim

N→∞ |A|(N )
α-gr.

Proof. Let �, �̄ ∈ X be parallel. Observe that there exist sequences �N , �̄N ∈ X (N ) such
that �N and �̄N are parallel for each N , and limN→∞ dH(�, �N ) = limN→∞ dH(�̄, �̄N ) =
0. By the assumption that A is continuous, we have A(�) = limN→∞ A(�N ) and like-
wise for �̄. Furthermore, clearly limN→∞ �(�N , �̄N ) = �(�, �̄). Both equalities readily
follow. ��
Theorem 3.26. Let 0 ≤ ᾱ < α ≤ 1. Suppose that for every N ≥ 0, A(N ) is an
�1,(N )-valued random variable such that (|A(N )|(N )

α )∞N=0 is a tight family of real random
variables. Then there exists a subsequence (Nk)

∞
k=0 and a �α-valued random variable

A such that

A(Nk ) → A in law as �1,(M) − valued random variables for all M ≥ 0, (3.3)

and for all K ≥ 0

P
[|A|α > K

] ≤ limsup
k→∞

P
[|A(Nk )|(Nk)

α > K
]
. (3.4)
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Fig. 1. Example of r with 6 plaquettes

Proof. By tightness and lower semi-continuity, for every M ≥ 0 there exists a subse-
quence Nk and an �1,(M)-valued random variable Ã(M) such that A(Nk ) → Ã(M) in law
as�1,(M)-valued random variables. By a diagonalisation argument, wemay suppose that
the same subsequence Nk works for all M ≥ 0. In particular, for all M̄ ≥ M ≥ 0, Ã(M̄)

and Ã(M) have the same law as �1,(M)-valued random variables. For any ᾱ ∈ (0, α), it
follows from the existence of projective limits of measures [Bog07, Thm. 9.12.1] and
Proposition 3.20 that there exists an�1

ᾱ-valued random variable A for which (3.3) holds
(we used here that �1

ᾱ is Polish). The bound (3.4) (and thus the fact that A a.s. takes
values in �α) follows from Lemma 3.25. ��

4. Deterministic Bounds

In this section we collect the necessary deterministic results concerning lattice gauge
theory. We restrict henceforth to the case Td = T2. We emphasise however that this
assumption is not necessary in this section, and a similar analysis can be performed in
arbitrary dimension. The presentation however does simplify significantly in this case,
and furthermore the probabilistic bounds in the following section depend crucially on
the fact that d = 2.

Wewill henceforth take E = gwhen considering the spaces�1,(N )(T2, g). Through-
out this section let N1 ≥ 0 and U ∈ A(N1).

Definition 4.1. For N ≤ N1 and a rectangle r ⊂ �N , let p1, . . . , pk denote the pla-
quettes of �N ordered so that neither p1 − 2−Ne1 nor p1 − 2−Ne2 are contained in r
and so that the boundaries of pi+1 and pi share a common bond for i = 1, . . . , k − 1
(note this defines the order uniquely). Let ri denote the subrectangle of r consisting of
the plaquettes p1, . . . , pi . See Fig. 1 for an example. We call the anti-development of
U along r the g-valued sequence (Xi )

k
i=0 with X0 = 0 and increments Xi − Xi−1

def=
log(U (∂ri−1)

−1U (∂ri )).

For an integer N ≤ N1 and a rectangle r ⊂ �N , consider the conditions for some
C̄ ≥ 0 and α ∈ R

| logU (∂r)| ≤ C̄ |r |α/2, (4.1)

and for some q ≥ 1

|X |q-var ≤ C̄ |r |α/2, (4.2)

where (Xi )
k
i=1 is the anti-development of U along r .
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Fig. 2. Example of r from item (ii) of Theorem 4.5 with N = 2, n = 1, m = 3

Remark 4.2. If r is a single plaquette, then |X |q-var does not depend on q and (4.2) is
equivalent to (4.1).

Remark 4.3. If g ∈ G(N ), then Ug(∂ri ) = g(z)U (∂ri )g(z)−1 where z ∈ �N is the
origin of r . Hence | logU (∂r)| and |X |q-var are both gauge invariant.

Remark 4.4. As the name suggests, the development of X into G is exactly the sequence
(U (∂ri ))ki=1. As a result, by Young integration, if (4.2) holds for some q < 2, then
so does (4.1) (potentially with a larger C̄). In our situation, we will only have (4.2)
for q > 2, in which case (4.1) would only be implied by (4.2) if X is replaced by its
rough path lift (and our probabilistic estimates in the following section indeed imply this
stronger bound). However we choose the current formulation to keep the assumptions in
this section more elementary and since the bound (4.2) will only be used in the “Young
regime”, cf. Lemma 4.11.

The main result of this section can be stated as follows.

Theorem 4.5. Suppose there exist α ∈ ( 23 , 1), C̄ ≥ 0, and q ∈ [1, 1
1−α

), such that for
all integers N ≤ N1 we have

(i) (4.2) for all rectangles r ⊂ �N , and
(ii) (4.1) for all rectangles of the form r = ((0, n2−N ),m2−Ne1, 2−Ne2) ⊂ �N where

1 ≤ m < 2N and 0 ≤ n < 2N (see Fig. 2 for an example).

Suppose further that G is simply connected. Then there exists A ∈ �1,(N1) such that
exp A = Ug for some g ∈ G(N1) and for every ᾱ < α, there exists C ≥ 0, independent
of N1, such that |A|(N1)

ᾱ ≤ C.

Proof. By Proposition 4.15 we can apply the axial gauge for sufficiently large N0 ≥ 1
until the assumptions of Theorem 4.12 are satisfied, after which we can apply the binary
Landau gauge for N0 ≤ N ≤ N1. ��

4.1. Binary Landau gauge. Throughout this subsection, let us fix N0 ≤ N1. We should
think of N0 as providing a fixed medium scale while we take N1 → ∞. We will define
A ∈ �1,(N1) and g ∈ G(N1) such that exp(A) = Ug with explicit bounds on |A|(N1)

ᾱ .

Remark 4.6. Wewill be guided by the following observation. Let A be a smooth g-valued
1-form on a closed hypercube B in Rd with curvature Fμν = ∂μAν − ∂ν Aμ + [Aμ, Aν].
Suppose that A satisfies the Landau gauge

∑d
μ=1 ∂μAμ = 0 in the interior of B. For
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μ = 1, . . . , d, let ∂μB denote the two hyperplanes on the boundary of B perpendicular
to eμ. Suppose further that A satisfies the (d − 1)-dimensional Landau gauge on ∂μB,
i.e,

∑
ν �=μ ∂ν Aν = 0. Combined with the d-dimensional Landau gauge, we obtain the

Neumann boundary condition ∂μAμ|∂μB= 0. To recover Aμ from F , we suppose that
Aμ has a prescribed boundary condition on ∂νB for ν �= μ, and observe that in the
interior of B

d∑
ν=1

∂νFμν =
d∑

ν=1

∂νμAν − ∂νν Aμ + [∂ν Aμ, Aν] + [Aμ, ∂ν Aν]

= 
Aμ +
d∑

ν=1

[∂ν Aμ, Aν].

If A is small or if G is Abelian, the final terms can be ignored and we are left with
a Poisson equation for Aμ with a mixed Dirichlet–Neumann boundary condition (we
ignore the non-smoothness of ∂B in this discussion). The probabilistic representation of
the solution is Aμ(x) = E[Aμ(Wτ ) +

∫ τ

0

∑
ν ∂νFμν(Ws) ds], where W is a Brownian

motion started at x , conditioned to exit B at ∂B\∂μB, and τ is the first exit time of W
from B. Using this representation (or the classical maximum principle) we see that Aμ

is bounded by its value on ∂B\∂μB plus contributions from ∂νFμν .
Provided the contribution from ∂νFμν is small, this allows us to bound A on smaller

scales by its value on large scales. The procedure in this subsection can be seen as a
discrete version of this boundary value problem with a random walk approximation.

We define A and g inductively. To start, let N = N0 and A(α)
def= logU (α) for every

bond α ∈ BN0 . Correspondingly, g(x) = 1G for all x ∈ �N0 .
Supposewe have defined A and g onBN−1 and�N−1 respectively for N0 < N ≤ N1.

To extend the definition to N , we consider intermediate lattices

�0
N = �N−1 ⊂ �1

N ⊂ �2
N = �N

where �k
N is the subset of �N consisting of vertices x = (x1, x2) for which at most

k coordinates have binary power at most N (see Sect. 2.3 for the definition of binary
power). We correspondingly define the set of bonds Bk

N by B0
N = BN−1 and for k = 1, 2

as the set of ordered pairs (x, y) where x, y ∈ �k
N with |x − y| = 2−N (in particular

B2
N = BN ).
For k = 1, 2, we define A and g on Bk

N and �k
N as follows. Let x = (x1, x2) be a site

of �k
N for which xμ1 , . . . , xμk have binary power N (so that x is not a site of �k−1

N−1).

We introduce the shorthand x±
μ

def= x ± 2−Neμ.
If k = 1, we define

A(x, x+μ1
) = A(x−

μ1
, x)

def= 1

2
A(x−

μ1
, x+μ1

).

We then extend the definition of g to x by enforcing

exp A(x, x+μ1
) = g(x)U (x, x+μ1

)g(x+μ1
)−1.

It clearly holds that exp A = Ug on B1
N (with Ug defined in the obvious way).
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Fig. 3. Large circles are points of �N−1, small circles are points of �N

If k = 2, let p1, p2, p3, p4 be the four plaquettes of �N one of whose corners is x ,
ordered from the positive quadrant anti-clockwise, see Fig. 3. Note that the origin of pi
is a point zi ∈ �N−1 which is the corner of pi opposite to x .

Define

∂2F12(x)
def= logUg(∂p1) − logUg(∂p4),

∂1F21(x)
def= logUg(∂p2) − logUg(∂p1),

∂2F12(x
−
1 )

def= logUg(∂p2) − logUg(∂p3),

∂1F21(x
−
2 )

def= logUg(∂p3) − logUg(∂p4).

Note thatUg(∂pi ) = g(zi )U (∂pi )g(zi )−1, which well-defined since g(zi ) is defined by
induction.

Lemma 4.7. For all n ≥ 1, there exists C > 0 depending only on n and G, such that
for all A1, . . . , An ∈ g, it holds that

∣∣∣ log(eA1 · · · eAn ) −
n∑

i=1

Ai

∣∣∣ ≤ C
n∑

i=1

|Ai |2.

Proof. An immediate consequence of the compactness of G and non-zero radius of
convergence of the Campbell–Baker–Hausdorff formula. ��
Lemma 4.8. Let A and g be defined as above on B1

N and �1
N respectively. For x ∈ �2

N
as above, denote

δ
def=

4∑
i=1

| logU (∂pi )| +
∑
μ�=ν

|AN
μ (x±

ν )|.

Then there exist Ei ∈ g for i = 1, 2, 3, a constant C ≥ 0 depending only on G, and a
unique choice for g(x), such that |Ei | ≤ Cδ2 and such that

AN
1 (x)

def= AN
1 (x+2 ) + AN

1 (x−
2 )

2
+
3

8
∂2F12(x) +

1

8
∂2F12(x

−
1 ),

AN
2 (x)

def= AN
2 (x+1 ) + AN

2 (x−
1 )

2
+
3

8
∂1F21(x) +

1

8
∂1F21(x

−
2 ) + E1,
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AN
1 (x−

1 )
def= AN

1 (x+2 ) + AN
2 (x−

2 )

2
+
3

8
∂2F12(x

−
1 ) +

1

8
∂1F12(x) + E2,

AN
2 (x−

2 )
def= AN

2 (x+1 ) + AN
2 (x−

1 )

2
+
3

8
∂1F21(x

−
2 ) +

1

8
∂1F21(x) + E3,

satisfy exp A = Ug on BN ∩ (p1 ∪ · · · ∪ p4).

Remark 4.9. Following Remark 4.6, the ratios 3
8 and 1

8 arise from the following obser-
vation: let X be a random walk on the bonds of p1, . . . , p4 parallel to e1 starting on
(x, x +2−Ne1) which is stopped the first time it hits the boundary of p1 ∪ · · ·∪ p4. Then
X will stop on ∂(p1 ∪ p4) with probability 3

4 and on ∂(p2 ∪ p3) with probability 1
4 .

Proof. There clearly exists a unique choice for g(x) such that exp
AN
1 (x) = g(x)UN

1 (x)g(x+1 )−1. With this choice for g(x), observe that

Ug(x, x+2 ) = eA
N
1 (x)eA

N
2 (x+1 )e− logUg(∂p1)e−AN

1 (x+2 ),

from which it follows by Lemma 4.7 that

logUg(x, x+2 ) = AN
1 (x) + AN

2 (x+1 ) − AN
1 (x+2 ) − logUg(∂p1) + O(δ2). (4.3)

Furthermore, we have

e−2AN
1 (x+2 )e−2AN

2 (x−
1 )e2A

N
1 (x−

2 )e2A
N
2 (x+1 ) =

4∏
i=1

xi ,

where x1 = Ug(∂p1) and xi = uiUg(∂pi )u
−1
i for i = 2, 3, 4, where ui is a suitable

product of elements of the form Ug(∂pi ) and e±AN
μ (x±

ν ), μ �= ν. By Lemma 4.7, we
have

AN
1 (x−

2 ) − AN
1 (x+2 ) + AN

2 (x+1 ) − AN
2 (x−

1 ) = 1

2

4∑
i=1

logU (∂pi ) + O(δ2). (4.4)

Combining (4.3), (4.4), and the definition of AN
1 (x), we obtain

logUg(x, x+2 ) = AN
2 (x+1 ) + AN

2 (x−
1 )

2
+
3

8
∂1F21(x) +

1

8
∂1F21(x

−
2 ) + O(δ2),

from which the existence of E1 with the desired property follows. The existence of E2
and E3 follows in the same manner. ��

We now extend the definition of A and g to BN and�N as in Lemma 4.8 choosing Ei
in an arbitrary way provided the bound |Ei | ≤ Cδ2 is satisfied. By induction, we define
A ∈ �1,(N1) such that exp A = Ug as desired.

We now show that this choice leads to a bound on |A|(N1)
ᾱ . In the following, we use

the shorthand |AN (x)| def= maxμ∈{1,2} |AN
μ (x)|.
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Lemma 4.10 (Bonds bound). Suppose there exists α ∈ (0, 1) and C̄ ≥ 0 such that (4.1)
holds for all plaquettes r ⊂ �N for all N0 ≤ N ≤ N1. Then there exists C ≥ 0, not
depending on N1, such that if

C̄2−N0α + max
x∈�N0

|AN0(x)| ≤ c, (4.5)

where c ∈ (0,∞] is a constant depending only on G, then for all N0 ≤ N ≤ N1

max
x∈�N

|AN (x)| ≤ C2−Nα.

Proof. Fix any ε ∈ (0, 1
2 ) and consider N > N0. We may suppose that C̄2−N0α ≤ 1.

Using Lemma 4.8 and the assumption that (4.1) holds for every plaquette, we have

max
x∈�N

|AN (x)| ≤ δ/2 + C1(C̄2−Nα + δ2), (4.6)

where C1 depends only on G and δ
def= maxx∈�N−1 |AN−1(x)|. Provided that δ ≤ ε/C1,

we have

max
x∈�N

|AN (x)| ≤ (ε + 1/2)δ + C1C̄2−Nα.

If C̄2−Nα is furthermore sufficiently small, we have

(ε + 1/2)δ + C1C̄2−Nα ≤ ε/C1.

We conclude that there exists c > 0, depending only on G, such that if (4.5) holds,
then (4.5) also holds with N0 replaced by N > N0 and

max
x∈�N

|AN (x)| ≤ (ε + 1/2) max
x∈�N−1

|AN−1(x)| + C22
−Nα, (4.7)

where C2 does not depend on N . Proceeding by induction and lowering ε if necessary
so that θ

def= (ε + 1/2)2α < 1 we see that

max
x∈�N

|AN (x)| ≤ (ε + 1/2)N−N0
(

max
x∈�N0

|AN0(x)|
)
+ C22

−Nα

N−N0∑
k=0

θk

≤ C32
−Nα,

where C3 can depend on θ and N0 but not on N . ��
Lemma 4.11. Let ᾱ ∈ ( 12 , 1) and q ∈ [1, 1

1−ᾱ
). Then for every rectangle r ⊂ �N it

holds that

∣∣∣
k∑

i=1

logUg(∂pi )
∣∣∣ ≤ C

(
1 + (k2−N )ᾱ|A|(N−1)

ᾱ-gr

)
|X |q-var,

where X is the anti-development ofU alongr, p1, . . . , pk are all the plaquettes contained
in r , and C is a constant depending only on G, ᾱ, and q.
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Proof. The idea is to write
∑k

i=1 logU
g(∂pi ) as a Young integral against the anti-

development ofU along r . Using the notation fromDefinition 4.1, let �i be the unique line
contained in the boundary of r which connects z, the origin of r , and zi , the origin of pi .
Note that �i ∈ X (N−1). Writing vi

def= U (�i )U (∂pi )U (�i )
−1, observe that logU (∂ri ) =

v1 · · · vi , and thus X j = ∑ j
i=1 log vi . Observe further that Ug(∂pi ) = xivi x

−1
i where

xi
def= g(zi )U (�i )

−1 = Ug(�i )
−1g(z). Defining the Aut(g)-valued sequence Yi = Adxi ,

it holds that
k∑

i=1

logUg(∂pi ) =
k∑

i=1

Yi (Xi − Xi−1),

which is in the form of a Young integral. Using that exp(A) = Ug on BN−1, we see that
(Yi )ki=1 is the development of (−A(�i ))

k
i=1 into Aut(g) (through left multiplication in

the adjoint representation) with initial point Y1 = Adg(z). By Lemma 3.8, it holds that

the ᾱ−1-variation of the sequence (−A(�i ))
k
i=1 is bounded above by (k2−N )ᾱ|A|(N−1)

ᾱ-gr ,
and thus Young’s estimate for controlled ODEs implies

|Y |ᾱ−1-var � (k2−N )ᾱ|A|(N−1)
ᾱ-gr .

Since q−1 + ᾱ > 1 and since |Y1| = 1 (in fact |Yi | = 1 for all i = 1, . . . , k), the
conclusion follows by Young integration. ��
Theorem 4.12 (Binary Landau gauge) Suppose there exists α ∈ ( 23 , 1), C̄ ≥ 0, and
q ∈ [1, 1

1−α
) such that (4.2) holds for all rectangles r ⊂ �N and N0 ≤ N ≤ N1.

Suppose further that (4.5) holds. Then for every ᾱ ∈ (1 − q−1, α) there exists C ≥ 0,
not depending on N1, such that for all parallel �, �̄ ∈ X (N1)

|A(�)| ≤ C |�|ᾱ (4.8)

and

|A(�) − A(�̄)| ≤ C |�|α/2d(�, �̄)ᾱ/2. (4.9)

Proof. It suffices to consider ᾱ ∈ ( 23 ∨ (1 − q−1), α). To prove (4.8), we proceed by
induction on N ≥ N0. Assume that |A(�)| ≤ PN−1|�|ᾱ for some constant PN−1 ≥ 1
and all � ∈ X (N−1).

Let � ∈ X (N ). Suppose first that � is contained in GN−1, the grid of �N−1. Then we
can write � = �1∪�2∪�3 where �1 ∈ X (N−1) and, for i = 2, 3, �i is either empty or is a
bond of�N . By induction, we know that |A(�1)| ≤ PN−1|�1|ᾱ . If both �2, �3 are empty,
then we are done. Otherwise, by Lemma 4.10, we have |A(�2)|+ |A(�3)| ≤ C12−Nα for
a constant C1 not depending on N . If �1 is empty, then again we are done by choosing
PN ≥ C1. Otherwise we have

(|�1| + 2−N )ᾱ − |�1|ᾱ =
∫ 2−N

0
ᾱ(|�1| + r)ᾱ−1 dr ≥ ᾱ2−N ᾱ .

Since C1 is independent of N , we may increase PN−1 if necessary so that PN−1ᾱ ≥ C1.
Hence

|A(�)| = |A(�1) + A(�2) + A(�3)|
≤ PN−1|�1|ᾱ + C12

−N ᾱ ≤ PN−1(|�1| + 2−N )ᾱ ≤ PN−1|�|ᾱ,
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which proves the inductive step in the case � ⊂ GN−1. Note that the same constant
PN−1 appears, which will be used in the next case.

Suppose now � is not contained in GN−1. Then by the definition of AN , we have

A(�) = A(�1) + A(�2)

2
+ 
1 + 
2 (4.10)

where �1, �2 ∈ X (N ) are parallel to � and are contained in GN−1. Here 
1 accounts for
the terms ∂μFνμ and satisfies for a constant C2 depending only on G, q, and ᾱ

|
1| ≤
∣∣∣∑

p

logUg(∂p)
∣∣∣

≤ C2(1 + |�|ᾱPN−1)C̄ |�|α/22−Nα/2

≤ 2 · C2PN−1C̄ |�|ᾱ2−N (α−ᾱ), (4.11)

where the sum is taken over all plaquettes p ⊂ �N which have a corner belonging to �

and the second inequality is due to Lemma 4.11.
The term 
2 accounts for the errors Ei from the CBH formula and satisfies, by

Lemma 4.8, for a constant C3 depending only on G

|
2| ≤ C3|�|2N (C̄ + C1)
22−2Nα ≤ C4|�|2−N (2α−1), (4.12)

where we have used that (4.2) holds for all plaquettes, Lemma 4.10 as above, and the
fact that � is a union of |�|2N bonds of �N .

Using these estimates for 
1,
2, it follows from the previous case that

|A(�)| ≤ PN−1|�|ᾱ + C52
−N (α−ᾱ)PN−1|�|ᾱ

forC5 independent of N . Hence we have shown the inductive step with PN
def= PN−1(1+

C52−N (α−ᾱ)), and thus supN PN < ∞. This completes the proof of (4.8).
To prove (4.9), we again proceed by induction on N . Suppose that the case N − 1

holds with proportionality constant QN−1. Let �, �̄ ∈ X (N ) be distinct and parallel.
Suppose first that � and �̄ are both contained in GN−1. We write � = �1 ∪ �2 ∪ �3 as
before and similarly for �̄. Note that we can take parallel �1, �̄1 ∈ X (N−1) to which we
can apply the inductive hypothesis. If �2 and �3 are both empty, or if �1 is empty, then
we are done. Otherwise, in the same way as the proof of (4.8),

|A(�) − A(�̄)| ≤ |A(�1) − A(�̄1)| +
3∑

i=2

|A(�i )| + |A(�̄i )|

≤ QN−1|�1|α/2d(�, �̄)ᾱ/2 + C62
−Nα

≤ QN−1(|�1| + 2−N )α/2d(�, �̄)ᾱ/2

≤ QN−1|�|α/2d(�, �̄)ᾱ/2

(where we increase QN−1 if necessary as before). Now suppose �̄ is contained in GN−1
and � is not. Then we know A(�) admits the expression (4.10) with the same bounds on

1 and 
2, and where �1 and �2 are parallel to �̄ with

d(�1, �̄) = d(�, �̄) − 2−N and d(�2, �̄) ≤ d(�, �̄) + 2−N .



1050 I. Chevyrev

By the previous case and the concavity of x �→ x ᾱ/2, we have

|A(�) − A(�̄)| ≤ QN−1|�|α/2d(�, �̄)ᾱ/2 + 
1 + 
2.

From (4.11) we have


1 ≤ C7|�|α/2d(�, �̄)ᾱ/22−N (α−ᾱ)/2

(C7 takes into account the fact that supN PN < ∞). From (4.12) and the condition
2
3 < ᾱ < α we have


2 ≤ C4|�|d(�, �̄)ᾱ/22−N (α−ᾱ).

It follows that

|A(�) − A(�̄)| ≤ (QN−1 + C82
−N (α−ᾱ)/2)|�|α/2d(�, �̄)ᾱ/2 (4.13)

for C8 independent of N . For the final case, when neither � nor �̄ are contained in
GN−1, we write A(�) and A(�̄) as in (4.10) with corresponding 
i , 
̄i and parallel
�i , �̄i which are contained in GN−1 and d(�i , �̄i ) = d(�, �̄) for i = 1, 2. By exactly the
same argument we again obtain (4.13). Hence we have shown the inductive step with
QN

def= QN−1 + C82−N (α−ᾱ)/2, and thus supN QN < ∞, which completes the proof
of (4.9). ��

4.2. Axial gauge. In this subsection we conclude the proof of Theorem 4.5 by showing
that an axial-type gauge gives an easy bound of the order |AN

μ (x)| � 2−Nα/2, which
ensures we can always start the induction in Lemma 4.10.

Remark 4.13. This is the only part where we use simple connectedness ofG. If we chose
to work on [0, 1]2 instead of T2, then this assumption could be dropped and a simplified
version of the gauge presented in this subsection could be used.

Consider N ≤ N1 and treat in this subsectionU only as a function inA(N ).Wedefine a
gauge transform g ∈ G(N ) as follows. For n = 0, . . . , 2N −1, let yn

def= (0, n2−N ) ∈ �N
and define

V
def= U (y0, y1) · · ·U (y2N−1, y0).

There exists a unique ḡ ∈ G(N ) with support on {y1, . . . , y2N−1} such thatUḡ(yn, yn+1) =
exp(2−N log V ). Define further

Un
def= Uḡ(yn, yn + 2−Ne1) · · ·Uḡ(yn + (2N − 1)2−Ne1, yn).

Note that for any un0, . . . , u
n
2N−1

∈ G for which un0 · · · un
2N−1

= Un , there exists a unique

g ∈ G(N ) such that g(0) = 1G , g ≡ ḡ on {y1, . . . , y2N−1}, and
Ug(yn + m2−Ne1, yn + (m + 1)2−Ne1) = unm (4.14)

for all m, n ∈ {0, . . . , 2N − 1}. We require the following lemma from quantitative
homotopy theory.
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Lemma 4.14. Suppose G is simply connected. There exist δ0,C > 0, depending only on
G, with the following property. Let u0, . . . , uk ∈ G such that | log(u−1

n un+1)| ≤ δ ≤ δ0
for all n ∈ {0, . . . , k − 1}. Then there exist γ0, . . . , γk ∈ C([0, 1],G) such that γn(0) =
1G, γn(1) = un, and for all n ∈ {0, . . . , k − 1} and s, t ∈ [0, 1]

| log(γn(t)−1γn+1(t))| ≤ C(δ + k−1), (4.15)

and

| log(γn(s)−1γn(t))| ≤ C(kδ + 1)|t − s|. (4.16)

Proof. Consider the path γ : [0, 1] → G for which γ (0) = u0 and γ restricted to
[n/k, (n+1)/k] is the geodesic (one-parameter subgroup) from un to u(n+1)/k . Then γ is

L-Lipschitz with L
def= kδ (for the geodesic distance on G). Since G is simply connected,

it is well-known that there exists aC(L+1)-Lipschitz homotopy H : [0, 1]×[0, 1] → G
taking γ to the constant path at 1G , see e.g. [CDMW18, Theorem B]. Setting γn(t)

def=
H(n/k, t) concludes the proof. ��
Proposition 4.15 (Axial gauge). Suppose G is simply connected. Then for every C̄ ≥ 0
and α ∈ (0, 2), there exists N0 ≥ 0 and C ≥ 0 such that for all N ≥ N0, if

(4.1) holds for all rectangles r = (yn,m2−Ne1, 2
−Ne2), (4.17)

where yn = (0, n2−N ) ∈ �N , 0 ≤ n < 2N , and 1 ≤ m < 2N , then there exists
g ∈ G(N ) such that A

def= logUg satisfies for μ = 1, 2

max
x∈�N

|AN
μ (x)| ≤ C2−Nα/2. (4.18)

Proof. Defining ḡ as above, observe that (4.17), together with the fact that α < 2 and
| logUḡ(yn, yn+1)| � 2−N , implies that | logU−1

n Un+1| � 2−Nα/2. We are thus able to
apply Lemma 4.14 with k = 2N , un = Un for n = 0, . . . , 2N − 1 and u2N = U0, and
δ � 2−Nα/2.We then define unm

def= γn(m2−N )−1γn((m+1)2−N ) form = 0, . . . , 2N −1,
and choose the unique corresponding g ∈ G(N ) as dictated above. The bound (4.18)
follows for μ = 1 from the definition of unm and (4.16), and for μ = 2 from (4.15)
and (4.17). ��

5. Probabilistic Bounds

In this section we show that discrete approximations of the Yang–Mills measure satisfy
the bounds required in Theorem 4.5.

For every N ≥ 0, letQN : G → [0,∞)bemeasurablemap such that
∫
G QN (x) dx =

1, and QN (x) = QN (x−1) and QN (yxy−1) = QN (x) for all x, y ∈ G. Consider the
probability measure on A(N )

μN ( f ) = Z−1
N

∫
A(N )

f (U )
∏

p⊂�N

QN [U (∂p)] dU,

where the product is over all plaquettes p ⊂ �N , dU is the Haar measure on A(N ) ∼=
G|BN |, and ZN is the normalisation constant which makes μN a probability measure.
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For an integer N ≥ 0 and constants Cl ,Cu, C̄ ≥ 0 consider the conditions

∀x ∈ G, C−1
l ≤ Q�M

N (x) ≤ Cu, (5.1)

where M = 1 ∨ 22N−3 and Q�k
N denotes the k-fold convolution of QN with itself, and

for some β ≥ 1
∫
G

| log x |βQN (x) dx ≤ C̄2−βN . (5.2)

Condition (5.1) means that the G-valued random walk with increments QN (x) dx has
a density after M steps which is bounded above and below. Condition (5.2) means that
the β-th moment of QN (x) dx is comparable to the β-th moment of B(2−2N ), where B
is a G-valued Brownian motion.

Remark 5.1. The symmetry assumption QN (x) = QN (x−1) simplifies several points,
namely the proof of Lemma 5.4 below, but is not at all necessary provided we make
an assumption of the type | ∫G log(x)QN (x) dx | � 2−2N to control the drift of the
associated G-valued random walk.

Example 5.2. Two common choices for QN are the

• Villain (heat kernel) action QN = et
 at time t = 2−2N , where 
 is the Laplace–
Beltrami operator on G,

• Wilson action QN (x) = Z̄−1
N exp(εd−4ReTr(x − I )), where ε = 2−N , d = 2, and

we implicitly assume G is a matrix Lie group.

One can check that for every β ≥ 1 there exist Cl ,Cu, C̄ ≥ 0 such that (5.1) and (5.2)
hold for all N ≥ 0 and these two choices of QN .

Themain result of this section is the followingKolmogorov-type criterion.We hence-
forth fix N ≥ 0 and let U denote the A(N )-valued random variable distributed by μN .

Theorem 5.3. Let β ≥ 2 and suppose that (5.1) and (5.2) hold. Then for any q > 2 and
α < 1 − 6

β
, there exists λ ≥ 0 depending only on G, β, q, such that

E
[

sup
0≤n≤N

sup
r⊂�n

| logU (∂r)|β + |X |βq-var
|r |βα/2

]
≤ λClCuC̄,

where the second supremum is taken over all rectangles r ⊂ �n, and X denotes the
anti-development of U along r.

The idea of the proof is to approximate the holonomyU (∂r) and the anti-development
X by pinned randomwalks, and the latterwe control using rough paths theory.We require
the following lemma.

Lemma 5.4. Suppose (5.2) holds for some β ≥ 2 and C̄ ≥ 0. Then for all q > 2, there
exists λ ≥ 1, depending only on G, β and q, such that for all M, k ≥ 1

∫
Gk

(
|X |βq-var + | log(v1 · · · vk)|β

)
Q�M

N (v1) · · · Q�M
N (vk) dv ≤ λC̄(kM2−2N )β/2,

where (X j )
k
j=0 is the sequence X j = ∑ j

i=1 log(vi ).
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Proof. Wefirst prove the claim forM = 1. Let k ≥ 1 and consider i.i.d. g-valued random
variables V1, V2, . . . , Vk equal in law to log(Y ), where Y ∼ QN (x) dx . Consider the
martingale (X j )

k
j=0 defined by X j

def= ∑ j
i=1 Vi and let X denote its canonical (Marcus)

level-2 rough path lift (see [CF19, Sect. 4]). Then

E[‖X‖β
q-var] ≤ C1E

[( k∑
i=1

|Vi |2
)β/2]

≤ C1E
[
kβ/2−1

k∑
i=1

|Vi |β
]

≤ C1C̄kβ/22−Nβ,

whereC1 depends only onβ, q, andwherewe used the enhancedBDG inequality [CF19,
Thm. 4.7] in the first inequality, the power-mean inequality in the second inequality,
and (5.2) in the final inequality.

Note that trivially |X |q-var ≤ ‖X‖q-var. Note also that eV1 · · · eVk is the solution to a
controlled (Marcus) differential equation driven by X . By the local-Lipschitz continuity
of the rough path solution map, it follows that | log(eV1 · · · eVk )| ≤ C2‖X‖q-var, where
C2 depends only on G and q. This proves the claim for M = 1.

For general M ≥ 1, observe that taking k = M in the previous case implies that (5.2)
holds with QN on the LHS replaced by Q�M

N and C̄ and 2−2N on the RHS replaced
by λC̄ and M2−2N respectively (λ depending only on G, β, q). The conclusion again
follows from the previous part by replacing QN by Q�M

N . ��
Proof of Theorem 5.3. Let n ≤ N and consider a rectangle r ⊂ �n . We first show that

E
[
| logU (∂r)|β + |X |βq-var

]
≤ λClCuC̄ |r |β/2, (5.3)

where λ depends only on G, q, β. It suffices to consider 2 ≤ n ≤ N and r =
(0, k2−ne1, 2−ne2) where k < 2n−1. Note that the discrete measure μN has a domain
Markov property: if D is a simply connected domain of �N , then, conditioned on the
bonds of the boundary, the measure inside D is independent from the measure outside
D. As a consequence, we can substitute the lattice �N by the square D = [0, 1

2 ]2 ∩ �N
(which contains r by assumption) with prescribed bond variables on the boundary. More
precisely, since U (∂r) and |X |q-var are functions only of the bond variables inside and
on the boundary of D, we can write the LHS of (5.3) as

Z−1
N

∫
GK̄

dŪ
( ∫

GǨ
dǓ

∏
p̌ �⊂D

QN [U (∂ p̌)]
)( ∫

GK̊
dŮ F(U )

∏
p̊⊂D

QN [U (∂ p̊)]
)
,

where F(U ) = | logU (∂r)|β + |X |βq-var, and Ū are the bond variables on the boundary of
D, Ǔ are the bond variables outside D, and Ů are the bond variables inside D. Denoting

Z̊(Ū )
def=

∫
GK̊

dŮ
∏
p̊⊂D

QN [U (∂ p̊)],

we aim to show that for all Ū∫
GK̊

dŮ F(U )
∏
p̊⊂D

QN [U (∂ p̊)] ≤ λClCuC̄ Z̊(Ū )|r |β/2 (5.4)

from which (5.3) follows by the definition of ZN .
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Suppose first that n < N . To facilitate analysis of the integrals, we fix a maximal tree
T ⊂ BN inside D as follows.We include inT all bonds on the boundary of D except ᾱ

def=
(( 12 ,

1
2 − 2−N ), ( 12 ,

1
2 )). We further include all horizontal bonds 2−N ((x, y), (x + 1, y))

where either

• x ∈ {0, . . . , 2N−1 − 2} and y = 2N−n + 2m for some integer m ≥ 0 such that
y ∈ {2N−n, . . . , 2N−1 − 1}, or

• x ∈ {1, . . . , 2N−1 − 1} and y = 2N−n + (2m + 1) for some integer m ≥ 0 such that
y ∈ {2N−n, . . . , 2N−1 − 1}

and all vertical bonds 2−N ((x, y), (x, y + 1)) where either

• y ∈ {1, . . . 2N−n − 1} and x is odd and x ∈ {1, . . . , 2N−1 − 1}, or
• y ∈ {0, . . . 2N−n − 2} and x is even and x ∈ {1, . . . , 2N−1 − 1}.

See Fig. 4 for an example of T.
Since the integrand in (5.4) is gauge invariant, we can assume that U (α) = 1G for

all α ∈ T andU (ᾱ) = U (∂D), and take the integral over the remaining K
def= 22N−2 −1

bonds in D. Let us order these bonds α1, . . . , αK ∈ BN so that αK = ᾱ − (2−N , 0) with
earlier bonds moving along the path traced out by T (see Fig. 4). Using the shorthand
M

def= 22(N−n), u j
def= U (α j ), and writing r1, . . . , rk ⊂ �n for the subrectangles of r as

in Definition 4.1, it follows that U (∂r j ) = u jM . We can then rewrite the LHS of (5.4)
as

∫
GK

du
(|X |βq-var + | log ukM |β) K+1∏

i=1

QN (wi ),

where (X j )
k
j=0 is the sequence X0 = 0, X j = log(u−1

( j−1)Mu jM ), and where w1 = u1,

wK+1 = u−1
K U (ᾱ), and every wi , i = 2, . . . , K , is of the form wi = u±1

i−1u
±1
i (not

necessarily the same choice of± in the exponents) such thatwi−1 andwi carry opposite
exponents for ui−1 for all i = 2, . . . , K + 1. In Fig. 4, for example, one has

w2 = u−1
1 u2, w3 = u−1

2 u3, w4 = u−1
3 u4, w5 = u−1

4 u−1
5 ,

w6 = u5u
−1
6 , . . . , wK = u−1

K−1uK .

(Note that w1, . . . , wK+1 are the increments of the pinned random walk from 1G to
U (ᾱ) alluded to in the remark following Theorem 5.3.) In particular, we have u jM =
w1 · · ·w jM for all j < 2n−1. Therefore, making the change of variable v j = w( j−1)M+1
· · ·w jM , we can rewrite the LHS of (5.4) as

∫
Gk

dvF(v)Q�M
N (v1) · · · Q�M

N (vk)Q
�(K+1−kM)
N (v−1

k · · · v−1
1 U (ᾱ)), (5.5)

where now F(v) = | log(v1 · · · vk)|β+|X |βq-var and X j = ∑ j
i=1 log(vi ) for j = 0, . . . , k.

Note that K +1−kM ≥ 22N−3, and thus Lemma 5.4 and the upper bound in (5.1) imply
that (5.5) is bounded above by λCuC̄(kM2−2N )β/2 for any value of U (ᾱ). Finally, we
clearly have Z̊(Ū ) = Q�(K+1)

N (U (ᾱ)), hence using the lower bound in (5.1) concludes
the proof of (5.3) for n < N .

The case n = N follows by similar (even simpler) considerations. The only changes
which need to be made are that T has no vertical bonds which are not on the boundary
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Fig. 4. Example of T for N = 5, n = 3. Large circles indicate points of �n , small circles indicate points of
�N . Solid lines constitute bonds in T

of D, ᾱ is now on the north-west corner, i.e., ᾱ
def= ((0, 1

2 − 2−N ), (0, 1
2 )), and corre-

spondingly αK = ᾱ+ (2−N , 0), etc. α1 = ((2−N , 0), (2−N , 2−N )). Furthermore M = 1
and the variables (wi )

K+1
i=1 now satisfy wK+1 = uKU (ᾱ)−1 along with the previous

conditions. The same argument with U (ᾱ) replaced by U (ᾱ)−1 proves (5.3).
We now have

E
[

sup
0≤n≤N

sup
r⊂�n

∣∣∣ | logU (∂r)|β + |X |βq-var
|r |βα/2

∣∣∣
]

�
N∑

n=0

∑
r⊂�n

|r |−βα/2+β/2

≤
N∑

n=0

∑
x∈�n

2n∑
k=1

(k2−2n)β(1−α)/2

≤
N∑

n=0

22n2n2nβ(1−α)/22−nβ(1−α).

The final term is bounded above independently of N provided 3−β(1−α)/2 < 0, i.e.,
α < 1 − 6/β. ��

Proof of Theorem 1.1. Applying Theorem 5.3 to the heat kernel action from Exam-
ple 5.2, Theorem 4.5 shows that for every N ≥ 1, there exist an �1,(N )(T2, g)-valued
random variable A(N ) for which (|A(N )|(N )

α )N≥1 is tight for any α ∈ (0, 1), and such that
the associated gauge field induces the discrete YM measure on the lattice �N . Recall
that, byYoung integration, the developmentmapCα-Höl([0, 1], g) → Cα-Höl([0, 1],G) is
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continuous (locallyLipschitz) for allα ∈ ( 12 , 1].We thus obtain for anyα ∈ ( 12 , 1) the ex-
istence of an�α-valued random variable Awith the desired properties from Lemma 3.8,
Theorem 3.26, and the characterisation of the YMmeasure in [Lév03, Thm. 2.9.1]. The
fact that A has support in �1

α follows from Proposition 3.20. ��
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Appendix A: Symbolic Index

We collect in this appendix commonly used symbols of the article, together with their
meaning

Symbol Meaning
A 1-form
A(N ) Space of discrete gauge fields U : BN → G
BN Oriented bonds of the lattice �N
BN Subset of BN consisting of positively oriented bonds
dH Hausdorff metric on X
G Compact, connected Lie group
g Lie algebra of G
G(N ) Space of discrete gauge transforms g : �N → G
GN Grid associated with �N
�N Lattice of Td with spacing 2−N

log Right inverse of exp : g → G
�A Path constructed from A ∈ � and � ∈ X
� Additive functions on X
�1 Space of bounded, measurable 1-forms
�α Banach space of A ∈ � with |A|α < ∞
�1

α Closure of {A ∈ �1 | |A|α < ∞} in �α

�1,(N ) Space of discrete 1-forms A : BN → E
p Plaquette of �N
r Rectangle of �N
�(�, �̄) Area distance between parallel �, �̄ ∈ X
U Discrete gauge field U ∈ A(N )

Ug Gauge transform Ug(x, y) = g(x)U (x, y)g(y)−1

U (∂r) Holonomy of U around r
X Set of line segments � = {x + ceμ | c ∈ [0, λ]}
X (N ) Subset of � ∈ X consisting of unions of bonds in BN
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