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Abstract: Westudy discrete symmetries ofDijkgraaf–Witten theories and their gauging
in the framework of (extended) functorial quantum field theory. Non-abelian group
cohomology is used to describe discrete symmetries and we derive concrete conditions
for such a symmetry to admit ’t Hooft anomalies in terms of the Lyndon–Hochschild–
Serre spectral sequence. We give an explicit realization of a discrete gauge theory with
’t Hooft anomaly as a state on the boundary of a higher-dimensional Dijkgraaf–Witten
theory. This allows us to calculate the 2-cocycle twisting the projective representation
of physical symmetries via transgression. We present a general discussion of the bulk-
boundary correspondence at the level of partition functions and state spaces, which we
make explicit for discrete gauge theories.
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1. Introduction and Overview

A Dijkgraaf–Witten theory [DW90] is a topological gauge theory with a finite gauge
group D. These theories are mathematically well-defined and hence provide an inter-
esting toy model for the mathematical study of quantum gauge theory. Recently they
have received a lot of attention in the physics literature due to their relevance to topo-
logical phases, see e.g. [WW15,WWH15,Yos17,HZvK17,CCW17a,CCW17b,Del17,
TCSR18,WHT+18]. In this context properties of topologically protected boundary states
can be described by quantum field theories with anomalies, which are compensated by
an anomaly inflow from the bulk. Anomalies in discrete gauge theories show interesting
new features that are absent in the continuous case [KT14,Tac17].

The purpose of the present paper is two-fold:

• We present a detailed study of ’t Hooft anomalies of Dijkgraaf–Witten theories in
the framework of functorial quantum field theory. This is based on the framework
originally discussed in [KT14]. Our formulation further enables the consideration of
non-abelian gauge groups in terms of non-abelian group cohomology.

• We explicitly describe discrete gauge theories with anomalies as boundary phases in
the language of extended functorial quantum field theory [Fre14a,Mon15]. This pro-
vides a mathematically rigorous toy model for this geometric approach to anomalies.
These boundary theories can be regarded as functorial reformulations and extensions
of the gapped boundary states originally proposed in [Wit16].

We begin with some physical background and motivation.

1.1. Anomalies and symmetry-protected topological phases. At the end of the last cen-
tury it was realized that quantum phases of matter exist which cannot be described by
Landau’s theory of symmetry breaking. Instead these phases can be distinguished by
‘topological order’ parameters which prevent them from being deformed to a trivial
system whose ground state is a factorized state. Since their discovery over 30years ago,
immense progress in understanding and classifying these topological phases has been
made. For instance, there exists a classification for non-interacting gapped systems in
terms of twisted equivariant K-theory [FM13] (see also [BS17]).

A fruitful approach to the study of gapped interacting systems is to consider the
effective low-energy (long-range) continuum theory of a lattice Hamiltonian model.
Usually these field theories are topological.A famous example is the effective description
of the integer quantumHall effect in terms of Chern–Simons gauge theory. In this sense a
gapped quantum phase may be thought of as a path-connected component of the moduli
stack of topological quantum field theories. However, in the interacting case no complete
classification exists. For this reason one usually restricts to tractable subclasses. In this
paper we focus on ‘short-range entangled’ phases [CGW10]. A gapped phaseΨ is short-
range entangled if there exists a phase Ψ−1 such that the ‘stacked’ phase Ψ ⊗Ψ−1 can
be deformed by an adiabatic transformation of the Hamiltonian to a trivial product state
without closing the energy gap between the ground state and the first excited state. The
stacking operation of topological phases corresponds to the tensor product of their low-
energy effective topological field theories. A topological field theory is called invertible
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if it admits an inverse with respect to the tensor product. This observation motivates
a classification of short-range entangled phases in terms of invertible topological field
theories [FH16].

Let G be a group. In the case of an additional global G-symmetry, a non-trivial short-
range entangled phase may be trivial when the symmetry is ignored. Such a phase is
called ‘G-symmetry-protected’ [CGW10,CGLW13]. A G-symmetry-protected phase
can be understood by studying its topological response to non-trivial background G-
gauge fields, which is called ‘gauging’ the G-symmetry. For a finite symmetry group
G, the low-energy effective field theories are G-equivariant topological field theories
[KT17b]. Classical Dijkgraaf–Witten theories provide a particularly tractable class of
invertible G-equivariant topological field theories. The corresponding lattice Hamilto-
nian models have been constructed in e.g. [WWH15,CCW17a,CCW17b,WLHW18].
They are classified by group cohomology. The corresponding classification of topolog-
ical phases is called group cohomological classification [LG12]. However, this is not a
complete classification of symmetry-protected phases and more refined classifications
have been proposed, see e.g. [KTTW15,FH16,GJF19,WG18].

An essential feature of symmetry-protected topological phases is that they exhibit
‘topologically protected’ boundary states. These boundary states can be effectively de-
scribed by anomalous quantum field theories. Under the bulk-boundary correspondence
the anomaly is cancelled by an anomaly inflow from the bulk theory. The presence of
non-trivial global anomalies forces the boundary theory to be non-trivial and topologi-
cally protected. The modern geometric point of view on field theories with anomaly is
that they should be considered as a theory ‘relative to’ a higher-dimensional invertible
field theory, as is naturally suggested by their appearance in condensed matter physics
and quantum information theory. Reversing this logic, it follows that n+1-dimensional
invertible field theories should classify the possible anomalies in n dimensions [Wen13].
A class of gapped boundary states for the topological phases described by group coho-
mology are quantumDijkgraaf–Witten theories based on a different gauge group D with
an anomalous G-symmetry [Kap14]. Anomaly in this context means ’t Hooft anomaly,
i.e. an obstruction to gauging the G-symmetry [tH80], and the bulk-boundary corre-
spondence implements the ’t Hooft anomaly matching conditions.

The purpose of this paper is to study the appearance of ’t Hooft anomalies in the
mathematically rigorous framework of functorial field theories and to realize anoma-
lous field theories as gauge theories relative to higher-dimensional topological phases.
Before outlining precisely what we do, let us first informally review some of the main
mathematical background.

1.2. Anomalies in functorial quantumfield theory. Weformulate our results in the frame-
work of functorial field theories. The idea is to give an axiomatic framework for the
partition function of a quantum field theory. In physics, the partition function Z(M) on
an n-dimensional manifold M is calculated by the Feynman path integral of an expo-
nentiated action functional over the space of dynamical field configurations on M ; so far
there is no mathematically well-defined theory of such path integration in general. The
axioms of functorial field theories are derived from the properties that such an integration
would satisfy in the case that the action functional is an integral of a local Lagrangian
density on M .1 A quantum field theory should also assign a Hilbert space of states Z(Σ)

1 In the case of discrete gauge theory there exists a well-defined integration theory (see for example [SW19,
Appendix A]) which satisfies the axioms of a functorial field theory.
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to every n−1-dimensional manifold Σ . They satisfy Z(Σ � Σ ′) ∼= Z(Σ) ⊗C Z(Σ ′),
i.e. the state space of non-interacting systems is given by the tensor product of the cor-
responding Hilbert spaces. In any quantum field theory there exists a time evolution
operator (propagator)

Z([t0, t1] ×Σ) : Z(Σ) −→ Z(Σ)

from time t0 to t1.We think of this operator as associated to the cylinder [t0, t1]×Σ . They
satisfy Z([t1, t2]×Σ)◦ Z([t0, t1]×Σ) = Z([t0, t2]×Σ). The path integral should also
allow for the construction of a more general operator Z(M) : Z(Σ−) −→ Z(Σ+) for
everymanifoldM with boundaryΣ−�Σ+, such that the gluing ofmanifolds corresponds
to the composition of linear maps. Such a manifold is called a cobordism from Σ− to
Σ+.

These considerations motivate the definition of a functorial field theory, generalis-
ing Atiyah’s definition of topological field theories [Ati88] and Segal’s definition of
conformal field theories [Seg88], as a symmetric monoidal functor

Z : CobFn −→ Hilb ,

where CobFn is a category modelling physical spacetimes with non-dynamical back-
ground fieldsF and Hilb is the category of complex Hilbert spaces. Roughly speaking,
CobFn contains closed n−1-dimensional manifolds with background fields as objects,
and as morphisms the n-dimensional cobordisms as well as additional limit morphisms
corresponding to diffeomorphisms which are compatible with the background fields.
The additional morphisms encode symmetries. Evaluating Z on a closed n-dimensional
manifold M gives rise to a linear map C ∼= Z(∅) −→ Z(∅) ∼= C which can be iden-
tified with a complex number Z(M), the partition function of Z on M . This definition
can be thought of as a prescription for computing a manifold invariant Z(M) by cutting
manifolds into simpler pieces and studying the quantum field theory on these pieces.

We now turn our attention to the description of anomalies. The partition function of
an n−1-dimensional quantum field theory Z with anomaly described by an invertible
field theory L : CobFn −→ Hilb on an n−1-dimensional manifoldΣ takes values in the
one-dimensional vector space L(Σ), instead of C. It is possible to pick a non-canonical
isomorphism L(Σ) ∼= C to identify the partition function with a complex number. The
group of symmetries acts non-trivially on L(Σ) encoding the breaking of the symmetry
in the quantum field theory Z .

To also incorporate the description of the state space of Z on an n−2-dimensional
manifold S we need to promote L to an extended field theory E which assigns C-linear
categories to n−2-dimensional manifolds such that Z(S) can be considered as an object
of E(S). In other words, E should be an extended functorial field theory, i.e. a symmetric
monoidal 2-functor

E : CobFn,n−1,n−2 −→ 2Vect ,

where CobFn,n−1,n−2 is a suitable extension of CobFn ; see Sect. 2 for details. There are
different possible choices for the target bicategory. For simplicity we restrict ourselves
to Kapranov–Voevodsky 2-vector spaces [KV94].

Requiring that E is an invertible field theory implies that there is a non-canonical
equivalence of categories E(S) ∼= Vect which allows one to identify the state space of
the anomalous theory with a vector space. We can subsume the ideas sketched above
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in the following concise definition: A quantum field theory with anomaly is a natural
symmetric monoidal 2-transformation

Z : 1 �⇒ tr E

between a trivial field theory and a certain truncation of E ; see Sect. 4.1 for details. This
formalism allows one to compute the 2-cocycle twisting the projective representation of
the symmetry group on the state space completely in terms of the extended field theory E
[Mon15]. Anomalous theories formulated in this way are a special case of relative field
theories [FT14] and are closely related to twisted quantum field theories [ST11,JFS17].
The present paper describes ’t Hooft anomalies of discrete gauge theories as relative
field theories. We shall now give an overview of our constructions and findings.

1.3. Summary of results and outline. One of the main achievements of this paper is to
give a mathematical description of symmetries of Dijkgraaf–Witten theories and their
gauging in the framework of functorial field theory which is motivated by physical
considerations. Let D be a finite group and n a natural number. The possible topological
actions for n-dimensional Dijkgraaf–Witten theories with gauge group D are classified
by the group cohomology of D or equivalently by the singular cohomology of the
classifying space BD with coefficients inU (1) [DW90,FQ93]. Let ω ∈ Zn(BD;U (1))
be an n-cocycle and M an n-dimensional manifold. Let P be a D-gauge field on M
with classifying map ψP : M −→ BD. The action of the Dijkgraaf–Witten theory Lω
evaluated at P is given by

exp(2π i SDW) :=
∫
M
ψ∗

P ω .

The quantum theory can be defined by appropriately summing over isomorphism classes
of D-bundles. We review Dijkgraaf–Witten theories in detail in Sect. 2.

In general, a physical symmetry group G acts on gauge fields only up to gauge
transformations. Since for finite gauge groups, gauge transformations can be naturally
identified with homotopies of classifying maps, we define such an action as a homotopy
coherent action ofG on BD (Definition 3.2).We show that, up to equivalence, homotopy
coherent actions on BD are described by non-abelian group 2-cocycles. If D is abelian,
this description agrees with the description in [KT14]. Non-abelian 2-cocycles classify
extensions of G by D:

1 −→ D
ι−→ Ĝ

λ−→ G −→ 1 ,

aswe review in Sect. 3.2. This extension has a natural physical interpretation: It describes
how to combine D- and G-gauge fields into a single Ĝ-gauge field. When the extension
is non-trivial, i.e. Ĝ is not a product group D × G, one says that the G-symmetry is
‘fractionalized’ [WWW18].

A homotopy coherent action on BD induces a homotopy coherent action on the
collection of classical D-gauge theories. Homotopy fixed points of this action are defined
to be classical field theories with G-symmetry (Definition 3.5). An essential feature of
homotopy fixed points is that they are a structure, not a property. In Proposition 3.9
we show that if the topological action is preserved by the action of G (Definition 3.7),
then the corresponding Dijkgraaf–Witten theory can be equipped with a homotopy fixed
point structure.
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An internal symmetry of a quantumfield theory acts on itsHilbert space of states. This
motivates the definition of a functorial quantum field theory with internal G-symmetry
as a functor

CobFn −→ G-Rep

to the categoryG-Rep of representations ofG.We show inProposition 3.13 that classical
symmetries of Dijkgraaf–Witten theories induce internal symmetries of the quantized
theory. This shows that discrete gauge theories are anomaly-free in the sense that all
symmetries extend to the quantum level. A discussion of symmetries of discrete classical
and quantum gauge theories is the content of Sect. 3.1.

Anomalies appear as an obstruction to gauging the G-symmetry, i.e. to coupling it to
non-trivial background gauge fields (Definition 3.19). Anomalies of this type are called
’t Hooft anomalies. Gauging the G-symmetry can be achieved by finding a topological
action ω̂ for a Ĝ-gauge theorywhich restricts toω and performing a path integral over D-
gauge fields. Mathematically, this can be described by the partial orbifold (pushforward)
construction of [SW19]. In Theorem 3.24 we prove that the partial orbifold construction
of the classical gauge theory corresponding to ω̂ gauges the G-symmetry. We discuss
the gauging of discrete symmetries in Sect. 3.3.

However, in general it might be impossible to find a topological action which restricts
correctly. In this case we say that the corresponding symmetry has a ’t Hooft anomaly.
The obstructions for ω̂ to exist are encoded in the Lyndon–Hochschild–Serre spectral se-
quence. For an n-dimensional field theory there are n obstructions which need to vanish.
In Proposition 3.31 we show that if all obstructions except the last one vanish then there
exists an n+1-dimensional topological action θ for a discrete G-gauge theory, together
with an n-cochain ω′ in Cn(BĜ;U (1)) satisfying ι∗ω′ = ω and δω′ = λ∗θ ; physically,
this is interpreted as saying that the corresponding symmetry-protected topological state
becomes trivial when its fields are regarded as n-dimensional Ĝ-gauge fields rather than
as n+1-dimensional G-gauge fields. These obstructions are studied in Sect. 3.4.

Based on this result we construct a boundary quantum field theory Zω′ encoding the
anomaly in Sect. 4. Let us give an informal description of Zω′ here. The fact that ω′
is not closed implies that

∫
M ψ ∗̂

P
ω′ is not gauge-invariant for a general Ĝ-bundle P̂

on M . Under a gauge transformation ĥ : P̂ −→ P̂ ′ the value of
∫
M ψ ∗̂

P
ω′ changes by

multiplicationwith2
∫
[0,1]×M ĥ∗δω′, wherewe consider ĥ as a homotopy [0, 1]×M −→

BĜ. We can rewrite this integral as
∫
[0,1]×M (λ∗ĥ )∗θ . This is exactly the value of Lθ

evaluated on λ∗ĥ, which shows that the anomaly is controlled by the bulk classical gauge
theory Lθ . The rough idea for the construction of Zω′ is to modify the partial orbifold
construction used in Sect. 3.3 in a way suited to the construction of boundary states.
Let us fix a G-bundle P on M . To define the partition function we want to perform
an integration over the preimage of P under λ∗. However, in the presence of gauge
transformations, requiring two bundles to be the same is not natural. Hence we use
the homotopy fibre λ−1∗ [P] as a groupoid with objects the pairs (P̂, h) of a Ĝ-bundle
P̂ and a gauge transformation h : λ∗ P̂ −→ P . Morphisms are gauge transformations
ĥ : P̂ −→ P̂ ′ which are compatible with h and h′. We show that

Lω′(M) :=
∫
M
ψ ∗̂

P
ω′

∫
[0,1]×M

h∗θ

2 This integral is not actually well-defined as a complex number, see Sect. 2 for details. We ignore this
subtlety in the present section.
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is gauge-invariant with respect to morphisms in λ−1∗ [P]. Hence we define the partition
function of Zω′ on M as3

Zω′(M) :=
∫
λ−1∗ [P]

Lω′(M) .

Similar adaptations of the partial orbifold construction lead to the definition of state space
in Sect. 4.2. The groupoid of symmetries acts only projectively on this state space. Using
a result of [MW18] we show that the 2-cocycle twisting this projective representation is
the transgression of θ to the groupoid of G-bundles. With this construction we provide
an explicit demonstration of the anomaly inflowmechanism at the level of both partition
functions and state spaces, which renders the composite bulk-boundary field theory free
from anomalies.

Related work. Section 3 can be regarded as a formulation of the main ideas of [KT14] in
the framework of functorial field theories and homotopy theory. The abstract formulation
allows us to also treat non-abelian gauge groups D, which are not considered in [KT14].
A large part of our discussion should generalise and provide functorial descriptions
of higher-form symmetries, as in e.g. [KT17a,KS14,GKSW15,TvK15,Tac17,DT18,
BCH19], and of invertible topological sigma-models, as in [TE18,Tho17]. It should
also be straightforward to include time-reversal symmetries using the techniques of
[You18].

The relative field theory constructed in Sect. 4 can be regarded as a formulation of the
gapped boundary states constructed in [Wit16], together with the explicit lattice gauge
theory and Hamiltonian constructions of [WWW18], in the framework of relative field
theories. We extend this construction to give the state space of the quantum field theory
explicitly; our boundary field theory Zω′ formally realises the new boundary degrees of
freedom of the Ĝ-symmetry extended boundary states from [WWW18] in this language.
Proposition 3.31 provides a clear relation between the works [KT14] and [Wit16]: We
explicitly show that if all obstructions except the last one vanish in the spectral sequence,
then one is in the set-up of [Wit16]. Similar considerations appear in [TvK15], see also
[WWW18,Tac17] for different perspectives.

Recently the two-dimensional Ising model has been formulated as a field theory rela-
tive to a three-dimensional discrete gauge theorywith trivial topological action [FT18]. It
is conjectured that the low-energy effective field theory of the Isingmodel is topological,
and topological boundary field theories are constructed using theCobordismHypothesis.
Our formalism should provide an explicit construction of these field theories.

Conventions and notation. For the convenience of the reader, we summarise here our
notation and conventions which are used throughout this paper. For 2-categories we use
the definitions outlined in [MS18, Appendix B]. For integration over groupoids we use
[SW19, Appendix A].

• Let G be a group. We denote by BG the classifying space of G, which for G finite
is an Eilenberg-MacLane space K (G, 1), i.e. its only non-trivial homotopy group
is π1(BG) = G. Let P be a principal G-bundle on a manifold M . We denote by
ψP : M −→ BG the corresponding classifying map.

• Let T be a topological space, n a positive integer and A an abelian group.We denote
the pairing of chains and cochains on T by 〈 · , · 〉 : Cn(T ; A)× Cn(T ) −→ A.

3 We recall integration over essentially finite groupoids in Sect. 2.
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• Let G be a group. The groupoid of G-bundles on a manifold M is denoted by
BunG(M).

• For most constructions in this paper we fix a positive integer n. After fixing such an
integer, we use M , Σ and S to denote manifolds of dimensions n, n − 1 and n − 2,
respectively.

• Let M be an oriented manifold. We denote by −M the same manifold equipped
with the opposite orientation.

• If C is a category we define C to be the (strict) 2-category obtained by adding identity
2-morphisms to C.

• Let C be a monoidal category. We denote by ∗//Cthe bicategory with one object and
C as endomorphisms.

• Let F : G −→ G′ be a functor between groupoids and g′ ∈ G′. We denote by
F−1[g′ ] the homotopy fibre of g′. Explicitly, the groupoid F−1[g′ ] has as objects
the pairs (g, h′), with g ∈ G and h′ : F(g) −→ g′ an isomorphism, and morphisms
m : (g1, h′

1) −→ (g2, h′
2) comprising of a morphism m : g1 −→ g2 such that the

diagram

F(g1) F(g2)

g′

F(m)

h′
1 h′

2

commutes.
• Let λ : G −→ G ′ be a homomorphism of groups. We denote the induced maps
BG −→ BG ′ and ∗//G −→ ∗//G ′ again by λ.

• Let F : C −→ C′ be a functor. We write the limit of F as an end
∫
C F .

• LetG be a finite group.We denote byG-Cobn the category and byG-Cobn,n−1,n−2
the bicategory of cobordisms equipped with maps into BG.

• We denote by Grp the category of groups.
• We denote by Vect the category of finite-dimensional C-vector spaces.
• We denote by 2Vect the bicategory of Kapranov–Voevodsky 2-vector spaces.
• We denote by Cat the bicategory of (small) categories.

2. Dijkgraaf–Witten Theory

Dijkgraaf–Witten theories are topological gauge theories with finite gauge group D. In
this section we introduce the framework of (extended) functorial quantum field theory,
and subsequently construct classical and quantum Dijkgraaf–Witten theories.

2.1. Equivariant functorial field theories. The idea of describing field theories as func-
tors fromageometric category to a category of vector spaces goes back at least toAtiyah’s
definition of topological quantum field theories [Ati88] and Segal’s definition of con-
formal field theories [Seg88]. The general framework allows for arbitrary background
fields. We denote the collection of all background fields by4 F . Typical examples of
background fields in physics are metrics, spin or spinc structures, framings and principal
bundles with connection. If the collection of background fields does not contain ametric,

4 For concreteness one can model background fields as a (∞-)stack F on the category of smooth n-
dimensional manifolds (with corners). The language of stacks is not used in this paper.
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f2 f1◦ =
f2 ∪ f1

Fig. 1. Composition of two cobordisms equipped with background fields f1 and f2

the corresponding field theory is called topological. We only consider theories involving
principal bundles with finite gauge group D as background fields in this paper.

An n-dimensional functorial field theory is a symmetric monoidal functor from the
geometric categoryCobFn ,modelling spacetimeswith backgroundfields, to the category
of vector spaces. The category CobFn is roughly defined as follows: Objects are n−1-
dimensionalmanifoldsΣ equippedwithF -background fields. AmorphismΣ1 −→ Σ2
is an n-dimensional cobordism, i.e. a manifold M with boundary Σ1 � Σ2 equipped
with compatibleF -background fields. Composition is defined by gluing along common
boundaries (Fig. 1). The disjoint union of manifolds makes CobFn into a symmetric
monoidal category.

An n-dimensional functorial field theory with F -background fields is a symmetric
monoidal functor

Z : CobFn −→ Vecttop

with target the category of topological vector spaces. All vector spaces appearing in this
paper will be finite-dimensional and hence have a unique topology. We denote by Vect
the category of finite-dimensional C-vector spaces.

This definition ensures that Z(∅) ∼= C for every functorial field theory Z . For this
reason, Z assigns to a closed n-dimensional manifold M with background fields f a
linear map Z(M, f ) : Z(∅) ∼= C −→ C ∼= Z(∅), which can be identified with a
complex number, the partition function of Z on M . The vector space associated to an
n−1-dimensional manifoldΣ can be interpreted as the state space of the quantum field
theory Z on Σ . Making the definition precise is quite involved, see e.g. [ST11]. A
detailed discussion of this approach to quantum field theory can be found in [Seg11].

Remark 2.1. The functorial framework does not only describe quantumfield theories, but
also classical field theories. The invariant assigned to a closedmanifold with background
fields by a classical field theory is the exponentiated action. A classical field theory has
noHilbert space of states, however the exponentiated action on amanifoldwith boundary
might not be well-defined without making additional choices on the boundary. In this
case it is more natural to consider the exponentiated action not as a complex number,
but as an element in a complex line associated to the additional choices. A famous
example is Chern-Simons theory [Fre95], where the action functional on a manifold
with boundary is not gauge-invariant and the gauge variation is controlled by the Wess-
Zumino term. The n-dimensional functorial field theory corresponding to a classical
field theory assigns these complex lines to n−1-dimensional manifolds.

All theories appearing in this paper are homotopy quantum field theories [Tur10]
with aspherical target. For these the background fields consist of principal bundles with
finite gauge group D and an orientation. We describe principal D-bundles on a manifold
M by their classifying map M −→ BD. However, by a slight abuse of notation we
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will freely switch between classifying maps and principal bundles without explicitly
mentioning so. In particular, we will pull back cochains on BD along bundles, which
should always be understood as a pullback along the classifying map. We denote the
corresponding cobordism category by D-Cobn , for which we canmake the sketch above
precise [Tur10].

Definition 2.2. For an oriented manifold M , we denote by −M the same manifold
equipped with the opposite orientation. Let D be a finite group. We denote by D-Cobn
the symmetric monoidal category defined by:

(a) An object is a closed oriented n−1-dimensional manifold Σ equipped with a con-
tinuous map ϕ : Σ −→ BD.

(b) A morphism (Σ1, ϕ1) −→ (Σ2, ϕ2) is an equivalence class of triples (M, ψ, φ),
where M is a compact oriented manifold with boundary, φ : −Σ1 �Σ2 −→ ∂M is
an orientation-preserving diffeomorphism, andψ : M −→ BD is a continuous map
such that ϕi = ψ ◦ φ|Σi for i = 1, 2.

Two such triples are equivalent if the underlying manifolds differ by a diffeomorphism

M −→ M ′ relative to the boundary such that M ψ−→ BG and M−→M ′ ψ ′
−→ BD differ

by a homotopy relative to the boundary.
The composition is defined by gluing manifolds and continuous maps along bound-

aries. The monoidal structure is given by the disjoint union of manifolds.

Definition 2.3. An n-dimensional D-equivariant field theory is a symmetric monoidal
functor

D-Cobn −→ Vect .

We denote by D-TFTn the category of n-dimensional D-equivariant field theories
and natural symmetric monoidal transformations. Let Cobn be the category e-Cobn ,
where e is the unique group with one element. Objects of this category are oriented
spacetimes without background gauge fields.

Later onwewill also need extended field theorieswhich assignKapranov–Voevodsky
2-vector spaces, i.e. semi-simple C-linear categories with finitely-many simple objects
[KV94], to closed n−2-dimensional manifolds S equipped with maps ξ : S −→ BD,
functors to n−1-dimensional cobordisms equipped with compatible maps into BD, and
natural transformations to n-dimensional cobordisms between cobordisms (manifolds
with corners) equipped with compatible maps into BD. To define extended field theories
properly one has to introduce a symmetric monoidal bicategory D-Cobn,n−1,n−2 similar
to the category of Definition 2.2. For a concrete definition we refer to [SW18a]. An n-
dimensional extended D-equivariant field theory is a symmetric monoidal 2-functor

D-Cobn,n−1,n−2 −→ 2Vect

where 2Vect is the symmetric monoidal 2-category of Kapranov–Voevodsky 2-vector
spaces. The only extended field theory we need in this paper is the classical Dijkgraaf–
Witten theory explicitly described in Sect. 2.2.

The symmetricmonoidal structure of2Vect, i.e. theDeligne tensor product�, defines
a tensor product of field theories. A field theory which has an inverse with respect to this
tensor product is called invertible. Classical field theories regarded as functorial field
theories are always invertible. Invertible field theories are physically interesting, since
they describe the low-energy effective field theories of short-range entangled topological
phases and field theories with anomalies can be described as boundary states of invertible
field theories (see Sect. 4).
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2.2. Classical Dijkgraaf–Witten theories. We provide a brief summary of the con-
struction of an invertible extended field theory Eω depending on an n-cocycle ω ∈
Zn(BD;U (1)) which is given in [MW18], to which we refer for more details and all
proofs. We denote the corresponding unextended field theory by Lω.

The possible actions of n-dimensional topological gauge theories with finite gauge
group D are classified by the n-th cohomology group of the classifying space BD
with coefficients in R/Z [DW90]. For a fixed representative ω′ ∈ Zn(BD; R/Z) of a
cohomology class, the action for a D-bundle ψ : M −→ BD on an oriented closed
n-dimensional manifold M is given by

Sω′(M, ψ) =
∫
M
ψ∗ω′ .

As a real number, this action is only well-defined modulo Z by definition. The quantity
with physical relevance is the exponentiated action exp(2π i Sω′(M, ψ)) which takes
values inU (1). For simplicity we work from now on with a cocycle ω ∈ Zn(BD;U (1))
and interpret its integration over the manifold as the exponentiated action. Formally, we
can define integration as the evaluation ofψ∗ω on a representativeσM of the fundamental
class [σM ] ∈ Hn(M) of M . This defines the partition function

Lω(M, ψ) := 〈ψ∗ω, σM 〉 .
Here the brackets denote the evaluation of cochains on chains.

Onmanifoldswith boundary the exponentiated action is notwell-defined as a complex
number: To naively extend the exponentiated action to an n-dimensional manifold M
with boundary ∂M = Σ and D-bundle ψ : M −→ BD we would pick a representative
σM ∈ Cn(M) of the fundamental class [σM ] ∈ Hn(M,Σ) and evaluate ψ∗ω on this
representative. The problem is that [σM ] is an element in relative homology, but ψ∗ω is
an element of ordinary cohomology. As a representative of a relative homology class,
σM has a boundary ∂σM ∈ Cn−1(Σ) and 〈ψ∗ω, σM 〉 depends on ∂σM in general. Hence
the exponentiated action is not well-defined as a complex number, but rather it is an
element of a complex line Lω(Σ,ψ |Σ). In [FQ93] it is shown that the vector spaces
Lω( · , · ) are part of a functorial field theory Lω : D-Cobn −→ Vect. This field theory
is the classical Dijkgraaf–Witten theory corresponding to the topological action ω.

Nowwe sketch how to promote Lω to an extended field theory Eω : D-Cobn,n−1,n−2
−→ 2Vect. It is convenient to introduce, for an arbitrary oriented manifold S of dimen-
sion k, the groupoid Fund(S)whose objects are cycles σS ∈ Zk(S) representing the fun-
damental class of S andmorphisms τ : σS −→ σ ′

S are given by chains τ ∈ Ck+1(S) satis-
fying ∂τ = σ ′

S −σS . To an object of D-Cobn,n−1,n−2, i.e. an oriented n−2-dimensional
manifold S equippedwith a continuousmap ξ : S −→ BD, we assign the 2-vector space
Eω(S, ξ) whose objects are finite formal sums

∑p
i=1 Vi ∗ σi of representatives σi of

the fundamental class of S and finite-dimensional vector spaces Vi . We will abbreviate
C ∗ σ with σ . The space of morphisms between σ, σ ′ ∈ Eω(S, ξ) is given by

HomEω(S,ξ)(σ, σ
′) := C[HomFund(S)(σ, σ

′)]
∼ω , (2.4)

where C[HomFund(S)(σ, σ
′)] is the complex vector space generated by the set

HomFund(S)(σ, σ
′), and for two morphisms τ, τ̃ : σ −→ σ ′ we make the identification

τ̃ ∼ω 〈ξ∗ω,�〉 τ , (2.5)
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whenever there exists � ∈ Cn(S) such that τ̃ − τ = ∂�. In (2.5) the particular choice
of� is immaterial. In order to obtain the morphism spaces between arbitrary objects in
Eω(S, ξ), we extend (2.4) bilinearly:

HomEω(S,ξ)

( p∑
i=1

Vi ∗ σi ,
m∑
j=1

Vj ∗ σ j
)

=
p⊕

i=1

m⊕
j=1

HomVect(Vi , Vj )⊗C HomEω(S,ξ)(σi , σ j ) .

Composition is defined by matrix multiplication together with composition in Vect and
Fund(S). The category Eω(S, ξ) carries a natural Vect-module structure given by

Vect × Eω(S, ξ) −→ Eω(S, ξ)

V × (W ∗ σ) �−→ (V ⊗C W ) ∗ σ .
Given a 1-morphism (Σ, ϕ) : (S1, ξ1) −→ (S2, ξ2) in D-Cobn,n−1,n−2, together

with representatives σ1 and σ2 for the fundamental classes of S1 and S2, respectively,
we define the vector space

Σϕ(σ2, σ1) = C[Fundσ2σ1(Σ)]
∼ϕ ,

where Fundσ2σ1(Σ) is the set of cycles relative to ∂Σ representing the fundamental class
of Σ with boundary σ2 − σ1. The equivalence relation is defined by ζ ′ ∼ϕ 〈ϕ∗ω,�〉 ζ
for arbitrary � ∈ Cn(Σ) with boundary ζ − ζ ′. This equivalence relation is different
from (2.5). With this notation we define Eω(Σ, ϕ) via the coend

Eω(Σ, ϕ)(σ1) =
∫ σ2∈Fund(S2)

Σϕ(σ2, σ1) ∗ σ2

and linear extensions. These functors are compatiblewith the composition of cobordisms
only up to natural isomorphisms. For 1-morphisms (Σa, ϕa) : (S1, ξ1) −→ (S2, ξ2) and
(Σb, ϕb) : (S2, ξ2) −→ (S3, ξ3) the natural isomorphism is induced by the linear map

Σ
ϕb
b (σ3, σ2)⊗C Σ

ϕa
a (σ2, σ1) −→ (Σb ◦Σa)

ϕb∪ϕa (σ3, σ1)
σΣb ⊗C σΣa �−→ σΣb + σΣa .

In [MW18] it is shown that these coherence morphisms are closely related to the trans-
gression of ω. They encode interesting physical properties as we will see in Sect. 4.1.

There are further coherence isomorphisms

Φ(S,ξ) : idEω(S,ξ) �⇒ Eω(id(S,ξ)) (2.6)

encoding the compatibilitywith identities for all objects (S, ξ) of D-Cobn,n−1,n−2. They
are defined as follows. Using the enriched co-Yoneda Lemma we can write the identity
as the coend

idEω(S,ξ)( · ) ∼=
∫ σ∈Eω(S,ξ)

HomEω(S,ξ)(σ, · ) ∗ σ .
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Without loss of generality we can evaluate this at a representative σ0 of the fundamental
class of S:

σ0 ∼=
∫ σ∈Eω(S,ξ)

HomEω(S,ξ)(σ, σ0) ∗ σ ∼=
∫ σ∈Fund(S)

HomEω(S,ξ)(σ, σ0) ∗ σ .
On the other hand we have

Eω(id(S,ξ))(σ0) =
∫ σ∈Fund(S)

(S × [0, 1])ξ×id[0,1](σ, σ0) ∗ σ .
There is a natural isomorphism

(S × [0, 1])ξ×id[0,1](σ, σ0) −→ HomEω(S,ξ)(σ, σ0)

μ �−→ −pS∗μ
defined by the projection pS : S × [0, 1] −→ S, which induces the natural transforma-
tion (2.6).

To a 2-morphism (M, ψ) : (Σa, ϕa) �⇒ (Σb, ϕb) between 1-morphisms (Σa, ϕa)

and (Σb, ϕb) from (S1, ξ1) to (S2, ξ2) in D-Cobn,n−1,n−2, we assign the natural trans-
formation

Eω(M, ψ) : Eω(Σa, ϕa) �⇒ Eω(Σb, ϕb)

between the functors Eω(Σa, ϕa), Eω(Σb, ϕb) : Eω(S1, ξ1) −→ Eω(S2, ξ2) consisting
of the natural maps

Eω(Σa, ϕa)(σ1) −→ Eω(Σb, ϕb)(σ1)

for σ1 ∈ Fund(S1), which are the maps between the respective coends induced by the
linear maps

Eω(M, ψ)σ2,σ1 : Σϕaa (σ2, σ1) −→ Σ
ϕb
b (σ2, σ1) (2.7)

defined as follows: For [μa] ∈ Fundσ2σ1(Σa) and [μb] ∈ Fundσ2σ1(Σb) we can find a
fundamental cycle ν of M which is compatible with these fundamental cycles on the
boundary [MW18, eq. (3.11)]:

∂ν = μb − μa + (−1)n−2 (
σ1 × [0, 1] − σ2 × [0, 1]) .

Mapping [μa] to 〈ψ∗ω, ν〉 [μb] yields a well-defined linear map C[Fundσ2σ1(Σa)] −→
Σ
ϕb
b (σ2, σ1), which descends to Σϕaa (σ2, σ1) and induces the map (2.7).
The construction sketched above fits into an extended field theory [MW18, Theo-

rem 3.19], the classical Dijkgraaf–Witten theory with action ω. Restricting Eω to the
endomorphism category of the empty set reproduces the ordinary field theory

Lω : EndD-Cobn,n−1,n−2(∅) = D-Cobn −→ Vect = End2Vect(Vect)

mentioned above. The functor Lω admits the following concrete description:

• To a closed n−1-dimensional manifold Σ equipped with a map ϕ : Σ −→ BD it
assigns the vector space Lω(Σ, ϕ) = Σϕ(∅,∅) = C[Fund(Σ)]/∼ϕ .

• To a morphism (M, ψ) : (Σa, ϕa) −→ (Σb, ϕb) it assigns the linear map

Lω(M, ψ) : Lω(Σa, ϕa) −→ Lω(Σb, ϕb)

[σa] �−→ 〈ψ∗ω, σM 〉 [σb] ,
with σM ∈ Fundσbσa (M).
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2.3. Quantum Dijkgraaf–Witten theories. Let ω be an n-cochain on BD with values in
U (1). We define the quantum Dijkgraaf–Witten theory Zω with topological action ω by
performing a ‘path integral’ of the classical field theory Lω over the space of field con-
figurations BunD(M). One of the problems with finding a rigorous definition of general
quantum field theories is the lack of a measure on the space of field configurations. In the
case of Dijkgraaf–Witten theories the space of field configurations is the essentially finite
groupoid5 BunD(M) of D-bundles on M and a well-defined integration theory exists.
The groupoid cardinality [BHW10] induces a natural counting measure on BunD(M).
The integral of a gauge-invariant function f : Obj(BunD(M)) −→ C over BunD(M)
is ∫

BunD(M)
f :=

∑
ϕ∈π0(BunD(M))

f (ϕ)∣∣AutBunD(M)(ϕ)
∣∣ ,

where π0(BunD(M)) is the set of isomorphism classes of principal D-bundles on M ,
each of which is weighted by the inverse of the order of its automorphism group.

The existence of a well-defined path integral makes quantization in principal straight-
forward. A slight subtlety arises, since the action on a manifold with boundary is not a
complex number, but rather an element of a complex line as we have seen in Sect. 2.2.
For this reason, we have to assign to an n−1-dimensional manifold Σ the vector space
[FQ93]

Zω(Σ) = lim
BunD(Σ)

Lω =
∫
BunD(Σ)

Lω , (2.8)

writing the limit as an end in the second step. The functor Lω can be evaluated on the
groupoid BunD(Σ) by considering a gauge transformation h as a homotopy h : [0, 1]×
Σ −→ BD between classifying maps, i.e. as a morphism in D-Cobn . The correspon-
dence between homotopies of classifying maps and gauge transformations only holds
for discrete gauge groups. A useful realisation of the limit is given by the vector space of
parallel sections of Lω(Σ, · ). A parallel section f of Lω(Σ, · ) consists of an element
f (ϕ) ∈ Lω(Σ, ϕ) for all ϕ ∈ BunD(Σ) such that Lω([0, 1]×Σ, h)

(
f (ϕ)

) = f (ϕ′) for
all gauge transformations h : ϕ −→ ϕ′. The space of parallel sections can be regarded as
the space of gauge-invariant functions on the set of classical gauge field configurations.
For this reason the definition can be interpreted as an implementation of the Gauss Law
in quantum gauge theory, which requires that physical states must be gauge-invariant.

Now consider a cobordism M : Σ1 −→ Σ2. To define Zω(M) we introduce for
ϕ2 ∈ BunD(Σ2) the homotopy fibre BunD(M)|ϕ2 as the homotopy pullback

BunD(M)|ϕ2 BunD(M)

∗ BunD(Σ2)

prΣ2

ϕ2

where prΣ2
is the pullback functor induced by the inclusion Σ2 ↪→ M . The groupoid

BunD(M)|ϕ2 = pr−1
Σ2

[ϕ2] of gauge fields on M restricting, up to gauge transformations,
to ϕ2 on Σ2 can be concretely described as follows: Objects are pairs (ψ, h) where

5 A groupoid is essentially finite if all morphism sets are finite and there exists an equivalence to a groupoid
with a finite number of objects. The field configurations form a groupoid, since BunD is a stack.
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ψ is a bundle over M and h : ψ |Σ2 −→ ϕ2 is a gauge transformation. Morphisms
(ψ, h) −→ (ψ ′, h′) are gauge transformations ψ −→ ψ ′ such that the diagram

ψ |Σ2 ψ ′|Σ2

ϕ2
h h′

commutes. We fix representatives σ1 and σ2 of the fundamental classes of Σ1 and Σ2,
respectively. This allows us to express the value of a parallel section f ∈ Zω(Σ1) on a
principal D-bundle ϕ1 ∈ BunD(Σ1) as f (ϕ1) = f(ϕ1) [σ1] with f(ϕ1) ∈ C. Then we
can define

Zω(M)( f )(ϕ2) =
( ∫

(ψ,h)∈BunD(M)|ϕ2
〈h∗ω, [0, 1] × σ2〉 〈ψ∗ω, σM 〉 f(ψ |Σ1)

)
[σ2] ,
(2.9)

where σM is a representative for the fundamental class of M satisfying ∂σM = σ2 − σ1
and we consider the gauge transformation h as a homotopy h : [0, 1] × Σ2 −→ BD.
This definition is independent of all choices involved.

The assignments (2.8) and (2.9) define a functorial field theory [FQ93]

Zω : Cobn −→ Vect .

Remark 2.10. A more systematic way of constructing Zω is given by applying the orb-
ifold construction of [SW19] to the classical field theory Lω. In [MW18] the extended
orbifold construction of [SW18a] is used to construct Dijkgraaf–Witten theories as ex-
tended field theories. Three-dimensional extended Dijkgraaf–Witten theories are also
constructed in [Mor15].

We conclude this section with a few examples, which we will consider throughout
this paper.

Example 2.11. In two dimensions, for any finite group D and a 2-cocycle
ω ∈ Z2(BD;U (1)), the vector space Zω(S1) associated to the circle S

1 is the space
of ω-twisted characters on D, because the groupoid of principal D-bundles on S

1 is
equivalent to the action groupoid D//D for the adjoint action of D on itself, and hence
a parallel section is just a map f : D −→ C satisfying f (d d ′ d−1) = ω(d, d ′) f (d ′)
for all d, d ′ ∈ D. The invariant

Zω(T
2) = 1

|D|
∑

(d,d ′)∈D×D
d d ′=d ′ d

ω(d, d ′)
ω(d ′, d)

associated to the two-dimensional torus T
2 is the number of irreducible ω-twisted rep-

resentations of D. We give a few concrete examples of 2-cocycles:

(a) The group cohomology H2(ZN ×ZN ;U (1)) is ZN . If we write the cyclic group ZN
additively then the non-trivial 2-cocycle corresponding to k ∈ {0, 1, . . . , N − 1} is

ωk
(
(a1, b1) , (a2, b2)

) = exp
(2π i k

N
a1 b2

)
(2.12)

with (a1, b1), (a2, b2) ∈ ZN × ZN . For N = 2, the partition function Zω1(T
2) on

T
2 for the non-trivial Z2 ×Z2 cocycle is 1 corresponding to the fact that there exists

only one ω1-twisted irreducible representation of Z2 × Z2 [Wil08].
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(b) The degree 2 group cohomology of the dihedral group D8 = 〈a, b | a4 = b2 =
1 , b a b−1 = a−1〉 with values in U (1) is Z2. The non-trivial 2-cocycle is given by
[Kar85, Section 3.7]

ω
(
ai b j , ai

′
b j ′) =

{
1, j = 0 ,
exp

( 2π i
4 i ′

)
, j = 1 .

Example 2.13. In three dimensions, for any finite group D and a 3-cocycle
ω ∈ Z3(BD;U (1)), the invariant Zω(T3) associated to the three-dimensional torus
T
3 is the number of irreducible representations of the ω-twisted Drinfeld double of the

group algebraC[D]. The cohomology group H3(ZN ;U (1)) isZN . The 3-cocycles have
the concrete form [HLY14, Proposition 2.3]

ωk(a, b, c) = exp
(2π i k

N
a

⌊b + c

N

⌋)
(2.14)

for a, b, c, k ∈ ZN = {0, 1, . . . , N − 1}, where �r� denotes the integer part of the real
number r ∈ R, i.e. the largest integer less than or equal to r . These theories are studied
in [KS14]. They have been extended to a product of an arbitrary number of cyclic groups
ZNi (i.e. a generic finite abelian group) in [CGLW13,WSW15].

3. Discrete Symmetries and ’t Hooft Anomalies

In this section we study the action of a finite symmetry groupG on a classical Dijkgraaf–
Witten theory Lω : D-Cobn −→ Vect with gauge group D and topological action
ω ∈ Zn(BD;U (1)). General symmetries of abelian quantumDijkgraaf–Witten theories
are discussed in [FPSV15]. We only consider symmetries arising from an action of G on
D-gauge fields which preserve ω ∈ Zn(BD;U (1)). Following [FPSV15] we call these
kinematical symmetries. We show that they extend to the quantum theory and study
their gauging. Gauging these symmetries is not always possible and the obstructions are
encoded in a spectral sequence.

3.1. Discrete symmetries ofDijkgraaf–Witten theories. For a symmetry to be compatible
with cutting and gluing of manifolds, we describe it as an endofunctor of D-Cobn acting
by pullback along the inverse on a field theory. There is a natural way to construct
endofunctors of D-Cobn from homeomorphisms of BD which is described by a 2-
functor

R : ∗ //Π1[BD, BD] −→ ∗//End(D-Cobn) , (3.1)

whereΠ1[BD, BD] is the category with continuous maps BD −→ BD as objects and
equivalence classes of homotopies as morphisms. Concretely,R sends a continuousmap
χ : BD −→ BD to the endofunctor

R(χ) : D-Cobn −→ D-Cobn
(Σ, ϕ : Σ −→ BD) �−→ (Σ, χ ◦ ϕ : Σ −→ BD)(

(M, ψ) : (Σ1, ϕ1) −→ (Σ2, ϕ2)
) �−→ (

(M, χ ◦ ψ) : (Σ1, χ ◦ ϕ1) −→ (Σ2, χ ◦ ϕ2)
)
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and a homotopy h : χ1 −→ χ2 to the natural transformation R(h) : R(χ1) �⇒ R(χ2)
with components

R(h)(Σ,ϕ) = ([0, 1] ×Σ, h ◦ idϕ
)

where h ◦ idϕ denotes the horizontal composition of homotopies. The naturality ofR(h)
follows from the proof of [SW19, Proposition 2.9]. By the bicategorical Yoneda Lemma,
automorphisms of BD correspond to automorphisms of the stack of principal D-bundles
(which is represented by BD). Hence a symmetry corresponding to a homeomorphism
of BD acts on the space of field configurations.

To define a symmetry, the group G only has to act up to gauge transformations. For
finite groups, gauge transformations and homotopies between classifying maps are in
one-to-one correspondence. For this reason we expect a symmetry for every action of G
on BD up to a ‘homotopy’ which preserves ω. Since BD is a homotopy 1-type we can
work with the following concrete description.

Definition 3.2. An action of G on BD up to (coherent) homotopy is a 2-functor

α : ∗//G −→ ∗//Π1[BD, BD] ,
where ∗//G is the 2-category with one object, the group G as 1-morphisms and only
identity 2-morphisms.

Remark 3.3. To unpack this compact definition note that the category Π1[BD, BD] is
equivalent to the action groupoid

[π1(BD), π1(BD)]//D = EndGrp(D)//D ,

where the action of D on a group homomorphism is by conjugation. Every action of G
up to homotopy takes values in the full subgroupoid AutGrp(D)//D of automorphisms
of D. An arbitrary 2-functor ∗//G −→ ∗//(AutGrp(D)//D) is called a non-abelian group
cocycle [BS06,BBF05]. Hence homotopy coherent actions on BD are classified by
non-abelian group cocycles. Non-abelian cocycles also appear in the construction of
equivariant Dijkgraaf–Witten theories [MNS12] under the name weak 2-cocycles. We
discuss non-abelian group cohomology in more detail in Sect. 3.2.

If D is abelian there are no morphisms between different objects in AutGrp(D)//D.
This implies that an action up to homotopy of G on BD is given by a proper action of
G on D and a group 2-cocycle in H2(BG; D) describing the coherence isomorphisms
of the corresponding 2-functor. This agrees with the physical description in [KT14].

For every action α : ∗//G −→ ∗//Π1[BD, BD] up to homotopy the 2-functor (3.1)
induces via pullbacks a 2-functor

ρ : ∗//G −→ D-TFTn //EndCat(D-TFTn) ↪→ Cat

g �−→ R(
α(g−1)

)∗
, (3.4)

where we denote by Cat the 2-category of categories.
The (exponentiated) action of a gauge theory can be considered as a gauge-invariant

map from the space of field configurations on an n-dimensional manifold M , in our
case BunD(M), to U (1). An action of G on the space of field configurations induces
an action via pullbacks on the set of gauge-invariant functions from the space of field
configurations to U (1). A theory admits the symmetry G if its (exponentiated) action
is invariant under this action, i.e. it is a fixed point. By categorification we arrive at the
following description.
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Definition 3.5. A D-equivariant field theory with kinematical symmetry described by

ρ : ∗//G −→ D-TFTn //EndCat(D-TFTn) ,

as in (3.4), is a homotopy fixed point of ρ, i.e. a natural 2-transformation Z : 1 �⇒ ρ,
where 1 is the unique 2-functor sending ∗ to the category with one object and only
identity morphisms.

Remark 3.6. Unpacking the definition, a D-equivariant field theory with kinematical
symmetry consists of

(a) A functor Z : 1 −→ D-TFTn ; and
(b) Natural transformations ϒg : ρ(g)[Z ] �⇒ Z for all g ∈ G;

satisfying natural coherence conditions. Since 1 represents the identity 2-functor onCat
this is the same as a field theory Z ∈ D-TFTn , together with coherent natural symmetric
monoidal transformations ϒg : R(α(g−1))∗Z �⇒ Z for g ∈ G.

An arbitrary Dijkgraaf–Witten theory with topological action ω ∈ Zn(BD;U (1))
does not admit a kinematical symmetry in general. On the other hand, there may be
different ways to equip a given field theory with the structure of a homotopy fixed point.
We give a sufficient condition for a kinematical symmetry to exist. For this we need to
introduce the following notion.

Definition 3.7. A n-cocycle ω ∈ Zn(BD;U (1)) is preserved by the action α if it can
be equipped with the structure of a homotopy fixed point for the induced action of G
via the pullback along α(g−1) on the category Zn(BD;U (1)) whose morphisms are
n−1-cochains up to coboundaries.

In general there are non-isomorphic choices for the fixed point structure. A necessary
condition for such a fixed point to exist is α(g)∗[ω] = [ω] for all g ∈ G.

Remark 3.8. Concretely, the additional structure consists of an equivalence class of
cochains Φg ∈ Cn−1(BD;U (1)) up to coboundary satisfying6 δΦg = ω − α(g−1)∗ω.
These cochains have to satisfy the coherence relations

Φg1 + α(g
−1
1 )∗Φg2 = Φg1 g2 + σg1,g2 [ω] ,

whereσg1,g2 [ω] is then−1-cochain inducedby thehomotopyσg1,g2 : α(g−1
2 )◦α(g−1

1 ) −→
α(g−1

2 g−1
1 ). The difference between two homotopy fixed point structures can be de-

scribed by a group homomorphism G −→ Hn−1(BD;U (1)).
Proposition 3.9. Let ω ∈ Zn(BD;U (1)) be a topological action and α : ∗//G −→
∗//Π1[BD, BD] a homotopy coherent action of G on BD. If α preserves ω, then the
classical Dijkgraaf–Witten theory Lω : D-Cobn −→ Vect admits a kinematical sym-
metry described by α.

Proof. Weset Z = Lω anddefine a family of natural transformationsϒg : Lα(g−1)∗ω �⇒
Lω by

ϒg (Σ,ϕ) : Lα(g−1)∗ω(Σ, ϕ) −→ Lω(Σ, ϕ)

[σΣ ] �−→ 〈
ϕ∗Φg, σΣ

〉 [σΣ ] ,
6 Throughout we switch freely between the additive and multiplicative notation for U (1)-valued cocycles.
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where Φg is the n−1-cochain of Remark 3.8 satisfying δΦg = ω − α(g−1)∗ω. For a
morphism (M, ψ) : (Σ, ϕ) −→ (Σ ′, ϕ′) we have to show that the diagram

Lα(g−1)∗ω(Σ, ϕ) Lω(Σ, ϕ)

Lα(g−1)∗ω(Σ
′, ϕ′) Lω(Σ ′, ϕ′)

ϒg (Σ,ϕ)

L
α(g−1)∗ω(M,ψ) Lω(M,ψ)

ϒg (Σ ′,ϕ′)

commutes. We fix σM ∈ Fund(M)
σΣ ′
σΣ and compute〈

ψ∗(ω − α(g−1)∗ω
)
, σM

〉
= 〈
ψ∗(δΦg), σM

〉 = 〈
ψ∗Φg, ∂σM

〉
= 〈
ψ∗Φg, σΣ ′

〉 − 〈
ψ∗Φg, σΣ

〉
.

This shows that the diagram commutes. The coherence conditions follow from the fact
that the collection Φg corresponds to a homotopy fixed point structure. ��

We describe the symmetries of quantumDijkgraaf–Witten theory following [Fre14b,
Section 2.4] by the following notion.

Definition 3.10. Let G be a finite group and denote by G-Rep the category of finite-
dimensional G-representations. Let Z : Cobn −→ Vect be a topological field theory.
An internal G-symmetry of Z is a lift

G-Rep

Cobn Vect
Z

ZG

of Z , where G-Rep −→ Vect is the forgetful functor.

Remark 3.11. This definition is equivalent to fixing a group homomorphism G −→
Aut⊗(Z) to the group of symmetric monoidal natural automorphisms of Z .

Kinematical symmetries of classicalDijkgraaf–Witten theories extend to the quantum
theory: For afixedmanifoldΣ ,ϒg induces anatural isomorphism Lω◦R(α(g−1))|BunD(Σ)−→ Lω|BunD(Σ), which induces a linear map∫

BunD(Σ)
Lω ◦ R(

α(g−1)
) −→

∫
BunD(Σ)

Lω = Zω(Σ) .

The equivalence R(α(g−1)) induces a morphism

Zω(Σ) =
∫
BunD(Σ)

Lω −→
∫
BunD(Σ)

Lω ◦ R(
α(g−1)

)
.

The action of G consisting of ϕg : Zω(Σ) −→ Zω(Σ) is defined as the composition of
these two maps. Fixing a fundamental class σΣ of Σ as in (2.9) and a parallel section
f ( · ) = f( · ) [σΣ ] ∈ Zω(Σ), the action of G on Zω(Σ) takes the concrete form

g � f(Σ, ϕ) = f
(R(α(g−1))[Σ,ϕ]) 〈ϕ∗Φg, σΣ 〉 (3.12)

with δΦg = ω − α(g−1)∗ω as in the proof of Proposition 3.9.
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Proposition 3.13. The collection ϕg define a representation of G on Zω(Σ) such that
Zω is a functor into the category G-Rep of finite-dimensional G-representations.

Proof. This is a direct consequence of the functoriality of the orbifold construction
[SW19, Remark 3.43] and the coherence conditions for the homotopy fixed point. ��
Example 3.14. The trivial action of G on BD is always an internal G-symmetry. Any
action of G is an internal G-symmetry for a theory with trivial topological Lagrangian.
We will provide some more profound examples in Sects. 3.2 and 3.3 .

3.2. Non-abelian group cohomology. Following [BBF05] we review non-abelian group
2-cocycles and show how they classify extensions. For simplicity we only discuss
groups, which is enough for the study of anomalies in Dijkgraaf–Witten theories. The
generalisation to groupoids is straightforward. Let G and D be finite groups. Recall
from Sect. 3.1 that a non-abelian 2-cocycle on G with coefficients in D is a 2-functor
α : ∗//G −→ ∗//(AutGrp(D)//D) ⊂ Grpd, where Grpd is the 2-category of groupoids.
The 2-category ∗//(AutGrp(D)//D) can be considered as a sub-2-category of Grpd by
sending the only object to ∗//D. We assume without loss of generality that α preserves
identities strictly. Spelling out the definition, we see that α consists of maps of sets
α : G −→ AutGrp(D) and σα : G × G −→ D satisfying

α(1) = idD ,

σα(1, 1) = 1 ,

α(g1 g2)[d] = σα(g1, g2)
−1 α(g1)

[
α(g2)[d]] σα(g1, g2) ,

σα(g1, g2) σα(g1 g2, g3) = α(g1)
[
σα(g2, g3)

]
σα(g1, g2 g3) . (3.15)

Using the Grothendieck construction, the 2-functor α : BG −→ Grpd induces an
op-fibration of groupoids ∫

α −→ ∗//G

having the following concrete description: There is only one object which we denote by
∗, endomorphisms are given by pairs (g, d) ∈ G × D and composition is defined by

(g2, d2) (g1, d1) = (
g2 g1 , d2 α(g2)[d1] σα(g2, g1)

)
.

The op-fibration corresponds to an extension of G by D, i.e. an exact sequence

1 −→ D −→ Ĝ −→ G −→ 1 ,

with Ĝ = End∫
α(∗). Since the Grothendieck construction induces an equivalence of

categories, it is natural to believe that extensions ofG by D are classified by non-abelian
2-cocycles on G with coefficients in D. A proof of this expectation can be found in
[BBF05].

Let us conclude this discussion with a few explicit examples.

Example 3.16. For every pair of groups (G, D) there is a trivial non-abelian 2-cocycle
corresponding to the constant 2-functor∗//G −→ ∗//(AutGrp(D)//D). The corresponding
extension is

1 −→ D −→ D × G −→ G −→ 1 .
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Example 3.17. If D is abelian and α : G −→ AutGrp(D) is trivial, then a non-abelian
2-cocycle reduces to an ordinary 2-cocycle σ ∈ H2(G; D) and the corresponding exten-
sions are the usual central extensions classified by the abelian 2-cocycle. From a physical
point of view such a 2-cocycle can appear if the G-action on matter fields only closes up
to a D-gauge transformation. We give two concrete examples for later use. Let N and
M be positive integers. Identifying the cyclic groups ZN and ZM with {0, 1, . . . , N −1}
and {0, 1, . . . ,M − 1} we define the 2-cocycle

σ : ZM × ZM −→ ZN

(a, b) �−→
⌊a + b

M

⌋
mod N .

The corresponding central extension is

0 −→ ZN
M ·−−→ ZN M −→ ZM −→ 0 ,

where the first map is multiplication by M and the second map is reduction modulo
N . This example can be adapted to an arbitrary number of copies of ZN and ZM . An
example is the abelian 2-cocycle corresponding to

(0, 0) −→ ZN × ZN
(M,M) ·−−−−→ ZN M × ZN M −→ ZM × ZM −→ (0, 0)

which is given by

(ZM × ZM )
2 −→ ZN × ZN

(
(a1, b1) , (a2, b2)

) �−→
(⌊a1 + a2

M

⌋
mod N ,

⌊b1 + b2
M

⌋
mod N

)
.

Example 3.18. Given a group homomorphism α : G −→ AutGrp(D), we can consider
α as a non-abelian 2-cocycle with trivial map σα . The corresponding extension is the
semi-direct product

1 −→ D −→ G �α D −→ G −→ 1 .

3.3. Gauging discrete symmetries and ’t Hooft anomalies. There is an inclusion of cat-
egories i : Cobn ↪→ G-Cobn for every group G by equipping every manifold with the
trivial G-bundle. The pullback i∗ZG : Cobn −→ Vect of a G-equivariant field the-
ory ZG : G-Cobn −→ Vect carries additional structure: By evaluating ZG on gauge
transformations of the trivial G-bundle on an n−1-dimensional manifold Σ we get a
representation of G on i∗ZG(Σ) which is compatible with the definition on cobor-
disms. Hence i∗ZG is a quantum field theory with internal G-symmetry in the sense of
Definition 3.10, i.e. a symmetric monoidal functor

i∗ZG : Cobn −→ G-Rep .

Recall that we considered a G-equivariant field theory as a field theory coupled to
classical G-gauge fields. Given a field theory Z : Cobn −→ G-Rep with internal G-
symmetry we can ask if the symmetry can be gauged.
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Definition 3.19. Let Z : Cobn −→ G-Rep be a topological quantum field theory with
internal G-symmetry. A G-equivariant field theory ZG : G-Cobn −→ Vect gauges the
internal G-symmetry if i∗ZG = Z as functors Cobn −→ G-Rep.

In general it may be impossible to gauge a given symmetry due to cohomological
obstructions. In this case we say that the symmetry has a ’t Hooft anomaly. In the
following we will study under which conditions the symmetries discussed in Sect. 3.1
have ’t Hooft anomalies.

Remark 3.20. In three dimensions the question of whether a given field theory can be
gauged is related to an interesting algebraic problem.A three-dimensional extended topo-
logical quantum field theory is described by a modular tensor category M [BDSPV15].
An internal G-symmetry corresponds to a homotopy coherent action of G on M via
braided autoequivalences. The group of braided autoequivalences up to natural iso-
morphism is known as the Brauer-Picard group. The modular tensor category corre-
sponding to the Dijkgraaf–Witten theory with gauge group D and topological action
ω ∈ Z3(BD;U (1)) is the category of finite-dimensional modules over the ω-twisted
Drinfeld double of the group algebra C[D] defined in [DPR90]. The corresponding
Brauer-Picard group for ω = 0 is studied in detail in [LP17a]. The more general case
of the representation category of Hopf algebras which includes the case of non-trivial
ω is studied in [LP17b]. The kinematical symmetries studied in this paper correspond
to the subgroup of classical symmetries in [LP17b]. Three-dimensional G-equivariant
extended field theories correspond to G-modular categories [TV14,SW18a]. The sym-
metry corresponding to a homotopy coherent action ofG on amodular tensor categoryM
can be gauged if there exists aG-modular categoryMG = ⊕

g∈G Mg such thatM1 = M
in a compatible way. The question of under which conditions such an extension exists
is answered in [ENOM10], whereby the case relevant for Dijkgraaf–Witten theories is
discussed in their appendix.

In this algebraic framework the gauging of more complicated symmetries of arbi-
trary three-dimensional extended topological field theories can be addressed using the
cobordism hypothesis and representation theoretic techniques. A detailed study of this
would be interesting. However, we refrain from doing so in this paper and focus instead
on a largely dimension-independent discussion.

The non-abelian group 2-cocycle describing the action of G on a Dijkgraaf–Witten
theory with gauge group D and topological action ω ∈ Zn(BD;U (1)) determines an
(not necessarily central) extension

1 −→ D
ι−→ Ĝ

λ−→ G −→ 1 . (3.21)

The short exact sequence should be understood as a way to combine D- and G-gauge
fields into a single Ĝ-gauge field. If there exists ω̂ ∈ Hn(BĜ;U (1)) such that ι∗ω̂ = ω

we say that the symmetry G is anomaly-free. In this case we can use the pushforward
construction [SW19, Section 4] along λ to get a G-equivariant field theory gauging the
symmetry. We review this construction in the concrete example we are interested in.

LetΣ be an n−1-dimensional closedmanifold. The group homomorphism λ induces
an extension functor

λ∗ : BunĜ(Σ) −→ BunG(Σ) .
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This functor acts on classifying maps by post-composition with the map BĜ −→ BG
induced by λ : Ĝ −→ G, which by a slight abuse of notation we denote again by λ.
Equivalently this functor associates to a Ĝ-bundle ϕ̂ on Σ the induced G-bundle

ϕ̂ ×λ G = ϕ̂ × G / ∼ ,
where (p, g) ∼ (p � ĝ, λ(ĝ−1) g) for all p ∈ ϕ̂, g ∈ G and ĝ ∈ Ĝ. For a bundle
ϕ ∈ BunG(Σ) we denote by λ−1∗ [ϕ] the homotopy fibre

λ−1∗ [ϕ] BunĜ(Σ)

∗ BunG(Σ).

λ∗

ϕ

Concretely, objects ofλ−1∗ [ϕ] are pairs (ϕ̂, h) of a Ĝ-bundle ϕ̂ and a gauge transformation
h : λ∗ϕ̂ −→ ϕ. Morphisms are gauge transformations ĥ : ϕ̂ −→ ϕ̂ ′ such that the
diagram

λ∗ϕ̂ λ∗ϕ̂ ′

ϕ

λ∗ĥ

h h′

commutes. The pushforward of L ω̂ can now be defined on an object (Σ, ϕ : Σ −→ BG)
as

λ∗L ω̂(Σ, ϕ) =
∫
λ−1∗ [ϕ]

(
λ−1∗ [ϕ] −→ BunĜ(Σ)

Lω̂−→ Vect
)
. (3.22)

This should be regarded as a quantization of the D-gauge fields while leaving the G-
sector classical. We realise this limit again as the space of parallel sections. In this case
a parallel section f ∈ λ∗L ω̂(Σ, ϕ) consists of an element f (ϕ̂, h) ∈ L ω̂(Σ, ϕ̂) for all
(ϕ̂, h) ∈ λ−1∗ [ϕ].

Let (M, ψ) : (Σa, ϕa) −→ (Σb, ϕb) be a morphism in G-Cobn . To define the push-
forward on a parallel section f ( · ) ∈ λ∗L ω̂(Σa, ϕa) we fix fundamental cycles σa and
σb of Σa and Σb, respectively, and write f as f ( · ) = f( · ) [σa] as in Sect. 2.3. We
define

λ∗L ω̂(M, ψ)[ f ](ϕ̂b, hb)
=

( ∫
(ψ̂,h ,̂h )∈λ−1∗ [ψ]|(ϕ̂b ,hb)

〈
ĥ∗ω̂, [0, 1] × σb

〉 〈
ψ̂∗ω̂, σM

〉
f
(
ψ̂ |Σa , h|Σa

)) [σb]
(3.23)

with σM ∈ Fundσbσa (M); here the homotopy pullback λ−1∗ [ψ]|(ϕ̂b,hb) is the groupoid
with objects (ψ̂, h, ĥ ) where ψ̂ : M −→ BĜ is a Ĝ-bundle, h : λ∗ψ̂ −→ ψ is a gauge
transformation, and ĥ : ψ̂ |Σb −→ ϕ̂b is a gauge transformation such that the diagram

λ∗ψ̂
∣∣
Σb

λ∗ϕ̂b

ϕb

λ∗ĥ

h|Σb hb
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commutes. This defines a functorial field theory by [SW19, Proposition 4.2]. The field
theories constructed here are called G-equivariant Dijkgraaf–Witten theories. In the
case of trivial 2-cocycle they have been studied as extended field theories in [MNS12].
Extended G-equivariant Dijkgraaf–Witten theories with non-trivial 2-cocycles are con-
structed in [MW18].

Now we can formulate the central statement of this section.

Theorem 3.24. Let Zω be a discrete gauge theory with topological action
ω ∈ Zn(BD;U (1)) and kinematical G-symmetry described by an extension

1 −→ D
ι−→ Ĝ

λ−→ G −→ 1

such that there exists ω̂ ∈ Zn(BĜ;U (1)) satisfying ω = ι∗ω̂. Then the G-equivariant
Dijkgraaf–Witten theory λ∗L ω̂ : G-Cobn −→ Vect gauges this symmetry.

Proof. First we show that the trivial sector of λ∗L ω̂ is Zω. From the exact sequence of
groups we get a fibration

BD
ι−→ BĜ

λ−→ BG

of classifying spaces. Let N be a manifold of dimension n or n− 1. We have to evaluate
the homotopy fibre λ−1∗ [�] of the trivial bundle � : N −→ BG. Using the homotopy
lifting property we can restrict ourselves to the full subgroupoid with objects (ϕ̂ : N −→
λ−1(∗) = ι(BD), id), where λ−1(∗) is the preimage of the base point of BG.Morphisms
in this subgroupoid are homotopies which are trivial after applying λ. Using again
the homotopy lifting property of a fibration we see that they must be homotopic to a
homotopy supported in BD. This shows that we can replace limits and integration over
the homotopy fibre of the trivial bundle with limits and integration over BunD(N ) for
every manifold N . For this reason (3.22) and (3.23) reduce to (2.8) and (2.9) in this case,
since ω̂ pulls back to ω.

Next we show that this gauges the symmetry, see (3.12):

λ∗L ω̂(Σ, g) f (ι∗ϕD, id) = f
(
ι∗R(α(g−1))ϕD, id

) 〈ϕ∗
DΦg, σΣ 〉

for all closed n−1-dimensional manifolds Σ , f ( · ) ∈ λ∗L ω̂(Σ, � : Σ −→ BG) and
ϕD : Σ −→ BD, where we interpret g ∈ G as a homotopy from the constant map � to
itself. By [SW19, Proposition 4.2 (b)] we have

λ∗L ω̂(Σ, g) f (ι∗ϕD, id) = f (ι∗ϕD, g−1) .

We have to calculate a lift for the homotopy g−1, i.e. a gauge transformation ĝ−1 : ι∗ϕD
−→ ι∗ϕ′

D such that λ(ĝ−1) = g−1. We use the concrete description of Ĝ-bundles
as elements of the functor category [�1(Σ), ∗//Ĝ ], where �1(Σ) is the fundamental
groupoid of Σ . A lift of the gauge transformation is then given by conjugation with
(g−1, 1) ∈ Ĝ. We calculate its action on the image d ∈ D ⊂ Ĝ of a path in Σ . The
inverse is given by [BBF05]

(
g , σα(g, g

−1)−1
)
.

Then

(
g−1, 1

) (
1, d

) (
g , σα(g, g

−1)−1) = (
g−1, α(g−1)[d]) (

g , σα(g, g
−1)−1)
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= (
1 , α(g−1)[d]α(g−1)[σα(g, g−1)−1] σα(g−1, g)

)
= (

1 , α(g−1)[d] σα(g−1, g)−1 σα(g
−1, g)

)
= (

1, α(g−1)[d]) ,
where in the third equality we used σα(g−1, g)−1 = α(g−1)[σα(g, g−1)−1], which
follows from(3.15)with g1 = g−1, g2 = g and g3 = g−1 usingσα(1, g) = σα(g, 1) = 1
for all g ∈ G. This shows that ϕ′

D = R(α(g−1))ϕD . That f ( · ) is a parallel section
implies

f (ι∗ϕD, g−1) = L−1
ω̂ (Σ, ĝ) f

(R(α(g−1))ϕD, id
)
. (3.25)

We define an n−1-cochain Φg on D as follows: Let χ : �n−1 −→ BD be an n−1-
chain which we can include into BĜ along ι. Putting ĝ on the interval we get a map
[0, 1] ×�n−1 −→ BĜ. Integration of the pullback of ω̂ over [0, 1] ×�n−1 gives the
inverse of the value of Φg evaluated on the n−1-simplex. The value of −δΦg on an
n-simplex (d1, . . . , dn) : �n −→ BD is given by

〈[̂g × (d1, . . . , dn)]∗ω̂ , [0, 1] × ∂�n 〉
= 〈[̂g × (d1, . . . , dn)]∗ω̂ , ∂[0, 1] ×�n − ∂([0, 1] ×�n)

〉
= 〈[̂g × (d1, . . . , dn)]∗ω̂ , ({1} − {0})×�n 〉
= α(g−1)∗ω(d1, . . . , dn)− ω(d1, . . . , dn) .

By definition L−1
ω (Σ, ĝ) = 〈ϕ∗

DΦg, σΣ 〉. Inserting this into (3.25) gives (3.12) where
Φg provide the homotopy fixed point structure. ��
Remark 3.26. Theorem 3.24 provides a general mechanism for the gauging of symme-
tries. However, we cannot show that it is impossible to gauge the symmetry when the
conditions of Theorem 3.24 are not satisfied, i.e. when no such ω̂ exists.

Example 3.27. We describe a discrete two-dimensional gauge theory with gauge group
D = ZN × ZN and topological action ωk ∈ H2(ZN × ZN ;U (1)) as defined in (2.12).
The action of the symmetry group G on D can be encoded in a short exact sequence

1 −→ D −→ Ĝ −→ G −→ 1 .

Set G = ZM × ZM and consider the extension

(0, 0) −→ ZN × ZN
(M,M) ·−−−−→ ZN M × ZN M −→ ZM × ZM −→ (0, 0) .

In this casewe can gauge the symmetry in themanner of Theorem3.24 for the topological
actionωk with k ∈ {0, 1, . . . , N−1} if and only if k is divisible byM modulo N , i.e. there
exists k′ ∈ Z such that k′ M = k mod N . Concretely, ω̂ ∈ H2(ZN M × ZN M ;U (1)) is
given by ωk′ ∈ Z2(ZN M × ZN M ;U (1)). This simple example already shows that we
cannot gauge every symmetry using Theorem 3.24; it is discussed in [KS14,GKSW15]
in the context of 0-form and 1-form global symmetries. We will discuss obstructions to
finding an appropriate lift ω̂ in more detail and generality in Sect. 3.4.



1606 L. Müller, R. J. Szabo

Example 3.28. The cyclic groupZ2 acts on the dihedral group D8 by conjugationwith the
generator a. Since this is an action via inner automorphisms it preserves the non-trivial
2-cocycle ω ∈ H2(BD8;U (1)) from Example 2.11.b. This action defines a non-abelian
2-cocycle with trivial map σ . The corresponding extension is

1 −→ D8 −→ D8 � Z2 −→ Z2 −→ 1 .

The Pauli group is the subgroup

P1 = {±12,± i12,± σx ,± i σx ,± σy,± i σy,± σz,± i σz}
of the unitary group U (2) with the Pauli spin matrices

σx =
(
0 1
1 0

)
, σy =

(
0 − i
i 0

)
and σz =

(
1 0
0 −1

)
.

There is an equivalence of extensions

D8 � Z2

1 D8 Z2 1

P1

ϑ

given by ϑ(ai b j , k) = ( i σx )i σ
j
y σ

k
x , showing that this extension is non-trivial even

though it comes from an inner automorphism. The intuitive reason for this is that conju-
gation by a2 is the identity even though a2 itself is not. We will show in Example 3.34
that this symmetry cannot be gauged in the manner of Theorem 3.24.

Example 3.29. In three dimensions we can look at the extension

0 −→ ZN
M ·−−→ ZN M −→ ZM −→ 0 .

The 3-cocycle ωk defined in (2.14) can always be gauged by the 3-cocycle ω̂k ∈
H3(BZN M ;U (1)) corresponding to the same value of k.

3.4. Obstructions to gauging of symmetries. We shall now work with the group coho-
mology Hn(G;U (1)) which can be identified with the cohomology of BG with coef-
ficients in U (1). There are obstructions for ω̂ to exist which follow from the Lyndon–
Hochschild–Serre spectral sequence associated to the extension (3.21).We briefly review
these obstructions. For a physical perspective on these obstructions, see [TvK15].

There is an action ofG on Hn(D;U (1)) induced by conjugation in Ĝ. Every cocycle
on Ĝ is invariant under conjugation and hence the first obstruction for ω̂ to exist is

ω ∈ Hn(D;U (1))G .
By definition, the obstruction is always satisfied if the extension corresponds to a kine-
matical symmetry. The first quadrant Lyndon–Hochschild–Serre spectral sequence cor-
responding to the exact sequence (3.21) takes the form

E p,q
2 = H p(G; Hq(D;U (1))) �⇒ H p+q(Ĝ;U (1))
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with edge maps Hn(Ĝ;U (1)) � E0,n∞ = E0,n
n+2 ↪→ Hn(D;U (1))G given by the restric-

tion to D (see e.g. [Wei95, Section 6.8]). Hence we see that ω ∈ im(ι∗) = E0,n
n+2 if and

only if

d0,ni ω = 0 ∈ Ei,n+1−i
i (3.30)

for all i ∈ {2, . . . , n+1}. Note that d0,ni ω is only well-defined if d0,ni−1ω = 0 and Ei,n+1−i
i

is a sub-quotient of Hi
(
G; Hn+1−i (D;U (1))).

To understand these obstructions in more detail we introduce the algebraic model for
the spectral sequence [HS53, Section 2]. The group cohomology of Ĝ can be computed
from the normalised cochain complex C•(Ĝ;U (1)):

0 −→ C0(Ĝ;U (1)) −→ C1(Ĝ;U (1)) −→ · · · .
We introduce a filtration

C•(Ĝ;U (1)) = F0C•(Ĝ;U (1)) ⊇ F1C•(Ĝ;U (1)) ⊇ F2C•(Ĝ;U (1)) ⊇ · · ·
where FiCn(Ĝ;U (1)) is 0 for i > n and otherwise consists of all normalized n-cochains
which are 0 as soon as n− i +1 entries are in the image of D. This filtration is compatible
with the coboundary operator δ and hence induces a spectral sequence, which is the
Lyndon–Hochschild–Serre spectral sequence. Concretely we set

Z p,q
r := ker

(
F pC p+q(Ĝ;U (1)) δ−→ C p+q+1(Ĝ;U (1))/F p+rC p+q+1(Ĝ;U (1))) ,

B p,q
r := δ

(
F p−r+1C p+q−1(Ĝ;U (1))) ∩ F pC p+q(Ĝ;U (1)) ,

E p,q
r := Z p,q

r
/(

B p,q
r + Z p+1,q−1

r−1

)
.

The differential δ : C p+q(Ĝ;U (1)) −→ C (p+r)+(q−r+1)(Ĝ;U (1)) induces the corre-
sponding differentials

dp,q
r : E p,q

r −→ E p+r,q−r+1
r

in the spectral sequence.
We consider the two-dimensional case as a warm-up. We fix ω ∈ H2(D;U (1)). The

corresponding element in E0,2
2 is the 2-cochain

ω̃ : Ĝ × Ĝ −→ U (1)(
(d, g) , (d ′, g′)

) �−→ ω(d, d ′) .

This is not generally a cocycle, since the multiplication in Ĝ is twisted by the corre-
sponding non-abelian 2-cocycle. This cochain obviously pulls back to ω. The ensuing
calculation can be understood as trying to find a 2-cochain on Ĝ which is 0 when pulled
back to D such that its sum with ω̃ is closed.

The first obstruction d0,22 ω̃ = 0 is equivalent to δω̃ ∈ B2,1
2 + Z3,0

1 . This implies that
there exists γ1 ∈ F1C2(Ĝ;U (1)) such that

δγ1 ∈ F2C3(Ĝ;U (1)) and δ(ω̃ − γ1) ∈ Z3,0
1 .
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This means that we can consider ω̃ as an element of E0,2
3

∼= ker d0,22 . Note that the
identification is not the identity, rather we have to map ω̃ to ω̃−γ1. We have thus shown
that if the first obstruction vanishes, then there exists θ ∈ Z3,0

1 = Z3(G;U (1)) and a
cochain ω′ = ω̃ − γ1 such that δω′ = λ∗θ and ι∗ω′ = ω.

The next obstruction is d0,23 ω̃ = 0. This is equivalent to δ(ω̃ − γ1) ∈ B3,0
3 , hence

there exists γ2 ∈ F1C2(Ĝ;U (1)) such that δγ2 = δ(ω̃ − γ1) ∈ F3C2(Ĝ;U (1)). This
implies δ(ω̃ − γ1 − γ2) = 0 and ι∗(ω̃ − γ1 − γ2) = ω, since γ1 and γ2 are elements in
F1C2(Ĝ;U (1)). This gives the desired 2-cocycle ω̂ = ω̃ − γ1 − γ2.

The discussion above readily generalises to arbitrary dimension n. If the first obstruc-
tion vanishes then there exists γ1 ∈ F1Cn(Ĝ;U (1)) such that

δ(ω̃ − γ1) ∈ F3Cn+1(Ĝ;U (1)) .
More generally if the first m ≤ n obstructions vanish, there are elements γ1, . . . , γm ∈
F1Cn(Ĝ;U (1)) such that

δγi ∈ FiCn+1(Ĝ;U (1)) ,
δ
(
ω̃ −

k∑
i=1

γi

)
∈ Fk+2Cn+1(Ĝ;U (1)) ,

for all i, k = 1, . . . ,m. In particular, if all obstructions vanish then

δ
(
ω̃ −

n∑
i=1

γi

)
= 0

and

ι∗
(
ω̃ −

n∑
i=1

γi

)
= ω ∈ Hn(D;U (1)) .

We are mostly interested in the case when all obstructions except the last one vanish.
In this case

δ
(
ω̃ −

n−1∑
i=1

γi

)
= λ∗θ

with θ ∈ Zn+1(G;U (1)), since closed elements of Fn+1Cn+1(Ĝ;U (1)) are in one-to-
one correspondence with Zn+1(G;U (1)). We summarize the present discussion in

Proposition 3.31. Let

1 −→ D
ι−→ Ĝ

λ−→ G −→ 1

be a short exact sequence of groups, n a natural number and ω an n-cocycle on D with
values in U (1).

(a) When all obstructions in (3.30) vanish, then there exists ω̂ ∈ Zn(Ĝ;U (1)) satisfying
ι∗ω̂ = ω.

(b) When the first n−1 obstructions in (3.30) vanish, then there exist ω′ ∈ Cn(Ĝ;U (1))
and θ ∈ Zn+1(G;U (1)) satisfying ι∗ω′ = ω and δω′ = λ∗θ .
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Remark 3.32. If the first n − 1 obstructions vanish we can realize the anomalous field
theory as a boundary state of a classical n+1-dimensional Dijkgraaf–Witten theory with
topological action θ . In Sect. 4 we will explain this point in more detail.

Example 3.33. We have seen in Example 3.29 that for the extension

0 −→ ZN −→ ZN M −→ ZM −→ 0

all 3-cocycles on ZN arise as pullbacks of 3-cocycles on ZN M , hence all obstructions
vanish in this case.

Example 3.34. Following up on Example 3.28 we show that for the symmetry described
by

1 −→ D8 −→ P1 −→ Z2 −→ 1 (3.35)

the non-trivial 2-cocycleω ∈ H2(D8;U (1)) cannot be gauged. The cohomology groups
of the Pauli group P1 can be computed using a computer algebra package such as GAP
[Joy08] and the universal coefficient theorem to get

H0(P1;U (1)) = U (1) ,

H1(P1;U (1)) = Z2 × Z2 × Z2 ,

H2(P1;U (1)) = Z2 × Z2 ,

H3(P1;U (1)) = Z2 × Z2 × Z8 .

The E2 page of the corresponding spectral sequence is

2 Z2 Z2 Z2 Z2

1 Z2 × Z2 Z2 × Z2 Z2 × Z2 Z2 × Z2

0 U (1) Z2 0 Z2

0 1 2 3

The two differentials drawn are 0 as can be checked by using the concrete description
of the differentials in [Hue81] and the fact that (3.35) is the extension of Z2 by D8
corresponding to the inner automorphism of D8 given by conjugation with a ∈ D8.
Hence the E3 page is given by
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2 Z2

1 Z2 × Z2 Z2 × Z2

0 U (1) Z2 0 Z2

0 1 2 3

From E1,1
3 = Z2 × Z2 = E1,1∞ and H2(P1;U (1)) = Z2 × Z2 we deduce that the

differential d0,23 : Z2 −→ Z2 is an isomorphism. This implies that the symmetry corre-
sponding to (3.35) of the non-trivial topological action ω ∈ H2(D8;U (1)) cannot be
gauged using Theorem 3.24, since the second obstruction corresponding to d0,23 does
not vanish. However, since the first obstruction vanishes we can gauge the symmetry
using the relative field theory constructed in Sect. 4.

Example 3.36. We have seen in Example 3.27 that for the extension

(0, 0) −→ Z2 × Z2 −→ Z4 × Z4 −→ Z2 × Z2 −→ (0, 0)

the 2-cocycleω1 ∈ H2(Z2×Z2;U (1)) cannot be obtained as the pullback of a 2-cocycle
on Z4 × Z4. The corresponding 2-cochain is given by

ω̃1 : (Z4 × Z4)
2 −→ U (1)

(
(a1, b1) , (a2, b2)

) �−→ exp
(
π i

⌊a1
2

⌋⌊b2
2

⌋)
.

To find the corresponding obstructions we calculate using
⌊ a+b

2

⌋ = a b +
⌊ a
2

⌋
+

⌊ b
2

⌋
mod 2 to get

δω̃1
(
(a1, b1) , (a2, b2) , (a3, b3)

) = exp

(
π i

(
a1 a2

⌊b3
2

⌋
+

⌊a1
2

⌋
b2 b3

))
.

Using the computer algebra program Maple [Map] we verified by checking all possibil-
ities that there are no solutions to the equation

δ(ω̃1 − γ1) = λ∗θ

with γ1 ∈ F1C2(Z4×Z4;U (1)) and θ ∈ Z3(Z2×Z2;U (1)). Hence the first obstruction
d0,22 ω1 does not vanish.

4. Bulk-Boundary Correspondence

In this sectionwe realise anomalous gaugedDijkgraaf–Witten theories on the boundaries
of higher-dimensional Dijkgraaf–Witten theories. We start by reviewing the general
description of boundary field theories and anomaly inflow through the bulk-boundary
correspondence in the functorial framework. Afterwards we make the general theory
explicit in the case of Dijkgraaf–Witten theories.
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4.1. Anomaly inflow in functorial field theories. Wework with the geometric bicategory
G-Cobn,n−1,n−2 for definiteness, but the description generalises to arbitrary background
fields. The description of boundary field theories and anomalies in the framework of
extended field theories is worked out in [Fre14a,FT14,Mon15,MS18] (see also [JFS17,
FV15] for an (∞, n)-categorical discussion in the case of topological field theories).
This description is closely related to the twisted field theories discussed in [ST11]. Here
we follow [MS18, Section 3.3]. Let E : G-Cobn,n−1,n−2 −→ 2Vect be an extended
field theory. We define its truncation tr E to be the restriction of E to the sub-bicategory
of G-Cobn,n−1,n−2 containing only invertible 2-morphisms.

Definition 4.1. Ann−1-dimensionalG-equivariant anomalousfield theorywith anomaly
described by an invertible n-dimensional extended field theory E : G-Cobn,n−1,n−2 −→
2Vect is a natural symmetric monoidal 2-transformation

Z : 1 �⇒ tr E ,

where 1 is the trivial theory assigning Vect to every object, the identity functor to 1-
morphisms and the identity natural transformation to 2-morphisms.

Remark 4.2. There are different definitions for natural symmetric monoidal 2-transfor-
mations corresponding to different levels of strictness. Here we use [MS18, Defini-
tion B.13], which seems to be best suited for physical applications.

Concretely Z : 1 �⇒ tr E consists of a linear functor Z(S, ξ) : Vect −→ E(S, ξ) for
all objects (S, ξ) ∈ G-Cobn,n−1,n−2, and a natural transformation Z(Σ, ϕ) : E(Σ, ϕ)◦
Z(S1, ξ1) �⇒ Z(S2, ξ2) for all 1-morphisms

(
(Σ, ϕ) : (S1, ξ1) −→ (S2, ξ2)

) ∈
G-Cobn,n−1,n−2. The functor Z(S, ξ) : Vect −→ E(S, ξ) can be described by an object
Z(S, ξ)[C] ∈ E(S, ξ) which by a slight abuse of notation we denote again by Z(S, ξ).
The natural transformation Z(Σ, ϕ) : E(Σ, ϕ) ◦ Z(S1, ξ1) �⇒ Z(S2, ξ2) can be de-
scribed by a morphism Z(Σ, ϕ) : E(Σ, ϕ)[Z(S1, ξ1)] −→ Z(S2, ξ2) in E(S2, ξ2). Re-
quiring Z to be a natural 2-transformation reduces explicitly to the following: Let (S, ξ),
(S1, ξ1), (S2, ξ2) and (S3, ξ3) be objects ofG-Cobn,n−1,n−2, and (Σa, ϕa) : (S1, ξ1) −→
(S2, ξ2) and (Σb, ϕb) : (S2, ξ2) −→ (S3, ξ3) 1-morphisms inG-Cobn,n−1,n−2. Then the
diagrams

E(Σb, ϕb) ◦ E(Σa, ϕa)[Z(S1, ξ1)] E(Σb ◦Σa, ϕb ∪ ϕa)[Z(S1, ξ1)]

E(Σb, ϕb)[Z(S2, ξ2)] Z(S3, ξ3)

E(Σb,ϕb)[Z(Σa ,ϕa)] Z(Σb◦Σa ,ϕb∪ϕa)

Z(Σb,ϕb)

(4.3)

and
Z(S, ξ) E(id(S,ξ))[Z(S, ξ)]

Z(S, ξ)
id Z(id(S,ξ))

(4.4)

commute, where the unlabelled morphisms are part of the structure of the extended field
theory E . The symmetric monoidal structure on Z is described explicitly by specifying
natural morphisms

M−1 : Z(∅) −→ ιE (C)
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in E(∅) and

ΠZ
(
(S1, ξ1) , (S2, ξ2

) : χE [Z(S1, ξ1)� Z(S2, ξ2)] −→ Z(S1 � S2, ξ1 � ξ2)
in E(S1�S2, ξ1�ξ2), where ιE : Vect −→ E(∅) andχE : E( · )�E( · ) �⇒ E( · � · ) are
part of the structure corresponding to a symmetricmonoidal 2-functor [MS18, Definition
B.12]. There is a long list of coherence and compatibility conditions that thesemorphisms
have to satisfy, see [MS18, Proposition 3.14] for details.

Remark 4.5. If the extended field theory E is trivial, it follows from this discussion that
a field theory relative to E is the same as an ordinary n−1-dimensional field theory.

It is instructive to decategorify Definition 4.1 [MS18, Section 2]. We denote by
trG-Cobn the maximal subgroupoid of G-Cobn . For a functor L : G-Cobn −→ Vect
we denote by tr L : trG-Cobn −→ Vect its restriction to trG-Cobn .

Definition 4.6. A partition function Z with anomaly described by an invertible n-
dimensional field theory L : G-Cobn −→ Vect is a natural symmetric monoidal trans-
formation

Z : 1 �⇒ tr L .

Remark 4.7. Restricting Definition 4.1 to the endomorphisms of ∅ induces a natural
transformation tr L �⇒ 1. Since in most physically relevant examples all vector spaces
areHilbert spaces, this discrepancy can be resolved by taking the adjoint. Herewe stick to
Definition 4.6, because it has a natural geometric interpretation in terms of line bundles.

Unpacking Definition 4.6, we get for every object (Σ, ϕ) ∈ G-Cobn a linear map
Z(Σ, ϕ) : C −→ L(Σ, ϕ), such that for all invertible morphisms φ : (Σa, ϕa) −→
(Σb, ϕb) in G-Cobn the diagram

C L(Σa, ϕa)

C L(Σb, ϕb)

id

Z(Σa ,ϕa)

L(φ)

Z(Σb,ϕb)

(4.8)

commutes. We think of φ as a symmetry of the classical background fields. Since L is
an invertible field theory, L(Σ, ϕ) is a one-dimensional vector space isomorphic to C,
though not necessarily in a canonical way. Picking such an isomorphism for all (Σ, ϕ)
induces a C

×-valued 1-cocycle of the groupoid of symmetries trG-Cobn , since we can
then identify the linear map L(φ) with a non-zero complex number.

Definition 4.6 naturally encodes properties of field theories with anomalies. For
example, in physically relevant theories one should also require that the vector spaces
L(Σ, · ) form a line bundle over the space of field configurations as in the case of
smooth field theories [ST11]. In the case of G-Cobn the space of field configurations is
a discrete groupoid and every invertible functorial field theory gives a flat line bundle
over the groupoid of field configurations in the sense of [Wil08]. The partition function is
now a parallel section of this line bundle. This reproduces themore geometric description
of anomalies as the non-triviality of a line bundle over the space of field configurations
[Nas91].

In the extended framework of Definition 4.1, evaluating E onmanifolds of dimension
n − 2 can be regarded as a 2-line bundle over the groupoid of field configurations as
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defined in e.g. [SW18b]. In particular, an anomalous field theory defines a section of this
2-line bundle. This reproduces the description of Hamiltonian anomalies in terms of line
bundle gerbes [CMM97]. The extended functorial framework thus naturally combines
theHamiltonian and Lagrangian descriptions of anomalies. It further formulates the field
theory on all possible spacetimes simultaneously, and also requires compatibility with
gluing and cutting of manifolds. Hence it is a mathematically concrete formulation of
the requirements from [Wit15] of local quantum field theory.

Of particular interest in the Hamiltonian description of anomalies is the projective
representation of the symmetry group on theHilbert space of the field theory. To describe
these in the functorial framework we briefly recall the 2-categorical description of pro-
jective representations. An element of H2(BG; C

×) corresponds to a homotopy class of
maps from BG to the Eilenberg-MacLane space K (C×, 2). The classifying space BG is
the nerve of a category, namely the action groupoid ∗//G. The Eilenberg-MacLane space
K (C×, 2) is the nerve of a 2-category B2

C
× with one object, one 1-morphism and the

group C
× as the set of 2-morphisms. Hence we can describe 2-cocycles alternatively as

2-functors up to natural isomorphisms.

Definition 4.9. Let G be a groupoid and A an abelian group. A 2-cocycle on G with
values in A is a 2-functor

α : G −→ B2A .

Remark 4.10. Spelling out the coherence isomorphisms corresponding to a 2-functor
reproduces the usual definition of groupoid cohomology [MS18, Section 3.4].

There is a natural 2-functor B2
C

× ↪→ 2Vect sending the uniqueobject to the category
of vector spaces, the unique 1-morphism to the identity functor and a non-zero complex
number λ to the natural transformation of the identity functor induced by scalar multi-
plication with λ. Using this embedding a 2-cocycle α on G with values in C

× induces
a 2-functor α : G −→ 2Vect. Using this 2-functor we can give a categorical definition
of projective representations (see [FV15] for the higher categorical framework).

Definition 4.11. A projective representation of a groupoid G twisted by a 2-cocycle α
with values in C

× is a natural 2-transformation

G 2Vect

α

1

ρ

Remark 4.12. Spelling out the definition reproduces the usual definition of a projective
representation [MS18, Section 3.4].

The assumption that the anomaly field theory E is invertible implies that for every
n−2-dimensional manifold S there exists a 2-cocycle α : BunG(S) −→ B2

C
× such

that the diagram

BunG(S) 2Vect

B2
C

×
α

E
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commutes up to a non-canonical isomorphism. A quantum field theory with anomaly Z
induces a projective representation of BunG(S) with respect to the 2-cocycle α. Mor-
phisms inBunG(S) are gauge transformations, which are symmetries of the field theory.
Hencewe shall sometimes refer toBunG(S) as the symmetry groupoid. Projective repre-
sentations corresponding to different choices of α : BunG(S) −→ B2

C
× are equivalent.

The projective representation can be concretely constructed by picking trivialisations of
the categories that E assigns to field configurations. The 2-cocycle twisting the projec-
tive representation is completely determined by E and independent of the explicit form
of Z .

We shall now discuss in more detail how to couple the bulk field theory (E, L)
and boundary field theory Z to construct an anomaly-free theory. We start with the
unextended framework corresponding to Definition 4.6. This involves the full quantum
field theory L : G-Cobn −→ Vect and not just its truncation. LetM be an n-dimensional
manifold with boundary ∂M = −Σ , and ψ : M −→ BG a G-bundle. The field theory
with anomaly defines an element Z(Σ,ψ |Σ) ∈ L(Σ,ψ |Σ). We can interpret (M, ψ)
as a morphism (M, ψ) : (Σ,ψ |Σ) −→ ∅ in G-Cobn . The partition function of the
composite system can now be defined as

Zbb(M, ψ,Σ) = L(M, ψ)[Z(Σ,ψ |Σ)] ∈ L(∅) ∼= C . (4.13)

This definition does not depend on any additional choices. Let ψ ′ : M −→ BG be a
principal G-bundle and ν : ψ −→ ψ ′ a gauge transformation. We then calculate

Zbb(M, ψ
′,Σ) = L(M, ψ ′ )[Z(Σ,ψ ′|Σ)]

= L(M, ψ ′ ) ◦ L([0, 1] ×Σ, ν|Σ)[Z(Σ,ψ |Σ)]
= L(M, ψ)[Z(Σ,ψ |Σ)]

] = Zbb(M, ψ,Σ) ,

where we used (4.8) in the second equality and in the third equality the fact that L
is invariant under gauge transformations relative to the boundary. This shows that the
composite partition function is gauge-invariant.

Definition 4.1 also allows us to formulate the composite system at the level of state
spaces. Let E : G-Cobn,n−1,n−2 −→ 2Vect be an invertible extended field theory.
Consider an n−1-dimensional manifold Σ with boundary ∂Σ = −S and a principal
G-bundle ϕ : Σ −→ BG. The anomalous field theory Z defines an element Z(S, ϕ|S) ∈
E(S, ϕ|S). The composite state space is given by

Zbb(Σ, ϕ, S) = E(Σ, ϕ)[Z(S, ϕ|S)] ∈ E(∅) ∼= Vect . (4.14)

This vector space does not depend on any additional choices. Let ν : ϕ −→ ϕ′ be a
gauge transformation. Then there is an induced linear map

Zbb(Σ, ϕ, S) = E(Σ, ϕ)[Z(S, ϕ|S)] E(ν)−−−→ E
(
(Σ, ϕ′ ) ◦ ([0, 1] × S, ν|S)

)[Z(S, ϕ|S)]
−→ E(Σ, ϕ′ ) ◦ E([0, 1] × S, ν|S)[Z(S, ϕ|S)]
Z([0,1]×S,ν|S)−−−−−−−−−−→ E(Σ, ϕ′ )[Z(S, ϕ′|S)] = Zbb(Σ, ϕ

′, S) .
(4.15)

It follows from the coherence conditions that this defines an honest representation of
the symmetry groupoid. Hence we have described a way of coupling bulk and boundary
degrees of freedom to an anomaly-free state space. In condensed matter physics appli-
cations the invertible field theory E arises as the low-energy effective theory of the bulk
system.
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4.2. Anomalous Dijkgraaf–Witten theories as boundary states. We will now illumi-
nate this construction in the case of anomalies of Dijkgraaf–Witten theories. Let Zω :
Cobn−1 −→ Vect be aDijkgraaf–Witten theorywith gauge group D, topological action
ω ∈ Zn−1(BD;U (1)) and kinematical G-symmetry described by an extension

1 −→ D
ι−→ Ĝ

λ−→ G −→ 1 .

Recall from Proposition 3.31 that when the first n − 2 obstructions in the spectral
sequence vanish, a cochain ω′ ∈ Cn−1(BĜ;U (1)) and a cocycle θ ∈ Zn(BG;U (1))
exist such that ω = ι∗ω′ and δω′ = λ∗θ . We realise the anomalous gauged theory as a
field theory Zω′ living on the boundary of a classical n-dimensional Dijkgraaf–Witten
theory Eθ : G-Cobn,n−1,n−2 −→ 2Vect with topological action θ .

Partition function We shall first construct the state as an unextended relative field the-
ory, i.e. a natural transformation Zω′ : 1 �⇒ tr Lθ (see Definition 4.6). The following
construction is similar to the one in [Wit16, Section 3.3]. However, we use the language
of functorial field theories and homotopy fibres to describe the construction. The ap-
proach to boundary field theories in the present paper is to some extent the reverse of the
approach in [Wit16], where anomalous boundary field theories are constructed starting
from a bulk Dijkgraaf–Witten theory. Instead we start from a field theory with anomaly
and show how to realize this theory as a boundary field theory. The construction of the
state space below is not given in [Wit16].

Following the general theory outlined in Sect. 4.1 we have to specify an element
Zω′(Σ, ϕ : M −→ BG) of Lθ (Σ, ϕ) for all objects (Σ, ϕ) ∈ G-Cobn . Let σΣ be a
representative for the fundamental class of Σ . We set

Zω′(Σ, ϕ) =
( ∫

(ϕ̂,h)∈λ−1∗ [ϕ]
〈ϕ̂ ∗ω′, σΣ 〉 〈h∗θ, [0, 1] × σΣ 〉

)
[σΣ ] ∈ Lθ (Σ, ϕ) .

(4.16)

Proposition 4.17. Zω′ is a partition function with anomaly Lθ : G-Cobn −→ Vect.

Proof. We have to show that Zω′ is a well-defined natural transformation. This is
an immediate consequence of Theorem 4.22 below. To become acquainted with the
constructions involved, we present here part of the proof. We start by showing that
〈ϕ̂ ∗ω′, σΣ 〉 〈h∗θ, [0, 1] × σΣ 〉 is well-defined on isomorphism classes of λ−1∗ [ϕ]. Let
ĥ : (ϕ̂1, h1) −→ (ϕ̂2, h2) be a morphism in λ−1∗ [ϕ], i.e. a homotopy ĥ : ϕ̂1 −→ ϕ̂2 such
that the diagram

λ∗ϕ̂1 λ∗ϕ̂2

ϕ
h1

λ∗ĥ

h2

commutes. The homotopy induces a chain homotopy H : ϕ̂1∗ −→ ϕ̂2∗ between the
induced maps on singular chains given by H(c) = ĥ∗([0, 1] × c) for all chains c ∈
C•(Σ). Hence, writing U (1) = R/Z additively for the calculation, we find
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〈
ϕ̂ ∗
2 ω

′, σΣ
〉 − 〈

ϕ̂ ∗
1 ω

′, σΣ
〉 = 〈

ω′, ∂H(σΣ)− H(∂σΣ)
〉

= 〈
ω′, ∂H(σΣ)〉

= 〈
ĥ∗λ∗θ, [0, 1] × σΣ

〉
= 〈

h∗
1θ − h∗

2θ, [0, 1] × σΣ
〉
.

This shows that the integration in (4.16) is well-defined.
Let σ ′

Σ be a different representative for the fundamental class ofΣ and χ an n-chain
satisfying ∂χ = σ ′

Σ − σΣ . To show that (4.16) is an element of Lθ (Σ, ϕ) we calculate

〈ϕ̂ ∗ω′, σ ′
Σ − σΣ 〉 〈h∗θ, [0, 1] × (σ ′

Σ − σΣ)〉 = 〈ϕ̂ ∗ω′, ∂χ〉 〈h∗θ, [0, 1] × ∂χ〉
= 〈ϕ̂ ∗λ∗θ, χ〉 〈h∗θ,−{0} × χ + {1} × χ〉
= 〈ϕ∗θ, χ〉 .

This is exactly the required transformation behaviour. We leave the verification of nat-
urality to the reader. ��
Remark 4.18. Before extending the field theorywegive the precise formof the composite
partition function (4.13).Wefixann-dimensionalmanifoldM withboundary ∂M = −Σ
and a principal G-bundle ψ : M −→ BG. Evaluating Lθ on (M, ψ) gives a linear map
Lθ (M, ψ) : Lθ (Σ,ψ |Σ) −→ C. The composite partition function is then

Zω′ bb(M, ψ,Σ) = Lθ (M, ψ)[Zω′(Σ,ψ |Σ)]
=

( ∫
(ϕ̂,h)∈λ−1∗ [ψ |Σ ]

〈ϕ̂ ∗ω′, ∂σM 〉−1 〈h∗θ, [0, 1] × ∂σM 〉−1
)

· 〈ψ∗θ, σM 〉 ,
which is gauge-invariant according to the general theory outlined in Sect. 4.1.

State space Let (S, ξ) be an object of G-Cobn,n−1,n−2 and denote by Fundθ (S, ξ) the
full subcategory of simple objects of Eθ (S, ξ). Recall from Sect. 2.2 that objects of
Fundθ (S, ξ) are representatives σS of the fundamental class of S and morphism spaces
are given by

HomEθ (S,ξ)(σS, σ
′
S) = C

[{� ∈ Cn−1(S) | ∂� = σ ′
S − σS}

] / ∼θ .
We construct a functor

Z̃ (S,ξ)
ω′ : Fundθ (S, ξ)op −→ Vect .

To this end we first construct a functor Lξ,ω′(σS) : λ−1∗ [ξ ] −→ Vect as follows: To every
object (̂ξ , h) we assign C and to a homotopy ĥ : (̂ξ , h) −→ (̂ξ ′, h′) we assign the com-
plex number 〈 ĥ∗ω′, [0, 1] × σS〉. Let σS and σ ′

S be representatives for the fundamental
class of S and � ∈ Cn−1(S) an n−1-chain satisfying ∂� = σ ′

S − σS , i.e. a morphism
in Fundθ (S, ξ). We construct a natural transformation

Lξ,ω′(�) : Lξ,ω′(σ ′
S) �⇒ Lξ,ω′(σS)

Lξ,ω′(�)(̂ξ,h) : C −→ C , 1 �−→ 〈̂
ξ ∗ω′,�

〉−1 〈
h∗θ, [0, 1] ×�〉−1

. (4.19)
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We show in "Appendix A" that Lξ,ω′ : Fundθ (S, ξ)op −→ [
λ−1∗ [ξ ],Vect] is a well-

defined functor to the category
[
λ−1∗ [ξ ],Vect] of functors from λ−1∗ [ξ ] to Vect

(Lemma A.1). Composition with the limit functor
∫
λ−1∗ [ξ ] :

[
λ−1∗ [ξ ],Vect] −→ Vect

then constructs the desired functor

Z̃ (S,ξ)
ω′ =

∫
λ−1∗ [ξ ]

Lξ,ω′ .

The limit can again be realised by parallel sections. This allows us to define

Zω′(S, ξ) =
∫ σ∈Fundθ (S,ξ)

Z̃ (S,ξ)
ω′ (σ ) ∗ σ

=
∫ σ∈Fundθ (S,ξ) ∫

λ−1∗ [ξ ]
Lξ,ω′(σ ) ∗ σ ∈ Eθ (S, ξ) . (4.20)

Let (Σ, ϕ) : (S1, ξ1) −→ (S2, ξ2) be a 1-morphism in G-Cobn,n−1,n−2. We construct a
morphism

Zω′(Σ, ϕ) : Eθ (Σ, ϕ)[Zω′(S1, ξ1)]

=
∫ σ2∈Fundθ (S2,ξ2) ( ∫ σ1∈Fundθ (S1,ξ1)

Σϕ(σ2, σ1)⊗C Z̃ (S1,ξ1)
ω′ (σ1)

)
∗ σ2

−→
∫ σ2∈Fundθ (S2,ξ2)

Z̃ (S2,ξ2)
ω′ (σ2) ∗ σ2 = Zω′(S2, ξ2)

in Eθ (S2, ξ2) from the universal property of the coend by realising Z̃ (S2,ξ2)
ω′ (σ2) as a

cowedge. We define the required linear maps for the concrete description of the limit as
parallel sections by

Zω′(Σ, ϕ)σ1 : Σϕ(σ2, σ1)⊗C Z̃ (S1,ξ1)
ω′ (σ1) −→ Z̃ (S2,ξ2)

ω′ (σ2)

�⊗C f ( · ) �−→ Zω′(Σ, ϕ)σ1( f,�)( · ) ,
with

Zω′(Σ, ϕ)σ1( f,�)
(̂
ξ2, h2

)

=
∫
(ϕ̂,g,̂h )∈λ−1∗ [ϕ]|(̂ξ2,h2)

〈
ϕ̂ ∗ω′,�

〉 〈
g∗θ, [0, 1] ×�〉 〈

ĥ∗ω′, [0, 1] × σ2
〉

· f (ϕ̂ |S1, g|S1) ∈ C . (4.21)

The domain of integration here is the groupoid with objects consisting of triples of a
map

ϕ̂ : Σ −→ BĜ ,

a gauge transformation

g : λ∗ϕ̂ −→ ϕ ,

and a gauge transformation

ĥ : ϕ̂ |S2 −→ ξ̂2
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such that the diagram

λ∗ϕ̂ |S2 λ∗ξ̂2

ξ2

λ∗ĥ

g|S2 h2

commutes.We show in "AppendixA" that this induces thedesiredmorphism (LemmaA.2).
We can now formulate and prove the main result of this section.

Theorem 4.22. Let Zω : Cobn−1 −→ Vect be an n−1-dimensional discrete gauge
theory with gauge group D, topological action ω ∈ Zn−1(BD;U (1)) and kinematical
G-symmetry described by an extension

1 −→ D
ι−→ Ĝ

λ−→ G −→ 1 .

Let ω′ be an n−1-chain on BĜ and θ ∈ Zn(BG;U (1)) an n-cocycle on BG satisfying
ι∗ω′ = ω and δω′ = λ∗θ . Then Zω′ defined in (4.20) and (4.21) is an anomalous field
theory with anomaly Eθ : G-Cobn,n−1,n−2 −→ 2Vect.

Proof. Let (S1, ξ1) and (S2, ξ2) be objects of G-Cobn,n−1,n−2. We first construct the
missing structure corresponding to the compatibility with the monoidal structures. This
involves a morphism

M−1 : Zω′(∅) = σ∅ −→ σ∅

in Eθ (∅) which we choose to be the identity, and a natural isomorphism

ΠZω′
(
(S1, ξ1) , (S2, ξ2)

) : χEθ [Zω′(S1, ξ1)� Zω′(S2, ξ2)] −→ Zω′(S1 � S2, ξ1 � ξ2) .
(4.23)

Spelling out (4.20) we find that χEθ [Zω′(S1, ξ1)� Zω′(S2, ξ2)] is given explicitly by

∫ σ2∈Fundθ (S2,ξ2) ∫ σ1∈Fundθ (S1,ξ1) (
Z̃ (S2,ξ2)
ω′ (σ2)⊗C Z̃ (S1,ξ1)

ω′ (σ1)
)

∗ [σ1 � σ2]

∼=
∫ σ1�σ2∈Fundθ (S1�S2,ξ1�ξ2) (

Z̃ (S2,ξ2)
ω′ (σ2)⊗C Z̃ (S1,ξ1)

ω′ (σ1)
)

∗ [σ1 � σ2] ,

where we used Fubini’s Theorem for coends together with the fact that we can natu-
rally identify Fundθ (S1, ξ1)×Fundθ (S2, ξ2)with Fundθ (S1 � S2, ξ1 � ξ2). Concretely,
Zω′(S1 � S2, ξ1 � ξ2) is given by

∫ σ1�σ2∈Fundθ (S1�S2,ξ1�ξ2)
Z̃ (S2�S1,ξ2�ξ1)
ω′ (σ2 � σ1) ∗ [σ1 � σ2] .

The isomorphism (4.23) is induced by the collection of natural linear isomorphisms

Z̃ (S2,ξ2)
ω′ (σ2)⊗C Z̃ (S1,ξ1)

ω′ (σ1) −→ Z̃ (S2�S1,ξ2�ξ1)
ω′ (σ2 � σ1)

given on parallel sections by

f2( · )⊗C f1( · ) �−→ f2( · |S2) f1( · |S1) .
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A straightforward but tedious calculation shows that these definitions satisfy [MS18,
eqs. (3.18)–(3.22)].

Next we show that Zω′ is compatible with identities, i.e. that the diagram (4.4)
commutes. Since all constructions are natural it is enough to check this on the terms
appearing in the coends of (4.20) and (2.6). Explicitly, we have to show that the diagram

Z̃ (S,ξ)
ω′ (σ ) (S × [0, 1])ξ×id[0,1](σ, σ )⊗C Z̃ (S,ξ)

ω′ (σ )

Z̃ (S,ξ)
ω′ (σ )

(−1)n σ×[0,1]⊗C ·

id

commutes for all objects (S, ξ) ∈ G-Cobn,n−1,n−2 and representatives σ of the funda-
mental class of S. Let (̂ξ , h) be an object of λ−1∗ [ξ ]. The groupoid λ−1∗ [ξ × id[0,1]]|(̂ξ ,h)
is contractible. For this reason we may fix the object (̂ξ × id[0,1], h × id[0,1], id) ∈
λ−1∗ [ξ × id[0,1]]|(̂ξ ,h) without loss of generality. The upper composition evaluated on a
parallel section f at (̂ξ , h) is

〈
(̂ξ × id[0,1])∗ω′ , (−1)n σ × [0, 1]〉 〈(id[0,1] × ξ × id[0,1])∗θ , [0, 1] × (−1)n (σ × [0, 1])〉

· 〈
(id[0,1] × ξ̂ )∗ω′ , [0, 1] × σ 〉

f (̂ξ , h)

= 〈
(id[0,1] × ξ × id[0,1])∗θ , [0, 1] × (−1)n (σ × [0, 1])〉 f (̂ξ , h)

= 〈
ξ∗θ , pr2

([0, 1] × (−1)n (σ × [0, 1]))〉 f (̂ξ , h)

= f (̂ξ , id[0,1] × ξ) ,
where in the first equality we used the fact that f is a parallel section and in the last
equality that the projection to the second factor pr2

([0, 1] × (−1)n (σ × [0, 1])) is a
boundary, which follows from

∂ pr2
([0, 1] × (−1)n (σ × [0, 1])) = 0

and by dimensional reasons.
We now show that the diagram (4.3) commutes. Again it is enough to check the

commutativity on elements of the coends. Let (Σa, ϕa) : (S1, ξ1) −→ (S2, ξ2) and
(Σb, ϕb) : (S2, ξ2) −→ (S3, ξ3) be 1-morphisms in G-Cobn,n−1,n−2. We fix represen-
tatives σ1, σ2 and σ3 for the fundamental classes of S1, S2 and S3, respectively. The
upper composition in (4.3) corresponds to the linear map

Σ
ϕb
b (σ2, σ3)⊗C Σ

ϕa
a (σ1, σ2)⊗C Z̃ (S1,ξ1)

ω′ (σ1) −→ Z̃ (S3,ξ3)
ω′ (σ3)

�b ⊗C �a ⊗C f ( · ) �−→ f̃ ( · )
with

f̃ (̂ξ3, h3) =
∫
(ϕ̂,g,̂h )∈λ−1∗ [ϕb∪ϕa ]|(̂ξ3,h3)

〈
ϕ̂ ∗ω′ , �a +�b

〉

· 〈
g∗θ , [0, 1] × (�a +�b)

〉 〈
ĥ∗ω′ , [0, 1] × σ3

〉
· f (ϕ̂ |S1 , ĥ|S1) . (4.24)
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The lower composition gives

Σ
ϕb
b (σ2, σ3)⊗C Σ

ϕa
a (σ1, σ2)⊗C Z̃ (S1,ξ1)

ω′ (σ1) −→ Z̃ (S3,ξ3)
ω′ (σ3)

�b ⊗C �a ⊗C f ( · ) �−→ f ( · )
with

f (̂ξ3, h3) =
∫
(ϕ̂b,gb ,̂hb)∈λ−1∗ [ϕb]|(̂ξ3,h3)∫
(ϕ̂a ,ga ,̂ha)∈λ−1∗ [ϕa ]|(ϕ̂b ,̂hb)|S2

〈
ϕ̂ ∗
b ω

′ , �b
〉 〈
g∗
bθ , [0, 1] ×�b

〉

· 〈
ĥ∗ω′ , [0, 1] × σ3

〉 〈
ϕ̂ ∗
a ω

′ , �a
〉 〈
g∗
aθ , [0, 1] ×�a

〉
· 〈
ĥ∗ω′ , [0, 1] × σ2

〉
f (ϕ̂a |S1 , ĥa |S1) . (4.25)

Using the descent property for the stack BunG of G-bundles we can write the domain
of the first integral as a homotopy pullback7

λ−1∗ [ϕb ∪ ϕa]|(̂ξ3,h3) λ−1∗ [ϕb]|(̂ξ3,h3)

λ−1∗ [ϕa] λ−1∗ [ϕa |S2 ]
prΣa

prΣb

prS2

prS2

where pr · denotes the pullback functor over the indicated submanifold. From the fibre-
wise characterization of homotopy pullbacks [CPS06] it follows that

pr−1
Σb

[
(ϕ̂b, ĥb)

]
λ−1∗ [ϕb ∪ ϕa]|(̂ξ3,h3) λ−1∗ [ϕb]|(̂ξ3,h3)

pr−1
S2

[
(ϕ̂b, ĥb)|S2

]
λ−1∗ [ϕa] λ−1∗ [ϕa |S2 ]

 prΣa

prΣb

prS2

prS2

is a homotopy commuting diagram containing an equivalence  . The equality of the
integrals (4.24) and (4.25) now follows from the generalized Cavalieri Principle [SW19,
Proposition A.15] applied to the functor

prΣb
: λ−1∗ [ϕb ∪ ϕa]

∣∣
(̂ξ3,h3)

−→ λ−1∗ [ϕb]
∣∣
(̂ξ3,h3)

and the ordinary Cavalieri Principle [SW19, Proposition A.14] for  .
Finally, the invariance with respect to gauge transformations [MS18, eq. (3.17)]

follows directly from the invariances of the integrands which is part of the statement of
Lemma A.1. ��

Similarly to the proof of Theorem 3.24, it should be possible to show that the
relative field theory gauges the G-symmetry. Let us explain in more detail what this
means: The pullback i∗Eθ along the inclusion i : Cobn,n−1,n−2 −→ G-Cobn,n−1,n−2
is naturally isomorphic to the trivial theory 1 : Cobn,n−1,n−2 −→ 2Vect. The pullback

7 Here we use the homotopy invariance of the stack BunG to identify the evaluation on an open neighbour-
hood of S2 with the evaluation on S2.
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i∗Zω′ : 1 �⇒ tri∗Eθ ∼= 1 is a field theory relative to the trivial theory. From [MS18,
Proposition 3.14] it follows that i∗Zω′ is an n−1 dimensional topological quantum field
theory. This field theory comes with an internal G symmetry from the evaluation of Zω′
on gauge transformations of the trivial bundle. Gauging the symmetry means that the
field theory i∗Zω′ recovers the Dijkgraaf–Witten theory Zω together with its internal
symmetry induced by the group extensions

1 −→ D
ι−→ Ĝ

λ−→ G −→ 1 .

Remark 4.26. Let S be a closed oriented n−2-dimensional manifold and σS a represen-
tative of its fundamental class. The general theory outlined in Sect. 4.1 implies that the
vector spaces Z̃ (S, · )ω (σS) form a projective representation of BunG(S). The 2-cocycle
α twisting the projective representation is completely described by the coherence iso-
morphisms for Eθ . In [MW18, Theorem 4.5] it is shown that the class of this 2-cocycle
is given by the transgression of θ ∈ Zn(BG;U (1)) to the groupoid BunG(S), i.e. α
is induced by the 2-cocycle τSθ on the underlying mapping space |BunG(S)| (with the
compact-open topology) given by

(τSθ)(χ) := (ev∗θ)(χ × σS)
for any 2-simplex χ : �2 −→ |BunG(S)|, where ev : |BunG(S)| × S −→ BG is
the evaluation map. This generalizes the low-dimensional descriptions of anomalies and
projective representations on state spaces discussed in [TY17, Section 2.1]: In the sim-
plest n = 1 case, with S = {∗} the 2-cocycles α and θ may be identified, and describe
the same 2-cocycle specifying both the two-dimensional bulk G-symmetry protected
phase and the class of the projective G-representation on the one-dimensional bound-
ary state, whereas for n = 3 with S = S

1 transgression induces a homomorphism
H3(BG;U (1)) −→ H2(BG;U (1)) specifying the two-dimensional G-symmetry pro-
tected phase on the boundary of the three-dimensional G-symmetry protected phase.

In a more geometric language this means that the state spaces of the gauged theory
form a section of the transgression 2-line bundle of the flat n−1-gerbe on the classifying
space BG described by θ , as the classical gauge theory corresponding to θ describes
the parallel transport for the n−1-gerbe. This 2-line bundle is trivial if and only if
the corresponding 2-cocycle is a boundary. Hence the obstruction for the projective
representation to form an honest representation is the non-triviality of the transgression
2-line bundle.

Remark 4.27. Let (Σ, ϕ) : (S, ξ) −→ ∅ be a 1-morphism in G-Cobn,n−1,n−2. Accord-
ing to (4.14) the state space of the composite system is given by

Zω′ bb(Σ, ϕ, S) = Eθ (Σ, ϕ)[Zω′(S, ϕ|S)] ∼= Σϕ(∅, σS)⊗C Z̃ (S,ϕ|S)
ω′ (σS) .

It is independent of the choice of σS up to unique isomorphism corresponding to the
choice of a representative of the coend. The composite state space carries an honest
representation of the gauge group G described in (4.15).
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A. Lemmata

Lemma A.1. Lξ,ω′ : Fundθ (S, ξ)op −→ [
λ−1∗ [ξ ],Vect] is a well-defined functor.

Proof. Let (S, ξ) be an object of G-Cobn,n−1,n−2, σS and σ ′
S representatives of the

fundamental class of S, � ∈ Cn−1(S) an n−1-chain satisfying ∂� = σ ′
S − σS and

ĥ : (̂ξ , h) −→ (̂ξ ′, h′) a morphism in λ−1∗ [ξ ]. The only subtle part is the naturality of
Lξ,ω′(�), i.e. commutativity of the diagram

Lξ,ω′(σ ′
S)(̂ξ , h) = C Lξ,ω′(σ ′

S)(̂ξ
′, h′) = C

Lξ,ω′(σS)(̂ξ , h) = C Lξ,ω′(σS)(̂ξ ′, h′) = C

〈 ĥ∗ω′,[0,1]×σ ′
S〉 ·

〈̂ξ ∗ω′,�〉−1 〈h∗θ,[0,1]×�〉−1 · 〈̂ξ ′∗ω′,�〉−1 〈h′∗θ,[0,1]×�〉−1 ·

〈 ĥ∗ω′,[0,1]×σS〉 ·

We check this by calculating the lower path to get

〈̂ξ ∗ω′,�〉−1 〈h∗θ, [0, 1] ×�〉−1 〈 ĥ∗ω′, [0, 1] × σS〉
= 〈̂ξ ∗ω′,�〉−1 〈h∗θ, [0, 1] ×�〉−1 〈 ĥ∗ω′, [0, 1] × σ ′

S〉 〈 ĥ∗ω′, [0, 1] × ∂�〉−1

= 〈̂ξ ∗ω′,�〉−1 〈h∗θ, [0, 1] ×�〉−1 〈 ĥ∗ω′, [0, 1] × σ ′
S〉

· 〈̂h∗ω′,−∂([0, 1] ×�)− {0} ×� + {1} ×�〉−1

= 〈h∗θ, [0, 1] ×�〉−1 〈 ĥ∗ω′, [0, 1] × σ ′
S〉 〈 ĥ∗ω′,−∂([0, 1] ×�)〉−1 〈̂ξ ′∗ω′,�〉−1

= 〈̂ξ ′∗ω′,�〉−1 〈h′∗θ, [0, 1] ×�〉−1 〈 ĥ∗ω′, [0, 1] × σ ′
S〉 ,

where in the first step we used σS = σ ′
S −∂�, in the second step the graded product rule

for ×, in the third step that ĥ is a homotopy from ξ̂ to ξ̂ ′, and in the last step δω′ = λ∗θ
and λ∗ĥ = h′−1 h. ��
Lemma A.2. Zω′(Σ, ϕ)σ1( f,�)( · ) is a well-defined parallel section and the collection
Zω′(Σ, ϕ)σ1 defines a cowedge inducing the desired maps, which again form a cowedge
defining Zω′(Σ, ϕ).

Proof. We first check that the integrand of (4.21) is gauge-invariant, i.e. the integral is
well-defined. Let Ĥ : (ϕ̂, g, ĥ ) −→ (ϕ̂ ′, g′, ĥ′) be an isomorphism in λ−1∗ [ϕ]|(̂ξ2,h2),
i.e. a homotopy Ĥ : ϕ̂ −→ ϕ̂ ′ such that the diagrams

λ∗ϕ̂ λ∗ϕ̂ ′

ϕ
g

λ∗ Ĥ

g′
(A.3)
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and

ϕ̂ |S2 ϕ̂ ′|S2

ξ̂2
ĥ

Ĥ |S2

ĥ′
(A.4)

commute. We study the transformation of the first term in (4.21). The homotopy
Ĥ : [0, 1] × Σ −→ BĜ induces a chain homotopy between the chain maps ϕ̂∗ and
ϕ̂ ′∗ given by

ϕ̂ ′∗ p − ϕ̂∗ p = ∂ ◦ Hp + Hp−1 ◦ ∂

for all p ∈ Z, where Hp := Ĥ∗ p+1 ◦ Dp and

Dp : Cp(Σ) −→ Cp+1([0, 1] ×Σ) , c �−→ [0, 1] × c .

Hence

〈ϕ̂ ′∗ω′,�〉 〈ϕ̂ ∗ω′,�〉−1 = 〈ω′, ∂Hn−1(�) + Hn−2(∂�)〉
= 〈(λ∗ Ĥ)∗θ, [0, 1] ×�〉 〈Ĥ∗ω′, [0, 1] × (σ2 − σ1)〉
= 〈g∗θ, [0, 1] ×�〉 〈g′∗θ, [0, 1] ×�〉−1 〈 ĥ∗ω′, [0, 1] × σ2〉 〈 ĥ′∗ω′, [0, 1] × σ2〉−1

· 〈Ĥ |∗S1ω′, [0, 1] × σ1〉−1

= 〈g∗θ, [0, 1] ×�〉 〈g′∗θ, [0, 1] ×�〉−1 〈 ĥ∗ω′, [0, 1] × σ2〉 〈 ĥ′∗ω′, [0, 1] × σ2〉−1

· f (ϕ̂ ′|S1, g′|S1) f (ϕ̂ |S1 , g|S1)−1 , (A.5)

where we used (A.3) and (A.4) in the third step, and that f ( · ) is a parallel section in
the last step. Comparing (A.5) with the transformation behaviours of the other terms in
(4.21) shows that the integrand is gauge-invariant.

We now check that (4.21) is a parallel section of Lξ2,ω′(σ2) : λ−1∗ [ξ2] −→ Vect. Let
ĥ′ : (̂ξ2, h2) −→ (̂ξ ′

2 , h
′
2) be a morphism in λ−1∗ [ξ2]. The map ĥ′ induces an equivalence

of groupoids

ĥ′∗ : λ−1∗ [ϕ]|(̂ξ2,h2) −→ λ−1∗ [ϕ]|(̂ξ ′
2 ,h

′
2)

(ϕ̂, g, ĥ ) �−→ (ϕ̂, g, ĥ′ ◦ ĥ ) .

Pulling back the integrand of (4.21) along this equivalence, reparametrization invariance
of the integral over groupoids and

〈
( ĥ′ ◦ ĥ )∗ω′, [0, 1] × σ2

〉 = 〈
ĥ∗ω′, [0, 1] × σ2

〉
+〈

ĥ′∗ω′, [0, 1] × σ2
〉
then shows that (4.21) is a parallel section.

Next we show that this defines a cowedge with respect to σ1, i.e. the diagram

Σϕ(σ2, σ1)⊗C Z̃ (S1,ξ1)
ω′ (σ ′

1) Σϕ(σ2, σ
′
1)⊗C Z̃ (S1,ξ1)

ω′ (σ ′
1)

Σϕ(σ2, σ1)⊗C Z̃ (S1,ξ1)
ω′ (σ1) Z̃ (S2,ξ2)

ω′ (σ2)

Σϕ(ζ )⊗Cid

id⊗C Z̃
(S1,ξ1)
ω′ (ζ )
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commutes for all morphisms (ζ : σ1 −→ σ ′
1) ∈ Fundθ (S1, ξ1). The upper composition

evaluated on an element �⊗C f ( · ) ∈ Σϕ(σ2, σ1)⊗C Z̃ (S1,ξ1)
ω′ (σ ′

1) gives

∫
(ϕ̂,g,̂h )∈λ−1∗ [ϕ]|(̂ξ2,h2)

〈ϕ̂ ∗ω′,�− ζ 〉 〈g∗θ, [0, 1] × (�− ζ )〉

· 〈 ĥ∗ω′, [0, 1] × σ2〉 f (ϕ̂ |S1, g|S1)
=

∫
(ϕ̂,g,̂h )∈λ−1∗ [ϕ]|(̂ξ2,h2)

〈g∗θ, [0, 1] × ζ 〉−1 〈ϕ̂ ∗ω′, ζ 〉−1 〈ϕ̂ ∗ω′,�〉

· 〈g∗θ, [0, 1] ×�〉 〈 ĥ∗ω′, [0, 1] × σ2〉
· f (ϕ̂ |S1, g|S1)
=

∫
(ϕ̂,g,̂h )∈λ−1∗ [ϕ]|(̂ξ2,h2)

〈g|∗S1θ, [0, 1] × ζ 〉−1 〈ϕ̂ |∗S1ω′, ζ 〉−1 〈ϕ̂ ∗ω′,�〉

· 〈g∗θ, [0, 1] ×�〉 〈 ĥ∗ω′, [0, 1] × σ2〉
· f (ϕ̂ |S1, g|S1) .

Comparing the term 〈g|∗S1θ, [0, 1] × ζ 〉−1 〈ϕ̂ |∗S1ω′, ζ 〉−1 here with (4.19) makes it clear
that this is the same as the lower composition.

Finally, we have to show naturality with respect to σ1. This follows from the same
calculation as above if we replace ζ with −ζ everywhere. ��
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