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Abstract: A comprehensive study of periodic trajectories of billiards within ellipsoids
in d-dimensional Euclidean space is presented. The novelty of the approach is based on a
relationship established between periodic billiard trajectories and extremal polynomials
on the systems of d intervals on the real line. By leveraging deep, but yet not widely
known results of the Krein–Levin–Nudelman theory of generalized Chebyshev polyno-
mials, fundamental properties of billiard dynamics are proven for any d, viz., that the
sequences of winding numbers are monotonic. By employing the potential theory we
prove the injectivity of the frequency map. As a byproduct, for d = 2 a new proof of the
monotonicity of the rotation number is obtained. The case study of trajectories of small
periods T , d ≤ T ≤ 2d is given. In particular, it is proven that all d-periodic trajectories
are contained in a coordinate-hyperplane and that for a given ellipsoid, there is a unique
set of caustics which generates d +1-periodic trajectories. A complete catalog of billiard
trajectories with small periods is provided for d = 3.

1. Introduction

Our aim in this paper is to develop a strong link between the theory of billiards within
quadrics in d-dimensional space and the theory of approximation, in particular the
extremal polynomials on the systems of d intervals on the real line. This link appears to
be fruitful and enables us to prove fundamental properties of the billiard dynamics and to
provide a comprehensive study of periodic trajectories of the billiards within ellipsoids
in the d-dimensional Euclidean space.

It is well-known that the billiard systemswithin ellipsoids are integrable. It seems that
is also widely accepted that the integrable systems, understood as a quest for the exact
solutions, are much less related to the approximation theory than their nonintegrable
counterparts. It is worth remarking that these two streams of ideas that are being merged
in this paper are rooted back in the first half of the XIX century in the works of the same
person—Jean Victor Poncelet.
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1.1. Poncelet the engineer and Poncelet the geometer. Modern algebraic approximation
theory, especially extremal polynomials and continued fraction theory was established
by Chebyshev along with his Sankt Petersburg school in the second half of the XIX
century, and their followers in the modern times. Highlights of these studies included
the discovery of the Chebyshev polynomials, their generalizations to the systems of
intervals, the points of alternance and the theorem of alternance, continued fractions, to
mention a few. All of this is employed by us in the present work.

Chebyshev’s motivation for these studies was his interest in practical problems: in
mechanism theory to estimate the error of themechanismswhich transform linearmotion
into circular, like Watt’s complete parallelogram. The starting point of Chebyshev’s
investigation [44]waswork on the theory ofmechanisms of the Frenchmilitary engineer,
professor of mechanics and academician Jean Victor Poncelet. Poncelet came to the
question of rational and linear approximation of the functions

√
X2(x) of the form of

the square root of quadratic polynomials, and he gave two approaches to the problems he
encountered—one based on analytical arguments and the second one based on geometric
considerations.

Chebyshev learnt about this work of Poncelet during his trip abroad in 1852, although
they did not meet in person. However, Chebyshev did meet Cayley, who was at that time
interested in another problemwhich originated again fromPoncelet, this time—Poncelet
the geometer. Upon return, Chebyshev described Poncelet as a “well-known scientist in
practical mechanics” (see [44]). Nowadays J. V. Poncelet is known first of all as one of
the major geometers of the XIX century.

1.2. Cayley’s condition for the Poncelet theorem. Let C and Γ be two conics in the
projective plane. The question of interest is whether there exists an n-polygon inscribed
in Γ and circumscribed about C . The Poncelet theorem [37], see also [21,26,27,34]
states that if such a polygon exists, there are infinitely many such polygons, and any
point of the boundary Γ is a vertex of one of them.

Denote by the same letters, C and Γ , the symmetric 3 × 3 matrices such that the
conics are given by the equations 〈Cz, z〉 = 0 and 〈Γ z, z〉 = 0 in projective coordinates.
Let d3(x) = det(C + xΓ ) be the discriminant of the conic C + xΓ = 0 from the pencil
generated by Γ and C . For C and Γ in a general position, d3 is a cubic polynomial
with no multiple roots. Cayley [11] reduced the question of the existence of an n-
polygon inscribed in Γ and circumscribed about C to the question whether the points
(0,±√

d3(0)) are of order n on the cubic curve y2 = d3(x).
If one analyzes carefully the approaches to the last question both in classics (see for

example [34]) or in contemporary texts (see [19,21,27]), one may see that it reduces
further to the existence of polynomials q(x) and p(x) of degrees [ n−1

2 ]−1 and [ n
2 ] such

that the function ϕ(x) = q(x)
√

d3(x) + p(x) has a zero of multiplicity n at x = 0, i.e.

ϕ(0) = ϕ′(0) = · · · = ϕ(n−1)(0) = 0.

For n = 2m, we get from the expanded expression:

ϕ(x) = √
d3(x)(a0xm−2 + a1xm−3 + · · · + am−2) + (b0xm + b1xm−1 + · · · + bm)

that there is an n-polygon inscribed in Γ and circumscribed about C if and only if it is
possible to find a non-trivial set of coefficients a0, a1, … such that:
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a0C3 + a1C4 + · · · + am−2Cm+1 = 0
a0C4 + a1C5 + · · · + am−2Cm+2 = 0
· · ·

a0Cm+1 + a1Cm+2 + · · · + am−2C2m−1 = 0,

where
√

d3(x) = C0 + C1x + C2x2 + C3x3 + · · · . Finally, for n = 2m, we obtain the
Cayley’s condition

∣∣∣∣∣∣∣

C3 C4 · · · Cm+1
C4 C5 · · · Cm+2

· · ·
Cm+1 Cm+2 · · · C2m−1

∣∣∣∣∣∣∣
= 0. (1)

Similarly, for n = 2m + 1, we obtain:

∣∣∣∣∣∣∣

C2 C3 · · · Cm+1
C3 C4 · · · Cm+2

· · ·
Cm+1 Cm+2 . . . C2m

∣∣∣∣∣∣∣
= 0. (2)

1.3. Padé approximation. Halphen observed the significance of the polynomials p, q
and their relationship to the important questions of rational approximation of elliptic
functions 130 years ago, while he was developing further the theory of rational approx-
imation and of continued fractions of square roots

√
X4(x) of polynomials of degree up

to four. This theory was initiated by Abel and Jacobi.
Let us mention that so-called Padé approximants play important role in the theory of

rational approximations. Consider a power series

f (x) = C0 + C1x + C2x2 + C3x3 + . . . ,

and non-negative integers k, l. A Padé approximant of type (k, l) of f is a pair of
polynomials pk , ql such that

deg pk ≤ k, deg ql ≤ l, (ql f − pk)(x) = O(xk+l+1).

The index (k, l) is said to be normal for the Padé table if deg pk = k and deg ql = l. The
normality criterion can be reformulates as Hk,l Hk,l+1Hk+1,l �= 0, with the Hadamard-
Hankel determinants denoted as:

Hk,l :=

∣∣∣∣∣∣∣

Ck−l+1 Ck−l+2 . . . Ck
Ck−l+2 Ck−l+3 . . . Ck+1

. . .

Ck Ck+1 . . . Ck+l−1

∣∣∣∣∣∣∣
.

Halphen established a relationship between the Poncelet polygons and continued
fractions and approximation theory. We provide in our terminology his result from [28,
Part 2, page 600], which was until recently mostly forgotten:

Theorem 1 [28]. There exists an n-gon inscribed in Γ and circumscribed about C if
and only if the elliptic function y = √

d3(x) satisfies the following:
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(a) for n = 2m has a (m + 1, m − 2) Padé approximant with polynomials pm and qm−2
of degrees m, m − 2 respectively, which is not normal:

pm(x) + qm−2(x)
√

d3(x) = O(x2m).

(b) for n = 2m + 1 has a (m + 1, m − 1) Padé approximant with polynomials pm and
qm−1 of degrees m, m − 1 respectively, which is not normal:

pm(x) + qm−1(x)
√

d3(x) = O(x2m+1).

Remark 1. The Cayley condition is Hm+1,m−1 = 0 for n = 2m and Hm+1,m = 0 for
n = 2m + 1.

1.4. The overview of the results of the paper. In the modern literature about Poncelet
polygons and their higher dimensional generalizations, the polynomials p, q have explic-
itly appeared in several places, see for example [19,21], but there they were not specif-
ically emphasized and studied. As a recent exception, we should mention [40], where
certain polynomial representations were studied and three important conjectures were
formulated, see Remark 3. On the other hand the extremal nature of the polynomials has
not been observed until the present work, where we establish a fundamental connection
between periodic ellipsoidal billiard trajectories and related extremal polynomials. From
their interplay we obtain essential results concerning the billiard frequency maps: the
monotone nature of the winding numbers in Theorem 9 and the one-to-one property of
the frequency map in Theorem 13.

Periodic trajectories of ellipsoidal billiards and the corresponding frequency maps
were also studied in [9,10,38] while yet another direction of the development of
Halphen’s ideas towards hyperelliptic functions was suggested in [15]. Ellipsoidal bil-
liards have been intensively studied in various frameworks in recent years, see for exam-
ple [1,2,8,14,25,30–32,39,45,46] and references therein.

This paper is organized as follows. In Sect. 2 we revisit the connection between the
periodic trajectories of ellipsoidal billiards and finite order divisors on the Jacobians
of hyper-elliptic curves. We recall the analytic conditions for trajectories periodic in
elliptic coordinates (Theorem2) and show that periodicity is equivalent to the existence of
polynomial solutions of certain functional equations, see Proposition 1. Then in Theorem
3 we give precise algebro-geometric conditions for periodicity involving the types of
caustics. In Sect. 3, the case study of the trajectories of small periods T , d ≤ T ≤ 2d
is initiated. It is proven in Theorem 4 that all d-periodic trajectories are contained in
a coordinate-hyperplane and that the trajectories of small periods must have certain
number of pairs of caustics of the same type, see Theorem 8. In particular, we proved
in Theorem 6 the uniqueness of the types of caustics for (d + 1)-periodic trajectories.
Section 4 explores in depth the connection with Krein–Levin–Nudelman theory of the
generalized Chebyshev polynomials. We prove the fundamental properties of billiard
dynamics for any dimension d by answering positively all the conjectures from [40]:
in Theorem 9 we prove that the winding numbers are strictly decreasing and derive the
exact relationship between them and the signature, and in Corollary 2 that all the zeroes
of the corresponding polynomials q̂n−d are real. In Sect. 5, we show that the frequency
maps are injective over rational values, see Theorem 12. By employing the potential
theory we prove injectivity of the frequency map—see Theorem 13. As a byproduct,
we obtain a new proof of the monotonicity of the rotation number in the 2-dimensional
case. In Sect. 6, we provide a complete catalog of billiard trajectories with small periods
T ≤ 6 in the three-dimensional case and discuss their properties.
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2. Periodic Trajectories and Finite Order Divisors on Hyper-Elliptic Curves

2.1. Billiards within ellipsoids, winding numbers, elliptic periods. If the conics C and
Γ from Sect. 1.2 are assumed to be confocal conics in the Euclidean plane, then the
Poncelet polygons transform to periodic billiard trajectories within Γ . Thus higher-
dimensional generalizations of Poncelet polygons are related to periodic trajectories of
billiards within quadrics. In this section, we will discuss algebro-geometric conditions
for periodicity of billiard trajectories within an ellipsoid in the d-dimensional space.

We note that a variety of higher-dimensional analogues of Poncelet polygons were
introduced in [12,13,19,20], see also [21] for a systematic exposition and bibliography
therein. Corresponding Cayley-type conditions were derived by the present authors in
[16–18,20], see also [21].

Let an ellipsoid be given by:

E : x21
a1

+ · · · + x2d
ad

= 1, 0 < a1 < a2 < · · · < ad .

The family of quadrics confocal with E is:

Qλ(x) = x21
a1 − λ

+ · · · + x2d
ad − λ

= 1. (3)

For a point given by its Cartesian coordinates x = (x1, . . . , xd), the Jacobi elliptic
coordinates (λ1, . . . , λd) are defined as the solutions of the equation in λ: Qλ(x) =
1. The correspondence between the elliptic and Cartesian coordinates is not injective,
since points symmetric with respect to the coordinate hyper-planes have equal elliptic
coordinates.

The Chasles theorem states that almost any line � in the Euclidean spaceEd is tangent
to exactly d −1 non-degenerate quadrics from the confocal family. Moreover, any line �′
obtained by a billiard reflection off a quadric from the confocal family (3) is touching the
same d − 1 quadrics, and consequently all segments of a given billiard trajectory within
a quadric will by tangent to the same set of d − 1 quadrics confocal with the boundary.
Those d − 1 quadrics are called caustics of the trajectory. The existence of caustics is
a geometric manifestation of integrability of billiards within quadrics. If those quadrics
are Qα1 , …, Qαd−1 , then the Jacobi elliptic coordinates (λ1, . . . , λd) of any point on �

satisfy the inequalities P(λ j ) ≥ 0, j = 1, . . . , d, where

P(x) = (a1 − x) . . . (ad − x)(α1 − x) . . . (αd−1 − x).

Let b1 < b2 < · · · < b2d−1 be constants such that

{b1, . . . , b2d−1} = {a1, . . . , ad , α1, . . . , αd−1}.
Here, clearly, b2d−1 = ad . The possible arrangements of the parameters α1, …, αd−1 of
the caustics and the parameters a1, …, ad of the confocal family can be obtained from
the following lemma.

Lemma 1 [5]. If α1 < α2 < · · · < αd−1, then α j ∈ {b2 j−1, b2 j }, for 1 ≤ j ≤ d − 1.

If � is the line containing a segment of a billiard trajectory within E , then b1 > 0.
Along a billiard trajectory, the Jacobi elliptic coordinates satisfy:

b0 = 0 ≤ λ1 ≤ b1, b2 ≤ λ2 ≤ b3, . . . , b2d−2 ≤ λd ≤ b2d−1.
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Moreover, along the trajectory, each Jacobi coordinate λ j fills the whole interval
[b2 j−2, b2 j−1], with local extreme points being only the end-points of the interval. Thus,
λ j takes values b2 j−2 and b2 j−1 alternately and changes monotonously between them.
Let T be a periodic billiard trajectory and denote by m j the number of its points where
λ j = b2 j−2. Based on the previous discussion,m j is also the number of the points where
λ j = b2 j−1.

Notice that the value λ1 = 0 corresponds to an impact with the boundary ellipsoid E ,
value λ j = αk corresponds to a tangency with the causticQαk , and λ j = ak corresponds
to an intersection with the coordinate hyperplane xk = 0. Since each periodic trajectory
intersects any hyperplane even number of times, we get that m j must be even whenever
b2 j−2 or b2 j−1 is in the set {a1, . . . , ad}.

Following [40], we denote m0 = n, md = 0, and call (m0, m1, . . . , md−1) the
winding numbers of a given periodic billiard trajectory with period n. In addition we
introduce the elliptic period ñ as the number of impacts after which the trajectory closes
in the Jacobi elliptic coordinates. If

k = gcd(m0, m1, . . . , md−1),

then ñ = m0/k; in addition m̃i = mi/k are the elliptic winding numbers.

2.2. Hyperelliptic curves and periodic billiard trajectories. We will use the following
notation for the hyperelliptic curve and points on it:

C : y2 = (a1 − x) . . . (ad − x)(α1 − x) . . . (αd−1 − x). (4)

Denote by Pb(b, 0), P∞(∞,∞) its Weierstrass points,

b ∈ {a1, . . . , ad , α1, . . . , αd}.
For a divisor D on the curve, we denote:

L (D) = { f − meromorphic function on C | ( f ) + D ≥ 0} ,

Ω(D) = {ω − meromorphic differential on C | (ω) ≥ D} .

The Riemann–Roch theorem states that

dimL (D) = deg D − g + dimΩ(D) + 1,

where g is the genus of the curve. In our case, g = d − 1.
Now we are going to recall a Cayley-type condition for periodicity of billiard trajec-

tories within an ellipsoid.

Theorem 2 [18,21]. Consider the billiard within E and its trajectory with the caustics
Qα1 , …, Qαd−1 . Denote

√
P(x) = C0 + C1x + C2x2 + C3x3 + . . . .

The trajectory is periodic with the elliptic period m if and only if the following
condition C(m, d) is satisfied:

rank

⎛

⎜
⎝

Cd+1 Cd+2 . . . Cm+1
Cd+2 Cd+3 . . . Cm+2

. . .

Cm+d−1 Cm+d . . . C2m−1

⎞

⎟
⎠ < m − d + 1. (5)
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Now we are going to reformulate above Cayley-type criterion in a form of the Padé
approximation.

Proposition 1. The condition C(m, d) is satisfied if and only if there exist a pair of
polynomials pm and qm−d of degree m and m − d respectively such that:

pm(x) + qm−d(x)
√
P(x) = O(x2m).

Proof. Let

qm−d(x) =
m−d∑

0

g j x j , pm(x) =
m∑

0

rk xk .

Compare the coefficients with the degrees of x j . For j = 0, . . . , j = p we are
getting the equations:

g0C0 + r0 = 0

g0C1 + g1C0 + r1 = 0 . . .

g0Cm + · · · + gm−dCd + rm = 0.

From these equations, the coefficients rk, k = 0, . . . , m could be determined. Compare
now the powers xm+1, . . . , x2m−1. The nonzero vector

(g0, g1, . . . , gm−d)

is orthogonal to the rows

(Cm+1, Cm, . . . , Cd+1), . . . , (C2m−1, C2m−2, . . . , Cm+d−1)

of the given matrix of the dimensions (m − 1, m − d + 1). Thus, the rank of the matrix
is less than m − d + 1. ��

Let us make one more step in the algebro-geometric analysis of the periodic trajec-
tories.

Theorem 3. Consider the billiard within E and its trajectory with caustics Qα1 , …,
Qαd−1 . Denote

S = {{αi , α j } | i �= j and Qαi ,Qα j are of the same type
}

The trajectory is n-periodic if and only if the following conditions are satisfied:

– if n is odd, then one of the caustics is an ellipsoid;
– there is a subset S ′ of S such that:

n(P0 − Pb1) +
∑

{β,β ′}∈S ′
(Pβ − Pβ ′) ∼ 0 (6)

is satisfied on the hyperelliptic curve (4).

Moreover, there cannot be more than one subset S ′ satisfying the condition (6).
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Proof. Is obtained by the application of results from [18], using the fact that 2P ∼ 2Q
for any two Weierstrass points of a hyperelliptic curve.

Existence of two different subsets satisfying (6), would imply that R1 + · · · + Rk ∼
Q1 + · · · + Qk , for some Weierstrass points R1, …, Rk , Q1, …, Qk , all distinct among
themselves.Applying theReimann-Roch theorem,we get that dimL (R1+· · ·+Rk) = 1.
Thus the space L (R1 + · · · + Rk) consists only of constant functions, so the requested
equivalence of divisors is not possible. ��

Before we switch to the study of periodic trajectories with a low number of impacts,
let us review the properties of the winding numbers which are scattered throughout this
section, and which will be often used in the sequel.

Lemma 2. Let (m0, m1, . . . , md−1) be the winding numbers of a given periodic billiard
trajectory. Then:

(i) the period m0 is equal to the elliptic period if and only if the winding numbers are
not all even;

(ii) if the winding number m j , for j > 0 is odd, then b2 j−2 and b2 j−1 are both in the
set {α1, . . . , αd−1};

(iii) two consecutive winding numbers cannot both be odd.

Proof. The last item follows from (ii) and Lemma 1. ��

3. Periodic Trajectories with Low Periods

The study of billiard trajectories with a low number of impacts originated in [17]. There
it was proven that n-periodic trajectories with period less than the dimension of the
ambient space necessarily lie in a coordinate hyperplane. In the current paper we want
to study trajectories with the period T , for

d ≤ T ≤ 2d;
we will call them the low impact trajectories.

3.1. d-periodic trajectories. To start with, in the next statement, we improve a result
from [17].

Theorem 4. Each n-periodic trajectory within E with period n ≤ d is contained in one
of the coordinate hyperplanes.

Proof. The case n < d is proved in [17], so we need to consider only n = d.
Suppose first that d is even. The condition (6) is equivalent to:

d P0 +
∑

Pβ ∼ d P∞ +
∑

Pβ ′ .

Notice that #S ′ ≤ d
2 − 1, so dimΩ(d P∞ +

∑
Pβ ′) = d

2 − 1− #S ′, and, by Riemann–
Roch theorem:

dimL
(

d P∞ +
∑

Pβ ′
)

= (d + #S ′) − (d − 1) +

(
d

2
− 1 − #S ′

)
+ 1

= d

2
+ 1.
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A basis ofL
(
d P∞ +

∑
Pβ ′

)
is 1, x, . . . , xd/2, so it cannot contain a function with the

divisor of zeroes d P0 +
∑

Pβ .
Now take odd d. One of the caustics is ellipsoid, i.e. b1 = α1. The condition (6) is

equivalent to:

d P0 +
∑

Pβ ∼ (d − 1)P∞ + Pα1 +
∑

Pβ ′ .

Notice that #S ′ ≤ d−1
2 − 1, so dimΩ((d − 1)P∞ + Pα1 +

∑
Pβ ′) = d−1

2 − 1 − #S ′
and by the Riemann–Roch theorem:

dimL
(
(d − 1)P∞ + Pα1 +

∑
Pβ ′

)

= (d + #S ′) − (d − 1) +

(
d − 1

2
− 1 − #S ′

)
+ 1

= d − 1

2
+ 1.

A basis ofL
(
(d − 1)P∞ + Pα1 +

∑
Pβ ′

)
is 1, x, . . . , x (d−1)/2, so the conclusion is as

in the previous case.
All of that implies that, whenever none of the values α1, …, αd−1 is in the set

{a1, . . . , ad}, a d-periodic trajectory with caustics Qα1 , …, Qαd−1 cannot exist. On
the other hand, if α j = a j ′ for some j , j ′, the corresponding trajectories are either
asymptotically approaching the coordinate hyper-plane x j ′ = 0 or are completely placed
in that hyper-plane. The former trajectories cannot be periodic, while the latter ones
should be analysed as in the case of dimension d − 1. ��

3.2. (d + 1)-periodic trajectories. Trajectories with low number of impacts of general
billiards in the d-dimensional space were studied in [6,7,29]. Each of these works,
under certain conditions, shows the existence of the closed trajectories with at most
d + 1 bounces. For ellipsoidal billiards, we proved in Theorem 4 that the trajectories of
period at most d are contained in a coordinate hyperplane, thus they have at least one
degenerate caustic and are essentially in a space of lower dimension.

In the next theorem, we prove that (d + 1)-periodic trajectories of billiards within
ellipsoids can exist only with a unique type of non-degenerate caustics.

Theorem 5. Let T be a (d + 1)-periodic trajectory of billiard within ellipsoid E , such
that it is not contained in any of the coordinate hyperplanes. Then its caustics Qα1 , …,
Qαd−1 satisfy:

– if d is even, then α1 ∈ (0, a1) and α j , α j+1 ∈ (a j , a j+1) for all j ∈ {2, 4, . . . , d−2};
– if d is odd, then α j , α j+1 ∈ (a j , a j+1) for all j ∈ {1, 3, . . . , d − 2}.

Moreover, each (d + 1)-periodic trajectory touches each of its caustics odd number of
times.

Proof. Suppose first d is even. The condition (6) is equivalent to:

(d + 1)P0 +
∑

Pβ ∼ d P∞ + Pα1 +
∑

Pβ ′ .
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Notice that #S ′ ≤ d
2 − 1, so

dimΩ(d P∞ + Pα1 +
∑

Pβ ′) =
{

d
2 − 2 − #S ′ if #S ′ ≤ d

2 − 2;
0 if #S ′ = d

2 − 1.

The Riemann–Roch theorem yields:

dimL
(

d P∞ + Pα1 +
∑

Pβ ′
)

=
{

d
2 + 1 if #S ′ ≤ d

2 − 2;
d
2 + 2 if #S ′ = d

2 − 1.

So, a basis forL
(
d P∞ + Pα1 +

∑
Pβ ′

)
is:

1, x, . . . , xd/2 for #S ′ ≤ d

2
− 2;

1, x, . . . , xd/2,
y

(α1 − x)Πβ ′(β ′ − x)
for #S ′ = d

2
− 1.

Now take odd d. The condition (6) is equivalent to:

(d + 1)P0 +
∑

Pβ ∼ (d + 1)P∞ +
∑

Pβ ′ .

Notice that #S ′ ≤ d−1
2 , so

dimΩ((d + 1)P∞ +
∑

Pβ ′) =
{

d−1
2 − 1 − #S ′ if #S ′ ≤ d−1

2 − 1;
0 if #S ′ = d−1

2 ,

and by the Riemann–Roch theorem:

dimL
(
(d + 1)P∞ +

∑
Pβ ′

)
=

{
d+1
2 + 1 if #S ′ ≤ d−1

2 − 1;
d+1
2 + 2 if #S ′ = d−1

2 .

Thus a basis forL
(
(d + 1)P∞ +

∑
Pβ ′

)
is:

1, x, . . . , x (d+1)/2 for #S ′ ≤ d − 1

2
− 1;

1, x, . . . , x (d+1)/2,
y

Πβ ′(β ′ − x)
for #S ′ = d − 1

2
− 1.

As in the proof of Theorem4,we conclude that the bases consisting only of the powers
of x cannot give the desired equivalence relation. Thus, a (d + 1)-periodic trajectory has
[ d−1

2 ] pairs of caustics of the same type and, if d +1 is odd, an ellipsoid as a caustic. ��
Now we are ready to formulate Cayley-type conditions for (d + 1)-periodic trajecto-

ries:

Theorem 6. There exists a (d +1)-periodic trajectory of billiard within ellipsoid E with
non-degenerate caustics Qα1 , …, Qαd−1 if and only if

– for even d:
– α1 ∈ (0, a1) and α j , α j+1 ∈ (a j , a j+1) for all s ∈ {2, 4, . . . , d − 2};
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– Cd/2+1 = · · · = Cd = 0; and

– C0 + C1α j + · · · + Cd/2α
d/2
j = 0 for all j ∈ {2, 4, . . . , d − 2},

with
√
P(x)

(α1 − x)(α3 − x) . . . (αd−1 − x)
= C0 + C1x + C2x2 + . . . ;

– for odd d:
– α j , α j+1 ∈ (a j , a j+1) for all j ∈ {1, 3, . . . , d − 2}; and
– C(d+1)/2+1 = · · · = Cd = 0; and

– C0 + C1α j + · · · + C(d+1)/2α
(d+1)/2
j = 0 for all j ∈ {1, 3, . . . , d − 2},

with
√
P(x)

(α2 − x)(α4 − x) . . . (αd−1 − x)
= C0 + C1x + C2x2 + . . . .

Proof. The proof in both cases is similar, thus we give it only for even d.
According to Theorems 3 and 5, the existence of a (d + 1)-periodic trajectory with

caustics Qα1 , …, Qαd−1 is equivalent to the first of the listed relations and

(d + 1)P0 + Pα2 + Pα4 + · · · + Pαd ∼ d P∞ + Pα1 + Pα3 + · · · + Pαd−1 .

These two divisors are equivalent on C if and only if there is a meromorphic function ϕ,
such that

(ϕ) ∼ (d + 1)P0 + Pα2 + Pα4 + · · · + Pαd−2 − (
d P∞ + Pα1 + Pα3 + · · · + Pαd−1

)
.

In other words, ϕ is inL
(
d P∞ + Pα1 + Pα3 + · · · + Pαd−1

)
and has a zero of order d +1

at P0 and simple zeroes at Pα2 , Pα4 , …, Pαd−2 . According to the proof of Theorem 5,
the basis of L

(
d P∞ + Pα1 + Pα3 + · · · + Pαd−1

)
is:

1, x, x2, . . . , xd/2,
y

(α1 − x)(α3 − x) . . . (αd−1 − x)
,

so we may search for ϕ in the form:

ϕ = A0 + A1x + · · · + Ad/2xd/2 − y

(α1 − x)(α3 − x) . . . (αd−1 − x)
. (7)

P0 is its zero of order d + 1 if and only if Cd/2+1 = · · · = Cd = 0 and we set

A0 = C0, . . . , Ad/2 = Cd/2.

Then, since y has zeroes at Pα2 , Pα4 , …, Pαd−2 , it is needed only that C0 + C1x + · · · +
Cd/2xd/2 has roots α2, α4, …, αd−2. ��

The conditions obtained in Theorem 6 can be written in a more symmetric form:

Theorem 7. There exists a (d +1)-periodic trajectory of billiard within ellipsoid E with
non-degenerate caustics Qα1 , …, Qαd−1 if and only if

– α1 ∈ (0, a1) and α j , α j+1 ∈ (a j , a j+1) for all j ∈ {2, 4, . . . , d − 2} if d is even;
– α j , α j+1 ∈ (a j , a j+1) for all j ∈ {1, 3, . . . , d − 2} if d is odd,
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and α1, …, αd−1 are roots of the polynomial B0 + B1x + · · · + Bd xd , where
√
P(x) = B0 + B1x + B2x2 + . . . .

Proof. Obtained by multiplying the expression (7) by the denominator of the last term
on the righthand side. ��
Lemma 3. Let ρ2d be a polynomial of degree 2d with no multiple roots. Then the fol-
lowing statements are equivalent:

(a) there are a first degree polynomial p1(s), a constant c, and a factorization ρ2d =
ρd−1ρd+1 into polynomials of degrees d − 1 and d +1 such that p21ρd−1 −ρd+1 = c;

(b) there are polynomials p̂d+1, q̂1 of degrees d + 1 and 1 and a constant c′ such that
p̂2d+1 − q̂2

1ρ2d = c′.
Proof. Suppose (a) is satisfied. Denote:

p̂d+1 := p21ρd−1 − c

2
.

We get:

p̂2d+1 = p21ρd−1(p21ρd−1 − c) +
c2

4
= p21ρd−1ρd+1 +

c2

4
= p21ρ2d +

c2

4
,

so we get (b) with q̂1 = p1 and c′ = c2
4 .

Now, suppose (b) is true. Then:
(

p̂d+1 − √
c′

) (
p̂d+1 +

√
c′

)
= q̂2

1ρ2d ,

which implies

p̂d+1 − √
c′ = ρd+1, p̂d+1 +

√
c′ = q̂2

1ρd−1,

for some polynomials ρd+1, ρd−1 of degrees d + 1, d − 1, such that ρ2d = ρd−1ρd+1.
Subtracting the obtained relations, we get:

2
√

c′ = q̂2
1ρd−1 − ρd+1,

so (a) follows, with c = 2
√

c′ and p1 = q̂1. ��
Corollary 1. If there exists a (d + 1)-periodic billiard trajectory within ellipsoid E with
non-degenerate caustics Qα1 , …, Qαd−1 , then two following functional relations are
satisfied:

(a) There exist a first degree polynomial p1(s) and a constant c such that

p21(s)
d−1∏

j=1

(
s − 1

α j

)
− s

d∏

j=1

(
s − 1

a j

)
= c. (8)

(b) There exist polynomials p̂d+1(s), q̂1(s) of degrees d+1, 1 respectively, and a constant
c′ such that

p̂2d+1(s) − q̂2
1 (s)s

d∏

j=1

(
s − 1

a j

) d−1∏

j=1

(
s − 1

α j

)
= c′. (9)
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Moreover, the following relationship holds:

p̂d+1(s) = p21(s)
d−1∏

j=1

(
s − 1

α j

)
− c

2
, q̂1(s) = p1(s), c′ = c2

4
.

Proof. Wewill present the proof for d odd only, since the case when d is even is similar.
The second and third conditions of Theorem 6 together are equivalent to the existence
of a polynomial r1(x) of degree 1 such that the expression:

r1(x)(α1 − x)(α3 − x) . . . (αd−2 − x) − y

(α2 − x)(α4 − x) . . . (αd−1 − x)
(10)

has zeroes at points Pα j for j ∈ {1, 3, . . . , d − 2} and a zero of order d + 1 for x = 0.
Thus,

r1(x) − y
∏d−1

j=1(α j − x)
(11)

has a zero of order d + 1 for x = 0. Now, by multiplying (11) by

(

r1(x) +
y

∏d−1
j=1(α j − x)

)
d−1∏

j=1

(α j − x),

we get that

r21 (x)

d−1∏

j=1

(α j − x) −
d∏

j=1

(a j − x) = c̃xd+1,

for some constant c̃, since its lefthand side is polynomial in x of degree d + 1 and has a
zero of order d + 1 for x = 0.

Now, dividing by xd+1 and introducing s = 1/x , one gets that Theorem 6 implies
(a). Then (b) is true according to Lemma 3. ��

3.3. (d +k)-periodic trajectories. In this section, we will show that periodic trajectories
with d + k bounces, k ∈ {1, . . . , d − 2} always have pairs of caustics of the same type.

Theorem 8. Any (d + k)-periodic trajectory of billiard within ellipsoid E has at least
[ d−k

2 ] pairs of caustics of the same type, with k ∈ {1, . . . , d − 2}.
Proof. Let the caustics of a given (d + k)-periodic trajectory be Qα1 , …, Qαd−1 , and
take S ′ as in Theorem 3. According to that theorem, the condition (6) is satisfied:

(d + k)(P0 − Pb1) +
∑

{β,β ′}∈S ′
(Pβ − Pβ ′) ∼ 0. (12)

Suppose first that d + k is even. The condition (12) is then equivalent to:

(d + k)P0 +
∑

Pβ ∼ (d + k)P∞ +
∑

Pβ ′ .
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Since dimΩ ((d + k)P∞) = d − 1 − d+k
2 , we have:

dimΩ
(
(d + k)P∞ +

∑
Pβ ′

)
= max

{
0, d − 1 − d + k

2
− #S ′

}
.

Notice that d − 1− d+k
2 − #S ′ ≥ 0 whenever #S ′ < d−k

2 . In that case, the Riemann–
Roch theorem gives:

dimL
(
(d + k)P∞ +

∑
Pβ ′

)
=

= (d + k + #S ′) − (d − 1) +

(
d − 1 − d + k

2
− #S ′

)
+ 1

= d + k

2
+ 1.

Thus, 1, x, . . . , x (d+k)/2 is a basis of L
(
(d + k)P∞ +

∑
Pβ ′

)
, so that space cannot

contain any functions with the zeroes divisor (d + k)P0 +
∑

Pβ .
Now suppose d+k is odd. One of the caustics thenmust be an ellipsoid. The condition

(12) is then equivalent to:

(d + k)P0 +
∑

Pβ ∼ (d + k − 1)P∞ + Pb1 +
∑

Pβ ′ .

Since dimΩ ((d + k − 1)P∞) = d − 1 − d+k−1
2 , we have:

dimΩ
(
(d + k − 1)P∞ + Pb1 +

∑
Pβ ′

)
=

= max

{
0, d − 1 − d + k − 1

2
− #S ′ − 1

}
.

Notice that d − 1 − d+k−1
2 − #S ′ − 1 ≥ 0 whenever #S ′ < d−k−1

2 = [ d−k
2 ]. In that

case, the Riemann–Roch theorem gives:

dimL
(
(d + k − 1)P∞ + Pb1 +

∑
Pβ ′

)

= (d + k + #S ′) − (d − 1) +

(
d − 1 − d + k − 1

2
− #S ′ − 1

)
+ 1

= d + k − 1

2
+ 1.

Thus, 1, x, . . . , x (d+k−1)/2 is a basis ofL
(
(d + k − 1)P∞ + Pb1 +

∑
Pβ ′

)
, so that space

cannot contain any functions with the zeroes divisor (d + k)P0 +
∑

Pβ . ��
Remark 2. We conclude that S ′ has at least [ d−k

2 ] elements. For #S ′ ≥ [ d−k
2 ], we

get that the corresponding space of meromorphic functions contains functions which
cannot be expressed as polynomials or rational functions in x . In such case, we are
able to express the analytic conditions for the existence of periodic trajectories. Some
examples are presented in Sect. 6.
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4. Poncelet Polygons and Extremal Polynomials

In [17], the generalized Cayley’s condition C(n, d) has been formulated as a rank con-
dition on a rectangular matrix, to describe n-periodic billiard trajectories within a given
ellipsoid in the d-dimensional space, see Theorem 2 of this paper. These conditions were
rewritten in a polynomial form in [40]. We recall that the original Cayley’s conditions
which describe the Poncelet polygons in plane were reformulated in polynomial/Padé’s
approximation form by Halphen in [28] (see Theorem 1 above and also [15,21]). In this
section, we are going to prove the conjectures from [40] by recognizing the role of the
Pell equations and the extremal nature of the polynomials involved. We fully exploit the
classical and modern approximation theory, in particular the recent deep findings about
the generalized Chebyshev polynomials, (see [3,33,36] and references therein).

We take constants b1, …, b2d−1 as defined in Sect. 2 and denote:

c1 = 1

b1
, . . . , c2d−1 = 1

b2d−1
, c2d = 0,

P̂2d(s) =
2d∏

j=1

(s − c j ).

Let us rewrite the conditions from [40] in a different form.

Proposition 2. The generalized Cayley’s condition C(n, d) is satisfied if and only if
there exist a pair of real polynomials p̂n, q̂n−d of degrees n and n − d respectively such
that the Pell equation holds:

p̂2n(s) − P̂2d(s)q̂2
n−d(s) = 1. (13)

In [18] yet another condition of n-periodic billiard trajectories was derived in the
Abel-Jacobi form, based on the analysis of the elliptical coordinates: there exist integers
m j , j ∈ {1, . . . , d − 1} such that:

n
∫ ∞

c1

sk

√
P̂2d(s)

ds =
d∑

j=2

(−1) j m j−1

∫ c2 j−2

c2 j−1

sk

√
P̂2d(s)

ds, k ∈ {0, 1, . . . , d − 2}.

We recall that, following [40], we have denoted m0 = n, md = 0, and have called
m0, m1, …, md−1 the winding numbers of a given periodic billiard trajectory. Similarly
[40] denoted by τ j the number of zeroes of q̂n−d in the interval (c2 j , c2 j−1). The d-tuple
(τ1, . . . , τd) is called the signature.

The polynomials p̂n are extremal polynomials on the system of d intervals
[c2d , c2d−1] ∪ [c2d−2, c2d−3] ∪ · · · ∪ [c2, c1]. Following the principles formulated by
Chebyshev and his school (see [3]), we are going to study the structure of extremal points
of p̂n , in particular the set of points of alternance.

Notice that the roots of P̂2d(s) are simple solutions of the equation p̂2n(s) = 1, while
the roots of q̂n−d(s) are double solutions of the equation p̂2n(s) = 1. Because of the
degrees of the polynomials, these are all points where p̂2n(s) equals to unity.

Let us recall that a set of points of alternance is, by definition, a subset of the solutions
of the equation p̂2n(s) = 1, with the maximal number of elements, such that the signs of
p̂n alter on it. Such a set is not uniquely determined, however the number of its elements
is fixed and equal to n + 1.
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Theorem 9. (a) The winding numbers satisfy:

m j = m j+1 + τ j + 1, 1 ≤ j ≤ d.

(b) The winding numbers are strictly decreasing:

md−1 < md−2 < · · · < m1 < m0.

Proof. It follows from [33] (see also [42]) that the number of points of alternance of the
polynomial p̂n on the segment [c2d , c2 j+1] is equal to 1+m j , for j ∈ {0, . . . , d −1}. The
difference m j−1 − m j is thus equal to the number of points of alternance on the interval
[c2 j+1, c2 j−1]. According to the structure of the sets of the alternance, that number equals
the sum of the numbers of the double points of alternance from the interval (c2 j , c2 j−1)

and one simple point of alternance at one of the endpoints of the interval. This proves
(a) and (b) follows immediately. ��
Corollary 2. All zeroes of q̂n−d are real.

Proof. The polynomial p̂n has n − d double extremal points in the interior of the union
of the intervals (c2d , c2d−1) ∪ · · · ∪ (c2, c1). These roots of p̂′

n coincide with the roots
of the polynomial q̂n−d of degree n − d. ��
Remark 3. Theorem 9 answers affirmatively to Conjectures 1 and 3 from [40]. The
Conjecture 2 from [40] is answered affirmatively in Corollary 2.

Example 1. Consider the case of a trajectory with non-degenerate caustics with elliptic
period d. According to Theorem 4, such trajectory is periodic with period 2d in the
Cartesian coordinates. [40, Theorem 13] conjectured the winding numbers of such tra-
jectories, based on [40, Conjecture 1]. Now, having the Conjecture 1 proved, we certify
the winding numbers to be m j = 2(d − j), j = 0, . . . , d − 1.

Now, consider the case n = d + 1. Since, according to Theorem 5, among mi , even
and odd numbers alternate and decrease, and m0 = d + 1, we get

Proposition 3. (a) The winding numbers of the trajectories of period d + 1 within an
ellipsoid in the d-dimensional space are

(m0, m1, . . . , md−1) = (d + 1, d, d − 1, . . . , 3, 2).

(b) The signature of such trajectories is (0, 0, . . . , 0, 1).

Theorem 10. For a given ellipsoid from a confocal pencil in the Euclidean space Ed ,
the set of caustics which generates (d + 1)-periodic trajectories is unique, if it exists.

Proof. Consider the Pell equation (13). The polynomial p̂d+1 has one (1 = d + 1 − d)
double point of the alternance, which is the zero of polynomial q̂1: q̂1(γ ) = 0, with
γ ∈ (c2d = 0, c2d−1), according to Propositon 3. In addition, p̂d+1(s) has d + 1 simple
points of the alternance at the endpoints of the intervals [c2d , c2d−1],…,[c2, c1].

The following properties of the polynomial p̂d+1 follows from the structure and
distribution of the points of the alternance, the winding numbers and the signature:

– p̂d+1 takes value −1 at 0, 1/a1, …, 1/ad ;
– in (0, 1/ad), p̂d+1 has a local maximum equal to unity;
– p̂d+1 takes value 1 at 1/α1, …, 1/αd−1.
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Fig. 1. The graph of p̂4(s). The parameters are: c1 = 1/a1, c2 = 1/α1, c3 = 1/α2, c4 = 1/a2, c5 = 1/a3

Fig. 2. The graph of p̂5(s). The parameters are c7 = 1/a4, c6 = 1/a3, c3 = 1/a2, c2 = 1/a1; c5 = 1/α3,
c4 = 1/α2, c1 = 1/α1. The signature of the trajectory is (0, 0, 0, 1) and the winding numbers (5, 4, 3, 2)

See Figs. 1 and 2 for graphs of p̂4 and p̂5.
For each d, there is a unique polynomial satisfying the listed properties and it can be

determined as follows. Denote by γ the only point of local extremum of

rd+1(s) = s
d∏

j=1

(
s − 1

a j

)

in (0, 1/ad) and define:

p̂d+1(s) = 2rd+1(s)

rd+1(γ )
− 1, q̂1(s) = s − γ.

Now, 1/α1,…, 1/αd−1 are solutions of the equation p̂d+1 = 1, different from γ . If those
solutions exist, they are uniquely determined. ��
Remark 4. Wenote that the existence of (d+1)-periodic trajectories with non-degenerate
caustics will depend on the shape of the ellipsoid E . The discussion about that in the
3-dimensional case can be found in [9].

Theorem 11. For a given ellipsoid E , the quadrics Qλk are the caustics of (d + 1)-
periodic trajectories if λ−1

1 , …, λ−1
d−1 are the solutions of the equation p̂d+1(s) − 1 = 0,

distinct from γ .
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5. Properties of the Frequency Map

In this section, we will prove the injectivity property of the frequency map.
Let us start with two lemmas.

Lemma 4. If Qα , Qβ are caustics of the same type of a given billiard trajectory within
E , then {α−1, β−1} = {c2k+1, c2k}, for some k.

Proof. According to Lemma 1, exactly one of each pair {b2i−1, b2i } is a parameter of a
caustic of the trajectory. SinceQα ,Qβ are of the same type, α and β must be consecutive
in the sequence b1, . . . , b2n−1, so {α, β} = {b2k, b2k+1} for some k. ��
Lemma 5 (Theorem 2.12 from [36]). Let pn, p∗

n be two polynomials of degree n, which
solve the Pell’s equations. Denote by

Id = ∪d−1
j=0[c2(d− j), c2(d− j)−1] and I∗

d = ∪d−1
j=0[c∗

2(d− j), c∗
2(d− j)−1]

respectively the sets {x | |pn(x)| ≤ 1} and {x | |p∗
n(x)| ≤ 1}. Suppose that:

(i) at least one of the intervals from Id coincides with one of the intervals from I∗
d ;

(ii) for each j ∈ {0, . . . , d − 1}, c2(d− j) = c∗
2(d− j) or c2(d− j)−1 = c∗

2(d− j)−1;
(iii) in each pair of the corresponding intervals

[c2(d− j), c2(d− j)−1] and [c∗
2(d− j), c∗

2(d− j)−1]
the polynomials pn, p∗

n have the same number of extreme points.

Then the polynomials pn, p∗
n coincide up to a constant multiplier and sets Id and I∗

d
coincide.

Theorem 12. Given an ellipsoid E in d-dimensional space and n > d an integer. There is
at most one set of caustics {α1, . . . , αd−1} of the given types, which generates n-periodic
trajectories within E having a prescribed signature.

Proof. The assumption (i) of Lemma 5 is satisfied since [c2d , c2d−1] = [0, a−1
d ], and

the assumption (ii) due to the Lemma 4. The assumption (iii) follows from the fact that
the signature is given, which completes the proof of this Theorem. ��

In order to extend the considerations about winding numbers to the cases of irrational
frequencies and non-periodic trajectories, we employ the potential theory and harmonic
analysis, see [41].We consider the differential of the third kind defined by the conditions:

∫ c2 j

c2 j+1

ηd−1(s)√
P̂2d(s)

ds = 0, j = d − 1, d − 2, . . . , 1, (14)

where ηd−1 is a monic polynomial of degree d − 1. Then the equilibrium measure μ,
defined by:

μ([c2k, c2k−1]) = 1

π

∫ c2k−1

c2k

|ηd−1(s)|√
|P̂2d(s)|

ds,

induces a map m : R2d−2
< → Rd−1

+ :

m : (c2d−2, . . . , c1) �→ (μ([c2d−2, c2d−3]), . . . , μ([c2, c1])),
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where R2d−2
< denotes the finite increasing sequences of 2d − 2 of real numbers. We

use the considerations parallel to the proof of the Bogotaryev-Peherstorfer-Totik The-
orem (Theorem 5.6.1 from [41]) and observe that they can be extended to all possible
distributions of caustic parameters α’s vs. the confocal family parameters a’s as gov-
erned by Lemma 1. Assuming that c’s reciprocal to a’s are fixed, and ĉ’s reciprocal to
α’s (ĉi = α−1

i ) vary one proves that the above map understood now as a function of
varying ĉ’s m(ĉd−1, . . . , ĉ1) is everywhere locally injective: by using the properties of
the polynomials ηd−1 and P̂2d and their derivatives with respect to the variable ĉs as
well as the derivative of the quotient

|ηd−1(s)|√
P̂2d(s)

,

one gets that the Jacobian of the equilibrium measure map is diagonally dominant,
thus invertible. From there we get the local injectivity of the frequency map, defined by
(see also Theorem 5.12.12 from [41]):

F(α1, . . . , αd−1) = (μ([c2d , c2d−1]),
d∑

k=d−1

μ([c2k, c2k−1]), . . . ,
d∑

k=1

μ([c2k, c2k−1])).

Notice that a connected component of the set of the parameters of non-degenerate caustics
consists of all possible parameters of certain given types of the caustics. ThusTheorem12
implies that the frequencymap never attains one rational value twice on such a connected
component. This, together with the local injectivity, leads to the global injectivity of the
frequency map.

Theorem 13. The frequency map for the billiard within ellipsoid is injective on each
connected component of the set of the parameters of non-degenerate caustics.

Remark 5. Using [4] one can show that in the case of periodic trajectories the frequency
map coincides with the one defined through the winding numbers and the numbers of
points of alternance. Alternatively, by using bilinear relations between the differentials
of the first and third kind, see for example [43], one can easily get the following relations:

d−1∑

i=1

yi

∫

ai
ω j = 2yd

∫ ∞

c1
ω j , (15)

where the cycle ai encircles the gap [c2(d+1−i)−1, c2(d−i)] clockwise while, cycles bi
are going around [c2d , c2(d+1−i)−1] clockwise. The differentials ω j form a basis of
holomorphic differential on the curve

Ĉ : t2 = P̂2d(s),

with

ω j = s j−1
√
P̂2d(s)

ds, j = 1, . . . , d − 1.

If we denote the components of the map F as ( f1, . . . , fd), then

|yi | = fi .

We also observe the monotonicity property of the frequency map: f1 < f2 < · · · < fd .
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Corollary 3. Given a confocal pencil of conics in the plane

Cλ : x2

a − λ
+

y2

b − λ
= 1, a > b > 0. (16)

Then the rotation number

ρ(λ) = ρ(λ, a, b) =
∫ min{b,λ}
0

dt√
(λ−t)(b−t)(a−t)

2
∫ a
max{b,λ}

dt√
(λ−t)(b−t)(a−t)

(17)

is a strictly monotonic function on each of the intervals (−∞, b) and (b, a).

The relation (17) is equivalent to the d = 2 case of (15).

Remark 6. Let us relate more closely the formula (17) with the geometric meaning of
the rotation number. Consider a billiard trajectory within C0 with the caustic Cα . We
will assume that Cα is an ellipse, i.e. a > b > α > 0. Following [22], consider the map:

σ(A) =
(∫ A

M0

dλ2√
(a − λ2)(b − λ2)(α − λ2)

,

∫ A

M0

dλ1√
(a − λ1)(b − λ1)(α − λ1)

)
,

where M0 is an arbitrary given point on Cα , and λ1, λ2 are Jacobi coordinates associated
with the confocal pencil (16). According to [22], σ maps the region between C0 and Cα

bijectively to the cylinder (R/pZ) × [−v, 0], with

p = 4
∫ a

b

dλ√
(a − λ)(b − λ)(α − λ)

, v =
∫ α

0

dλ√
(a − λ)(b − λ)(α − λ)

.

The cylinder can be seen also as a rectangle with the horizontal sides equal to p, while
the vertical ones are equal to v and identified to each other. The transformation σ maps
the billiard trajectory onto a zig-zag line, such that its segments form angles ±π/4 with
the sides of the rectangle, see Fig. 3.

The pullback of the Lebesgue measure d L on the horizontal side of the rectangle
μ0 = σ ∗(d L) is a measure on the caustic Cα , which is invariant with respect to the
billiard dynamics: μ0(T0T1) = μ0(T1T2). The rotation number is:

ρ(α, a, b) = μ0(T1T2)

μ0(Cα)
= |σ(T1)σ (T2)|

p
= 2v

p
,

which is equivalent to (17).

Remark 7. A proof of Corollary 3 is contained in the beautiful book of Duistermaat [24].
However, that proof is highly nontrivial and uses a heavy machinery of the theory of
algebraic surfaces. Let us mention that statements similar to [36, Theorem 2.12] existed
before, see for example [35].

6. Trajectories with Low Periods in Dimension Three

This section is meant to illustrate the power and effectiveness of the methods and tools
developed above. We provide a comprehensive description of periodic trajectories with
periods 4, 5, and 6 in the three-dimensional space. By analysing these cases, we observed
new, interesting properties of such periodic trajectories. For the two-dimensional case
see [23].
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T0

A1
T1

A2

T2

σ(T0) σ(T1) σ(T2)

σ(A1) σ(A2)

Fig. 3. A billiard trajectory and its image by σ

6.1. 4-periodic trajectories in dimension three. The Cayley type conditions for such
trajectories can be written directly applying Theorem 5.

Example 2. There is a 4-periodic trajectory of the billiard within ellipsoid E , with non-
degenerate caustics Qα1 and Qα2 if and only if the following conditions are satisfied:

– the caustics are 1-sheeted hyperboloids, i.e. α1, α2 ∈ (a1, a2);
– C3 = 0; and
– C0 + C1α2 + C2α

2
2 = 0,

with C0, C1, C2, C3 being the coefficients in the Taylor expansion about x = 0:
√

(a1 − x)(a2 − x)(a3 − x)(α1 − x)(α2 − x)

α1 − x
= C0 + C1x + C2x2 + C3x3 + . . . .

Moreover, according to Theorem 9 the winding numbers of such trajectories satisfy
m0 > m1 > m2, with m0 = 4 and m2 being even. Thus, (m0, m1, m2) = (4, 3, 2).

It is interesting to consider the case when the two caustics coincide: α1 = α2. In
that case, the segments of the billiard trajectory are placed along generatrices of the
hyperboloid Qα1 , see Fig. 4.

Corollary 4. There exists a 4-periodic trajectory of the billiard within E , with the seg-
ments being parts of generatrices of the confocal 1-sheeted hyperboloid Qα1 if and only
if

a1 = a2a3
a2 + a3

and α1 = a2 + a3 −
√

a2
2 + a2

3 .

Proof. We will apply Example 2 to the case α2 = α1. Since

C3 = − (a1a2 − a1a3 − a2a3)(a1a2 + a1a3 − a2a3)(a1a2 − a1a3 + a2a3)

16 (a1a2a3)5/2
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Fig. 4. Four-periodic trajectories on a hyperboloid

and 0 < a1 < a2 < a3, the coefficientC3 can be equal to zero only if a2a3 = a1a3+a1a2.
Now, substituting α2 = α1 and a1 = a2a3/(a2 + a3), we get:

C0 + C1α2 + C2α
2
2 = α2

1 − 2(a2 + a3)α1 + 2a2a3
2
√

a2 + a3
= 0.

This is a quadratic equation in α1. One of its solutions, a2 + a3 +
√

a2
2 + a2

3 , is bigger

than a3 so it cannot correspond to a caustic, while the other one, a2 + a3 −
√

a2
2 + a2

3 , is
between a1 and a2. ��
Proposition 4. Each confocal family of quadrics contains a unique pair of ellipsoid
and 1-sheeted hyperboloid such that there is a 4-periodic billiard trajectory within the
ellipsoid with the segments placed on the hyperboloid.

Proof. We search for λ < a1 such that the ellipsoidQλ from the confocal family satisfies
the first condition of Corollary 4:

a1 − λ = (a2 − λ)(a3 − λ)

a2 − λ + a3 − λ
,

which has a unique solution in (−∞, a1): λ = a1 − √
(a3 − a1)(a2 − a1). The corre-

sponding hyperboloid is then uniquely defined from Corollary 4. ��

6.2. 5-periodic trajectories in dimension three.

Example 3. According to Theorem 3, there is a 5-periodic trajectory of the billiardwithin
ellipsoid E , with non-degenerate caustics Qα1 and Qα2 if and only if the following
conditions are satisfied:

– since the period is odd, one of the caustics, sayQα1 , is an ellipsoid, i.e. α1 ∈ (0, c);
and
– C3 = C4 = 0,
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Fig. 5. The graph of p̂5(s). The parameters are c1 = 1/α1, c2 = 1/a3, {c3, c4} = {1/a2, 1/α2}, c5 = 1/a1.
The winding numbers of the trajectory are (5, 4, 2) and the signature (0, 1, 1)

with C3, C4 being the coefficients in the Taylor expansion about x = 0:
√

(a1 − x)(a2 − x)(a3 − x)(α1 − x)(α2 − x)

α1 − x
= C0 + C1x + C2x2 + C3x3 + . . . .

According to Theorem 9, the winding numbers (m0, m1, m2) satisfy m0 = 5,
m0 > m1 > m2. Since m1, m2 are even, (m0, m1, m2) = (5, 4, 2). The graph of
the corresponding polynomial p̂5(s) is shown in Fig. 5.

6.3. 6-periodic trajectories in dimension three. We saw in Sects. 6.1 and 6.2 that 4-
periodic and 5-periodic trajectories the three-dimensional case have uniquely determined
winding numbers. This is not the case with the trajectories of period 6, which can have
winding numbers

(m0, m1, m2) ∈ {(6, 4, 2), (6, 5, 4), (6, 5, 2), (6, 3, 2)}.
Example 4. (Winding numbers (6, 4, 2).) There is a periodic trajectory with winding
numbers (6, 4, 2) of the billiard within ellipsoid E , with non-degenerate caustics Qα1

and Qα2 if and only if 6P0 ∼ 6P∞, that is C4 = C5 = 0, with
√

(a1 − x)(a2 − x)(a3 − x)(α1 − x)(α2 − x) = C0 + C1x + C2x2 + C3x3 + . . . .

Moreover, since all winding numbers are even, such trajectories are elliptic 3-periodic,
see Example 1.

The graph of the corresponding polynomial p̂6(s) is shown in Fig. 6.

For trajectories with winding numbers (6, 4, 2), there are no constraints for types of
the caustics. It is interesting to consider separately the case when the caustics coincide
with each other, that is when the trajectories lie on an 1-sheeted hyperboloid. An example
of such trajectories is shown in Fig. 7, with the parameters obtained by application of
Example 4. Notice that the trajectories are symmetric with respect to the origin.

Proposition 5. There is a periodic trajectory with elliptic period 3, with the segments
being parts of generatrices of a confocal 1-sheeted hyperboloid if and only if

∣∣∣∣
B3 B4
B4 B5

∣∣∣∣ = 0,
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Fig. 6. The graph of p̂6(s) corresponding to the winding numbers (6, 4, 2) and signature (1, 1, 1). The param-
eters are {c1, c2} = {1/α1, 1/a1}, {c3, c4} = {1/α2, 1/a2}, c5 = 1/a3

Fig. 7. Six-periodic trajectories on a hyperboloid. m2 = 2 since the trajectories close after winding once
around the vertical coordinate axis. The parameters are a1 = 180 − 80

√
5 ≈ 1.11, a2 = 4, a3 = 5,

α1 = α2 = 20
61 (9 − 2

√
5) ≈ 1.48

with

√
(a1 − x)(a2 − x)(a3 − x) = B0 + B1x + B2x2 + B3x3 + . . . .

Proof. Follows from the condition stated in Example 4, with α1 = α2, and noticing that
C4 = α1B4 − B3 and C5 = α1B5 − B4. ��

As a consequence of Proposition 5 and the Cayley’s condition, we get

Corollary 5. The following three statements are equivalent:

– There is a periodic trajectory with elliptic period 3 of the billiard within ellipsoid
x21
a1
+

x22
a2
+

x23
a3

= 1, with the segments being parts of generatrices of a confocal 1-sheeted
hyperboloid.

– There is a 6-periodic trajectory within ellipse:
x22
a2

+
x23
a3

= 1, with ellipse
x22

a2−a1
+

x23
a3−a1

= 1 as caustic.

– There is a 6-periodic trajectory within ellipse:
x21
a1

+
x23
a3

= 1, with hyperbola
x21

a1−a2
+

x23
a3−a2

= 1 as caustic.
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Fig. 8. The graph of p̂6(s) corresponding to the signature (0, 0, 3) and winding numbers (6, 5, 4). The param-
eters are c1 = 1/a1, c2 = 1/α1, c3 = 1/α2, c4 = 1/a2, c5 = 1/a1

In the remaining three triplets of the winding numbers corresponding to 6-periodic
trajectories, the middle one, m1, is odd. That means that both caustics in these cases
need to be 1-sheeted hyperboloids. From Theorem 3 we get the analytic condition for
such trajectories.

Proposition 6. There is a 6-periodic trajectory with odd frequency number m1 of the
billiard within ellipsoid E , with non-degenerate caustics Qα1 and Qα2 if and only if
both Qα1 and Qα2 are 1-sheeted hyperboloids, that is α1, α2 ∈ (a1, a2), and any of the
following two equivalent conditions satisfied:

(i)

rank

⎛

⎜⎜⎜⎜⎜
⎝

α1α2 0 0 C0 0
−(α1 + α2) α1α2 0 C1 C0

1 −(α1 + α2) α1α2 C2 C1
0 1 −(α1 + α2) C3 C2
0 0 1 C4 C3
0 0 0 C5 C4

⎞

⎟⎟⎟⎟⎟
⎠

< 5,

with
√

(a1 − x)(a2 − x)(a3 − x)(α1 − x)(α2 − x) = C0 + C1x + C2x2 + C3x3 + . . . ;
(ii) there are polynomials p2(x) and p1(x) of degrees 2 and 1 respectively such that:

(α1 − x)(α2 − x)p22(x) − (a1 − x)(a2 − x)(a3 − x)p21(x) = x6. (18)

Proof. The algebro-geometric condition for such trajectories is 6P0 + Pα1 ∼ 6P∞+ Pα2 .
The basis of L (6P∞ + Pα2) is:

1, x, x2, x3, y,
y

x − α2
.

We are searching for a non-trivial linear combination ϕ that has a zero of order 6 at
x = 0 and a simple zero x = α1:

ϕ = A0 + A1x + A2x2 + A3x3 + A4y + A5
y

x − α2
.
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Fig. 9. Six-periodic trajectories on a hyperboloid. m2 = 4 since the trajectories close after winding twice
around the vertical coordinate axis. The parameters are a1 ≈ 3.303, a2 = 4, a3 = 5, α1 = α2 ≈ 3.5

Fig. 10. The graph of p̂6(s) corresponding to the winding numbers (6, 5, 2) and signature (0, 2, 1). The
parameters are c1 = 1/a3, c2 = 1/α1, c3 = 1/α2, c4 = 1/a2, c5 = 1/a1

Since y has a zero at x = α1, one root of A0 + A1x + A2x2 + A3x3 is α1, so the condition
is equivalent to

(x − α2)ϕ = (α1 − x)(α2 − x)(A′
0 + A′

1x + A′
2x2) + A′

3y + A′
4xy, (19)

having a zero of order 6 at x = 0. Part (i) then follows from the Taylor expansion of
(x − α2)ϕ around x = 0:

(α1α2A′
0 + C0A′

3) +
(−(α1 + α2)A′

0 + α1α2A′
1 + C1A′

3 + C0A′
4

)
x

+(A′
0 − (α1 + α2)A′

1 + α1α2A1 + C2A′
3 + C1A′

4)x2

+(A′
1 − (α1 + α2)A′

2 + C3A′
3 + C2A′

4)x3

+(A′
2 + C4A′

3 + C3A′
4)x4 + (C5A′

3 + C4A′
3)x5 + . . .

To obtain part (ii), denote p2(x) = A′
0 + A′

1x + A′
2x2, p1(x) = A′

3 + A′
4x and multiply

the righthandside of (19) by p2(x) − yp1(x), and divide it by (α1 − x)(α2 − x). We get
that the function:
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Fig. 11. The graph of p̂6(s) corresponding to winding numbers (6, 3, 2) and signature is (2, 0, 1). The param-
eters are c1 = 1/a3, c2 = 1/α1, c3 = 1/α2, c4 = 1/a2, c5 = 1/a1

(α1 − x)(α2 − x)p22(x) − (a1 − x)(a2 − x)(a3 − x)p21(x)

has a zero of order 6 at x = 0. Since that function is a polynomial of degree 6, we get
the requested condition. ��
Remark 8. Equation (18) from Proposition 6 is equivalent to:

r22 (s)

(
s − 1

α1

)(
s − 1

α2

)
− r21 (s) · s

(
s − 1

a1

)(
s − 1

a2

) (
s − 1

a3

)
= 1.

Now we proceed similarly as in Lemma 3. Denote:

p̂6(s) := 2r21 (s) · s

(
s − 1

a1

)(
s − 1

a2

) (
s − 1

a3

)
+ 1 = 2r21 (s) · ρ4(s) + 1,

and we get:

p̂26(s) := 4r21ρ4(r
2
1ρ4 + 1) + 1 = 4r21r22P̂6 + 1 = q̂2

3P̂6 + 1.

Finally, we get Pell’s equation:

p̂26(s) − q̂2
3 (s)P̂6(s) = 1.

Example 5. (6-periodic trajectories with winding numbers (6, 5, 4).) The graph of the
corresponding polynomial p̂6(s) is shown in Fig. 8. Several such trajectories, for α1 =
α2, are shown in Fig. 9.

Example 6. (6-periodic trajectories with winding numbers (6, 5, 2).)
The graph of the corresponding polynomial p̂6(s) is shown in Fig. 10.

Example 7. (6-periodic trajectories with winding numbers (6, 3, 2).) The graph of the
corresponding polynomial p̂6(s) is shown in Fig. 11.
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17. Dragović, V., Radnovic, M.: Conditions of Cayley’s type for ellipsoidal billiard. J. Math. Phys. 39(11),
5866–5869 (1998)
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39. Radnović, M.: Topology of the elliptical billiard with the Hooke’s potential. Theor. Appl. Mech. 42(1),

1–9 (2015)
40. Ramírez-Ros, R.: On Cayley conditions for billiards inside ellipsoids. Nonlinearity 27(5), 1003–1028

(2014)
41. Simon, B.: Szegö’s Theorem and Its Descendants. Princeton University Press, Princeton (2011)
42. Sodin, M.L., Yuditskiı̆, P.M.: Functions that deviate least from zero on closed subsets of the real axis,

Algebra i Analiz 4(2), 1–61 (1992) (Russian, with Russian summary); English transl., St. Petersburg
Math. J. 4(2), 201–249 (1993)

43. Springer, G.: Introduction to Riemann Surfaces. AMS Chelsea Publishing, New York (1957)
44. Tchebycheff, P. L.: Report of the Extarordinary Professor of St Petersburg University Tchebycheff About

the Trip Abroad, Complete Collected Works, vol. 5. AN SSSR, Moscow-Leningrad, pp. 246–255 (1946,
1852)

45. Wiersig, J.: Ellipsoidal billiards with isotropic harmonic potentials, Internat. J. Bifur. Chaos Appl. Sci.
Eng. 10(9), 2075–2098 (2000)

46. Waalkens, H., Dullin, H.R.: Quantum monodromy in prolate ellipsoidal billiards. Ann. Phys. 295(1),
81–112 (2002)

Communicated by P. Deift


	Periodic Ellipsoidal Billiard Trajectories and Extremal Polynomials
	Abstract:
	1 Introduction
	1.1 Poncelet the engineer and Poncelet the geometer
	1.2 Cayley's condition for the Poncelet theorem
	1.3 Padé approximation
	1.4 The overview of the results of the paper

	2 Periodic Trajectories and Finite Order Divisors on Hyper-Elliptic Curves
	2.1 Billiards within ellipsoids, winding numbers, elliptic periods
	2.2 Hyperelliptic curves and periodic billiard trajectories

	3 Periodic Trajectories with Low Periods
	3.1 d-periodic trajectories
	3.2 (d+1)-periodic trajectories
	3.3 (d+k)-periodic trajectories

	4 Poncelet Polygons and Extremal Polynomials
	5 Properties of the Frequency Map
	6 Trajectories with Low Periods in Dimension Three
	6.1 4-periodic trajectories in dimension three
	6.2 5-periodic trajectories in dimension three
	6.3 6-periodic trajectories in dimension three

	Acknowledgments.
	References




