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Abstract: We consider systems of bosons trapped in a box, in the Gross–Pitaevskii
regime. We show that low-energy states exhibit complete Bose–Einstein condensation
with an optimal bound on the number of orthogonal excitations. This extends recent re-
sults obtained in Boccato et al. (CommunMath Phys 359(3):975–1026, 2018), removing
the assumption of small interaction potential.

1. Introduction

Weconsider systems of N bosons trapped in the three-dimensional box� = [0; 1]3, with
periodic boundary conditions (the three dimensional torus with volume one), interacting
through a repulsive potential with scattering length of the order N−1, a scaling limit
known as the Gross–Pitaevskii regime. The Hamilton operator is given by

HN =
N∑

j=1

−�x j +
N∑

i< j

N 2V (N (xi − x j )) (1.1)

and acts on a dense subspace of L2
s (�

N ), the Hilbert space consisting of functions in
L2(�N ) that are invariantwith respect to permutations of the N particles.Weassumehere
V ∈ L3(R3) to have compact support and to be pointwise non-negative (i.e. V (x) ≥ 0
for almost all x ∈ R

3).
Instead of trapping the Bose gas into the box � = [0; 1]3 and imposing periodic

boundary conditions, one could also confine particles through an external potential Vext :
R
3 → R, with Vext(x) → ∞, as |x | → ∞. In this case, the Hamilton operator would

have the form

H trap
N =

N∑

j=1

[−�x j + Vext(x j )
]
+

N∑

i< j

N 2V (N (xi − x j )) (1.2)
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and it would act on a dense subspace of L2
s (R

3N ).
Lieb et al. proved in [12] that the ground state energy E trap

N of (1.2) is such that, as
N → ∞,

E trap
N

N
→ min

ϕ∈L2(R3):‖ϕ‖2=1
EGP(ϕ)

with the Gross–Pitaevskii energy functional

EGP(ϕ) =
∫ [

|∇ϕ|2 + Vext|ϕ|2 + 4πa0|ϕ|4
]
dx (1.3)

where a0 denotes the scattering length of the unscaled interaction potential V .
In [10], Lieb–Seiringer also proved that the normalized ground state vector ψ

trap
N of

(1.2) exhibits completeBose–Einstein condensation in theminimizerϕGP of (1.3),mean-
ing that its reduced one-particle density matrix γN = tr2,...,N |ψ trap

N 〉〈ψ trap
N | (normalized

so that tr γN = 1) satisfies

γN → |ϕGP〉〈ϕGP| (1.4)

as N → ∞ (convergence holds in the trace norm topology; since the limit is a rank-
one projection, all reasonable notions of convergence are equivalent). Equation (1.4)
asserts that, in the ground state of (1.2), all bosons, up to a fraction that vanishes in
the limit N → ∞, occupy the same one-particle state ϕGP. In [11], Lieb–Seiringer
extended Eq. (1.4) to reduced density matrices associated with normalized sequences
of approximate ground states, ie. states with expected energy per particle converging to
the minimum of (1.3) (under the constraint ‖ϕ‖ = 1).

A new proof of the results described above has been later obtained by Nam et al. [14],
making use of the quantum de Finetti theorem, first proposed in the mean-field setting
by Lewin et al. [7,8].

The results of [10–12,14] can be translated to the Hamilton operator (1.1), defined
on the torus, with no external potential. They imply, first of all, that the ground state
energy EN of (1.1) is such that

lim
N→∞

EN

N
= 4πa0 . (1.5)

Furthermore, they imply that for any sequence of approximate ground states, ie. for any
sequence ψN ∈ L2

s (�
N ) with ‖ψN‖ = 1 and

lim
N→∞

1

N
〈ψN , HNψN 〉 = 4πa0 , (1.6)

the reduced density matrices γN = tr2,...,N |ψN 〉〈ψN | are such that

lim
N→∞ tr |γN − |ϕ0〉〈ϕ0|| = 0 (1.7)

where ϕ0 ∈ L2(�) is the zero momentum mode defined by ϕ0(x) = 1 for all x ∈ �.
Since we will make use of this result in our analysis and since, strictly speaking, the
translation invariant Hamiltonian (1.1) is not treated in [11,14], in the version of this
paper posted on the arXivwe added a sketch of the proof of (1.7), adapting the arguments
of [14].
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Under the additional assumption that the interaction potential V is sufficiently small,
in [1] we recently improved (1.5) and (1.7), obtaining quantitative estimates showing, on
the one hand, that EN−4πa0N remains bounded, uniformly in N , and, on the other hand,
that every sequence of approximate ground states ψN of (1.1) exhibit Bose–Einstein
condensation, with number of excitations bounded by the excess energy 〈ψN , HNψN 〉−
4πa0N . The goal of the present paper is to extend the results of [1], removing the
assumption of small interaction.

Theorem 1.1. Let V ∈ L3(R3) have compact support and be spherically symmetric and
non-negative. Then there exists a constant C > 0 such that the ground state energy EN
of (1.1) satisfies

|EN − 4πa0N | ≤ C. (1.8)

Furthermore, consider a sequence ψN ∈ L2
s (�

N ) with ‖ψN‖ = 1 and such that

〈ψN , HNψN 〉 ≤ 4πa0N + K

for a K > 0. Then the reduced density matrix γN = tr2,...,N |ψN 〉ψN | associated with
ψN is such that

1 − 〈ϕ0, γNϕ0〉 ≤ C(K + 1)

N
(1.9)

for all N ∈ N large enough.

Remark. Equation (1.9) gives a bound on the number of orthogonal excitations of the
Bose–Einstein condensate, for low-energy states of the Hamilton operator (1.1). It im-
plies that

〈ψN , d�(1 − |ϕ0〉〈ϕ0|)ψN 〉 = N − 〈ψN , a∗(ϕ0)a(ϕ0)ψN 〉
= N

[
1 − 〈ϕ0, γNϕ0〉

] ≤ C(K + 1)
(1.10)

and thus that, for low-energy states ψN with finite excess energy K , the number of
excitations of the Bose–Einstein condensate remains bounded, uniformly in N . Notice
that the bounds (1.9), (1.10) remain valid and non-trivial even if K grows, as N → ∞, as
long as K � N ; in particular, they imply completeBEC for all sequences of approximate
ground states ψN satisfying (1.6).

To prove Theorem 1.1, we are going to introduce, in Sect. 2, an excitation Hamilto-
nian LN , factoring out the Bose–Einstein condensate. In Sect. 3, we define generalized
Bogoliubov transformations that are used in Sect. 4 to model correlations among par-
ticles and to define a renormalized excitation Hamiltonian GN ,	; important properties
of GN ,	 are collected in Propositions 4.2 and 4.3. A second renormalization, this time
through the exponential of an operator cubic in creation and annihilation operators, is
performed in Sect. 5, leading to a new twice renormalized Hamiltonian RN ,	; an im-
portant bound for RN ,	 is stated in Proposition 5.2. In Sect. 6, we use the results of
Propositions 4.2, 4.3 and 5.2 to show Theorem 1.1. Sections 7 and 8 are devoted to the
proof of Proposition 4.2 and, respectively, of Proposition 5.2.

The main novelty, with respect to the analysis in [1] is the need for the second
renormalization, through the exponential S = eA of a cubic operator A. Under the
additional assumption of small potential, the analysis of GN ,	 was enough in [1] to show
Bose–Einstein condensation in the form (1.9). Here, this is not the case. The point is that
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conjugation with a generalized Bogoliubov transformation renormalizes the quadratic
terms in the excitation Hamiltonian, but it leaves the cubic term substantially unchanged.
For small potentials, the cubic term can be controlled (by Cauchy–Schwarz) through the
quartic interaction and through the gap in the kinetic energy. Without assumptions on
the size of the potential, on the other hand, we need to conjugate with S, to renormalize
the cubic term. After conjugation with S, we can apply techniques developed by Lewin
et al. [9] (inspired by previous work of Lieb and Solovej [13]) based on localization
of the number of excitations. On sectors with few excitations (the cutoff will be set at
M = cN , for a sufficiently small constant c > 0), the renormalized cubic term is small
and it can be controlled by the gap in the kinetic energy operator. On sectors with many
excitations, on the other hand, we are going to bound the energy from below, using the
estimate (1.7), due to [11,14] (since on these sectors we do not have condensation, the
energy per particle must be strictly larger than 4πa0).

Theorem 1.1 is the first important step that we need in [3] to establish the validity of
Bogoliubov theory, as proposed in [4], for the low-energy excitation spectrum of (1.1).

2. The Excitation Hamiltonian

The bosonic Fock space over L2(�) is defined as

F =
⊕

n≥0

L2
s (�

n) =
⊕

n≥0

L2(�)⊗sn

where L2
s (�

n) is the subspace of L2(�n) consisting ofwave functions that are symmetric
w.r.t. permutations. The vacuum vector inF will be indicated with
 = {1, 0, . . .} ∈ F .

For g ∈ L2(�), the creation operator a∗(g) and the annihilation operator a(g) are
defined by

(a∗(g)�)(n)(x1, . . . , xn) = 1√
n

n∑

j=1

g(x j )�
(n−1)(x1, . . . , x j−1, x j+1, . . . , xn)

(a(g)�)(n)(x1, . . . , xn) = √
n + 1

∫

�

ḡ(x)�(n+1)(x, x1, . . . , xn) dx .

Observe that a∗(g) is the adjoint of a(g) and that the canonical commutation relations

[a(g), a∗(h)] = 〈g, h〉, [a(g), a(h)] = [a∗(g), a∗(h)] = 0

hold true for all g, h ∈ L2(�) (〈g, h〉 is the inner product on L2(�)).
It will be convenient for us to work in momentum space �∗ = 2πZ3. For p ∈ �∗,

we consider the plane wave ϕp(x) = e−i p·x in L2(�). We define the operators

a∗
p = a∗(ϕp), and ap = a(ϕp)

creating and, respectively, annihilating a particle with momentum p.
To exploit the non-negativity of the interaction potentialV , it will sometimes be useful

to switch to position space. To this end, we introduce operator valued distributions ǎx , ǎ∗
x

such that

a( f ) =
∫

f̄ (x) ǎx dx, a∗( f ) =
∫

f (x) ǎ∗
x dx .
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The number of particles operator, defined on a dense subspace of F by (N�)(n) =
n�(n), can be expressed as

N =
∑

p∈�∗
a∗
pap =

∫
ǎ∗
x ǎx dx .

It is then easy to check that creation and annihilation operators are bounded with respect
to the square root of N , i.e.

‖a( f )�‖ ≤ ‖ f ‖‖N 1/2�‖, ‖a∗( f )�‖ ≤ ‖ f ‖‖(N + 1)1/2�‖
for all f ∈ L2(�).

Recall that ϕ0(x) = 1 for all x ∈ � is the zero-momentum mode in L2(�). We
define L2⊥(�) as the orthogonal complement in L2(�) of the one dimensional space
spanned by ϕ0. The Fock space over L2⊥(�), generated by the creation operators a∗

p

with p ∈ �∗
+ := 2πZ3\{0}, will be denoted by

F+ =
⊕

n≥0

L2⊥(�)⊗sn .

On F+, the number of particles operator will be indicated by

N+ =
∑

p∈�∗
+

a∗
pap.

For N ∈ N, we also define the truncated Fock space

F≤N
+ =

N⊕

n=0

L2⊥(�)⊗sn .

On this Hilbert space, we are going to describe the orthogonal excitations of the Bose–
Einstein condensate. To this end, we are going to use a unitary map UN : L2

s (�
N ) →

F≤N
+ , first introduced in [9], which removes the condensate. To define UN , we notice

that every ψN ∈ L2
s (�

N ) can be uniquely decomposed as

ψN = α0ϕ
⊗N
0 + α1 ⊗s ϕ

⊗(N−1)
0 + · · · + αN

with α j ∈ L2⊥(�)⊗s j (the symmetric tensor product of j copies of the orthogonal
complement L2⊥(�) of ϕ0) for all j = 0, . . . , N . Therefore, we can put UNψN =
{α0, α1, . . . , αN } ∈ F≤N

+ . We can also define UN identifying ψN with the Fock space
vector {0, 0, . . . , ψN , 0, . . .} and using creation and annihilation operators; we find

UN ψN =
N⊕

n=0

(1 − |ϕ0〉〈ϕ0|)⊗n a(ϕ0)
N−n

√
(N − n)! ψN

for all ψN ∈ L2
s (�

N ). It is then easy to check that U∗
N : F≤N

+ → L2
s (�

N ) is given by

U∗
N {α(0), . . . , α(N )} =

N∑

n=0

a∗(ϕ0)
N−n

√
(N − n)! α(n)
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and that U∗
NUN = 1, ie. UN is unitary.

Using UN , we can define the excitation Hamiltonian LN := UN HNU∗
N , acting on a

dense subspace of F≤N
+ . To compute the operator LN , we first write the Hamiltonian

(1.1) in momentum space, in terms of creation and annihilation operators. We find

HN =
∑

p∈�∗
p2a∗

pap +
1

2N

∑

p,q,r∈�∗
V̂ (r/N )a∗

p+r a
∗
qapaq+r (2.1)

where

V̂ (k) =
∫

R3
V (x)e−ik·xdx

is the Fourier transform of V , defined for all k ∈ R
3 (in fact, (1.1) is the restriction of

(2.1) to the N -particle sector of the Fock spaceF). We can now determine the excitation
Hamiltonian LN using the following rules, describing the action of the unitary operator
UN on products of a creation and an annihilation operator (products of the form a∗

paq can
be thought of as operators mapping L2

s (�
N ) to itself). For any p, q ∈ �∗

+ = 2πZ3\{0},
we find (see [9]):

UN a∗
0a0U

∗
N = N − N+

UN a∗
pa0U

∗
N = a∗

p

√
N − N+

UN a∗
0ap U

∗
N = √

N − N+ ap
UN a∗

paq U
∗
N = a∗

paq .

(2.2)

We conclude that

LN = L(0)
N + L(2)

N + L(3)
N + L(4)

N (2.3)

with

L(0)
N = N − 1

2N
V̂ (0)(N − N+) +

V̂ (0)

2N
N+(N − N+)

L(2)
N =

∑

p∈�∗
+

p2a∗
pap +

∑

p∈�∗
+

V̂ (p/N )

[
b∗
pbp − 1

N
a∗
pap

]

+
1

2

∑

p∈�∗
+

V̂ (p/N )
[
b∗
pb

∗−p + bpb−p

]

L(3)
N = 1√

N

∑

p,q∈�∗
+:p+q �=0

V̂ (p/N )
[
b∗
p+qa

∗−paq + a∗
qa−pbp+q

]

L(4)
N = 1

2N

∑

p,q∈�∗
+,r∈�∗:

r �=− p,− q

V̂ (r/N )a∗
p+r a

∗
qapaq+r

(2.4)

where we introduced generalized creation and annihilation operators

b∗
p = a∗

p

√
N − N+

N
, and bp =

√
N − N+

N
ap (2.5)
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for all p ∈ �∗
+. Observe that, by (2.2),

U∗
Nb

∗
pUN = a∗

p
a0√
N

, U∗
NbpUN = a∗

0√
N
ap.

In other words, b∗
p creates a particle with momentum p ∈ �∗

+ but, at the same time,
it annihilates a particle from the condensate; it creates an excitation, preserving the
total number of particles in the system. On states exhibiting complete Bose–Einstein
condensation in the zero-momentum mode ϕ0, we have a0, a∗

0 � √
N and we can

therefore expect that b∗
p � a∗

p and that bp � ap. Modified creation and annihilation
operators satisfy the commutation relations

[bp, b∗
q ] =

(
1 − N+

N

)
δp,q − 1

N
a∗
qap

[bp, bq ] = [b∗
p, b

∗
q ] = 0.

(2.6)

Furthermore, we find

[bp, a∗
qar ] = δpqbr , [b∗

p, a
∗
qar ] = − δpr b

∗
q (2.7)

for all p, q, r ∈ �∗
+; this implies in particular that [bp,N+] = bp, [b∗

p,N+] = − b∗
p. It is

also useful to notice that the operators b∗
p, bp, like the standard creation and annihilation

operators a∗
p, ap, can be bounded by the square root of the number of particles operators;

we find

‖bpξ‖ ≤
∥∥∥N 1/2

+

(N + 1 − N+

N

)1/2
ξ

∥∥∥ ≤ ‖N 1/2
+ ξ‖

‖b∗
pξ‖ ≤

∥∥∥(N+ + 1)1/2
(N − N+

N

)1/2
ξ

∥∥∥ ≤ ‖(N+ + 1)1/2ξ‖

for all ξ ∈ F≤N
+ . Since N+ ≤ N on F≤N

+ , the operators b∗
p, bp are bounded, with

‖bp‖, ‖b∗
p‖ ≤ (N + 1)1/2.

We can also define modified operator valued distributions

b̌x =
√

N − N+

N
ǎx , and b̌∗

x = ǎ∗
x

√
N − N+

N

in position space, for x ∈ �. The commutation relations (2.6) take the form

[b̌x , b̌∗
y] =

(
1 − N+

N

)
δ(x − y) − 1

N
ǎ∗
y ǎx

[b̌x , b̌y] = [b̌∗
x , b̌

∗
y] = 0.

Moreover, (2.7) translates to

[b̌x , ǎ∗
y ǎz] = δ(x − y)b̌z, [b̌∗

x , ǎ
∗
y ǎz] = − δ(x − z)b̌∗

y

which also implies that [b̌x ,N+] = b̌x , [b̌∗
x ,N+] = − b̌∗

x .
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3. Generalized Bogoliubov Transformations

Conjugation with UN extracts, from the original quartic interaction in (2.1), some con-
stant and some quadratic contributions, collected in L(0)

N and L(2)
N in (2.4). In the Gross–

Pitevskii regime, however, this is not enough; there are still large contributions to the
energy hidden among cubic and quartic terms in L(3)

N and L(4)
N .

To extract the missing energy, we have to take into account the correlation structure.
Since UN only removes products of the zero-energy mode ϕ0, correlations among par-
ticles, which play a crucial role in the Gross–Pitaevskii regime and carry an energy of
order N , remain in the excitation vector UNψN . To factor out correlations, it is natu-
ral to conjugate LN with a Bogoliubov transformation. In fact, to make sure that the
truncated Fock space F≤N

+ remains invariant, we will have to use generalized Bogoli-
ubov transformations. Their definition and their main properties will be discussed in this
section.

For η ∈ 	2(�∗
+) with η−p = ηp for all p ∈ �∗

+, we define

B(η) = 1

2

∑

p∈�∗
+

(
ηpb

∗
pb

∗−p − η̄pbpb−p

)
(3.1)

and we consider

eB(η) = exp

⎡

⎣1

2

∑

p∈�∗
+

(
ηpb

∗
pb

∗−p − η̄pbpb−p

)
⎤

⎦ . (3.2)

We refer to unitary operators of the form (3.2) as generalized Bogoliubov transforma-
tions, in analogy with the standard Bogoliubov transformations

eB̃(η) = exp

⎡

⎣1

2

∑

p∈�∗
+

(
ηpa

∗
pa

∗−p − η̄papa−p

)
⎤

⎦ (3.3)

defined by means of the standard creation and annihilation operators. In this paper, we
will work with (3.2), rather than (3.3), because the generalized Bogoliubov transfor-
mations, in contrast with the standard transformations, leave the truncated Fock space
F≤N
+ invariant. The price we will have to pay is the fact that, while the action of standard

Bogoliubov transformation on creation and annihilation operators is explicitly given by

e−B̃(η)ape
B̃(η) = cosh(ηp)ap + sinh(ηp)a

∗−p (3.4)

there is no such formula describing the action of generalized Bogoliubov transforma-
tions.

A first important tool to control the action of generalized Bogoliubov transformations
is the following lemma, whose proof can be found in [5, Lemma 3.1] (a similar result
has been previously established in [15]).

Lemma 3.1. For every n ∈ N there exists a constant C > 0 such that, on F≤N
+ ,

e−B(η)(N+ + 1)neB(η) ≤ CeC‖η‖(N+ + 1)n (3.5)

for all η ∈ 	2(�∗).
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Bounds of the form (3.5) on the change of the number of particles operator are not
enough for our purposes; we will need more precise information about the action of
unitary operators of the form eB(η). To this end, we expand, for any p ∈ �∗

+,

e−B(η) bp e
B(η) = bp +

∫ 1

0
ds

d

ds
e−sB(η)bpe

sB(η)

= bp −
∫ 1

0
ds e−sB(η)[B(η), bp]esB(η)

= bp − [B(η), bp] +
∫ 1

0
ds1

∫ s1

0
ds2 e

−s2B(η)[B(η), [B(η), bp]]es2B(η).

Iterating m times, we find

e−B(η)bpe
B(η) =

m−1∑

n=1

(−1)n
ad(n)

B(η)(bp)

n!

+
∫ 1

0
ds1

∫ s1

0
ds2 . . .

∫ sm−1

0
dsm e−sm B(η)ad(m)

B(η)(bp)e
sm B(η)

(3.6)

where we recursively defined

ad(0)
B(η)(A) = A and ad(n)

B(η)(A) = [B(η), ad(n−1)
B(η) (A)].

We are going to expand the nested commutators ad(n)
B(η)(bp) and ad

(n)
B(η)(b

∗
p). To this end,

we need to introduce some additional notation.We follow here [1,2,5]. For f1, . . . , fn ∈
	2(�

∗
+), � = (�1, . . . , �n), � = (�0, . . . , �n−1) ∈ {·, ∗}n , we set

�
(2)
�,� ( f1, . . . , fn)

=
∑

p1,...,pn∈�∗
b�0
α0 p1a

�1
β1 p1

a�1
α1 p2a

�2
β2 p2

a�2
α2 p3 . . . a�n−1

βn−1 pn−1
a�n−1
αn−1 pn b

�n
βn pn

n∏

	=1

f	(p	)

(3.7)

where, for 	 = 0, 1, . . . , n, we define α	 = 1 if �	 = ∗, α	 = −1 if �	 = ·, β	 = 1 if
�	 = · and β	 = − 1 if �	 = ∗. In (3.7), we require that, for every j = 1, . . . , n − 1, we
have either � j = · and � j = ∗ or � j = ∗ and � j = · (so that the product a�	

β	 p	
a�	
α	 p	+1

always preserves the number of particles, for all 	 = 1, . . . , n−1).With this assumption,
we find that the operator �

(2)
�,�( f1, . . . , fn) maps F≤N

+ into itself. If, for some 	 =
1, . . . , n, �	−1 = · and �	 = ∗ (i.e. if the product a�	−1

α	−1 p	
a�	

β	 p	
for 	 = 2, . . . , n, or

the product b�0
α0 p1a

�1
β1 p1

for 	 = 1, is not normally ordered) we require additionally that

f	 ∈ 	1(�∗
+). In position space, the same operator can be written as

�
(2)
�,�( f1, . . . , fn) =

∫
b̌�0
x1 ǎ

�1
y1 ǎ

�1
x2 ǎ

�2
y2 ǎ

�2
x3 . . . ǎ�n−1

yn−1 ǎ
�n−1
xn b̌�n

yn

×
n∏

	=1

f̌	(x	 − y	) dx	dy	. (3.8)
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An operator of the form (3.7), (3.8) with all the properties listed above, will be called a
�(2)-operator of order n.

For g, f1, . . . , fn ∈ 	2(�
∗
+), � = (�1, . . . , �n) ∈ {·, ∗}n , � = (�0, . . . , �n) ∈ {·, ∗}n+1,

we also define the operator

�
(1)
�,�( f1, . . . , fn; g)

=
∑

p1,...,pn∈�∗
b�0
α0,p1a

�1
β1 p1

a�1
α1 p2a

�2
β2 p2

a�2
α2 p3 . . . a�n−1

βn−1 pn−1
a�n−1
αn−1 pna

�n
βn pn

a�n(g)

×
n∏

	=1

f	(p	)

(3.9)

where α	 and β	 are defined as above. Also here, we impose the condition that, for
all 	 = 1, . . . , n, either �	 = · and �	 = ∗ or �	 = ∗ and �	 = ·. This implies that
�

(1)
�,�( f1, . . . , fn; g) maps F≤N

+ back into F≤N
+ . Additionally, we assume that f	 ∈

	1(�∗
+) if �	−1 = · and �	 = ∗ for some 	 = 1, . . . , n (i.e. if the pair a�	−1

α	−1 p	
a�	

β	 p	
is not

normally ordered). In position space, the same operator can be written as

�
(1)
�,�( f1, . . . , fn; g) =

∫
b̌�0
x1 ǎ

�1
y1 ǎ

�1
x2 ǎ

�2
y2 ǎ

�2
x3 . . . ǎ�n−1

yn−1 ǎ
�n−1
xn ǎ�n

yn ǎ
�n(g)

×
n∏

	=1

f̌	(x	 − y	) dx	dy	. (3.10)

An operator of the form (3.9), (3.10) will be called a�(1)-operator of order n. Operators
of the form b( f ), b∗( f ), for a f ∈ 	2(�∗

+), will be called �(1)-operators of order zero.

The next lemma gives a detailed analysis of the nested commutators ad(n)
B(η)(bp) and

ad(n)
B(η)(b

∗
p) for n ∈ N; the proof can be found in [1, Lemma 2.5] (it is a translation to

momentum space of [5, Lemma 3.2]).

Lemma 3.2. Let η ∈ 	2(�∗
+) be such that ηp = η−p for all p ∈ 	2(�∗). To simplify

the notation, assume also η to be real-valued (as it will be in applications). Let B(η) be
defined as in (3.1), n ∈ N and p ∈ �∗. Then the nested commutator ad(n)

B(η)(bp) can be
written as the sum of exactly 2nn! terms, with the following properties.

(i) Possibly up to a sign, each term has the form

�1�2 . . . �i N
−k�

(1)
�,�(η

j1, . . . , η jk ; ηspϕαp) (3.11)

for some i, k, s ∈ N, j1, . . . , jk ∈ N\{0}, � ∈ {·, ∗}k , � ∈ {·, ∗}k+1 and α ∈ {±1}
chosen so that α = 1 if �k = · and α = − 1 if �k = ∗ (recall here that ϕp(x) =
e−i p·x ). In (3.11), each operator �w : F≤N → F≤N , w = 1, . . . , i , is either a
factor (N − N+)/N, a factor (N − (N+ − 1))/N or an operator of the form

N−h�
(2)
�′,�′(ηz1 , ηz2 , . . . , ηzh ) (3.12)

for some h, z1, . . . , zh ∈ N\{0}, �, � ∈ {·, ∗}h.
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(ii) If a termof the form (3.11) containsm ∈ N factors (N−N+)/N or (N−(N+−1))/N
and j ∈ N factors of the form (3.12) with �(2)-operators of order h1, . . . , h j ∈
N\{0}, then we have

m + (h1 + 1) + · · · + (h j + 1) + (k + 1) = n + 1.

(iii) If a term of the form (3.11) contains (considering all �-operators and the �(1)-
operator) the arguments ηi1, . . . , ηim and the factor ηsp for some m, s ∈ N, and
i1, . . . , im ∈ N\{0}, then

i1 + · · · + im + s = n.

(iv) There is exactly one term having of the form (3.11) with k = 0 and such that all
�-operators are factors of (N − N+)/N or of (N + 1 − N+)/N. It is given by

(
N − N+

N

)n/2 (
N + 1 − N+

N

)n/2

ηnpbp

if n is even, and by

−
(
N − N+

N

)(n+1)/2 (
N + 1 − N+

N

)(n−1)/2

ηnpb
∗−p

if n is odd.
(v) If the �(1)-operator in (3.11) is of order k ∈ N\{0}, it has either the form

∑

p1,...,pk

b�0
α0 p1

k−1∏

i=1

a�i
βi pi

a�i
αi pi+1a

∗−pkη
2r
p ap

k∏

i=1

η
ji
pi

or the form

∑

p1,...,pk

b�0
α0 p1

k−1∏

i=1

a�i
βi pi

a�i
αi pi+1apkη

2r+1
p a∗

p

k∏

i=1

η
ji
pi

for some r ∈ N, j1, . . . , jk ∈ N\{0}. If it is of order k = 0, then it is either given
by η2rp bp or by η2r+1p b∗−p, for some r ∈ N.

(vi) For every non-normally ordered term of the form

∑

q∈�∗
ηiqaqa

∗
q ,

∑

q∈�∗
ηiqbqa

∗
q

∑

q∈�∗
ηiqaqb

∗
q , or

∑

q∈�∗
ηiqbqb

∗
q

appearing either in the �-operators or in the �(1)-operator in (3.11), we have
i ≥ 2.
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With Lemma 3.2, it follows from (3.6) that, if ‖η‖ is sufficiently small,

e−B(η)bpe
B(η) =

∞∑

n=0

(−1)n

n! ad(n)
B(η)(bp)

e−B(η)b∗
pe

B(η) =
∞∑

n=0

(−1)n

n! ad(n)
B(η)(b

∗
p)

(3.13)

where the series converge absolutely (the proof is a translation to momentum space of
[5, Lemma 3.3]).

While Lemma 3.2 gives a complete characterization of terms appearing in the ex-
pansions (3.13), to localize the number of particles as we do in Proposition 4.3, we will
need to consider double commutators of ad(n)

−B(η)(bp)with a smooth function f (N+/M)

of the number of particles operator N+, varying on the scale M ∈ N\ {0}. To this end,
we will apply the following corollary, which is a simple consequence of Lemma 3.2.

Corollary 3.3. Let f : R → R be a real, smooth and bounded function. For M ∈
N\ {0}, let fM = f (N+/M). Then, for any n ∈ N, p ∈ �∗

+, the double commutator

[ fM , [ fM , ad(n)
−B(η)(bp)]] can be written as the sum of 2nn! (possibly vanishing) terms,

having the form

FM,n(N+)�1�2 . . . �i N
−k�

(1)
�,�(η

j1, . . . , η jk ; ηspϕαp)

for some i, k, s ∈ N, j1, . . . , jk ∈ N\{0}, � ∈ {·, ∗}k , � ∈ {·, ∗}k+1 and α ∈ {±1} chosen
so that α = 1 if �k = · and α = − 1 if �k = ∗, where the operators �1, . . . , �i and
�

(1)
�,�(η

j1, . . . , η jk ; ηspϕαp) satisfy all properties listed in the points (i)–(vi) in Lemma 3.2
and where FM,n is a bounded function such that

‖FM,n(N+)‖ ≤ Cn2

M2 ‖ f ′‖2∞ (3.14)

for a universal constant C > 0 (different terms will have different functions FM,n, but
they will all satisfy (3.14) with the same constant C > 0).

Proof. It follows from Lemma 3.2 that, for any n ∈ N, ad(n)
−B(η)(bp) can be written as

the sum of 2nn! terms of the form (up to a sign)

�1�2 . . . �i N
−k�

(1)
�,�(η

j1, . . . , η jk ; ηspϕαp) (3.15)

for some i, k, s ∈ N, j1, . . . , jk ∈ N\{0}, � ∈ {·, ∗}k , � ∈ {·, ∗}k+1 and α ∈ {±1} chosen
so that α = 1 if �k = · and α = − 1 if �k = ∗. In (3.15), each operator �w : F≤N →
F≤N , w = 1, . . . , i , is either a factor (N − N+)/N , a factor (N − (N+ − 1))/N or an
operator of the form

N−h�
(2)
�′,�′(ηz1, ηz2 , . . . , ηzh ) (3.16)
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for some h, z1, . . . , zh ∈ N\{0}, �, � ∈ {·, ∗}h . The commutator of (3.15) with fM is
therefore given by

[ fM ,�1�2 . . . �i N
−k�

(1)
�,�(η

j1, . . . , η jk ; ηspϕαp)]

=
i∑

u=1

( u−1∏

t=1

�t

)
[ fM ,�u]

( i∏

t=u+1

�t

)
N−k�

(1)
�,�(η

j1, . . . , η jk ; ηspϕαp)

+ �1�2 . . . �i N
−k[ fM ,�

(1)
�,�(η

j1, . . . , η jk ; ηspϕαp)].

Recalling (3.7) and (3.9) and using the identities bpN+ = (N+ + 1)bp, b∗
pN+ = (N+ −

1)b∗
p, we obtain that

[
fM ,�u

] =
[
f
(N+

M

)
− f

(N+ + eu
M

)]
�u

with eu = 0 if�u is either (N−N+)/N or (N−(N+−1))/N , while eu takes values in the
set {−2, 0, 2} if �u is of the form (3.16) (�(2)

�,�-operators can either create or annihilate
two excitations, or it can leave the number of excitations invariant). Moreover

[
fM ,�

(1)
�,�(η

j1, . . . , η jk ; ηspϕαp)
]

=
[
f
(N+

M

)
− f

(N+ ± 1

M

)]
�

(1)
�,�(η

j1, . . . , η jk ; ηspϕαp)

because �
(1)
�,� can create or annihilate only one excitation. Therefore

[ fM ,�1�2 . . . �i N
−k�

(1)
�,�(η

j1 , . . . , η jk ; ηspϕαp)]

=
i∑

u=1

( u−1∏

t=1

�t

)[
f
(N+

M

)
− f

(N+ + eu
M

)]

× �u

( i∏

r=u+1

�t

)
N−k�

(1)
�,�(η

j1 , . . . , η jk ; ηspϕαp)

+ �1�2 . . . �i N
−k

[
f
(N+

M

)
− f

(N+ ± 1

M

)]
�

(1)
�,�(η

j1, . . . , η jk ; ηspϕαp).

Hence, we have

[ fM ,�1�2 . . . �i N
−k�

(1)
�,�(η

j1 , . . . , η jk ; ηspϕαp)]

=
{ i∑

u=1

[
f
(N+ + nu−1

M

)
− f

(N+ + eu + nu−1

M

)]

+
[
f
(N+ + ni

M

)
− f

(N+ ± 1 + ni
M

)]}

× �1�2 . . . �i N
−k�

(1)
�,�(η

j1, . . . , η jk ; ηspϕαp)
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where nu = ∑u
t=1 et . By the mean value theorem, we can find functions θ1 : N →

(0,±1), θu : N → (0, eu) such that

[ fM ,�1�2 . . . �i N
−k�

(1)
�,�(η

j1, . . . , η jk ; ηspϕαp)]

= 1

M

[
i∑

u=1

eu f
′(N+ + θu(N+)

M

)
+ f ′(N+ + θ1(N+)

M

)]

× �1�2 . . . �i N
−k�

(1)
�,�(η

j1 , . . . , η jk ; ηspϕαp).

It follows that

[ fM , [ fM ,�1�2 . . . �i N
−k�

(1)
�,�(η

j1, . . . , η jk ; ηspϕαp)]]
= FM,n(N+)�1�2 . . . �i N

−k�
(1)
�,�(η

j1, . . . , η jk ; ηspϕαp)

with

FM,n(N+) = 1

M2

[
i∑

u=1

eu f
′(N+ + θu(N+)

M

)
+ f ′(N+ + θ1(N+)

M

)]2

dependingon theprecise formof theoperator�1�2 . . . �i N−k�
(1)
�,�(η

j1, . . . , η jk ; ηspϕαp).

Since eu �= 0 only if �u is a �(2) operator, since there are at most n �(2) operators
among �1, . . . , �i and since |eu | ≤ 2 for all u ∈ {1, . . . , i}, we conclude that, for
example,

‖FM,n‖ ≤ 3n2

M2 ‖ f ′‖2∞.

��
As explained after their Definition (2.5), the generalized creation and annihilation

operators b∗
p, bp are close to the standard creation and annihilation operators on states

with only few excitations, ie. withN+ � N . In particular, on these states we expect the
action of the generalized Bogoliubov transformation (3.2) to be close to the action (3.4)
of the standard Bogoliubov transformation (3.3). To make this statement more precise
we define, under the assumption that ‖η‖ is small enough, the remainder operators

dq =
∑

m≥0

1

m!
[
ad(m)

−B(η)(bq) − ηmq b
�m
αmq

]
,

d∗
q =

∑

m≥0

1

m!
[
ad(m)

−B(η)(b
∗
q) − ηmq b

�m+1
αmq

]
(3.17)

where q ∈ �∗
+, (�m, αm) = (·,+1) if m is even and (�m, αm) = (∗,−1) if m is odd. It

follows then from (3.13) that

e−B(η)bqe
B(η) = γqbq + σqb

∗−q + dq ,

e−B(η)b∗
qe

B(η) = γqb
∗
q + σqb−q + d∗

q (3.18)
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where we introduced the notation γq = cosh(ηq) and σq = sinh(ηq). It will also be
useful to introduce remainder operators in position space. For x ∈ �, we define the
operator valued distributions ďx , ď∗

x through

e−B(η)b̌x e
B(η) = b(γ̌x ) + b∗(σ̌x ) + ďx ,

e−B(η)b̌∗
xe

B(η) = b∗(γ̌x ) + b(σ̌x ) + ď∗
x (3.19)

where γ̌x (y) = ∑
q∈�∗ cosh(ηq)eiq·(x−y) and σ̌x (y) = ∑

q∈�∗ sinh(ηq)eiq·(x−y).
The next lemma confirms the intuition that remainder operators are small, on states

with N+ � N , and provides estimates that will be crucial for our analysis.

Lemma 3.4. Let η ∈ 	2(�∗
+), n ∈ Z. For p ∈ �∗

+, let dp be defined as in (3.17). If ‖η‖
is small enough, there exists C > 0 such that

‖(N+ + 1)n/2dpξ‖ ≤ C

N

[
|ηp|‖(N+ + 1)(n+3)/2ξ‖ + ‖η‖‖bp(N+ + 1)(n+2)/2ξ‖

]
,

‖(N+ + 1)n/2d∗
pξ‖ ≤ C

N
‖η‖ ‖(N+ + 1)(n+3)/2ξ‖

(3.20)

for all p ∈ �∗
+, ξ ∈ F≤N

+ . With ¯̄dp = dp + N−1 ∑
q∈�∗

+
ηqb∗

qa
∗−qap, we also have, for

p �∈ supp η, the improved bound

‖(N+ + 1)n/2 ¯̄dpξ‖ ≤ C

N
‖η‖2‖ap(N+ + 1)(n+2)/2ξ‖. (3.21)

In position space, with ďx defined as in (3.19), we find

‖(N+ + 1)n/2ďxξ‖ ≤ C

N
‖η‖

[
‖(N+ + 1)(n+3)/2ξ‖ + ‖bx (N+ + 1)(n+2)/2ξ‖

]
. (3.22)

Furthermore, letting ˇ̄dx = ďx + (N+/N )b∗(η̌x ), we find

‖(N+ + 1)n/2ǎy
ˇ̄dxξ‖

≤ C

N

[
‖η‖2‖(N+ + 1)(n+2)/2ξ‖ + ‖η‖|η̌(x − y)|‖(N + 1)(n+2)/2ξ‖

+ ‖η‖‖ǎx (N+ + 1)(n+1)/2ξ‖ + ‖η‖2‖ǎy(N+ + 1)(n+3)/2ξ‖
+ ‖η‖‖ǎx ǎy(N + 1)(n+2)/2ξ‖

]

(3.23)

and, finally,

‖(N+ + 1)n/2ďx ďyξ‖
≤ C

N 2

[
‖η‖2‖(N+ + 1)(n+6)/2ξ‖ + ‖η‖|η̌(x − y)|‖(N+ + 1)(n+4)/2ξ‖

+ ‖η‖2‖ax (N+ + 1)(n+5)/2ξ‖ + ‖η‖2‖ay(N+ + 1)(n+5)/2ξ‖
+ ‖η‖2 ‖axay(N+ + 1)(n+4)/2ξ‖

]

(3.24)

for all ξ ∈ F≤n
+ .
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Proof. Toprove the first bound in (3.20),we notice that, from (3.17) and from the triangle
inequality (for simplicity, we focus on n = 0, powers of N+ can be easily commuted
through the operators dp),

‖dqξ‖ ≤
∑

m≥0

1

m!
∥∥∥
[
ad(m)

−B(η)(bq) − ηmq b
�m
αm p

]
ξ

∥∥∥ . (3.25)

From Lemma 3.2, we can bound the norm ‖[ad(m)
−B(η)(bq) − ηmq b

�m
αm p]ξ‖ by the sum of

one term of the form
∥∥∥∥∥∥

⎡

⎣
(
N − N+

N

)m+(1−αm )/2
2

(
N + 1 − N+

N

)m−(1−αm )/2
2 − 1

⎤

⎦ ηmp b
�m
αm pξ

∥∥∥∥∥∥
(3.26)

and of exactly 2mm! − 1 terms of the form
∥∥∥�1 . . . �i1N

−k1�
(1)
�,�(η

j1, . . . , η jk1 ; η	1
p ϕα	1 p

)ξ

∥∥∥ (3.27)

where i1, k1, 	1 ∈ N, j1, . . . , jk1 ∈ N\{0} and where each �r -operator is either a factor
(N − N+)/N , a factor (N + 1 − N+)/N or a �(2)-operator of the form

N−h�
(2)
�,�(η

z1 , . . . , ηzh ) (3.28)

with h, z1, . . . , zh ∈ N\{0}. Furthermore, since we are considering the term (3.26)
separately, each term of the form (3.27) must have either k1 > 0 or it must contain at
least one �-operator having the form (3.28). Since (3.26) vanishes for m = 0, it is easy
to bound

∥∥∥∥∥∥

⎡

⎣
(
N − N+

N

)m+(1−αm )/2
2

(
N + 1 − N+

N

)m−(1−αm )/2
2 − 1

⎤

⎦ ηmp b
�m
αm pξ

∥∥∥∥∥∥

≤ Cm |ηp|mN−1‖(N+ + 1)3/2ξ‖.
On the other hand, distinguishing the cases 	1 > 0 and 	1 = 0, we can bound

∥∥∥�1 . . . �i1N
−k1�

(1)
�,�(η

j1, . . . , η jk1 ; η	1
p ϕα	1 p

)ξ

∥∥∥

≤ CmN−1
[
‖η‖m−	1 |ηp|	1δ	1>0‖(N+ + 1)3/2ξ‖ + ‖η‖m‖bp(N+ + 1)ξ‖

]

≤ Cm‖η‖m−1N−1
[
|ηp|δm>0‖(N+ + 1)3/2ξ‖ + ‖η‖‖bp(N+ + 1)ξ‖

]
(3.29)

where in the last line we used |ηp| ≤ ‖η‖. Inserting the last two bounds in (3.25) and
summing over m under the assumption that ‖η‖ is small enough, we arrive at the first
estimate (3.20). The second estimate in (3.20) can be proven similarly (notice that, when
dealing with the second estimate in (3.20), contributions of the form (3.27) with 	1 = 0,
can only be bounded by ‖b∗

p(N+ + 1)ξ‖ ≤ ‖(N+ + 1)3/2ξ‖). To show (3.21), we notice

that ¯̄dp is exactly defined to cancel the only contribution withm = 1 that does not vanish
for p �∈ supp η. Moreover, the assumption ηp = 0 implies that only terms with 	1 = 0
survive in (3.29). Also the bounds in (3.22) and (3.23) can be shown analogously, using
[2, Lemma 7.2]. ��
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To localize the number of particles operator in Proposition 4.3, we will also need to
control the double commutator of the remainder operators dp, d∗

p with smooth functions
f (N+/M) of the number of particles operator, varying on the scale M . To this end,
we use the next corollary, which is an immediate consequence of Corollary 3.3 and of
Lemma 3.4 (and of its proof).

Corollary 3.5. Let f : R → R be smooth and bounded. For M ∈ N\{0}, let fM =
f (N+/M). The bounds in (3.20), (3.21), (3.22), (3.23) and (3.24) remain true if we

replace, on the left hand side, dp by [ fM , [ fM , dp]], ¯̄dp by [ fM , [ fM , ¯̄dp]], ďx by

[ fM , [ fM , ďx ]], ǎy ˇ̄dx by [ fM , [ fM , ǎy
ˇ̄dx ]] and ďx ďy by [ fM , [ fM , ďx ďy]] and, on the

right hand side, the constant C by CM−2‖ f ′‖2∞. For example, the first bound in (3.20)
becomes

∥∥∥(N+ + 1)n/2[ fM , [ fM , dp]]ξ
∥∥∥

≤ C‖ f ′‖2∞
NM2

[
|ηp|‖(N+ + 1)(n+3)/2ξ‖ + ‖η‖‖bp(N+ + 1)(n+2)/2ξ‖

]
.

4. Quadratic Renormalization

We use now a generalized Bogoliubov transformation exp(B(η)) of the form (3.2) to
renormalize the excitation Hamiltonian. To make sure that exp(B(η)) removes correla-
tions that are present in low-energy states, we have to choose the coefficients η ∈ 	2(�∗

+)

appropriately. To this end, we consider the ground state solution of the Neumann prob-
lem

[
−� +

1

2
V

]
f	 = λ	 f	 (4.1)

on the ball |x | ≤ N	 (we omit here the N -dependence in the notation for f	 and for λ	;
notice that λ	 scales as N−3), with the normalization f	(x) = 1 if |x | = N	. By scaling,
we observe that f	(N .) satisfies the equation

[
−� +

N 2

2
V (Nx)

]
f	(Nx) = N 2λ	 f	(Nx)

on the ball |x | ≤ 	.We choose 0 < 	 < 1/2, so that the ball of radius 	 is contained in the
box � = [−1/2; 1/2]3 (later, we will choose 	 > 0 small enough, but always of order
one, independent of N ). We extend then f	(N .) to �, by setting fN ,	(x) = f	(Nx), if
|x | ≤ 	 and fN ,	(x) = 1 for x ∈ �, with |x | > 	. Then

(
−� +

N 2

2
V (Nx)

)
fN ,	 = N 2λ	 fN ,	χ	 (4.2)

where χ	 is the characteristic function of the ball of radius 	. The Fourier coefficients
of the function fN ,	 are given by

f̂N ,	(p) :=
∫

�

f	(Nx)e−i p·xdx (4.3)

for all p ∈ �∗. It is also useful to introduce the functionw	(x) = 1− f	(x) for |x | ≤ N	

and to extend it by setting w	(x) = 0 for |x | > N	. Its rescaled version wN ,	 : � → R
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is then defined through wN ,	(x) = w	(Nx) if |x | ≤ 	 and wN ,	(x) = 0 if x ∈ � with
|x | > 	. The Fourier coefficients of wN ,	 are then given, for p ∈ �∗, by

ŵN ,	(p) =
∫

�

w	(Nx)e−i p·xdx = 1

N 3 ŵ	(p/N )

where

ŵ	(k) =
∫

R3
w	(x)e

−ik·xdx

denotes the Fourier transform of the (compactly supported) functionw	.We find f̂N ,	(p)
= δp,0 − N−3ŵ	(p/N ). From (4.2), we obtain

− p2ŵ	(p/N ) +
N 2

2

∑

q∈�∗
V̂ ((p − q)/N ) f̂N ,	(q)

= N 5λ	

∑

q∈�∗
χ̂	(p − q) f̂N ,	(q).

(4.4)

In the next lemma we collect some important properties of w	, f	. The proof of the
lemma is given in “Appendix A”.

Lemma 4.1. Let V ∈ L3(R3) be non-negative, compactly supported and spherically
symmetric. Fix 	 > 0 and let f	 denote the solution of (4.1). For N large enough the
following properties hold true.

i) We have

λ	 = 3a0
(	N )3

(
1 +O(

a0/	N
))

. (4.5)

ii) We have 0 ≤ f	, w	 ≤ 1. Moreover there exists a constant C > 0 such that

∣∣∣∣
∫

V (x) f	(x)dx − 8πa0

∣∣∣∣ ≤ Ca20
	N

(4.6)

for all 	 ∈ (0; 1/2) and N ∈ N.
iii) There exists a constant C > 0 such that

w	(x) ≤ C

|x | + 1
and |∇w	(x)| ≤ C

x2 + 1
(4.7)

for all x ∈ R
3, 	 ∈ (0; 1/2) and all N large enough.

iv) There exists a constant C > 0 such that

|ŵN ,	(p)| ≤ C

Np2

for all p ∈ R
3, all 	 ∈ (0; 1/2) and all N large enough (such that N ≥ 	−1).
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We define η : �∗ → R through

ηp = − N ŵN ,	(p) = − 1

N 2 ŵ	(p/N ).

With Lemma 4.1, we can bound

|ηp| ≤ C

|p|2 (4.8)

for all p ∈ �∗
+ = 2πZ3\{0}, and for some constant C > 0 independent of N and

	 ∈ (0; 1
2 ), if N is large enough. From (4.4), we also find the relation

p2ηp +
1

2
(V̂ (./N ) ∗ f̂N ,	)(p) = N 3λ	(χ̂	 ∗ f̂N ,	)(p) (4.9)

or equivalently, expressing the r.h.s. through the coefficients ηp,

p2ηp +
1

2
V̂ (p/N ) +

1

2N

∑

q∈�∗
V̂ ((p − q)/N )ηq

= N 3λ	χ̂	(p) + N 2λ	

∑

q∈�∗
χ̂	(p − q)ηq .

(4.10)

Moreover, with (4.7), we find

‖η‖2 = ‖η̌‖2 =
∫

|x |≤	

N 2|w(Nx)|2dx ≤ C
∫

|x |≤	

1

|x |2 dx ≤ C	. (4.11)

In particular, we can make ‖η‖ arbitrarily small, choosing 	 small enough.
For α > 0, we now define the momentum set

PH = {p ∈ �∗
+ : |p| ≥ 	−α}, (4.12)

depending on the parameter 	 > 0 introduced in (4.1).1 We set

ηH (p) = ηp χ(p ∈ PH ) = ηpχ(|p| ≥ 	−α) . (4.13)

Eq. (4.8) implies that

‖ηH‖ ≤ C	α/2. (4.14)

For α > 1, the last bound improves (4.11). As we will see later, this improvement,
obtained through the introduction of a momentum cutoff, will play an important role
in our analysis. Notice, on the other hand, that the H1-norms of η and ηH diverge, as
N → ∞. From Lemma 4.1, part (iii), we find

∑

p∈PH

p2|ηp|2 ≤
∑

p∈�∗
+

p2|ηp|2 ≤ CN (4.15)

1 At the end, we will need the high-momentum cutoff 	−α to be sufficiently large. To reach this goal, we
will choose 	 sufficiently small. Alternatively, we could decouple the cutoff from the radius 	 introduced in
(4.1), keeping 	 ∈ (0; 1/2) fixed and choosing instead the exponent α sufficiently large.



1330 C. Boccato, C. Brennecke, S. Cenatiempo, B. Schlein

for all 	 ∈ (0; 1/2) and N ∈ N large enough. We will mostly use the coefficients ηp
with p �= 0. Sometimes, however, it will be useful to have an estimate on η0 (because
Eq. (4.10) involves η0). From Lemma 4.1, part (iii) we find

|η0| ≤ N−2
∫

R3
w	(x)dx ≤ C	2. (4.16)

It will also be useful to have bounds for the function η̌H : � → R, having Fourier
coefficients ηH (p) as defined in (4.13). Writing ηH (p) = ηp − ηpχ(|p| ≤ 	−α), we
obtain

η̌H (x) = η̌(x) −
∑

p∈�∗:
|p|≤	−α

ηpe
ip·x = − Nw	(Nx) −

∑

p∈�∗:
|p|≤	−α

ηpe
ip·x .

We obtain

|η̌H (x)| ≤ CN +
∑

p∈�∗:
|p|≤	−α

|p|−2 ≤ C(N + 	−α) ≤ CN (4.17)

for all x ∈ �, if N ∈ N is large enough.
With the coefficients (4.13), we construct the generalized Bogoliubov transformation

eB(ηH ) : F≤N
+ → F≤N

+ , defined as in (3.2). Furthermore, we define a new, renormalized,
excitation Hamiltonian GN ,	 : F≤N

+ → F≤N
+ by setting

GN ,	 = e−B(ηH )LNe
B(ηH ) = e−B(ηH )UN HNU

∗
Ne

B(ηH ). (4.18)

In the next proposition, we collect some important properties of the renormalized
excitation Hamiltonian GN ,	. In the following, we will use the notation

K =
∑

p∈�∗
+

p2a∗
pap and VN = 1

2N

∑

p,q∈�∗
+,r∈�∗:

r �=− p,− q

V̂ (r/N )a∗
p+r a

∗
qaq+r ap (4.19)

for the kinetic and potential energy operators, restricted on F≤N
+ . We will also write

HN = K + VN .

Proposition 4.2. Let V ∈ L3(R3) be compactly supported, pointwise non-negative and
spherically symmetric. Then

GN ,	 = 4πa0N +HN + θGN ,	
(4.20)

where for every δ > 0 there exists a constant C > 0 such that

± θGN ,	
≤ δHN + C	−α(N+ + 1) (4.21)

and the improved lower bound

θGN ,	
≥ −δHN − CN+ − C	−α (4.22)

hold true for all α > 3, 	 ∈ (0; 1/2) small enough, N ∈ N large enough.
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Furthermore, let

Geff
N ,	 := 4πa0(N − N+) +

[
V̂ (0) − 4πa0

]N+
(N − N+)

N

+ V̂ (0)
∑

p∈Pc
H

a∗
pap(1 − N+/N ) + 4πa0

∑

p∈Pc
H

[
b∗
pb

∗−p + bpb−p
]

+
1√
N

∑

p,q∈�∗
+:p+q �=0

V̂ (p/N )
[
b∗
p+qa

∗−paq + h.c.
]
+HN .

(4.23)

Then there exists a constant C > 0 such that EGN ,	
= GN ,	 − Geff

N ,	 is bounded by

± EGN ,	
≤ C	(α−3)/2HN + C	−α (4.24)

for all α > 3, 	 ∈ (0; 1/2) small enough, and N large enough.
Finally, there exists a constant C > 0 such that

± [
f (N+/M),

[
f (N+/M), θGN ,	

]] ≤ C	−α/2M−2‖ f ′‖2∞
(HN + 1

)

± [
f (N+/M),

[
f (N+/M), EGN ,	

]] ≤ C	(α−3)/2M−2‖ f ′‖2∞
(HN + 1

) (4.25)

for all α > 3, 	 ∈ (0; 1/2) small enough, f : R → R smooth and bounded, M ∈ N and
N ∈ N large enough.

The proof of Proposition 4.2 is technical and quite long; it is deferred to Sect. 7 below.
Equation (4.25) allows us to prove a localization estimate for GN ,	.

Proposition 4.3. Let f, g : R → [0; 1] be smooth, with f 2(x)+g2(x) = 1 for all x ∈ R.
For M ∈ N, let fM := f (N+/M) and gM := g(N+/M). There exists C > 0 such that

GN ,	 = fM GN ,	 fM + gM GN ,	 gM + EM
with

± EM ≤ C	−α/2

M2

(‖ f ′‖2∞ + ‖g′‖2∞
)(HN + 1

)

for all α > 3, 	 ∈ (0; 1/2) small enough, M ∈ N and N ∈ N large enough.

Proof. An explicit computation shows that

GN ,	 = fMGN ,	 fM + gMGN ,	gM +
1

2

(
[ fM , [ fM ,GN ,	]] + [gM , [gM ,GN ,	]]

)
.

Writing as in (4.20),GN ,	 = 4πa0N+HN +θGN ,	
, noticing that 4πa0N andHN commute

with fM , gM , and using the first bound in (4.25), we conclude that

±
(
[ fM , [ fM ,GN ,	]] + [gM , [gM ,GN ,	]]

)
≤ C	−α/2

M2

(‖ f ′
M‖2∞ + ‖g′

M‖2∞
)(HN + 1

)
.

��
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5. Cubic Renormalization

The quadratic renormalization leading to the excitation Hamiltonian GN ,	 is not enough
to show Theorem 1.1. In (4.22), the error term proportional to the number of particles
operator cannot be controlled by the gap in the kinetic energy (in [1] this was possible,
because the constant multiplying N+ is small, if the interaction potential is weak). To
circumvent this problem, we have to conjugate the main part Geff

N ,	 of GN ,	, as defined
in (4.23), with an additional unitary operator, given by the exponential of an expression
cubic in creation and annihilation operators.

For a parameter 0 < β < α we define the low-momentum set

PL = {p ∈ �∗
+ : |p| ≤ 	−β}

depending again on the parameter 	 > 0 introduced in (4.1).2 Notice that the high-
momentum set PH defined in (4.12) and PL are separated by a set of intermediate
momenta 	−β < |p| < 	−α . We introduce the operator A : F≤N

+ → F≤N
+ , by

A := 1√
N

∑

r∈PH ,v∈PL

ηr
[
b∗
r+va

∗−r av − h.c.
]
. (5.1)

An important observation for our analysis is the fact that conjugation with eA does
not substantially change the number of excitations.

Proposition 5.1. Suppose that A is defined as in (5.1). For any k ∈ N there exists a
constant C > 0 such that the operator inequality

e−A(N+ + 1)keA ≤ C(N+ + 1)k

holds true on F≤N
+ , for all α > β > 0, 	 ∈ (0; 1/2), and N large enough.

Proof. Let ξ ∈ F≤N
+ and define ϕξ : R → R by

ϕξ (s) := 〈ξ, e−s A(N+ + 1)kesAξ 〉.
Then we have, using the notation Aγ = N−1/2 ∑

r∈PH ,v∈PL ηr b∗
r+va

∗−r av ,

∂sϕξ (s) = 2Re 〈ξ, e−s A[
(N+ + 1)k, Aγ

]
esAξ 〉.

We find

〈ξ, e−s A[
(N+ + 1)k, Aγ

]
esAξ 〉

= 1√
N

∑

r∈PH ,v∈PL

ηr 〈esAξ, b∗
r+va

∗−r a−v

[
(N+ + 2)k − (N+ + 1)k

]
esAξ 〉.

With the mean value theorem, we find a function θ : N → (0; 1) such that
(N+ + 2)k − (N+ + 1)k = k(N+ + θ(N+) + 1)k−1.

2 At the end,wewill need the low-momentumcutoff 	−β to be sufficiently large (preserving however certain
relations with the high-momentum cutoff). We will reach this goal by choosing 	 small enough. Alternatively,
as already remarked in the footnote after (4.12), also here we could decouple the low-momentum cutoff from
the radius 	 introduced in (4.1), by keeping 	 ∈ (0; 1/2) fixed and varying instead the exponent β.
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Since bpN+ = (N+ +1)bp and b∗
pN+ = (N+−1)b∗

p, we obtain, using Cauchy–Schwarz
and the boundedness of θ ,

∣∣∣〈ξ, e−s A[
(N+ + 1)k, Aγ

]
esAξ 〉

∣∣∣

≤ C√
N

∑

r∈PH ,v∈PL

|ηr |
∥∥br+va−r (N+ + 1)−1/4+(k−1)/2esAξ

∥∥

× ∥∥a−v(N+ + 1)1/4+(k−1)/2esAξ
∥∥

≤ C√
N

[ ∑

r∈PH ,v∈PL

∥∥br+va−r (N+ + 1)−1/4+(k−1)/2esAξ
∥∥2

]1/2

×
[ ∑

r∈PH ,v∈PL

|ηr |2
∥∥a−v(N+ + 1)1/4+(k−1)/2esAξ

∥∥2
]1/2

≤ C√
N

‖ηH‖∥∥(N+ + 1)3/4+(k−1)/2esAξ
∥∥2

≤ C√
N

〈esAξ, (N+ + 1)k+1/2esAξ 〉
≤ C〈esAξ, (N+ + 1)kesA〉

for a constant C > 0 depending on k, but not on N or 	. This proves that

∂sϕξ (s) ≤ Cϕξ (s)

so that, by Gronwall’s lemma, we find a constant C with

〈ξ, e−A(N+ + 1)keAξ 〉 = C〈ξ, (N+ + 1)kξ 〉 .

��
We use now the cubic phase eA to introduce a new excitation Hamiltonian, defining

RN ,	 := e−A Geff
N ,	 e

A

on a dense subset of F≤N
+ . The operator Geff

N ,	 is defined as in (4.23). As explained in

the introduction, conjugation with eA renormalizes the cubic term on the r.h.s. of (4.23),
effectively replacing the singular potential V̂ (p/N ) by a potential decaying already on
momenta of order one. This allows us to show the following proposition.

Proposition 5.2. Let V ∈ L3(R3) be compactly supported, pointwise non-negative and
spherically symmetric. Then, for all α > 3 and α/2 < β < 2α/3, there exists κ > 0
and a constant C > 0 such that

RN ,	 ≥ 4πa0N +
(
1 − C	κ

)HN − C	−3αN 2
+ /N − C	−3α

for all 	 ∈ (0; 1/2) small enough and N large enough.

The proof of Proposition 5.2 will be given in Sect. 8. In the next section, we show how
Proposition 5.2, together with Proposition 4.2 and Proposition 4.3, implies Theorem 1.1.



1334 C. Boccato, C. Brennecke, S. Cenatiempo, B. Schlein

6. Proof of Theorem 1.1

The next proposition combines the results of Propositions 4.2, 4.3 and 5.2.

Proposition 6.1. Let V ∈ L3(R3) be compactly supported, pointwise non-negative and
spherically symmetric. Let GN ,	 be the renormalized excitation Hamiltonian defined
as in (4.18). Then, for every α > 3, 	 ∈ (0; 1/2) small enough, there exist constants
C, c > 0 such that

GN ,	 − 4πa0N ≥ cN+ − C (6.1)

for all N ∈ N sufficiently large.

Proof. As in Proposition 4.3, let f, g : R → [0; 1] be smooth, with f 2(x) + g2(x) = 1
for all x ∈ R. Moreover, assume that f (x) = 0 for x > 1 and f (x) = 1 for x < 1/2.We
fix M = 	3α+κN (with κ > 0 as in Proposition 5.2) and we set fM = f (N+/M), gM =
g(N+/M). It follows from Proposition 4.3 that

GN ,	 − 4πa0N ≥ fM (GN ,	 − 4πa0N ) fM + gM (GN ,	 − 4πa0N )gM

−C	−13α/2−2κN−2(HN + 1). (6.2)

Let us consider the first term on the r.h.s. of (6.2). From Proposition 4.2, there exists
C > 0 such that

GN ,	 − 4πa0N ≥ Geff
N ,	 − 4πa0N − C	(α−3)/2HN − C	−α

and also, from (4.20),

GN ,	 − 4πa0N ≥ 1

2
HN − CN+ − C	−α (6.3)

for all α > 3, 	 ∈ (0; 1/2) small enough and N large enough. Together, the last two
bounds imply that

GN ,	 − 4πa0N ≥ (1 − C	(α−3)/2)(Geff
N ,	 − 4πa0N ) − C	(α−3)/2N+ − C	−α.

Hence, for 	 > 0 small enough,

GN ,	 − 4πa0N ≥ 1

2
(Geff

N ,	 − 4πa0N ) − C	(α−3)/2N+ − C	−α.

With Proposition 5.2, choosing α > 3 and α/2 < β < 2α/3, we find κ > 0 such that

fM (GN ,	 − 4πa0N ) fM

≥ 1

2
fM (Geff

N ,	 − 4πa0N ) fM − C	(α−3)/2 f 2MN+ − C	−α f 2M

≥ 1

2
fMeA

[
(1 − C	κ)HN − C	−3α N 2

+

N
− C	−3α

]
e−A fM

− C	(α−3)/2 f 2MN+ − C	−α f 2M

≥ 1

2
fMeA

[
(1 − C	κ)HN − C	κN+

]
e−A fM − C	(α−3)/2 f 2MN+ − C	−3α f 2M .
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In the last inequality, we used Proposition 5.1 to estimate

fMe−AN 2
+ e

A fM ≤ C fM (N+ + 1)2 fM

≤ CN	3α+κ fM (N+ + 1) fM ≤ CN	3α+κ fMe−A(N+ + 1)eA fM

because we chose M = 	3α+κN . Since now N+ ≤ CK ≤ CHN , we obtain that, for
	 ∈ (0; 1/2) small enough,

fM (GN ,	 − 4πa0N ) fM ≥ C fMeAN+e
−A fM − C	(α−3)/2 f 2MN+ − C	−3α f 2M .

With Proposition 5.1, we conclude that, again for 	 > 0 small enough,

fM (GN ,	 − 4πa0N ) fM ≥ C f 2MN+ − C	−3α f 2M . (6.4)

Let us next consider the second term on the r.h.s. of (6.2). From now on, we keep
	 > 0 fixed (so that (6.4) holds true), and we will only worry about the dependence of
N . We claim that there exists a constant C > 0 such that

gM (GN ,	 − 4πa0N )gM ≥ CNg2M (6.5)

for all N sufficiently large. To prove (6.5) we observe that, since g(x) = 0 for all
x ≤ 1/2,

gM (GN ,	 − 4πa0N )gM ≥
⎡

⎣ inf
ξ∈F≤N

≥M/2:‖ξ‖=1

1

N
〈ξ,GN ,	ξ 〉 − 4πa0

⎤

⎦ Ng2M

where F≤N
≥M/2 = {ξ ∈ F≤N

+ : ξ = χ(N+ ≥ M/2)ξ} is the subspace of F≤N
+ where

states with at least M/2 excitations are described (recall that M = 	3α+κN ). To prove
(6.5) it is enough to show that there exists C > 0 with

inf
ξ∈F≤N

≥M/2:‖ξ‖=1

1

N
〈ξ,GN ,	ξ 〉 − 4πa0 ≥ C (6.6)

for all N large enough. From the result (1.7) of [10,11,14], we already know that

inf
ξ∈F≤N

≥M/2:‖ξ‖=1

1

N
〈ξ,GN ,	ξ 〉 − 4πa0

≥ inf
ξ∈F≤N

+ :‖ξ‖=1

1

N
〈ξ,GN ,	ξ 〉 − 4πa0 = EN

N
− 4πa0 → 0

as N → ∞. Hence, if we assume by contradiction that (6.6) does not hold true, then we
can find a subsequence N j → ∞ with

inf
ξ∈F≤N j

≥M j /2
:‖ξ‖=1

1

N j
〈ξ,GN j ,	ξ 〉 − 4πa0 → 0
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as j → ∞ (here we used the notation Mj = 	3α+κN j ). This implies that there exists a

sequence ξN j ∈ F≤N j
≥Mj /2

with ‖ξN j ‖ = 1 for all j ∈ N such that

lim
j→∞

1

N j
〈ξN j ,GN j ,	ξN j 〉 = 4πa0.

Let now S := {N j : j ∈ N} ⊂ N and denote by ξN a normalized minimizer of GN ,	 for
all N ∈ N \ S. Setting ψN = U∗

Ne
B(ηH )ξN , for all N ∈ N, we obtain that ‖ψN‖ = 1

and that

lim
N→∞

1

N
〈ψN , HNψN 〉 = lim

N→∞
1

N
〈ξN ,GN ,	ξN 〉 = 4πa0.

In other words, the sequence ψN is an approximate ground state of HN . From 1.7, we
conclude thatψN exhibits complete Bose–Einstein condensation in the zero-momentum
mode ϕ0, meaning that

lim
N→∞ 1 − 〈ϕ0, γNϕ0〉 = 0.

Using Lemma 3.1 and the rules (2.2), we observe that

1

N
〈ξN ,N+ξN 〉 = 1

N
〈e−B(ηH )UNψN ,N+e

−B(ηH )UNψN 〉

≤ C

N
〈ψN ,U∗

N (N+ + 1)UNψN 〉

= C

N
+ C

[
1 − 1

N
〈ψN , a∗(ϕ0)a(ϕ0)ψN 〉

]

= C

N
+ C

[
1 − 〈ϕ0, γNϕ0〉

] → 0

(6.7)

as N → ∞. On the other hand, for N ∈ S = {N j : j ∈ N}, we have ξN = χ(N+ ≥
M/2)ξN and therefore

1

N
〈ξN ,N+ξN 〉 ≥ M

2N
= 	3α+κ

2

in contradiction with (6.7). This proves (6.6), (6.5) and therefore also

gM (GN ,	 − 4πa0N )gM ≥ CN+g
2
M . (6.8)

Inserting (6.4) and (6.8) on the r.h.s. of (6.2), we obtain that

GN ,	 − 4πa0N ≥ CN+ − CN−2HN − C (6.9)

for N large enough (the constants C are now allowed to depend on 	, since 	 has been
fixed once and for always after (6.4)). Interpolating (6.9) with (6.3), we obtain (6.1). ��

We are now ready to show our main theorem.
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Proof of Theorem 1.1. First of all, (4.20) and (4.21) in Proposition 4.2 imply that

GN ,	 − 4πa0N ≤ 2HN + CN+ + C.

With the vacuum 
 as trial state, we obtain the upper bound EN ≤ 4πa0N + C for the
ground state energy EN of GN ,	 (which coincides with the ground state energy of HN ).
With Eq. (6.1), we also find the lower bound EN ≥ 4πa0N − C . This proves (1.8).

Let now ψN ∈ L2
s (�

N ) with ‖ψN‖ = 1 and

〈ψN , HNψN 〉 ≤ 4πa0N + K .

We define the excitation vector ξN = e−B(ηH )UNψN . Then ‖ξN‖ = 1 and, recalling
that GN ,	 = e−B(ηH )UN HNU∗

Ne
B(ηH ), we have

〈ξN ,N+ξN 〉 ≤ C〈ξN , (GN ,	 − 4πa0N )ξN 〉 + C ≤ C(K + 1).

If γN denotes the one-particle reduced density matrix associated with ψN , we obtain

1 − 〈ϕ0, γNϕ0〉 = 1 − 1

N
〈ψN , a∗(ϕ0)a(ϕ0)ψN 〉

= 1 − 1

N
〈U∗

Ne
B(ηH )ξN , a∗(ϕ0)a(ϕ0)U

∗
Ne

B(ηH )ξN 〉

= 1

N
〈eB(ηH )ξN ,N+e

B(ηH )ξN 〉 ≤ C

N
〈ξN ,N+ξN 〉 ≤ C(K + 1)

N

which concludes the proof of (1.9). ��

7. Analysis of GN,�

From (2.3) and (4.18), we can decompose

GN ,	 = e−B(ηH )LNe
B(ηH ) = G(0)

N ,	 + G(2)
N ,	 + G(3)

N ,	 + G(4)
N ,	

with

G( j)
N ,	 = e−B(ηH )L( j)

N eB(ηH ).

In the next subsections, we prove separate bounds for the operators G( j)
N ,	, j = 0, 2, 3, 4.

In Sect. 7.5, we combine these bounds to prove Propositions 4.2 and 4.3. Throughout this
section, we will assume the potential V ∈ L3(R3) to be compactly supported, pointwise
non-negative and spherically symmetric.
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7.1. Analysis of G(0)
N ,	 = e−B(ηH )L(0)

N eB(ηH ). From (2.4), recall that

L(0)
N = (N − 1)

2N
V̂ (0)(N − N+) +

V̂ (0)

2N
N+(N − N+). (7.1)

We define the error operator E (0)
N ,	 through the identity

G(0)
N ,	 = e−B(ηH )L(0)

N eB(ηH )

= (N − 1)

2N
V̂ (0)(N − N+) +

V̂ (0)

2N
N+(N − N+) + E (0)

N ,	. (7.2)

In the next proposition, we estimate E (0)
N ,	 and its double commutator with a smooth and

bounded function of N+.

Proposition 7.1. There exists a constant C > 0 such that

± E (0)
N ,	 ≤ C	α/2(N+ + 1) (7.3)

and

± [ f (N+/M), [ f (N+/M), E (0)
N ,	]] ≤ C	α/2M−2‖ f ′‖2∞(N+ + 1) (7.4)

for all α > 0, 	 ∈ (0; 1/2), f smooth and bounded, M ∈ N and N ∈ N large enough.

Proof. From (7.1) we have

L(0)
N = (N − 1)

2
V̂ (0) +

1

2N
V̂ (0)N+ − 1

2N
V̂ (0)N 2

+ . (7.5)

In the last term, we rewrite

−N 2
+

N
= N+

N − N+

N
− N+ =

∑

q∈�∗
+

b∗
qbq − N+

N
− N+.

Inserting in (7.5), we obtain

L(0)
N = (N − 1)

2
V̂ (0) +

V̂ (0)

2

⎡

⎣
∑

q∈�∗
+

b∗
qbq − N+

⎤

⎦ .

From (7.2), it follows that

E (0)
N ,	 = V̂ (0)

2

∑

q∈�∗
+

[
e−B(ηH )b∗

qbqe
B(ηH ) − b∗

qbq
]

− V̂ (0)

2

[
e−B(ηH )N+e

B(ηH ) − N+

]
.

(7.6)

With (3.18), we can express
∑

q∈�∗
+

e−B(ηH )b∗
qbqe

B(ηH ) =
∑

q∈�∗
+

[
γqb

∗
q + σqb−q + d∗

q

] [
γqbq + σqb

∗−q + dq
]
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where we set γq = cosh ηH (q), σq = sinh ηH (q) and where dq , d∗
q are defined as in

(3.17), with η replaced by ηH (q) = ηqχ(q ∈ PH ). Using |γ 2
q − 1| ≤ CηH (q)2, |σq | ≤

C |ηH (q)|, the first bound in (3.20), Cauchy–Schwarz and the estimate ‖ηH‖ ≤ C	α/2

from (4.14), we conclude that first term on the r.h.s. of (7.6) can be bounded by
∣∣∣

∑

q∈�∗
+

〈ξ,
[
e−B(ηH )b∗

qbqe
B(ηH ) − b∗

qbq
]
ξ 〉

∣∣∣ ≤ C	α/2‖(N+ + 1)1/2ξ‖2.

As for the second term on the r.h.s. of (7.6), we expand using again (3.18),

e−B(ηH )N+e
B(ηH ) − N+

=
∫ 1

0
e−sB(ηH )[N+, B(ηH )]esB(ηH )ds

=
∫ 1

0

∑

p∈PH

ηp e
−sB(ηH )(bpb−p + b∗

pb
∗−p)e

sB(ηH ) ds

=
∫ 1

0
ds

∑

p∈PH

ηp

[
(γ (s)

p bp + σ (s)
p b∗−p + d(s)

p )(γ (s)
p b−p + σ (s)

p b∗−p + d(s)
−p) + h.c.

]

with γ
(s)
p = cosh(sηH (p)), σ

(s)
p = sinh(sηH (p)) and where the operators d(s)

p are

defined as in (3.17), with η replaced by sηH . Using |γ (s)
p | ≤ C and |σ (s)

p | ≤ C |ηp|,
(3.20) in Lemma 3.4 and again (4.14), we arrive at

∣∣∣〈ξ,
[
e−B(ηH )N+e

B(ηH ) − N+
]
ξ 〉

∣∣∣

≤ C‖(N+ + 1)1/2ξ‖
∑

p∈PH

|ηp|
[
|ηp|‖(N+ + 1)1/2ξ‖ + ‖bpξ‖

]

≤ C	α/2‖(N+ + 1)1/2ξ‖2.
This concludes the proof of (7.3).

The bound (7.4) follows analogously, because, as observed in Corollary 3.5, the esti-
mates (3.20) in Lemma 3.4 remain true if we replace dp and d∗

p by [ f (N+/M), [ f (N+/

M), dp]] and, respectively, [ f (N+/M), [ f (N+/M), d∗
p]], providedwemultiply the r.h.s.

by an additional factor M−2‖ f ′‖2∞. The same observation holds true for bounds involv-
ing the operators bp, b∗

p, since, for example,

[ f (N+/M), [ f (N+/M), bp]] = ( f (N+/M) − f ((N+ + 1)/M))2bp (7.7)

and ‖ f (N+/M) − f ((N+ + 1)/M)‖ ≤ CM−1‖ f ′‖∞. ��

7.2. Analysis of G(2)
N ,	 = e−B(ηH )L(2)

N eB(ηH ). With (2.4), we decompose L(2)
N = K +

L(2,V )
N , where K = ∑

p∈�∗
+
p2a∗

pap is the kinetic energy operator and

L(2,V )
N =

∑

p∈�∗
+

V̂ (p/N )a∗
pap

N − N+

N
+
1

2

∑

p∈�∗
+

V̂ (p/N )
[
b∗
pb

∗−p + bpb−p

]
. (7.8)
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Accordingly, we have

G(2)
N ,	 = e−B(ηH )KeB(ηH ) + e−B(ηH )L(2,V )

N eB(ηH ). (7.9)

In the next two propositions, we analyse the two terms on the r.h.s. of the last equation.

Proposition 7.2. There exists C > 0 such that

e−B(ηH )KeB(ηH ) = K +
∑

p∈PH

p2ηp(bpb−p + b∗
pb

∗−p)

+
∑

p∈PH

p2η2p
(N − N+

N

)(N − N+ − 1

N

)
+ E (K )

N ,	

(7.10)

where

± E (K )
N ,	 ≤ C	(α−3)/2(HN + 1) (7.11)

and

±
[
f (N+/M),

[
f (N+/M), E (K )

N ,	

]]
≤ CM−2‖ f ′‖2∞ 	(α−3)/2(HN + 1

)
(7.12)

for all α > 3, 	 ∈ (0; 1/2) small enough, f smooth and bounded, M ∈ N and N ∈ N

large enough.

Proof. To show (7.11), we write

e−B(ηH )KeB(ηH ) − K =
∫ 1

0
e−sB(ηH )[K, B(ηH )]esB(ηH )ds

=
∫ 1

0

∑

p∈PH

p2ηp

[
e−sB(ηH )bpb−pe

sB(ηH )

+ e−sB(ηH )b∗
pb

∗−pe
sB(ηH )

]
ds.

With relations (3.18), we can write

e−B(ηH )KeB(ηH ) − K
=

∫ 1

0
ds

∑

p∈PH

p2ηp

[(
γ (s)
p bp + σ (s)

p b∗−p

)(
γ (s)
p b−p + σ (s)

p b∗
p

)
+ h.c.

]

+
∫ 1

0
ds

∑

p∈PH

p2ηp
[(

γ (s)
p bp + σ (s)

p b∗−p

)
d(s)
−p + d(s)

p

(
γ (s)
p b−p + σ (s)

p b∗
p

)
+ h.c.

]

+
∫ 1

0
ds

∑

p∈PH

p2ηp
[
d(s)
p d(s)

−p + h.c.
]

=: G1 + G2 + G3 (7.13)
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with the notation γ
(s)
p = cosh(sηH (p)), σ (s)

p = sinh(sηH (p)) and where d(s)
p is defined

as in (3.17), with ηp replaced by sηH (p) (recall that ηH (p) = ηpχ(p ∈ PH )). We start
by analysing G1. Expanding the product, we obtain

G1 =
∫ 1

0
ds

∑

p∈PH

p2ηp

[(
γ (s)
p )2 + (σ (s)

p )2
)(
bpb−p + b∗−pb

∗
p

)

+ γ (s)
p σ (s)

p (4b∗
pbp − 2N−1a∗

pap)
)]

+ 2
∫ 1

0
ds

∑

p∈PH

p2ηpγ
(s)
p σ (s)

p

(
1 − N+

N

)

=
∑

p∈PH

p2ηp
(
bpb−p + b∗−pb

∗
p

)
+

∑

p∈PH

p2η2p

(
1 − N+

N

)
+ EK

1

(7.14)

with

EK
1 =

∫ 1

0
ds

∑

p∈PH

p2ηp
[(

(γ (s)
p )2 − 1

)
+ (σ (s)

p )2
](
bpb−p + b∗−pb

∗
p

)

+
∫ 1

0
ds

∑

p∈PH

p2ηpγ
(s)
p σ (s)

p (4b∗
pbp − 2N−1a∗

pap)
)

+ 2
∫ 1

0
ds

∑

p∈PH

p2ηp

[
(γ (s)

p − 1)σ (s)
p + (σ (s)

p − sηp)
] (

1 − N+

N

)
.

For an arbitrary ξ ∈ F≤N
+ , we bound

|〈ξ, EK
1 ξ 〉|

≤ C
∑

p∈PH

p2|ηp|3‖bpξ‖‖(N+ + 1)1/2ξ‖ + C
∑

p∈PH

p2η2p‖apξ‖2 + C
∑

p∈PH

p2η4p

≤ C	2α‖(N+ + 1)1/2ξ‖2, (7.15)

since |((γ (s)
p )2 − 1

)| ≤ Cη2p, (σ
(s)
p )2 ≤ Cη2p and p2η2p ≤ C	2α , for all p ∈ PH .

We consider now G2 in (7.13). We split it as G2 = G21 + G22 + G23 + G24, with

G21 =
∫ 1

0
ds

∑

p∈PH

p2ηp

(
γ (s)
p bpd

(s)
−p + h.c.

)
,

G22 =
∫ 1

0
ds

∑

p∈PH

p2ηp

(
σ (s)
p b∗−pd

(s)
−p + h.c.

)
,

G23 =
∫ 1

0
ds

∑

p∈PH

p2ηp

(
γ (s)
p d(s)

p b−p + h.c.
)

,

G24 =
∫ 1

0
ds

∑

p∈PH

p2ηp

(
σ (s)
p d(s)

p b∗
p + h.c.

)
.

(7.16)
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We consider G21 first. We write

G21 =
∫ 1

0
ds

∑

p∈PH

p2ηp(γ
(s)
p − 1)bpd

(s)
−p +

∫ 1

0
ds

∑

p∈�∗
+

p2ηpbpd
(s)
−p

−
∫ 1

0
ds

∑

p∈Pc
H

p2ηpbp

⎡

⎣d(s)
−p +

1

N

∑

q∈PH

sηqb
∗
qa

∗−qa−p

⎤

⎦

+
∫ 1

0
ds

s

N

∑

p∈Pc
H ,q∈PH

p2ηpηqbpb
∗
qa

∗−qa−p + h.c.

Massaging a bit the second term (similarly as we do below, in (7.39), (7.40) in the proof
of Proposition 7.3), we arrive at

G21 = −
∑

p∈PH

p2ηp
N+ + 1

N

N − N+

N
+

[
EK
2 + h.c.

]
(7.17)

where EK
2 = ∑5

j=1 EK
2 j , with

EK
21 = 1

2N

∑

p∈PH

p2η2p(N+ + 1)
(
b∗
pbp − 1

N
a∗
pap

)
,

EK
22 =

∫ 1

0
ds

∑

p∈PH

p2ηp(γ
(s)
p − 1)bpd

(s)
−p,

EK
23 =

∫ 1

0
ds

∑

p∈�∗
+

p2ηpbpd̄
(s)
−p,

EK
24 = −

∫ 1

0
ds

∑

p∈Pc
H

p2ηpbp
¯̄d(s)
−p,

EK
25 = 1

2N

∑

p∈Pc
H ,q∈PH

p2ηpηqbpb
∗
qa

∗−qa−p.

(7.18)

Here we introduced the notation

d̄(s)
−p = d(s)

−p + sηH (p)
N+

N
b∗
p, and ¯̄d(s)

−p = d(s)
−p +

1

N

∑

q∈PH

sηqb
∗
qa

∗−qa−p.

(7.19)

We can easily bound

|〈ξ, EK
21ξ 〉| ≤ C

∑

p∈PH

p2η2p‖apξ‖2 ≤ C	2α‖N 1/2
+ ξ‖2 (7.20)
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and, using |γ (s)
p − 1| ≤ Cη2p and (3.20) in Lemma 3.4,

|〈ξ, EK
22ξ 〉| ≤

∑

p∈PH

p2|ηp|3‖N 1/2
+ ξ‖‖d(s)

−pξ‖

≤
∑

p∈PH

p2|ηp|3‖N 1/2
+ ξ‖

[
|ηp|‖N 1/2

+ ξ‖ + ‖η‖‖apξ‖
]

≤ C	3α/2‖N+ + 1)1/2ξ‖2.

(7.21)

With (3.21) in Lemma 3.4, we can also estimate

|〈ξ, EK
24ξ 〉| ≤

∫ 1

0
ds

∑

p∈Pc
H

p2|ηp|‖(N+ + 1)1/2ξ‖‖(N+ + 1)−1/2 ¯̄d(s)
−pξ‖

≤ C‖ηH‖2‖(N+ + 1)1/2ξ‖
∑

p∈Pc
H

p2|ηp|‖apξ‖

≤ C	α‖(N+ + 1)1/2ξ‖‖K1/2ξ‖
[ ∑

|p|≤	−α

p2η2p
]1/2

≤ C	α/2‖(N+ + 1)1/2ξ‖‖K1/2ξ‖.

(7.22)

To bound the last term in (7.18), we commute bp to the right (note that p �= q). We find

|〈ξ, EK
25ξ 〉| ≤ CN−1

∑

p∈Pc
H ,q∈PH

p2|ηp||ηq |‖aqa−qξ‖‖apa−pξ‖

≤ C
∑

p∈Pc
H ,q∈PH

p2|ηp||ηq |‖aqξ‖‖apξ‖

≤ C
[ ∑

p∈Pc
H ,q∈PH

p2η2pq
2‖aqξ‖2

]1/2

[ ∑

p∈Pc
H ,q∈PH

q−2η2q p
2‖apξ‖2

]1/2

≤ C	α‖K1/2ξ‖2.

(7.23)

To control the third term in (7.18), we first use (4.9) to write

EK
23 =

∫ 1

0
ds

∑

p∈�∗
+

(
V̂ (./N ) ∗ f̂N ,	

)
(p)bpd̄

(s)
−p

+
∫ 1

0
ds N 3λ	

∑

p∈�∗
+

(
χ̂	 ∗ f̂N ,	

)
(p)bpd̄

(s)
−p.

Switching to position space, we obtain

EK
23 =

∫ 1

0
ds

∫

�2
dxdyN 3V (N (x − y)) fN ,	(x − y)b̌x

ˇ̄d(s)
y

+
∫ 1

0
dsN 3λ	

∫

�2
dxdyχ	(x − y) fN ,	(x − y)b̌x

ˇ̄d(s)
y .
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With Lemma 4.1, we find

|〈ξ, EK
23ξ 〉| ≤

∫ 1

0
ds

∫

�2
dxdy

[
N 3V (N (x − y)) + 	−3χ	(x − y)

]

× ‖(N+ + 1)1/2ξ‖‖(N+ + 1)−1/2ǎx
ˇ̄d(s)
y ξ‖.

Hence, with Eq. (3.23) in Lemma 3.4,

|〈ξ, EK
23ξ 〉| ≤ CN−1‖ηH‖

∫ 1

0
ds

∫

�2
dxdy

[
N 3V (N (x − y)) + 	−3χ	(x − y)

]

× ‖(N+ + 1)1/2ξ‖
[
N‖(N+ + 1)1/2ξ‖ + ‖ǎxN+ξ‖ + ‖ǎyN+ξ‖

+ ‖ǎx ǎyN 1/2
+ ξ‖

]

≤ C	(α−3)/2‖(N+ + 1)1/2ξ‖2 + C	α/2‖(N+ + 1)1/2ξ‖‖V1/2
N ξ‖.

Combining the last bound with (7.20), (7.21), (7.22), (7.23), we conclude that

±
[
EK
2 + h.c.

]
≤ C	(α−3)/2(HN + 1). (7.24)

Next, we consider the term G22 in (7.16). With (3.20) in Lemma 3.4, we find

|〈ξ,G22ξ 〉| ≤ C
∑

p∈PH

p2η2p‖b−pξ‖‖d−pξ‖

≤ C
∑

p∈PH

p2η2p‖b−pξ‖
[
|ηp|‖(N+ + 1)1/2ξ‖ + ‖η‖‖bpξ‖

]

≤ C	5α/2‖(N+ + 1)1/2ξ‖2.

(7.25)

As for the term G23, defined in (7.16), we split it as G23 = ∑4
j=1 EK

3 j + h.c., with

EK
31 =

∫ 1

0
ds

∑

p∈PH

p2ηp
(
γ (s)
p − 1

)
d(s)
p b−p ,

EK
32 =

∫ 1

0
ds

∑

p∈�∗
+

p2ηpd
(s)
p b−p,

EK
33 = 1

2N

∑

p∈Pc
H ,q∈PH

p2ηpηqb
∗
qa

∗−qapb−p ,

EK
34 = −

∫ 1

0
ds

∑

p∈Pc
H

p2ηp
¯̄d(s)
p b−p

with the notation for ¯̄d(s)
p introduced in (7.19). With (3.20) in Lemma 3.4, we find

|〈ξ, EK
31ξ 〉| ≤ C

∫ 1

0

∑

p∈PH

p2|ηp|3‖(N+ + 1)1/2ξ‖‖(N+ + 1)−1/2d(s)
p b−pξ‖

≤ C‖ηH‖‖(N+ + 1)1/2ξ‖
∑

p∈PH

p2|ηp|3‖bpξ‖ ≤ C	3α‖(N+ + 1)1/2ξ‖2
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and also, proceeding as in (7.22),

|〈ξ, EK
34ξ 〉| ≤ C

∫ 1

0
ds

∑

p∈Pc
H

p2|ηp|‖(N+ + 1)1/2ξ‖‖(N+ + 1)−1/2 ¯̄d(s)
p b−pξ‖

≤ C‖ηH‖2‖(N+ + 1)1/2ξ‖
∑

p∈Pc
H

p2|ηp|‖b−pξ‖

≤ C	α/2‖(N+ + 1)1/2ξ‖‖K1/2ξ‖.

(7.26)

The termEK
33 coincideswith the contributionEK

25 in (7.18); from (7.23)we obtain± EK
33 ≤

C	αK. As for EK
32, we use (4.9) and we switch to position space. Proceeding as we did

above to control the term EK
23, we arrive at

|〈ξ, EK
32ξ 〉| ≤

∫ 1

0
ds

∫

�2
dxdy

[
N 3V (N (x − y)) + 	−3χ	(x − y)

]

× ‖(N+ + 1)1/2ξ‖‖(N+ + 1)−1/2ď(s)
x ǎyξ‖.

With (3.22) in Lemma 3.4, we find

|〈ξ, EK
32ξ 〉| ≤ CN−1‖ηH‖

∫

�2
dxdy

[
N 3V (N (x − y)) + 	−3χ	(x − y)

]

× ‖(N+ + 1)1/2ξ‖
[
‖ǎy(N+ + 1)ξ‖ + ‖ǎx ǎy(N+ + 1)1/2ξ‖

]

≤ C	(α−3)/2‖(N+ + 1)1/2ξ‖2 + C	α/2‖(N+ + 1)1/2ξ‖‖V1/2
N ξ‖.

Combining the last bounds, we conclude that

± G23 ≤ C	(α−3)/2(HN + 1). (7.27)

To estimate the term G24 in (7.16), we use (3.20) in Lemma 3.4; with (4.15), we find

|〈ξ,G24ξ〉|

≤ C
∫ 1

0
ds

∑

p∈PH

p2η2p‖(N+ + 1)1/2ξ‖‖(N+ + 1)−1/2d(s)
p b∗

pξ‖

≤ CN−1‖(N+ + 1)1/2ξ‖
∑

p∈PH

p2η2p
[
|ηp|‖(N+ + 1)3/2ξ‖ + ‖ηH‖‖bpb∗

p(N+ + 1)1/2ξ‖
]

≤ CN−1‖(N+ + 1)1/2ξ‖
×

∑

p∈PH

p2η2p
[|ηp|‖(N+ + 1)3/2ξ‖ + ‖ηH‖‖(N+ + 1)1/2ξ‖ + ‖ηH‖‖ap(N+ + 1)ξ‖]

≤ C	α/2‖(N+ + 1)1/2ξ‖2.

Together with (7.17), (7.24), (7.25), (7.27), this implies that

G2 = −
∑

p∈PH

p2ηp
N+ + 1

N

N − N+

N
+ EK

4



1346 C. Boccato, C. Brennecke, S. Cenatiempo, B. Schlein

where

± EK
4 ≤ C	(α−3)/2(HN + 1). (7.28)

Finally, we consider G3, defined in (7.13). We split it as G3 = EK
51 + EK

52 + h.c., with

EK
51 =

∫ 1

0
ds

∑

p∈�∗
+

p2ηpd
(s)
p d(s)

−p, EK
52 = −

∫ 1

0
ds

∑

p∈Pc
H

p2ηpd
(s)
p d(s)

−p.

With (3.20) in Lemma 3.4 (using ηH (p) = 0 for p ∈ Pc
H ) and proceeding as in (7.26),

we obtain

|〈ξ, EK
52ξ 〉| ≤ C‖ηH‖

∑

p∈Pc
H

p2|ηp|‖(N+ + 1)1/2ξ‖‖d−pξ‖

≤ C‖ηH‖2‖(N+ + 1)1/2ξ‖
∑

p∈Pc
H

p2|ηp|‖b−pξ‖

≤ C	α/2‖(N+ + 1)1/2ξ‖‖K1/2ξ‖.
To estimate EK

51, we use (4.9) and we switch to position space. Similarly as in the analysis
of the terms EK

23 and EK
32 above, we obtain

|〈ξ, EK
51ξ 〉| ≤ C‖(N+ + 1)1/2ξ‖

∫ 1

0
ds

∫

�2
dxdy

[
N 3V (N (x − y)) + 	−3χ	(x − y)

]

× ‖(N+ + 1)−1/2ď(s)
x ď(s)

y ξ‖.
With (3.24) in Lemma 3.4, we arrive at

|〈ξ, EK
51ξ 〉|

≤ CN−2‖(N+ + 1)1/2ξ‖
∫ 1

0
ds

∫

�2
dxdy

[
N 3V (N (x − y)) + 	−3χ	(x − y)

]

×
[
N‖ηH‖‖(N+ + 1)3/2ξ‖ + ‖ηH‖2‖ǎxN 2

+ ξ‖ + ‖ηH‖2‖ǎyN 2
+ ξ‖

+ ‖ηH‖2‖ǎx ǎyN 3/2
+ ξ‖

]

≤ C(	α/2 + 	α−3/2)‖(N+ + 1)1/2ξ‖2
+ C	3α/2‖(N+ + 1)1/2ξ‖‖V1/2

N ξ‖.
Hence, ±G3 ≤ C(	α/2 + 	3(α−1)/2)(HN + 1). With (7.14), (7.15), (7.28), we obtain
(7.10) and (7.11), as desired.

As explained in Corollary 3.5, the bounds in Lemma 3.4 continue to hold, with an

additional factor M−2‖ f ′‖2∞ on the r.h.s., if we replace the operators dp, d∗
p,

¯̄dp, ǎy ˇ̄dx ,
ďx ďy by their double commutators with f (N+/M). From (7.7) we conclude that also
bounds involving bp and b∗

p or, analogously b̌x and b̌∗
x remain true if we replace them

by their double commutator with f (N+/M). As a consequence, (7.12) follows through
the same arguments that led us to (7.11). ��
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In the next proposition, we study the second term on the r.h.s. of (7.9).

Proposition 7.3. There is a constant C > 0 such that

e−B(ηH )L(2,V )
N eB(ηH )

=
∑

p∈PH

V̂ (p/N )ηp

(N − N+

N

)(N − N+ − 1

N

)

+
∑

p∈�∗
+

V̂ (p/N )a∗
pap

N − N+

N

+
1

2

∑

p∈�∗
+

V̂ (p/N )
(
bpb−p + b∗−pb

∗
p

)
+ E (V )

N ,	

(7.29)

where

± E (V )
N ,	 ≤ C	α/2(HN + 1) (7.30)

and

±
[
f (N+/M),

[
f (N+/M), E (V )

N ,	

]]
≤ C	α/2M−2‖ f ′‖2∞

(HN + 1
)

(7.31)

for all α > 0, 	 ∈ (0; 1/2) small enough, f smooth and bounded, M ∈ N and N ∈ N

large enough.

Proof. To show (7.30), we start from (7.8) and we decompose

e−B(ηH )L(2,V )
N eB(ηH ) =

∑

p∈�∗
+

V̂ (p/N )e−B(ηH )b∗
pbpe

B(ηH )

− 1

N

∑

p∈�∗
+

V̂ (p/N )eB(ηH )a∗
pape

−B(ηH )

+
1

2

∑

p∈�∗
+

V̂ (p/N )e−B(ηH )
[
bpb−p + b∗

pb
∗−p

]
eB(ηH )

=: F1 + F2 + F3.

(7.32)

With equations (3.18), we split F1 as

F1 =
∑

p∈�∗
+

V̂ (p/N )
[
γpb

∗
p + σpb−p

][
γpbp + σpb

∗−p]

+
∑

p∈�∗
+

V̂ (p/N )
[
(γpb

∗
p + σpb−p)dp + d∗

p(γpbp + σpb
∗−p) + d∗

pdp
]

=: F11 + F12

with the notation γp = cosh ηH (p), σp = sinh ηH (p) and the operators dp, as defined
in (3.17), with η replaced by ηH . We decompose

F11 =
∑

p∈�∗
+

V̂ (p/N )a∗
pap

N − N+

N
+ EV

1
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with

EV
1 = 1

N

∑

p∈�∗
+

V̂ (p/N )a∗
pap +

∑

p∈PH

V̂ (p/N )
[
(γ 2

p − 1)b∗
pbp + γpσp(b−pbp + b∗

pb
∗−p)

+ σ 2
p(b

∗
pbp − N−1a∗

pap) + σ 2
p

(N − N+

N

)]

where we used γp = 1 and σp = 0 for p ∈ Pc
H to restrict the second sum. With

|γ 2
p − 1| ≤ Cη2p, |σp| ≤ C |ηp| for all p ∈ PH and since ‖ηH‖ ≤ 	α/2, we find

± EV
1 ≤ C(	α/2 + N−1)(N+ + 1) ≤ C	α/2(N+ + 1)

if N is large enough. With Lemma 3.4 (with η replaced by ηH ), we can also bound
±F12 ≤ C	α/2(N+ + 1). We conclude that

F1 =
∑

p∈�∗
+

V̂ (p/N )a∗
pap

N − N+

N
+ EV

2 (7.33)

with ± EV
2 ≤ C	α/2(N+ + 1). Let us now consider the second contribution on the r.h.s.

of (7.32). We have −F2 ≥ 0 and, by Lemma 3.1,

−F2 = 1

N

∑

p∈�∗
+

V̂ (p/N )e−B(ηH )a∗
pape

B(ηH )

≤ ‖V̂ ‖∞
N

e−B(ηH )N+e
B(ηH ) ≤ C	α/2(N+ + 1)

(7.34)

if N ∈ N is large enough, Finally, we turn our attention to the last term on the r.h.s. of
(7.32). With (3.18), we decompose F3 as

F3 = 1

2

∑

p∈�∗
+

V̂ (p/N )
[
γpbp + σpb

∗−p

] [
γpb−p + σpb

∗
p

]
+ h.c.

+
1

2

∑

p∈�∗
+

V̂ (p/N )
[
(γpbp + σpb

∗−p) d−p + dp (γpb−p + σpb
∗
p)

]
+ h.c.

+
1

2

∑

p∈�∗
+

V̂ (p/N )dpd−p + h.c.

=: F31 + F32 + F33 + h.c.

(7.35)

We decompose the first term as

F31 = 1

2

∑

p∈�∗
+

V̂ (p/N )
(
bpb−p + b∗−pb

∗
p

)
+

∑

p∈PH

V̂ (p/N )ηp
N − N+

N
+ EV

3

(7.36)
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with (recall that γp = 1 and σp = 0 for p ∈ Pc
H )

EV
3 =

∑

p∈PH

V̂ (p/N )

[
1

2
(γ 2

p − 1 + σ 2
p)

(
bpb−p + b∗−pb

∗
p

)
+ 2σpγpb

∗
pbp

−N−1γpσpa
∗
pap + (γpσp − ηp)

N − N+

N

]
.

Using again the estimates |γ 2
p − 1| ≤ Cη2p and |σp| ≤ C |ηp| for all p ∈ PH , we find

± EV
3 ≤ C	α/2(N+ + 1). (7.37)

Let us now consider F32 in (7.35). We divide it into four parts

F32 = 1

2

∑

p∈�∗
+

V̂ (p/N )
[
(γpbp + σpb

∗−p) d−p + dp (γpb−p + σpb
∗
p)

]
+ h.c.

=: F321 + F322 + F323 + F324.

(7.38)

We start with F321, which we decompose as

F321 = 1

2

∑

p∈�∗
+

V̂ (p/N )(γp − 1)bpd−p

+
1

2

∑

p∈�∗
+

V̂ (p/N )bp

[
d−p + ηH (p)

N+

N
b∗
p

]

− 1

2N

∑

p∈�∗
+

V̂ (p/N )ηH (p)bp N+b
∗
p + h.c.

(7.39)

Using (2.6), we commute

bp N+b
∗
p = (N+ + 1)bpb

∗
p = (N+ + 1)(1 − N+/N )

+ (N+ + 1)(b∗
pbp − N−1a∗

pap). (7.40)

We arrive at

F321 = −
∑

p∈PH

V̂ (p/N )ηp

(
N − N+

N

) (N+ + 1

N

)
+ EV

4

where EV
4 = EV

41 + EV
42 + EV

43 + h.c., with

EV
41 = 1

2

∑

p∈�∗
+

V̂ (p/N ) (γp − 1)bpd−p , EV
42 = 1

2

∑

p∈�∗
+

V̂ (p/N )bpd̄−p

EV
43 = − 1

2

∑

p∈PH

V̂ (p/N )ηp
N+ + 1

N
(b∗

pbp − N−1a∗
pap)
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and with the notation d̄−p = d−p+N−1ηH (p)N+b∗
p. Since |γp−1| ≤ Cη2pχ(p ∈ PH ),

we find easily with (3.20) in Lemma 3.4 that

|〈ξ, EV
41ξ 〉| ≤ C

∑

p∈PH

η2p‖(N+ + 1)1/2ξ‖
[
|ηp|‖(N+ + 1)1/2ξ‖ + ‖ηH‖‖apξ‖

]

≤ C	3α‖(N+ + 1)1/2ξ‖2.
Furthermore

|〈ξ, EV
43ξ 〉| ≤ C

∑

p∈PH

ηp‖apξ‖2 ≤ C	2α‖N 1/2
+ ξ‖2.

To control EV
42 we switch to position space. With (3.23) in Lemma 3.4, we find

|〈ξ, EV
42ξ 〉| ≤ C

∫

�2
dxdy N 3V (N (x − y))‖(N+ + 1)1/2ξ‖‖(N+ + 1)−1/2ǎx

ˇ̄dyξ‖

≤ C‖ηH‖
∫

�2
dxdy N 2V (N (x − y))‖(N+ + 1)1/2ξ‖

×
[
N‖(N+ + 1)1/2ξ‖ + ‖ǎxN+ξ‖ + ‖ǎyN+ξ‖ + ‖ǎx ǎyN 1/2

+ ξ‖
]

≤ C	α/2‖(N+ + 1)1/2ξ‖2 + C	α/2‖(N+ + 1)1/2ξ‖‖V1/2
N ξ‖.

We conclude that

± EV
4 ≤ C	α/2(HN + 1).

To estimate the term F322 in (7.38), we use (3.20) in Lemma 3.4 and |σp| ≤ C |ηH (p)|;
we obtain

|〈ξ,F322ξ 〉| ≤ C
∑

p∈PH

|ηp|‖b−pξ‖‖d−pξ‖

≤ C
∑

p∈PH

|ηp|‖b−pξ‖
[
|ηp|‖(N+ + 1)1/2ξ‖ + ‖ηH‖‖b−pξ‖

]

≤ C	5α/2‖(N+ + 1)1/2ξ‖2.
Let us now consider the term F323 on the r.h.s. of (7.38). Here, we proceed as we did
above to estimate F321. We write F323 = EV

51 + EV
52 + h.c., with

EV
51 = 1

2

∑

p∈�∗
+

V̂ (p/N ) (γp − 1) dpb−p , EV
52 = 1

2

∑

p∈�∗
+

V̂ (p/N ) dpb−p.

With |γp − 1| ≤ Cη2pχ(p ∈ PH ), we obtain

|〈ξ, EV
51ξ 〉| ≤ C

∑

p∈PH

η2p‖(N+ + 1)1/2ξ‖‖apξ‖ ≤ C	5α/2‖(N+ + 1)1/2ξ‖2.
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Switching to position space, we find, by (3.22),

|〈ξ, EV
52ξ 〉| ≤ C

∫

�2
dxdy N 3V (N (x − y))

× ‖(N+ + 1)1/2ξ‖‖(N+ + 1)−1/2ďx ǎyξ‖
≤ C‖ηH‖‖(N+ + 1)1/2ξ‖

∫

�2
dxdy

× N 2V (N (x − y))
[
‖ǎyN+ξ‖ + ‖ǎx ǎyN 1/2

+ ξ‖
]

≤ C	α/2‖(N+ + 1)1/2ξ‖2
+ C	α/2‖(N+ + 1)1/2ξ‖‖V1/2

N ξ‖.
Hence, ±F323 ≤ C	α/2(HN + 1).

To estimate the term F324 in (7.38), we use (3.20) in Lemma 3.4 and the estimate∑
p∈�∗

+

∣∣V̂ (p/N )
∣∣|ηp| ≤ CN ; we find

|〈ξ,F324ξ 〉| ≤ C
∑

p∈PH

∣∣V̂ (p/N )
∣∣|ηp|‖(N+ + 1)1/2ξ‖‖(N+ + 1)−1/2dp b

∗
pξ‖

≤ C

N

∑

p∈PH

∣∣V̂ (p/N )
∣∣|ηp|‖(N+ + 1)1/2ξ‖

×
[
|ηp|‖(N+ + 1)3/2ξ‖ + ‖ηH‖‖bpb∗

p(N+ + 1)1/2ξ‖
]

≤ C

N

∑

p∈PH

∣∣V̂ (p/N )
∣∣|ηp|‖(N+ + 1)1/2ξ‖

×
[
|ηp|‖(N+ + 1)3/2ξ‖ + ‖ηH‖‖(N+ + 1)1/2ξ‖ + ‖ηH‖‖ap(N+ + 1)ξ‖

]

≤ C	α/2‖(N+ + 1)1/2ξ‖2.
Combining the last bounds, we conclude that

F32 =
∑

p∈PH

V̂ (p/N )ηp

(
N − N+

N

) (−N+ − 1

N

)
+ EV

6

with

± EV
6 ≤ C	α/2(HN + 1). (7.41)

To bound the last term F33 in (7.35), we switch to position space. With Lemma 3.4,
specifically (3.24), and (4.17), we obtain

|〈ξ,F33ξ 〉| ≤ C‖(N+ + 1)1/2ξ‖
∫

�2
dxdy N 3V (N (x − y))‖(N+ + 1)−1/2ďx ďyξ‖

≤ C‖ηH‖‖(N+ + 1)1/2ξ‖
∫

�2
dxdy NV (N (x − y))

×
[
N‖(N+ + 1)3/2ξ‖ + ‖ǎxN 2

+ ξ‖ + ‖ǎx ǎyN 3/2
+ ξ‖

]

≤ C	α/2‖(N+ + 1)1/2ξ‖2 + C	α/2‖N 1/2
+ ξ‖‖V1/2

N ξ‖.
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The last equation, combined with (7.35), (7.36), (7.37) and (7.41), implies that

F3 = 1

2

∑

p∈�∗
+

V̂ (p/N )(bpb−p + b∗−pb
∗
p)

+
∑

p∈PH

V̂ (p/N )ηp

(
N − N+

N

) (
N − N+ − 1

N

)
+ EV

7

with

± EV
7 ≤ C	α/2(HN + 1).

Together with (7.33) and with (7.34), we obtain (7.29) with (7.30). Eq. (7.31) follows
similarly, arguing as we did at the end of the proof of Proposition 7.2 to show (7.12). ��
We conclude this section, summarizing the results of Propositions 7.2 and 7.3.

Proposition 7.4. There exists a constant C > 0 such that

G(2)
N ,	 = K +

∑

p∈PH

[
p2η2p + V̂ (p/N )ηp

](N − N+

N

)(N − N+ − 1

N

)

+
∑

p∈PH

p2ηp
(
b∗
pb

∗−p + bpb−p
)
+

∑

p∈�∗
+

V̂ (p/N )a∗
pap

N − N+

N

+
1

2

∑

p∈�∗
+

V̂ (p/N )
(
bpb−p + b∗−pb

∗
p

)
+ E (2)

N ,	

where

± E (2)
N ,	 ≤ C	(α−3)/2(HN + 1)

and

±
[
f (N+/M),

[
f (N+/M), E (2)

N ,	

]]
≤ C	(α−3)/2M−2‖ f ′‖2∞

(HN + 1
)

for all α > 3, 	 ∈ (0; 1/2) small enough, f smooth and bounded, M ∈ N, N ∈ N large
enough.

7.3. Analysis of G(3)
N ,	 = e−B(ηH )L(3)

N eB(ηH ). From (2.4), we have

G(3)
N ,	 = 1√

N

∑

p,q∈�∗
+:p+q �=0

V̂ (p/N )e−B(ηH )b∗
p+qa

∗−paqe
B(ηH ) + h.c. (7.42)

Proposition 7.5. There exists a constant C > 0 such that

G(3)
N ,	 = 1√

N

∑

p,q∈�∗
+:p+q �=0

V̂ (p/N )
[
b∗
p+qa

∗−paq + h.c.
]
+ E (3)

N ,	 (7.43)

where

± E (3)
N ,	 ≤ C	α/2(HN + 1

)
(7.44)



Optimal Rate for Bose–Einstein Condensation in the Gross–Pitaevskii Regime 1353

and

± [ f (N+/M), [ f (N+/M), E (3)
N ,	]] ≤ CM−2‖ f ′‖2∞	α/2(HN + 1

)
(7.45)

for all α > 0, 	 ∈ (0; 1/2) small enough, f smooth and bounded, M ∈ N, N ∈ N large
enough.

Proof of Proposition 7.5. We start by writing

e−B(ηH )a∗−paqe
B(ηH ) = a∗−paq +

∫ 1

0
ds e−sB(ηH )[a∗−paq , B(ηH )]esB(ηH )

= a∗−paq +
∫ 1

0
dse−sB(ηH )(ηH (p)bqbp + ηH (q)b∗−pb

∗−q)e
sB(ηH ).

From (7.42), we find

G(3)
N ,	 = 1√

N

∑

p,q∈�∗
+:p+q �=0

V̂ (p/N )e−B(ηH )b∗
p+qe

B(ηH ) a∗−paq

+
1√
N

∑

p,q∈�∗
+,p+q �=0

V̂ (p/N )ηH (p) e−B(ηH )b∗
p+qe

B(ηH )

×
∫ 1

0
ds e−sB(ηH )bpbqe

sB(ηH )

+
1√
N

∑

p,q∈�∗
+,p+q �=0

V̂ (p/N )ηH (q) e−B(ηH )b∗
p+qe

B(ηH )

×
∫ 1

0
ds e−sB(ηH )b∗−pb

∗−qe
sB(ηH )

+ h.c.

Using (3.18) we arrive at (7.43), with

E (3)
N ,	 = 1√

N

∑

p,q∈�∗
+:p+q �=0

V̂ (p/N )
(
(γp+q − 1)b∗

p+q + σp+qb−p−q + d∗
p+q

)
a∗−paq

+
1√
N

∑

p,q∈�∗
+,p+q �=0

V̂ (p/N )ηH (p) e−B(ηH )b∗
p+qe

B(ηH )

×
∫ 1

0
ds e−sB(ηH )bpbqe

sB(ηH )

+
1√
N

∑

p,q∈�∗
+,p+q �=0

V̂ (p/N )ηH (q) e−B(ηH )b∗
p+qe

B(ηH )

×
∫ 1

0
ds e−sB(ηH )b∗−pb

∗−qe
sB(ηH )

+ h.c.

=: E (3)
1 + E (3)

2 + E (3)
3 + h.c.

(7.46)
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where we defined γp = cosh ηH (p), σp = sinh ηH (p) and where the operator dp is
defined as in (3.17), with η replaced by ηH . To complete the proof of the proposition,
we have to show that the three error terms E (3)

1 , E (3)
2 , E (3)

3 all satisfy the bounds (7.44),

(7.45). We start by considering E (3)
1 . We decompose it as

E (3)
1 = 1√

N

∑

p,q∈�∗
+:p+q �=0

V̂ (p/N )
(
(γp+q − 1)b∗

p+q + σp+qb−p−q + d∗
p+q

)
a∗−paq

=: E (3)
11 + E (3)

12 + E (3)
13 .

Since |γp+q − 1| ≤ |ηH (p + q)|2 and ‖ηH‖ ≤ C	α/2, we have

|〈ξ, E (3)
11 ξ 〉| ≤ C√

N

∑

p,q∈�∗
+:p+q �=0

|V̂ (p/N )||ηH (p + q)|2 ‖bp+qa−pξ‖‖aqξ‖

≤ C√
N

[ ∑

p,q∈�∗
+:p+q �=0

|ηH (p + q)|2 ‖a−p(N+ + 1)1/2ξ‖2
]1/2

×
[ ∑

p,q∈�∗
+:p+q �=0

|ηH (p + q)|2‖aqξ‖2
]1/2

≤ C‖ηH‖2‖(N+ + 1)1/2ξ‖2 ≤ C	α‖(N+ + 1)1/2ξ‖2.

(7.47)

To bound E (3)
12 wemove a∗−p to the left of b−p−q (using [a−p−q , a∗−p] = 0, since q �= 0).

With |σp+q | ≤ C |ηH (p + q)|, we obtain
|〈ξ, E (3)

12 ξ 〉| ≤ C√
N

∑

p,q∈�∗
+:p+q �=0

|V̂ (p/N )||ηH (p + q)| ‖a−pξ‖‖aqb−p−qξ‖

≤ C√
N

[ ∑

p,q∈�∗
+:p+q �=0

|ηH (p + q)|2 ‖a−pξ‖2
]1/2

×
[ ∑

p,q∈�∗
+:p+q �=0

‖aqb−p−qξ‖2
]1/2

≤ C	α/2‖(N+ + 1)1/2ξ‖2.

(7.48)

In E (3)
13 , on the other hand, we write d

∗
p+q = d̄∗

p+q − (N++1)
N ηH (p + q)b−p−q . We obtain

E (3)
13 = E (3)

131 + E (3)
132, with

E (3)
131 = 1√

N

∑

p,q∈�∗
+:p+q �=0

V̂ (p/N ) d̄∗
p+qa

∗−paq

E (3)
132 = − (N+ + 1)

N

1√
N

∑

p,q∈�∗
+:p+q �=0

V̂ (p/N )ηH (p + q) b−p−qa
∗−paq .

The term E (3)
132 can be bounded like E (3)

12 , commuting a∗−p to the left of b−p−q ; we find

± E (3)
132 ≤ C	α/2(N+ + 1). As for the term E (3)

131, we switch to position space:

E (3)
131 = 1√

N

∑

p,q∈�∗
+:p+q �=0

V̂ (p/N ) d̄∗
p+qa

∗−paq =
∫

�2
dxdyN 5/2V (N (x − y)) ˇ̄d∗

x ǎ
∗
y ǎx .
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With (3.23), we bound

|〈ξ, E (3)
131ξ 〉| ≤

∫

�2
dxdyN 5/2V (N (x − y))‖ǎxξ‖‖ǎy ˇ̄dxξ‖

≤ C‖ηH‖
∫

�2
dxdyN 5/2V (N (x − y))‖ǎxξ‖

× [‖(N+ + 1)ξ‖ + ‖ǎx (N+ + 1)1/2ξ‖ + ‖ǎy(N+ + 1)1/2ξ‖ + ‖ǎx ǎyξ‖]

≤ C‖ηH‖‖N 1/2
+ ξ‖

[ ∫

�2
dxdyN 2V (N (x − y))

× [‖(N+ + 1)ξ‖2 + ‖ǎx (N+ + 1)1/2ξ‖2 + ‖ǎx ǎyξ‖2]
]1/2

≤ C‖ηH‖‖N 1/2
+ ξ‖[‖(N+ + 1)1/2ξ‖ + ‖V1/2

N ξ‖]

≤ C	α/2[‖(N+ + 1)1/2ξ‖2 + ‖V1/2
N ξ‖2].

With (7.47) and (7.48) we conclude that

± E (3)
1 ≤ C	α/2(VN +N+ + 1) ≤ C	α/2(HN + 1). (7.49)

Next, we consider the term E (3)
2 , defined in (7.46). Using Eq. (3.18) we rewrite

E (3)
2 = 1√

N

∑

p,q∈�∗
+,p+q �=0

V̂ (p/N )ηH (p) e−B(ηH )b∗
p+qe

B(ηH )

×
∫ 1

0
ds

(
γ (s)
p γ (s)

q bpbq + σ (s)
p σ (s)

q b∗−pb
∗−q

+ γ (s)
p σ (s)

q b∗−qbp + σ (s)
p γ (s)

q b∗−pbq
)

+
1√
N

∑

p,q∈�∗
+,p+q �=0

V̂ (p/N )ηH (p) e−B(ηH )b∗
p+qe

B(ηH )

×
∫ 1

0
ds γ (s)

p σ (s)
q [bp, b∗−q ]

+
1√
N

∑

p,q∈�∗
+,p+q �=0

V̂ (p/N )ηH (p) e−B(ηH )b∗
p+qe

B(ηH )

×
∫ 1

0
ds

[
d(s)
p

(
γ (s)
q bq + σ (s)

q b∗−q

)

+
(
γ (s)
p bp + σ (s)

p b∗−p

)
d(s)
q + d(s)

p d(s)
q

]

=: E (3)
21 + E (3)

22 + E (3)
23

(7.50)
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where, for any s ∈ [0; 1] and p ∈ �∗
+, γ

(s)
p = cosh(sηH (p)), σ (s)

p = sinh(sηH (p)) and

d(s)
p is the operator defined as in (3.17), with η replaced by sηH . We have

|〈ξ, E (3)
21 ξ 〉| ≤ C√

N

∑

p,q∈�∗
+:p �=−q

|ηH (p)|‖bp+qeB(ηH )ξ‖
[
‖bpbqξ‖

+ |ηH (p)|‖bq(N+ + 1)1/2ξ‖
+ |ηH (q)|‖bp(N+ + 1)1/2ξ‖ + |ηH (p)||ηH (q)|‖(N+ + 1)ξ‖

]

≤ C‖ηH‖‖(N+ + 1)1/2ξ‖2 ≤ C	α/2‖(N+ + 1)1/2ξ‖2.

(7.51)

Since [bp, b∗−q ] = − a∗−qap/N for all p �= −q, we find

|〈ξ, E (3)
22 ξ 〉| ≤ C

N 3/2

∑

p,q∈�∗
+,p+q �=0

|ηH (p)||ηH (q)|‖bp+qeB(ηH )ξ‖‖ap(N+ + 1)1/2ξ‖

≤ C

N
‖ηH‖2‖(N+ + 1)1/2ξ‖2 ≤ C	α

N
‖(N+ + 1)1/2ξ‖2.

(7.52)

To bound the third term on the r.h.s. of (7.50), we switch to position space. We obtain

E (3)
23 =

∫

�3
dxdydzN 5/2V (N (x − z))η̌H (z − y) e−B(ηH )b̌∗

x e
B(ηH )

×
∫ 1

0
ds

[
ď(s)
y

(
b(γ̌ (s)

x ) + b∗(σ̌ (s)
x )

)
+

(
b(γ̌ (s)

y ) + b∗(σ̌ (s)
y )

)
ď(s)
x + ď(s)

y ď(s)
x

]
.

Using the bounds (3.22), (3.23), (3.24) and Lemma 3.1 we arrive at

|〈ξ, E (3)
23 ξ 〉| ≤ C‖ηH‖

∫

�3
dxdydz N 5/2V (N (x − z))|η̌H (y − z)| ‖b̌x eB(ηH )ξ‖

×
[
‖b̌x b̌yξ‖ + ‖(N+ + 1)ξ‖ + ‖b̌x (N+ + 1)1/2ξ‖ + ‖b̌y(N+ + 1)1/2ξ‖

]

≤ C‖ηH‖2√
N

‖N 1/2
+ eB(ηH )ξ‖‖(N+ + 1)ξ‖

≤ C	α‖(N+ + 1)1/2ξ‖2.

Combined with (7.51) and (7.52), the last bound implies that

± E (3)
2 ≤ C	α/2(N+ + 1). (7.53)
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Finally, we consider the last term on the r.h.s. of (7.46). In fact, it is convenient to bound
(in absolute value) the expectation of its adjoint, which we decompose as

E (3)∗
3 = 1√

N

∑

p,q∈�∗
+,p+q �=0

V̂ (p/N )ηH (q)

∫ 1

0
ds e−sB(ηH )b−qe

sB(ηH )

× (
γ (s)
p b−p + σ (s)

p b∗
p + d(s)

−p

)(
γp+qbp+q + σp+qb

∗−p−q + dp+q
)

= 1√
N

∑

p,q∈�∗
+,p+q �=0

V̂ (p/N )ηH (q)

∫ 1

0
ds e−sB(ηH )b−qe

sB(ηH )

×
[
γ (s)
p γp+qb−pbp+q + σ (s)

p σp+qb
∗
pb

∗−p−q

+ γ (s)
p σp+qb

∗−p−qb−p + γp+qσ
(s)
p b∗

pbp+q

+ d(s)
−p

(
γp+qbp+q + σp+qb

∗−p−q

)

+
(
γ (s)
p b−p + σ (s)

p b∗
p

)
dp+q + d(s)

−pdp+q
]

+
1√
N

∑

p,q∈�∗
+,p+q �=0

V̂ (p/N )ηH (q)

×
∫ 1

0
ds e−sB(ηH )b−qe

sB(ηH )γ (s)
p σp+q [b−p, b

∗−p−q ]

=: E (3)
31 + E (3)

32 .

Using that q �= 0 and thus that [b−p, b∗−p−q ] = − a∗−p−qa−p/N , we can estimate the
second term by

|〈ξ,E (3)
32 ξ〉|

≤ C

N 3/2

∫ 1

0
ds

∑

p,q∈�∗
+,p+q �=0

|ηH (q)||ηH (p + q)| ‖a−p−q e
−sB(ηH )b∗−qe

sB(ηH )ξ‖‖a−pξ‖

≤ C

N 3/2

∫ 1

0
ds

[ ∑

p,q∈�∗
+

p+q �=0

|ηH (q)|2 ‖a−p−q e
−sB(ηH )b∗−qe

sB(ηH )ξ‖2
]1/2

×
[ ∑

p,q∈�∗
+

p+q �=0

|ηH (p + q)|2‖a−pξ‖2
]1/2

≤ C

N
‖ηH‖2‖(N+ + 1)1/2ξ‖2 ≤ C	α

N
‖(N+ + 1)1/2ξ‖2.

(7.54)

To bound the expectation of E (3)
31 , it is convenient to switch to position space. We find

E (3)
31 =

∫ 1

0
ds

∫

�2
dxdy N 5/2V (N (x − y)) e−sB(ηH )b(η̌H,x )e

sB(ηH )

×
[
b(γ̌ (s)

x )b(γ̌y) + b∗(σ̌ (s)
x )b∗(σ̌y) + b∗(σ̌y)b(γ̌

(s)
x ) + b∗(σ̌ (s)

x )b(γ̌y)

+ ď(s)
x

(
b(γ̌y) + b∗(σ̌y)

)
+

(
b(γ̌ (s)

x ) + b∗(σ̌ (s)
x )

)
ďy + ď(s)

x ďy
]
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where we used the notation η̌H , γ̌ (s) and σ̌ (s) to indicate the functions on�with Fourier
coefficients ηH (p), cosh(sηH (p)) and, respectively, sinh(sηH (p)), and where η̌H,x , γ̌x
and σ̌x denote the functions defined by η̌H,x (z) = η̌H (z − x), γ̌x (z) = γ̌ (z − x) and
σ̌x (z) = σ̌ s(z − x). Using (3.22), (3.23), (3.24) and the bound (4.17), we find, for N
large enough,

|〈ξ, E (3)
31 ξ 〉| ≤

∫ 1

0
ds

∫

�2
dxdy N 5/2V (N (x − y))‖b∗(η̌H,x )e

sB(ηH )ξ‖

×
[
‖b̌x b̌yξ‖ + ‖b̌x (N+ + 1)1/2ξ‖ + ‖b̌y(N+ + 1)1/2ξ‖ + ‖(N+ + 1)ξ‖

]
.

With Lemma 3.1, we estimate

‖b∗(η̌H,x )e
sB(ηH )ξ‖ ≤ C‖ηH‖‖(N+ + 1)1/2ξ‖.

We conclude that

|〈ξ, E (3)
31 ξ 〉| ≤ C	α/2

[
‖(N+ + 1)1/2ξ‖2 + ‖V1/2

N ξ‖2
]
.

From (7.54), we find

± E (3)
3 ≤ C	α/2(HN + 1)

and thus, combining this bound with (7.46), (7.49) and (7.53), we arrive at

± E (3)
N ,	 ≤ C	α/2(HN + 1).

This proves (7.44). The bound (7.45) follows similarly, arguing as we did at the end of
the proof of Proposition 7.2 to show (7.12). ��

7.4. Analysis of G(4)
N ,	 = e−B(ηH )L(4)

N eB(ηH ). With L(4)
N as defined in (2.4), we write

G(4)
N ,	 = e−B(ηH )L(4)

N eB(ηH )

= VN +
1

2N

∑

q∈�∗
+,r∈�∗

q, q+r∈PH

V̂ (r/N )ηq+rηq

(
1 − N+

N

) (
1 − N+ + 1

N

)

+
1

2N

∑

q∈�∗
+,r∈�∗:

q+r∈PH

V̂ (r/N ) ηq+r

(
bqb−q + b∗

qb
∗−q

)
+ E (4)

N ,	.

Proposition 7.6. There exists a constant C > 0 such that

± E (4)
N ,	 ≤ C	α/2(HN + 1

)
(7.55)

and

± [ f (N+/M), [ f (N+/M), E (4)
N ,	]] ≤ CM−2‖ f ′‖2∞	α/2(HN + 1

)
(7.56)

for all α > 0, 	 ∈ (0; 1/2) small enough, f smooth and bounded, M ∈ N, N ∈ N large
enough.
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The following lemma will be useful in the proof of Proposition 7.6.

Lemma 7.7. Let ηH ∈ 	2(�∗), as defined in (4.13). Then there exists a constant C > 0
such that

‖(N+ + 1)n/2e−B(ηH )b̌x b̌ye
B(ηH )ξ‖

≤ C
[

‖(N+ + 1)(n+2)/2ξ‖ + N‖(N+ + 1)n/2ξ‖
+ ‖ǎy(N+ + 1)(n+1)/2ξ‖ + ‖ǎx (N+ + 1)(n+1)/2ξ‖ + ‖ǎx ǎy(N+ + 1)n/2ξ‖

]
(7.57)

for all ξ ∈ F≤N
+ , n ∈ Z.

Proof. We consider n = 0, the general case follows similarly. With the notation γp =
cosh ηH (p), rp = 1−γp, σp = sinh ηH (p) and denoting by σ̌ , ř the functions in L2(�)

with Fourier coefficients σp and rp, we use (3.18) to write

‖e−B(η)b̌x b̌ye
B(η)ξ‖ = ‖(

b̌x + b(řx ) + b∗(σ̌x ) + ďx
)(
b̌y + b(řy) + b∗(σ̌y) + ďy

)
ξ‖

≤ ‖b̌x b̌yξ‖ + C(‖b̌xN 1/2
+ ξ‖ + ‖b̌yN 1/2

+ ξ‖) + C |σ̌ (x − y)|‖ξ‖
+ ‖b̌x ďyξ‖ + ‖ďx

(
b̌y + b(řy) + b∗(σ̌y) + ďy

)
ξ‖

because ‖r‖, ‖σ‖ ≤ C‖ηH‖ ≤ C . Using Eq. (3.24) and (after writing b̌x ďy = b̌x
ˇ̄dy −

b̌x (N+/N )b∗(η̌y)) Eq. (3.23), and with the bound (4.17) (which also implies |σ̌ (x)| ≤
CN ), we obtain (7.57). ��
Proof of Proposition 7.6. We start by writing

e−B(ηH )L(4)
N eB(ηH )

= 1

2N

∑

p,q∈�∗
+,r∈�∗:r �=− p,q

V̂ (r/N )e−B(ηH )a∗
pa

∗
qaq−r ap+r e

B(ηH )

= VN +
1

2N

∑

p,q∈�∗
+,r∈�∗:r �=− p,q

V̂ (r/N )

×
∫ 1

0
ds e−sB(ηH )

[
a∗
pa

∗
qaq−r ap+r , B(ηH )

]
esB(ηH )

= VN +
1

2N

∑

q∈�∗
+,r∈�∗:r �=− q

V̂ (r/N )ηH (q + r)

×
∫ 1

0
ds

(
e−sB(ηH )b∗

qb
∗−qe

sB(ηH ) + h.c.
)

+
1

N

∑

p,q∈�∗
+,r∈�∗:r �=p,−q

V̂ (r/N )ηH (q + r)

×
∫ 1

0
ds

(
e−sB(ηH )b∗

p+r b
∗
qa

∗−q−r ape
sB(ηH ) + h.c.

)
.

(7.58)
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Now we observe that

e−sB(ηH )a∗−q−r ape
sB(ηH )

= a∗−q−r ap +
∫ s

0
dτ e−τ B(ηH )

[
a∗−q−r ap, B(ηH )

]
e−τ B(ηH )

= a∗−q−r ap +
∫ s

0
dτ e−τ B(ηH )

(
ηH (p)b∗−pb

∗−q−r + ηH (q + r)bpbq+r
)
e−τ B(ηH ).

Inserting in (7.58), we obtain

G(4)
N ,	 − VN = W1 +W2 +W3 +W4

where we defined

W1 = 1

2N

∑

q∈�∗
+,r∈�∗:r �=− q

V̂ (r/N )ηH (q + r)
∫ 1

0
ds

(
e−sB(ηH )bqb−q e

sB(ηH ) + h.c.
)
,

W2 = 1

N

∑

p,q∈�∗
+,r∈�∗:r �=p,−q

V̂ (r/N ) ηH (q + r)

×
∫ 1

0
ds

(
e−sB(ηH )b∗

qb
∗−qe

sB(ηH )a∗−q−r ap + h.c.
)
,

W3 = 1

N

∑

p,q∈�∗
+,r∈�∗:r �=− p− q

V̂ (r/N )ηH (q + r)ηH (p)

×
∫ 1

0
ds

∫ s

0
dτ

(
e−sB(ηH )b∗

p+r b
∗
qe

sB(ηH )e−τ B(ηH )b∗−pb
∗−q−r e

τ B(ηH ) + h.c.
)
,

W4 = 1

N

∑

p,q∈�∗
+,r∈�∗:r �=− p−q

V̂ (r/N ) η2H (q + r)

×
∫ 1

0
ds

∫ s

0
dτ

(
e−sB(ηH )b∗

p+r b
∗
qe

sB(ηH )e−τ B(ηH )bpbq+r e
τ B(ηH ) + h.c.

)
.

(7.59)

First, we consider the term W1. With (3.18), we find

W1 = 1

2N

∑

q∈�∗
+,r∈�∗:r �=− q

V̂ (r/N )ηH (q + r)

×
∫ 1

0
ds

(
γ (s)
q bq + σ (s)

q b∗−q + d(s)
q

)(
γ (s)
q b−q + σ (s)

q b∗
q + d(s)

−q

)
+ h.c.
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where we defined γ
(s)
q = cosh(sηH (q)), σ (s)

q = sinh(sηH (q)) and where d(s)
q is defined

as in (3.17), with η replaced by sηH . We write

W1 = 1

2N

∑

q∈�∗
+,r∈�∗:r �=− q

V̂ (r/N )ηH (q + r)
∫ 1

0
ds(γ (s)

q )2(bqb−q + h.c.)

+
1

2N

∑

q∈�∗
+,r∈�∗:r �=− q

V̂ (r/N )ηH (q + r)
∫ 1

0
ds γ (s)

q σ (s)
q

([bq , b∗
q ] + h.c.

)

+
1

2N

∑

q∈�∗
+,r∈�∗:r �=−q

V̂ (r/N )ηH (q + r)
∫ 1

0
ds γ (s)

q

(
bqd

(s)
−q + h.c.

)
+ E (4)

10

=: W11 +W12 + W13 + E (4)
10

(7.60)

where

E (4)
10 = E (4)

101 + E (4)
102 + E (4)

103 + E (4)
104 + E (4)

105 (7.61)

with the errors

E (4)
101 = 1

2N

∑

q∈�∗
+,r∈�∗:r �=− q

V̂ (r/N )ηH (q + r)

×
∫ 1

0
ds

[
2γ (s)

q σ (s)
q b∗

qbq + (σ (s)
q )2b∗−qb

∗
q + h.c.

]
,

E (4)
102 = 1

2N

∑

q∈�∗
+,r∈�∗:r �=− q

V̂ (r/N )ηH (q + r)
∫ 1

0
ds σ (s)

q

(
b∗−qd

(s)
−q + h.c.

)
,

E (4)
103 = 1

2N

∑

q∈�∗
+,r∈�∗:r �=− q

V̂ (r/N )ηH (q + r)
∫ 1

0
ds σ (s)

q

(
d(s)
q b∗

q + h.c.
)
,

E (4)
104 = 1

2N

∑

q∈�∗
+,r∈�∗:r �=− q

V̂ (r/N )ηH (q + r)
∫ 1

0
ds γ (s)

q

(
d(s)
q b−q + h.c.

)
,

E (4)
105 = 1

2N

∑

q∈�∗
+,r∈�∗:r �=− q

V̂ (r/N )ηH (q + r)
∫ 1

0
ds

(
d(s)
q d(s)

−q + h.c.
)
.

(7.62)

Since

sup
q∈�∗

+

1

N

∑

r∈�∗
+

|V̂ (r/N )||ηq+r | ≤ C < ∞ (7.63)

uniformly in N ∈ N and 	 ∈ (0; 1/2), we can bound the first term in (7.62) by

|〈ξ, E (4)
101ξ 〉| ≤ C

∑

q∈�∗
+

[
|ηq |‖bqξ‖2 + η2q‖bqξ‖‖(N+ + 1)1/2ξ‖

]
≤ C	2α‖(N+ + 1)1/2ξ‖2.
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To estimate the second term in (7.62), we use (7.63) and Lemma 3.4; we find

|〈ξ, E (4)
102ξ 〉| ≤ C

∑

q∈�∗
+

|ηH (q)|‖b−qξ‖
[
|ηH (q)|‖(N+ + 1)1/2ξ‖ + ‖ηH‖‖b−qξ‖

]

≤ C	2α‖(N+ + 1)1/2ξ‖2.
For the third term in (7.62), we use (7.63), Lemma 3.4, and also

1

N 2

∑

q∈�∗
+,r∈�∗,r �=− q

|V̂ (r/N )||ηH (q + r)||ηH (q)| ≤ C < ∞

uniformly in N and 	 ∈ (0; 1/2). We obtain

|〈ξ, E (4)
103ξ 〉| ≤ C‖(N+ + 1)1/2ξ‖

N

∑

q∈�∗
+,r∈�∗:r �=− q

|V̂ (r/N )||ηH (q + r)||ηH (q)|

×
[
|ηq |‖b∗

qξ‖ + N−1‖ηH‖‖bqb∗
qN 1/2

+ ξ‖
]

≤ C‖(N+ + 1)1/2ξ‖
N

∑

q∈�∗
+,r∈�∗:r �=− q

|V̂ (r/N )||ηH (q + r)||ηH (q)|

×
[
(|ηq | + N−1‖ηH‖)‖N 1/2

+ ξ‖ + ‖ηH‖‖bqξ‖
]

≤ C	α‖(N+ + 1)1/2ξ‖2.
Consider now the fourth term in (7.62). We write E (4)

104 = E (4)
1041 + E (4)

1042, with

E (4)
1041 = 1

2N

∑

q∈�∗
+,r∈�∗:r �=− q

V̂ (r/N )ηH (q + r)
∫ 1

0
ds (γ (s)

q − 1)d(s)
q b−q ,

E (4)
1042 = 1

2N

∑

q∈�∗
+,r∈�∗:r �=− q

V̂ (r/N )ηH (q + r)
∫ 1

0
ds d(s)

q b−q .

With |γ (s)
q − 1| ≤ C |ηH (q)|2, (7.63) and Lemma 3.4, we easily find

|〈ξ, E (4)
1041ξ 〉| ≤ C	3α‖(N+ + 1)1/2ξ‖2.

As for the term E (4)
1042, we switch to position space. Using (4.17) and (3.22) in Lemma 3.4,

we obtain

|〈ξ, E (4)
1042ξ 〉| =

∣∣∣
1

2

∫ 1

0
ds

∫

�2
dxdyN 2V (N (x − y))η̌H (x − y)〈ξ, ď(s)

x b̌yξ 〉
∣∣∣

≤ C
∫ 1

0

∫

�2
dxdyN 3V (N (x − y))‖(N+ + 1)1/2ξ‖‖(N+ + 1)−1/2ď(s)

x b̌yξ‖

≤ C‖ηH‖
∫ 1

0

∫

�2
dxdyN 2V (N (x − y))‖(N+ + 1)1/2ξ‖

×
[
‖ǎyN+ξ‖ + ‖ǎx ǎyN 1/2

+ ξ‖
]

≤ C	α/2‖(N+ + 1)1/2ξ‖2 + C	α/2‖(N+ + 1)1/2ξ‖‖V1/2
N ξ‖.
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Let us now consider the last term in (7.62). Switching to position space and using (3.24)
in Lemma 3.4 and again (4.17), we arrive at

|〈ξ, E (4)
105ξ 〉| ≤ C

∫

�2
dxdy N 3V (N (x − y))‖(N+ + 1)1/2ξ‖‖(N+ + 1)−1/2ďx ďyξ‖

≤ C‖ηH‖‖(N+ + 1)1/2ξ‖
∫

�2
dxdy NV (N (x − y))

×
[
N‖(N+ + 1)3/2ξ‖ + ‖ǎxN 2

+ ξ‖ + ‖ǎyN 2
+ ξ‖ + ‖ǎx ǎyN 3/2

+ ξ‖
]

≤ C	α/2‖(N+ + 1)1/2ξ‖2 + C	α/2‖(N+ + 1)1/2ξ‖‖V1/2
N ξ‖.

We conclude that the error term (7.61) can be estimated by

± E (4)
10 ≤ C	α/2(HN + 1).

Next, we come back to the terms W11,W12,W13 defined in (7.60). Using (7.63) and
|γ (s)

q − 1| ≤ CηH (q)2, we can write

W11 = 1

2N

∑

q∈�∗
+,r∈�∗:r �=− q

V̂ (r/N )ηH (q + r)(bqb−q + h.c.) + E (4)
11 (7.64)

where E (4)
11 satisfies the estimate

|〈ξ, E (4)
11 ξ 〉| ≤ C

N

∑

q∈�∗
+,r∈�∗:r �=− q

|V̂ (r/N )||ηH (q + r)||ηH (q)|2‖bqξ‖‖(N+ + 1)1/2ξ‖

≤ C	5α/2‖(N+ + 1)ξ‖2.
The second term in (7.60) can be decomposed as

W12 = 1

2N

∑

q∈�∗
+,r∈�∗:r �=− q

V̂ (r/N )ηH (q + r)ηH (q)

(
1 − N+

N

)
+ E (4)

12 (7.65)

where the error

E (4)
12 = − 1

2N 2

∑

q∈�∗
+,r∈�∗:r �=− q

V̂ (r/N )ηH (q + r)
∫ 1

0
dsγ (s)

q σ (s)
q a∗

qaq

+
1

2N

∑

q∈�∗
+,r∈�∗:r �=− q

V̂ (r/N )ηH (q + r)
∫ 1

0
ds(γ (s)

q σ (s)
q − sηH (q))

(
1 − N+

N

)

can be bounded, using (7.63) and |γ (s)
q σ

(s)
q − sηH (q))|| ≤ C |ηH (q)|3, by

± E (4)
12 ≤ C	2α(N+ + 1).

As for the third term on the r.h.s. of (7.60), we write

W13 = − 1

2N

∑

q∈�∗
+,r∈�∗:r �=− q

V̂ (r/N )ηH (q + r)ηH (q)

×
(
1 − N+

N

) N+ + 1

N
+ E (4)

13 (7.66)
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where E (4)
13 = E (4)

131 + E (4)
132 + E (4)

133 + E (4)
134, with

E (4)
131 = 1

2N

∑

q∈�∗
+,r∈�∗:r �=− q

V̂ (r/N )ηH (q + r)
∫ 1

0
ds(γ (s)

q − 1)bqd
(s)
−q + h.c.,

E (4)
132 = 1

2N

∑

q∈�∗
+,r∈�∗:r �=− q

V̂ (r/N )ηH (q + r)
∫ 1

0
ds bq

[
d(s)
−q + sηH (q)

N+

N
b∗
q

]
+ h.c.,

E (4)
133 = − 1

2N

∑

q∈�∗
+,r∈�∗:r �=− q

V̂ (r/N )ηH (q + r)ηH (q)b∗
qbq

N+ + 1

N
,

E (4)
134 = 1

2N 2

∑

q∈�∗
+,r∈�∗:r �=− q

V̂ (r/N )ηH (q + r)ηH (q)a∗
qaq

N+ + 1

N
.

It is easy to estimate the last two terms: with (7.63), we have

± E (4)
133 ≤ C	2α(N+ + 1), ± E (4)

134 ≤ C	2α(N+ + 1).

With |γ (s)
q − 1| ≤ CηH (q)2, Lemma 3.4 and, again, (7.63), we also find

|〈ξ, E (4)
131ξ 〉| ≤ C

N

∑

q∈�∗
+,r∈�∗:r �=− q

|V̂ (r/N )||ηH (q + r)||ηH (q)|2‖(N+ + 1)1/2ξ‖

×
[
|ηH (q)|‖(N+ + 1)1/2ξ‖ + ‖ηH‖‖bqξ‖

]

≤ C	3α‖(N+ + 1)1/2ξ‖2.
Let us now focus on E (4)

132. Switching to position space, making use of the notation
ˇ̄d(s)
y = d(s)

y + s(N+/N )b∗(η̌H,y) and using Lemma 3.4, specifically (3.23), we obtain

|〈ξ, E (4)
132ξ 〉| =

∣∣∣
∫ 1

0
ds

∫

�2
dxdyN 2V (N (x − y))η̌H (x − y)〈ξ, b̌x

ˇ̄dyξ 〉
∣∣∣

≤ C‖ηH‖
∫

�2
dxdyN 2V (N (x − y))‖(N+ + 1)1/2ξ‖

×
[
N‖(N+ + 1)1/2ξ‖ + ‖ǎxN+ξ‖ + ‖ǎyN+ξ‖ + ‖ǎx ǎyN 1/2

+ ξ‖
]

≤ C	α/2‖(N+ + 1)1/2ξ‖2 + C	α/2‖(N+ + 1)1/2ξ‖‖V1/2
N ξ‖.

We conclude that ± E (4)
13 ≤ C	α/2(HN + 1). Combining this with (7.64), (7.65), (7.66),

we obtain

W1 = 1

2N

∑

q∈�∗
+,r∈�∗:r �=− q

V̂ (r/N )ηH (q + r)
(
bqb−q + h.c.

)

+
1

2N

∑

q∈�∗
+,r∈�∗:r �=− q

V̂ (r/N )ηH (q + r)ηH (q)

×
(
1 − N+

N

) (
1 − N+ + 1

N

)
+ E (4)

1

(7.67)
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with

± E (4)
1 ≤ C	α/2(HN + 1).

Next, we consider the term W2, in (7.59). To this end, it is convenient to switch to
position space. We find

W2 =
∫

�2
dxdyN 2V (N (x − y))

∫ 1

0
ds

(
e−sB(ηH )b̌∗

x b̌
∗
ye

sB(ηH )a∗(η̌H,x )ǎy + h.c.
)

with the notation η̌H,x (z) = η̌H (x − z). By Cauchy–Schwarz, we have

|〈ξ,W2ξ 〉| ≤
∫

�2
dxdy N 2V (N (x − y))

∫ 1

0
ds

× ‖(N+ + 1)1/2e−sB(ηH )b̌x b̌ye
sB(ηH )ξ‖‖(N+ + 1)−1/2a∗(η̌H,x )ǎyξ‖.

With

‖(N+ + 1)−1/2a∗(η̌H,x )ǎyξ‖ ≤ C‖ηH‖‖ǎyξ‖ ≤ C	α/2‖ǎyξ‖
and using Lemma 7.7, we obtain

|〈ξ,W2ξ 〉| ≤ C	α/2
∫

�2
dxdy N 2V (N (x − y))‖ǎyξ‖

×
{
N‖(N+ + 1)1/2ξ‖ + N‖ǎxξ‖ + N‖ǎyξ‖ + N 1/2‖ǎx ǎyξ‖

}

≤ C	α/2 ‖(N+ + 1)1/2ξ‖‖(VN +N+ + 1)1/2ξ‖.

(7.68)

Also for the term W3 in (7.59), we switch to position space. We find

W3 =
∫

�2
dxdy N 2V (N (x − y))

×
∫ 1

0
ds

∫ s

0
dτ

(
e−sB(ηH )b̌∗

x b̌
∗
ye

sB(ηH ) e−τ B(ηH )b∗(η̌H,x )b
∗(η̌H,y)e

τ B(ηH ) + h.c.
)

and thus

|〈ξ,W3ξ〉| ≤
∫

�2
dxdy N 2V (N (x − y))

∫ 1

0
ds

∫ s

0
dτ ‖(N+ + 1)1/2e−sB(ηH )b̌x b̌ye

sB(ηH )ξ‖
× ‖(N+ + 1)−1/2e−τ B(ηH )b∗(η̌H,x ))b

∗(η̌H,y)e
τ B(ηH )ξ‖.

With Lemma 3.1, we find

‖(N+ + 1)−1/2e−τ B(ηH )b∗(η̌H,x ))b
∗(η̌H,y)e

τ B(ηH )ξ‖ ≤ C‖ηH‖2‖(N+ + 1)1/2ξ‖.
Using Lemma 7.7, we conclude that

|〈ξ,W3ξ 〉| ≤ C	α

∫

�2
dxdy N 2V (N (x − y))‖(N+ + 1)1/2ξ‖

×
{
N‖(N+ + 1)1/2ξ‖ + N‖ǎxξ‖ + N‖ǎyξ‖ + N 1/2‖ǎx ǎyξ‖

}

≤ C	α ‖(N+ + 1)1/2ξ‖‖(VN +N+ + 1)1/2ξ‖.

(7.69)
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The term W4 in (7.59) can be bounded similarly. Switching to position space, we find

W4 =
∫

dxdy N 2V (N (x − y))

×
∫ 1

0
ds

∫ s

0
dτ

(
e−sB(ηH )b̌∗

x b̌
∗
y e

sB(ηH ) e−τ B(ηH )b(η̌2H,x )b̌ye
τ B(ηH ) + h.c.

)

where η̌2H denotes the function with Fourier coefficients η2H (q), for q ∈ �∗, and where
η̌2H,x (y) := η̌2H (x − y). We conclude that ‖η̌2H,x‖ = ‖η2H‖ ≤ C	5α/2. With Cauchy–
Schwarz, we arrive at

|〈ξ,W4ξ 〉| ≤ C	5α/2
∫ 1

0
ds

∫ s

0
dτ

∫
dxdyN 2V (N (x − y))

× ‖(N+ + 1)1/2e−sB(ηH )b̌y b̌x e
sB(ηH )ξ‖‖b̌yeτ B(ηH )ξ‖.

Applying Lemmas 3.1 and 7.7, we obtain

|〈ξ,W4ξ 〉| ≤ C	5α/2
∫ 1

0
ds

∫ s

0
dτ

∫
dxdyN 2V (N (x − y))‖b̌yeτ B(ηH )ξ‖

×
{
N‖(N+ + 1)1/2ξ‖ + N‖ǎxξ‖ + N‖ǎyξ‖ + N 1/2‖ǎx ǎyξ‖

}

≤ C	5α/2
∫ 1

0
ds

∫ s

0
dτ ‖(N+ + 1)1/2e−τ B(ηH )ξ‖‖(VN +N+ + 1)1/2ξ‖

≤ C	5α/2‖(N+ + 1)1/2ξ‖‖(VN +N+ + 1)1/2ξ‖.

Combining (7.67), (7.68), (7.69) with the last bound, we find

G(4)
N ,	 = VN +

1

2N

∑

q∈�∗
+,r∈�∗:r �=−q

V̂ (r/N )ηH (q + r)
(
bqb−q + h.c.

)

+
1

2N

∑

q∈�∗
+,r∈�∗:r �=−q

V̂ (r/N )ηH (q + r)ηH (q)

(
1 − N+

N

) (
1 − N+ + 1

N

)
+ E (4)

N ,	

where E (4)
N ,	 satisfies (7.55). As for the bound (7.56), it follows similarly, arguing as we

did at the end of the proof of Proposition 7.2 to show (7.12). ��

7.5. Proof of Propositions 4.2. We now combine the results of Sects. 7.1–7.4 to prove
Proposition 4.2. From Propositions 7.1, 7.4, 7.5, 7.6, we conclude that the excitation
Hamiltonian GN ,	 defined in (4.18) is such that
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GN ,	 = V̂ (0)

2
(N +N+ − 1)

N − N+

N

+
∑

p∈PH

ηp

[
p2ηp + V̂ (p/N ) +

1

2N

∑

r∈�∗
p+r∈PH

V̂ (r/N )ηp+r

](N − N+

N

)(N − N+ − 1

N

)

+ K +
∑

p∈�∗
+

V̂ (p/N )a∗
pap

N − N+

N

+
∑

p∈PH

[
p2ηp +

1

2
V̂ (p/N ) +

1

2N

∑

r∈�∗: p+r∈PH

V̂ (r/N )ηp+r

](
b∗
pb

∗−p + bpb−p
)

+
1

2

∑

p∈Pc
H

[
V̂ (p/N ) +

1

2N

∑

r∈�∗: p+r∈PH

V̂ (r/N )ηp+r

](
bpb−p + b∗−pb

∗
p

)

+
1√
N

∑

p,q∈�∗
+:p+q �=0

V̂ (p/N )
[
b∗
p+qa

∗−paq + h.c.
]
+ VN + E1

(7.70)

where

± E1 ≤ C	(α−3)/2(HN + 1
)

and, with the notation fM = f (N+/M),

±[ fM , [ fM , E1]] ≤ C	(α−3)/2M−2‖ f ′‖2∞
(HN + 1

)

for every f bounded and smooth and M ∈ N.
Our first goal is to show (4.24). With (4.10), we have

∑

p∈PH

ηp

[
p2ηp + V̂ (p/N ) +

1

2N

∑

r∈�∗: p+r∈PH

V̂ (r/N )ηp+r

]

=
∑

p∈PH

ηp

[ 1

2
V̂ (p/N ) + λ	N

3χ̂	(p) + λ	N
2

∑

q∈�∗
χ̂	(p − q)ηq

]

− 1

2N

∑

p,q∈�∗:
p∈PH , q∈Pc

H

V̂ ((p − q)/N )ηpηq .

With Lemma 4.1 and estimating

‖χ̂	‖ = ‖χ	‖ ≤ C	3/2, ‖ηH‖ ≤ 	α/2,

‖χ̂	 ∗ ηH‖ = ‖χ	η̌H‖ ≤ ‖η̌H‖ ≤ 	α/2, (7.71)

we conclude that

∑

p∈PH

ηp

[
p2ηp + V̂ (p/N ) +

1

2N

∑

r∈�∗
p+r∈PH

V̂ (r/N )ηp+r

](N − N+

N

)(N − N+ − 1

N

)

= 1

2

∑

p∈PH

V̂ (p/N )ηp

(
N − N+

N

) (
N − N+ − 1

N

)
+ E2
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with ± E2 ≤ C	−α (and with [ fM , [ fM , E2]] = 0). Since
∑

p∈Pc
H

|V (p/N )||ηp| ≤
C	−α , and from (4.6), we further obtain

∑

p∈PH

ηp

[
p2ηp + V̂ (p/N ) +

1

2N

∑

r∈�∗
p+r∈PH

V̂ (r/N )ηp+r

](N − N+

N

)(N − N+ − 1

N

)

=
[
4πa0 − V̂ (0)

2

]
(N − N+ − 1)

(
N − N+

N

)
+ E3

(7.72)

where ± E3 ≤ C	−α (and [ fM , [ fM , E3]] = 0). Using (4.10), we can also handle the
fourth line of (7.70); we find

∑

p∈PH

[
p2ηp +

1

2
V̂ (p/N ) +

1

2N

∑

r∈�∗: p+r∈PH

V̂ (r/N )ηp+r

](
b∗
pb

∗−p + bpb−p
)

=
∑

p∈PH

[
N 3λ	χ̂	(p) + N 2λ	

∑

q∈�∗
χ̂	(p − q)ηq

](
b∗
pb

∗−p + bpb−p
)

− 1

2N

∑

p,q∈�∗:
p∈PH , q∈Pc

H

V̂ ((p − q)/N )ηq
(
b∗
pb

∗−p + bpb−p
)
.

(7.73)

Observe that
∣∣∣〈ξ, N 3λ	

∑

p∈PH

χ̂	(p)bpb−pξ 〉
∣∣∣ ≤ C	−3‖(N+ + 1)1/2ξ‖

∑

p∈PH

|p|−1|χ̂	(p)||p|‖bpξ‖

≤ C	−3+α‖χ̂	‖‖(N+ + 1)1/2ξ‖‖K1/2ξ‖
≤ C	α−3/2‖(N+ + 1)1/2ξ‖‖K1/2ξ‖.

Using χ̂	 ∗ η = η (because χ	(x)w	(x) = w	(x) in position space), we also find
∣∣∣〈ξ, N 2λ	

∑

p∈PH ,q∈�∗
χ̂	(p − q)ηq(b

∗
pb

∗−p + bpb−p)ξ 〉
∣∣∣

≤ CN−1	−3+3α/2‖(N+ + 1)1/2ξ‖‖K1/2ξ‖ .

Furthermore, we have
∣∣∣〈ξ,

1

2N

∑

p,q∈�∗:
p∈PH , q∈Pc

H

V̂ ((p − q)/N )ηqbpb−pξ 〉
∣∣∣

≤ 1

2N

[ ∑

p,q∈�∗:
p∈PH ,q∈Pc

H

1

|q|2
|V̂ ((p − q)/N )|2

|p2|
]1/2

×
[ ∑

p,q∈�∗:
p∈PH , q∈Pc

H

1

|q|2 |p|2‖bpξ‖2
]1/2

‖(N+ + 1)1/2ξ‖

≤ C	−αN−1/2‖K1/2ξ‖‖(N+ + 1)1/2ξ‖.

(7.74)
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From (7.73), we conclude that

±
∑

p∈PH

[
p2ηp +

1

2
V̂ (p/N ) +

1

2N

∑

r∈�∗:
p+r∈PH

V̂ (r/N )ηp+r

](
b∗
pb

∗−p + bpb−p
)

≤ C	α−3/2(K + 1) (7.75)

for N large enough. As for the fifth line on the r.h.s. of (7.70), we can write it as

1

2

∑

p∈Pc
H

[
V̂ (p/N ) +

1

N

∑

r∈�∗: p+r∈PH

V̂ (r/N )ηp+r

](
bpb−p + b∗−pb

∗
p

)

= 1

2

∑

p∈Pc
H

(V̂ (·/N ) ∗ f̂N ,	)p
(
bpb−p + b∗−pb

∗
p

)
+ E4

(7.76)

where the error operator

E4 = 1

2N

∑

p,q∈�∗:
p, q∈Pc

H

V̂ ((p − q)/N )ηq
(
bpb−p + b∗−pb

∗
p

)

can be bounded by ± E4 ≤ CN−1/2	−α(K + 1), similarly as in (7.74).
Combining (7.70) with (7.72), (7.75) and (7.76), we conclude that

GN ,	 = 4πa0(N − 1)

(
N − N+

N

)
+

[
V̂ (0) − 4πa0

]N+

(
N − N+

N

)

+ K +
∑

p∈�∗
+

V̂ (p/N )a∗
pap

N − N+

N
+
1

2

∑

p∈Pc
H

(V̂ (·/N ) ∗ f̂N ,	)p
(
bpb−p + b∗−pb

∗
p

)

+
1√
N

∑

p,q∈�∗
+:p+q �=0

V̂ (p/N )
[
b∗
p+qa

∗−paq + h.c.
]
+ VN + E5

with

± E5 ≤ C	(α−3)/2(HN + 1
)
+ C	−α.

Observing that

±
∑

p∈PH

V̂ (p/N )a∗
pap ≤ C	2α(K + 1) ,

that |V̂ (p/N ) − V̂ (0)| ≤ C |p|N−1, and that, by (4.6),

|(V̂ (·/N ) ∗ f̂N ,	)p − 8πa0|
≤

∫
dx N 3V (Nx) f	(Nx)

∣∣eip·x − 1
∣∣ +

∣∣∣∣
∫

N 3V (Nx) f	(Nx) − 8πa0

∣∣∣∣

≤ C(|p| + 1)N−1

(7.77)
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we arrive, with Geff
N ,	 defined as in (4.23), at GN ,	 = Geff + EN ,	, with an error EN ,	 that

satisfies

± EN ,	 ≤ C	(α−3)/2HN + C	−α (7.78)

for all N large enough. This completes the proof of (4.24). The second bound in (4.25)
follows similarly, arguing as we did at the end of Proposition 7.2 (and noticing that
the error term E3 in (7.72) which is responsible for the factor 	−α in (7.78) actually
commutes with f (N+/M)).

Let us now prove (4.22) and the first bound in (4.25). We have to control the off-
diagonal quadratic term and the cubic term appearing in Geff

N ,	. We observe, first of all,
that

∣∣∣4πa0
∑

p∈Pc
H

〈ξ, (bpb−p + b∗−pb
∗
p)ξ 〉

∣∣∣ ≤ 4πa0
∑

p∈Pc
H

‖(N+ + 1)1/2ξ‖‖bpξ‖

≤ C	−α/2‖(N+ + 1)1/2ξ‖‖K1/2ξ‖.
(7.79)

Using [ fM , [ fM , bpb−p]] = ( f (N+/M) − f ((N+ + 2)/M))2bpb−p, and a similar
identity for [ fM , [ fM , b∗

pb
∗−p]], we also obtain

∣∣∣4πa0
∑

p∈Pc
H

〈ξ,
[
fM ,

[
fM ,

(
bpb−p + b∗

pb
∗−p

)]]
ξ 〉

∣∣∣

≤ CM−2	−α/2‖ f ′‖2∞‖(N+ + 1)1/2ξ‖‖K1/2ξ‖. (7.80)

It is possible to show an improved lower bound for the operator on the l.h.s. of (7.79),
by noticing that, for an arbitrary δ > 0,

0 ≤
∑

p∈Pc
H

(√
δ|p|b∗

p +
4πa0√
δ|p|b−p

) (√
δ|p|bp + 4πa0√

δ|p|b
∗−p

)

= δ
∑

p∈Pc
H

p2b∗
pbp +

(4πa0)2

δ

∑

p∈Pc
H

1

p2
b−pb

∗−p + 4πa0
∑

p∈Pc
H

(b−pbp + b∗
pb

∗−p).

With (2.6), we commute

b−pb
∗−p = b∗−pb−p + (1 − N+/N ) − N−1a∗−pa−p .

Observing that

b∗
pbp = a∗

p
N − N+

N
ap ≤ a∗

pap

and that
∑

p∈Pc
H

|p|−2 ≤ C	−α , we conclude that there exists a constant C > 0,
independent of 	 ∈ (0; 1/2) and of N , such that

4πa0
∑

p∈Pc
H

(b−pbp + b∗
pb

∗−p) ≥ −δK − Cδ−1N+ − Cδ−1	−α (7.81)
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for any δ > 0. As for the cubic term on the r.h.s. of (4.23), we have, switching to position
space,

∣∣∣
1√
N

∑

p,q∈�∗
+:p+q �=0

V̂ (p/N )〈ξ,
(
b∗
p+qa

∗−paq + h.c.
)
ξ 〉

∣∣∣

≤
∫

�2
dxdy N 5/2V (N (x − y))‖ǎxξ‖‖ǎx ǎyξ‖ ≤ C‖(N+ + 1)1/2ξ‖‖V1/2

N ξ‖
(7.82)

and analogously
∣∣∣

1√
N

∑

p,q∈�∗
+:p+q �=0

V̂ (p/N )〈ξ,
[
fM ,

[
fM ,

(
b∗
p+qa

∗−paq + h.c.
)]]

ξ 〉
∣∣∣

≤ CM−2‖ f ′‖2∞‖(N+ + 1)1/2ξ‖‖V1/2
N ξ‖.

(7.83)

Combining (7.78) with (7.79) and (7.82), we obtain (4.21). From (7.78), (7.81) and
(7.82), we infer (4.22). Combining instead the second bound in (4.25), with (7.80) and
(7.83) we find the first bound in (4.25) (because all other contributions to Geff

N ,	 commute
with N+).

8. Analysis of the Excitation Hamiltonian RN,�

The goal of this section is to prove Proposition 5.2, which gives a lower bound on the
excitation HamiltonianRN ,	 = e−AGeff

N ,	e
A, with Geff

N ,	 as in (4.23) and the cubic phase

A = 1√
N

∑

r∈PH ,v∈PL

ηr
[
b∗
r+va

∗−r av − h.c.
]

(8.1)

introduced in (5.1), with the high momentum set PH = {p ∈ �∗
+ : |p| ≥ 	−α} and the

low momentum set PL = {p ∈ �∗
+ : |p| ≤ 	−β} for parameters 0 < β < α and 	 ∈

(0; 1/2) (in the proof of Proposition 5.2, we will assume α > 3 and α/2 < β < 2α/3).
To study the properties of RN ,	, it is convenient to decompose

Geff
N ,	 = DN +K +QN ,	 + CN + VN

with K and VN being the kinetic and the potential energy operators, as in (4.19), and

DN = 4πa0(N − N+) +
[
V̂ (0) − 4πa0

]N+(1 − N+/N ),

QN ,	 = V̂ (0)
∑

p∈Pc
H

a∗
pap(1 − N+/N ) + 4πa0

∑

p∈Pc
H

[
b∗
pb

∗−p + bpb−p
]
,

CN = 1√
N

∑

p,q∈�∗
+:p+q �=0

V̂ (p/N )
[
b∗
p+qa

∗−paq + h.c.
]

(8.2)

with Pc
H = �∗

+\PH . To study the contributions of these operators toRN ,	 and to prove
Proposition 5.2 we will need a-priori bounds controlling the growth of the expectation
of the energyHN = K + VN through cubic conjugation; these estimates are obtained in
the next subsection. As we did in Sect. 7, also in this Section we will always assume that
V ∈ L3(R3) is compactly supported, pointwise non-negative and spherically symmetric.
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8.1. A priori bounds on the energy. Our first proposition controls the commutator of
the cubic phase (8.1) with the potential energy operator VN .

Proposition 8.1. There exists a constant C > 0 such that

[VN , A] = 1

N 3/2

∑

r∈�∗
+,v∈PL

r �=−v

(
V̂ (·/N ) ∗ η

)
(r)

[
b∗
r+va

∗−r av + h.c.
]
+ δVN (8.3)

where

|〈ξ, δVN ξ 〉| ≤ C	(α−β)/2‖V1/2
N ξ‖‖K1/2

L ξ‖ + C	3(α−β)/2‖V1/2
N ξ‖‖K1/2ξ‖ (8.4)

for all α > β > 0, 	 ∈ (0; 1/2) and N large enough. Here KL = ∑
p∈PL p2a∗

pap
denotes the kinetic energy associated to momenta p ∈ PL = {p ∈ �∗

+ : |p| ≤ 	−β}.
Proof. With

[a∗
p+ua

∗
qapaq+u, b

∗
r+va

∗−r av]
= [a∗

p+ua
∗
qapaq+u, a

∗
r+v]

√
1 − (N+/N )a∗−r av + b∗

r+v[a∗
p+ua

∗
qapaq+u, a

∗−r av]
= b∗

p+ua
∗
qaq+ua

∗−r avδp,r+v + b∗
p+ua

∗
qapa

∗−r avδq+u,r+v

+ b∗
r+va

∗
p+ua

∗
qapavδ−r,q+u + b∗

r+va
∗
p+ua

∗
qaq+uavδ−r,p

− b∗
r+va

∗−r a
∗
p+uapaq+uδq,v − b∗

r+va
∗−r a

∗
qapaq+uδv,p+u

and normal ordering the first two terms, we obtain

[VN , A] = 1

N 3/2

∗∑

u∈�∗,r∈PH ,v∈PL

V̂ ((u − r)/N )ηr b
∗
u+va

∗−uav + �2 + �3 + �4 + h.c.

with

�2 := 1

N 3/2

∗∑

u∈�∗,p∈�∗
+,

r∈PH ,v∈PL

V̂ (u/N )ηr b
∗
p+ua

∗
r+v−ua

∗−r apav,

�3 := 1

N 3/2

∗∑

u∈�∗,p∈�∗
+,

r∈PH ,v∈PL

V̂ (u/N )ηr b
∗
r+va

∗
p+ua

∗−r−uapav,

�4 := − 1

N 3/2

∗∑

u∈�∗,p∈�∗
+,

r∈PH ,v∈PL

V̂ (u/N )ηr b
∗
r+va

∗−r a
∗
p+uapav+u .

(8.5)
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The notation
∑∗ indicates that we exclude choices of momenta for which the argument

of a creation or annihilation operator vanishes. Writing

1

N 3/2

∗∑

u∈�∗
r∈PH ,v∈PL

V̂ ((u − r)/N )ηr b
∗
u+va

∗−uav

= 1

N 3/2

∗∑

u,r∈�∗,
v∈PL

V̂ ((u − r)/N )ηr b
∗
u+va

∗−uav

− 1

N 3/2

∗∑

u∈�∗,v∈PL ,
r∈Pc

H∪{0}

V̂ ((u − r)/N )ηr b
∗
u+va

∗−uav

and comparing with (8.3), we conclude that δVN = �1 + �2 + �3 + �4 + h.c., with

�1 = − 1

N 3/2

∗∑

u∈�∗,v∈PL ,
r∈Pc

H∪{0}

V̂ ((u − r)/N )ηr b
∗
u+va

∗−uav

and with �2,�3,�4 as defined in (8.5).
To conclude the proof of the lemma, we show next that each error term � j , with

j = 1, 2, 3, 4, satisfies (8.4). We start with �1. For any ξ ∈ F≤N
+ , switching (partly) to

position space and applying Cauchy–Schwarz, we find

|〈ξ,�1ξ 〉| ≤ 1√
N

[ ∫

�2
dxdy N 2V (N (x − y))

∑

r∈{0}∪Pc
H ,v∈PL

|ηr ||v|−2‖b̌x ǎyξ‖2
]1/2

×
[ ∫

�2
dxdy N 2V (N (x − y))

∑

r∈{0}∪Pc
H ,v∈PL

|ηr ||v|2‖avξ‖2
]1/2

≤ C	−α−β/2

N
‖V1/2

N ξ‖‖K1/2
L ξ‖.

(8.6)

Denoting by η̌H ∈ L2(�) the functionwith Fourier coefficients ηH (p) = ηpχ(p ∈ PH )

and using (4.14), we can bound the term �2 on the r.h.s. of (8.5) by

|〈ξ,�2ξ 〉| =
∣∣∣∣

1

N 1/2

∫

�2
dxdy N 2V (N (x − y))

∑

v∈PL

eivy〈ξ, b̌∗
x ǎ

∗
ya

∗(η̌H,y)ǎxavξ 〉
∣∣∣∣

≤ ‖η̌H‖
N 1/2

[ ∫

�2
dxdy N 2V (N (x − y))

∑

v∈PL

|v|−2‖N 1/2
+ b̌x ǎyξ‖2

]1/2

×
[ ∫

�2
dxdy N 2V (N (x − y))

∑

v∈PL

|v|2‖ǎxavξ‖2
]1/2

≤ C	(α−β)/2‖V1/2
N ξ‖‖K1/2

L ξ‖.
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The remaining contributions �3 and �4 can be controlled similarly. We find

|〈ξ,�3ξ 〉| =
∣∣∣∣

1√
N

∫

�2
dxdy N 2V (N (x − y))

∑

r∈PH ,v∈PL

e−ir yηr 〈ξ, b∗
r+v ǎ

∗
x ǎ

∗
y ǎxavξ 〉

∣∣∣∣

≤ 1√
N

[ ∫

�2
dxdy N 2V (N (x − y))

∑

r∈PH ,v∈PL

|v|−2‖br+v ǎx ǎyξ‖2
]1/2

×
[ ∫

�2
dxdy N 2V (N (x − y))

∑

r∈PH ,v∈PL

η2r |v|2‖ǎxavξ‖2
]1/2

≤ C	−β/2‖ηH‖
N

‖N 1/2
+ V1/2

N ξ‖‖N 1/2
+ K1/2

L ξ‖ ≤ C	(α−β)/2‖V1/2
N ξ‖‖K1/2

L ξ‖

as well as

|〈ξ,�4ξ 〉| =
∣∣∣∣

1√
N

∫

�2
dxdy N 2V (N (x − y))

∑

r∈PH ,v∈PL

ηr e
−ivy〈ξ, b∗

r+va
∗−r ǎ

∗
x ǎx ǎyξ 〉

∣∣∣∣

≤ 1√
N

[ ∫

�2
dxdy N 2V (N (x − y))

∑

r∈PH ,v∈PL

|r |−2η2r ‖ǎx ǎyξ‖2
]1/2

×
[ ∫

�2
dxdy N 2V (N (x − y))

∑

r∈PH ,v∈PL

|r |2‖br+va−r ǎxξ‖2
]1/2

≤ C	3(α−β)/2‖V1/2
N ξ‖‖K1/2ξ‖.

Choosing N > 	−3α/2 (to control the r.h.s. of (8.6)), we obtain (8.4). ��
With the help of Proposition 8.1, we can now control the growth of the expectation

of the energy HN w.r.t. cubic conjugation.

Lemma 8.2. There exists a constant C > 0 such that

e−s AHNe
sA ≤ CHN + C	−α(N+ + 1) (8.7)

for all α > β > 0 with α > 4/3, s ∈ [0; 1], 	 ∈ (0; 1/2) and N ∈ N large enough.

Proof. We apply Gronwall’s lemma. For a fixed ξ ∈ F≤N
+ and s ∈ [0; 1], we define

fξ (s) := 〈ξ, e−s AHNe
sAξ 〉.

Then

f ′
ξ (s) = 〈ξ, e−s A[K, A]esAξ 〉 + 〈ξ, e−s A[VN , A]esAξ 〉. (8.8)

Let us first consider the second term. From Proposition 8.1, we find

[VN , A] = 1

N 3/2

∑

r∈�∗
+,v∈PL ,r �=−v

(
V̂ (·/N ) ∗ η

)
(r)

[
b∗
r+va

∗−r av + h.c.
]
+ δVN
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where the operator δVN satisfies (8.4). Switching to position space and applying Cauchy–
Schwarz, we find

∣∣∣∣
1

N 3/2

∑

r∈�∗
+,v∈PL ,r �=−v

(
V̂ (·/N ) ∗ η

)
(r)〈ξ, e−s Ab∗

r+va
∗−r ave

sAξ 〉
∣∣∣∣

=
∣∣∣∣
∫

�2
dxdy N 3/2V (N (x − y))η̌(x − y)

∑

v∈PL

eivx 〈ξ, e−s Aǎ∗
x ǎ

∗
yave

sAξ 〉
∣∣∣∣

≤ C‖η̌‖∞
N

‖V1/2
N esAξ‖

[ ∫

�2
dxdy N 3V (N (x − y))

∥∥∥
∑

v∈PL

eivxave
sAξ

∥∥∥
2
]1/2

≤ C‖V1/2
N esAξ‖‖N 1/2

+ esAξ‖

(8.9)

because, by (4.17), ‖η̌‖∞ ≤ CN and
∫

�

dx
∥∥∥

∑

v∈PL

eivxave
sAξ

∥∥∥
2 =

∑

v∈PL

〈esAξ, a∗
vave

sAξ 〉 ≤ 〈esAξ,N+e
sAξ 〉.

Together with (8.4), using α > β, we conclude that
∣∣∣〈ξ, e−s A[VN , A]esAξ 〉

∣∣∣ ≤ C〈ξ, e−s AHNe
sAξ 〉

if N is large enough. Let us consider the first term on the r.h.s. of (8.8). We compute

[K, A] = 1√
N

∑

r∈PH ,v∈PL

2r2ηr
[
b∗
r+va

∗−r av + h.c.
]

+
2√
N

∑

r∈PH ,v∈PL

r · v ηr
[
b∗
r+va

∗−r av + h.c.
]

=: T1 + T2.

(8.10)

We use (4.10) to rewrite the first term on the r.h.s. of (8.10) as

T1 = − 1√
N

∑

r∈�∗
+,v∈PL ,
r �=−v

(V̂ (·/N ) ∗ f̂N ,	)(r)
[
b∗
r+va

∗−r av + h.c.
]

+
1√
N

∑

r∈Pc
H ,v∈PL ,

r �=−v

(V̂ (·/N ) ∗ f̂N ,	)(r)
[
b∗
r+va

∗−r av + h.c.
]

+
1√
N

∑

r∈PH ,v∈PL

N 3λ	(χ̂	 ∗ f̂N ,	)(r)
[
b∗
r+va

∗−r av + h.c.
]

=: T11 + T12 + T13.

(8.11)

Since ‖ f	‖∞ ≤ 1, the contribution of T11 can be estimated as in (8.9); we obtain

∣∣〈ξ, e−s AT11 e
sAξ 〉∣∣ ≤ C‖V1/2

N esAξ‖‖N 1/2
+ esAξ‖. (8.12)
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The second term in (8.11) can be controlled by

∣∣〈ξ, e−s AT12 e
sAξ 〉∣∣ ≤ C√

N

[ ∑

r∈Pc
H ,v∈PL ,r �=−v

|r |2‖br+va−r e
s Aξ‖2

]1/2

×
[ ∑

r∈Pc
H ,v∈PL ,r �=−v

|r |−2‖ave
sAξ‖2

]1/2

≤ C	−α/2‖K1/2esAξ‖‖N 1/2
+ esAξ‖.

Finally, since (χ̂	 ∗ f̂N ,	)(r) = χ̂	(r) + N−1ηr , the explicit expression

χ̂	(r) = 4π

|r |2
(
sin(	|r |)

|r | − 	 cos(	|r |)
)

and the bound (4.8) imply that |(χ̂	 ∗ f̂N ,	)(r)| ≤ C	|r |−2, for N large enough. With
Lemma 4.1, the third term on the r.h.s. of (8.11) can thus be estimated for α > 4/3 by

∣∣〈ξ, e−s AT13e
sAξ 〉∣∣

≤ C	−2

√
N

[ ∑

r∈PH

|r |2|‖N 1/2
+ a−r e

s Aξ‖2
]1/2[ ∑

r∈PH ,v∈PL

|r |−6‖ave
sAξ‖2

]1/2

≤ C	3α/2−2‖K1/2esAξ‖‖N 1/2
+ esAξ‖ ≤ C‖K1/2esAξ‖‖N 1/2

+ esAξ‖.

(8.13)

So far, we proved that

|〈ξ,T1ξ 〉| ≤ C	−α/2‖H1/2
N esAξ‖‖N 1/2

+ esAξ‖ (8.14)

for all ξ ∈ F≤N
+ . Let us now consider the second term on the r.h.s. of (8.10). We find

∣∣〈ξ, e−s AT2e
sAξ 〉∣∣

≤ C√
N

[ ∑

r∈PH

|r |2|‖N 1/2
+ a−r e

s Aξ‖2
]1/2[ ∑

r∈PH ,v∈PL

|v|2η2r ‖ave
sAξ‖2

]1/2

≤ C	α/2‖K1/2esAξ‖‖K1/2
L esAξ‖.

(8.15)

Together with (8.14), we conclude that

|〈ξ, e−s A[K, A]esAξ 〉| ≤ C〈ξ, e−s AHNe
sAξ 〉 + C	−α〈ξ, e−s AN+e

−s Aξ 〉.

With Proposition 5.1, we obtain the differential inequality

| f ′
ξ (s)| ≤ C fξ (s) + C	−α〈ξ, (N+ + 1)ξ 〉.

By Gronwall’s Lemma, we find (8.7). ��
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The bound (8.7) is not yet ideal, because of the large constant proportional to 	−α

multiplying the number of particles operator N+. To improve it, it is useful to consider
first the growth of the low-momentum part of the kinetic energy operator. For θ > 0, we
set

Kθ =
∑

p∈�∗
+:|p|≤θ

p2a∗
pap.

Comparing with the definition given in Proposition 8.1, we have KL ≡ Kθ=	−β .

Lemma 8.3. There exists a constant C > 0 such that

e−s AKθe
sA ≤ CKθ + C	2(α−β)(HN + 1) (8.16)

for all α > β > 0 with α > 4/3, 	 ∈ (0; 1/2), 0 < θ < 	−α − 	−β , s ∈ [0; 1] and
N ∈ N large enough.

Proof. For a fixed ξ ∈ F≤N
+ , we consider the function gξ : [0; 1] → R, defined

by gξ (s) := 〈ξ, e−s AKθesAξ 〉. For r ∈ PH and v ∈ PL , we observe that |r + v| ≥
|r | − |v| ≥ 	−α − 	−β > θ . Hence, we obtain

[Kθ , A] = 1√
N

∑

r∈PH ,v∈PL

ηr b
∗
r+va

∗−r [Kθ , av] + h.c.

= − 1√
N

∑

r∈PH ,v∈PL :|v|≤θ

|v|2ηr b∗
r+va

∗−r av + h.c.

We estimate
∣∣∣∣

1√
N

∑

r∈PH ,v∈PL :|v|≤θ

|v|2ηr 〈ξ, e−s Ab∗
r+va

∗−r ave
sAξ 〉

∣∣∣∣

≤ 1√
N

∑

r∈PH ,v∈PL :|v|≤θ

|v|
|r + v| |r + v|‖br+va−r e

s Aξ‖ |ηr ||v|‖ave
sAξ‖

≤ C	α−β

√
N

[ ∑

r∈PH ,v∈PL :|v|≤θ

|r + v|2‖br+va−r e
s Aξ‖2

]1/2

×
[ ∑

r∈PH ,v∈PL :|v|≤θ

|ηr |2|v|2‖ave
sAξ‖2

]1/2

≤ C	3α/2−β‖K1/2esAξ‖‖K1/2
θ esAξ‖.

Hence, using K ≤ HN and Lemma 8.2,

|(∂sgξ )(s)|
≤ C	3α−2β〈ξ, e−s AHNe

sAξ 〉 + Cgξ (s) ≤ C	2(α−β)〈ξ, (HN + 1)ξ 〉 + Cgξ (s).

Gronwall’s Lemma implies (8.16). ��
With Lemma 8.3 we can now improve the estimate of Lemma 8.2 for the growth of

the expectation of the potential energy VN .
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Corollary 8.4. There exists a constant C > 0 such that

e−s AVNe
sA ≤ C(HN + 1) (8.17)

for all α > 4/3 and 0 < β < 2α/3, 	 ∈ (0; 1/2) small enough, s ∈ [0; 1] and N ∈ N

large enough.

Proof. For ξ ∈ F≤N
+ , consider the function hξ : [0; 1] → R defined through hξ (s) :=

〈ξ, e−s AVNesAξ 〉. By Proposition 8.1, we have

h′
ξ (s) = 1

N 3/2

∑

r∈�∗
+,v∈PL ,r �=−v

(V̂ (·/N ) ∗ η
)
(r)〈ξ, e−s A([b∗

r+va
∗−r av + h.c.])esAξ 〉

+ 〈ξ, e−s AδVN e
sAξ 〉

where
∣∣〈ξ, e−s AδVN e

sAξ 〉∣∣ ≤ C‖V1/2
N esAξ‖‖K1/2

L esAξ‖ + C	3(α−β)/2‖V1/2
N esAξ‖‖K1/2esAξ‖.

The estimate (8.9), in the proof of Lemma 8.2, shows moreover that
∣∣∣∣

1

N 3/2

∑

r∈�∗
+,v∈PL ,r �=−v

(
V̂ (·/N ) ∗ η

)
(r)〈ξ, e−s Ab∗

r+va
∗−r ave

sAξ 〉
∣∣∣∣

≤ C‖V1/2
N esAξ‖‖N 1/2

+ esAξ‖.
With Proposition 5.1 and Lemmas 8.2, 8.3 (with θ = 	−β ), we deduce that

|h′
ξ (s)| ≤ C‖V1/2

N esAξ‖2 + C(1 + 	2α−3β)〈ξ, (HN + 1)ξ 〉 ≤ Chξ (s) + C〈ξ, (HN + 1)ξ 〉
because β < 2α/3. Notice that, for 	 ∈ (0; 1/2) small enough, we have 2	−β < 	−α;
thus, we may choose indeed θ = 	−β in Lemma 8.2. Applying Gronwall’s Lemma to
the last bound concludes (8.17). ��

Finally, we consider the growth of the kinetic energy operator; in this case, we do not
get a bound uniform in 	; still, we can improve the result of Lemma 8.2 and the estimate
we obtain is sufficient for our purposes.

Corollary 8.5. There exists a constant C > 0 such that

e−s AKesA ≤ C	−(α+β)/2(HN + 1) (8.18)

for all α > 4/3 and 0 < β < 2α/3, s ∈ [0; 1], 	 ∈ (0; 1/2) small enough and N ∈ N

large enough.

Proof. For a fixed ξ ∈ F≤N
+ define jξ : [0; 1] → R by jξ (s) := 〈ξ, e−s AKesAξ 〉. From

(8.10) and (8.11), we infer that

[K, A] = T11 + T12 + T13 + T2

with T11,T12,T13,T2 as in (8.10) and (8.11). Combining (8.12) with Proposition 5.1
and Corollary 8.4, we find

|〈ξ, e−s AT11e
sAξ 〉| ≤ C‖V1/2

N esAξ‖‖N 1/2
+ esAξ‖ ≤ C〈ξ, (HN + 1)ξ 〉. (8.19)
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From (8.13), Proposition 5.1 and Lemma 8.2, we obtain

|〈ξ, e−s AT13e
sAξ 〉| ≤ C	3α/2−2‖K1/2esAξ‖‖N 1/2

+ esAξ‖
≤ C	α−2〈ξ, (HN + 1)ξ 〉 ≤ C〈ξ, (HN + 1)ξ 〉. (8.20)

Using (8.15), Lemmas 8.2 and 8.3, we arrive at

|〈ξ, e−s AT2e
sAξ 〉| ≤ C	α/2‖K1/2esAξ‖‖K1/2

L esAξ‖ ≤ C〈ξ, (HN + 1)ξ 〉. (8.21)

Hence, to show (8.18), we only need to improve the bound on T12. To this end, we set
θ = 	−α − 5	−β/4 and we decompose

T12 = 1√
N

∑

0<|r |≤θ
v∈PL ,r �=−v

(V̂ (·/N ) ∗ f̂N ,	)(r)b
∗
r+va

∗−r av

+
1√
N

∑

θ<|r |≤	−α,
v∈PL ,r �=−v

(V̂ (·/N ) ∗ f̂N ,	)(r)b
∗
r+va

∗−r av

=: T121 + T122.

With Proposition 5.1 and Lemma 8.3, we estimate

∣∣〈ξ, e−s AT121e
sAξ 〉∣∣ ≤ C√

N

∑

0<|r |≤θ,
v∈PL ,r �=−v

|r |‖a−r br+ve
sAξ‖ |r |−1‖ave

sAξ‖

≤ C	−α/2‖K1/2
θ esAξ‖‖N 1/2

+ esAξ‖ ≤ C	−α/2〈ξ, (HN + 1)ξ 〉.

On the other hand, since
∑

θ<|r |<	−α |r |−2 ≤ C	−β , we find, by Proposition 5.1 and
Lemma 8.2,

∣∣〈ξ, e−s AT121e
sAξ 〉∣∣ ≤ C√

N

∑

θ<|r |≤	−α,
v∈PL ,r �=−v

|r |‖a−r br+ve
sAξ‖ |r |−1‖ave

sAξ‖

≤ C	−β/2‖K1/2esAξ‖‖N 1/2
+ esAξ‖ ≤ C	−(α+β)/2〈ξ, (HN + 1)ξ 〉.

Combining the last two bounds with (8.19), (8.20), (8.21), we obtain

| j ′ξ (s)| ≤ C	−(α+β)/2〈ξ, (HN + 1)ξ 〉

for all s ∈ [0; 1]. Integrating over s, we arrive at (8.18). ��
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8.2. Analysis of e−ADNeA. In this section we study the contribution to RN ,	 arising
from the operator DN , defined in (8.2). To this end, it is convenient to use the following
lemma.

Lemma 8.6. There exists a constant C > 0 such that
∣∣∣

∑

p∈�∗
+

Fp〈ξ1, (e−Aa∗
pape

A − a∗
pap)ξ2〉

∣∣∣

≤ C	α/2‖F‖∞‖(N+ + 1)1/2ξ1‖‖(N+ + 1)1/2ξ2‖
(8.22)

for all α, β > 0, ξ1, ξ2 ∈ F≤N
+ , F ∈ 	∞(�∗

+), 	 ∈ (0; 1/2) and N ∈ N large enough.

Proof. The lemma is a simple consequence of Proposition 5.1. We write

∑

p∈�∗
+

Fp(e
−Aa∗

pape
A − a∗

pap) =
∫ 1

0
ds

∑

p∈�∗
+

Fpe
−s A[a∗

pap, A]esA

and compute

∑

p∈�∗
+

Fp[a∗
pap, A] = 1√

N

∑

r∈PH ,v∈PL

(Fr+v + F−r − Fv)ηr b
∗
r+va

∗−r av + h.c..

By Cauchy–Schwarz, we find with the help of Proposition 5.1 that
∣∣∣

1√
N

∑

r∈PH ,v∈PL

(Fr+v + F−r − Fv)ηr 〈esAξ1, b
∗
r+va

∗−r ave
sAξ2〉

∣∣∣

≤ C‖F‖∞√
N

∑

r∈PH ,v∈PL

|ηr |‖ave
sAξ2‖‖a−r br+ve

sAξ1‖

≤ C	α/2‖F‖∞‖(N+ + 1)1/2ξ1‖‖(N+ + 1)1/2ξ2‖.
Since the bound is uniform in the integration variable s ∈ [0; 1], we obtain (8.22). ��
Proposition 8.7. There exists a constant C > 0 such that

e−ADNe
A = 4πa0(N − N+) +

[
V̂ (0) − 4πa0

]N+(1 − N+/N ) + δDN

where

|〈ξ, δDN ξ 〉| ≤ C	α/2〈ξ, (N+ + 1)ξ 〉
for all α, β > 0, ξ ∈ F≤N

+ , 	 ∈ (0; 1/2) and N ∈ N large enough.

Proof. Recall from (8.2) that

DN = 4πa0(N − N+) +
[
V̂ (0) − 4πa0

]N+(1 − N+/N ).

Lemma 8.6 implies that

±
{
e−A [

4πa0(N − N+) +
[
V̂ (0) − 4πa0

]N+
]
eA

− [
4πa0(N − N+) +

[
V̂ (0) − 4πa0

]N+
] }

≤ C	α/2(N+ + 1).
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As for the contribution quadratic in N+, we can write

N−1
〈
ξ,

[
e−AN 2

+ e
A − N 2

+

]
ξ
〉

= N−1
〈
ξ1,

[
e−AN+e

A − N+

]
ξ
〉
+ N−1

〈
ξ,

[
e−AN+e

A − N+

]
ξ2

〉

with ξ1 = e−AN+eAξ and ξ2 = N+ξ . Applying again Lemma 8.6, we obtain
∣∣∣N−1

〈
ξ,

[
e−AN 2

+ e
A − N 2

+

]
ξ
〉∣∣∣

≤ CN−1	α/2‖(N+ + 1)1/2ξ‖
[
‖(N+ + 1)1/2ξ1‖ + ‖(N+ + 1)1/2ξ2‖

]
.

Using (twice) Proposition 5.1, we find

‖(N+ + 1)1/2ξ1‖ = ‖(N+ + 1)1/2e−AN+e
Aξ‖ ≤ C‖(N+ + 1)3/2ξ‖.

Hence,we conclude that
∣∣∣N−1

〈
ξ,

[
e−AN 2

+ e
A − N 2

+

]
ξ
〉∣∣∣

≤ CN−1	α/2‖(N+ + 1)1/2ξ‖‖(N+ + 1)3/2ξ‖ ≤ C	α/2‖(N+ + 1)1/2ξ‖2.
��

8.3. Contributions from e−AKeA. In this subsection, we consider contributions toRN ,	

arising from conjugation of the kinetic energy operator K = ∑
p∈�∗

+
p2a∗

pap. In partic-
ular, in the next proposition, we establish properties of the commutator [K, A].
Proposition 8.8. There exists a constant C > 0 such that

[K, A] = − 1√
N

∑

p∈�∗
+,q∈PL ,p �=−q

(V̂ (·/N ) ∗ f̂N ,	)(p)(b
∗
p+qa

∗−paq + h.c.)

+
8πa0√

N

∑

p∈Pc
H ,q∈PL ,p �=−q

[
b∗
p+qa

∗−paq + h.c.
]
+ δK

where

|〈ξ, δKξ 〉| ≤ C(	3α/2−2 + 	α/2)‖K1/2ξ‖‖(N+ +KL)1/2ξ‖ (8.23)

for all α, β > 0, ξ ∈ F≤N
+ , 	 ∈ (0; 1/2), N ∈ N large enough. Moreover, we have

∣∣∣
8πa0√

N

∑

p∈Pc
H ,q∈PL ,p �=−q

〈ξ,
[
b∗
p+qa

∗−paq , A
]
ξ 〉

∣∣∣

≤ C	3(α−β)/2‖(N+ + 1)1/2ξ‖‖K1/2ξ‖ + C	(α−β)/2‖K1/2
L ξ‖‖N 1/2

+ ξ‖
+ C	α‖K1/2ξ‖2

(8.24)

for all α, β > 0, ξ ∈ F≤N
+ , 	 ∈ (0; 1/2) and N ∈ N large enough.
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Proof. The bound (8.23) is a consequence of Eqs. (8.10), (8.11), (8.13), (8.15) in the
proof of Lemma 8.2, and of the observation that, from the estimate (7.77),
∣∣∣∣

1√
N

∑

p∈Pc
H ,q∈PL ,p �=−q

[
(V̂ (·/N ) ∗ f̂N ,	)(p) − 8πa0

]〈ξ, b∗
p+qa

∗−paqξ 〉
∣∣∣∣

≤ CN−3/2
∑

p∈Pc
H ,q∈PL ,p �=−q

|p|‖bp+qa−pξ‖‖aqξ‖ ≤ CN−1	−3α/2‖K1/2ξ‖‖N 1/2
+ ξ‖

which is bounded by the r.h.s. of (8.23) if N is large enough. Let us now focus on (8.24).
We have

8πa0√
N

∑

p∈Pc
H ,q∈PL ,p �=−q

[
b∗
p+qa

∗−paq , A
]
+ h.c.

= 8πa0
N

∑

r∈PH ,p∈Pc
H ,

q,v∈PL ,p �=−q,r �=−v

ηr
[
b∗
p+qa

∗−paq , b
∗
r+va

∗−r av − a∗
va−r br+v

]
+ h.c..

(8.25)

We split the commutator into the four summands

[b∗
p+qa

∗−paq , b
∗
r+va

∗−r av−a∗
va−r br+v]=

([b∗
p+q , b

∗
r+va

∗−r av]+[a∗
va−r br+v, b

∗
p+q ]

)
a∗−paq

+ b∗
p+q

([a∗−paq , b
∗
r+va

∗−r av] + [a∗
va−r br+v, a

∗−paq ]
)
.
(8.26)

We compute

a∗−paq = − b∗
r+vb

∗−r a
∗−paqδp+q,v = − b∗

r+vb
∗−r a

∗
q−vaqδp+q,v (8.27)

as well as

[a∗
va−r br+v, b

∗
p+q ]a∗−paq

= (1 − N+/N )a∗
va

∗
r+qaqar+vδp+q,−r + (1 − N+/N )a∗

vavδp+q,−r δr+v,−p

+ (1 − N+/N )a∗
va

∗
q−r−va−r aqδp+q,r+v + (1 − N+/N )a∗

vavδp+q,r+vδr,p

− N−1a∗
va

∗
p+qa

∗−pa−r ar+vaq − N−1a∗
va

∗
q−r−va−r aqδr+v,−p − N−1a∗

va
∗
q+r ar+vaqδp,r .

(8.28)

Similarly, we find

b∗
p+q [a∗−paq , b

∗
r+va

∗−r av] = b∗
p+r+vb

∗−pa
∗−r avδq,r+v + b∗

p−r b
∗
r+va

∗−pavδq,−r

− b∗
q−vb

∗
r+va

∗−r aqδ−p,v
(8.29)

and

b∗
p+q [a∗

va−r br+v, a
∗−paq ] = b∗

q+r a
∗
vaqbr+vδr,p − b∗

p+va
∗−pa−r br+vδq,v

+ b∗
q−r−va

∗
va−r bqδr+v,−p.

(8.30)

Taking into account that δr,p = δq,−r = δr+v,q = 0 for r ∈ PH , p ∈ Pc
H , q, v ∈ PL we

obtain, inserting these formulas into (8.25),

8πa0√
N

∑

p∈Pc
H ,q∈PL ,p �=−q

[
b∗
p+qa

∗−paq , A
]
+ h.c. =

7∑

j=1

ϒ j + h.c.
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where

ϒ1 := −16πa0
N

∑

r∈PH ;q,v∈PL ,
q �=v,r �=−v

ηr b
∗
r+vb

∗−r a
∗
q−vaq ,

ϒ2 := 8πa0
N

∑

r∈PH ;q,v∈PL ,
q+r Pc

H ,r �=−q,r �=−v

ηr (1 − N+/N )a∗
va

∗
r+qaqar+v,

ϒ3 := 8πa0
N

∑

r∈PH ,v∈PL ,
r+v∈Pc

H

ηr (1 − N+/N )a∗
vav,

ϒ4 := 8πa0
N

∑

r∈PH ;q,v∈PL ,
q−r−v∈Pc

H

ηr (1 − N+/N )a∗
va

∗
q−r−va−r aq ,

ϒ5 := −8πa0
N 2

∑

r∈PH ,p∈Pc
H ,

q,v∈PL ,p �=−q,r �=−v

ηr a
∗
va

∗
p+qa

∗−pa−r ar+vaq ,

ϒ6 := −8πa0
N 2

∑

r∈PH ;q,v∈PL ,
r+v∈Pc

H ,q �=r+v

ηr a
∗
va

∗
q−r−va−r aq ,

ϒ7 := −8πa0
N

∑

r∈PH ,p∈Pc
H ,

v∈PL ;p,r �=−v

ηr b
∗
p+va

∗−pa−r br+v,

ϒ8 := 8πa0
N

∑

r∈PH ;q,v∈PL ,
r+v∈Pc

H ,q �=r+v

ηr b
∗
q−r−va

∗
va−r bq .

(8.31)

In fact,ϒ1 collects the contribution from (8.27) and the non-vanishing contribution from
(8.29), ϒ2 − ϒ6 corresponds to the five non-vanishing terms on the r.h.s. of (8.28), ϒ7
and ϒ8 reflect the two non-vanishing terms on the r.h.s. of (8.30).

To conclude the proof of Proposition 8.8, we show that all operators in (8.31) satisfy
(8.24). By Cauchy–Schwarz, we observe that

∣∣〈ξ,ϒ1ξ 〉∣∣ ≤ C	α

N

∑

r∈PH ;q,v∈PL ,
q �=v,r �=−v

|ηr |‖aq(N+ + 1)1/2ξ‖|r |‖a−r aq−var+v(N+ + 1)−1/2ξ‖

≤ C	3(α−β)/2‖(N+ + 1)1/2ξ‖‖K1/2ξ‖.
The expectation of ϒ2 is bounded by

∣∣〈ξ,ϒ2ξ 〉∣∣ ≤ C

N

∑

r∈PH ;q,v∈PL ,
q+r∈Pc

H ,r �=−q,r �=−v

|ηr ||q|‖aqar+vξ‖|q|−1‖avar+qξ‖

≤ C	(α−β)/2‖K1/2
L ξ‖‖N 1/2

+ ξ‖
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where we recall the notation KL = K	−β = ∑
|p|≤	−β p2a∗

pap for the low-momenta

kinetic energy. It is simple to see that ±ϒ3 ≤ CN−1	−αN+ and the expectations of the
terms ϒ4, ϒ6 and ϒ8 can all be estimated by the expectation

∣∣〈ξ, (ϒ4 + ϒ6 + ϒ8)ξ 〉∣∣ ≤ C

N

∑

r∈PH ;q,v∈PL ,

|r |≤(	−α+2	−β),q−r−v �=0

|ηr ||v|‖avaq−r−vξ‖|v|−1‖a−r aqξ‖

≤ C	(α−β)/2‖K1/2
L ξ‖‖N 1/2

+ ξ‖.
Finally, the expectations of ϒ5 and ϒ7 can be bounded by

∣∣〈ξ,ϒ5ξ〉∣∣

≤ C	α

N 2

∑

r∈PH ,p∈Pc
H ,

q,v∈PL ,p �=−q,r �=−v

|ηr ||p|‖a−pavap+qξ‖|p|−1|r |‖a−r ar+vaqξ‖ ≤ C	α‖K1/2ξ‖2

and by

∣∣〈ξ,ϒ7ξ〉∣∣ ≤ C	α

N

∑

r∈PH ,p∈Pc
H ,

v∈PL ;p,r �=−v

|ηr ||p|‖a−pap+vξ‖|p|−1|r |‖a−r ar+vξ‖ ≤ C	α‖K1/2ξ‖2.

��

8.4. Analysis of e−AQN ,	eA. In this subsection, we consider contributions to RN ,	

arising from conjugation of QN ,	, as defined in (8.2).

Proposition 8.9. There exists a constant C > 0 such that

e−AQN ,	e
A = V̂ (0)

∑

p∈Pc
H

a∗
pap(1 − N+/N ) + 4πa0

∑

p∈Pc
H

[
b∗
pb

∗−p + bpb−p
]
+ δQN ,	

where

± δQN ,	
≤ C	(α−β)/2(HN + 1) (8.32)

for all α > 4/3, 0 < β < 2α/3, 	 ∈ (0; 1/2) small enough and N ∈ N large enough.

Proof. Proceeding as in the proof of Proposition 8.7, it follows from Lemma 8.6 that

±
[
V̂ (0)

∑

p∈Pc
H

e−Aa∗
pap(1 − N/N+)e

A − V̂ (0)
∑

p∈Pc
H

a∗
pap(1 − N/N+)

]

≤ C	α/2(N+ + 1).

(8.33)

Let us thus focus on the remaining part of R(2,V )
N ,	 . We expand

4πa0
∑

p∈Pc
H

(
e−A[

b∗
pb

∗−p + bpb−p
]
eA − [

b∗
pb

∗−p + bpb−p
])

= 4πa0

∫ 1

0
ds

∑

p∈Pc
H

e−s A[
b∗
pb

∗−p, A
]
esA + h.c.

(8.34)
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We compute
[
b∗
pb

∗−p, b
∗
r+va

∗−r av − a∗
va−r br+v] = b∗

r+v

[
b∗
pb

∗−p, a
∗−r av

]
+

[
a∗
va−r br+v, b

∗
pb

∗−p

]

where

b∗
r+v

[
b∗
pb

∗−p, a
∗−r av

] = −b∗
r+vb

∗−vb
∗−r (δ−p,v + δp,v)

and
[
a∗
va−r br+v, b

∗
pb

∗−p

] = b∗
vb

∗
r br+v(δ−r,p + δr,p) + (1 − N+/N )b∗−r−va

∗
va−r (δr+v,p + δr+v,−p)

− 2N−1b∗
va

∗
r ar+v(δp,−r + δr,p) − 2N−1b∗

pa
∗−pa

∗
va−r ar+v.

Using the fact that δp,−r = δp,r = 0 for r ∈ PH and p ∈ Pc
H , we find that

∑
p∈Pc

H[
b∗
pb

∗−p, A
]
+ h.c. = ∑3

i=1(�i + h.c.), where

�1 := − 2√
N

∑

r∈PH ,v∈PL

ηr b
∗
r+vb

∗−r b
∗−v,

�2 := 2√
N

∑

r∈PH ,v∈PL :r+v∈Pc
H

ηr (1 − N+/N )b∗−r−va
∗
va−r ,

�3 := − 2

N 3/2

∑

r∈PH ,v∈PL ,p∈Pc
H

ηr b
∗
pa

∗−pa
∗
va−r ar+v.

Let us now bound the expectation of the operators�i , i = 1, 2, 3,. ByCauchy–Schwarz,
we find that

|〈ξ,�1ξ 〉| ≤
∣∣∣∣

2√
N

∑

r∈PH ,v∈PL

ηr 〈ξ, b∗
r+vb

∗−r b
∗−vξ 〉

∣∣∣∣

≤ C√
N

∑

r∈PH ,v∈PL

|ηr ||v|−1‖(N+ + 1)1/2ξ‖ |v|‖b−vbr+vb−r (N+ + 1)−1/2ξ‖

≤ C	(α−β)/2‖(N+ + 1)1/2ξ‖‖K1/2
L ξ‖

as well as

|〈ξ,�2ξ 〉| ≤
∣∣∣∣

2√
N

∑

r∈PH ,v∈PL :r+v∈Pc
H

ηr 〈ξ, (1 − N+/N )b∗−r−va
∗
va−rξ 〉

∣∣∣∣

≤ C√
N

∑

r∈PH ,v∈PL

|ηr ||v|−1‖(N+ + 1)1/2ξ‖|v|‖a−vbr+vξ‖

≤ C	(α−β)/2‖(N+ + 1)1/2ξ‖‖K1/2
L ξ‖.

To bound �3 we notice that

∣∣〈ξ,�3ξ 〉∣∣ ≤ C	α

N 3/2

∑

r∈PH ,v∈PL ,p∈Pc
H

|ηr ||p|‖apav(N+ + 1)1/2ξ‖|p|−1|r |‖a−r ar+vξ‖

≤ C	α‖K1/2ξ‖2.
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With (8.34), we conclude that

±
[
4πa0

∑

p∈Pc
H

(
e−A[

b∗
pb

∗−p + bpb−p
]
eA − [

b∗
pb

∗−p + bpb−p
])]

≤ C
∫ 1

0
ds e−s A[

	(α−β)/2(N+ +KL + 1) + 	αK]
esA.

Finally, we apply Proposition 5.1, Lemma 8.3 and Corollary 8.5 to conclude that

±
[
4πa0

∑

p∈Pc
H

(
e−A[

b∗
pb

∗−p+bpb−p
]
eA−[

b∗
pb

∗−p+bpb−p
])]

≤ C	(α−β)/2(HN +1).

Together with the estimate (8.33), we arrive at (8.32). ��

8.5. Contributions from e−ACNeA. In this subsection, we consider contributions to
RN ,	 arising from conjugation of the cubic operator CN defined in (8.2). In particu-
lar, in the next proposition, we establish properties of the commutator [CN , A].
Proposition 8.10. There exists a constant C > 0 such that

[CN , A
] = 2

N

∑

r∈PH ,v∈PL

[
V̂ (r/N )ηr + V̂ ((r + v)/N )ηr

]
a∗
vav

(N − N+)

N
+ δCN

where

|〈ξ, δCN ξ 〉| ≤ C	3(α−β)/2‖(VN +N+ + 1)1/2ξ‖‖K1/2ξ‖
+ C	(α−β)/2‖(KL + VN +N+)

1/2ξ‖2 (8.35)

for all α, β > 0, 	 ∈ (0; 1/2) and N ∈ N large enough.

Proof. We have

[CN , A
] = 1

N

∑

p,q∈�∗
+:p+q �=0

r∈PH ,v∈PL

V̂ (p/N )ηr
[
b∗
p+qa

∗−paq , b
∗
r+va

∗−r av − a∗
va−r br+v

]
+ h.c.

From (8.26), (8.27), (8.28), (8.29) and (8.30) we arrive at

[CN , A
] = 2

N

∑

r∈PH ,v∈PL

[
V̂ (r/N )ηr + V̂ ((r + v)/N )ηr

]
a∗
vav

N − N+

N

+
12∑

j=1

(� j + h.c.) (8.36)
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where

�1 := − 1

N

∑

r∈PH ,v∈PL ,
p∈�∗

+:p �=v

V̂ (p/N )ηr b
∗
r+vb

∗−r a
∗−pav−p,

�2 := 1

N

∑

r∈PH ,v∈PL ,
p∈�∗

+:r �=−p

V̂ (p/N )ηr (1 − N+/N )a∗
va

∗−pa−r−par+v,

�3 := 1

N

∑

r∈PH ,v∈PL ,
p∈�∗

+:r+v �=p

V̂ (p/N )ηr (1 − N+/N )a∗
va

∗−pa−r ar+v−p,

�4 := − 1

N 2

∑

r∈PH ,v∈PL ,
p,q∈�∗

+:p+q �=0

V̂ (p/N )ηr a
∗
va

∗
p+qa

∗−pa−r ar+vaq ,

�5 := − 1

N 2

∑

r∈PH ,v∈PL ,
q∈�∗

+:r+v �=q

V̂ ((r + v)/N )ηr a
∗
va

∗
q−r−va−r aq ,

�6 := − 1

N 2

∑

r∈PH ,v∈PL ,
q∈�∗

+:r �=−q

V̂ (r/N )ηr a
∗
va

∗
q+r ar+vaq ,

�7 := 1

N

∑

r∈PH ,v∈PL ,
p∈�∗

+:r+v �=−p

V̂ (p/N )ηr b
∗
p+r+vb

∗−pa
∗−r av,

�8 := 1

N

∑

r∈PH ,v∈PL ,
p∈�∗

+:r �=−p

V̂ (p/N )ηr b
∗
p−r b

∗
r+va

∗−pav,

�9 := − 1

N

∑

r∈PH ,v∈PL ,
q∈�∗

+:q �=v

V̂ (v/N )ηr b
∗
q−vb

∗
r+va

∗−r aq ,

�10 := 1

N

∑

r∈PH ,v∈PL ,
q∈�∗

+:r �=−q

V̂ (r/N )ηr b
∗
q+r a

∗
vaqbr+v,

as well as

�11 := − 1

N

∑

r∈PH ,v∈PL ,
p∈�∗

+:p �=−v

V̂ (p/N )ηr b
∗
p+va

∗−pa−r br+v,

�12 := 1

N

∑

r∈PH ,v∈PL ,
q∈�∗

+:q �=r+v

V̂ ((r + v)/N )ηr b
∗
q−r−va

∗
va−r bq .

In fact, the first term on the r.h.s. of (8.36) arises from the second and fourth terms on the
r.h.s. of (8.28), together with their Hermitean conjugates. The commutator (8.27) yields
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�1, the remaining terms from (8.28) produce the contributions �2 to �6, from (8.29)
we find the operators �7 to �9 and from (8.30) we obtain �10, �11, �12.

To conclude the proof of the proposition, we have to show that all terms � j , j =
1, . . . , 12, satisfy the bound (8.35). The expectation of �1 can be controlled with
Cauchy–Schwarz by

∣∣〈ξ,�1ξ 〉∣∣ ≤ C	α

N

∑

r∈PH ,v∈PL ,
p∈�∗

+:p �=v

|ηr |‖(N+ + 1)1/2av−pξ‖|r |‖a−r ar+va−p(N+ + 1)−1/2ξ‖

≤ C	3(α−β)/2‖(N+ + 1)1/2ξ‖‖K1/2ξ‖.
The same bound applies (after relabeling) to �9; we find

∣∣〈ξ,�9ξ 〉∣∣ ≤ C	3(α−β)/2‖(N+ + 1)1/2ξ‖‖K1/2ξ‖.

Also the expectations of the terms �2, �3 and (again after relabeling) of the terms �5,
�6, �10, �12 can be bounded similarly. We find

|〈ξ,�2ξ〉| + |〈ξ,�3ξ〉| + |〈ξ,�5ξ〉| + |〈ξ,�6ξ〉| + |〈ξ,�10ξ〉| + |〈ξ,�12ξ〉|
≤ C	α

N

∑

r∈PH ,v∈PL ,p∈�∗
+

(
|ηr |‖ava−pξ‖|r + v|‖ar+va−r−pξ‖ + |ηr |‖a−pavξ‖|r |‖a−r ar+v−pξ‖

+ |ηr |‖avap−r−vξ‖|r |‖a−r apξ‖ + |ηr |‖avap+r ξ‖|r + v|‖ar+vapξ‖
+ |ηr |‖ap+r avξ‖|r + v|‖ar+vapξ‖ + |ηr |‖ap−r−vavξ‖|r |‖a−r apξ‖

)

≤ C	3(α−β)/2‖(N+ + 1)1/2ξ‖‖K1/2ξ‖.

To control the remaining terms, we switch to position space and use the potential energy
operator VN . We start with �4. Applying Cauchy–Schwarz, we find

|〈ξ,�4ξ 〉| =
∣∣∣∣
1

N

∫

�2
dxdy N 2V (N (x − y))

∑

r∈PH ,v∈PL

ηr 〈ξ, ǎ∗
x ǎ

∗
ya

∗
va−r ar+v ǎxξ 〉

∣∣∣∣

≤ 1

N

∫

�2
dxdy N 2V (N (x − y))

∑

r∈PH ,v∈PL

|ηr |‖av ǎx ǎyξ‖‖a−r ar+v ǎxξ‖

≤ C	α/2‖V1/2
N ξ‖‖N 1/2

+ ξ‖.
Next, we rewrite �7, �8 and �11 as

�7 =
∫

�2
dxdy N 2V (N (x − y))

∑

r∈PH ,v∈PL

ei(r+v)xηr b̌
∗
x b̌

∗
ya

∗−r av,

�8 =
∫

�2
dxdy N 2V (N (x − y))

∑

r∈PH ,v∈PL

e−ir xηr b̌
∗
x b̌

∗
ya

∗
r+vav,

�11 = −
∫

�2
dxdy N 2V (N (x − y))

∑

r∈PH ,v∈PL

eivxηr b̌
∗
x b̌

∗
ya−r br+v.
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Thus, we obtain

|〈ξ,�7ξ 〉| ≤
∫

�2
dxdy N 2V (N (x − y))

∑

r∈PH

‖ǎx ǎya−rξ‖|ηr |
∥∥∥

∑

v∈PL

eivxavξ

∥∥∥

≤ C	α/2‖V1/2
N ξ‖

[ ∫

�

dx
∑

v,v′∈PL

ei(v−v′)x 〈ξ, a∗
v′avξ 〉

]1/2

≤ C	α/2‖V1/2
N ξ‖‖N 1/2

+ ξ‖

as well as

|〈ξ,�8ξ 〉| + |〈ξ,�11ξ 〉|
≤ C

∫

�2
dxdy N 2V (N (x − y))

×
∑

r∈PH ,v∈PL

(
|v|−1‖ǎx ǎyar+vξ‖|ηr ||v|‖avξ‖ + C	α|ηr |‖ǎx ǎyξ‖|r |‖a−r br+vξ‖

)

≤ C	(α−β)/2‖V1/2
N ξ‖‖K1/2

L ξ‖ + C	3(α−β)/2‖V1/2
N ξ‖‖K1/2ξ‖.

Collecting all the bounds above, we arrive at (8.35). ��

8.6. Proof of Proposition 5.2. Let us now combine the results of Sects. 8.1–8.5 to prove
Proposition 5.2. Here, we assume α > 3 and α/2 < β < 2α/3.

From Propositions 8.7 and 8.9 we obtain that

RN ,	 ≥ 4πa0(N − N+) +
[
V̂ (0) − 4πa0

]N+(1 − N+/N )

+ V̂ (0)
∑

p∈Pc
H

a∗
pap(1 − N+/N ) + 4πa0

∑

p∈Pc
H

[
b∗
pb

∗−p + bpb−p
]

+ K + CN + VN +
∫ 1

0
ds e−s A[K + CN + VN , A

]
esA

− C	(α−β)/2(HN + 1)

with CN defined as in (8.2). From Propositions 8.1, 8.8 and 8.10, we can write, for N
large enough,

[K + CN + VN , A
]

≥ − 1√
N

∑

p∈�∗
+,q∈PL ,

p �=−q

V̂ (p/N )
[
b∗
p+qa

∗−paq + h.c.
]
+
8πa0√

N

∑

p∈Pc
H ,q∈PL ,

p �=−q

[
b∗
p+qa

∗−paq + h.c.
]

+
2

N

∑

r∈PH ,v∈PL

[
V̂ (r/N )ηr + V̂ ((r + v)/N )ηr

]
a∗
vav(1 − N+/N )

− C(	α−2 + 	(α−β)/4)(N+ + VN +KL ) − C(	5(α−β)/2 + 	(3α+β)/4 + 	2α−2)K.
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From Proposition 5.1, Lemma 8.3, Corollaries 8.4 and 8.5 and recalling the Defini-
tion (8.2) of the operator CN , we deduce that

∫ 1

0
ds e−s A[K + CN + VN , A

]
esA

≥
∫ 1

0
ds e−s A

[
− CN +

8πa0√
N

∑

p∈Pc
H ,q∈PL ,

p �=−q

[
b∗
p+qa

∗−paq + h.c.
]

+
2

N

∑

r∈PH ,v∈PL

[
V̂ (r/N )ηr + V̂ ((r + v)/N )ηr

]
a∗
vav

(N − N+)

N

]
esA

+
1√
N

∫ 1

0
ds

∑

p∈�∗
+,q∈Pc

L ,

p �=−q

V̂ (p/N )e−s A[
b∗
p+qa

∗−paq + h.c.
]
esA

− C(	(α−β)/4 + 	α−2 + 	2α−3β)(HN + 1).

(8.37)

The expectation of the operator on the fourth line can be estimated after switching to
position space with Corollaries 8.4 and 8.5. We find

∣∣∣∣
1√
N

∫ 1

0
ds

∑

p∈�∗
+,q∈Pc

L ,

p �=−q

V̂ (p/N )〈ξ, e−s Ab∗
p+qa

∗−paqe
sAξ 〉

∣∣∣∣

≤
∫ 1

0
ds

∫

�2
dxdy N 5/2V (N (x − y))‖ǎx ǎyes Aξ‖

∥∥∥
∑

q∈Pc
L

eiqxaqe
sAξ

∥∥∥

≤ C
∫ 1

0
ds ‖V1/2

N esAξ‖
[ ∫

�

dx
∑

q,q ′∈Pc
L

ei(q−q ′)x 〈esAξ, a∗
q ′aqe

sAξ 〉
]1/2

≤ C	β

∫ 1

0
ds ‖V1/2

N esAξ‖‖K1/2esAξ‖ ≤ C	(3β−α)/4‖(HN + 1)1/2ξ‖2.
(8.38)

Next, we consider the term on the third line of (8.37). With Lemma 4.1, part (ii), and
since α > 1, we have

∣∣∣∣
1

N

∑

r∈PH

[
V̂ (r/N )ηr + V̂ ((r + v)/N )ηr

] − [
16πa0 − 2V̂ (0)

]∣∣∣∣ ≤ C	−α|v|
N

for every v ∈ PL . With Lemmas 8.3, 8.6 and Proposition 5.1 we obtain, for N ≥ 	−3α ,

±
[
1

N

∑

r∈PH ,v∈PL

[
V̂ (r/N )ηr + V̂ ((r + v)/N )ηr

]
e−s Aa∗

vav

(N − N+)

N
esA

− [
16πa0 − 2V̂ (0)

] ∑

v∈PL

a∗
vav

(N − N+)

N

]

≤ C(N−1	−β + 	α/2)(HN + 1) ≤ C	α/2(HN + 1).

(8.39)
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To handle the second term on the second line of (8.37), we apply Propositions 8.8 and
5.1, Lemma 8.3 and Corollary 8.5 to conclude, again for N ≥ 	−3α ,

±
(
8πa0√

N

∫ 1

0
ds

∑

p∈Pc
H ,q∈PL ,

p �=−q

[
e−s Ab∗

p+qa
∗−paqe

sA − b∗
p+qa

∗−paq
]
+ h.c.

)

= ±
(
8πa0√

N

∫ 1

0
ds

∫ s

0
dt

∑

p∈Pc
H ,q∈PL ,

p �=−q

e−t A
[
b∗
p+qa

∗−paq , A
]
et A

)

≤ C
(
	(2α−3β) + 	(α−β)/2)(HN + 1).

As for the first term on the second line of (8.37), we use again Proposition 8.10.
Proceeding then as in (8.39), we have

∫ 1

0
ds e−s ACNesA = CN +

∫ 1

0
ds

∫ s

0
dt e−t A[CN , A]et A

≤ CN +
[
16πa0 − 2V̂ (0)

] ∑

p∈PL

a∗
pap

(N − N+)

N

+ C
(
	(α−β)/2 + 	2α−3β)

(HN + 1).

(8.40)

Inserting the bounds (8.38)–(8.40) into (8.37) and using additionally the simple bounds

0 ≤
∑

p∈Pc
L∩PH

a∗
pap ≤

∑

p∈Pc
L

a∗
pap ≤ 	2βK

and
∣∣∣
8πa0√

N

∑

p∈Pc
H ,q∈Pc

L ,

p �=−q

〈ξ, b∗
p+qa

∗−paqξ 〉
∣∣∣ ≤ C	β

√
N

∑

p∈Pc
H ,q∈Pc

L ,

p �=−q

|p|‖a−pap+qξ‖|p|−1|q|‖aqξ‖

≤ C	β−α/2

√
N

‖K1/2N 1/2
+ ξ‖

[ ∑

q∈Pc
L

|q|2‖aqξ‖2
]1/2

≤ C	β−α/2‖K1/2ξ‖2

we arrive at

RN ,	 ≥ 4πa0(N − N+) + 4πa0 N+
(N − N+)

N

+ 8πa0
∑

p∈Pc
H

a∗
pap

(N − N+)

N
+ 4πa0

∑

p∈Pc
H

[
b∗
pb

∗−p + bpb−p
]

+
8πa0√

N

∑

p∈Pc
H ,q∈�∗

+:p �=−q

[
b∗
p+qa

∗−paq + h.c.
]
+

(
1 − C	κ

)
(HN + 1)

(8.41)

with κ = min[(α − β)/4;α − 3;β − α/2; 2α − 3β] > 0 under the assumptions α > 3
and α/2 < β < 2α/3.
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We define now the function ν	 ∈ L∞(�) by setting

ν	(x) := 8πa0
∑

p∈{0}∪Pc
H

eip·x = 8πa0
∑

p∈�∗:|p|≤	−α

eip·x .

In other words, ν	 is defined so that ν̂	(p) = 8πa0 for all p ∈ �∗ with |p| ≤ 	−α and
ν̂	(p) = 0 otherwise. Observe, in particular, that ν̂	(p) ≥ 0 for all p ∈ �∗. Proceeding
as in (2.4), but now with V̂ (p/N ) replaced by ν̂	(p), we find that

UN

⎡

⎣ 1

N

N∑

i< j

ν	(xi − x j )

⎤

⎦U∗
N

= (N − 1)

N
4πa0(N − N+) + 4πa0 N+

(N − N+)

N

+ 8πa0
∑

p∈Pc
H

a∗
pap

(N − N+)

N
+ 4πa0

∑

p∈Pc
H

(b∗
pb

∗−p + bpb−p)

+
8πa0√

N

∑

p∈Pc
H ,q∈�∗

+,p �=−q

[b∗
p+qa

∗−paq + a∗
qa−pbp+q ]

+
4πa0
N

∑

p,q∈�∗
+,r∈Pc

H :r �=−p,−q

a∗
p+r a

∗
qapaq+r .

Comparing with (8.41) and noticing that

4πa0
N

∑

p,q∈�∗
+,r∈Pc

H :
r �=−p,−q

〈ξ, a∗
p+r a

∗
qapaq+rξ 〉 ≤ C

N

∑

p,q∈�∗
+,r∈Pc

H :
r �=−p,−q

‖ap+r aqξ‖‖apaq+rξ‖

≤ C	−3α

N
‖N+ξ‖2

we conclude that

RN ,	 ≥ UN

⎡

⎣ 1

N

N∑

i< j

ν	(xi − x j )

⎤

⎦U∗
N

+(1 − C	κ)HN − C	−3αN 2
+ /N − C	κ . (8.42)

Following standard arguments, for example from [15, Lemma 1], we observe now that,
since ν̂	(p) ≥ 0 for all p ∈ �∗,

0 ≤
∫

�2
dxdy ν	(x − y)

⎡

⎣
N∑

j=1

δ(x − x j ) − N

⎤

⎦
[

N∑

i=1

δ(y − xi ) − N

]

=
N∑

i, j=1

ν	(xi − x j ) − N 2ν̂	(0) = 2
N∑

i< j

ν	(xi − x j ) + Nν	(0) − N 2ν̂	(0).
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This implies that

1

N

N∑

i< j

ν	(xi − x j ) ≥ N

2
ν̂	(0) − ν	(0) ≥ 4πa0N − C	−3α.

From (8.42), we finally obtain

RN ,	 ≥ 4πa0N + (1 − C	κ)HN − C	−3αN 2
+ /N − C	−3α.

This completes the proof of Proposition 5.2.
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A. Properties of the Scattering Function

In this appendix we give a proof of Lemma 4.1 containing the basic properties of the
solution of the Neumann problem (4.1).

Proof of Lemma 4.1. Part (i) and the bounds 0 ≤ f	, w	 ≤ 1 in part (ii) follow from [6,
Lemma A.1]. We prove (4.6). We set r = |x | and m	(r) = r f	(r). We rewrite (4.1) as

− m′′
	(r) +

1

2
V (r)m	(r) = λ	m	(r). (A.1)

Let R > 0 be the radius of the support of V , so that V (x) = 0 for all x ∈ R
3 with

|x | > R. For r ∈ (R, N	] we can solve (A.1) explicitly; since the boundary conditions
f	(N	) = 1 and (∂r f	)(N	) = 0 translate into m	(N	) = N	 and m′

	(N	) = 1, we
find

m	(r) = λ
−1/2
	 sin(λ1/2	 (r − N	)) + N	 cos(λ1/2	 (r − N	)). (A.2)

With the result of part (i), we obtain

m	(r) = r − a0 +
3

2

a0

N	
r − 1

2

a0

(N	)3
r3 +O(a20(N	)−1) (A.3)

for all r ∈ (R, N	] (the error is uniform in r ). Using the scattering equation we can
write

∫
V (x) f	(x)dx = 4π

∫ N	

0
dr rV (r)m	(r) = 8π

∫ N	

0
dr (rm′′

	(r) + λ	rm	(r)).
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Integrating by parts, we observe that the first contribution on the r.h.s. vanishes (because
m	(N	) = N	, m′

	(N	) = 1 and m	(0) = 0). With the result of part (i) and with (A.3),
we get

8πλ	

∫ N	

0
dr rm	(r) = 8πλ	

(
(N	)3

3
+O(

a0(N	)2
)) = 8πa0 +O(

a20/	N
)

which proves (4.6).
We consider now part (iii). Combining (A.3) for r ∈ (R, N	] with w	(r) ≤ 1 for

r ≤ R, we obtain the first bound in (4.7). To show the second bound in (4.7), we observe
that, for r ∈ (R, N	], (A.2) and the estimate in part (i) imply that | f ′

	(r)| ≤ Cr−2, for
a constant C > 0 independent of N and 	, provided N	 ≥ 1. For r < R we write,
integrating by parts,

f ′
	(r) = m′

	(r)r − m	(r)

r2
= 1

r2

∫ r

0
ds s m′′

	(s).

With (A.1) and since 0 ≤ f	 ≤ 1, we obtain

| f ′
	(r)| =

∣∣∣
1

r2

∫ r

0
ds s

[1
2
V (s)m	(s) − λ	m	(s)

]∣∣∣

= 1

r2

[ 1

8π

∫

|x |<r
dx V (x) f	(x) + λ	

∫

|x |<r
dx f	(x)

]
≤ C(‖V ‖3 + 1)

for a constant C > 0 independent of N and 	, if N	 ≥ 1 and for all 0 < r < R. This
concludes the proof of the second bound in (4.7).

To show part (iv), we use (4.4) and we observe that, by (4.5), (4.6) and f	 ≤ 1, there
exists a constant C > 0 such that

|ŵ	(p/N )| ≤ N 2

p2

[(
V̂ (./N ) ∗ f̂N ,	

)
(0) + C	−3(χ̂	 ∗ f̂N ,	

)
(0)

]

≤ N 2

p2

[∫
V (x) f	(x)dx + C	−3

∫
χ	(x) f	(Nx)dx

]
≤ CN 2

p2

for all N ∈ N and 	 > 0, if N	 ≥ 1. ��
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