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Abstract: We consider systems of bosons trapped in a box, in the Gross—Pitaevskii
regime. We show that low-energy states exhibit complete Bose—Einstein condensation
with an optimal bound on the number of orthogonal excitations. This extends recent re-
sults obtained in Boccato et al. (Commun Math Phys 359(3):975-1026, 2018), removing
the assumption of small interaction potential.

1. Introduction

We consider systems of N bosons trapped in the three-dimensional box A = [0; 1]3, with
periodic boundary conditions (the three dimensional torus with volume one), interacting
through a repulsive potential with scattering length of the order N~!, a scaling limit
known as the Gross—Pitaevskii regime. The Hamilton operator is given by

N N
Hy =) —Ay+Y N*V(N(x —xj)) (1.1)
j=1 i<j

and acts on a dense subspace of L%(AN ), the Hilbert space consisting of functions in
L%(AN) that are invariant with respect to permutations of the N particles. We assume here
V e L3(R?) to have compact support and to be pointwise non-negative (i.e. V (x) > 0
for almost all x € RY).

Instead of trapping the Bose gas into the box A = [0; 1]* and imposing periodic
boundary conditions, one could also confine particles through an external potential Ve :
R? — R, with Vey(x) — 00, as |x| — oo. In this case, the Hamilton operator would
have the form

N

N
H]t;ap = Z [_ij + Vext(xj)] + ZNZV(N(xi = Xj)) (1.2)
j=1 i<j
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and it would act on a dense subspace of LE(RW ).

Lieb et al. proved in [12] that the ground state energy E;{,ap of (1.2) is such that, as
N — oo,

Etrap
N min Egp(p)
N peL2(R3):[lpl=1

with the Gross—Pitaevskii energy functional

are) = [ [196P + VeuloP + dmaolol*] s (1.3)

where ag denotes the scattering length of the unscaled interaction potential V.

In [10], Lieb—Seiringer also proved that the normalized ground state vector 1//;\r,ap of
(1.2) exhibits complete Bose—Einstein condensation in the minimizer ¢gp of (1.3), mean-
ing that its reduced one-particle density matrix yy = tra,. n |1/f1t\r,ap) (w;\r,apl (normalized
so that tr yy = 1) satisfies

.....

YN — locp) (pcpl (1.4)

as N — oo (convergence holds in the trace norm topology; since the limit is a rank-
one projection, all reasonable notions of convergence are equivalent). Equation (1.4)
asserts that, in the ground state of (1.2), all bosons, up to a fraction that vanishes in
the limit N — 00, occupy the same one-particle state pgp. In [11], Lieb—Seiringer
extended Eq. (1.4) to reduced density matrices associated with normalized sequences
of approximate ground states, ie. states with expected energy per particle converging to
the minimum of (1.3) (under the constraint ||¢|| = 1).

A new proof of the results described above has been later obtained by Nam et al. [14],
making use of the quantum de Finetti theorem, first proposed in the mean-field setting
by Lewin et al. [7,8].

The results of [10-12,14] can be translated to the Hamilton operator (1.1), defined
on the torus, with no external potential. They imply, first of all, that the ground state
energy Ey of (1.1) is such that

lim ZY _y4 (1.5)
im — =4magp. .
N—oo N a0

Furthermore, they imply that for any sequence of approximate ground states, ie. for any
sequence ¥y € L2(AN) with |||l = 1 and

1
lim N(WN,HNWN) =4dmag, (1.6)

N—o0

the reduced density matrices yy = tra,_ n|¥n) (¥ n| are such that

lim tr [yn — [@o){¢oll =0 (L7
N—o0

where ¢g € L%(A) is the zero momentum mode defined by ¢o(x) = 1 for all x € A.
Since we will make use of this result in our analysis and since, strictly speaking, the
translation invariant Hamiltonian (1.1) is not treated in [11,14], in the version of this
paper posted on the arXiv we added a sketch of the proof of (1.7), adapting the arguments
of [14].
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Under the additional assumption that the interaction potential V is sufficiently small,
in [1] we recently improved (1.5) and (1.7), obtaining quantitative estimates showing, on
the one hand, that £y —4m ag N remains bounded, uniformly in N, and, on the other hand,
that every sequence of approximate ground states ¥ of (1.1) exhibit Bose—Einstein
condensation, with number of excitations bounded by the excess energy (¥, Hvyy) —
4mapN. The goal of the present paper is to extend the results of [1], removing the
assumption of small interaction.

Theorem 1.1. Let V € L3(R?) have compact support and be spherically symmetric and
non-negative. Then there exists a constant C > O such that the ground state energy Ey
of (1.1) satisfies

|Ey —4magN| < C. (1.8)
Furthermore, consider a sequence ¥y € L?(AN ) with |[Yn || = 1 and such that
(Un, HyYn) < 4magN + K

for a K > 0. Then the reduced density matrix yy = tra,_ nN|WnN)¥nN| associated with
Y is such that

C(K+1)

1— , < — 1.9
{90, YN®O) N (1.9)

forall N € N large enough.

Remark. Equation (1.9) gives a bound on the number of orthogonal excitations of the
Bose-Einstein condensate, for low-energy states of the Hamilton operator (1.1). It im-
plies that

(W dT(1 = lgo)govn) = N — (¥ a*@o)algo)¥w)
= N [1— (g0 yvgo)] < C(K +1)

and thus that, for low-energy states yy with finite excess energy K, the number of
excitations of the Bose—Einstein condensate remains bounded, uniformly in N. Notice
that the bounds (1.9), (1.10) remain valid and non-trivial even if K grows,as N — 00, as
longas K < N;inparticular, they imply complete BEC for all sequences of approximate
ground states 1y satisfying (1.6).

(1.10)

To prove Theorem 1.1, we are going to introduce, in Sect. 2, an excitation Hamilto-
nian Ly, factoring out the Bose—Einstein condensate. In Sect. 3, we define generalized
Bogoliubov transformations that are used in Sect. 4 to model correlations among par-
ticles and to define a renormalized excitation Hamiltonian Gy ¢; important properties
of Gy ¢ are collected in Propositions 4.2 and 4.3. A second renormalization, this time
through the exponential of an operator cubic in creation and annihilation operators, is
performed in Sect. 5, leading to a new twice renormalized Hamiltonian Ry ¢; an im-
portant bound for Ry ¢ is stated in Proposition 5.2. In Sect. 6, we use the results of
Propositions 4.2, 4.3 and 5.2 to show Theorem 1.1. Sections 7 and 8 are devoted to the
proof of Proposition 4.2 and, respectively, of Proposition 5.2.

The main novelty, with respect to the analysis in [1] is the need for the second
renormalization, through the exponential S = e? of a cubic operator A. Under the
additional assumption of small potential, the analysis of Gy ¢ was enough in [1] to show
Bose—Einstein condensation in the form (1.9). Here, this is not the case. The point is that
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conjugation with a generalized Bogoliubov transformation renormalizes the quadratic
terms in the excitation Hamiltonian, but it leaves the cubic term substantially unchanged.
For small potentials, the cubic term can be controlled (by Cauchy—Schwarz) through the
quartic interaction and through the gap in the kinetic energy. Without assumptions on
the size of the potential, on the other hand, we need to conjugate with S, to renormalize
the cubic term. After conjugation with §, we can apply techniques developed by Lewin
et al. [9] (inspired by previous work of Lieb and Solovej [13]) based on localization
of the number of excitations. On sectors with few excitations (the cutoff will be set at
M = cN, for a sufficiently small constant ¢ > 0), the renormalized cubic term is small
and it can be controlled by the gap in the kinetic energy operator. On sectors with many
excitations, on the other hand, we are going to bound the energy from below, using the
estimate (1.7), due to [11,14] (since on these sectors we do not have condensation, the
energy per particle must be strictly larger than 4w ag).

Theorem 1.1 is the first important step that we need in [3] to establish the validity of
Bogoliubov theory, as proposed in [4], for the low-energy excitation spectrum of (1.1).

2. The Excitation Hamiltonian
The bosonic Fock space over L2(A) is defined as
F=@ LA =P L n)®"
n>0 n>0

where Lf. (A™) is the subspace of L? (A™) consisting of wave functions that are symmetric
w.r.t. permutations. The vacuum vector in F will be indicated with Q = {1,0, ...} € F.

For g € L2(A), the creation operator a*(g) and the annihilation operator a(g) are
defined by

l _
@ @) = 22 Y g e )
j=1

(@(@W) P (x1, ..., x0) =vn+1 / gD (x x, .. xp) dx.
A

Observe that a*(g) is the adjoint of a(g) and that the canonical commutation relations

la(g),a*(h)] = (g, h), [a(g),a(h)]=1[a*(g),a*(h)] =0

hold true for all g, 1 € L2(A) ({g, h) is the inner product on L2(A)).
It will be convenient for us to work in momentum space A* = 27 73. For p € A%,
we consider the plane wave ¢, (x) = e~ '"" in L?(A). We define the operators

a;’; =a*(¢p), and a, =a(pp)

creating and, respectively, annihilating a particle with momentum p.

To exploit the non-negativity of the interaction potential V, it will sometimes be useful
to switch to position space. To this end, we introduce operator valued distributions a,,
such that

a(f)=/f(X)51xdx, a*(f):/f(x)é;‘dx.
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The number of particles operator, defined on a dense subspace of F by (VW)™ =
nW™  can be expressed as

N = E af,a,,:/cvl;cledx.
PEA*

It is then easy to check that creation and annihilation operators are bounded with respect
to the square root of NV, i.e.

la(HEI < IFIINY2E, la*(HPI < IFIITN + D2

forall f € L2(A).
Recall that po(x) = 1 for all x € A is the zero-momentum mode in L?(A). We
define Li(A) as the orthogonal complement in L2(A) of the one dimensional space

spanned by ¢g. The Fock space over L> 7 (A), generated by the creation operators a,
with p € A* := 2 Z*\{0}, will be denoted by

Fe=PLimn®".

n>0

p

On F,, the number of particles operator will be indicated by
N, = Z a;a p-
pEAY

For N € N, we also define the truncated Fock space

N
=P Line.
n=0

On this Hilbert space, we are going to describe the orthogonal excitations of the Bose—
Einstein condensate. To this end, we are going to use a unitary map Uy : Lf,(AN) —
}"fN, first introduced in [9], which removes the condensate. To define Uy, we notice
that every ¥y € L?(AN ) can be uniquely decomposed as

N-1
Yy = aopd” +a1®y¢®( Ybotay

with «; € Li(A)@’fj (the symmetric tensor product of j copies of the orthogonal
complement Lzl(A) of ¢o) for all j = 0,..., N. Therefore, we can put Uyy¥y =

{ag, a1, ..., an} € FfN. We can also define Uy identifying ¢y with the Fock space
vector {0, 0, ..., ¥y, 0, ...} and using creation and annihilation operators; we find
N N—n
a(eo)
U = 1-— @n 7
NN n@)( 00} 00D " s YN

forall Yy € L?(AN). It is then easy to check that Uy, : ]—'fN — L?(AN) is given by

0 N a* ()N "
Ui 1@, .., ()}_Z T o™
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and that Uy, Uy = 1, ie. Uy is unitary.
Using Uy, we can define the excitation Hamiltonian Ly := Uy Hy U,’(,, acting on a

dense subspace of ]—'fN. To compute the operator Ly, we first write the Hamiltonian
(1.1) in momentum space, in terms of creation and annihilation operators. We find

= > pla a,,+—N > V(r/N)a%,, asapage 2.1)

peA* p.q,reAN*

where
Vik) = / V(x)e *¥dx
]R3

is the Fourier transform of V, defined for all k € R? (in fact, (1.1) is the restriction of
(2.1) to the N-particle sector of the Fock space F). We can now determine the excitation
Hamiltonian £y using the following rules, describing the action of the unitary operator

Uy on products of a creation and an annihilation operator (products of the form a; ag can

be thought of as operators mapping LAZ,(AN ) to itself). For any p, ¢ € A} = 2 73\ {0},
we find (see [9]):

UNaSao U;\} =N —N+

* %
U}vapaoUN—a[7 N — N, 22)

Uyagsap Uy =+/N —Nya,

* * ok
Uy a,ay Uy =a,ag.

We conclude that

Ly =LV +L9+.Y+cf (2.3)
with
N — V(0)
LY = N 1o 0w — Ay + RSO
1
L’ﬁ) = Z pla »ap + Z V(p/N) |:b*bp apap]
pEAL PEAL
1 ~
+ = Y V(p/N)|bib* , +bpb_,
2 [ e ] (2.4)
Ly = _N Z V(p/N)[ pigd _paq+aqa_,,bp+q]

P-q€AL:p+q#0

4 1
EEV) =N Z V(r/N)ap+r qapaq+r
P.gEN], reA*:
r#F=p—4q

where we introduced generalized creation and annihilation operators

N - N, N - N,

, and b, = N ap

2.5)
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for all p € A%. Observe that, by (2.2),

*

UibiU Ukb,Uy = -0
N N—apf N%p N—ﬁatr
In other words, b;; creates a particle with momentum p € AJ but, at the same time,

it annihilates a particle from the condensate; it creates an excitation, preserving the
total number of particles in the system. On states exhibiting complete Bose—Einstein

condensation in the zero-momentum mode ¢y, we have ag, ao ~ /N and we can
therefore expect that b}, >~ aj; and that b, =~ a,. Modified creation and annihilation

operators satisfy the commutation relations

N; 1
[bp, b;] - (1 - W) 6[7,q - ﬁa;ap

[bp. byl = [b%. b:1 = 0.

(2.6)

Furthermore, we find

[b[?a a;ar] = 8qur’ [b*a a;ar] = _Sprb;< (2.7)
forall p, g, r € A%;this implies in particular that [b,, Ni.]1 = b, (b5, Nyl=— by, Itis
also useful to notice that the operators b*, b p» like the standard creation and annihilation

operators ay,, a,, can be bounded by the square root of the number of particles operators;
we find

lopet = w32 T <t
iosen < v+ 02 (YA Pe] < o+ 11z

for all £ € ffN. Since N, < N on ]-"fN , the operators b*, b, are bounded, with
1Byl b5 1 < (N +1)1/2,
We can also define modified operator valued distributions

. N—-N, .
b

vo v [N =N,
x = T Ay, and b;ck = d;k T+
in position space, for x € A. The commutation relations (2.6) take the form
P N, Lo,
b+ B}] = (1 - W*) Bx = y) = vy
[I;Xa I;y] - [l;;, l;;] =0.
Moreover, (2.7) translates to

by, d3d;] = 8(x — y)bz,  [bF.dtd;] = —8(x — 2)b}

which also implies that [by, Ny = by, [b*, N3] = — b*.
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3. Generalized Bogoliubov Transformations

Conjugation with Uy extracts, from the original quartic interaction in (2.1), some con-

stant and some quadratic contributions, collected in 1.358) and Lﬁ) in (2.4). In the Gross—
Pitevskii regime, however, this is not enough; there are still large contributions to the
energy hidden among cubic and quartic terms in ES) and L;f}).

To extract the missing energy, we have to take into account the correlation structure.
Since Uy only removes products of the zero-energy mode ¢, correlations among par-
ticles, which play a crucial role in the Gross—Pitaevskii regime and carry an energy of
order N, remain in the excitation vector Uy vy . To factor out correlations, it is natu-
ral to conjugate £y with a Bogoliubov transformation. In fact, to make sure that the
truncated Fock space j’-"fN remains invariant, we will have to use generalized Bogoli-
ubov transformations. Their definition and their main properties will be discussed in this
section.

For n € 2(A%) with n_, =, forall p € A%, we define

1 _
Bm =3 > (npb;bi,, - npb,,b,,,) 3.1)
peAl
and we consider
1
B -
M0 =exp| 5 Y (npb;;bi .- npb,,b_,,) . (3.2)
PEAX

We refer to unitary operators of the form (3.2) as generalized Bogoliubov transforma-
tions, in analogy with the standard Bogoliubov transformations

~ 1 _
B — exp 3 Z (npa;afp — npapa,p> (3.3)
peA

defined by means of the standard creation and annihilation operators. In this paper, we
will work with (3.2), rather than (3.3), because the generalized Bogoliubov transfor-
mations, in contrast with the standard transformations, leave the truncated Fock space
]—'fN invariant. The price we will have to pay is the fact that, while the action of standard
Bogoliubov transformation on creation and annihilation operators is explicitly given by

e_E(")apeE(”) = cosh(np)a, + sinh(np)aip (3.4)

there is no such formula describing the action of generalized Bogoliubov transforma-
tions.

A first important tool to control the action of generalized Bogoliubov transformations
is the following lemma, whose proof can be found in [5, Lemma 3.1] (a similar result
has been previously established in [15]).

Lemma 3.1. For every n € N there exists a constant C > 0 such that, on ffN,
e BN, + 1B < ceClIMN, + 1) (3.5)
forall n € £2(A%).
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Bounds of the form (3.5) on the change of the number of particles operator are not
enough for our purposes; we will need more precise information about the action of
unitary operators of the form e . To this end, we expand, for any p € A%,

' d
e—B(ﬂ) bp eB(']) — bp +/0 ds ge—sB(n)bpesB(n)

1
=b, — /0 ds e B [B(), bp]e‘YB(”)

1 s
=b, —[B(), byl +/ dsi / l dsy e BB, [B(n), bpl1e>BM.
0 0

Iterating m times, we find

m—1 (”) (b)
B0 B — Z( 1y adpy) (bp
n!

(3.6)

1 S Sm—1
+ / dsy / dsy .. / dsy, g—SmB(ﬂ)adg’(’zi) (bp)eSmB(n)
0 0 0

where we recursively defined

0 1
ady, (A) = A and ady) (A) = [B(n), ady, ) (A)].
We are going to expand the nested commutators ad (,7) (bp) and ad (n) (b%). To this end,

we need to introduce some additional notation. We follow here [1,2,5]. For fiyeoos fu €
62(1\1), ﬂ = (ﬁla LR} ﬁn)v b = (b07 R bn—l) € {'a *}n’ we set

e (fio f)

_ bo by fh bo Bn—1 bp—1
= Z baomaﬁlmaalpzaﬁzmaazm 4B, pp_y Yetn—1pn ﬁnpn l_[f/z(p/z)
(3.7)

where, for £ = 0,1,...,n, wedefineay = 1ifby = x, 0y = —11if by = -,,3( = 1if
fip = -and By = — 1 if g, = *. In (3.7), we require that, for every j = 1, —1,we
have either #f; = - and b; = x or f; = x and b; = - (so that the product ag@p ot pray
always preserves the number of particles, forall £ = 1, ..., n—1). With this assumption,
we find that the operator Hézg (ft,..., fu) maps ffN into itself. If, for some ¢ =

I,...,n, b1 = -and ffy = * (i.e. if the product aZﬁ:llpz ?fp for¢ =2,...,n,or

the product bzl% pa /:515]1 )

foektl (AY). In position space, the same operator can be written as

for £ = 1, is not normally ordered) we require additionally that

(2) _ jP0 581 b1 i xbo > dn— IVbn Ly
(flv--"fn)— bx1 1 xzayQ X3 - Ay, Ax, bn

n
x [ fetee = yo) dxedye. (3.8)
=1
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An operator of the form (3.7), (3.8) with all the properties listed above, will be called a
1@ -operator of order n.

Forg, fi, ..., fu € a(AD), 8= (B1, ..., ) € {, #}",b = (bo, ..., by) € {-, %",
we also define the operator
(A fai8)

_ bo f1 by i by dn—1 bn—1 fn bn
= § : bag, p1981 py Gt pr Ay py Qs ps -+ ABy_y puy Dta 1 pa g, p, @ (8)
Dlsos PnEA* (39)

< [ fetpo)

=1

where a¢ and B, are defined as above. Also here, we impose the condition that, for

all¢ = 1,...,n,either fy = - and by = * or gy = % and by = -. This implies that
Hé}b)(fl, ooy fus g) maps ffN back into .7-'+§N. Additionally, we assume that f; €
' (A¥)ifby_y = -and f; = * forsome £ = 1, ..., n (i.e. if the pair ag‘;:llma%m is not

normally ordered). In position space, the same operator can be written as

1 Ybo ¥ B vby v iy v a1 ¥Dpo1 vt v
T (froens fai8) = /b‘;{;@;@;@g@g...agnfiaxn 'akna (g)
n
X l_[ Sfe(xe — ye) dxedyy. (3.10)
=1

An operator of the form (3.9), (3.10) will be called a IT"-operator of order n. Operators
of the form b(f), b*(f),fora f € Ez(Ai), will be called IT"-operators of order zero.

The next lemma gives a detailed analysis of the nested commutators adg’()n) (bp) and

adg()n)(b;) for n € N; the proof can be found in [1, Lemma 2.5] (it is a translation to
momentum space of [5, Lemma 3.2]).

Lemma 3.2. Let n € ZZ(A:“_) be such that 1, = n_, forall p € 2(A*). To simplify
the notation, assume also 1 to be real-valued (as it will be in applications). Let B(n) be
defined as in (3.1), n € Nand p € A*. Then the nested commutator adg()n) (bp) can be
written as the sum of exactly 2" n! terms, with the following properties.

(i) Possibly up to a sign, each term has the form

Aty A NI G 0 gap) (3.11)
for some i k,s €N, ji,..., jx € N\{0}, & € {-,x}X b e {-, «}* and o« € {1}
chosen so that a = 1 if by = - and o = — 1 if by = * (recall here that ¢, (x) =
e™iPX). In (3.11), each operator A, : F=N — F=N w = 1,...,i, is either a

factor (N — N})/N, afactor (N — (Ny — 1))/ N or an operator of the form
NG, G 0, (3.12)

forsome h, z1, ...,z € N\{0}, 1, b € {-, %}".
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(ii) Ifatermoftheform (3.11) containsm € N factors (N—Ny)/N or (N—(Ni—1))/N
and j € N factors of the form (3.12) with TI1®-operators of order hy, ..., hj €
N\{0}, then we have

m+Mh+D+---+hj+D+k+1)=n+1.

(i) If a term of the form (3.11) contains (considering all A-operators and the .
operator) the arguments n'', ..., n'" and the factor n), for some m,s € N, and
i1, ...,im € N\{O}, then

i1+ -+ip+s=n.

(iv) There is exactly one term having of the form (3.11) with k = 0 and such that all
A-operators are factors of (N — Ny)/N orof (N +1 — Ny)/N. It is given by

N =N\ (N+1 =N \"? "
N N )

if n is even, and by

N = N2 N1 — N\ D72 .
S S
if n is odd.

(v) If the TTW-operator in (3.11) is of order k € N\{0}, it has either the form

o 1_[ i@ 1_[
Z bDlOPl aﬁsz i Pi+1 _pknp ap ’7

or the form

bo l—[ bi 2r+1 *1—[
Z bagp, aﬂ pi Qi pi pclp T)

for some reN, ]1, ..oy Jk € N\{O}. If it is of order k = O, then it is either given
by n b, or by np” b* ,, for some r € N.
(vi) For every non-normally ordered term of the form

D yagay. Y ighga;

geA* geN*
i * i *
E nqaqbq, or E nqbqbq
geN* geA*

appearing either in the A-operators or in the T1'D-operator in (3.11), we have
i >2.
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With Lemma 3.2, it follows from (3.6) that, if ||| is sufficiently small,

B (B — S 1) 2 (b))
B(n
n=0 (3.13)
—B(n) B(n) _ ( 1) (n)
e " bpe” Z - adp, (B))
n=0

where the series converge absolutely (the proof is a translation to momentum space of
[5, Lemma 3.3]).

While Lemma 3.2 gives a complete characterization of terms appearing in the ex-
pansions (3.13), to localize the number of particles as we do in Proposition 4.3, we will

need to consider double commutators of ad(_nl)g o (b)) with a smooth function f Ny /M)

of the number of particles operator N, varying on the scale M € N\ {0}. To this end,
we will apply the following corollary, which is a simple consequence of Lemma 3.2.

Corollary 3.3. Let f : R — R be a real, smooth and bounded function. For M €
N\ {0}, let fM = f(Ni/M). Then, for any n € N, p € A%, the double commutator

[fms [ fms ad_B(n) (bp)]] can be written as the sum of 2"n! (possibly vanishing) terms,
having the form

— 1 i i
FurnWND At Ay AN (70 o)

forsomei,k,s €N, ji,..., jr € N\{0}, 1 € {, *}k, bel, >|<}kJrl and a € {£1} chosen
so that o = 1 ifby = - and « = — 1 if by = %, where the operators Ay, ..., A; and
H(lg (mlr, ..., nlk; Np¥ap) satisfy all properties listed in the points (1)—(vi) in Lemma 3.2
and where Fy ,, is a bounded function such that

C 2
Py (N < F”an’nio (3.14)

Jor a universal constant C > 0 (different terms will have different functions Fyy n, but
they will all satisfy (3.14) with the same constant C > 0).

Proof. 1t follows from Lemma 3.2 that, for any n € N, ad(") (n)(b p) can be written as
the sum of 2"n! terms of the form (up to a sign)

Az A NI ) (3.15)

forsomei, k,s € N, ji,..., jx € N\{0}, 1 € {-, %}%,b € {-, *x}**! and o € {£1} chosen
sothato = 1 if by = - and o = — 1 if by = *. In (3.15), each operator A, : F=N
F=N_w =1,...,i,is either a factor (N — N)/N, afactor (N — (N — 1))/N or an
operator of the form

N~ hni(i%)b/(nmv’7127-“!771’1) (3.16)
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for some h, z1,...,z, € N\{0}, &,b € {, *}h. The commutator of (3.15) with fj; is
therefore given by

[ ArAs . A NTFTIED 70,0 gap)]
i u—1 i
o .
= > (TTa) e aa( TT a)NTFnda, oo )
u=1 t=1 t=u+l
+ AtAs . A N LA T 070 S ga)].

Recalling (3.7) and (3.9) and using the identities b, Ny = Ny + 1)y, by Ny = (Ny —
1)b*, we obtain that

N+ /\/+ +ey
= () (o
withe, = 0if A, is either (N —AN,)/N or (N (N+— 1))/ N, while e, takes values in the

set {—2,0, 2} if A, is of the form (3.16) (H -operators can either create or annihilate
two excitations, or it can leave the number of excitations invariant). Moreover

[, DG, s 5 ap)]
(M) - et Do gap)
M M

because ng ; can create or annihilate only one excitation. Therefore

Lfas AtAz . A N RIS pap)]
=3 (T3 - (5]
u=1 =1
;
XAu( I1 A1>N"‘H§}§(n"%-~-,n”;nfnfpap)
r=u+l
+AIA . A N"‘[f(%) —f(N+AjEl)]H§‘,3( I 1 ).

Hence, we have

o .
[fa AAz . A NTFTI) (s )]

=[]

+[f(/\/'++ni> _f<N+:|: 1 +n,~>]}
M M
X A1Ay .. A N‘knfﬁﬁ(n”, e 5, Qap)
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where n, = Y /_, ¢;. By the mean value theorem, we can find functions 6; : N —
0, £1), 6, : N — (0, e,) such that

[ A As . A NTFTIED 70,0 0 gap)]

=%[ieuf/(/v”i;w*))+f’(N++fj(N+))}

U=

— 1 i ] 3
X A{Ay...A; N "Hé’;(n“,...,n”‘;nj,goap).

It follows that

ey, .
Lfuts L A As A NTRTLED Gt s e ]
ey, .
= FyanWNOA Ay A NI 7t )
with
1 [ No+ 0, (N5) NETIANGE
_ s (N+ T O (UVy N+ T 01NV,
Pl = 3 [Zl Wl () (Tﬂ
depending on the precise form of the operator A1 Ay ... A; N_kl'lé?g (77-/1, e, n-/’f; nj,(pap).
Since e, # 0 only if A, is a [1® operator, since there are at most n I1®) operators
among Aq,...,A; and since |e,| < 2 forall u € {1,...,i}, we conclude that, for
example,

I Fpnll < M2 ||f 1%

O

As explained after their Definition (2.5), the generalized creation and annihilation
operators b%, b, are close to the standard creation and annihilation operators on states
with only few excitations, ie. with \; < N. In particular, on these states we expect the
action of the generalized Bogoliubov transformation (3.2) to be close to the action (3.4)
of the standard Bogoliubov transformation (3.3). To make this statement more precise
we define, under the assumption that |||l is small enough, the remainder operators

dg =) — [ 4% (bg) - qm”g’lq]

m>0
ai= - [ OB (3.17)
m>0""

where g € A¥, (B, o) = (-, +1) if m is even and (i, ) = (%, —1) if m is odd. It
follows then from (3.13) that

e BWp B =y b, +o,b%, +dy,
e*B(”)bjeB(") — yqb,”; +0yb_g + d:; (3.18)
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where we introduced the notation y, = cosh(y,) and o, = sinh(,). It will also be
useful to introduce remainder operators in position space. For x € A, we define the
operator valued distributions dy, d; through

e BWpeBW = p(y) +b*(S) + dy,
e PWBLPM = b* () + b(6y) +d (319
where y, (y) = ZqGA* COSh(nq)eiqv(x_y) and 6, (y) = ZqGA* Sinh(nq)eiq.(x_y)'

The next lemma confirms the intuition that remainder operators are small, on states
with Ay < N, and provides estimates that will be crucial for our analysis.

Lemma 3.4. Let ny € ﬂz(Ai), n € Z. For p € A}, let d,, be defined as in (3.17). If ||n||
is small enough, there exists C > 0 such that

C
|G+ "2yl = 5 [Inp IOV + DO 2g ]+ o, VG + D272 ]
(3.20)

C
IONG + "2l < < Il IOV + 1%

forall p € AY, & € F=N . With c?,, =d,+ N1 ZqGAi ngbga’ap, we also have, for
p & supp n, the improved bound

ING + 1)"2dE | < %nnnznapm + 1) (3:21)
In position space, with dy defined as in (3.19), we find
IO + 120 ] = ] IV + D28+ eV + D®P2g1]. 3.22)
Furthermore, letting jx = c?x + (NL/N)b*(1]y), we find

[N + D" 2ayd &

¢ 9 +
< = [ PG + D228+ Il = IV + DD 2%

il W+ DO D2g |+ 2 dy W+ 12 | (323
+ Inlllldxy N + 1)+ 2 | ]
and, finally,
NV + 1)"/20?)(&),5”
=< %[ PN + DO 4 il — »IINV + D)2 |
(3.24)

+ Il llax Ve + DUD2E] 4+ (I lay Ve + DI 2g|
+ [In11? llayay Ns + D72 | ]

forall& € FZ".
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Proof. To prove the first bound in (3.20), we notice that, from (3.17) and from the triangle
inequality (for simplicity, we focus on n = 0, powers of N can be easily commuted
through the operators d ),

1
gl < Y — | [adh,, ) — e, | €] (3.25)
m>0

From Lemma 3.2, we can bound the norm ||[ad(_mg(n)(bq) — n;”bg’,’;p]é || by the sum of
one term of the form

m+(1—am)/2 m—(1—am)/2

A el S TPV e )
(T ) | o

and of exactly 2"'m! — 1 terms of the form
[aran NI o, i g, 8| (3.27)

where i1, k1, £1 € N, ji, ..., jr;, € N\{0} and where each A,-operator is either a factor
(N —N,)/N, afactor (N +1 — N,)/N or a [1®-operator of the form

N nf; RN 0| (3.28)

with &, z1,...,zn € N\{0}. Furthermore, since we are considering the term (3.26)
separately, each term of the form (3.27) must have either k; > 0 or it must contain at
least one A-operator having the form (3.28). Since (3.26) vanishes for m = 0, it is easy
to bound

m+(l—am)/2 m—(1—am)/2
N-N,\ 2  (N+1-N,\ = —_
N T =1 nl’ bampg

< C"p" NN + D2

On the other hand, distinguishing the cases £; > 0 and £; = 0, we can bound
o .
HA1.-.Ai1N k‘l'lé,ﬁ(n",...,n’kl;nf,‘cp%p)éH
<c"N! [nnn’”—‘l np1 86,0l (Ns + D]+ 1In 1™ 1B, (N + 1>sn] (3.29)
< C " N [Inplan-oll Vi + DYE ] + Il OV + DE ]

where in the last line we used |n,| < [I7]|. Inserting the last two bounds in (3.25) and
summing over m under the assumption that ||n|| is small enough, we arrive at the first
estimate (3.20). The second estimate in (3.20) can be proven similarly (notice that, when
dealing with the second estimate in (3.20), contributions of the form (3.27) with £; = 0,
can only be bounded by 5% (N + DE|| < [[(N5 + 1)3/2¢|)). To show (3.21), we notice

that d p 1s exactly defined to cancel the only contribution with m = 1 that does not vanish
for p ¢ supp 1. Moreover, the assumption 1, = 0 implies that only terms with £; = 0
survive in (3.29). Also the bounds in (3.22) and (3.23) can be shown analogously, using
[2,Lemma 7.2]. O
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To localize the number of particles operator in Proposition 4.3, we will also need to
control the double commutator of the remainder operators dp.d, * with smooth functions
f(N+/M) of the number of particles operator, varying on the scale M. To this end,
we use the next corollary, which is an immediate consequence of Corollary 3.3 and of
Lemma 3.4 (and of its proof).

Corollary 3.5. Let f : R — R be smooth and bounded. For M € N\{0}, let fy =
fNL/M). The bounds in (3.20), (3.21), (3.22), (3.23) and (3.24) remain true if we
replace, on the left hand side, d, by [fms [fmsdpll, c? by [fm, [fM,c? 11, c? by
[far, [ dill, ayd by [ fm, [stayd 11 and d.dy by [ fu, [ fu, dvdy]] and, on the

right hand side, the constant C by CM || f’ ||go. For example, the first bound in (3.20)
becomes

|+ "2 U i

Cllf1I% (n43)/2 (n+2)/2
< S [Inp OV + DO+l oy N + D" 2]

4. Quadratic Renormalization

We use now a generalized Bogoliubov transformation exp(B(#)) of the form (3.2) to
renormalize the excitation Hamiltonian. To make sure that exp(B(7)) removes correla-
tions that are present in low-energy states, we have to choose the coefficients 1 € £2 (AY)
appropriately. To this end, we consider the ground state solution of the Neumann prob-
lem

1
|:—A+§V:| foe=2Aefe “4.1)
on the ball |x| < N£ (we omit here the N-dependence in the notation for fy and for Ay;

notice that A¢ scales as N —3), with the normalization f(x) = 1if |x| = N£. By scaling,
we observe that fy(N.) satisfies the equation

N2
[—A + TV(Nx):| fe(Nx) = N?xg fo(Nx)
ontheball |x| < £. We choose 0 < £ < 1/2, so that the ball of radius £ is contained in the
box A = [—1/2; 1/2]? (later, we will choose £ > 0 small enough, but always of order

one, independent of N). We extend then f;(N.) to A, by setting fx ¢(x) = fe(Nx), if
|x] < €and fy(x) =1forx € A, with |x| > £. Then

N2
<— A+ 7V(Nx)> fve =N fnexe (4.2)

where ¢ is the characteristic function of the ball of radius ¢. The Fourier coefficients
of the function fy , are given by

fne(p) = /A fe(Nx)e™P¥dx (4.3)

forall p € A*.Itis also useful to introduce the function we(x) = 1— fy(x) for |x| < N£
and to extend it by setting we(x) = O for |x| > NZ. Its rescaled version wy ¢ : A — R
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is then defined through wy ¢(x) = we(Nx) if [x| < £ and wy ¢(x) = 0if x € A with
|x| > €. The Fourier coefficients of wy ¢ are then given, for p € A*, by

_ o ="
e (p) = / we(Nx)e Pdx = —= Dy (p/N)
A N
where

W (k) = / we(x)e *F¥dx
R3

denotes the Fourier transform of the (compactly supported) function w,. We find ﬁv ¢(p)
= 8,0 — N73W,(p/N). From (4.2), we obtain

2

~ N ~ —~
= PPWep/N)+ = 3 V(P = @)/ N) (@)
aeh (4.4)
=N%e Y Relp — @) Fv.e@)

geN*

In the next lemma we collect some important properties of wy, f¢. The proof of the
lemma is given in “Appendix A”.

Lemma 4.1. Let V € L3(R3) be non-negative, compactly supported and spherically
symmetric. Fix £ > 0 and let f; denote the solution of (4.1). For N large enough the
following properties hold true.

i) We have

3a
e = (ETO)3 (1+0(ag/EN)) . 4.5)

ii) We have O < fy, we < 1. Moreover there exists a constant C > 0 such that

Ca%
f V(@) fi(dx — $wag| < 0 (4.6)

forall £ € (0;1/2) and N € N.
iii) There exists a constant C > O such that

we(x) < and  |Vwe(x)| <

4.7
T x]+1 x2+1 @D

forallx € R3, ¢ € (0; 1/2) and all N large enough.
iv) There exists a constant C > 0 such that

w < —
lwn,e(p)l = Np?

forall p e R3, all ¢ € (0; 1/2) and all N large enough (such that N > £71).
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We define n : A* — R through

- | S
np=—Nwy(p) =— mwz(P/N)-

With Lemma 4.1, we can bound

C
Inpl < —= (4.8)
[Pl

forall p € A} = 27 73\{0}, and for some constant C > 0 independent of N and
£ e (0; %), if N is large enough. From (4.4), we also find the relation

1 ~ —~ —~
pinp + SVC/NY = v (p) = N3xeGe * fv.o)(p) (4.9)

or equivalently, expressing the r.h.s. through the coefficients 7,

[IPN 1 —~
Py + SV p/N) + quA* V((p —a)/N)ng

(4.10)
= NLeXe(p) + N2ae Y Xe(p — @)y
geA*
Moreover, with (4.7), we find
1
Inl? = 1l> = | N*|w(Nx)Pdx < C/ —dx <Ct. (411
lx|<e Ix|<e 1x]
In particular, we can make | || arbitrarily small, choosing ¢ small enough.
For o > 0, we now define the momentum set
Py ={peAi:Ipl={"} (4.12)
depending on the parameter £ > 0 introduced in (4.1).! We set
nu(p) =np x(p € Pu) =npx(Ipl = £7%). (4.13)
Eq. (4.8) implies that
Il < e/, (4.14)

For o > 1, the last bound improves (4.11). As we will see later, this improvement,
obtained through the introduction of a momentum cutoff, will play an important role
in our analysis. Notice, on the other hand, that the H'-norms of 1 and 5y diverge, as
N — oo. From Lemma 4.1, part (iii), we find

2 2 2 2
S PAnplP = Y prnpP < CN (4.15)
pePy peEAX
1 At the end, we will need the high-momentum cutoff £~% to be sufficiently large. To reach this goal, we

will choose ¢ sufficiently small. Alternatively, we could decouple the cutoff from the radius £ introduced in
(4.1), keeping £ € (0; 1/2) fixed and choosing instead the exponent « sufficiently large.
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for all £ € (0;1/2) and N € N large enough. We will mostly use the coefficients n,
with p # 0. Sometimes, however, it will be useful to have an estimate on 7 (because
Eq. (4.10) involves 7). From Lemma 4.1, part (iii) we find

Inol < N~2 [1;@ we(x)dx < CE. (4.16)

It will also be useful to have bounds for the function 17y : A — R, having Fourier
coefficients ny (p) as defined in (4.13). Writing ng(p) = np — npx(Ipl < £7%), we
obtain

i) =) = Y e = = NwNx) = Y e,

pEA*: pEA™:
lpl=t™ Ipl<e=
We obtain
in@I < CN+ Y |pI 2 <CIN+£7%) <CN (4.17)
pEA™:
Ipl=e™

forall x € A, if N € Nis large enough.
With the coefficients (4.13), we construct the generalized Bogoliubov transformation

B . ffN — ffN, defined as in (3.2). Furthermore, we define a new, renormalized,
excitation Hamiltonian Gy ¢ : ffN — ffN by setting

OGN = e—B(’)H)LNeB(UH) — e_B("H)UNHNU;{,eB(nH). (4.18)

In the next proposition, we collect some important properties of the renormalized
excitation Hamiltonian Gy . In the following, we will use the notation

1 _
K=Y p’aja, and Vy= N Y V@/Nyah,,dlagpa, (4.19)
pEAL P.qeN; reA™:

r#E=p,—q

for the kinetic and potential energy operators, restricted on ffN. We will also write
Hy =K+ Vy.

Proposition 4.2. Let V € L3(R3) be compactly supported, pointwise non-negative and
spherically symmetric. Then

One =4magN +Hn +6g,, (4.20)
where for every § > 0 there exists a constant C > 0 such that
+ 0gy, <dHN + CU N+ 1) 4.21)
and the improved lower bound
OGy, = —SHNy —CN, —Ce™“ (4.22)

hold true for all o > 3, £ € (0; 1/2) small enough, N € N large enough.
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Furthermore, let

g;j?’lz = dmag(N = No) +[V(0) — 4ﬂa0]N+%
+ O Y a1 =) im0 3 (50, by
rer pery (4.23)

I -
v, > Vp/N)[bh,a ag +he]+Hy.
P.q€AT:p+q#0

Then there exists a constant C > 0 such that 5ng , =GN — gf\ﬂ is bounded by

+ Egy, < CLOIPHy +CO (4.24)

forall o > 3, £ € (0; 1/2) small enough, and N large enough.
Finally, there exists a constant C > 0 such that
£ [fNG/ M), [f N2/ M), O, ]] < COPM72) £/115, (Hy +1)

(4.25)
£ [FN/ M), [fN/M), Egy ] < CLOD2M2) 112, (Hy +1)

foralla > 3, ¢ € (0; 1/2) small enough, f : R — R smooth and bounded, M € N and
N € N large enough.

The proof of Proposition 4.2 is technical and quite long; it is deferred to Sect. 7 below.
Equation (4.25) allows us to prove a localization estimate for Gy ;.

Proposition 4.3. Let f, g : R — [0; 1] be smooth, with f*>(x)+g*(x) = 1 forallx € R.
For M €N, let fy; := f(N+/M) and gy = g(Ny/M). There exists C > 0 such that

One=fmGNe M +emGNegm +EM
with

Ce_a/z 2 2
& = — (1715 +118'1%) (Ha + 1)

foralla > 3, £ € (0; 1/2) small enough, M € Nand N € N large enough.

Proof. An explicit computation shows that

1
One = fmMGN.efu +8mGNegm + §<[fM7 [fm, OGN ell +[gm, [8m, gN,Z]])-

Writing asin (4.20), Gy ¢ = 4magN+Hny +0Gy > noticing that 4 ag N and H y commute
with fa, gum, and using the first bound in (4.25), we conclude that

—a/2

Cce
= (L L Gl + Lo Lnr Gv.ell) = == (1L e + g 126) (o + 1).

O
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5. Cubic Renormalization

The quadratic renormalization leading to the excitation Hamiltonian Gy ¢ is not enough
to show Theorem 1.1. In (4.22), the error term proportional to the number of particles
operator cannot be controlled by the gap in the kinetic energy (in [1] this was possible,
because the constant multiplying A, is small, if the interaction potent1a1 is weak). To
circumvent this problem, we have to conjugate the main part GSit ~.¢ of Gn ¢, as defined
in (4.23), with an additional unitary operator, given by the exponential of an expression
cubic in creation and annihilation operators.
For a parameter 0 < 8 < o we define the low-momentum set

PL={peAi:|pl<t?P)

depending again on the parameter £ > 0 introduced in (4.1). Notice that the high-
momentum set Py defined in (4.12) and Py are separated by a set of intermediate

momenta £~# < |p| < £7%. We introduce the operator A : .7-"+5N — ffN, by
1
A= NG > wlbat,an —hel. (5.1)
rePy,vePy,

An important observation for our analysis is the fact that conjugation with ¢4 does
not substantially change the number of excitations.

Proposition 5.1. Suppose that A is defined as in (5.1). For any k € N there exists a
constant C > 0 such that the operator inequality

e AW+ DFe < CVG + DX
holds true on FEN, foralla > B > 0, € (0; 1/2), and N large enough.
Proof. Letg € F=" and define g¢ : R — R by

ge(s) = (£, e NG+ Dfets).
Then we have, using the notation A, = N~ 172 ZrePH vep, Mrbin,at, ay,

05 (s) = 2Re (£, e [ (Wi + DX, A, Je*8).
We find
. e NG+ D, 4y Jee)
== Y et biat [0+ 2 - L+ 1),

rePy,vePr.
With the mean value theorem, we find a function 6 : N — (0; 1) such that
Wi +2)F — (Wa + DF = k(NG + 0L + DEL
2 Atthe end, we will need the low-momentum cutoff £ —# to be sufficiently large (preserving however certain
relations with the high-momentum cutoff). We will reach this goal by choosing ¢ small enough. Alternatively,

as already remarked in the footnote after (4.12), also here we could decouple the low-momentum cutoff from
the radius ¢ introduced in (4.1), by keeping £ € (0; 1/2) fixed and varying instead the exponent S.
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Since by Ny = (Ny+1)b), and b;‘,./\/+ = (N, —1)b*, we obtain, using Cauchy—Schwarz
and the boundedness of 0,

(€ e[V + D, 4, ]e )|

C
= T Z |nr|Hbr+vd r(N++1) 1/4+(k—1)/2 SAE”

rePy,vePp

X ||a_v(,/\/,r + 1)/AE=D/2,54 g “

1/2
e S L e

rePy,vePr,

12
X[ > |77r|2Hl17U(./\/'++1)1/4+(k—1)/26sA€”2:|

rGPH veEP]

gl (NG + 1) /4HE=D2gsAg )12

\/_
< \/_ SAS (N +1)k+1/2€SA§>
< CleE, (e + D)

for a constant C > 0 depending on k, but not on N or £. This proves that

d5@e (s) = Coe(s)
so that, by Gronwall’s lemma, we find a constant C with
(&, e NN+ Dfes) = Cls, Ve + D).
0
We use now the cubic phase e to introduce a new excitation Hamiltonian, defining

R, = e A GE, eh

on a dense subset of f - . The operator geff is defined as in (4.23). As explained in

the introduction, conjugation with ¢4 renormahzes the cubic term on the r.h.s. of (4.23),
effectively replacing the singular potential V( p/N) by a potential decaying already on
momenta of order one. This allows us to show the following proposition.

Proposition 5.2. Let V € L3(R3) be compactly supported, pointwise non-negative and
spherically symmetric. Then, for all @ > 3 and a/2 < B < 2a/3, there exists k > 0
and a constant C > 0 such that

Ry > 4magN + (1 — CLYHy — CENZ/N — Ce
forall £ € (0; 1/2) small enough and N large enough.

The proof of Proposition 5.2 will be given in Sect. 8. In the next section, we show how
Proposition 5.2, together with Proposition 4.2 and Proposition 4.3, implies Theorem 1.1.
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6. Proof of Theorem 1.1

The next proposition combines the results of Propositions 4.2, 4.3 and 5.2.

Proposition 6.1. Let V € L3(R3) be compactly supported, pointwise non-negative and
spherically symmetric. Let Gy ¢ be the renormalized excitation Hamiltonian defined
as in (4.18). Then, for every a > 3, £ € (0; 1/2) small enough, there exist constants
C, ¢ > 0 such that

Gn.e —4magN = cN, - C (6.1)
forall N € N sufficiently large.

Proof. As in Proposition 4.3, let f, g : R — [0; 1] be smooth, with fZ(x) + g%(x) = 1
for all x € R. Moreover, assume that f(x) = Oforx > 1and f(x) = 1 forx < 1/2. We
fix M = £3%* N (with k¢ > 0 as in Proposition 5.2) and we set fyy = f(Ny/M), gy =
g(NL/M). It follows from Proposition 4.3 that

On.e —4magN > fy(Gne —4maoN) far + gm(Gn,e — 4magN) gy
—Ce B3 272 N2+ 1), (6.2)

Let us consider the first term on the r.h.s. of (6.2). From Proposition 4.2, there exists
C > 0 such that

Gn.e —4magN > Gy — dmagN — CLO D2 Hy —ce™

and also, from (4.20),
1
Gn,e —4magN > EHN —CNy —Ct™™ (6.3)

for all « > 3, £ € (0; 1/2) small enough and N large enough. Together, the last two
bounds imply that

Gn.e —dmagN > (1 — CLO V) (GST, — dmagN) — CL PN, — ce.

Hence, for £ > 0 small enough,
1
Gn.e —4magN = —(Gy, — 4magN) — CLO™IEN, — ce™.

With Proposition 5.2, choosing @« > 3 and «/2 < 8 < 2a/3, we find k > 0 such that

fm(Gne —4maoN) fu
> sz(G?fog —4magN) fy — CLO IR AN, — e fyy

N2
N

—_—

> lfMeA [(1 — CUYHy — Ce™

[\

_ Ce}voljl e*AfM
— CLOTIR RN, —Ce f

=

fue [(1 = COYHy — CONL] e far — CL@ D2 AN, — Co73 £l

N =
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In the last inequality, we used Proposition 5.1 to estimate

fue N2 far < Cfu NG + D2 fiy
< CNO* (N + 1) fir < CNE frre™ AN + De? fiur

because we chose M = ¢3** N Since now N, < CK < CHy, we obtain that, for
£ € (0; 1/2) small enough,

fu(@Gn.e —4maoN) fu = Chue Noe ™ fag — CLOIP RN — Co3% £
With Proposition 5.1, we conclude that, again for £ > 0 small enough,

Gy — 4magN) far > CfgNy — CL3% f2. (6.4)

Let us next consider the second term on the r.h.s. of (6.2). From now on, we keep
£ > 0 fixed (so that (6.4) holds true), and we will only worry about the dependence of
N. We claim that there exists a constant C > 0 such that

gm(Gn.e —4magN)gy > CNg, (6.5)

for all N sufficiently large. To prove (6.5) we observe that, since g(x) = 0 for all
x <1/2,

. 1
em(Gn.e — 4agN) gy > inf  —(& GyE) —4mwag | Ng3

geFiy ylel=1 NV

where f;ﬁ/z ={& € ]-'fN i & = x(Ny > M/2)&} is the subspace of ffN where

states with at least M /2 excitations are described (recall that M = £3%* N). To prove
(6.5) it is enough to show that there exists C > 0 with

1
inf — (&, Gn.¢E) —4map > C (6.6)
EeFZh pilEl=1

for all N large enough. From the result (1.7) of [10,11,14], we already know that

. 1
<11an N(S,QN,e%’) —4mag
§eFZy pillEl=1

1 E
= inf  (E.Gy k) —dmag =~ —dmwag — 0
geFlgl=1

as N — oo. Hence, if we assume by contradiction that (6.6) does not hold true, then we
can find a subsequence N; — oo with

. 1
inf (£, Gny i) — dmag > O
567:;M§/22H5H:1 J
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as j — oo (here we used the notation M; = €3** N ;). This implies that there exists a
Nj . ,
sequence &y, € }';M;/z with [[éy; || = 1 for all j € N such that

1
lim —(&n,, OGN, ) =4mag.
jm N (n;. ON; eN;) = 4mag
Letnow S := {N; : j € N} C N and denote by £y a normalized minimizer of Gy ¢ for

all N € N\ S. Setting Yy = Uj,eBU)&y, for all N € N, we obtain that ||y = 1
and that

1
lim — (YN, HvYn)

NN (6N, ON.eéN) = 4 ag.

= lim —
N—oo N
In other words, the sequence vy is an approximate ground state of Hy. From 1.7, we

conclude that ¥ exhibits complete Bose—Einstein condensation in the zero-momentum
mode ¢g, meaning that

lim 1 — (@0, ynpo) = 0.
N—o0

Using Lemma 3.1 and the rules (2.2), we observe that

1
N(EN,N+§N>= (e BNy, Noe  BOD Uy gy )

(UN, Uy Ny + DUNYN)
1 (6.7)
+C [1 - ﬁ(lﬁN, Cl*(QOO)a(ﬁl)O)WN)]

= —+C[1— (9. yng0)] = 0

|
Z|a=Zlazaz—

as N — o00. On the other hand, for N € § = {N; : j € N}, we have §y = x (N, >
M /2)&n and therefore

M Z30[+K

1
N@N’N+§N) = m = )

in contradiction with (6.7). This proves (6.6), (6.5) and therefore also
gm(Gne — 4magN)gy > CN.gh;. (6.8)
Inserting (6.4) and (6.8) on the r.h.s. of (6.2), we obtain that
Gn.o —4magN > CNy — CN*Hy — C (6.9)

for N large enough (the constants C are now allowed to depend on £, since ¢ has been
fixed once and for always after (6.4)). Interpolating (6.9) with (6.3), we obtain (6.1). O

We are now ready to show our main theorem.
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Proof of Theorem 1.1. First of all, (4.20) and (4.21) in Proposition 4.2 imply that
gN’g —4magN <2Hpy + CN+ +C.

With the vacuum €2 as trial state, we obtain the upper bound Ey < 4mwagN + C for the
ground state energy En of Gy ¢ (which coincides with the ground state energy of Hy).
With Eq. (6.1), we also find the lower bound Ey > 4magN — C. This proves (1.8).

Let now ¥y € L2(A"N) with || = 1 and
(Yn, Hyyn) < 4magN + K.

We define the excitation vector &y = e~ Bum)y ~N¥n. Then ||Ex|| = 1 and, recalling
that Gy ¢ = e‘B(”H)UNHNU}\“,eB(”H), we have

(&N, Nién) < ClEn, (Gne —4magN)EN) +C < C(K +1).

If yn denotes the one-particle reduced density matrix associated with ¥y, we obtain

1
1 — (g0, yn@o) = 1 — N(WN, a*(go)a(po)¥n)

1
=1- Nw;se“"f')sm a*(po)a(po)Uj e ey)

C(K +1)

1 C
= ﬁ<e3<’7ﬂ>sN,N+eB<"H>sN> < o (Ew, Nabn) < ——

which concludes the proof of (1.9). O

7. Analysis of Gy ¢

From (2.3) and (4.18), we can decompose
_ 2 4
Gye=e B(nH)ﬁNeB("H) — gl(\?,)e " gi(v)l +g}(3?£ +gl(v,)@
with

gl(\{,)é — e—B(nH)[:%)eB(nH)'

In the next subsections, we prove separate bounds for the operators QZ(\{’)[, j=0,2,3,4.
In Sect. 7.5, we combine these bounds to prove Propositions 4.2 and 4.3. Throughout this
section, we will assume the potential V € L3(R?) to be compactly supported, pointwise
non-negative and spherically symmetric.
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7.1. Analysis of Gy, = e~ B0#) LD B0 From (2.4), recall that

% (0)

LYV = Z_ZVO)(N - Ny + NNV = NG, (7.1)

N-Ds
2N
We define the error operator £ © ¢ through the identity

QE\(/),)@ — e—B(TIH)LE\(;)eB(nH)

_(N-Do
= VOW - N+

v (0)

NN = N + £ (7.2)
In the next proposition, we estimate 51(\, , and its double commutator with a smooth and
bounded function of N..
Proposition 7.1. There exists a constant C > 0 such that
+ &Y, < CEPWN, +1) (7.3)

and

£ [fWN/M), [N /M), EQT < CEPMTN IR W + D (T4)
foralla > 0, £ € (0; 1/2), f smooth and bounded, M € N and N € N large enough.
Proof. From (7.1) we have

(N-1
2

O = V(0) + %V(O)M —~ %V(O)N’f : (7.3)

In the last term, we rewrite

NE N+ N—M_Zb*b —&— o

N *
qgeA;

Inserting in (7.5), we obtain

= Y=y, V(0> S b, -
qeNy

From (7.2), it follows that

o _ V) _
SNZ — T Z [e B(’IH)bequ(nH) _ b;bq]
qeny (7.6)

_ @ [e—BwH)MeB(nH) _ N+] .
With (3.18), we can express

D e Bmprp B = N [yqb;+aqb,q+d;] [qu +o4b” +dq]
geA] geA]
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where we set y, = coshny(q), o, = sinhny(q) and where d, d;‘ are defined as in

(3.17), with n replaced by n#(q) = ngx (¢ € Pu). Using ly; — 1] < Cnu(q)?, log| <
Clnu(g)|, the first bound in (3.20), Cauchy—Schwarz and the estimate ||| < C£%/?
from (4.14), we conclude that first term on the r.h.s. of (7.6) can be bounded by

| D (6 [T B bybye B — brb, Je)| < CEPRIN; + 1)
geA}
As for the second term on the r.h.s. of (7.6), we expand using again (3.18),

e~ B A7 (B _ \f,

1
= [ BN, Bt as
0

1
:/ > npe B bybo, + bib* e P ds
0 PEPH

1
= f ds 3 np (Vb + o b, +dD) by +0ObE +d)) +he
0 pePu
with ¥S” = cosh(snu (p)), oy = sinh(snu(p)) and where the operators d'y) are

defined as in (3.17), with 7 replaced by sny. Using |y,§”| < C and |a[(f)| < Clnpl,
(3.20) in Lemma 3.4 and again (4.14), we arrive at

‘@’ [e= B0 A, B N+]§>)
< CIN+ D21 37 Inpl [Imp IOV + D260 + b1

PEPY
< CePIWL+ D25 2.
This concludes the proof of (7.3).
The bound (7.4) follows analogously, because, as observed in Corollary 3.5, the esti-

mates (3.20) in Lemma 3.4 remain true if we replace d), and d;; by [fNy/M), [f(NL/
M), dp1]and, respectively, [ f (Ny/M), [ f(Ny/M), d; 11, provided we multiply the r.h.s.

by an additional factor M -2 7 ||C2>o. The same observation holds true for bounds involv-
ing the operators b, b;, since, for example,

[fF NG/ M), Lf NG /M), byl = (fFNG/M) — f(Ne+ 1)/M)?b, — (1.7)
and || fNG/M) — fF(Na+ /M) < CM7Y fllos. O

7.2. Analysis of g,(\f)@ = e_B("H)EE\%)eB("H). With (2.4), we decompose L%) =K+

Eg&’v), where K = Zpe/\j pza;ap is the kinetic energy operator and

~ N-Ny 1 =~
ey =30 Vip/Nyajay=—="+5 3 V(p/N) [b}’;bip+bpbfp]~ (7.8)
pEAL peA]
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Accordingly, we have
gl(\%?z — o~ BOm) jcpBO1H) +e*B(7)H)£§3>V)eB('7H)' (7.9)

In the next two propositions, we analyse the two terms on the r.h.s. of the last equation.

Proposition 7.2. There exists C > 0 such that

e B gceBm) — 4 Z pznp(bpb_p+b;bfp)

pePr (7.10)
N —-N\/N—-N; -1 )
+ Z p2ni< +)( * >+€/(\,Kg)
N N ’
[JEPH
where
ig}(\fg < CZ(“_3)/2(HN +1) (7.11)
and

= [rVm, [F N, ] = eMP2 IR 0P ey 1) (7.12)
forall a > 3, £ € (0; 1/2) small enough, f smooth and bounded, M € N and N € N
large enough.

Proof. To show (7.11), we write
1
o~ BO jcoBOm) _ ) :/ e~ BOM[C. B(ni)le B ds
0

1
:/ Z P2’7p [e—SB(UH)bpb_pesB(nH)
0 PEPH

+e—sB(nH)b*b* eSB(nH)] ds
p-—r ’

With relations (3.18), we can write

e~ B g, Bi) _ xc

1
:/0 ds Z pznp[(ylgs)bp+0[(,S)bfp)(ylgs)b_,,+o;(f)b;) +h.c.]
PEPH

1
+/O ds Z pzn,,[(y[gs)bp +o[(,s)bfp)d§1), +d,(f)(y1§”b_,, +a[(,s)b;‘;) +h.c.]
PePy

1
+ /O ds " p*npldPd") +he]
PEPH

=: G +G, +G3 (7.13)
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with the notation y(s) = cosh(sng(p)), a,(,s) = sinh(sny (p)) and where d,(,S) is defined
as in (3.17), with n, replaced by sng (p) (recall that ny (p) = np,x(p € Py)). We start
by analysing Gj. Expanding the product, we obtain

/ ds 3 PPup[ (52 + @) (byb—p + b7, b7)
PEPH
+ 700l @b, — 2N anay)) |

N, (7.14)
) (Y) +
+2f ds E pn Yp <1 N)

PEPy

= Y pnp(bpb_p +b* b5)+ > pPy ( N>+5{<

PEPH pePy

with

f ds Z Prp[(() = 1) + (@) (bpb—p +b* ,b%)

PEPH
/ ds Y p*npyol @bhb, —2N"akay))
PEPH
() ) 4 () Ne
vo [ as 3 Py [( ~ 1o + (0 —snp)] (1—7).
0 pEPH

For an arbitrary & € FEN, we bound

(5, &1 8]
<C Y PPmpPIbpEIlING + D2 +C Y pPpllaygl>+C Y pPo

pePy pePu pePy
< CO* (L + D22, (7.15)

since |((y1£s))2 — l)| < Cn?,, (o;”)Z < Cn?, and pzr/fj < C02 forall p € Py.

We consider now G in (7.13). We split it as Gy = Go1 + G2z + G3 + Gpg, with

1
Gy :/ ds Z »n (y(g)b d(_sl),+hc),
0 PEPH
1
Ga = /0 ds Y pPnp (00" ,d%) +he),
P
Co (7.16)
Gy3 :/ ds Z pzn,, (ylgs)d;f)b_p+h.c.>,
0 pePh
1
Gu=[ ds Y poup (0[(,”d[(f)b;‘,+h.c.>.
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We consider Gy first. We write

1
Goj :/ ds Z P’ np (y(*) - l)b,,d(f;+/0 ds Z p%y,,b,,d&vl),

PEPH peENE
1
= [Cds X ptugby | d0 ey 3 snbiat o
0 PEPY, qGPH
1
s 2 * ok
+/0 dsﬁ Z P npngbpbga” a_p +he.
pEP;I,qGPH

Massaging a bit the second term (similarly as we do below, in (7.39), (7.40) in the proof
of Proposition 7.3), we arrive at

Gu=- Y p n,,M” N NN+ [5{ +h.c.] (7.17)

pEPy

K _ K :
where £)' = ijl SZJ., with

1 1
ek = o Z PPy Ne + 1) (b5b), — apap)

PEPH
Ezlgz / ds Z p r]p( (5) l)bpdgs[),,

0 PEPyH

1
EX = / ds Z pPnpb d(_s,),, (7.18)

0 oA
EX = —/ ds anp d(_b;,,

peEPy

1
K § 2
625 = m P r;pnqbpb;;afqa_p.
pEPIL:I,qEPH

Here we introduced the notation

Ni =, ] 1
d®) =d") +s771.1(p)—b and d°) =d®) + v > sngbia* a_p.
q€Pu

(7.19)

We can easily bound

(&, EXEN < C Y prudllayéll < CO N g2 (7.20)

pEPH
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and, using |y,§s) -1 < Cnf) and (3.20) in Lemma 3.4,

(& E56 < > PP, PING e 1140 g

pEPH

= 22 PPN [Imp A g0 + Inllapel] 72D

PEPyH
< CO*N, + )22

With (3.21) in Lemma 3.4, we can also estimate

1 =
(&, EXE)] s/o ds Y PPInpll Ve + DV + 171200 g

PEPy
< CllnuIPIWs + D'2e1 Y pPlnplllayé
pePs (7.22)
1/2
< CeG + DI e[ Y Pl
|pl<t~

< CLP N+ D Pg|IK .
To bound the last term in (7.18), we commute b, to the right (note that p # ¢). We find
(& E58 <CNT" Y pPnplingllaga—g€lllayapé|
PEPE.q€PY
<C > Plnplinglllagélliayéll

pGPIS,qEPH

12
=c[ X ruiatlagsl] (1.23)
pEP;I,qEPH

B 1/2
> a7 nlptlasl?

pEP;_‘I,qEPH
< cev|ke )%,
To control the third term in (7.18), we first use (4.9) to write

1
&5 = /O ds Y (vc/N)*fN,g)(p)b,,cZ“;,

peEA]

1
+/(‘) dSN3)\z Z (f[*f]v’g)(p)bpd(sl)).

peEA}

Switching to position space, we obtain
1 v
ek = / ds/ dxdyN>V (N (x — y)) fn.e(x — y)b.d
0 A?

1 v
o [ s [ dndyxe =)ot - nbdy.
0 A
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With Lemma 4.1, we find

1
|<s,52’§s>|s/ ds/ dxdy [ N>V (NG = ) + €7 xex = ) |
0 A2

x [WNe + DVZENINVG + D72a,d D%,
Hence, with Eq. (3.23) in Lemma 3.4,

& E8) < CN il /01 ds /A dxdy [N3V(N e = )+ € xex = )]
X NNV + DP2EN NIV + D8]+ 1GNGE ] + 1N
+ N |
< CLOIIN+ D22+ CoP W+ D) PV e
Combining the last bound with (7.20), (7.21), (7.22), (7.23), we conclude that
+ [eF +he] = cee IR0ty + 1), (7.24)
Next, we consider the term G»; in (7.16). With (3.20) in Lemma 3.4, we find
(€. Gnt)| < C > p b pEllld-p&ll

PEPH

= C Y PRl bl [InplIONG + D20+ i8] | (725)

PEPH
< CO|(NG + D22

As for the term Gy3, defined in (7.16), we split it as Go3 = Z‘}:l €3Kj + h.c., with

1
X = / ds 3 pPnp(r® — 1)dSb_,,
0 pePy
1
ex =/ ds Z pznpdl(f)b_p,
0 PEAX
1
K 2
&3 = N Z p ”p’?qb;“iqapb—pv
PEPf.qePy
1 _
5312 = —f ds Z pzn,,d[(f)b_p
pePg

with the notation for 5,(,” introduced in (7.19). With (3.20) in Lemma 3.4, we find

1
(€, E56)] < c/o D PP mp PN + DE NG + )72 b & |

PEPH

< ClnalllN: + D'2EN Y pPinpPIbp&ll < CO* NG+ D'2g
pEPH
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and also, proceeding as in (7.22),

1 =
(€, E548)] < cfo ds Y pPmplll W+ DV2ENIWG + D72dP0b_ g |

PEPE

< Cllnul* Vs + D2g) Z PPInpllib_pEll (7.26)
pePE

< L2\, + DY 2g 1K 2.

The term £ coincides with the contribution £ in (7.18); from (7.23) we obtain + £5 <
Cel K. As for 5315, we use (4.9) and we switch to position space. Proceeding as we did
above to control the term Szlg, we arrive at

1
ek [ ds [ avay [WVOVG -3+ - )]
0 A2
X NG+ D2 VG + D7V2dDa,.

With (3.22) in Lemma 3.4, we find

(68560 < ONMnal [ dvdy [NV G =) 400 )]
X NG+ 126 [y VG + DE I+ ldady Ve + D¢
< CLO DYWL+ DV2 12+ Cee? (N + D2V 6.
Combining the last bounds, we conclude that
+ Gy < CLO D2 (Hy +1). (7.27)

To estimate the term G4 in (7.16), we use (3.20) in Lemma 3.4; with (4.15), we find

[(€. Gaa8)l
1
<C [ a5 X PRI+ DI+ 1) b
0 pePy
< ONTUING+ D26 D7 o2 [l OV + DY + s BBy N + D'

pPEPH
< CN7HIWG + DY

x> PP [Imp IV + DY2E [+ Ina [TV + D€+ s llla, (N + DEN

pEPy
< CeNL + D 2g )2

Together with (7.17), (7.24), (7.25), (7.27), this implies that

Ni+1N =N,
Go== ) Pup—y———— +&

PEPH
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where
+ EF < eI (Hy + 1. (7.28)

Finally, we consider G3, defined in (7.13). We split it as G3 = ESKl + 55Kz +h.c., with

1 !
5 :/0 ds Z Pzﬂpdﬁ)d(f;,, e¥ = —/(‘) ds Z pznpdgf)d(,s;,.

PEA: pEP);

With (3.20) in Lemma 3.4 (using ny(p) = 0for p € Plc{) and proceeding as in (7.26),
we obtain

(€. EEE)N < Clnull Y PPInpllWs + D2l 1d_p& |

pePg
< Clna PN+ D261 D7 pPuplllb-p&ll
PEP},
< COP N+ D g 1K

To estimate ESKI, we use (4.9) and we switch to position space. Similarly as in the analysis

of the terms Szlg and 5312 above, we obtain

(6, E8E) < CING + %] /01 ds /A dxdy [ N3V (NG = )+ €7 xex = ) |
X [N+ DT2d0dOg|).
With (3.24) in Lemma 3.4, we arrive at
(€, 18]
< CN G+ e [ s | xay
0 A2

[N3V(N(x — )+ L3 (x — y)]
X [NunHun(M + D2 + g 1PN NZEN + Inm 17 1@ NZE

vov 3/2
+ Pl 7 g )

< CUP+ )WL+ D2
+ COP NG+ D2V %l
Hence, + Gz < C(£%/% + ¢3@=D/2y(Hy + 1). With (7.14), (7.15), (7.28), we obtain
(7.10) and (7.11), as desired.
As explained in Corollary 3.5, the bounds in Lemma 3.4 continue to hold, with an
additional factor M2 ||f’||c2>O on the r.h.s., if we replace the operators d,,, d;‘,, Jp, Zzycfx,
c?xcfy by their double commutators with f(N,/M). From (7.7) we conclude that also

bounds involving b, and b;", or, analogously by and l;;“ remain true if we replace them
by their double commutator with f(N,/M). As a consequence, (7.12) follows through
the same arguments that led us to (7.11). O
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In the next proposition, we study the second term on the r.h.s. of (7.9).
Proposition 7.3. There is a constant C > 0 such that

¢~ B0 £GV) Bln)

= 3 Tomm(*5) ()

~ N —N;
+ Y Vp/Nyasa, —F (7.29)

N
PEAL
+5 z: V(p/N)(bpb—p + —p p)+ N.E
PEAX
where
£ &) < ClP(Hy +1) (7.30)
and

= [FVamy, [N, E0)]] = cePmMI g (v 1) 3D

foralla > 0, £ € (0; 1/2) small enough, f smooth and bounded, M € N and N € N
large enough.

Proof. To show (7.30), we start from (7.8) and we decompose

e—B(nH)EE\%V)eB(nH) — Z V(p/N)e_B(”H)b;b,,eB(”H)

peA]
1 ~
-5 Z V(p/N)eB(ﬂH)a;ape_B(nH)
pEA] (7.32)
1 ~
+5 2 Vp/N)e P byby + bypbt  JeB0m)
pEAY
= F1 + F2 + F3.

With equations (3.18), we split Fy as
Fi= ) Vp/N)ypby +opbp]lypby +o,pb" )
peA]

+ 3 Vp/ N[ by + 0pbp)dy + d(ypby +0,pb" ) + did,]
peAl
= Fll + F12

with the notation y, = coshng(p), o, = sinhny(p) and the operators d), as defined
in (3.17), with n replaced by ng. We decompose

N — N,

Fii= Y V(p/N)asap +&

pEAX
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with

1 — - _
& =5 X Vp/Naza,+ Y V(p/N)[(yg — Db%by +vpop(bopby +b5b* )

PEAL pPEPH
N — N,
2 -1 2 +
+6p(b;’;bp—N a;’;ap)+0p( N )]

where we used y, = 1 and 0, = 0 for p € Py, to restrict the second sum. With
|y§ -1 < Cn%,, lopl < Clnpl forall p € Py and since [yl < 09/2 we find

+&/ < CU P+ N HWe +1) < CEP N+ 1)

if N is large enough. With Lemma 3.4 (with n replaced by ng), we can also bound
+F12 < CL*2(N, + 1). We conclude that

- N — N,
F = Z V(p/N)a;a,,T++52V (7.33)

PeAX

with + 52‘/ < CL*2(N, +1). Let us now consider the second contribution on the r.h.s.
of (7.32). We have —F, > 0 and, by Lemma 3.1,

1 = _
—F, = 5 Z V(p/N)e B(UH)a;apeB(nH)

PEA (7.34)
< %e_B(ﬂH)J\/;eB(’IH) < C’(N, + 1)
if N € N is large enough, Finally, we turn our attention to the last term on the r.h.s. of
(7.32). With (3.18), we decompose F3 as

1 ~
Fa=3 2 VI [vpby+apht, ] [vb-p +opby | +he.
peAl

1 .
+3 2 V/N [ pbp + 0pb™ ) dp+dy (b + apb3) | + hic.
peAt (7.35)
1 _
*+3 Z V(p/N)d,d_, +h.c.
peA]
=: F31 + F32 + F33 + h.c.

We decompose the first term as

N - N +£3V

1 —~ —~~
Fai = 5 > Vp/N)(bpb—p +b* %)+ Y V(p/N)n,
peEAL pEPH
(7.36)
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with (recall that y, = 1 and 0, = 0 for p € Pp;)

~ 1
& =Y V(p/N) |:§(y§—1+0§)(bpb_p+bipb:,)+20pypb;bp
PEPy

N—Nq

—N_ly,,opa;‘,a,, +(ypop —1p) N

Using again the estimates |y[3 -1 < Cn?7 and |o,| < C|np| forall p € Py, we find
+&) < CLPN, +1). (7.37)
Let us now consider F3, in (7.35). We divide it into four parts

1 —~
Fo=3 > V(p/N) [(ypb,, v opb* ) d_p+dy (ypb_p+ a,,b;)] +he.
= (7.38)

=: F321 + F322 + F323 + F304.
We start with F3»1, which we decompose as

1 ~
Faoi =5 > V(p/N)(yp = Dbpd—p
PEAL

1 = N+ *
*+3 Z V(p/N)b, [d_p +nH(p)7bp] (7.39)
pEA]

-5 V(p/N)nu(p)bp Nobs +hec.
PEAX

Using (2.6), we commute

by Nibly = Ny + Dbybs = (Vs + D(1 = N /N)
+(Ns+ D)(b5b, — N7 'a%ay). (7.40)

We arrive at

~ N =N\ [ Ne+1
F3 = — Z V(p/N)np ( N ) ( N+ >+5X
PEPH

where EX = 5!1 + 54}/2 + 542/3 + h.c., with

| — ~ |~ _
Eh= 5 2 V/N oy = Dbpd—p.  Eh=5 3 V(p/N)bpd-
peEAX PEAL

Vv
543

1 —~ Ny +1 _
-3 > V(p/N)n,,+T(b;b,,—N 'atap)
PEPH
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and with the notationd_, = d_,+N "0y (p) Nyb%. Since |y, —1| < Cn2x(p € Pu),
we find easily with (3.20) in Lemma 3.4 that

16, ER6N = C 3 NG+ D20 [Inp NG+ D281 + inallapé 1]

pEPy
< CO*|(Ns + )22

Furthermore

(6. ELEN = C Y mpllapg|® < CO¥ N g,

PEPH

To control &Yz we switch to position space. With (3.23) in Lemma 3.4, we find

(&, EpENl = C /A dxdy NVNG = )N+ DNV + D7 d

< Cliul /A dxdy N*V(N(x — )N + D12
X [ VIV + D260+ 1N I+ 1 NI+ N g
< COPWNa+ D262 + Coo (WG + DV 2 10y 6.
We conclude that
+& < CPHy +1).

To estimate the term F3p; in (7.38), we use (3.20) in Lemma 3.4 and |0, | < Clng(p)[;
we obtain

(€. F3n)| < C D Inplllb-pélllld—pé|

pEePy

< C Y Inplllb- &l [InpIONG + D21+ i 16— 6 1]

pPEPH
< COP|(N, + D22

Let us now consider the term F3,3 on the r.h.s. of (7.38). Here, we proceed as we did
above to estimate F3p1. We write F3o3 = 55‘/1 + 55‘/2 + h.c., with

1 ~ 1 .
=5 2 V/N) vy = Ddpb—y.  E =5 3 V(p/N)dphoy.
PEA] peEA]

With |y, — 1] < Cnf,)((p € Pg), we obtain

€, ENEN < C Y mallNa+ D'2EllayE || < COP NG+ D'2E 1%,

pEPH
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Switching to position space, we find, by (3.22),

(&, ELE)| < C/Az dxdy N3V (N(x — y))
X |V + DY2E NG + 1)1 2dayg|
< Clln N + D2 /A dxdy

X N2V (NG = o) [Iay Mo I+ lany N7 e ]
< CL (NG + D22
+ CEP NG + D PE WV el

Hence, + F303 < CC¥2(Hy + 1).
To estimate the term F3p4 in (7.38), we use (3.20) in Lemma 3.4 and the estimate
Y pent [V(p/N)|Iny| < CN; we find

€. Faug) < C Y [V(p/N)|InplI Vs + D2E NN + 1712, brg |
PEPH

C ~
< 2 VMl v, + 112

PEPH

x [|77p|||(N+ + 12| + g l1bpbl Ny + 1)1/2$”]
¢ ~
=N Z [V(p/N)|InplIV: + D)2

PEPH
X [mp OV + D32€ 0+ I 1IN + D€ 1+ s llap OV + D]
< CeP WL+ D)2,
Combining the last bounds, we conclude that

- N =N\ (—N, — 1
FnzZV@/N)np( N)( N )+56V

PEPH

with
+ & < Ct?(Hy +1). (7.41)

To bound the last term F33 in (7.35), we switch to position space. With Lemma 3.4,
specifically (3.24), and (4.17), we obtain

(€. Fxaé)| < CIlVG + D)2 /A dxdy NPV (N(x = )WV + 1)1 2did €|

< ClnulllN, + D] /A dxdy NV(N(x — y))

x [ VIO + D32+ 12 N8 + 1, N2 ¢
< PN+ D)Pe 2 + e N Pe Ve
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The last equation, combined with (7.35), (7.36), (7.37) and (7.41), implies that

1 ~
Fy=2 > V(p/N)(bpb—p +b* ,b%)

pEAX
—~ N — N, N—-N,—-1
- 5 o () ()
p;H P N N

with
+&) < Ct*(Hy +1).

Together with (7.33) and with (7.34), we obtain (7.29) with (7.30). Eq. (7.31) follows
similarly, arguing as we did at the end of the proof of Proposition 7.2 to show (7.12). O

We conclude this section, summarizing the results of Propositions 7.2 and 7.3.
Proposition 7.4. There exists a constant C > 0 such that

N—J\/+>(N—N+—1)

Gy =K+ Y [pznf, - V(p/N)np](

N N
pPEPy
. N — W\,
+ Y prup(bibt, +bpb o)+ > V(p/N)a;a,,T+
PEPH pEA*
1 5 @
*3 > V(p/N)(bpb—p+b* ,b5) + ),
peAX
where
&7, < CleI 2y +1)
and

= [ sV, [TV M. €| = ce I RM g (Hy + 1)

foralla > 3, £ € (0; 1/2) small enough, f smooth and bounded, M € N, N € N large
enough.

7.3. Analysis Ofg](\:;’)e = e’B(”H)ES)eB(”H). From (2.4), we have

1 -
g}j}fﬁ > Vip/N)e Bt a* a e whe.  (742)

Proposition 7.5. There exists a constant C > 0 such that

P.qEAL:p+q#0

1 _
¢ =— 3 Ve/n [b;+qai g + h.c.] +&2), (7.43)
P-q€AL:p+q#0

where

+ 51(3,)[ < CZ“/Z(HN +1) (7.44)
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and
£ [F NG/ M), LF NG/ M), EJ N < M7 (Hy + 1) (7.45)

foralla > 0, £ € (0; 1/2) small enough, f smooth and bounded, M € N, N € N large
enough.

Proof of Proposition 7.5. We start by writing
1
L +/0 ds e~ B G* ay Bng)le Bom)

1
=a’ a4+ fo dse™ B (g (pYbgby + 1 (g)b* ,b* )e B,
From (7.42), we find
1 -
QSQ = — Z V(p/N)e_B(rlH)b;+qu(77H) a* a
P-qENL:p+q#0

1 > —
w2 VN (p) e b e
P-g€AL, p+q#0

1
X/ dse_SB(ﬂH)bpbqesB(nH)
0
1 . B
TN > V(p/Nu(q)e Pbs, B0
P.qeNL, p+q#0
1
X / ds e~ $BOm px p* SBOm)
0 P4
+h.c.

Using (3.18) we arrive at (7.43), with

3 ~
ENe = S VI (prg = Dby + O prgbpg +diuy) @ g

P,q€AL:p+q#0

1 . )
o= 2 V/Nnu(p) e PIb B
P.qeN], p+q#0

=l

1
X f ds e SBmp b, s B
| (7.46)

1 R .
TN Z V(p/N)nu(q) e POmps . eBom
P.q€AY, p+q#0

1
X/ ds e $Bam px px sBOm)
0 s

+h.c.

= £ 4+eP 4+ 6P 4he.
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where we defined y, = coshny(p), o, = sinhny(p) and where the operator d), is
defined as in (3.17), with n replaced by ng. To complete the proof of the proposition,

we have to show that the three error terms & 1(3), 52(3), 5§3) all satisfy the bounds (7.44),
(7.45). We start by considering 51(3). We decompose it as

1 ~

3

£ = NG E : V(p/N)((Vprg — Dby + 0psgh—p—q + d3yy,) a” g
P-q€AL:p+q#0

. (3 3) 3)
= &7 +EL +E7.

Since |Vpiq — 1| < Inu(p+q)|* and |Ing | < CL*/%, we have

C ~
(g EXEI < — > IV@/Nna(p+ P 1bpga—pélllagé |
VN P.qENLp+q#0
C 1/2
<—| D I+l lla N+ D'
W [ P.qENT:p+g#0 ] (7.47)
172
<[ X aprollagr]

P:qENL:p+q#0
< Cllna PN + DY2g)12 < ce* (Vs + DV2g )12

To bound 88) wemove a* , totheleftof b, (using [a— g, a* ] = 0,since g # 0).
With |0p44| < Clng(p +¢q)|, we obtain

C —~
(8, £178)] < = S V@Ml (p+ @)l la—plllagh—p—gé |
P-g€AL:p+q#0
C 1/2
< ﬁ[ > I+ laspé )]
P.gENT:p+q#0 (7.48)
1/2
<[ lagbopgtl]
P.q€Ai:p+q#0
< CLP|WNs + D)2,
In £, on the other hand, we write dy =ds, — (MT+1)77H (p+4q)b—p—q. We obtain

3) (3) 3
&7 = &3 + &3, with

1 —~ _
3)
&5 = 75 Y Vp/N i at a
P-gE€AL:p+q#0
3 WNe+1) 1 ~
£ = _+T¢_ﬁ Z V(p/N)nu(p+q)b-p—ga” ,aq.
P.qENL:p+q#0
The term &£ 1(3)2 can be bounded like 51(3), commuting a* p to the left of b, _,; we find
+ 51(2)2 < CL*2(N, + 1). As for the term 51(2)1 we switch to position space:
1 - - v
3 v
£ = N S VN dat yag = /2dXdyN5/2V(N(x it
P,q€NLp+q#0 A
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With (3.23), we bound

(g, €D eyl < fA | dxdyN*2V (N (x ~ W)l ||y & |

< Clinu| fA (dxdyN V(N (x = y) k|
X [ING + DEN + llde (N + D26 + llay Ve + DY2E ] + lacdy&]l]
< CllnallIN 1| /A  dxdyN*V (N (x = y))

. . 1/2
X [V + DE I + iV + 126 2+ a1

172

< ClnulINPEN[ NN + D 2e ) + 1V el ]
< CEP[IWNG + D212 + 1V €17

With (7.47) and (7.48) we conclude that

+ &P < ClP Wy + N, +1) < CLP(Hy +1). (7.49)
Next, we consider the term 52(3), defined in (7.46). Using Eq. (3.18) we rewrite

1 o~

3 _

52( ) = Nivi E V(p/N)nu(p)e B(”H)b;Jrqu("H)
P.qENT, p+q#0

1
X /0 ds (ylgs)yq(s)bpbq + aéf)af)bfpb*_q

() () (s),,(s)
+ )/PY oqs b"jqbp +JpY yqs b’ipbq)

1 5 .
t Y. Vp/Nmu(p)e Pmps B0
P.g€AL, p+g#0

1
7.
X / dsylgs)aq(s)[bp,biq (7.50)
0

1 . B
TN Z V(p/Nynu(p)e Bmps B
P.qENL, p+q#0

1
x /0 ds [dS) (vVby +oOb" )
+ (nby + b)) +dd ]

.3 3) (3)
=& + &, +&x3
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where, for any s € [0; 1] and p € A%, y;(,s) = cosh(sng (p)), af,s) = sinh(sng (p)) and

df;) is the operator defined as in (3.17), with 5 replaced by sny. We have

&, £ < —— X O | [

P.gENpF—q
+ e (PIbg Ny + 1) 2| (7.51)
+ e @by Na + DY2EN+ Ina (D Inw (@I WN; + 1>sn]

< Clnu Ny + D212 < ceo? (NG + D22

Since [b,, b* ;] = —a* a,/N forall p # —q, we find
14 q qvp

C
1€, ED8)| < i 2 I @Ima@Ibpege g lla, W+ D'
P-qENT, p+q#0 (7.52)

IA

C Cce®
ﬁunﬂnzum + D22 < IV ' |%,

To bound the third term on the r.h.s. of (7.50), we switch to position space. We obtain

£9) = /g dxdydzNS2V (N (x — 2)i(z — y) e B0 pr B
A,

1
x /0 ds [d}(f‘) (bGP +5*G)) + (bFE) +b*(5))dS) + d}<f>d)(f)].
Using the bounds (3.22), (3.23), (3.24) and Lemma 3.1 we arrive at

(€, EX&)] < Cling| f dxdydz N>V (N(x — 2) i (y — )| [1bePTg||
X [IB.ByE I+ OV + DEN+ bV + D26+ by Vi + D¢
C”’?H” 1/2 B
< N, nH Ni+1
/! ENNNC E|l
< CIN: + D22

Combined with (7.51) and (7.52), the last bound implies that

+ &0 < PN+ 1. (7.53)
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Finally, we consider the last term on the r.h.s. of (7.46). In fact, it is convenient to bound
(in absolute value) the expectation of its adjoint, which we decompose as

1 . 1
&= Y TNt [ dsestomp_eton
P.q€AL, p+q#0 0

X (V;S‘Y)b_l’ + o;ﬁ)b; + d(_s[),)(qubmq +0prght ,_, + dpiq)

1 _ 1 ‘
- X Ve [ dsemomp_enon
P.g€AY, p+q#0 0
X [ylgs)ypwb,pbpw + al(f)op;,qb;b*fpfq

+ yIS”

Tpigh® b+ Vprgo Db peg
(s)
+ d—p(Vp+qbp+q + °p+qbip—q)

4 (b + 058N dpeg +d ) dpi

1 ~
t > Vp/Nmu(g
P-gEAL, p+q#0

1
—sB sB ‘
x/(; dse™® ("H)b,qeY (”H)ylgg)awq[bfp,bfp,q]
_. o3 (3)
=&+ &5 .

Using that ¢ # 0 and thus that [b—,, b* ,_ ] =
second term by

k .
—a’,_,a_p/N, we can estimate the

I(€,EX8)

C : sB
—sBmu)p*x  ,sB(H)
< N3/2/ ds E e @lma(p+@llla—p—ge b e " la—pE |l
P-q€AL, p+q#0

C : 2 B !
—sB(nn) SB(MH) &2
< N3/2/0 as[ X @) llazpog e PO B 2]
p,qe;\g (7.54)

ptq

<[ 32 natp +q>|2||a,psn2]l/2

P.gEA]
P+q#0

C cee
< Nnnﬂnznm + D' < IV + ' )2.

/2

To bound the expectation of 53(?), it is convenient to switch to position space. We find

1
£ = /0 ds / _dxdy N2V (N (x = y) e PO b(Giy ) B0
A
X [BGENBE) + 5" GO Gy) +b* @)BED) + 55 G OIb()

+ 0 () + 57 G) + (b +b* Gy +d0d, |
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where we used the notation 17z, 7 and & to indicate the functions on A with Fourier
coefficients ng (p), cosh(sng (p)) and, respectively, sinh(sng (p)), and where 17y, Px
and &, denote the functions defined by 175+ (z) = N (z — x), Yx(z2) = Y(z — x) and
ox(z) = 6°(z — x). Using (3.22), (3.23), (3.24) and the bound (4.17), we find, for N
large enough,

1
1€, e8] < / ds / dxdy NV (N (x — y) 6% Gia)e B
0 A2
x [IBby§ 1+ 1B NG+ D281 + 1By NG + D28 ]+ [N + D8] .
With Lemma 3.1, we estimate

16* (G72)e B g < Cllnull|NVL + D3]

We conclude that
6 EF) = CeIV+ D22+ Ve )
From (7.54), we find
+£0 < e (Hy + 1)
and thus, combining this bound with (7.46), (7.49) and (7.53), we arrive at
&), < ClP(Hy +1).

This proves (7.44). The bound (7.45) follows similarly, arguing as we did at the end of
the proof of Proposition 7.2 to show (7.12). O

7.4. Analysis Ofgl(é?g = e_B(””)E%)eB("”). With L%‘) as defined in (2.4), we write

g](\;")e _ e*B(UH)Eg\‘}')eB(UH)

1 -~ N. Ni+1
=Vn+ 50 > V(r/N)nqwnq(l—W*)(l— *N )

geN reN”
q,q+rePy
1 = * % “
ts Y Ve/Nng (babq + b5, ) + €
geNi,reA™:
g+rePy

Proposition 7.6. There exists a constant C > 0 such that
+ & < C P (Hy +1) (7.55)
and
& [FWN/M), [F N/ M), EC L < CM72 12,62 (Hy +1)  (7.56)

foralla > 0, £ € (0; 1/2) small enough, f smooth and bounded, M € N, N € N large
enough.



Optimal Rate for Bose—Einstein Condensation in the Gross—Pitaevskii Regime 1359

The following lemma will be useful in the proof of Proposition 7.6.

Lemma 7.7. Let ny € (2(A*), as defined in (4.13). Then there exists a constant C > 0
such that

1N + D)2 BOmp P
< CL NN + DD 4 NG + 1" (7.57)

+ 1y NG+ DIDRE] 1 N+ DO D2 4y (WG + 1" |

foralle € F=N n e Z.
Proof. We consider n = 0, the general case follows similarly. With the notation y, =

coshny(p),rp = 1—yp,0, = sinhny(p) and denoting by &, 7 the functions in L2(A)
with Fourier coefficients o}, and r,, we use (3.18) to write

||e—3(77)l;x];y63(7l)§”

I(by + b(F) + b* (5x) +dy ) (by +b(Fy) +b*(5y) +dy)E]|
1B byl + CIB NN + 1B, N PEN + Cl5 (x — WIIEN
+ bedyE || + llde (by +b(Fy) + b*(Sy) +dy)E||

IA

because |||, lo|| < Cllnull < C. Using Eq. (3.24) and (after writing l;x(jy = l;xc?y -

by (N+/N)b*(17y)) Eq. (3.23), and with the bound (4.17) (which also implies |5 (x)| <
CN), we obtain (7.57). O

Proof of Proposition 7.6. We start by writing

e*B(rlH)ES')eB(ﬂH)
1

TN Z V(r/N)E_B("H)a;a;aq_rap”eB(UH)
paeALrent £ pg
1 -~
=Wy > Vr/N)

P.qENL reN*r#—p.g

1
x / ds e+ B [a;a;aq_,apﬂ, B(TIH)] S B
0

1

=Wtsy > Ve/Nmulgen)
qeENS reN*r#—q

(7.58)

1
x / ds (e B0 prp e B0 s hc)
0

1 —~
ty > V(r/Nynu(q +7)
P.gENL reN*r#p,—q
1
X f ds (e_SB(”H)b; bra* apeSB(”H) + h.c.) .
0

+rq“—q—r
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Now we observe that

o~ SBOI) g sB(w)

q_rape

s
= aifl—rap +/0 dt e_TB(nH) I:aiq—rap’ B(WH)] e_rB(nH)

N
=a’,_,ap +/0 dt e~ B0m) (nH(P)bipbfq,r +nu(g + r)bpbq+r> o TBUIH)

Inserting in (7.58), we obtain

QI(\‘,‘),Z —VNn=Wi+Wr+W3+Wy

where we defined

(7.59)

1 . 1
Wi= oo > V(r/N)nu(q +r)/ ds(e™Bmp,p_, e BO) 4 hel),
qeNi reA*r£—q 0
1 ~
Wa= — > Vr/N)nu(g +7r)
P.qENL reN* r#p,—q
1
X /0 ds (e_SB("H)beiqe‘YB(””)aqurap + h.c.),
1 ~
W= > V(r/N)nu (g +rnu(p)
P.gENT reEN* r£— p—q
1 s
x | ds | dr(e PO breSBmmTBUIpE b etBUIN) 4 hc)),
0 0
1 %2 2
Wa= = > V(r/N) (g +7)

P.gENL rEN r#E— p—q

1 s
x/ ds/ dr (e P0ps | bret PO e By by TP 4 b)),
0 0

First, we consider the term W. With (3.18), we find

1 ~
Wi= v > Ve/Nuulgn)
qeENi reN*r#—q

1
X f ds(yq(s)bq + Uq(s)bfq + d(;s))(yq(s)b_q + oq(s)b; + df;) +h.c.
0
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where we defined yq(s) = cosh(snx(q)), qu) = sinh(sn gy (¢)) and where d;s) is defined
as in (3.17), with n replaced by sny. We write

1 . 1 ,
Wi=->5 > V(r/N)nu(q +r)[0 ds(y\)(bgb—g +h.c))
qeENi reN*r£—q
1 - 1
TN > V(r/N)nu(q +r)f ds y Vo (Ibg, b1 +h.c.)
qeNi reA*r#—q 0 (7.60)
1 ~ 1 ‘
fay X TNt [ dsy (b ehe) £

geNL reN*r£—q

4
=W +Wp+Wi3+ 51(0)

where
@ _ @ 4) 4) (4) 4)
Eio = i +E 0+ o3 +Eo * Elos (7.61)
with the errors
1 ~
4)
Eoi=3y 2 VO/Nmug+n

qeNS reN*r#—gq

1
x / ds[zy;%y)b;bq+(oq(f>)2bt qb;+h.c.],
0

1 - I ,
Ew=5y 2. VO/Nuag+n / ds o[ (b* ,d") +h.c),
qeEAN reA*r#—q 0
@ _ 1 = ! (7.62)
Sh=sy X VeMmen [ dsol (@b +he),
geNT reN*r£—¢q 0
1 A 1
Sh=ay X TeMmen [ dsy @b, vhe).
geEANL reN*r#—q 0
1
fu=5v 2 Ve/Nmu +r)/ ds(dPd") +h.c.).
geENL reN* r#—q
Since
sup — Z [V (r/N)Inger| < € < 00 (7.63)

qeh; reA*

uniformly in N € N and £ € (0; 1/2), we can bound the first term in (7.62) by

6. EMEN = C Y [Ingllbg€l? + 2k N: + D281 | < N + DY)

geA]
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To estimate the second term in (7.62), we use (7.63) and Lemma 3.4; we find

6. EMON < C Y I @IIb—g& 1 [ Ina @I N + D21 + s b8

qeA}
< CO*|(WN+ D22,
For the third term in (7.62), we use (7.63), Lemma 3.4, and also
1 ~
w2 WVe/Mlnu@+nina@l =€ < oo
qeENS reN*  r£—q
uniformly in N and £ € (0; 1/2). We obtain

CIWN: + D2 3

v IV /N)Inu (g +r)lnu @)l

4
€, ErEN <
geEANL reN*r#—q

x [ gl 15581+ N~ in N bg by NG e ]

172
SCII(J\/++1) &l Z

v IV /N)lInu (g +r)lne @)l

qeENS reA*r#—gq
— 1/2
x [ gl + N7 s DING €+ 1681
< CE N, + 1) 287,

Consider now the fourth term in (7.62). We write £ 1(32‘ = 51(32“ +& 1%2&2’ with

1 e 1
Eon =5y > Ve/Nuug+n / ds (v = 1)db_,,
geEANL reN* r#—q 0

1 ~ 1

4

Sa=sy X VemmuGen [ dsa,
qeAN; reN*r#—q 0

With [\ — 1] < Clnu(g)1?, (7.63) and Lemma 3.4, we easily find
€, Efgn &)1 < COYING + 1) 2g %,

As for the term £ 1(32‘2, we switch to position space. Using (4.17) and (3.22) in Lemma 3.4,
we obtain

1! o
16, i) = ’5/0 ds /A2 dxdyN>V (N(x — y)iin (x — y)(E, dVbyE)
1
s [ [ andyN VNG DI+ DI + 17205 )
0 JAZ
1
< C||77H||/0 /Az dxdyN*V (N (x — y)||(N. + D%

x [y Mol + Nl Ny g
< CEPIWN + D2E 2 + e (W, + DPe Ve



Optimal Rate for Bose—Einstein Condensation in the Gross—Pitaevskii Regime 1363

Let us now consider the last term in (7.62). Switching to position space and using (3.24)
in Lemma 3.4 and again (4.17), we arrive at

(g, ELeN < € [ dxdy N>V (N(x — y)INs + D2V, + D) 7V2d,dyg ||

< Cllom IV + ' [ drdy NV G = )

. . v v A /3/2
X [ NIV + D21 + 18N8 + 13, N 28 + I, A5 g ]
< CLP N+ D2 |2 + Ce W+ D210y %
We conclude that the error term (7.61) can be estimated by
+ &) < ClP(Hy +1).
Next, we come back to the terms W11, W2, W13 defined in (7.60). Using (7.63) and

|yq(s) — 1] < Cny(g)?, we can write

1
Wi =50 > Vr/Nu(q+r)(bgb_g +hc) + €T (7.64)
geENL reA* r#—q

where £ (41‘) satisfies the estimate

(&, E178)] < > WVE/Mlinatg+nlina@Plbgg N + 1))

qeENS reN*r£—¢q
< COY? (N + DE.

The second term in (7.60) can be decomposed as

N

: v NeY L ew
Wo=ow > VO/Nnu(g+rna() (1 ~ 7) +E® (7,69
qeNi reA*r£—gq
where the error
| -
€ =5 2 Ve/Nmu@+n) f dsyPolaa,

qeENf reN*r£—¢q

! > ! N
() 5 (s) _ _ It
tov 2 Ve/Nmagn) fo ds( o) — snu (@) (1 - )
qeNf reA*r#—q

can be bounded, using (7.63) and |y, ) (S) —sna (@) < Clnu(q), by

+EB) < CO*WN, +1).

As for the third term on the r.h.s. of (7.60), we write

Wio=—s Y TN+ @
13 = N r Nu\q +7r)NHulq
qeNi reA*r#—q

x (1 - %) MN+ Lie® (7.66)
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where Sl(g) = 51(;1)1 5](32 + 51(33 + 81(‘3‘1, with
1 _ 1 ,
£y = N > V(r/N)nu(q +r)/ ds(y — Dbyd®) +hec.,
qeENS reN*r#—¢q 0
@ _ | v 1 ® Ne s
En=5y 2 VO/Nuulg+r) | dsby|dSy+snn@=rby | +he.
geAt reN*r£—q 0
4 1 > Ni+1
Eh=—5v 2 VO/Nmu@+nmn@bib, =,
qeENf reN*r£—¢q
1 = Ni+1
4
Eh=gm 2 Ve/Nmaa+nma@age =

qeNi reN*r£—¢q
It is easy to estimate the last two terms: with (7.63), we have
re@ <o+, 2 < W+ ).

With |7/(S) -1 < CnH(q)2, Lemma 3.4 and, again, (7.63), we also find

EEDI= S X ITE/M g+l @I+ D)
qeENT reN*r£—¢q

x [l @IV + D20+ i 11,61
< COYWe+ D252,

Let us now focus on El(g)z. Switching to position space, making use of the notation
d = d +s(Ny/N)b*(ijn.y) and using Lemma 3.4, specifically (3.23), we obtain

& 20| / dsf dxdyN?V (N (x = )it (¢ = )(&, bedy6)|
= Clinull /AZ dxdyN*V (N (x — y)I[(Va + D2

X [ VI + DYV2E ]+ 1N I+ 1, NI+ i N g
< CEPIWNe+ D217 + CeP NG + D Ve

We conclude that £ €3 < C£*/2(Hy + 1). Combining this with (7.64), (7.65), (7.66),
we obtain

W, = % > V(r/N)nu(q +7)(bgb—g +h.c.)
geEN,reA*r#—q
1 ~
ton 2 Ve/Nmug+nmu@ (7.67)

qEANL reN*r#—q

N+ N++1
Ry
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with

+&® < ceP(Hy + 1),

Next, we consider the term W, in (7.59). To this end, it is convenient to switch to
position space. We find

1
Wy = / dxdyN*V (N (x — y)) / ds (e PO Bxpe B a* (i )iy +h.c.)
A? 0

with the notation 17y (z) = g (x — z). By Cauchy-Schwarz, we have

1
(€, Wat)| < /zdxdy N2V(N(x - y>)/0 ds
A
X |(Ne + DV2e=5BOmp b eSBOD g ||V + 1)V 2a* Gl ) ay .
With
TN + D7 Y2a* G oayg | < Clinullllayé |l < Ce?|ayé|
and using Lemma 7.7, we obtain
(&, Wak)| < Ce*/? /A | dxdy N2V(N(x — y)lldy&|l
. . .o 7.68
x NIV + D21+ NIag + Nlaygl + N aaye) | 700
< CL(N: + D2e | (Vy + No + D2

Also for the term W3 in (7.59), we switch to position space. We find
W3 = /1\2 dxdy N*V(N(x — y))
x /0 1 ds /0 ' dr (e B prpresBUm o ~TBOm b* iy )b* (i, y)e" P + hec.)
and thus
6 wse) = [ ety NV [ds [ e s e e,
< |G+ D72 BUm b Gy 0)b* (i, )et POHDE ).
With Lemma 3.1, we find

[N + D)™V 2e T BO@ p* (1 N)b* (. )e™ B E || < Cllnm PN + D2

Using Lemma 7.7, we conclude that
I, Wsg)| < Cee /A dxdy N?V(N(x = )| (Ns + D'g]

x NIV, + D12 )+ Nlagl + Nlagl + N2l 7%
< CL|WNs+ D'2E VU + No + D2
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The term W4 in (7.59) can be bounded similarly. Switching to position space, we find

W, = /dxdy N2V(N(x —y))

1 K
X / ds/ dt (e_SB("H)I;;kl;; s B e_rB(”H)b(ﬁ%,’x)l;yeTB(”H) +h.c.)
0 0

where ﬁ%{ denotes the function with Fourier coefficients 77%-1 (g), for g € A*, and where
73« (¥) = 77, (x — y). We conclude that |77, .|| = [[n3,[| < C£>*/%. With Cauchy—
Schwarz, we arrive at

1 K
(€, Wag)| < CO5 / ds / dx / dxdyN>V(N(x — y))
0 0

X |(NG + 1)V 2esBOmp b esBOm g, e™BUmg ]|,

Applying Lemmas 3.1 and 7.7, we obtain

1 s
(€, Wag)| < Ce>/? / ds / dt / dxdyN>V (N (x — y)llbye g |
0 0

x [ NIV + D26 ] + Nlag ] + Ny gl+ N2 lad 6]

IA

1 s
et [as [ dr 1+ ) PTEODE Oy + N+ ) e

COPINL + D21V + Ne + D2

IA

Combining (7.67), (7.68), (7.69) with the last bound, we find

1 ~
g/(\f,)e =Wn+oo > V(r/N)nu(q +r)(bgb—g +h.c.)
qeENS reN*r#—q

vV + + 1
> V(r/N)nu(q +r)nm(q) (1 - AL) (1 N ) +&V,

X N N
qgeAi reN*ir#—q

where 5](\?’)( satisfies (7.55). As for the bound (7.56), it follows similarly, arguing as we
did at the end of the proof of Proposition 7.2 to show (7.12). 0O

7.5. Proof of Propositions 4.2. 'We now combine the results of Sects. 7.1-7.4 to prove
Proposition 4.2. From Propositions 7.1, 7.4, 7.5, 7.6, we conclude that the excitation
Hamiltonian Gy ¢ defined in (4.18) is such that
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V(0 N —
ONe = %(N + N —1) Ny

1367

~ 1 ~
2
w3 [P+ VN 2o 3 VN |(—
PEPH reA*
ptrePy

+ K+ Z v(p/N)a;apLM

PEAX

N—N+>(

N—N+—1)

N

lA ] A~
> [pznp+§V(p/N)+ﬁ > VC/NIper (305, + bpb-y)

pePy reA*: p+rePy

b3 [P g X T/ Nmp (g + 07, 57)

PePy reA*: p+rePy

> T/ [b;;wafpaq + h.c.] + VN + &
P.q€ALp+q#0

5-

where
£& < CLOI 2 (Hy +1)
and, with the notation fy = f(N./M),
[ fus [ E01 = CLDPM72| 1%, (Hy + 1)

for every f bounded and smooth and M € N.
Our first goal is to show (4.24). With (4.10), we have

S w[pn Ve ss X TN ]

pePy relA*: p+rePy

= > np[ %V(p/N)+/\eN3Ye(p)+MN2 > ?e(p—q)nq]

pePy geA*
1 ~
— == > V(p—q)/Nmpng.
P.gEN™:
PEPH.qEPy,
With Lemma 4.1 and estimating
el = lxell < CE2, linull < €72,

I1%e * null = llxenull < 1iml < €72,

we conclude that

(7.70)

(7.71)

N—N+><

) np[pznp+V(p/N)+% > VN |(—

pEPY reA*
p+rePy

1 ~ N - N, N-N,—1
=§ZV<p/N)np< v )( N >+5z

PEPH

N

N—N+—1>
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with £& < C€7% (and with [ fur, [ fmr, E21]1 = 0). Since Zpeplci [V(p/Nlinpl <
C¢~%, and from (4.6), we further obtain

Z flp[p2np+ V(p/N) +% Z {/‘(r/N)np+r](N ;VN+>(N —J]\Vf+ — 1)

pePy reA*
p+rePy (772)

V(0 N - N,
=|:4nao—%:|(N—N+—l)< N >+83

where + & < C€7% (and [ fur, [ fum, E3]] = 0). Using (4.10), we can also handle the
fourth line of (7.70); we find

1~ 1 £%2 * %
S [P 5V 55 D VN |53, +byb-)

pEPH reA*: p+rePy
= Z |:N3)%5(\E(p) + NZ)‘Z Z Xe(p — Q)Uq](b;bip + bpb—p)
por gene (1.73)
~ 3y D V((p = q@)/Nyng (byb* , +byb_).
p,geEN™:
PEPH, qEPE

Observe that
(6 N33 3" Tpbybp)| = COPING+ D' PEL Y 1pl IR(P)IPIIBE

pePy PEPH

< COP RN+ D25 1K g |
< CeTPR W+ 1)K g ).

Using x¢ * n = n (because ¢ (x)wg(x) = wy(x) in position space), we also find

(€N D Tlp— g Byb®, +byb-p)6)|
pEPH, geA*

< N33 (W, + D)1 2e K e )

Furthermore, we have

1 —~
655 X Vi —a)/Nmgbyb-yt)]

p,qu*:‘

PePH, qePy,

_ L[ 3 LW((p—q)/N)P}‘/Z
TANL el el |p?|
Pl rehe (7.74)

1 1/2
x[ > ?|p|2||bps||2] IV + D2

p.qeEN*: |C]

pePu, qGP[C_I
< COUNTV2IC eI (NG + D2
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From (7.73), we conclude that

1~ 1 _
+ ) [pznp+§V(p/N)+ﬁ 3 V(r/N)n,,+,](b;bip+b,,b_,,)

pEPH reA*:
p+rePy

< Cr3(K+ 1) (7.75)

for N large enough. As for the fifth line on the r.h.s. of (7.70), we can write it as

% > [V(p/zv)+% > V(r/N)n,,+,](b,,b_,,+b*_pb;)

PEP reA*: p+rePy

1 . —~
= 5 Z (V(-/N) * fN,l)p(bpb*p +btpb;) +&4
PEPE

(7.76)

where the error operator

1

Sy = —
*TON

Y. V= a)/Nong(bpb—p +b*,b7)
P.gEA™:
p.qePy

can be bounded by + & < CN~V2¢=%(K + 1), similarly as in (7.74).
Combining (7.70) with (7.72), (7.75) and (7.76), we conclude that

N_N+
Gne =4mag(N — 1)( N

) + [V(O) —dmag| N (N _N+>

N

~ N-N, 1 ~ ~ .
+K+ Y V(p/N)a;ap7+§ D (VC/N) * fne)p(bpbp +b* ,b%)

N
PEN} PEPy
1 —~
i S VN [b;+qaipaq +h.c.] +Vy +E5

P.qENL:p+q#0

with
£E8 < CL I (Hy + 1)+ CL.

Observing that

+ Z V(p/N)aha, < CO*(K+1),
PEPH

that |V (p/N) — V(0)| < C|p|N~", and that, by (4.6),
|(V(-/N) * f.0)p — 8maq]

< /dx N3V(Nx) fe(Nx)|e'P* — 1] +

/ N3V(Nx) fo(Nx) — 8mag| (7.77)

<C(pl+DHN!
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we arrive, with gf\ff@ defined as in (4.23), at Gy ¢ = Getr + En.¢, With an error Ey ¢ that
satisfies 7

+ Eny < CLOI2PHy w7 (7.78)

for all N large enough. This completes the proof of (4.24). The second bound in (4.25)
follows similarly, arguing as we did at the end of Proposition 7.2 (and noticing that
the error term &3 in (7.72) which is responsible for the factor £~ in (7.78) actually
commutes with f(Ny/M)).

Let us now prove (4.22) and the first bound in (4.25). We have to control the off-
diagonal quadratic term and the cubic term appearing in g;’;,ff ;- We observe, first of all,

that

[47a0 Y (& (b + b7 )6 | < dmag 3 NN+ D)8

peFs peP (7.79)
< COYHWN + DV 21K 2.

Using [far. Lfar. bpb—pll = (FWNe/M) — f((Ns +2)/M)*byb_p, and a similar
identity for [ far, [ fum, b;b"jp]], we also obtain

40 3 (6. [ Lo (b + 530, )]JE)

pePé
< CM 7202 £ 12 NG + D212 (7.80)

It is possible to show an improved lower bound for the operator on the Lh.s. of (7.79),
by noticing that, for an arbitrary § > 0,

4 ay 41 ag
0< <\/§|p|b*+—b )(\/g|p|b +— 2 p* )
,,EZP;, P Valpl " R

2

2 (4mag) 1

=8 ) plbyby D _gbopbt, + o Y (b-pby + 0307 ,).
PEPY, PEP, PEPY,

With (2.6), we commute
b_pb*, =b* b_p+(1—Ny/N)—N""'a* a_,.
Observing that

*

p9r

N
b;bp = G;T+ap <a

and that ) peps, | pl_2 < C{£7“, we conclude that there exists a constant C > 0,
independent of ¢ € (0; 1/2) and of N, such that

dag Y (b-pby +b5b* ) = —8K — C8T' N, — Cs7'e e (7.81)
PEPE
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for any 6 > 0. As for the cubic term on the r.h.s. of (4.23), we have, switching to position
space,

\%ﬁ b V(p/N><s,(b;+qatpaq+h.c.)g>)

P.qENL:p+q#0 (7.82)

< /A  dxdy NPV(N(x = y)lask laxay [l < CIN+ D21V E |

and analogously

1 ~
\ﬁ S VN [ [ (B0, +he)]J6)]
P.qENT:p+q#0 (7.83)
_ 172
< CM72| 1% IV + D 2e vy %l
Combining (7.78) with (7.79) and (7.82), we obtain (4.21). From (7.78), (7.81) and
(7.82), we infer (4.22). Combining instead the second bound in (4.25), with (7.80) and
(7.83) we find the first bound in (4.25) (because all other contributions to g,evf,f( commute

8. Analysis of the Excitation Hamiltonian R y ¢

The goal of this section is to prove Proposition 5.2, which gives a lower bound on the

excitation Hamiltonian Ry ¢ = e_Ag,e\,ffe e, with Qle\,ffz as in (4.23) and the cubic phase

1
A= T > we[bfat,a—hel (8.1

rePy,vePy,

introduced in (5.1), with the high momentum set Py = {p € A} : |p| > £~} and the
low momentum set P, = {p € A} : |p| < 7By for parameters 0 < f < « and £ €
(0; 1/2) (in the proof of Proposition 5.2, we will assume o > 3 and /2 < B8 < 2a/3).
To study the properties of Ry ¢, it is convenient to decompose

Gy =Dy +K+Qne+Cn+Vy
with /C and Vy being the kinetic and the potential energy operators, as in (4.19), and
Dy = drag(N — Ny) +[V(0) — 4wag|No(1 — NL/N),

On.e= V() > apapy(1 —Ny/N)+4mag Y [b5b*, +byb_,).
PEPy PEPy (8.2)
1 -
= 2 V/Nbgata+he]
P.gE€Niip+q#0

with Py, = A} \ Py. To study the contributions of these operators to R, ¢ and to prove
Proposition 5.2 we will need a-priori bounds controlling the growth of the expectation
of the energy Hy = K + Vy through cubic conjugation; these estimates are obtained in
the next subsection. As we did in Sect. 7, also in this Section we will always assume that
V e L3(R?) is compactly supported, pointwise non-negative and spherically symmetric.
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8.1. A priori bounds on the energy. Our first proposition controls the commutator of
the cubic phase (8.1) with the potential energy operator Vy.

Proposition 8.1. There exists a constant C > 0 such that

> (VO/N) = n)()[b},,a* .ay +he] +8y,  (83)
reAj,vePr

r#E—v
where

€, By &) < CLePIV\ 2| 1C,2E | + PRIV e Ic e (8.4)

foralla > B > 0, ¢ € (0;1/2) and N large enough. Here K; = ZPEPL p2a;‘;a1,
denotes the kinetic energy associated to momenta p € P, = {p € A% : |p| < P

Proof. With

[ap+u qapa(1+u’br+v ra]

= (@)1, ayapageu, a7y, 11 — (No/N)aZay + by, lay,,ayapag i, a”,.a]

b!’+u qaq’f”a—rav(sp r+v bp+u qapa—rav5q+u,r+v
+ br+v p+u qapav‘s—rqm +b,+v ptu qaq+uav8_,”,,

* %
br+v —r p+ual7aq+'l84 v br+va—raqal7aq+usv,l7+u

and normal ordering the first two terms, we obtain

*

1
[VNyA]ZW Z V((l/t—r)/N)nr u+v —uav+®2+®3+®4+hc‘
ueAN*,rePy,vePy
with
1 k
Oy = N2 Z V(”/N)nr pud Ay ua—ral’av’
ueN*, peAy,
rePy,vePL
1 k
Oi= n 2L VN, e, 55
ueA*, peAy,
rePy,vePr,
1 *
Oui= —a D V/NInbfa®,ah,apav.
ueA*, peA’,

rePy,vePy,
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The notation )_* indicates that we exclude choices of momenta for which the argument
of a creation or annihilation operator vanishes. Writing

*

1
w7 2 Vw=n/Nmbaka,

ueA*
rePy,vePy,

*

1
=3 2. Vu—r)/Nnbata

u,reN*,
veP

*

1
~ N2 E V(@ —r)/Nyn,b,,a* ,a
ucA* vePyp,
rePSUL0)

and comparing with (8.3), we conclude that 8y, = ©1 + ®, + @3 + O4 +h.c., with

*

1 -
O1 =~ > Vw—nr/Nmbi,a* a
ueA*,vePy,
reP5U{0)

and with ©®,, ®3, @4 as defined in (8.5).
To conclude the proof of the lemma, we show next that each error term ® ;, with

Jj =1,2,3, 4, satisfies (8.4). We start with ®. For any & € ]-"EN, switching (partly) to
position space and applying Cauchy—Schwarz, we find

1 5 1/2
(€. ©16)] < ﬁ[ﬁ dxdy N*VING=y) ) |nr||v|—2||bxéysn2}

re{0}UPf; ,vePy

172

x [/zdxdy NV(NG=y) ) |m||v|2||avs||2} ®.6)
A rel0}UPS vePy

ce—eP2

- 172
- N

Vel ell.

Denoting by 1y € L?(A) the function with Fourier coefficients ny (p) = n pX(p € Py)
and using (4.14), we can bound the term ®» on the r.h.s. of (8.5) by

1 : e e o
(5. ©26) = ‘W fA dxdy NV(NG =) Y (e Bija’ (nH,paxavs)‘

ve Py
_ liall [ sy wven 212 i
= NIz ( (x_y))gp: ol 2N by ||
L

12
x U dxdy N*V(NG =) Y ol ldaé] ]

ve Py

_ 1/2 1/2
< CLePR IV PefK) e,
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The remaining contributions ®3 and ®,4 can be controlled similarly. We find

(5. ©3¢)| = ‘%ﬁ /A Jdxdy NPV(NGe=y) D0 e b, ;‘é*axavs)‘

I’EPH,UEPL
1 |:/ ) Z 2 2 1z
< — dxdy N“V(N(x —y)) v~ ||br+véxéy‘§” :|
W A rePy,vePy,
12
x [/zdxdy NVING =y ) n3|v|2||éxavs||2}
A rePy,vePr
Ce= P2y ) ) _ )
< Tn/\fi/ VPENINLP I el < ce@= P e, g
as well as
1
(€, ©®48)| = 'ﬁ/Az dxdy N*V(N(x —y) Y eV (g, b, a _raxaxayé)‘

rePH,vePL

1 |:/ 2 =2 245 ~ 2 2
< —| | dxdy N*VIN(x—y) Y Ir| 70 lldxdyE |
\/ﬁ A2 rGPH,UEPL

1/2
x[ / dxdy N*V(N(x —y) Y. |r|2||br+varéxs||2]
A2

rePy,vePp

< CO@PR Y ek ).

Choosing N > £73%/2 (to control the r.h.s. of (8.6)), we obtain (8.4). O

With the help of Proposition 8.1, we can now control the growth of the expectation
of the energy Hx w.r.t. cubic conjugation.

Lemma 8.2. There exists a constant C > 0 such that
e AHyer < CHy +CLU 4Ny + 1) (8.7)
foralla > B > 0witha > 4/3,5s € [0; 1], £ € (0; 1/2) and N € N large enough.
Proof. We apply Gronwall’s lemma. For a fixed £ € ]-"fN and s € [0; 1], we define
fes) = (5. e Hye ).
Then
fi(s) = (€. e K, Al &) + (€. e[V, Ale* ). (8.8)

Let us first consider the second term. From Proposition 8.1, we find

1 ~
v, Al = <573 > (V(/N) 5 0)(r) [bFpa,ay +hc] + 8y,
reAi ,vePp,r#—v
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where the operator 6y, satisfies (8.4). Switching to position space and applying Cauchy—
Schwarz, we find

1 ~
EEED SRR (IR (G ]

reAf vePp r#—v

‘ / dxdy N*2V(N(x = y)il(e =) Y ™ (& “‘é;‘é;‘ave”s)‘

UEPL (89)
C 2 1/2
vePr
=C ||V}v/ Ze g I 2e““sn
because, by (4.17), [|7llec < CN and
/ dx H Z e aveSASH A%-’ a:aveSA€> < <eSA§,N+eSA$).

veP

Together with (8.4), using @ > 8, we conclude that
(6. ey, Ale8)| < Cle, e Ay e )

if N is large enough. Let us consider the first term on the r.h.s. of (8.8). We compute

1
[IC,A]:W > 2r’n[bf,,a ay +hel

rEPH,UEPL

2 8.10
+ «/__ Z rvn[bfat,ay +he] (8.10)
N rGPH,UEPL

=: Ty +T».

We use (4.10) to rewrite the first term on the r.h.s. of (8.10) as

T=- 3 (VN * ) O)[bfa’,au+he]

reAy,vePr,
r#&E—v
S VN fu0@[B et +he]

rePiyvebL. @.11)
r#&E—v

Y NG v @)[bat ay +hel]

rePy,vePr

= T11 +T12 +T13.

Sl

=l

+

al-

Since || felloo < 1, the contribution of T1; can be estimated as in (8.9); we obtain

(€, e ATy e*48)| < CIVY e e NN et (8.12)
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The second term in (8.11) can be controlled by

C 1/2
|<s,e—sAT12esAs>|sﬁ[ > |r|2||br+ua_re”en2}

rePf vePp . r#£—v

1/2
x[ > |r|2||ave“‘s||2]

rePg vePp,r#£—v

< CUP K 2 A INL e

Finally, since (Xg * ﬁv () = Xe(r) + N~1n,, the explicit expression

47 (sin(ﬁ|r|)

xe(r) =—
Ir|? Ir|

— Ecos(ﬂ|r|))

and the bound (4.8) imply that |(xp * ﬁv,g)(i’)l < Cl|r|72, for N large enough. With
Lemma 4.1, the third term on the r.h.s. of (8.11) can thus be estimated for « > 4/3 by

|(&, e AT13e ) |

Cco2 s 12 12
<5 [ P a_re“‘snz} [ > |r|—6||ave“s||2} (8.13)
N rEPH rEPH,UEPL
< O K2 A NPt Ae | < CIIE e Ag IV et )
So far, we proved that
_ 1/2 1/2
(€, T1E)| < CLP|HY P AE N et g | (8.14)

forall £ € ffN . Let us now consider the second term on the r.h.s. of (8.10). We find
(£, e AThe e |
172

c 1/2
sﬁ[zwwﬂzare“snz] [ > |v|2n3||ave“s||2} (8.15)

rePy rePy,vePy,

< CePIK e g |1 e g .
Together with (8.14), we conclude that

(5, A, Ale™5)| < C(€, e Hye™E) + CLT (5, e Nwe ™ 8).
With Proposition 5.1, we obtain the differential inequality

IfE()] < Cfe(s) + CL (&, (Na + DE).

By Gronwall’s Lemma, we find (8.7). O
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The bound (8.7) is not yet ideal, because of the large constant proportional to £~
multiplying the number of particles operator A;. To improve it, it is useful to consider
first the growth of the low-momentum part of the kinetic energy operator. For 6 > 0, we
set

Ky = Z p2a;‘,a,,.
peAi:|p|<o
Comparing with the definition given in Proposition 8.1, we have K, = Ky_,—5.
Lemma 8.3. There exists a constant C > 0 such that
e AKpet < CKp + COOP (Hy +1) (8.16)

foralla > B > Owitha > 4/3, £ € (0;1/2),0 <0 < £ —¢F 5 €[0;1] and
N € N large enough.

Proof. For a fixed & € FEN, we consider the function g¢ : [0; 1] — R, defined
by g:(s) = (&, e SAKge’AE). For r € Py and v € Pr, we observe that |r + v| >
IF| —|v| = €% —¢=F > 6. Hence, we obtain

[Ko, Al

1

— > b [Ke.ay] +he
NFGPH,UGPL

> i bf,at,an+he.

rePy,vePr:|v|<0

sl-

We estimate

1 —_—
’Tﬁ 2 lvlzms,e“b:‘wa:ave“a’

rePy,vePr:|v|<0

IA

! | , ‘
JN 2 17+ vl |breva—re A | 0l 1v] lave A& |

|r + v|
rePy,vePr:|v|<0

cro—b 1/2
< [ D r+ vl braetE ﬂ
\/N rePy,vePr:|v|<0O

1/2
x[ > |m|2|v|2||ave“s||2}

rePy,vePr:|v|<0

< COPPIKI 21Ky Pt A .

Hence, using X < Hy and Lemma 8.2,
|(058&)(s)]
< COH (g e My E) + Cop(s) < COOPE (Hy + 1)E) + Cge(s).
Gronwall’s Lemma implies (8.16). O

With Lemma 8.3 we can now improve the estimate of Lemma 8.2 for the growth of
the expectation of the potential energy Vy.
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Corollary 8.4. There exists a constant C > 0 such that
e AYye't < C(Hy +1) (8.17)

foralla > 4/3 and 0 < B < 2a/3, £ € (0; 1/2) small enough, s € [0; 1]and N € N
large enough.

Proof. For & € ffN, consider the function h¢ : [0; 1] — R defined through hg (s) :=
(£, e$AVye*AE). By Proposition 8.1, we have

1 ~
W =13 2 (VN )0 e A (50" an +hel)e )

reAivePy,r#£—v
+ (£ e oy,
where
_ 172 1/2 — 1/2
(5. e Asyyete)] < CIVY S NIK 28] + COC PRIV et Ae K2 e g .
The estimate (8.9), in the proof of Lemma 8.2, shows moreover that

1 ~
‘W Yo (VN #n) () e ), at avets)

reAj,vePr,r#£—v

< CVy e g IV et e ).
With Proposition 5.1 and Lemmas 8.2, 8.3 (with 6 = i ), we deduce that
hL(5)] < CIVY 24612 + C(1+ 22 738) (g, (Hy + 1)§) < Che(s) + C(E. (Hy + DE)

because f < 2«/3. Notice that, for £ € (0; 1/2) small enough, we have 207 F < ¢,
thus, we may choose indeed & = ¢~# in Lemma 8.2. Applying Gronwall’s Lemma to
the last bound concludes (8.17). 0O

Finally, we consider the growth of the kinetic energy operator; in this case, we do not
get a bound uniform in £; still, we can improve the result of Lemma 8.2 and the estimate
we obtain is sufficient for our purposes.

Corollary 8.5. There exists a constant C > 0 such that
e AR A < Com @y + 1) (8.18)

foralla > 4/3and0 < B < 2a/3, s € [0; 1], £ € (0; 1/2) small enough and N € N
large enough.

Proof. For afixed & € ]-"fN define jg : [0; 1] = R by je(s) 1= (&, e SACe*AE). From
(8.10) and (8.11), we infer that

[K,Al= Ti1+Tio+Ti3+T>

with Tyq, T2, T3, T2 as in (8.10) and (8.11). Combining (8.12) with Proposition 5.1
and Corollary 8.4, we find

(€, e AT AE)| < CIIVY P AENNING 24| < C(E, (Hy + DE).  (8.19)
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From (8.13), Proposition 5.1 and Lemma 8.2, we obtain

(€, e ATi3e )| = COPKN e A N e A5 | (5.20)
< Ce72(E, (Hy + DE) < C(E, (Hy + DE).
Using (8.15), Lemmas 8.2 and 8.3, we arrive at

[, e ATae’ )| < Ce? K 2esAg | IC, e 28| < C(E, (Hy + 1E). (8.21)

Hence, to show (8.18), we only need to improve the bound on Tj;. To this end, we set
0 = £~ — 5¢7F /4 and we decompose

1 —~ ~
To=— Y (VC/N)* fyn0)(bi,a a,
W 0<|r|<6
vePp,r#—v
1 —~ ~
t o Y (VC/N)x fn.) ()b} ,a* ay
o<|r|<€¢,
vePp,r#—v
=: Ty21 + Ti22.

With Proposition 5.1 and Lemma 8.3, we estimate

_ c _
(€. e A Tine )| < il > Irlllarbre gl T lave g |
0<|r|=6,

vEPL, Fr#£—v

< C 2|y A | INL et g | < Ce2 (g, (Hy + DE).

On the other hand, since 20<|r\<ru |r|_2 < Ct P, we find, by Proposition 5.1 and
Lemma 8.2,

_ c _
(€. e Tinee)| < —= Y Irlllarbre’ &) r| ™ lave &l
\/ﬁ o<|r|<e™?,

vePp,r#—v
< COPRIK P E N2 Ag ) < @2, (Hy + DE).
Combining the last two bounds with (8.19), (8.20), (8.21), we obtain

e )] < Ce™ P2 e (Hy +1)§)

for all s € [0; 1]. Integrating over s, we arrive at (8.18). O
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8.2. Analysis of e ADye?. In this section we study the contribution to R, arising
from the operator Dy, defined in (8.2). To this end, it is convenient to use the following
lemma.

Lemma 8.6. There exists a constant C > 0 such that
‘ > Fpler (e akape’ — akap)s)
peEA: (8.22)
< CLP|Flloll (N + D251 I (NG + D282
foralla, B >0, &,& € ]-'fN, F € £°(A%), £ € (0;1/2) and N € N large enough.
Proof. The lemma is a simple consequence of Proposition 5.1. We write
1
Z Fp(e_Aa;apeA - a;ap) = / ds Z Fpe_SA[a;ap, AletA
peA; 0 peA;
and compute
1
> Fylaja,, Al= NG > (Frww+ Fop — Fnbjy,a*,ay +he..
peEAL rePy,vePy
By Cauchy—Schwarz, we find with the help of Proposition 5.1 that
1
‘ﬁ Z (Fryw + F_p — Fy)ny (eXAé‘-la bj.;.vairavesAgZ)

rePy,vePy,

ClFlloo A A
<SS Y e lla b el
rePg,vePy,

CL2|F ool Vs + DY2EIING + D28 ).

IA

Since the bound is uniform in the integration variable s € [0; 1], we obtain (8.22). O

Proposition 8.7. There exists a constant C > 0 such that
e "Dye = dmwag(N — No) +[V(0) — 4mag[Na(1 — No/N) +6p,
where
(5, 8D, 6)| < CE2(5, (Wi + 1))
foralla,p >0, & € ffN, £ €(0;1/2) and N € N large enough.
Proof. Recall from (8.2) that
Dy = 4mag(N — N3) + [V(0) — dmag]Na(1 — N3/N).

Lemma 8.6 implies that
+ {eA [47ao(N — ) +[V(0) — 4mag N, ] e?

— [4mag(N — N2) + [V(0) — dmag N5 ] } < ClPP (N, +1).
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As for the contribution quadratic in Ay, we can write
N e [ertazet —az]e)
=N e [ Waet - NG €) 4 N (e, [Nt - ] )
with £, = e "4 N, e”£ and & = N,&. Applying again Lemma 8.6, we obtain
e[ tazet —aze)
= ONTHER NG + D2 [V + D26+ [V + D g
Using (twice) Proposition 5.1, we find
IOVG + D251 = Ve + D2 AN gl < CIVG + DY 2],
Hence,we conclude that
e et )
< CNTHPIWNG + DSV + DY) < Ce Ve + D22,

8.3. Contributions from e~ ICeA. In this subsection, we consider contributions to Rn.e
arising from conjugation of the kinetic energy operator L = > peAt p2a;‘,a p- In partic-
ular, in the next proposition, we establish properties of the commutator [/C, A].

Proposition 8.8. There exists a constant C > 0 such that

1
K, A) = —— Yo (VE/N) = fv)(p)(Bhy,a” yag +hc)
PEAY.GEPL, p£—q
8
4 > [b74q0% pag +hec.] + 5k
PEPL.qEPL, p#—q
where
(&, 81c&)| < C(E3* 272 4 /)| KV2E NN + Kp) V2| (8.23)

foralla, B >0,& € .7:+5N, £ € (0;1/2), N € N large enough. Moreover, we have

’8nao Z (&, [b;w fpaq,A]é)’

pEPf.qEPL, p#—q
< COCTPRIWNG + 1)K 28 + Cee PR e NN g |
+ O K g2

(8.24)

foralla, B> 0,& € ffN, £ € (0;1/2) and N € N large enough.
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Proof. The bound (8.23) is a consequence of Egs. (8.10), (8.11), (8.13), (8.15) in the
proof of Lemma 8.2, and of the observation that, from the estimate (7.77),

' W Yo [(Ve/N) x fuo(p) — 8mao(E. bl a* ,ag8)
H4€PL, PF—q

sczv—3/2 S Ipllbpga—pélllagEl < CNTeT 2 e N g |
PEPL.qEPL, pF—q

which is bounded by the r.h.s. of (8.23) if N is large enough. Let us now focus on (8.24).
‘We have

87Ta0
N > [b5.,a" ,aq. A] +he.
PEP,.qEPL, pF#—q
8mag (8.25)
= Z nr [bp+q 7paq,bf+vaf,av —a:ja,rbrw] +h.c..

rEPH,pEP;_'I,
q,vePr,p#—q.r#—v

We split the commutator into the four summands

[bp+q _paq7 br+va_rav_a:a—rbr+u]:([ p+q> bj.;.v _rau]+[a*a7 br+v, b;+q])a* p%q 3. 26)

+ bp+q ([a_paq, bl ,at.ay)+ala_ bry, a _paq])
We compute
k * k * *
a’ paq b,+vb_ra_paq8p+q v=—brbla,_aq8pig (8.27)
as well as

[a:a—rbrﬂn p+q]a dag

=(1- N+/N)ayar+qaqar+v8p+q,7r +(1— N+/N)a:av8p+q,fr8r+u,7p

+ (1 =Ny/N)agay_,_,a—ragdpsg,rev + (1 = Ni/N)ayaydprg,revdr, p (8.28)
— N 'ata ay4gat ,a—rariyag — N~ la¥a ay A ragSren,—p — N™ avaqwarwaqap’,,
Similarly, we find
bprglaZ pag, byoyaZ a] = bppybZ 0% audq reo + bp, bryya” yavde.—r (8.29)
b; oD@z, ag8—p.y ’
and
by lasa  bryy,a* ya,] = b, atagbrd, p — b,,a* ,a rbriydy . 530
+ b; r— vava rbgSrvv,—p- ’

Taking into account that 8, , = 84, = 8y4v,q =0forr € Py, p € P5,q,v e P we
obtain, inserting these formulas into (8.25),

7
8mag Z [b;w Zpaq, A] +h.c. = Z T; +h.ec.
pGPg,qGPL,pyﬁ—q =
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where
167 ag
Tl = - N § br+vb*—r c}k viqs
rePy;q,vePyr,
q#v,r£—v
8mag
Ty = N E nr(1 — N+/N)a;ka;k+qaqar+vs

rePp;q,vePyr,
q+r P r#—q,r#F—v

8mag
T3 = N Z n-(1 = Ny/N)ajay,

rePy,vePr,
r+vePy

8mag
Ti= — > (0 =Ny/Nyaia; , ,a ray,

rePy;q,vePyr,

q—r—vePy
o (8.31)
T agp
Ts:= — N2 Z nra, p+q p aA—rQryydg,
rePy.pePy,
q.VEPL, pFE—q.r#—v
87Ta0
T6:=—N2 Z nrvqrva rdq,

rePy;q,vePyr,
r+ve Py ,q#r+v

8map
7= — N Z b;;w _pa rbrv,
rePy,pePy,
vePL;p,r£—v
8mag
Ty = — S b aja,b,.

rePy;q,vePyr,
r+ve Py, q#r+v

In fact, Y collects the contribution from (8.27) and the non-vanishing contribution from
(8.29), T» — Yg corresponds to the five non-vanishing terms on the r.h.s. of (8.28), 17
and Yy reflect the two non-vanishing terms on the r.h.s. of (8.30).

To conclude the proof of Proposition 8.8, we show that all operators in (8.31) satisfy
(8.24). By Cauchy—Schwarz, we observe that

o

> InlllagWa + DN la—rag—vare Ny + 1) 72|
rePg;q,vePr,
qFvrE—v

< COCP2I N, + D 2g K e

(5, 118)| <

The expectation of Y is bounded by

C
(&, 128)] < = > nrllglllagarsoélllgl ™" lavarsg&ll

rePy;q,vePyr,
q+rePy r#E—q,r#£E—v

_ 1/2 1/2
CLeP Ry Pe IV e |

IA
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where we recall the notation Ky = Ky—p = ZI pl<t-F pza;a p for the low-momenta

kinetic energy. It is simple to see that + Y3 < CN~'¢~%N and the expectations of the
terms Y4, T and Yy can all be estimated by the expectation

C _
(€, (T + Yo+ Y9)E)| < > el lvlllavag—r—vElllv| ™" lara & |
rePy;q,vePyr,
Ir|<( %4207 F), g—r—v£0

- 1/2 1/2
< CLPRIKPENIN g .
Finally, the expectations of Y5 and Y7 can be bounded by
(5, T58)]|

ce -1 1/2&2
<3 > nrllplla—pavapsg&llpl " Irlla—rarwagkll < CE* K€
rePH,peP[‘;,,
q,VEPL, pFE—q.r¥F—v

and by
ce -1 apel/2602
(€06 <= D Inellpllapapntllpl™ Irlla—rarwéll < CEIK €.
rePy,pePy,
vePrip,r#—v

8.4. Analysis of e 4 QN,geA. In this subsection, we consider contributions to Ry ¢
arising from conjugation of Qy ¢, as defined in (8.2).

Proposition 8.9. There exists a constant C > 0 such that
e QN et = V() Y aha,(1 = No/N)+dmag Y [bhb*, +byb_p]+80,,
peP;, pePs,
where
£ 80y, < CLOPR(Hy +1) (8.32)
foralla > 4/3,0 < B <2a/3, £ € (0; 1/2) small enough and N € N large enough.

Proof. Proceeding as in the proof of Proposition 8.7, it follows from Lemma 8.6 that
+ [?(0) Y e hara,(1— N/Npe* = V(0) Y ajap(l— N/NQ}
PEP; PEP, (8.33)

< CL?(N, +1).

Let us thus focus on the remaining part of R ) . We expand

dmag Y (e Abpbt +b,,b,p]eA —[bj0, +bpbp])
peEPE

_47ra0/ ds Y e A[bhb* . Ale' +hee.
PEPE

(8.34)
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We compute
[b;b*_ps b;’;_vairav - a:a—rbrﬂ)] = b;‘;v [b;bip, airav] + [a:a—rbrﬂ), ; ip]
where
b:(+v [b;bip’ airav] = _b:(+vbivbir (S—P,U + sp,v)
and
[a:a—rbrw, bzbfp] =Dybibriy By p +8r.p) + (1 =Ny /NID* | aya_r (84, p + 8riv,—p)
— 2N bat a8y +8rp) — 2N 'bha Jata_rars,.

Using the fact that §, _, = 8, = 0 forr € Py and p € Pj;, we find that ZpeP,g

[b3b* . Al +hc. = Y], (®; +h.c.), where

2
Q)= —— Z ni‘b:ﬁﬂzbirbiv’
rePy,vePr,

@2 = ﬁ Z nr(l _N_}./N)birfva:a—r»

g

rePy,vePpir+vePy

2
O3 1= _W Z nrb;aipa:a—rarﬂw

rePH,uePL,pePIQ

Let us now bound the expectation of the operators ®;, i = 1, 2, 3,. By Cauchy—Schwarz,
we find that

I(€, ®18)| =

2
i Y mE b;:vb*_,b*_va'

rePy,vePy.

C
<= S el NG+ DY2EN ol lIb—ubrob—r Ny + 172

rePy,vePy,
< CLP N, + ) 2g 1K) % |
as well as

2
ey nr(&, (1 —N+/N)bi,_va:a_,.§)

s P28)| <
(€, P28)| < i

rePH,vePL:r+veP1f1

C
=75 D0 el TG + D2 vl llaubr s |

rePy,vePy,
< CLePRYNG + D2 1K) E]l.

To bound ®3 we notice that

cee _
(& 238) <5 Do Inelipllapay W+ DN rllarar £l

rePH,UEPL,pEPfi

< ek 2
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With (8.34), we conclude that
+ |:47rao > (e [t +bpb—plet = [b307, + b,,b,,])}
PEPE

1
< c/ ds e AP, + K + 1) + €9K]e".
0

Finally, we apply Proposition 5.1, Lemma 8.3 and Corollary 8.5 to conclude that

+ |:471a0 > (e [t +bpbplet ~[b3bE p+bpb_p]>:| < CLe PRy +1).

pePy

Together with the estimate (8.33), we arrive at (8.32). O

8.5. Contributions from e ACye”. In this subsection, we consider contributions to
R ¢ arising from conjugation of the cubic operator Cy defined in (8.2). In particu-
lar, in the next proposition, we establish properties of the commutator [Cy, A].

Proposition 8.10. There exists a constant C > 0 such that

2 _ A N — N,
[Cxal= 2 Y [Tarmm+ Ve vuymomdaia, YA g

rGPH,UEPL
where

(€. Scy£) = CECTPRIVy + No+ D2 1IK 28 )|

(8.35)
£ OO (K, + Vy + N e

foralla,B > 0,¢ € (0;1/2) and N € N large enough.

Proof. We have
1 i%2 * * * * *
[Cn.A] = v Z V(p/N)n, [bp+qa7paq, bk, .ay — aja_ by | +hee.
P.gENL:p+qF#0
rePy,vePy,

From (8.26), (8.27), (8.28), (8.29) and (8.30) we arrive at

N,
N

[CN,A]=§ > [V(r/N>nr+V((r+v>/N)nr]a:§avN

rePy,vePy,

12
+ Z(Ej +he.) (8.36)
j=1
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where

1
Bii= - DL Vp/Nbi bt et jau,
VGPH,UEPL,
pEAipFY

Bi= D V@/Nn( = No/N)aja® a s pre,
rePy,vePr,
pPEALT#—p

1
Byi= o Y. VN (= No/N)ajat jararep,
rePy,vePr,
pEAr+v£Ep

1
tg = _m Z V(P/N)Ur v p+q _p A—rQr+ydg,
rePy,vePr,
P-g€AL:p+q#0

85 := N2 Z V((r+ v)/N)nra:a;_r_Ua,raq,
rePy,vePr,
geNr+v£q

1 ~
- . * %
56 = Ty Z V(r/N)nravaq-H«arﬂ)aq,
rePy,vePr,
qEA £ —q

1 ~
= * * 0k
Zr= Do V@/Nmbp, b,
rePy,vePr,
pEANLr+v£E—p

1 ~
8= Z V(p/N)nby,_,by,,a” ,ay,
rEPH,‘UEPL,
PENLr#E—p

1
g9 = _N Z V(U/N)nr q—v r+va—ra‘1’
rEPH,UEPL,
geATq#Y
- 1 i
o= Y. Ve/Nnby,aiaghra,
rEPH,UEPL,
qENrF—q

as well as

1 ~
Bui= -y 2L V@/Nonbata b,
rePy,vePr,
PEALpFE—v
1 ~
Bni= > V(@ +v)/Nonbl_,_aia_rb,.
rEPH,UEPL,

qeEN}:qF#r+v

In fact, the first term on the r.h.s. of (8.36) arises from the second and fourth terms on the
r.h.s. of (8.28), together with their Hermitean conjugates. The commutator (8.27) yields
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&1, the remaining terms from (8.28) produce the contributions E; to Eg, from (8.29)
we find the operators E7 to E9 and from (8.30) we obtain Ejg, E11, E12.

To conclude the proof of the proposition, we have to show that all terms E;, j =
1,..., 12, satisfy the bound (8.35). The expectation of E; can be controlled with
Cauchy—Schwarz by

cee
(&2 == D Il + D Paypéllirlararwap Ve + D7

rePy,vePr,
PEAL:pF#v

< COCPRIWNG + D)2 IKY ).
The same bound applies (after relabeling) to Eg; we find

[(£, Bo&)| < COC PN+ DY 21K 2.

Also the expectations of the terms E;, E3 and (again after relabeling) of the terms Es,
E6, 210, E12 can be bounded similarly. We find

(&, E2&)| + (&, B3&)| + (€, Bs&)| + (€, Be&)| + (€. Br08)| + (&, E128)

ce*
< > (Inrllavaspgllir + vlllarsua—r—pg |l + nrlla-pavé i llararsu—pé|

rePy,vePL, peN}

+ [, ”avap—r—vE“ |r|||a—rap§” + |77r|||avap+r%-” [r + ] ||ar+vap$||
+ e lllapsravé llir + vlllarrvapé |l + |77r|||ap—r—uau§|||”|||6l—rap§||)
< COCPRIWN + D' PEIK g,

To control the remaining terms, we switch to position space and use the potential energy
operator Vy. We start with E4. Applying Cauchy—Schwarz, we find

- 1 2 vk Yok sk v
1(§, E48)l ‘N/Az dxdy N“V(N(x —y)) Z nr(é,axayava—rawuaxé)‘

rePyg,vePy.

IA

1 . .
5 /A dxdy N2VING =y) Y0 Inrlllaviadyg lllararwds]

rePy,vePr,

e Ve NINL e,

IA

Next, we rewrite E7, Eg and E1; as

5, = / dxdy N*V(Nx—y) > €™bibta* a,
A )

rePy,vePy,

Bg = /1\2 dxdy NZV(N(X -y) Z e_irxnrls;kl;;a;:vav’

rePy,vePr

i = _./1\2 dxdy N>V (N(x — y)) Z ei"xnrl;:l;;a,rbﬁv.

rePy,vePr
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Thus, we obtain

(€. B78)| < /A _dxdy N*VN(x = y) Y llaxdya—r€|,|

Z eivxav%.

|

rePy vePr
1/2
scza/zuv,‘v/zsn[ / dx Yy e“”—”’”‘@,aj,ava}
A v,v'ePL,

1/2 1/2
< e e nIv el
as well as

(&, Eg&) + (&, E116)]
< cf dxdy N’V (N(x — y))
AZ

x 30 (10 Iy arng lnlv]la€ |+ CEnlxdyg 1 llarbrg )

rGPH,UGPL

< CL PRV eI, e + CO@ P2V e g ).

Collecting all the bounds above, we arrive at (8.35). O

8.6. Proof of Proposition 5.2. Let us now combine the results of Sects. 8.1-8.5 to prove
Proposition 5.2. Here, we assume & > 3 and «/2 < B < 2w/3.
From Propositions 8.7 and 8.9 we obtain that

Rie = 4mag(N — N3) + [V (0) — 4mag[Na (1 — No/N)
+ V() Y ara,(1 —Ny/N)+4mag Y [b5b* , +byb_]

PEPY, PEPY,

|
+ IC+CN+VN+/ ds e SA[IC+Cy + Vy, Ae*™
0

— CL@ PR (Hy +1)

with Cy defined as in (8.2). From Propositions 8.1, 8.8 and 8.10, we can write, for N
large enough,

[IC+Cn + Vy, A]

1 ~ 8mag
> — ﬁ Z V(p/N)[b;Jrqaipaq +he]+ N Z [b:‘,waipaq +h.c.]
PEAL.qEPL, peP;_'I,qEPL,
P#F=q p#—q
2 ~ ~
a0 2 Vernn + Vo /Ny laja,( = No/N)
rePyg,vePr

— CU2+ L PN+ Vy +Kp) — CP@P2 4 gCesb)/4 4 p2e=2y i,
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From Proposition 5.1, Lemma 8.3, Corollaries 8.4 and 8.5 and recalling the Defini-
tion (8.2) of the operator Cy, we deduce that

1
/ ds e SAIK+Cy + Vy, A]eSA
0

1 _ 8map
Z/O ds e sA[—CN+ T > [bhat jaq+hel]

pEP;I,qEPL,
P#FE—q
2 ~ ~ N — .
D DR L VI U s NN”]esA (8.37)
rEPH ‘UEPL
/ ds V(p/N)e™* [b;w aq+h.c.]eSA
peAj qep;,
P#F—q

— C(L@ P o2 4 223y (Hy 4+ 1).

The expectation of the operator on the fourth line can be estimated after switching to
position space with Corollaries 8.4 and 8.5. We find

‘ 7% f ds V(p/N)(E, e b} ga” jage™ >‘
eAi qeP;,
p#—q

1
s/ ds / dxdy N2V(N (@ = y)ladye gl 3 e age e
0 A2
q

c
L

1 1/2
sc/ ds |1V, SAsn[fdx Z TN aqe”‘s)}
0

q'eP;

1
<cef / ds [V e eI 254 || < CeCP=4 (Hy + 1) g2,
0
(8.38)

Next, we consider the term on the third line of (8.37). With Lemma 4.1, part (ii), and
since o > 1, we have
CL*|v|

N

‘— [Vr/Nyne + V(G +v) /Ny, | = [16mag — 2V (0)]| <

rePy

for every v € Pr. With Lemmas 8.3, 8.6 and Proposition 5.1 we obtain, for N > 6_3“,

1 R R oA
+ |:N Z [V(r/Nn + V((r +v)/N)n,Je —sAgtg v( = ) 54
rePy,vePy
~ NN, |
— [167a0 -2V ()] ° a;yy%] 39

vePy

< C(N"Y P40y Hy +1) < CO*(Hy +1).
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To handle the second term on the second line of (8.37), we apply Propositions 8.8 and
5.1, Lemma 8.3 and Corollary 8.5 to conclude, again for N > 6_3“,

8may 1 sA
i(ﬁ/() ds Y [ gt paget — by gat ] +he

pePf.qEPL,
PF—q

8
_ < 7Ta()/ / dt 7tA|:b;+q _paqu:IetA>

[)EPC ,qePyr,
p# q

< C (¢34 g@=P2)(Hy +1).

As for the first term on the second line of (8.37), we use again Proposition 8.10.
Proceeding then as in (8.39), we have

1 1 K
/ ds e ACye* = Cy +/ ds / dt e " Cn, Ale'd
0 0 0

<Cy+ [167‘[0.() — 2?(0)] Z a;apw (8.40)

pePL
+ C(£@ P24 2073F) (Hy + 1),

Inserting the bounds (8.38)—(8.40) into (8.37) and using additionally the simple bounds

0< Z a;ap < Z a;ap < 0*PK

pPEP[NPY peP;
and
87 ag cep _
\ > <s,b;§+qaipaqs>( < > Ipllla-papg€llpl gllagéll
peP;;,quE, pePL.qEP,
P#—q P;ﬁ—q
cep-o/ 12 1z
=== PV sn[ > lgPllagé| }
qeP;
< ceP~ K 27
we arrive at
N — N,
Ry > 4mag(N — Ny +47TC10N+(N—+)
+8na02aap N)+4 ap Y [b3b*, +byb_]
. . (8.41)
pEePy PEPy
8mag
t > (b4, a* pag +he] + (1 — CE)(Hy +1)

PEP.qEN:pF—q

with k = min[(«¢ — 8)/4; @ — 3; B — «/2; 2a — 38] > 0 under the assumptions o > 3
and o/2 < B < 2a/3.
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We define now the function vy € L°°(A) by setting

ve(x) := 8mag Z e’ = 8mag Z erx,

pe{0}UP}, PEA*:|p|<L~*

In other words, vy is defined so that Vg (p) = 8mag for all p € A* with |p| < £7% and
Ve(p) = 0 otherwise. Observe, in particular, that V;(p) > 0 for all p € A*. Proceeding
as in (2.4), but now with V( p/N) replaced by Dy (p), we find that

N

1

NZW(X,‘ —Xj) UX/
i<j

N -1

== 47ra0(N—N+)+4naoN+(N_—A/+)

N
N — N
+8mag Yy a;a,,¥ +4mag Yy (bhb* , +byb_p)

pePy pePy

8mag
+ Z [bp+q aq+a a_pbpigl
PEPL.qENL pF—q

4 ag s
+ N Z Ay Ay apQgr-

P.qENLrePyr#E—p.—q

3

Comparing with (8.41) and noticing that

471a0 * % C
v X Eaquaaant) =< D lapeagtlliapaggtl
P.qeN;.rePy: P-qENT,rePy:
r#E—p.—q rEP—d
ol 3a
< IN:E(1?

we conclude that

N
1
Rn,e =z Un NZW(X" —xj) | Uy

i<j
+(1 — ClYHy — CE*N2/N — Ce~. (8.42)

Following standard arguments, for example from [15, Lemma 1], we observe now that,
since Dy (p) > O for all p € A*,

N
05/ dxdyve(x — y) Z(S(x—x/)— |:Z5(y—xi)—Ni|
j=1 i=1
N N
= Y v —xj) = N*0(0) =2 ) wp(xi — x;) + Nvg(0) — N*D,(0).
ij=1 i<j
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This implies that

N

1 N _

¥ > v —xj) = 5 0e(0) = ve(0) = 4magN — ce3,
i<j

From (8.42), we finally obtain
Ry.e > 4wagN + (1 — CEYHy — CE3NZ/N — Ce™3°.

This completes the proof of Proposition 5.2.
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A. Properties of the Scattering Function

In this appendix we give a proof of Lemma 4.1 containing the basic properties of the
solution of the Neumann problem (4.1).

Proof of Lemma 4.1. Part (i) and the bounds 0 < f;, wy < 1 in part (ii) follow from [6,
Lemma A.1]. We prove (4.6). We set r = |x| and m,(r) = rfo(r). We rewrite (4.1) as

1
— mZ(r) + EV(r)mg(r) = Aemy(r). (A.1)

Let R > 0 be the radius of the support of V, so that V(x) = 0 for all x € R> with
|x] > R.Forr € (R, N{] we can solve (A.1) explicitly; since the boundary conditions
fe(N€) = 1 and (8, fr)(N£) = O translate into m¢(N£) = N and m,(N£) = 1, we
find

me(r) =2, 7 sin()2(r — NO) + Necos() > (r — N©y). (A2)
With the result of part (i), we obtain
mer) =r—ap+ 220, 1 B 5 o (A3)
2NE  2(NE)>

for all r € (R, N{] (the error is uniform in r). Using the scattering equation we can
write

Nt

N¢
/ V(x)fe(x)dx = 471/ drrV(r)me(r) = 8x / dr (rmZ(r) + Aermy(r)).
0 0
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Integrating by parts, we observe that the first contribution on the r.h.s. vanishes (because
my(NC) = N¢, m/( (N¢) = 1 and m,(0) = 0). With the result of part (i) and with (A.3),
we get

N¢ (N€)3 5 5
SNAgf drrme(r) = 8wy < 3 +O(ao(NE) )) = 8mag +O(a0/£N)
0

which proves (4.6).

We consider now part (iii). Combining (A.3) for r € (R, N£¢] with we(r) < 1 for
r < R, we obtain the first bound in (4.7). To show the second bound in (4.7), we observe
that, for r € (R, N£], (A.2) and the estimate in part (i) imply that | fe/ (| < Cr2, for
a constant C > 0 independent of N and ¢, provided N¢ > 1. For r < R we write,
integrating by parts,

flr) = my (r)r —me(r) — 1 /r ds s ml(s).
0

72 2
With (A.1) and since 0 < f; < 1, we obtain

1 [ 1
ol =] [ ass [5vEmee —am)

111
— ﬁ[@ /|x|<r dx V(x)fg(x)+kz[

|x|<r

dx fu)] = CVIlz+1)

for a constant C > 0 independent of N and ¢, if N¢ > 1 and for all 0 < r < R. This
concludes the proof of the second bound in (4.7).

To show part (iv), we use (4.4) and we observe that, by (4.5), (4.6) and f; < 1, there
exists a constant C > 0 such that

N? T ~ ~
Dep/NI = 5 [(VC/N)* ) @ + CE (Fex o) O]

—2 2
N2 [/ V(X)fl(x)dX+C€3/Xz(X)fg(Nx)dxi| < %
’ )

=<

foral N e Nand ¢ > 0,if N¢ > 1. O

References

1. Boccato, C., Brennecke, C., Cenatiempo, S., Schlein, B.: Complete Bose—Einstein condensation in the
Gross—Pitaevskii regime. Commun. Math. Phys. 359(3), 975-1026 (2018)

2. Boccato, C., Brennecke, C., Cenatiempo, S., Schlein, B.: The excitation spectrum of Bose gases interacting
through singular potentials (To appear on J. Eur. Math. Soc). Preprint arXiv:1704.04819

3. Boccato, C., Brennecke, C., Cenatiempo, S., Schlein, B.: Bogoliubov theory in the Gross—Pitaevskii limit.
Acta Math. 222(2), 219-335 (2019)

4. Bogoliubov, N.N.: On the theory of superfluidity. Izv. Akad. Nauk. USSR 11, 77 (1947). (Engl. Transl.
J. Phys. (USSR) 11 (1947), 23)

5. Brennecke, C., Schlein, B.: Gross—Pitaevskii dynamics for Bose—Einstein condensates. Anal. PDE 12(6),
1513-1596 (2019)

6. Erdés, L., Schlein, B., Yau, H.-T.: Derivation of the Gross—Pitaevskii hierarchy for the dynamics of
Bose—Einstein condensate. Commun. Pure Appl. Math. 59(12), 1659-1741 (2006)

7. Lewin, M., Nam, P.T., Rougerie, N.: Derivation of Hartree’s theory for generic mean-field Bose gases.
Adv. Math. 254, 570-621 (2014)


http://arxiv.org/abs/1704.04819

Optimal Rate for Bose—Einstein Condensation in the Gross—Pitaevskii Regime 1395

12.

13.

14.

Lewin, M., Nam, P.T., Rougerie, N.: The mean-field approximation and the non-linear Schrodinger
functional for trapped Bose gases. Trans. Am. Math. Soc. 368(9), 6131-6157 (2016)

Lewin, M., Nam, P.T., Serfaty, S., Solovej, J.P.: Bogoliubov spectrum of interacting Bose gases. Commun.
Pure Appl. Math. 68(3), 413-471 (2014)

Lieb, E.H., Seiringer, R.: Proof of Bose-Einstein condensation for dilute trapped gases. Phys. Rev. Lett.
88, 170409 (2002)

. Lieb, E.H., Seiringer, R.: Derivation of the Gross—Pitaevskii equation for rotating Bose gases. Commun.

Math. Phys. 264(2), 505-537 (2006)

Lieb, E.H., Seiringer, R., Yngvason, J.: Bosons in a trap: a rigorous derivation of the Gross—Pitaevskii
energy functional. Phys. Rev. A 61, 043602 (2000)

Lieb, E.H., Solovej, J.P.: Ground state energy of the one-component charged Bose gas. Commun. Math.
Phys. 217, 127-163 (2001). (Errata: Commun. Math. Phys. 225 (2002), 219-221)

Nam, P.T., Rougerie, N., Seiringer, R.: Ground states of large bosonic systems: the Gross—Pitaevskii limit
revisited. Anal. PDE 9(2), 459485 (2016)

Seiringer, R.: The excitation spectrum for weakly interacting Bosons. Commun. Math. Phys. 306, 565-578
(2011)

Communicated by R. Seiringer



	Optimal Rate for Bose–Einstein Condensation  in the Gross–Pitaevskii Regime
	Abstract:
	1 Introduction
	2 The Excitation Hamiltonian
	3 Generalized Bogoliubov Transformations
	4 Quadratic Renormalization
	5 Cubic Renormalization
	6 Proof of Theorem 1.1
	7 Analysis of  mathcalGN,ell
	7.1 Analysis of  mathcalGN,ell(0)=e-B(ηH)mathcalL(0)N eB(ηH)
	7.2 Analysis of mathcalGN,ell(2)=e-B(ηH)mathcalL(2)N eB(ηH)
	7.3 Analysis of  mathcalGN,ell(3)=e-B(ηH)mathcalL(3)N eB(ηH)
	7.4 Analysis of  mathcalGN,ell(4)=e-B(ηH)mathcalL(4)N eB(ηH)
	7.5 Proof of Propositions 4.2

	8 Analysis of the Excitation Hamiltonian mathcalRN,ell 
	8.1 A priori bounds on the energy
	8.2 Analysis of e-A mathcalDN eA
	8.3 Contributions from e-A mathcalKeA
	8.4 Analysis of e-A mathcalQN,ell eA
	8.5 Contributions from e-A mathcalCN eA
	8.6 Proof of Proposition 5.2

	Acknowledgements.
	A Properties of the Scattering Function
	References




