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Abstract: We study the graph isomorphism game that arises in quantum information
theory. We prove that the non-commutative algebraic notion of a quantum isomorphism
between two graphs is same as the more physically motivated one arising from the
existence of a perfect quantum strategy for graph isomorphism game. This is achieved by
showing that every algebraic quantum isomorphism between a pair of (quantum) graphs
X andY arises froma certainmeasured bigalois extension for the quantumautomorphism
groups GX and GY of X and Y . In particular, this implies that the quantum groups GX
andGY aremonoidally equivalent.We also establish a converse to this result, which says
that a compact quantum groupG is monoidally equivalent to the quantum automorphism
group GX of a given quantum graph X if and only if G is the quantum automorphism
group of a quantum graph that is algebraically quantum isomorphic to X . Using the
notion of equivalence for non-local games, we apply our results to other synchronous
games, including the synBCS game and certain related graph homomorphism games.

1. Introduction

Finite input-output games have received considerable attention in the quantum infor-
mation theory literature as tools for investigating the structure of quantum correlations.
The latter are meant to model the following setup (in one of several ways, depending on
the specific chosen model [27]):

The perennial experimenters Alice and Bob, share an entangled quantum state, each
performs one of n quantum experiments and returns one of k outputs. The respec-
tive quantum correlation is then defined as the collection of conditional probabilities
(p(a, b|x, y)) of obtaining a given pair of outputs a, b for a given pair of inputs, x, y.

To recast this in game theoretic terms one typically proceeds as follows. Alice (A)
and Bob (B) are regarded as cooperating players trying to supply “correct” answers
to a referee (R) who communicates with A/B via sets of questions (inputs) IA, IB .
Alice and Bob then reply with answers from their respective sets of outputs OA, OB .
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The game rules, which are known to A, B, and R, are embodied by a function λ :
OA×OB×IA×IB → {0, 1}, such thatA andBwin a round of the game if their respective
replies a and b to the questions x and y satisfy λ(a, b|x, y) = 1, and they lose the round
otherwise. Prior to the round, A and B can cooperate to develop a winning strategy,
but are not allowed to communicate once the game begins. Cooperation consists of a
pre-arranged strategy, which can be deterministic or random. We identify probabilistic
strategies with the collection of conditional probability densities (p(a, b|x, y)) that they
produce.

A probabilistic strategy is called perfect or winning, if the probability that they give
an incorrect pair of answers is 0, i.e., λ(x, y, a, b) = 0 �⇒ p(a, b|x, y) = 0. The key
point is that the set of such conditional probability densities (p(a, b|x, y)) that can be
obtained via quantum experiments in an entangled state is larger than the set of densities
that can be obtained from classical shared randomness. For this reasonwinning quantum
strategies can often be shown to exist when classical ones do not exist.

Our starting point in this context is the graph isomorphism game introduced in [1].
Given two finite graphs X and Y this game has inputs that are the disjoint union of
the vertices of X and the vertices of Y and outputs that are the same set. The referee
sends A, B each a vertex xA, xB ∈ V (X) ∪ V (Y ) and receives respective answers
yA, yB ∈ V (X) ∪ V (Y ). Winning conditions require that

• xA and yA belong to different graphs;
• ditto for xB and yB ;
• the “relatedness” of the inputs is reflected by that of the outputs: xA = xB , or are
distinct and connected by an edge, or distinct and disconnected if and only if the
same holds for the y vertices.

It turns out that the game has a perfect deterministic strategy if and only if the two graphs
are isomorphic. This observation motivates the authors of [19] to introduce a notion of
quantum isomorphism between finite graphs, relating to the existence of less constrained,
random strategies for the graph isomorphism game. Whether or not two finite graphs
X and Y are quantum-isomorphic is governed by a ∗-algebra A(I so(X,Y )), a non-
commutative counterpart to the function algebra of the space of isomorphisms X → Y .
More precisely, the algebra of continuous functions on the space of isomorphisms X →
Y can be recovered as the abelianization of A(I so(X,Y )).

One is thus prompted to consider “quantum spaces” in the sense of non-commutative
geometry: ∗-algebras or C∗-algebras, thought of as function algebras on the otherwise
non-existent spaces. In the same spirit we will work with quantum graphs (finite-
dimensional C∗-algebras equipped with some additional structure mimicking an “ad-
jacency matrix” Sect. 3.1) and quantum groups i.e. (objects dual to) non-commutative
∗-algebras with enough structure to resemble algebras of representative functions on
compact groups (Sect. 2.5).

As is the case classically, every quantum graph X has a quantum automorphism group
GX . The recent papers [19–21] uncover further remarkable connections between graph
isomorphism games and quantum automorphism groups. Moreover, while [19] focuses
on classical graphs, [20,21] consider a more general categorical quantum mechanical
frameworkwhich leads naturally to the notion of a quantumgraphs and the generalization
of the graph isomorphism game to that framework.

In particular, [21] obtains a characterization of (finite-dimensional) quantum isomor-
phic quantum graphs X , Y in terms of simple dagger Frobenius monoids in the category
of finite dimensional representations of the Hopf ∗-algebraO(GX ) of the corresponding
quantum automorphism group GX . On the other hand, [19] uses ideas from quantum
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group theory to establish the equivalence between the existence of C∗-quantum iso-
morphisms for graphs and the existence of perfect strategies for the isomorphism game
within the so-called quantum commuting framework.

Here, we continue in the same vein investigating connections between quantum au-
tomorphism groups of graphs and the graph isomorphism game, taking a somewhat dual
approach to the one in [20,21]:

We regard thegame∗-algebraA(I so(X,Y )) as indicated above, as a non-commutative
analogue of the space of isomorphisms X → Y . In particular, we say that X and Y are
algebraically quantum isomorphic, and simply write X ∼=A∗ Y , if A(I so(X,Y )) 	= 0.
Classically, the space of isomorphisms between two graphs is a principal homogeneous
bundle over the automorphism groups of both graphs. In other words, if I soc(X,Y )

denotes the space of graph isomorphisms X → Y and Aut(X) (resp. Aut(Y )) de-
notes the automorphism group of X (resp. Y ), then the canonical left/right actions
Aut(Y ) � I soc(X,Y ) � Aut(X) are free and transitive. One of our main results
is the quantum analogue of this remark; it is Theorem 4.5 below, and can be paraphrased
as follows:

Theorem. Let X and Y be two quantum graphs. If the quantum isomorphism space
A(I so(X,Y )) is non-trivial then it is a quantum principal bi-bundle (bigalois extension)
over the quantum automorphism groups GX and GY of X and Y respectively.

This (non-commutative) bundle-theoretic perspective on A(I so(X,Y )) has advan-
tages: although the construction ofA(I so(X,Y )) is purely algebraic anddoes not assume
the existence of any C∗-representations of this object, we use the above result to show
that this algebra always admits a faithful invariant state whenever it is non-zero (cf.
Theorem 4.7), leading to connections with the notion of monoidal equivalence between
quantum automorphism groups. Loosely speaking, we say that two compact quantum
groups are monoidally equivalent if their categories of finite-dimensional unitary rep-
resentations are equivalent as rigid C∗-tensor categories. Our main result here is an
amalgamation of Theorems 4.7 and 4.11, and says:

Theorem. Let X be a quantum graph and GX its quantum automorphism group. Then
the following hold:

1. If Y is another quantum graph such that X ∼=A∗ Y , then A(I so(X,Y )) admits a
faithful state and GX is monoidally equivalent to the quantum automorphism group
GY . If both X and Y are moreover classical graphs, then A(I so(X,Y )) admits a
faithful tracial state.

2. Conversely, for any compact quantum group G monoidally equivalent to GX , one
can construct from this monoidal equivalence a quantum graph Y , an isomorphism
of quantum groups G ∼= GY , and an algebraic quantum isomorphism X ∼=A∗ Y .

Recasting all of the above in the context of the (classical) graph isomorphism game,
our results show that the conditionA(I so(X,Y )) 	= 0 is sufficient to ensure the existence
of perfect quantum strategies for this game (Corollary 4.8 and Theorem 4.9):

Theorem. Two classical graphs X and Y are algebraically quantum isomorphic if and
only if the graph isomorphism game has a perfect quantum-commuting (qc)-strategy.

A weaker version of the above theorem (assuming the existence of a non-zero C∗-
algebra representation of A(I so(X,Y ))) was recently proved in [19].

Using a notion of ∗-equivalence for non-local games, we also use the above result to
deduce the existence of perfect qc-strategies from purely algebraic data for synchronous
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binary constraint system (syncBCS) games and certain related graph homomorphism
games (Corollaries 5.7 and 5.8). We find all these results very striking because for
generic synchronous games (e.g. the graph homomorphism game) the ∗-algebra A(G)

governing the game may be non-zero even if this algebra has no C∗-representations (and
hence no perfect quantum strategies) [17].

We note also that the above results could be recast in a much broader context – rather
than quantumgraphs,we could consider arbitraryfinite quantumstructures: quantumsets
(i.e. finite-dimensional C∗-algebras with a fixed state) equipped with arbitrary tensors.
Input-output isomorphism games could then be constructed as in the case of graphs, and
the discussion replicated in that general framework. Our focus on (quantum) graphs is
motivated by the contingent fact that the latter have received considerable interest in the
literature.

After recalling some preliminary material in Sect. 2 and generalities on quantum sets
and Galois extensions in Sect. 3 we prove our main results in Sect. 4. Finally, Sect. 5
contains further applications to finite input-output games.

2. Preliminaries

2.1. Some notation. If n is a natural number, we sometimes write [n] for the ordered
set {1, 2, . . . , n}. All vector spaces considered here are over the complex field. We use
the standard leg numbering notation for linear operators on tensor products of vector
spaces. For example, if X,Y, Z are vector spaces and T : X ⊗ Y → X ⊗ Y is a linear
map, then T13 : X ⊗ Z ⊗ Y → X ⊗ Z ⊗ Y is the linear map which acts as T on the first
and third leg of the triple tensor product, and as the identity on the second leg. We also
typically denote the identity map on a vector space by ι.

2.2. Games and strategies. We lay out some definitions and a few basic properties of
games and strategies.Wewill primarily be concerned with the graph isomorphism game,
the graph homomorphism game and two versions of a game based on solving systems
of linear equations over the binary field.

By a two-person finite input-output game we mean a tuple G = (IA, IB , OA, OB, λ)

where IA, IB, OA, OB are finite sets and

λ : IA × IB × OA × OB → {0, 1}
is a function that represents the rules of the game, sometimes called the predicate. The
sets IA and IB represent the inputs that the players Alice and Bob can receive, and the
sets OA and OB , represent the outputs that Alice and Bob can produce, respectively.
A referee selects a pair (v,w) ∈ IA × IB , gives Alice v and Bob w, and they then
produce outputs (answers), a ∈ OA and b ∈ OB , respectively. They win the game if
λ(v,w, a, b) = 1 and loose otherwise. Alice and Bob are allowed to know the sets
and the function λ and cooperate before the game to produce a strategy for providing
outputs, but while producing outputs, Alice and Bob only know their own inputs and
are not allowed to know the other person’s input. Each time that they are given an input
and produce an output is referred to as a round of the game.

We call such a game synchronous provided that: (i) Alice and Bob have the same
input sets and the same output sets, which we denote by I and O , respectively, and (ii)
λ satisfies:
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∀v ∈ I, λ(v, v, a, b) =
{
0 a 	= b
1 a = b

,

that is, whenever Alice and Bob receive the same inputs then they must produce the
same outputs. To simplify notation we write a synchronous game as G = (I, O, λ).

A deterministic strategy for a game is a pair of functions, h : IA → OA and k :
IB → OB such that if Alice and Bob receive inputs (v,w) then they produce outputs
(h(v), k(w)). A deterministic strategy wins every round of the game if and only if

∀(v,w) ∈ IA × IB, λ(v,w, h(v), k(w)) = 1.

Such a strategy is called a perfect deterministic strategy. It is not hard to see that for a
synchronous game, any perfect deterministic strategy must satisfy, h = k.

On the other hand, a strategy for a game is called random if it can happen that for
different rounds of the game, when Alice and Bob receive the input pair (v,w) they may
produce different output pairs. A random strategy thus yields a conditional probability
density p(a, b|v,w), which represents the probability that, given inputs (v,w) ∈ IA ×
IB , Alice and Bob produce outputs (a, b) ∈ OA × OB . Thus, p(a, b|v,w) ≥ 0 and for
each (v,w), ∑

a∈OA,b∈OB

p(a, b|v,w) = 1.

In this paperwe identify randomstrategieswith their conditional probability densities,
so that a random strategy will simply be a conditional probability density p(a, b|v,w).

A random strategy is called perfect if

λ(v,w, a, b) = 0 �⇒ p(a, b|v,w) = 0, ∀(v,w, a, b) ∈ IA × IB × OA × OB .

Thus, for each round of the game, a perfect strategy gives a winning output with proba-
bility 1.

Given a particular set of conditional probability densities, one can ask if the game not
only has a perfect random strategy, but has one that belongs to a particular set of densities.
The different kinds of probability densities that are studied in this context generally fall
into two types: There are the local (loc) densities, also called the classical densities,
which arise from ordinary random variables defined on probability spaces, and then there
are the quantum densities that arise from the random outcomes of, especially, entangled
quantum experiments. However, there are several different mathematical models for
describing the densities obtained from quantum experiments. These models lead to
sets of conditional probability densities know variously as the quantum (q), quantum
spatial (qs) (or sometimes quantum tensor), quantum approximate (qa), and quantum
commuting (qc) models.

Rather than go into a long explanation of the definitions of each of these sets, which
is done many other places, we refer the reader to [18], for their definitions and merely
summarize some of their basic relations below. Given n inputs and k outputs, we denote
the set of conditional probability densities p(a, b|v,w) that belong to each of these sets
byCt (n, k), where t can be loc, q, qs, qa or qc. The following containments are known:

Cloc(n, k) ⊆ Cq(n, k) ⊆ Cqs(n, k) ⊆ Cqa(n, k) ⊆ Cqc(n, k).

Moreover, for n, k ≥ 2, it is known that Cloc(n, k) 	= Cq(n, k). While for n ≥
5, k ≥ 2, we have Cqs(n, k) 	= Cqa(n, k) by [15], and for n ≥ 5, k ≥ 3, we have
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Cq(n, k) 	= Cqs(n, k) [10]. The most famous question is whether or not Cqa(n, k) =
Cqc(n, k), ∀n, k ≥ 2, since this is known to be equivalent to Connes’ embedding con-
jecture, first posed in [11]; see [24].

We shall say that a game has a perfect t-strategy provided that it has a perfect random
strategy that belongs to one of these sets, where t can be either loc, q, qs, qa or qc.
Moreover, we work with even broader classes of strategies we term C∗ and A∗ (the latter
being the broadest, i.e. weakest class; see Definition 2.2).

2.3. The ∗-algebra of a synchronous game. In [23] a ∗-algebra was affiliated with
the graph homomorphism game, Hom(X,Y ), whose representation theory determined
whether or not a perfect t-strategy existed (see Sect. 2.4 for definitions). Later in [25]
and [17,18] these ideas were extended to any synchronous game. We begin by recalling
the ∗-algebra of a synchronous game and summarizing these results. This ∗-algebra is
defined by generators and relations arising from the rule function of the game.

Let G = (I, O, λ) be a synchronous game and assume that the cardinality of I is
|I | = nwhile the cardinality ofO is |O| = m.Wewill often identify I with {0, . . . , n−1}
and O with {0, . . . ,m − 1}. We let Z

∗n
m denote the free product of n copies of the cyclic

group of order m and let C[Z∗n
m ] denote the complex ∗-algebra of the group. We regard

the group algebra as a ∗-algebra, where for each group element g we have g∗ = g−1.
For each v ∈ I we have a unitary generator uv ∈ C[Z∗n

m ] such that umv = 1. If we
set ω = e2π i/m then the eigenvalues of each uv is the set {ωa : 0 ≤ a ≤ m − 1}. The
“orthogonal projection” onto the eigenspace corresponding to ωa is given by

ev,a = 1

m

m−1∑
k=0

(
ω−auv

)k
,

and these satisfy

1 =
m−1∑
a=0

ev,a and uv =
m−1∑
a=0

ωaev,a .

The set {ev,a : v ∈ I, 0 ≤ a ≤ m − 1} is another set of generators for C[Z∗n
m ].

We let I(G) denote the 2-sided ∗-ideal in C[Z∗n
m ] generated by the set

{ev,aew,b | λ(v,w, a, b) = 0}
and refer to it as the ideal of the game G. We define the ∗-algebra of G to be the quotient

A(G) = C[Z∗n
m ]/I(G).

Note that since λ(v, v, a, b) = 0,∀v, a 	= b, in the quotient we will have that ev,aev,b =
0.

It is not hard to see that if we, alternatively, started with the free ∗-algebra generated
by {ev,a : v ∈ I, 0 ≤ a ≤ m − 1} and formed the quotient by the two-sided ideal
generated by:

• ev,a − e∗
v,a, ∀v, a,

• ev,a − e2v,a, ∀v, a,
• 1 − ∑

a ev,a, ∀v
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• ev,aew,b, ∀v,w, a, b such that λ(v,w, a, b) = 0,

then we obtain the same ∗-algebra. We are not asserting that this algebra is non-zero. In
fact, it can be the case that the identity belongs to the ideal, in which case the algebra is
zero.

The following is a summary of the results obtained in [17] and [18] and illustrates
the importance of this algebra.

Theorem 2.1 [17,18]. Let G = (I, O, λ) be a synchronous game.

1. G has a perfect deterministic strategy if and only if G has a perfect loc-strategy if and
only if there exists a unital ∗-homomorphism from A(G) to C.

2. G has a perfect q-strategy if and only if G has a perfect qs-strategy if and only if
there exists a unital ∗-homomorphism from A(G) to B(H) for some non-zero finite
dimensional Hilbert space.

3. G has a perfect qa-strategy if and only if there exists a unital ∗-homomorphism of
A(G) into an ultrapower of the hyperfinite I I1-factor,

4. G has a perfect qc-strategy if and only if there exists a unital C∗-algebra C with a
faithful trace and a unital ∗-homomorphism π : A(G) → C.
This theorem motivates the following definitions.

Definition 2.2. Let G be a synchronous game. We say that G has a perfect A∗-strategy
provided A(G) is non-zero, and we say that G has a perfect C∗-strategy provided that
there is a unital ∗-homomorphism from A(G) into B(H) for some non-zero Hilbert
space H . �

2.4. Graphs and related games. A graph X is specified by a vertex set V (G) and an edge
set E(X) ⊆ V (X)×V (X), satisfying (v, v) /∈ E(X) and (v,w) ∈ E(X) �⇒ (w, v) ∈
E(X). Given two graphs X and Y , a graph homomorphism from X to Y is a function
f : V (X) → V (Y ) with the property that (v,w) ∈ E(X) �⇒ ( f (v), f (w)) ∈ E(Y ).
We write X → Y to indicate that there exists a graph homomorphisms from X to Y .
Graph homomorphisms encapsulate many familiar graph theoretic parameters. If we let
Kc denote the complete graph on c vertices, i.e., the graph where every pair of vertices
is connected by an edge, then

• the chromatic number of X is χ(X) = min{c : ∃ X → Kc},
• the clique number of X is ω(X) = max{c : ∃ Kc → X},
• the independence number of X is, α(X) = max{c : ∃ Kc → X},

where X denotes the graph complement of X , i.e., the graph whose edge set is the
complement of X ’s.

The graph homomorphism game from X to Y , which we shall denote by Hom(X,Y ),
is a synchronous game with inputs IA = IB = V (X) and outputs OA = OB = V (Y ).

Alice and Bob win a round provided that whenever they receive inputs that are an edge
in X , then their outputs are an edge in Y and that whenever Alice and Bob receive the
same vertex in X they produce the same vertex in Y . This is also a synchronous game.

Note that a perfect deterministic strategy for the graph homomorphism game from
X to Y is a function h : V (X) → V (Y ) that is a graph homomorphism. In particular, a
perfect deterministic strategy exists if and only if ∃X → Y . Similarly, we say that there

is a t-homomorphism from X to Y and write X
t→ Y if and only if there exists a perfect

t-strategy for the graph homomorphism game from X to Y for t = q, qs, etc.
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2.4.1. The graph isomorphism game Two graphs X and Y are isomorphic if and only if
there exists a one-to-one onto function f : V (X) → V (Y ) such that (v,w) is an edge in
X if and only if ( f (v), f (w)) is an edge in Y . We write X � Y to indicate that X and Y
are isomorphic. If we let AX denote the adjacency matrix of X and analogously for AY ,
then it is well-known and easy to check that X � Y if and only if there is a permutation
matrix P such that AX P = PAY .

The graph isomorphism game, Iso(X,Y) between X and Y is a game with the property
that two graphs are isomorphic if and only if there exists a perfect deterministic strategy
for I so(X,Y ). It was introduced by Atserias et al. [1].

The easiest way to describe the rules for this game is in terms of the relation between
a pair of vertices. Formally, the relation on a graph is a function rel : V (X) × V (X) →
{0, 1,−1} with

• rel(v,w) = 0 ⇐⇒ v = w,
• rel(v,w) = −1 ⇐⇒ (v,w) ∈ E(X),
• rel(v,w) = +1 ⇐⇒ v 	= w and (v,w) /∈ E(X).

We remark that the matrix SX := (rel(v,w))v,w∈V (X) is known as the Seidel adja-
cency matrix of the graph.

The rules for this game can be stated loosely as requiring that to win, outputs must
come from different graphs than inputs, outputs must have the same relations as inputs,
and whenever one player’s output is the same as the other player’s input, then the same
must hold for the other player. This final rulemakes a deterministic strategy be a function
and its inverse, instead of just a pair of functions. The input set and output set for this
game is the disjoint union of V (X) with V (Y ) and

λ : (V (X) ∪ V (Y )) × (V (X) ∪ V (Y )) → {0, 1},
satisfies λ(v,w, x, y) = 1 if and only if the following conditions are met:

• x belongs to a different graph than v and y belongs to a different graph than w,
• if v and w are both vertices of the same graph, then rel(v,w) = rel(x, y).
• if v and w are from different graphs and x = w, then y = v,
• if v and w are from different graphs and y = v, then x = w.

Now it is not hard to see that this game is synchronous and it has a perfect deterministic
strategy if and only if X � Y . Indeed, if it has a perfect deterministic strategy, then
there must be a function f : V (X) ∪ V (Y ) → V (X) ∪ V (Y ) and the rules force
v ∈ V (X) �⇒ f (v) ∈ V (Y ) and x ∈ V (Y ) �⇒ f (x) ∈ V (X). Denoting the
restrictions of f to V (X) and V (Y ) by f1 : V (X) → V (Y ) and f2 : V (Y ) → V (X).
The fact that rel(v,w) = rel( f1(v), f1(w)) tells us that f1 is one-to-one and preserves
the edge relationships, since f2 is also one-to-one, card(V (X)) = card(V (Y )) and so
both f1 and f2 define graph isomorphisms. However, note that the rules of the game do
not require that f1 and f2 be mutual inverses.

We will write X �t Y if and only if this game has a perfect t-strategy for t ∈
{loc, q, qa, qc,C∗, A∗}.

The following result characterizes A(I so(X,Y )).

Proposition 2.3. Let X = (V (X), E(X)) and Y = (V (Y ), E(Y )) be graphs on n
vertices. ThenA(I so(X,Y )) is generated by 4n2 self-adjoint idempotents {ev,w : v,w ∈
V (X) ∪ V (Y )} satisfying:
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1. eg,g′ = 0, ∀g, g′ ∈ V (X) and eh,h′ = 0, ∀h, h′ ∈ V (Y ),
2. e2g,h = e∗

g,h = eg,h, ∀g ∈ V (X), h ∈ V (Y ),

3. for g ∈ V (X) and h ∈ V (Y ), eg,h = eh,g,
4.

∑
h∈V (Y ) eg,h = 1, ∀g ∈ V (X),

5.
∑

g∈V (X) eg,h = 1, ∀h ∈ V (Y ),

6. eg,heg,h′ = 0,∀h 	= h′,
7. eg,heg′,h = 0, ∀g 	= g′,
8.

∑
g′:(g,g′)∈E(X) eg′,h = ∑

h′:(h,h′)∈E(Y ) eg,h′ , ∀g, h.
Proof. Recall that for any game, we will have generators, ex,y, x, y ∈ V (X) ∪ V (Y )

with e2x,y = e∗
x,y = ex,y ,

∑
y ex,y = 1, and ex,yex,w = 0 for y 	= w. So (2) and (6) are

automatically met.
To see (1), note that if g, g′ ∈ V (X), then λ(g, x, g′, y) = 0, for all x, y. Hence for

and fixed x we have that

eg,g′ = eg,g′
(∑

y

ex,y
) =

∑
y

eg,g′ex,y = 0.

The case that h, h′ ∈ V (Y ) is identical.
Note that (4) follows from (1).
To see (6), note that

eh,g = eh,g(
∑

k∈V (Y )

eg,k) =
∑

k∈V (Y )

eh,geg,k .

Now λ(h, g, g, k) = 0 unless h = k, so we have that eh,g = eh,geg,h A similar calcula-
tion shows that eg,h = eg,heh,g . Hence, eg,h = e∗

g,h = (eg,heh,g)
∗ = eh,geg,h = eh,g .

Now (5) follows from (6) and (4). Similarly, (7) follows from (6) and (6).
Finally to see (8), we have that∑

g′:(g,g′)∈E(X)

eg′,h = ( ∑
g′:(g,g′)∈E(X)

eg′,h
)( ∑

h′∈V (Y )

eg,h′
)

=
∑

g′,h′:(g,g′)∈E(X),h′∈V (Y )

eg′,heg,h′ =
∑

g′,h′:(g,g′)∈E(X),(h,h′)∈E(Y )

eg′,heg,h′ ,

since λ(g′, g, h, h′) = 0 unless (h, h′) ∈ E(Y ). Similarly, one shows that∑
h′:(h,h′)∈E(Y ) eg,h′ is equal to this latter sum and (8) follows. ��

Remark 2.4. A nice compact way to represent the above relations is to consider the n×n
matrix U = (eg,h)g∈V (X),h∈V (Y ). Then by (2) every entry is a self-adjoint idempotent,
while (4) and (5) imply that U∗U = UU∗ is the identity matrix, i.e., that U is a
unitary. We also, by (6) and (7), have that entries in each row and column are pairwise
“orthogonal”, i.e., have pairwise 0 product. Such a matrix U will be referred to as a
quantum permutation over the ∗-algebra A(I so(X,Y )).

Equation (8) implies that (1 ⊗ AX )U = U (1 ⊗ AY ) where AX and AY denote the
adjacency matrices of the graphs, and 1 is the unit of the algebra. Thus, Proposition 2.3
can be summarized as saying that A(I so(X,Y )) is the ∗-algebra generated by {eg,h :
g ∈ V (X), h ∈ V (Y )} subject to the relations thatU = (eg,h) is a quantum permutation
with (1 ⊗ AX )U = U (1 ⊗ AY ). We have that X �A∗ Y if and only if a non-trivial
∗-algebra exists satisfying these relations. �
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Remark 2.5. Combining Proposition 2.3 with Theorem 2.1, we see that given two graphs
X and Y on n vertices:

• X �q Y if and only if there exist a d and projections Eg,h ∈ Md such that U =
(Eg,h) is a unitary in Mn(Md) and (1 ⊗ AX )U = U (1 ⊗ AY ),

• X �qa Y if and only if there exist projections Eg,h ∈ Rω such that U = (Eg,h) ∈
Mn(Rω) is a unitary and (1 ⊗ AX )U = U (1 ⊗ AY ),

• X ∼qc Y if and only if there exists projections Eg,h in some C∗-algebra A with a
trace such that U = (Eg,h) ∈ Mn(A) is a unitary and (1 ⊗ AX )U = U (1 ⊗ AY ),
• X �C∗ Y if and only if there exists projections Eg,h on a Hilbert space H such that
U = (Eg,h) ∈ Mn(B(H)) is a unitary and (1 ⊗ AX )U = U (1 ⊗ AY ).

Also, if there exists a unital ∗-homomorphism from π : A(I so(X,Y )) → C, then
(π(eg,h)) ∈ Mn will be a permutation matrix, satisfying AX (π(eg,h)) = (π(eg,h))AY ,
which is the classical notion of isomorphism for graphs. �

Note that we have the following obvious implications.

X ∼= Y �⇒ X ∼=q Y �⇒ X ∼=qa Y �⇒ X ∼=qc Y �⇒ X ∼=C∗ Y �⇒ X ∼=A∗ Y.

Moreover, it is known that the first two implications are not reversible [1,18]. The
question of whether the third implication holds is still open. The question whether the
implications X ∼=A∗ Y �⇒ X ∼=C∗ Y �⇒ X ∼=qc Y hold for generic X and Y had
remained open for quite some time. Only very recently the implicationC∗ �⇒ qc was
obtained in [19]. One of our main results is that the implication A∗ �⇒ qc holds. In
other words,A(I so(X,Y )) 	= 0 if and only ifA(I so(X,Y )) admits a tracial state. This
is somehow surprising, because the same conclusion cannot be made for the algebras
A(Hom(X,Y )) [17].

2.5. Compact quantum groups. We follow the references [14,22,26,30] for the basics
on (C∗-algebraic) compact quantum groups.

We begin by recalling that a Hopf algebra is a quadruple (A,�, S, ε) where A is a
unital associative algebrawithmultiplicationmapm, and� : A → A⊗A, S : A → Aop,
ε : A → C are unital algebra morphisms satisfying

1. (ι ⊗ �)� = (� ⊗ ι)� (co-associativity).
2. m(ι ⊗ S)� = ε(·)1 = m(S ⊗ ι)�

3. (ε ⊗ ι)� = (ι ⊗ ε)� = ι.

The maps �, S, ε given above are called the comultiplication, counit, and antipode,
respectively. We typically just refer to a Hopf algebra with the symbol A if the other
structure maps m,�, S, ε are understood and there is no danger of confusion. A Hopf
∗-algebra is a Hopf algebra Awhere A is a ∗-algebra and the comultiplication and counit
are ∗-homomorphisms.

The following definition is (essentially) taken from [6,14] and is one of many equiv-
alent ones.

Definition 2.6. A CQG algebra is a Hopf ∗-algebra A for which there exists a C∗-norm
‖ · ‖ on A making the comultiplication � : A → A ⊗ A continuous with respect to the
minimal C∗-tensor norm ⊗min (in short, we say that ‖ · ‖ is �-compatible).

A compact quantum group (CQG) is the object dual to a CQG algebra, i.e. we regard
compact quantum groups and CQG algebras as mutually opposite categories. We write
G for a quantum group and O(G) for its corresponding CQG algebra. �
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Since there is an identification between the objects of the categories of quantum
groups and CQG algebras, we will on occasion abuse language and conflate the two.

The motivating example of a CQG is given by the Hopf ∗-algebraO(G) of represen-
tative functions on a compact groupG. Here,� : O(G) → O(G×G) = O(G)⊗O(G)

is the map � f (s, t) = f (st), S f (t) = f (t−1), and ε( f ) = f (e), where e ∈ G is the
unit. Here the C∗-norm on O(G) is the uniform norm coming from C(G), and it is
relatively easy to see that this is the unique C∗-norm making the comultiplication �

⊗min-continuous.
Motivated by the above example, it is customary to use the symbol G to to denote

an arbitrary CQG and write A = O(G) for the Hopf ∗-algebra associated to G. Here
we are viewing A as a non-commutative algebra of “representative functions” on some
“quantum space” G, which comes equipped with a group structure.

Another example of a CQG is given by the Pontryagin dual 
̂ of a discrete group

. Here O(
̂) = C
, �(γ ) = γ ⊗ γ , Sγ = γ −1, and ε(γ ) = 1 for each γ ∈ 
.
In this case, one can in general choose from a variety of �-compatible C∗-norms. The
two most common ones are the maximal C∗-norm on C
 and the reduced C∗-norm, the
latter being induced by the left regular representation of C
 on �2
.

A few “purely quantum” examples follow.

Example 2.7. Wang and Van Daele’s universal unitary quantum group U+
F [28] associ-

ated to a matrix F ∈ GLn(C) is given by

O(U+
F ) = ∗-algebra(ui j , 1 ≤ i, j ≤ n

∣∣ u
= [ui j ] & (1 ⊗ F)[u∗

i j ](1 ⊗ F−1) are unitary in Mn(O(U+
F ))

)
together with Hopf-∗-algebra maps �(ui j ) = ∑

k uik ⊗ ukj , S(ui j ) = u∗
j i and ε(ui j ) =

δi j .
The term universal in the above definition will be made precise in the paragraph

following Remark 2.11. For the time being, now we suffice it to say that the quantum
groups play the analogous universal role for compact matrix quantum groups that the
ordinary compact matrix groups: Any compact matrix group G arises as a closed quan-
tum subgroup of some U+

F . That is, there exists a surjective Hopf ∗-algebra morphism
O(U+

F ) → O(G). �
Example 2.8. The quantumpermutation group S+n on n points [29] is given by underlying
Hopf ∗-algebra A = O(S+n ) which is the universal ∗-algebra generated by the entries of
an n × n magic unitary: a matrix

[ui j ]i, j ∈ Mn(A)

consisting of self-adjoint projections summing up to 1 across all rows and columns, and
satisfying the orthogonality relations ui j uik = δ jkui j and ukj ui j = δki ui j . The Hopf
∗-algebra maps �, S, ε are defined exactly as for U+

F . �
Every compact quantum group G comes equipped with a unique Haar state, which

is a faithful state h : O(G) → C satisfying the left and right invariance conditions

(ι ⊗ h)� = h(·)1 = (h ⊗ ι)�.

The norm on O(G) induced by the GNS construction with respect to h is always a
�-compatible norm, and it is the minimal such C∗-norm. We denote by Cr (G), the
corresponding C∗-algebra (the reduced C∗-algebra of G). The universal C∗-algebra of
G, Cu(G), is the enveloping C∗-algebra of O(G). By universality, this C∗-norm is also
�-compatible.
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Remark 2.9. Often in the literature compact quantum groups are defined in terms of a
pair (A,�) where A is a unital C∗-algebra and � : A → A ⊗min A is a co-associative
unital ∗-homomorphism such that �(A)(1⊗ A) and �(A)(A⊗ 1) are linearly dense in
A ⊗min A. One then obtains the Hopf ∗-algebra O(G) as a certain dense ∗-subalgebra
(spanned by coefficients of unitary representations of G, which we describe below). �

Let G be a CQG and H a finite dimensional Hilbert space. A representation of G on
H is an invertible element v ∈ O(G) ⊗ B(H) such that

(� ⊗ ι)v = v13v23.

A representation of G is called unitary if v ∈ O(G) ⊗ B(H) is unitary. Note that if
we fix an orthonormal basis (ei )di=1 for H , then a representation v ∈ O(G) ⊗ B(H)

corresponds to an invertible matrix v = [vi j ] ∈ Mn(O(G)) such that

�(vi j ) =
d∑

k=1

vik ⊗ vk j (1 ≤ i, j ≤ d).

For any CQG, we always have the trivial representation on C given by v = 1 ∈
O(G) = O(G)⊗ B(C). Given two representations u ∈ O(G)⊗ B(H) and v ∈ O(G)⊗
B(H), we can always form the direct sum u ⊕ v ∈ O(G) ⊗ B(H ⊕ K ), tensor product
u⊗v := u12v13 ∈ O(G)⊗B(H⊗K ), and conjugate representation ū ∈ O(G)⊗B(H̄)

given by ū = [u∗
i j ] (if u = [ui j ]). A morphism between u and v is a linear map

T : H → K such that u(1 ⊗ T ) = (1 ⊗ T )v. The Banach space of all morphisms
between u and v is denoted by Mor(u, v). If u and v are unitary representations, then
T ∈ Mor(u, v) ⇐⇒ T ∗ ∈ Mor(v, u). We say that two representations u and v

are equivalent if there exists an invertible element T ∈ Mor(u, v). We say that u is
irreducible if Mor(u, u) = C1.

The fundamental theorem on finite dimensional representations of CQGs is stated as
follows.

Theorem 2.10 [30]. Let G be a CQG. Every finite dimensional representation of G is
equivalent to a unitary representation, and every finite dimensional unitary representa-
tion of G is equivalent to a direct sum of irreducible representations. Moreover, O(G)

is linearly spanned by the matrix elements of irreducible unitary representations of G.

Remark 2.11. In the language of Hopf algebras, a (unitary) representation of G is typi-
cally called a (unitary) comodule over O(G). These notions obviously make sense for
general Hopf ∗-algebras. �

We end this section by recalling that a matrix Hopf ∗-algebra is a Hopf ∗-algebra
that is generated by the coefficients of some corepresentation w = [wi j ] ∈ Mn(A) of A.
A useful fact in this regard from [14] is that if a matrix Hopf ∗-algebra A is generated
by a corepresentation w that is equivalent to a unitary one, then A = O(G) is the Hopf
∗-algebra of some compact quantum group G. In this case, we call G a compact matrix
quantum group and we call w a fundamental representation of G. By replacing w with
an equivalent unitary representation v, note that O(G) is still generated by the matrix
elements of v ∈ Mn(O(G)), and v̄ is a unitarizable representation. Hence there exists
some F ∈ GLn(C) so that (1 ⊗ F)v̄(1 ⊗ F−1) is a unitary representation. This means
that there is a surjective morphism of Hopf ∗-algebras π : O(U+

F ) → O(G) defined by
(π ⊗ ι)u = v ,where u is the fundamental representation of U+

F given in its definition.
In particular, G is a so-called closed quantum subgroup of U+

F (written G < U+
F ).
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3. Quantum Sets, Graphs and Their Quantum Automorphism Groups

The examples of CQGs that feature in this paper are the quantum automorphism groups
of certain finite structures, such as sets, graphs, and their quantizations. In order to
describe these objects, we first quantize the notion of a (measured) finite set, then proceed
to quantum graphs. All of the definitions that follow are quite standard in the operator
algebra literature [2,3,12,29]. The idea of a quantum set or a quantum graph also appears
in [20,21] using the language of special symmetric dagger Frobenius algebras.

3.1. Quantum sets and graphs.

Definition 3.1. A (finite, measured) quantum set is a pair X = (O(X), ψX ), where
O(X) is a finite dimensional C∗-algebra and ψX : O(X) → C is a faithful state.

We write |X | for dimO(X), and refer to this value as the cardinality or size of X . �

The reason for our choice of notation is that when O(X) is commutative, Gelfand
theory tells us that we are really just talking about a finite set X (the spectrum ofO(X))
equipped with a probability measure μX defined ψX ( f ) = ∫

X f (x)dμX (x) for each
f ∈ O(X).

Let X = (O(X), ψX ) be a quantum set. Let mX : O(X) ⊗ O(X) → O(X) and
ηX : C → O(X) be the multiplication and unit maps, respectively. In what follows, we
will generally only be interested in a special class of finite quantum sets – namely those
that are measured by a δ-form ψX , which we now define:

Definition 3.2 [3]. Let δ > 0. A state ψX : O(X) → C is called a δ-form [3] if

mXm
∗
X = δ2ι,

where the adjoint is taken with respect to the Hilbert space structure on O(X) coming
from the GNS construction with respect to ψX . �

For purposes of distinguishing between the Hilbert and C∗-structures on O(X), we
denote this Hilbert space by L2(X).

The most basic examples of δ-forms are given by the uniform measure on the n-
point set X = [n] and the canonical normalized trace on Mn(C). In the first case, a
simple calculation shows that m∗(ei ) = nei ⊗ ei , where (ei = e∗

i = e2i )
n
i=1 is the

standard basis of projections for O(X), and so we have δ = √
n. In the second case,

one can show that m∗(ei j ) = n
∑n

k=1 eik ⊗ ek j , where (ei j )1≤i, j≤n are the matrix units
for Mn(C). So in this case we have δ = n. More generally, if we have a multimatrix
decomposition O(X) = ⊕s

i=1 Mn(i)(C) and ψX = ⊕s
i=1 Tr(Qi ·) is a faithful state

(so 0 < Qi ∈ Mn(i)(C) and
∑

i Tr(Qi ) = 1), then ψX is a δ-form if and only if
Tr(Q−1

i ) = δ2 for all 1 ≤ i ≤ s. In particular,O(X) admits a unique tracial δ-form with

δ2 = dimO(X) given by ψX = ⊕s
i=1

n(i)
|X | Tr(·).

Convention 3.3. Unless otherwise stated, we assume from now on that the quantum sets
we consider equipped with δ-forms. �

Wenow endow quantum sets with an additional structure of a quantum adjacencyma-
trix, turning then into quantum graphs. The following definition of a quantum adjacency
matrix/graph is a generalization of the [20, Definition 5.1] to our framework.
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Definition 3.4. Let X be a quantum set equipped with a δ-formψX . A self-adjoint linear
map AX : L2(X) → L2(X) is called a quantum adjacency matrix if it has the following
properties

1. mX (AX ⊗ AX )m∗
X = δ2AX .

2. (ι ⊗ η∗
XmX )(ι ⊗ AX ⊗ ι)(m∗

XηX ⊗ ι) = AX

3. mX (AX ⊗ ι)m∗
X = δ2ι

We call the triple X = (O(X), ψX , AX ) a quantum graph. �
Remark 3.5. In the special case whereO(X) is equipped its unique tracial δ-form, then
the definition of a quantum graph given here is equivalent to the one given in [20]. In
addition, as explained in [20], a quantum graph X = (O(X), ψX , AX ), where O(X) is
a commutative C∗-algebra, captures precisely the notion of a classical graph. Indeed,
in this case the spectrum X of O(X) is a finite set and ψX is the uniform probability
measure on X . If we write AX as a matrix AX = [ai j ]i, j∈X with respect to the canonical
orthonormal basis of normalized projections (

√
nei )ni=1 ⊂ L2(X), then conditions (1),

(2) and (6) say, respectively, that

a2i j = ai j , ai j = a ji , aii = 1 (i, j ∈ X).

In other words, X is the vertex set of a classical graph (as defined in Sect. 2.4) with
adjacency matrix AX − In . Thus, in the quantum definition of a graph, we choose to
work with reflexive graphs ((v, v) ∈ E(X) ∀v ∈ V (X)). This choice is purely cosmetic
from the perspective of (quantum) symmetries of graphs, in the sense that we have a
bijection between (quantum) symmetries of reflexive graphs and those of their irreflexive
versions. �
Remark 3.6. Note that any quantum set X equippedwith a δ-formψX can be trivially up-
graded to a quantum graph in two ways. The first way is by declaring AX = δ2ψX (·)1.
The second is by declaring AX = ι. In the case of classical finite sets X , these con-
structions correspond to the complete graph K|X | and its (reflexive) complement K|X |,
respectively. For general quantum sets X equipped with the quantum adjacency matrix
AX = δ2ψX (·)1, we will call these graphs quantum complete graphs. For a general
quantum graph X , we can also talk about its (reflexive) complement X , which is given
by X = (O(X), ψX , AX ) with AX = δ2ψX (·)1 + ι − AX . With this definition we have
that the complement of a quantum complete graph X is the “edgeless” quantum graph
X = (O(X), ψX , ι). �

We now introduce the quantum automorphism groups of quantum graphs. The def-
inition of these quantum automorphism groups follows along the same lines as for the
quantum automorphism groups of classical graphs [4] and also the quantum automor-
phism groups of quantum sets [2,3,29].

Definition 3.7. Let X = (O(X), ψX , AX ) be a quantum graph with n = |X | and fix an
orthonormal basis {ei }ni=1 for L

2(X). DefineO(GX ) to be the universal unital ∗-algebra
generated by the coefficients ui j of a unitary matrix u = [ui j ]ni, j=1 ∈ Mn(O(GX ))

subject to the relations making the map

ρX : O(X) → O(X) ⊗ O(GX ); ρX (ei ) =
∑
k

e j ⊗ u ji

a unital ∗-homomorphism satisfying the AX -covariance condition ρX (AX ·) = (AX ⊗
ι)ρX . �
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The notation O(GX ) is meant to convey the notion that the algebra consists of rep-
resentative functions on a CQG GX . Specifically, it is the “largest” CQG acting on X
so as to preserve the measure ψX and graph structure AX . This is formalized in the fol-
lowing result, whose proof is a straightforward application of the universality implicit
in Definition 3.7.

Proposition 3.8. The ∗-algebra A = O(GX ) admits a Hopf ∗-algebra structure defined
by

�ui j =
n∑

k=1

uik ⊗ ukj , S(ui j ) = u∗
j i , ε(ui j ) = δi j (1 ≤ i, j ≤ n).

Furthermore, the action of GX on X given by ρX preserves ψX in the sense that

(ψX ⊗ ι)ρX = ψX (·)1 : O(X) → O(GX ).

We call GX the quantum automorphism group of the quantum graph X.

Proof. This is a direct computation that we leave to the reader. In fact a proof of this
result will also follow as special case of the more general arguments presented following
Remark 4.3. ��
Remark 3.9. Quantum automorphism groups are natural quantum analogues of their
classical counterparts. Indeed, the abelianization of O(GX ) is exactly O(Aut(X)), the
algebra of complex-valued functions on the group of automorphisms of the graph X . �

Example 3.10. When X is a quantum complete graph, thenGX is none other thanWang’s
quantum automorphism group of the finite space (O(X), ψX ) [3,29]. In particular, the
quantum automorphism group of the classical complete graph Kn is precisely the quan-
tum symmetric group S+n of Example 2.8. �

3.2. Monoidal equivalence and bigalois extensions. For a CQG G, we define the rep-
resentation category of G, Rep(G), to be the category whose objects are (equivalence
classes of) finite dimensional representations of G, and whose morphisms are given by
the intertwiner spaces {Mor(u, v)}. The category Rep(G) has a lot of nice structure, in
particular it is an example of a so called strictc C∗-tensor category with conjugates. See
[22] for more details.

We now come to a notion of central importance in this work: monoidal equivalence
of compact quantum groups. Let G be a CQG. Denote by Irr(G) the set of equivalence
classes of irreducible objects in Rep(G).

Definition 3.11 [6,8]. Let G1,G2 be two compact quantum groups. We say that G1 and
G2 are monoidally equivalent, and write G1 ∼mon G2, if there exists a bijection

ϕ : Irr(G1) → Irr(G2)

together with linear isomorphisms

ϕ : Mor(u1 ⊗ . . . ⊗ un, v1 ⊗ . . . ⊗ vm) → Mor(ϕ(u1)

⊗ . . . ⊗ ϕ(un), ϕ(v1) ⊗ . . . ⊗ ϕ(vm))



1792 M. Brannan, A. Chirvasitu, K. Eifler, S. Harris, V. Paulsen, X. Su, M. Wasilewski

such that ϕ(1G1) = 1G2 (1Gi being the trivial representation of Gi ), and such that for
any morphisms S, T ,

ϕ(S ◦ T ) = ϕ(S) ◦ ϕ(T ) (whenever S ◦ T is well-defined)

ϕ(S∗) = ϕ(S)∗

ϕ(S ⊗ T ) = ϕ(S) ⊗ ϕ(T ).

�
Amonoidal equivalence betweenG1 andG2 means that the strictC∗-tensor categories

Rep(Gi ) are unitarily monoidally equivalent. More precisely, the maps ϕ defined above
canonically extend to a unitary tensor functor ϕ : Rep(G1) → Rep(G2) that is fully
faithful (i.e., ϕ defines an isomorphism betweenMor(u, v) andMor(ϕ(u), ϕ(v)) for any
objects u, v ∈ Rep(G1)) and is essentially surjective (i.e., every object in Rep(G2) is of
the form ϕ(u) for some u ∈ Rep(Gi )).

3.2.1. Bigalois extensions We now discuss an equivalent, but somewhat more concrete,
way to think about monoidal equivalence of compact quantum groups. The key object is
that of a bigalois extension, which has its origins in Hopf algebra theory, but is adapted
here to the analytic setting of CQGs.

Let A = O(G) be a Hopf ∗-algebra of representative functions on a CQG G. A left
A ∗-comodule algebra is a unital ∗-algebra Z equipped with a unital ∗-homomorphism
α : Z → A ⊗ Z satisfying (ι ⊗ α)α = (� ⊗ ι)α and (ε ⊗ ι)α = ι. Similarly, a right
A ∗-comodule algebra is a unital ∗-algebra Z equipped with a unital ∗-homomorphism
β : Z → Z ⊗ A satisfying (β ⊗ ι)β = (ι ⊗ �)β and (ι ⊗ ε)β = ι.

A left A ∗-comodule algebra (Z , α) is called a left A Galois extension if the linear
map

κl : Z ⊗ Z → A ⊗ Z; κl(x ⊗ y) = α(x)(1 ⊗ y)

is bijective. Similarly, a right A ∗-comodule algebra (Z , β) is called a right A Galois
extension if the linear map

κr : Z ⊗ Z → Z ⊗ A; κr (x ⊗ y) = (x ⊗ 1)β(y)

is bijective. Finally, let A and B be Hopf ∗-algebras. A unital ∗-algebra Z is called an
A − B bigalois extension if it is both a left A Galois extension and a right B Galois
extension, and Z is an A − B-bicomodule algebra. I.e., if α, β denote the left and right
comodule maps, respectively, then we have the equality of maps

(ι ⊗ β)α = (α ⊗ ι)β : Z → A ⊗ Z ⊗ B.

Remark 3.12. The notion of a (bi)galois extension should be regarded as a quantum
analogue of the familiar notion of a (bi)torsor (or principle homogeneous (bi)bundle) in
the context of group actions: If G is a (finite) group and G � X is an action of G on
a finite space X , we call X a (left) G-torsor if the action is free and transitive. This is
equivalent to saying that the canonical map

G × X → X × X; (g, t) �→ (g · t, t)
is bijective. Letting O(X) denote the ∗-algebra of functions on X , then O(X) is a left
O(G) ∗-comodule algebra with the map

α : O(X) → O(G) ⊗ O(X) ∼= O(G × X); α( f )(g, t) = f (g · t).
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With these definitions, it is clear that G � X is free and transitive if and only if

κl : O(X) ⊗ O(X) → O(G) ⊗ O(X);
κl(x ⊗ y)(g, t) = α(x)(1 ⊗ y)(g, t) = x(g · t)y(t)

is bijective, i.e., if and only ifO(X) is a leftO(G)-galois extension. Similar statements
hold for right G-spaces and left-right G1-G2-spaces. �

In the following, we will be interested in bigalois extensions which admit non-zero
C∗-envelopes. The main way in which this is achieved is by considering necessary and
sufficient conditions for the existence of invariant states on bigalois extensions. In what
follows, a state on a unital ∗-algebra Z is a linear functional ω : Z → C such that
ω(1) = 1 and ω(z∗z) ≥ 0 for all z ∈ Z .

Definition 3.13. Let Z be an A − B-bigalois extension. A state ω : Z → C is called
left-invariant if (ι ⊗ ω)(z) = ω(z)1A for each z ∈ Z , and it is called right-invariant
if (ω ⊗ ι)(z) = ω(z)1B for each z ∈ Z . We call ω bi-invariant if it is both left and
right-invariant. �
Example 3.14. The Hopf ∗-algebra A = O(G) of representative functions on a compact
quantum group G is a natural example of an A − A-bigalois extension admitting a
bi-invariant state. Indeed, just take ω = h, the Haar state on A. �

The following theorem summarizes some useful properties of bi-invariant states on
bigalois extensions. It is an amalgamation of various results in [6,8,13].

Theorem 3.15. Let G1,G2 be compact quantum groups with A = O(G1) and B =
O(G2). Let Z be an A − B-bigalois extension. Then we have the following.

1. Any left/right/bi-invariant state ω : Z → C is unique and faithful (if it exists).
2. The following are equivalent:
(a) Z admits a non-zero ∗-representation as bounded linear operators on a Hilbert

space.
(b) Z admits a state.
(c) Z admits a bi-invariant state.
(d) Z admits a left (resp. right)-invariant state.

3. If Z admits a bi-invariant state ω, denote by Bu(G1,G2) 	= 0 the universal C∗-
algebra generated by Z and by Br = πω(Z), the C∗-algebra generated by the GNS
representation with respect to ω. Then ω extends to a KMS state on both Bu and Br .
Moreover, ω is a tracial state if and only if both G1 and G2 are of Kac type. (I.e., the
Haar states on both O(Gi ) are tracial)

Theorem 3.16 [6,8]. Let G1,G2 be compact quantum groups. Then G1 and G2 are
monoidally equivalent if and only if there exists anO(G1) −O(G2)-bigalois extension
Z equipped with a bi-invariant state ω.

We refer the reader to [22, Theorem 2.3.11] or [8, Theorem 3.9 and Proposition 3.13]
for a precise description of the the bigalois extension (Z , ω) induced by the monoidal
equivalence in Theorem 3.16.

We end this section by stating a simple criterion due to Bichon [6] (for compact
matrix quantum groups) for a bigalois extension to admit an invariant state ω. First we
need some definitions. Let n ∈ N and Fi ∈ GLn(C). We define O(U+

F1
,U+

F2
) to be the

unital ∗-algebra generated by the coefficients zi j of a n1 × n2 matrix z = [zi j ]1≤i≤n1
1≤ j≤n2

∈
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Mn1,n2(O(U+
F1

,U+
F2

)) satisfying the relations making both z and F1 z̄F
−1
2 unitary, where

z̄ = [z∗i j ]. When F1 = F2 = F , note thatO(U+
F ,U+

F ) = O(U+
F ) is the Hopf ∗-algebra of

representative functions on the universal unitary quantum group U+
F introduced earlier.

We also note that ifO(U+
F1

,U+
F2

) 	= 0 thenO(U+
F1

,U+
F2

) is anO(U+
F1

)−O(U+
F2

)-bigalois
extension with respect to the bicomodule structure given by

αF1,F2 : O(U+
F1,U

+
F2) → O(U+

F1) ⊗ O(U+
F1,U

+
F2); αF1,F2(zi j ) =

n1∑
k=1

uik ⊗ zk j

βF1,F2 : O(U+
F1 ,U

+
F2) → O(U+

F1,U
+
F2) ⊗ O(U+

F2); βF1,F2(zi j ) =
n2∑
l=1

zil ⊗ vl j ,

where u = [ui j ], v = [vi j ] are the fundamental representations of U+
F1

,U+
F2
, respec-

tively.

Theorem 3.17 (Proposition 6.2.6 in [6]). Let G be a compact matrix quantum group
and (Z , α) a left O(G)-Galois extension. Let F ∈ GLn(C) be such that G < U+

F (with
corresponding surjective morphism π : O(U+

F ) → O(G)). If there exists F1 ∈ GLn1(C)

and a surjective ∗-homomorphism σ : O(U+
F ,U+

F1
) → Z satisfying α ◦ σ = (π ⊗

σ)αF,F1 , then Z admits a left-invariant state ω : Z → C.

4. Quantum Isomorphisms of Graphs and Bigalois Extensions

The aim of this section is to show that a quantum isomorphism between two graphs
X and Y is nothing other than a (quotient of a) O(GY )-O(GX )-bigalois extension in
disguise.We begin by extending the definition of the graph isomorphism game ∗-algebra
A(I so(X,Y )) to include quantum graphs.

Definition 4.1. Let X = (O(X), ψX , AX ) andY = (O(Y ), ψY , AY ) be quantumgraphs
with |X | = n and |Y | = m, and fix orthonormal bases {e j } and { fi } forO(X) andO(Y )

relative toψX andψY respectively. LetO(GY ,GX ) be the universal ∗-algebra generated
by the entries pi j of a unitary matrix

p = [pi j ]i j ∈ O(GY ,GX ) ⊗ B(L2(X), L2(Y ))

with relations ensuring that

ρY,X : O(X) → O(Y ) ⊗ O(GY ,GX ); e j �→
∑
i

fi ⊗ pi j

is a unital ∗-homomorphism satisfying

ρY,X (AX ·) = (AY ⊗ ι)ρY,X . (1)

�
Our first observation is that the above morphism ρY,X , if it exists, is automatically state-
preserving.

Lemma 4.2. Assume O(GY ,GX ) 	= 0. Then the morphism ρY,X : O(X) → O(Y ) ⊗
O(GY ,GX ) is state-preserving in the sense that

(ψY ⊗ ι)ρY,X = ψX (·)1 : O(X) → O(GY ,GX ). (2)
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Proof. Consider the matrix p = [pi j ]i j ∈ O(GY ,GX ) ⊗ B(L2(X), L2(Y )), viewed
canonically as a linear map

p : L2(X) ⊗ O(GY ,GX ) → L2(Y ) ⊗ O(GY ,GX );
p(ξ ⊗ a) =

∑
i, j

| fi 〉〈ei |ξ 〉 ⊗ pi j a.

It then follows that ρY,X (ξ) = p(ξ ⊗ 1) for each ξ ∈ L2(X) (here and below we are
identifying L2(X) and L2(Y ) with O(X) and O(Y )). Consider now the O(GY ,GX )-
valued sesquilinear forms on L2(X) ⊗ O(GY ,GX ) and L2(Y ) ⊗ O(GY ,GX ) given
by

〈ξ1 ⊗ a|ξ2 ⊗ b〉L2(X)⊗O(GY ,GX ) = b∗aψX (ξ∗
2 ξ1) & 〈η1 ⊗ a|η2 ⊗ b〉L2(Y )⊗O(GY ,GX )

= b∗aψY (η∗
2η1).

Then a simple calculation using the fact that p∗ p = 1 and p(1⊗ 1) = ρY,X (1) = 1⊗ 1
gives

(ψY ⊗ ι)ρY,X (ξ) = (ψY ⊗ ι)p(ξ ⊗ 1)

= 〈p(ξ ⊗ 1)|1 ⊗ 1〉L2(Y )⊗O(GY ,GX )

= 〈p(ξ ⊗ 1)|p(1 ⊗ 1)〉L2(Y )⊗O(GY ,GX )

= 〈p∗ p(ξ ⊗ 1)|1 ⊗ 1〉L2(X)⊗O(GY ,GX )

= 〈(ξ ⊗ 1)|1 ⊗ 1〉L2(X)⊗O(GY ,GX )

= ψX (ξ)1.

��
Remark 4.3. When the two quantum graphs coincide we have O(GX ,GX ) = O(GX )

(the Hopf ∗-algebra of polynomial functions on the quantum automorphism group GX )
and ρX,X = ρX . For classical graphs X,Y , we have O(GY ,GX ) = A(I so(Y, X)).
Indeed, the fact that ρY,X is a unital ∗-homomorphism intertwining the quantum ad-
jacency matrices AX and AY says exactly that the unitary matrix p = [pi j ] satisfies
(1 ⊗ AY )p = p(1 ⊗ AX ) and has entries which are self-adjoint projections satisfying∑

i p ji = 1 = ∑
j p ji , p ji p jl = δil p ji , and pi j pl j = δi pi j . Compare with Proposi-

tion 2.3 and Remark 2.4. See also [1,19]. �
With the above in mind, we now provide a natural extension of the notion of quantum

isomorphism to our quantum graphs. Compare with [20].

Definition 4.4. Let X,Y be quantum graphs. We say that X is algebraically quantum
isomorphic to Y if O(GY ,GX ) 	= 0, and write X ∼=A∗ Y . If O(GY ,GX ) admits a non-
zero C∗-representation, then we say that X is C∗-algebraically quantum isomorphic to
Y , and write X ∼=A∗ Y . Finally, we say X ∼=qc Y if O(GY ,GX ) admits a tracial state
(following the existent notation for classical graphs). �

For the remainder of the present discussion we fix two quantum graphs X,Y as
above and assume that the ∗-algebra O(GY ,GX ) is non-zero. Our aim is to show that
O(GY ,GX ) admits a natural structure as a O(GY )–O(GX ) bigalois extension.

Consider the comodule-algebra structure map

ρY : O(Y ) → O(Y ) ⊗ O(GY ).
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By the universality of ρY,X , the composition

(ρY ⊗ id) ◦ ρY,X : O(X) → O(Y ) ⊗ O(GY ) ⊗ O(GY ,GX )

must factor as (id⊗α) ◦ ρY,X for a unique ∗-algebra morphism

α : O(GY ,GX ) → O(GY ) ⊗ O(GY ,GX )

given simply by

α(pi j ) =
∑
k

uik ⊗ pkj ,

where u = [ui j ] is the fundamental representation of O(GY ).
Similarly, O(GY ,GX ) has a right O(GX ) ∗-comodule algebra structure given by

β : O(GY ,GX ) → O(GY ,GX ) ⊗ O(GX ); β(pi j ) =
∑
k

pik ⊗ vk j ,

where v = [vi j ] is the fundamental representation of O(GX ). It is also clear that
O(GY ,GX ) is an O(GY ) − O(GX ) bicomodule with respect to α and β.

Continuing in the same vein, we can define “cocomposition” ∗-morphisms

γY : O(GY ) → O(GY ,GX ) ⊗ O(GX ,GY ); γY (ui j ) =
∑
k

pik ⊗ qki

γX : O(GX ) → O(GX ,GY ) ⊗ O(GY ,GX ); γX (vi j ) =
∑
k

qik ⊗ pkj

where q = [qi j ] is the matrix of generators of O(GX ,GY ). For example, to construct
γY , we consider the morphism

(ρY,X ⊗ ι)ρX,Y : O(Y ) → O(Y ) ⊗ O(GY ,GX ) ⊗ O(GX ,GY ).

By universality of ρY , there exists a unique morphism γY : O(GY ) → O(GY ,GX ) ⊗
O(GX ,GY ) so that

(ρY,X ⊗ ι)ρX,Y = (ι ⊗ γY )ρX,Y .

This map is readily seen to be given by the proposed formula above.
Thus far, the algebras O(GX ), O(GY ), O(GY ,GX ) and O(GX ,GY ) together with

the maps α and β, their analogues for O(GX ,GY ), and γX , γY constitute a two-object
cocategory C in the sense of [7, Definition 2.1]: the four algebras are to be thought of
as dual to “spaces of morphisms” between two objects (x → x for O(GX ), x → y for
O(GY ,GX ), etc.), and the γ maps are dual to morphism composition.

Next, we make C into a cogroupoid in the sense of [7, Definitions 2.3 and 2.4]: this
entails defining “coinversion” maps

SX,Y : O(GX ,GY ) → O(GY ,GX ) (3)

SY,X : O(GY ,GX ) → O(GX ,GY ), (4)

which will require some preparation.
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Let F = FX ∈ Mn and G = FY ∈ Mm be matrices with the property that Fei = e∗
i

and similarly for G, so that F = F−1 and G = G−1. Note that the involutivity of the
morphisms

ρX : O(X) → O(X) ⊗ O(GX )

ρY : O(Y ) → O(Y ) ⊗ O(GY )

ρY,X : O(X) → O(Y ) ⊗ O(GY ,GX )

is equivalent, respectively, to the equalities

(1 ⊗ F)ū = u(1 ⊗ F)

(1 ⊗ G)v̄ = v(1 ⊗ G)

(1 ⊗ G) p̄ = p(1 ⊗ F). (5)

We will henceforth abuse notation and write uF for u(1 ⊗ F), etc. Taking this into
account, we have

G−1 pF = p and similarly F−1qG = q.

It is now a simple check to see that

fi �→
∑
j

e j ⊗ p∗
i j (6)

defines a unital algebra homomorphism

O(X) → O(Y ) ⊗ O(GY ,GX )op. (7)

Applying G to both sides of (6), writing e j = FF−1e j and using

Fe j = e∗
j , G fi = f ∗

i ,

it follows that (6) is involutivewith respect to themodified∗-structure � onO(GY ,GX )op

given by
(p∗)� = (F−1 p∗G)t

(the ‘t’ superscript denoting the transpose). The defining universality property ofO(GX ,

GY ) then implies that the morphism (7) given by (6) factors as

(ι ⊗ SX,Y )ρX

for a conjugate-linear anti-morphism (3). SY,X is defined similarly, and in summary we
have

SX,Y : q �→ p∗, q∗ �→ Gt pF−t

SY,X : p �→ q∗, p∗ �→ Ft pG−t

where the ‘t’ superscript means ‘transpose’ while ‘−t’ denotes ‘transpose inverse’.
The morphisms (3) and (4) enrich the above-mentioned cocategory C to a connected

cogroupoid in the sense of [7, Definitions 2.3 and 2.4].
We are now ready for the main result of this section.

Theorem 4.5. IfO(GY ,GX ) is non-zero, then (O(GY ,GX ), α, β) is aO(GY )-O(GX )-
bigalois extension.
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Proof. By [7, Proposition 2.8] this is an immediate consequence of C being a connected
cogroupoid. More precisely, the arguments therein show that the relevant linear maps

κl : O(GY ,GX ) ⊗ O(GY ,GX ) → O(GY ) ⊗ O(GY ,GX ); κl(x ⊗ y) = α(x)(1 ⊗ y)

κr : O(GY ,GX ) ⊗ O(GY ,GX ) → O(GY ,GX ) ⊗ O(GX ); κr (x ⊗ y) = (x ⊗ 1)β(y)

are bijective with explicit inverses given by

ηl : O(GY ) ⊗ O(GY ,GX ) → O(GY ,GX ) ⊗ O(GY ,GX );
ηl = (ι ⊗ m)(ι ⊗ SX,Y ⊗ ι)(γY ⊗ ι)

ηr : O(GY ,GX ) ⊗ O(GX ) → O(GY ,GX ) ⊗ O(GY ,GX );
ηr = (m ⊗ ι)(ι ⊗ SX,Y ⊗ ι)(ι ⊗ γX )

where m denotes the multiplication map in the appropriate algebra. ��
Theorem 4.5 puts some of the material in [19] in a category-theoretic perspective. To

make sense of this, we need to recall

Definition 4.6. The quantum orbital algebra of a (quantum) graph X is the endomor-
phism algebra of O(X) as a comodule over O(GX ). That is, the algebra of intertwiners
Mor(u, u) ⊂ B(L2(X)), where u denotes the fundamental representation of GX . �

In the case of classical graphs, this is not quite [19, Definition 3.10], but is equivalent
to it by [19, Theorem 3.11]. Note that [19, Theorem 4.2] follows from Theorem 4.5:
the former says that a quantum isomorphism between two (classical) graphs entails
an isomorphism between their quantum orbital algebras that identifies the respective
adjacency matrices. Since by Theorem 4.5 we have a category equivalence

Rep(GX ) � Rep(GY )

identifying O(X) on the left to O(Y ) on the right, this implements an isomorphism
between the endomorphism algebras of these two objects in the respective categories
(i.e. the quantum orbital algebras). Furthermore, the fact that this isomorphism identifies
AX and AY follows from (1).

4.1. Existence of states onO(GY ,GX ). Our next result shows thatO(GY ,GX ) always
admits a faithful bi-invariant state (and hence a C∗-completion) whenever this algebra
is non-zero.

Theorem 4.7. Let X, Y be quantum graphs. If O(GY ,GX ) 	= 0, then there exists a
faithful bi-invariant state ω : O(GY ,GX ) → C, and therefore we have a monoidal
equivalence of compact quantum groups GX ∼mon GY . Moreover, ω is tracial if and
only if both GX and GY are of Kac type.

Proof. Recall the matrices F = FX and G = FY from the preceding discussion. The
Eq. (5) imply that we have surjective ∗-homomorphisms π : O(U+

FY
) → O(GY ) and

σ : O(U+
FY

,U+
FX

) → O(GY ,GX ) satisfying α◦σ = (π ⊗σ)αFY ,FX . By Theorems 3.17
and 3.15 O(GY ,GX ) then admits a O(GY )-O(GX )-invariant state (which is tracial
precisely when GY ,GX are both of Kac type). By Theorem 3.16, GX ∼mon GY . ��
Corollary 4.8. Let X and Y be quantum graphs. Then the following are equivalent.
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1. X ∼=A∗ Y .
2. X ∼=C∗ Y .
Moreover, if both X and Y are equipped with tracial δ-forms, then X ∼=qc Y .

Proof. (2) �⇒ (1) by definition, while the converse follows from Theorem 4.7. The
same theorem also shows that when GX and GY are Kac (as is the case if X and Y are
equipped with tracial δ-forms)O(GY ,GX ) is equipped with a trace. This proves the last
claim. ��

Restricting our attention to classical graphs X , and Y we arrive at one of the main
results of the paper.

Theorem 4.9. Let X and Y be classical graphs. Then the following conditions are equiv-
alent.
1. X ∼=A∗ Y .
2. X ∼=qc Y .
3. X ∼=C∗ Y .

Proof. This is an immediate consequence of Corollary 4.8. ��
Remark 4.10. The above theorems show that the algebras O(GY ,GX ) are non-zero in
the category of ∗-algebras if and only if O(GY ,GX ) admits a non-zero representation
as bounded operators on Hilbert space. In other words, the ∗-algebra and C∗-algebra
worlds coincide for this class of examples.

One illustration of the distinction between ∗-algebras and C∗-algebras is in the be-
havior of projections (i.e. self-adjoint idempotents). In a C∗-algebra, if one has self-
adjoint idempotents {p1, . . . , pN } satisfying p1 + · · · + pN = 1, then necessarily
pi p j = 0, ∀i 	= j .

The situation is very different for ∗-algebras, however. While triples of projections
with sum 1 still commute, quadruples need not. This can be seen, for instance, from
[5, §2.1]. There, the ring generated by three idempotents a, b and c whose sum is also
idempotent (d = 1− (a + b + c) thus being idempotent as well) is shown to have a basis
as a free abelian group consisting of those monomials in a, b and c such that

• no letter appears twice in succession;
• b never appears to the left of a.

Thismakes it clear that ab 	= 0. One can simply reprise this example overC (i.e. working
with complex algebras rather than rings) and superimpose a ∗-structure by requiring that
a, b and c be self-adjoint. The result is a complex ∗-algebra with four non-orthogonal
projections adding up to 1.

In fact, even more pathological examples exist. In [17] a machine-assisted proof
is given that the ∗-algebra A(Hom(K5, K4)) is non-trivial. This is a ∗-algebra with
generators

{ex,a : 1 ≤ x ≤ 5, 1 ≤ a ≤ 4}
satisfying the usual relations, e∗

x,a = e2x,a = ex,a , ex,aex,b = 0, when a 	= b,∑4
a=1 ex,a = 1, ∀x , and the relations, ex,aey,a = 0, x 	= y, prescribed by the graphs.
If one sets pa = ∑

x ex,a , then p2a = pa = p∗
a , for 1 ≤ a ≤ 4. Hence, qa = 1 − pa

are also self-adjoint idempotents. However,

4∑
a=1

qa = 4 · 1 −
4∑

a=1

pa = 4 · 1 −
5∑

x=1

4∑
a=1

ex,a = 4 · 1 − 5 · 1 = −1.

Thus, it is possible to have 4 self-adjoint idempotents sum to −1 in a ∗-algebra. �
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4.2. From monoidal equivalence to quantum isomorphism. Theorem 4.7 and Corol-
lary 4.8 show that for a pair of quantum graphs X,Y the condition X ∼=A∗ Y implies that
the corresponding quantum automorphism groups GX and GY are monoidally equiv-
alent. Based on this connection between quantum isomorphism and monoidal equiva-
lence, it is natural to ask whether the converse holds, namely: Does GX ∼mon GY �⇒
X ∼=A∗ Y ?

The answer to this question turns out to be ‘no’ in general. For example, take X = Kn
and Y = Kn . In this case we have GX = GY = S+n (so GX and GY are in particular
monoidally equivalent as compact quantum groups), but it is clear from the definitions
that A(I so(X,Y )) = O(GX ,GY ) = 0. The intuitive reason for this is that the trivial
monoidal equivalence taking Rep(S+n ) to itself does not map the adjacency matrix AX to
AY . In fact, there cannot exist any any monoidal equivalence ϕ : Rep(S+n ) → Rep(S+n )

satisfying ϕ(AX ) = AY . This is because such a monoidal equivalence would force AX
and ϕ(AX ) = AY to be isospectral.

On the other hand, the following theorem shows that whenever we have a quantum
group G monoidally equivalent to GX , it is possible to find a quantum graph Y so that
G = GY and X ∼=A∗ Y .

Theorem 4.11. Let X = (O(X), ψX , AX ) be a quantum graph and GX its quantum
automorphism group. Let G be another compact quantum group that is monoidally
equivalent to GX . Then there exists a quantum graph Y = (O(Y ), ψY , AY ) so that
G = GY , and we have a quantum isomorphism X ∼=A∗ Y .

Proof. When X is a quantum complete graph, this result is already known [13, Theorem
3.6.5]. The proof in the case of arbitrary X follows almost verbatim, so we just sketch
the main ideas.

Let ϕ : Rep(GX ) → Rep(G) be the unitary fiber functor implementing the monoidal
equivalence as in Defintion 3.11. Put L2(Y ) = ϕ(L2(X)), dY = dim(L2(Y )) and let
v = ϕ(u) ∈ MdY (O(G)) be the corresponding unitary representation ofG on L2(Y ). Put
mY = ϕ(mX ) ∈ Mor(v ⊗ v, v), ηY = ϕ(ηX ) ∈ Mor(1, v) and ψY = η∗

Y ∈ Mor(v, 1)
and AY = ϕ(AX ) ∈ Mor(v, v). Then exactly as in the proof of [13, Theorem 3.6.5],
L2(Y ) is a unital C∗-algebra with multiplication mY , unit ηY , involution � : ξ �→ ξ� =
(ι⊗ξ∗)(m∗

YηY ), andψY : L2(Y ) → C is a δ-form.We denote this C∗-algebra byO(Y ).
Finally, consider the map AY : L2(Y ) → L2(Y ). Then by definition of ϕ, we have

A∗
Y = ϕ(AX )∗ = ϕ(A∗

X ) = ϕ(AX ) = AY ,

mY (AY ⊗ AY )m∗
Y = ϕ(mX (AX ⊗ AX )m∗

X ) = ϕ(δ2AX ) = δ2AY ,

(ι ⊗ η∗
YmY )(ι ⊗ AY ⊗ ι)(m∗

YηY ⊗ ι) = ϕ((ι ⊗ η∗
XmX )(ι ⊗ AX ⊗ ι)(m∗

XηX ⊗ ι))

= ϕ(AX ) = AY ,

mY (AY ⊗ ι)m∗
Y = ϕ(mX (AX ⊗ ι)m∗

X ) = ϕ(δ2ι) = δ2ι,

so AY is a quantum adjacency matrix and Y = (O(Y ), ψY , AY ) is a quantum graph.
Now let GY be the quantum automorphism group of Y , with fundamental rep-

resentation w ∈ MdY (O(GY )). Then by Definition 3.4 and the construction of the
morphisms mY , ηY , ϕY , AY using the monoidal equivalence ϕ, there is a surjective
Hopf ∗-homomorphism σ : O(GY ) → O(G) given by (σ ⊗ ι)w = v. In partic-
ular, G < GY is a quantum subgroup, which implies that for any m, n ∈ N0, we
have Mor(w⊗m, w⊗n) ⊆ Mor(v⊗m, v⊗n). To prove that in fact G = GY , it suf-
fices to check equality in the above containments for each m, n (see for example
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[9, Proposition 3.5]). To this end, recall that by our monoidal equivalence, we have
isomorphisms ϕ : Mor(u⊗m, u⊗n) ∼= Mor(v⊗m, v⊗n). Moreover, since (by univer-
sality of GX ) the space Mor(u⊗m, u⊗n) is generated (in the C∗-tensor categorical
sense) by the maps {ι,mX , ηX , AX }, it follows that Mor(v⊗m, v⊗n) is also generated
the images {ϕ(ι), ϕ(mX ), ϕ(ηX ), ϕ(AX )} = {ι,mY , ηY , AY }. But by the same univer-
sal reasoning, Mor(w⊗m, w⊗n) is generated by {ι,mY , ηY , AY }, so we conclude that
Mor(v⊗m, v⊗n) = ϕ(Mor(u⊗m, u⊗n)) ⊆ Mor(w⊗m, w⊗n).

Finally, it remains to show that X ∼=A∗ Y . Since we have a monoidal equivalence
ϕ : Rep(GX ) → Rep(GY ), Theorem 3.16 guarantees the existence of an O(GY )-
O(GX )-bigalois extension Z . Moreover, from [22, Theorem 2.3.11], one can construct
a unitary operator z ∈ Z ⊗ B(L2(X), L2(Y )) satisfying the relations

1. (1 ⊗ AY )z = (1 ⊗ ϕ(AX ))z = z(1 ⊗ AX ).
2. 1 ⊗ ηY = 1 ⊗ ϕ(ηX ) = z(1 ⊗ ηX ).
3. (1 ⊗ mY )z12z13 = (1 ⊗ ϕ(mX ))z12z13 = z(1 ⊗ mX ).
4. (z∗)12(1 ⊗ m∗

Y ηY ⊗ 1) = (z∗)12(1 ⊗ ϕ(m∗
XηX ) ⊗ 1) = z13(1 ⊗ m∗

XηX ).

These four relations say precisely that the map ei �→ ∑
j f j ⊗ z ji defines a unital ∗-

homomorphism O(X) → O(Y ) ⊗ Z (where (ei ) and ( f j ) are ONBs for L2(X) and
L2(Y )). In particular, we obtain a non-zero ∗-homomorphism O(GY ,GX ) → Z given
by p �→ z (where p denotes thematrix of generators ofO(GY ,GX )). I.e.,O(GY ,GX ) 	=
0. ��
Remark 4.12. With a little more work one can show that in fact O(GY ,GX ) ∼= Z via
the above homomorphism. �

Theorem 4.11 supplies us with many easy examples of quantum isomorphic quantum
graphs.

Example 4.13. Let δ > 0 and let X and Y be quantum sets each equipped with δ-forms.
Then it follows from [12, Theorem 4.7] that the quantum automorphism groups of the
spaces X and Y are monoidally equivalent. In view of Theorem 4.11, this is equivalent
to saying that the quantum complete graphs KX and KY are C∗-quantum isomorphic.
In particular,

• For each n ≥ 4, we have Kn2
∼=qc KXn , where KXn is the quantum complete graph

associated to the quantum set Xn = (Mn(C), n−1Tr(·)).
• Let Q ∈ Mn(C) with Q > 0, Tr(Q) = 1, Tr(Q−1) = δ2 > 0, and consider the
quantum set Y = (Mn(C), ψY = Tr(Q·), δ2ψY (·)1). Then KY ∼=C∗ KX for any
quantum set X equipped with a δ-form.

In particular, quantum isomorphic quantum graphs need not have the same dimension.
�

Let X and Y be two quantum graphs. We noted above, in the discussion preceding
Theorem 4.11, that a monoidal equivalence between GX and GY sending AX to AY
would by necessity force the graphs to be isospectral. In particular, they must be so if
they are quantum isomorphic. We end this section with an example of a pair of non-
quantum-isomorphic, isospectral graphs with trivial quantum automorphism groups.

We will use the Frucht graph X , which is a 3-regular graph on 12 vertices and has
trivial automorphism group.Moreover, its adjacencymatrix has no repeated eigenvalues;
as we will see, this will eventually help show that X has no quantum automorphisms.
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Before delving into the statement and proof of the next result we fix some notation and
terminology. X will be a (classical) graph on n vertices, and we denote by pi , 1 ≤ i ≤ n
the minimal projections of O(X). The support of an element f ∈ O(X) is the set of pi
that have non-zero coefficients in a decomposition of f as a linear combination

f =
n∑

i=1

αi pi .

Lemma 4.14. Let X be a graph on n vertices whose adjacency matrix A = AX has only
simple eigenvalues with no two eigenvectors having disjoint supports. Then the quantum
automorphism group GX is classical.

Proof. As a consequence of [19, Theorem 3.11], A is contained in the space of endo-
morphisms of O(X) regarded as an O(GX )-comodule. In particular the elements ei ,
1 ≤ i ≤ n of an A-eigenbasis ofO(X) span lines invariant underO(GX ), meaning that
the coaction takes the form

ρX : ei �→ ei ⊗ gi

for elements gi ∈ O(GX ). It follows from this that the elements gi are grouplike, i.e.

�(gi ) = gi ⊗ gi , ε(gi ) = 1.

SinceO(GX ) is generated as an algebra by the right hand tensorands of ρX (ei ), it follows
that O(GX ) is the group algebra C
 of a group 
 (generated by gi ) and ρX is nothing
but a 
-graded algebra structure on O(X). In order to conclude it remains to argue that
the grading group 
 is commutative, for it will then follow that GX is the (classical)
Pontryagin dual of 
.

Now, since no two ei have disjoint supports, ei e j = e j ei are all non-zero and ho-
mogeneous of degree gi g j as well as g j gi . It follows that the generators gi of 
 all
commute, and we are done. ��
Corollary 4.15. The Frucht graph has trivial quantum automorphism group.

Proof. The graph meets the requirements of Lemma 4.14: we have verified the no-
disjoint-supports condition by direct examination, having computed the entries of the
eigenvectors to three decimals using a CAS.

It follows fromLemma4.14 that the quantumautomorphismgroup is classical. On the
other hand, we know that the Frucht graph has no non-trivial classical automorphisms.

��
We also need the following simple remark

Lemma 4.16. Let Xi , i = 1, 2 be graphs with the vertex set {1, . . . , n} and respective
adjacency matrices Ai . Suppose that P = (pi j ) is a magic unitary such that A1P =
PA2. If pi j 	= 0 then deg(i) = deg( j).

Proof. The (i, j) entries of both sides are equal, so
∑

k aik pk j = ∑
k pikbk j . We can

sum both sides of equality, getting
∑

k

(∑
i aik

)
pkj = (∑

k bk j
)
Id. Since (pkj )k is a

partition of unity, this can only happen if
∑

i aik = ∑
k bk j , whenever pkj is non-zero.

But the left-hand side is degA(k) and the right-hand side is degB( j), so we are done. ��
We now need the following consequence of [16, Theorem 2.2].
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Theorem 4.17. Suppose that 
 is a regular graph with 2m vertices. Form 
′ by adding
a vertex 2m + 1, which is joined to exactly m vertices. If 
′′ is the switch of 
′, i.e. the
graph formed by connecting 2m + 1 to the other m vertices of 
, then 
′ and 
′′ are
isospectral.

Example 4.18. We construct the pair Xi , i = 1, 2 of graphs alluded to above as follows.
Start with the Frucht graph X , which is 3-regular and has 12 vertices. Its adjacency

matrix has simple eigenvalues, hence its quantum automorphism group is trivial by
Corollary 4.15. Next, form the 13-vertex graph X1 obtained by adding a vertex connected
to exactly 6 vertices of the Frucht graph. Note first that X1 once more has a trivial
quantum automorphism group. Indeed, the degrees of the vertices of X are all 3 while
the additional vertex has degree 6. By Lemma 4.16 any the magic unitary commuting
with the adjacency matrix would be block-diagonal, consisting of a 12 × 12 block and
the unit in position (13, 13). The former block would however constitute a quantum
automorphism of the Frucht graph itself, so that block must be trivial.

The same reasoning shows that the graph X2 obtained by connecting the 13th vertex of
X1 to the other 6 vertices of X cannot be quantum isomorphic to X1. As claimed before,
Xi are isospectral, non-quantum-isomorphic, and have trivial quantum automorphism
groups. �

Incidentally, Example 4.18 also also answers a question posed implicitly in [19]. As
mentioned before in the discussion preceding Sect. 4.1, [19, Theorem 4.2] proves that
for quantum isomorphic graphs Xi , i = 1, 2 there is an isomorphism between their
respective quantum orbital algebras that identifies the adjacency matrices Ai , i = 1, 2.
The discussion following that result mentions that while the converse is not expected
to hold, the authors do not have a counterexample. The graphs Xi constructed above
provide that counterexample:

Since the quantum automorphism groups Gi , i = 1, 2 are trivial the quantum orbital
algebras are simply thematrix algebrasEnd(O(Xi )). Since Ai are isospectral self-adjoint
matrices, there is an isomorphism

End(O(X1)) ∼= End(O(X2))

identifying them.

5. Applications to Other Synchronous Games

Theorem 4.9 can be applied to obtain results about families of games. The key concepts
that we need to accomplish this are a notion of equivalence for games and the concept
of a hereditary ∗-algebra.
Definition 5.1. A ∗-algebra A is called hereditary provided that, whenever n ∈ N and
x1, . . . , xn ∈ A are such that

∑n
i=1 x

∗
i xi = 0, then xi = 0 for all 1 ≤ i ≤ n. �

One key advantage of hereditary ∗-algebras is that ifA is a hereditary ∗-algebra and
we set

P =
{
x ∈ A : ∃x1, . . . , xn ∈ A such that x =

n∑
i=1

x∗
i xi

}
,
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then P ∩ (−P) = {0}. Thus, we may define, for a = a∗ and b = b∗, a partial order by

a ≤ b ⇐⇒ ∃x1, . . . , xn ∈ A such that b − a =
∑
i

x∗
i xi .

We note that if a ≤ b and b ≤ a, then a = b.
Given a ∗-algebraA, the smallest two-sided, ∗-closed hereditary ideal I containing 0

is called the hereditary kernel ofA, and the quotientA/I is denoted byAhered . Given a
synchronous game G, we letAhered(G) denote the hereditary quotient ofA(G). Note that
by Theorem 4.9,A(I So(X,Y )) admits a faithful tracial statewheneverA(I so(X,Y )) 	=
0, and therefore A(I so(X,Y )) = Ahered(I so(X,Y )).

Note that if A and B are ∗-algebras with B hereditary and π : A → B is a ∗-
homomorphism, then the kernel of π contains the hereditary kernel ofA and so induces
a ∗-homomorphism π̃ : Ahered → B. Hence, for any pair of ∗-algebrasA and B, every
∗-homomorphism π : A → B induces a ∗-homomorphism π̃ : Ahered → Bhered .

Definition 5.2. Let G1 and G2 be two synchronous games. We say that G1 and G2
are ∗-equivalent if there exist unital ∗-homomorphisms π : A(G1) → A(G2) and
ρ : A(G2) → A(G1). We say that G1 and G2 are hereditarily ∗-equivalent if there
exist unital ∗-homomorphisms π : Ahered(G1) → Ahered(G2) and ρ : Ahered(G2) →
Ahered(G1). �
We allow the possibility that one of the two algebras is (0), in which case 1 = 0 in that
algebra. In this case, equivalence of the algebras implies that the other algebra is also
(0).

Note that we do not require π and ρ to be mutual inverses or even one-to-one, just
unital. The reason for examining this relation is given below.

Proposition 5.3. Let t ∈ {loc, q, qa, qc,C∗}. If G1,G2 are synchronous games that are
hereditarily ∗-equivalent, then G1 has a perfect t-strategy if and only if G2 has a perfect
t-strategy. If, in addition, the games G1 and G2 are ∗-equivalent, then G1 has a perfect
A∗-strategy if and only if G2 has a perfect A∗-strategy.
Proof. We do the case t = q, the rest are similar. First assume that the algebras are ∗-
equivalent. If G2 has a perfect q-strategy, then there is a unital ∗-morphism γ : A(G2) →
Md for some d. Composing with π yields a ∗-homomorphism fromA(G1) into Md , and
so, G1 has a perfect q-strategy. Since Md is a hereditary ∗-algebra, the same reasoning
applies when the algebras are hereditarily ∗-equivalent. The converse is clear, as are the
remaining cases. ��

We now introduce another game which we will show is hereditarily ∗-equivalent to
a graph isomorphism game.

5.1. The syncBCS game. This game was first introduced in [18] and is a synchronous
version of what is classically known as the BCS game. Given an m × n matrix A =
(ai, j ) over the field of two elements, Z2 and a vector b, we introduce a game denoted
syncBCS(A, b), that is intended to convince a referee that Alice andBob have a solution
x to the equation Ax = b.

For i = 1, . . . ,m, let Vi = { j : ai, j 	= 0}. Note that to solve the i-th equation in
Ax = b, we only need ∑

j∈Vi
ai, j x j = bi ,
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since the remaining terms are irrelevant. Set

Sbi = {x ∈ Z
n
2 :

∑
j∈Vi

ai, j x j = bi and x j = 0 for j /∈ Vi }.

We associate a synchronous game to Ax = b as follows:

Definition 5.4. Suppose Ax = b is an m × n linear system over Z2 and b ∈ Z
n
2. The

synchronous BCS game associated to Ax = b, denoted synBCS(A, b), is given as
follows:

1. the input set is I = {1, . . . ,m};
2. the output set is O = Z

n
2;

3. given input (i, j), Alice and Bob win on output (x, y) if and only if x ∈ Sbi , y ∈ Sbj ,
and for all k ∈ Vi ∩ Vj , xk = yk .

�
Next let us recall from [1, Section 6] the graph GA,b defined for a linear system

Ax = b over Z2.

Definition 5.5. Suppose Ax = b is an m × n linear system over Z2 and b ∈ Z
n
2. Define

a graph GA,b with the following data:

1. the vertices of GA,b are pairs (i, x) where i ∈ {1, . . . ,m} and x ∈ Sbi ;
2. there is an edge between distinct vertices (i, x) and ( j, y) if and only if there exists

some k ∈ Vi ∩ Vj for which xk 	= yk ; that is, x and y are inconsistent solutions.

�
We are now ready to state the main theorem of this section.

Theorem 5.6. Let A = (ai, j ) be an m × n matrix over Z2 and let b ∈ Z
n
2 . Then the

following three synchronous games:

1. syncBCS(A, b),
2. I so(GA,b,GA,0),
3. Hom(Km,GA,b),

are hereditarily ∗-equivalent.
Before proving this theorem,we state some corollaries. Combining the above theorem

with Theorem 4.9 yields the following consequences.

Corollary 5.7. Let A = (ai, j ) be an m×n matrix overZ2 and let b ∈ Z
n
2 . The following

are equivalent:

1. Ahered(syncBCS(A, b)) 	= (0),
2. syncBCS(A, b) has a perfect C∗-strategy,
3. syncBCS(A, b) has a perfect qc-strategy.

Corollary 5.8. Let A = (ai, j ) be an m×n matrix overZ2 and let b ∈ Z
n
2 . The following

are equivalent:

1. Ahered(Hom(Km,GA,b)) 	= (0),
2. Hom(Km,GA,b) has a perfect C∗-strategy,
3. Hom(Km,GA,b) has a perfect qc-strategy.
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The proof of the theorem borrows some ideas from the proof of [18, Theorem 5.4].

Proof. We begin by constructing a unital ∗-homomorphism from A(I so(GA,b,GA,0))

to A(syncBCS(A, b)). By our earlier remarks, this ∗-homomorphism will induce a
unital ∗-homomorphism from

Ahered(I so(GA,b,GA,0)) to Ahered(syncBCS(A, b)).
The algebra A(syncBCS(A, b)) is generated by projections ei,x for i = 1, . . . ,m

and x ∈ Z
n
2 satisfying

∑
x ei,x = 1 for all i , ei,x ei,y = 0 if x 	= y. Moreover, given input

i , if x /∈ Sbi , then they lose for all ( j, y), from this it follows that ei,x = 0 if x /∈ Sbi .
Also, if x ∈ Sbi and y ∈ Sbj , then ei,x e j,y = 0 if there is a k ∈ Vi ∩ Vj with xk 	= yk .

Let S0i ⊆ Z
n
2 denote the set of solutions to the i th equation of the linear system

Ax = 0 and let Sbi ⊆ Z
n
2 denote the set of solutions to the i th equation of the linear

system Ax = b. Note that if y ∈ S0i and x ∈ Sbi , then x + y ∈ Sbi . Moreover, for x ∈ Sbi ,
the map S0i → Sbi given by y �→ x + y is a bijection.

The algebraA(I so(GA,b,GA,0)) is generated by projections e(i,x),( j,y) with (i, x) ∈
V (GA,b) and ( j, y) ∈ V (GA,0), satisfying certain relations. For (i, x) ∈ V (GA,b) and
( j, y) ∈ V (GA,0), define

q(i,x),( j,y) =
{
ei,x+y i = j
0 i 	= j

and note that each q(i,x),( j,y) is a projection. For (i, x) ∈ V (GA,b), we have

∑
( j,y)∈V (GA,0)

q(i,x),( j,y) =
n∑
j=1

∑
y∈S0j

q(i,x),( j,y) =
∑
y∈S0i

ei,x+y =
∑
z∈Sbi

ei,z = 1.

A similar computation shows that for all ( j, y) ∈ V (GA,0), we have∑
(i,x)∈V (GA,b)

q(i,x),( j,y) = 1.

Weneed to show that for all (i, x), (i ′, x ′) ∈ V (GA,b) and ( j, y), ( j ′, y′) ∈ V (GA,0),
the implication

q(i,x),( j,y)q(i ′,x ′),( j ′,y′) 	= 0 ⇒ rel((i, x), (i ′, x ′)) = rel(( j, y), ( j ′, y′))

holds. To this end, suppose q(i,x),( j,y)q(i ′,x ′),( j ′,y′) 	= 0. Then i = j , i ′ = j ′, and
ei,x+yei ′,x ′+y′ 	= 0. We consider several cases.

Suppose first i = i ′. Then we have x + y = x ′+ y′. If x = x ′, then y = y′ and we have
both (i, x) = (i ′, x ′) and ( j, y) = ( j ′, y′) so the right hand side of the implication holds
in this case. Conversely, if x 	= x ′ and y 	= y′, then (i, x) 	= (i ′, x ′) and ( j, y) 	= ( j ′, y′).
Note also that since i = i ′, x and x ′ are necessarily inconsistent solutions so that (i, x)
and (i ′, x ′) are adjacent. Similar reasoning shows ( j, y) and ( j ′, y′) are adjacent. Hence
the right hand side of the implication holds.

Now assume i 	= i ′ so that, in particular, (i, x) 	= (i ′, x ′). If (i, x) and (i ′, x ′) are
adjacent, there is a k ∈ Vi∩Vi ′ such that xk 	= x ′

k .On the other hand, as ei,x+yei ′,x ′+y′ 	= 0,
we know xk + yk = x ′

k + y′
k . Therefore, yk 	= y′

k so that (i, y) and (i ′, y′) are adjacent.
Finally, suppose (i, x) and (i ′, x ′) are not adjacent. Then xk = x ′

k for all i ∈ Vi ∩ Vi ′ .
Again since ei,x+yei ′,x ′+y′ 	= 0, we also know xk + yk = x ′

k + y′
k for all k ∈ Vi ∩ Vi ′ and
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therefore yk = y′
k for all k ∈ Vi ∩ Vi ′ so that ( j, y) and ( j ′, y′) are not adjacent. This

covers all cases.
Now, by the fact that A(I so(GA,b,GA,0)) is the universal ∗-algebra with projec-

tions satisfying these properties, we have that the map e(i,x),( j,y) → q(i,x),( j,y) ∈
A(syncBCS(A, b)) defines the desired unital ∗-homomorphism.

Now we prove that there is a unital ∗-homomorphism from A(Hom(Km,GA,b)) to
A(I so(GA,b,GA,0)). Note that for any graph X we have thatA(Hom(Km, X)) is gen-
erated by projections, ei,x , 1 ≤ i ≤ m, x ∈ V (X) satisfying

∑
x ei,x = 1, ei,x ei,y =

0, x 	= y and i 	= j, (x, y) /∈ E(X) �⇒ ei,x e j,y = 0. Since we are interested in
Hom(Km, X), this last relation changes to i 	= j, (x, y) ∈ E(X) �⇒ ei,x e j,y =
0. For each (i, x) ∈ V (GA,b) and 1 ≤ j ≤ m we define an element p j,(i,x) ∈
A(I so(GA,b,GA,0))by setting p j,(i,x) = e(i,x),( j,0).Wehave that

∑
(i,x)∈V (GA,b)

p j,(i,x)

= 1 and p j,(i,x) p j,(i ′,x ′) = 0 when (i, x) 	= (i ′, x ′) by the magic permutation relations.
Finally, if j 	= l and ((i, x), (i ′, x ′)) ∈ E(GA,b) then rel(( j, 0), (l, 0)) = +1 while

rel((i, x), (i ′, x ′)) = −1. Hence,

p j,(i,x) pl,(i ′,x ′) = e(i,x),( j,0)e(i ′,x ′),(l,0) = 0.

This shows that the map from A(Hom(Km,GA,b)) to A(I so(GA,b,GA,0)) given by
e j,(i,x) → p j,(i,x) defines a unital ∗-homomorphism and again this will induce a unital
*-homomorphism between their hereditary quotients.

Finally, we must exhibit a unital ∗-homomorphism from A(syncBCS(A, b)) into
Ahered(Hom(Km,GA,b)).

This latter algebra is generated by projections ei,( j,x), 1 ≤ i ≤ m, ( j, x) ∈ V (GA,b),
i.e., x ∈ Sbj . These satisfy

∑
j,x ei,( j,x) = 1 for all i , and ei,( j,x)ei,(k,y) = 0 whenever

( j, x) 	= (k, y). Moreover, since (i, l) is an edge in Km whenever i 	= l, we have that
when i 	= l and (( j, x), (k, y)) is not an edge in GA,b (meaning that x ∈ Sbj and y ∈ Sbk
are inconsistent solutions), then ei,( j,x)el,(k,y) = 0.

Note that if x, y ∈ Sbi and x 	= y, then ek,(i,x)ek,(i,y) = 0. If k 	= j , then k and j
are connected by an edge in Km , while (i, x) and (i, y) are not connected by an edge in
GA,b, so that ek,(i,x)e j,(i,y) = 0. From these facts, it follows that

pi :=
m∑

k=1

∑
x∈Sbi

ek,(i,x)

is a self-adjoint idempotent. Set qi = 1 − pi = q2i . Then

m∑
k=1

q2i =
m∑

k=1

(1 − pi ) = m · 1 −
m∑

k=1

m∑
i=1

∑
x∈Sbi

ek,(i,x) = 0,

using the fact that
∑

j,x ei,( j,x) = 1 for all i . Thus, we have that

qi = 0 and pi = 1, ∀1 ≤ i ≤ m.

For x ∈ Sbi , set

fi,x =
m∑

k=1

ek,(i,x).
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Then fi,x = f ∗
i,x and for k 	= j , we have that k, j are connected by an edge in Km , while

(i, x) is not connected to (i, x) by an edge; hence,

f 2i,x =
m∑

k, j=1

ek,(i,x)e j,(i,x) =
m∑

k=1

ek,(i,x) = fi,x ,

so that fi,x is a self-adjoint idempotent. Also, for x, y ∈ Sbi with x 	= y, we have that

fi,x fi,y =
m∑

j,k=1

ek,(i,x)e j,(i,y) =
m∑

k=1

ek,(i,x)ek,(i,y) = 0,

and

∑
x∈Sbi

fi,x =
m∑

k=1

∑
x∈Sbi

ek,(i,x) = pi = 1.

Thus, for each i , { fi,x : x ∈ Sbi } is a set of self-adjoint idempotents whose sum is 1.
Finally, if (i, x) and ( j, y) are inconsistent solutions, then

fi,x f j,y =
m∑

k,h=1

ek,(i,x)eh,( j,y).

When h = k, each of these products is 0. For h 	= k, we have that h and k are connected
by an edge in Km and so the product will be 0, since x and y being inconsistent solutions
implies that (i, x) and ( j, y) are not connected by an edge in GA,b.

Thus, the set { fi,x } satisfies the relations on the generators of the free algebra
A(syncBCS(A, b)) and they induce aunital∗-homomorphism fromA(syncBCS(A, b))
into Ahered(Hom(Km,GA,b)), from which the result follows. ��
Remark 5.9. In an earlier version of this paper we claimed that the three games were
∗-equivalent. We now know that this is incorrect. In fact, it is possible to construct linear
systems for which

A(syncBCS(A, b)) = A(I so(GA,b,GA,0)) = (0),

while A(Hom(Km,GA,b)) 	= (0). It would be interesting to know whether or not
syncBCS(A, b) and I so(GA,b,GA,0) are ∗-equivalent. �
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