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Abstract: In an extremely influential paper Mézard and Parisi put forward an analytic
but non-rigorous approach called the cavity method for studying spin systems on the
Bethe lattice, i.e., the random d-regular graph Mézard and Parisi (Eur Phys J B 20:217–
233, 2001). Their technique was based on certain hypotheses; most importantly, that the
phase space decomposes into a number of Bethe states that are free from long-range
correlations and whose marginals are given by a recurrence called Belief Propagation.
In this paper we establish this decomposition rigorously for a very general family of
spin systems. In addition, we show that the free energy can be computed from this
decomposition. We also derive a variational formula for the free energy. The general
results have interesting ramifications on several special cases.

1. Introduction

1.1. Disordered systems and the Bethe lattice. In 2001 in a ground-breaking contribu-
tion Mézard and Parisi proposed an analytic but non-rigorous technique that they called
the cavity method for the study of spin glasses on the ‘Bethe lattice’,1 known in com-
binatorics as the random d-regular graph [48]. Mézard and Parisi argued that the Bethe
lattice constitutes an attractive halfway point between classical ‘mean-field’models such
as the Sherrington-Kirkpatrick model with complete interaction between all sites and
spatial models such as the Edwards-Anderson model. Indeed, the Bethe lattice induces
a non-trivial metric on the sites, each of which interacts with only a bounded number
of others. But at the same time Mézard and Parisi showed that the model is amenable
to analytic methods, even though matters are significantly more complicated than in the

1 Sometimes the d-regular infinite tree is referred to as the ‘Bethe lattice’. However, as Mézard and Parisi
point out, the d-regular infinite tree does not provide a particularly useful framework for the study of spin
interactions because almost all sites belong to the boundary of the tree. The random d-regular graph, which
they and hence we call the Bethe lattice, provides a useful way out: while the local geometry around a given
vertex is just a d-regular tree, at long distances this tree ‘wraps around’.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00220-019-03544-y&domain=pdf


442 A. Coja-Oghlan, W. Perkins

fully connected case. They went on to argue that the spin glass on the Bethe lattice ex-
hibits many of the properties expected of real glassy systems, such as replica symmetry
breaking and the proliferation of pure states.

From the original contribution [48] sprang a truly enormous body of work that has
had a transformative impact on an astounding variety of subjects, ranging from physics
to combinatorics to machine learning. Many of the applications may appear unexpected,
even surprising. Almost all of them hinge on the cavity method. Prominent success sto-
ries include the development of ‘low-density parity check codes’, a rare example of a
statistical physics idea leading directly to an eminently useful, and widely used, algo-
rithm [56]. A further example is a new algorithm for the compressed sensing problem, a
fundamental signal processing task [58]. Other important cavity method-based contribu-
tions pertain to classical problems in mathematics, such as phase transitions in random
graphs and other random structures [41,46,47]. The cavity method has also been used
to put forward predictions in machine learning, including the capacity of the Hopfield
model or on restricted Boltzmann machines [45].

Due to these numerous ramifications, vindicating the cavity method rigorously has
become an important research task at the junction of mathematical physics, combina-
torics and computer science. There has been a lot of progress recently, e.g., [9,19,33,51];
we shall review the literature in greater detail in Sect. 2.5. However, much of this work
is concerned with special cases, mostly the ‘replica symmetric’ scenario where there is
just a single pure state.

The aim of the present paper is to move past such assumptions and special cases. We
confirm several of the key hypotheses of Mézard and Parisi, particularly the decomposi-
tion into pure states and the validity of the Belief Propagation recurrence, the mainstay
of the cavity calculations. Further, we obtain a general variational formula for the free
energy that is perfectly in line with the Mézard-Parisi ansatz. Additionally, we show
that the free energy can be computed from the Belief Propagation representation of the
pure states of the model. We obtain these results not merely for a specific model, but
for a broad family of models on the Bethe lattice. The prime example is, of course, the
diluted spin glass model. But in addition, since the proof techniques that we develop are
generic, the results apply tomodels that are of eminent interest in other areas, particularly
combinatorics, such as the Potts antiferromagnet or the hard-core model. Crucially, the
results apply universally to all parameter values (such as degree, inverse temperature)
of the respective models.

We should point out, however, that the present results fall short of fully corroborating
the Mézard-Parisi ansatz. Most importantly, while we prove that general random factor
graph models possess pure state decompositions represented by (approximate) Belief
Propagation fixed points, an important prediction of the Mézard-Parisi ansatz pertains
to the relative geometry of these fixed points. Roughly speaking, Mézard and Parisi pre-
dict three different scenarios, depending on the parameter values (such as temperature).
In the replica symmetric case, there is just one single pure state (or possibly a small
bounded number due to inherent symmetries). Moreover, in the 1-step replica symmetry
breaking scenario an unbounded number of pure states occur, each represented by a
Belief Propagation fixed point. But these fixed points are predicted to exhibit a strong
symmetry property that ensures, e.g., that the empirical distributions of the Belief Prop-
agation messages in the different pure states are (nearly) identical. Finally, in the full
replica symmetry breaking scenario we also expect an unbounded number of pure states
and assorted Belief Propagation fixed points, which are arranged hierarchically in the
fashion of an ultrametric tree. While in the present paper we prove the existence of a
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pure state decomposition and of associated Belief Propagation fixed points, our methods
do not suffice to establish these more precise predictions as to the geometry and relative
weights of the pure states. A full verification of these predictions remains an important
open problem as it would, among other things, lead to a significantly simplified vari-
ational formula for the free energy. For a more detailed discussion of the Mézard and
Parisi ansatz, replica symmetry breaking, and ultrametricity we refer to [46,53,54].

Technically the paper builds upon and continues two intertwined threads of prior
work. First, we bring to bear a variant of the ‘regularity method’ from combinatorics
that we developed recently [10,15,24] in order to establish the pure state decomposition
and to vindicate the Belief Propagation equations. Second, we seize upon Panchenko’s
work on asymptotic Gibbs measures and the interpolation method, particularly in order
to derive the variational formula for the free energy [52,53]. Both of these methods
were previously applied with great success to random graphs of Erdős-Rényi type. This
line of work crucially exploited the relative geometric flexibility of the Erdős-Rényi
model, whose Poisson degree distribution facilitates coupling arguments. By contrast,
the geometry of the Bethe lattice is rigid. While this entails that the specification of
the model, the cavity equations and their solution are quite ‘clean’, the rigidity poses
substantial technical challenges that the present paper resolves.

Before presenting the main results of the paper, which cover a broad family of prob-
lems that we call random factor graph models, in Sect. 2, we illustrate the results and the
concepts around which they revolve with the spin glass model from the original contri-
bution of Mézard and Parisi. We also work out an additional application to the hard-core
model and the independence number of the random regular graph. Several further ap-
plications, including the Potts model and the Max q- Cut problem, are worked out in
Sect. 7.

1.2. The diluted spin glass. For integers d ≥ 3, n > 0 such that dn is even, let G =
G(n, d) be the uniformly random d-regular graph on the vertex set Vn = {v1, . . . , vn}.
With each edge e ∈ E(G) comes a standard Gaussian Je. The random variables
(Je)e∈E(G) are mutually independent. For a given inverse temperature β > 0, the diluted
spin glass on G is the probability distribution on {±1}Vn defined by

μG(σ ) = 1

Z(G)

∏

vw∈E(G)

1 + tanh(β Jvw)σvσw
2

, (1.1)

where the partition function Z(G) ensures normalization.2 Without the couplings Je,
this would just be the ferromagnetic Ising model on G. But since the Je are independent
Gaussians, some will be positive and others negative. In effect, some edges induce
ferromagnetic and others antiferromagnetic interactions, causing frustration. Thus, μG

is a spin glass model, the well-known diluted spin glass on the Bethe lattice.
There are two fundamental problems associated with this and numerous similar mod-

els: first, to characterize the structure of the Boltzmann distribution μG. Does it exhibit
long-range correlations? Does it decompose into one or several ‘pure states’, and if so,
how canwe characterize them?Second, to calculate the quantity limn→∞ 1

nE[log Z(G)],
which we call the free energy density. Its fundamental importance is due to the fact that
other important observables derive from it. Moreover, the singularities of the function
β �→ limn→∞ 1

nE[log Z(G)] constitute the phase transitions of the model.

2 The expression (1.1) is equivalent to the possibly more familiar formula μG(σ ) ∝ exp
(
β

∑
vw σvσw

)
.
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Bethe states and the Boltzmann distribution. With respect to the first problem, Mézard
and Parisi hypothesized that the Boltzmann distribution always decomposes into one
or a moderate (albeit not necessarily bounded) number of pure states. Further, they
hypothesized that these pure states are characterized by fixed points of a recurrence
called Belief Propagation. Our first theorem confirms this hypothesis.

To be precise, writing ∂v for the set of neighbors of a vertex v, let M (G) be the set
of all families (νu→v)v∈Vn ,u∈∂v such that νu→v ∈ [0, 1]. We call νu→v themessage from
u to v. The messages need not be symmetric, i.e., possibly νu→v �= νv→u . Furthermore,
Belief Propagation is the operator BP :M (G)→M (G), ν �→ ν̂, where

ν̂v→u =
∏
w∈∂v\u 1 + 2 tanh(β Jvw)(νw→v − 1/2)

∑
σ∈{±1}

∏
w∈∂v\u 1 + 2σ tanh(β Jvw)(νw→v − 1/2)

. (1.2)

The motivation behind this operator, and the origin of the name ‘cavity method’, is this.
Suppose we fix a vertex v in a d-regular graph along with a neighbor u. Now suppose we
remove the vertex u, thereby creating a ‘cavity’. Then the ‘ideal’ message μG,u→v that
we would like to compute is just the marginal probability μG−v,u(1) that u takes spin 1
in the subgraph obtained by removing v. If the Boltzmann distribution μG is free from
long-range correlations, then these ideal messages should plausibly be a fixed point of
the BP operator. Indeed, if we remove v, then very likely its former neighbors will be
mutually far apart in the resulting graph. In effect, the joint distribution of their spins
should factorize. If so, then a straightforward calculation verifies that the ideal messages
are a fixed point of BP. In fact this reasoning goes back to Bethe’s classical work [15].

However, generally spin glass models do exhibit long-range correlations, a phe-
nomenon called replica symmetry breaking (see, e.g., [17,25] for proofs that replica sym-
metry breaking occurs in certainmodels). Yet the fundamental hypothesis ofMézard and
Parisi holds that the phase space {±1}Vn always decomposes intoBethe states S1, . . . , S�
in such a way that the conditional distributions μG[ · |Sh] are free from long-range cor-
relations. Formally, this means that if we pick a pair of vertices (vi , v j ) uniformly at
random, then typically the conditional joint distribution μG,vi ,v j [ · |Sh] of the spins of
vi and v j is close to the product distribution μG,vi ( · |Sh)⊗ μG,v j ( · |Sh), i.e.,

1

n2
∑

1≤i< j≤n

∥∥μG,vi ,v j ( · |Sh)− μG,vi ( · |Sh)⊗ μG,v j ( · |Sh)
∥∥
TV
= o(1). (1.3)

In effect, within each Bethe state the ‘ideal’ messages are predicted to be an approxi-
mate fixed point of the BP operator. To be precise, for adjacent vertices u, v we write
μG,v→u[Sh] = μG−u,v(1|Sh) for the conditional probability given Sh that v takes spin
1 in the subgraph of G with u removed. Then we expect that

1

n

n∑

i=1

∑

u∈∂vi

∥∥μG,vi→u[Sh] − μ̂G,vi→u[Sh]
∥∥
TV = o(1) where (μ̂G,v→u[Sh])v∈Vn ,u∈∂v

= BP(μG,v→u[Sh])v∈Vn ,u∈∂v. (1.4)

Further, the cavity method predicts that the Boltzmann marginals can be obtained from
the messages by a formula quite similar to (1.2):

1

n

n∑

i=1

∣∣∣∣∣μG,vi (1|Sh)−
∏
w∈∂vi 1 + 2 tanh(β J )(μG,w[Sh] − 1/2)

∑
σ∈{±1}

∏
w∈∂vi 1 + 2σ tanh(β J )(μG,w[Sh] − 1/2)

∣∣∣∣∣ = o(1).

(1.5)
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The following theorem establishes these conjectures rigorously. We say that G enjoys a
property with high probability (‘w.h.p.’) if the probability that the property holds tends
to one as n →∞.

Theorem 1.1. For any d ≥ 3, β > 0 the following is true. Let L = L(n) → ∞ be
any integer sequence that tends to infinity. Then there exists a decomposition S0 =
S0(G), S1 = S1(G), . . . , S� = S�(G), � = �(G) ≤ L, of the phase space {±1}n into
non-empty sets such that μG(S0) = o(1) and such that with high probability (1.3)–(1.5)
are satisfied for h = 1, . . . , �.

Crucially, and in contrast to much prior work in this area, Theorem 1.1 applies indis-
criminately to all d, β. While it is expected that in the ‘high-temperature’ regime (small
β) there is just a single pure state, it is widely conjectured that for large d and β the
number of pure states is unbounded. Thus, we do not expect that it will be possible to
replace the unbounded L in Theorem 1.1 by a constant. Yet Theorem 1.1 shows that the
number of states can be upper bounded by an arbitrarily slowly growing function L(n).

The free energy. The Bethe states and their associated messages contain all the in-
formation needed to compute the free energy. To be precise, once more following the
ideas of Mézard and Parisi, we can set up a recurrence for computing the difference
E[log Z(G(n + 1, d))]−E[log Z(G(n, d))], which in turn enables us to write a formula
for 1

nE[log Z(G(n, d))] by telescoping. To set up such a recurrence it is necessary to
crack the rigid geometry of the random regular graph open a little bit. To this end, we re-
sort to the idea of creating a few ‘cavities’. Specifically, we delete a few random vertices
and edges from G(n, d). Formally, let ω > 0 and let X,Y be two independent Poisson
variables with mean ω. Moreover, let u1, . . . , uX and v1w1, . . . , vYwY be sequences
of uniformly random vertices and edges of G, chosen independently. With S1, . . . , S�
the decomposition from Theorem 1.1, we introduce weights

zG,h = μG(Sh) ·
X∏

i=1

⎛

⎝
∑

σ∈{±1}

∏

v∈∂ui
1 + 2σ tanh(β Jvui )(μG,v→ui [σ |Sh] − 1/2)

⎞

⎠
−1

·
Y∏

i=1

(
1 + 4 tanh(β Jviwi )(μG,vi→wi [1|Sh] − 1/2)(μG,wi→vi [1|Sh] − 1/2)

)−1

and zG = ∑�
h=1 zG,h . Further, let C (G) be the set of all vertices of degree less than

d in the graph Gn,ω obtained from G by removing u1, . . . , uX and v1w1, . . . , vYwY .
Then with high probability each c ∈ C (G) has degree precisely d − 1, and we write c′
for the erstwhile d’th neighbor of c. Further, with c1, c2, . . . a sequence of uniformly
and independently chosen elements of C (G) and (J i )i≥1 a sequence of independent
standard Gaussians, we let

B(G) = E

⎡

⎣log
�∑

h=1

zG,h
zG

∑

σ∈{±1}

d∏

i=1
1 + 2σ tanh(β J i )(μG,ci→c′i [Sh] − 1/2)

∣∣∣∣G

⎤

⎦

− d

2
E

[
log 1 + 4 tanh(β J1)

�∑

h=1

zG,h
zG
(μG,c1→c′1[1|Sh]

−1/2)(μG,c2→c′2 [1|Sh] − 1/2)

∣∣∣∣G
]
− d

2
log 2.
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The expressionB(G)mirrors our recurrence for the difference E[log Z(G(n +1, d))]−
E[log Z(G(n, d))]. Having created a moderate number of cavities, we insert a new
(n + 1)st vertex, connected to d randomly chosen ‘cavities’. The first summand above
represents the ensuing change in the free energy. But this operation adds d more edges,
whereas a random regular graph with n + 1 vertices only has d/2 more edges than one
with n vertices. Therefore, a correction term is needed. Hence the second summand.

Crucially, the functional B(G) depends only on the pure state decomposition from
Theorem 1.1 and the associated messages. The following theorem shows that this infor-
mation suffices to compute the free energy.

Theorem 1.2. For all d ≥ 3, β > 0 we have

lim
n→∞

1

n
E[log Z(G)] = lim inf

ω→∞ lim inf
n→∞ E[B(G)].

Entirely in line with the ideas developed in [48], Theorem 1.2 establishes a direct
conceptual link between Belief Propagation and the pure state decomposition from The-
orem 1.1 and the free energy for all d, β. Of course, in order to evaluate B(G) it is
necessary to actually determine the pure state decomposition along with the correspond-
ing Belief Propagation messages. The shape of this decomposition, and the practical
difficulty of computing it, will depend significantly on the parameters d, β. Alterna-
tively, as we see next, it is possible to derive a variational formula for the free energy.

A variational formula. The variational formula comes in terms of an optimization prob-
lem on a space that resembles the graphon space from the theory of graph limits [44].
To be precise, let ν : [0, 1]2 → [0, 1], (s, x) �→ νs,x and ν′ : [0, 1]2 → [0, 1],
(s, x) �→ ν′s,x be measurable maps. We define the cut distance between ν, ν′ by

D�(ν, ν′) = inf
ϕ,ϕ′

sup
S,X⊂[0,1]

∣∣∣∣
∫

S

∫

X
νs,x (ω)− ν′ϕ(s),ϕ′(x)(ω)dx ds

∣∣∣∣ ,

where ϕ, ϕ′ : [0, 1] → [0, 1] are measurable maps that preserve the Lebesgue measure
and S, X ⊂ [0, 1] are measurable. Obtain the space K by identifying any ν, ν′ with
D�(ν, ν′) = 0. Then K endowed with the cut distance is a compact metric space. In
addition, writeD for the space of probability measures on K.

The formula for the free energy comes as a variational problem on a subspaceD	 of
D. Let N ,M ≥ 0 be integers. For μ ∈ K we define a randomly perturbed μ∗(N ,M) ∈ K
as follows. Let (xi, j )i, j≥1 be a family of uniform random variables on [0, 1] and let
(J i, j )i, j≥1 be a family of standard Gaussians, all mutually independent. Then for s ∈
[0, 1] we define

zs =
N∏

i=1

⎛

⎝
∑

σ∈{±1}

d∏

j=1
1 + 2 tanh(β J i, j )(μs,xi, j − 1/2)

⎞

⎠

M∏

i=1

(
1 + 4 tanh(β J i+N ,1)(μs,xi+N ,1 − 1/2)(μs,xi+N ,2 − 1/2)

)
.

Further, let

t = t(s) = inf

{
θ ∈ [0, 1] :

∫ θ

0
zudu ≥ s

∫ 1

0
zudu

}
, and μ∗(N ,M)s,x = μt,x ∈ K.
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Now, suppose that π ∈ D is a distribution, and write μπ ∈ K for a sample from π . Then
we let D	 be the set of all π ∈ D such that the perturbed μπ∗(N ,M) has distribution π
again for all N ,M ≥ 0.

The definition of D	, which is an adaptation of the one stated by Panchenko [52]
in the case of models of Erdős-Rényi type, mirrors a natural combinatorial invariance
property of the graph Gn,ω with the random cavities. Indeed, because the numbers X,Y
of deleted edges and vertices are Poisson with a large mean ω, for any fixed N ,M the
random graphGn,ω with X deleted vertices and Y deleted edges is close in total variation
to the one with merely X − N deleted vertices and Y − M deleted edges. Furthermore,
because adding or removing a small number of edges only affects the Boltzmannweights
by a bounded factor, we should expect that the Bethe states of these two factor graphs
remain the same. But, of course, the relative probability masses of the Bethe states
will be different. Accordingly, the weights zs mirror the changes in the weights of the
Bethe states upon re-insertion of N vertices, each with d incident edges, and another
M edges into Gn,ω. Once we take ω and n to infinity, the closeness of the two random
factor graphs in total variation translates into the statement that the distribution of the
messages emitted by the cavities of Gn,ω belongs toD	.

Finally, define a functional B : K→ R by letting

B(μ) = E

[
log

⎛

⎝
∑

σ∈{±1}

∫ 1

0

d∏

i=1
1 + 2σ tanh(β J i, j )(μs,xi, j − 1/2)ds

⎞

⎠

− d

2
log

(
1 + 4 tanh(β J1,1)

∫ 1

0
(μs,x1,1 − 1/2)(μs,x1,2 − 1/2)ds

)]

− d

2
log 2.

We are ready to state the variational formula for the free energy.

Theorem 1.3. Forall d ≥ 3andβ > 0wehave lim
n→∞

1

n
E[log Zβ(G)] = min

π∈D	
E[B(μπ )].

Theorem 1.2 provides the combinatorial interpretation of the optimal π for Theo-
rem 1.3: it is the kernel representing the messages (μG,c→c′ [ · |Sh])c∈C (G),h=1,...,� sent
out by the cavities on the individual Bethe states.

1.3. The hard-core model. As a second application we discuss the hard-core model
on the random regular graph G = G(n, d). This is a probability distribution on the
collection of independents sets of G parametrized by λ > 0, the fugacity. Formally,
encoding subsets of the vertex set by their indicator vectors, we define

μG(σ ) = λ
∑n

i=1 σi

Z(G)

∏

1≤i< j≤n
1− 1{vi ∈ ∂v j }σiσ j (σ ∈ {0, 1}n),

with Z(G) the partition function that turnsμG into a probabilitymeasure. Thus,μG(σ ) =
0 unless the 1-entries of σ form an independent set in G, in which case the weight of σ
is proportional to λ taken to the power of the size of the independent set.

The hard-core model, of great prominence in statistical physics, is of eminent impor-
tance in combinatorics as well because it is closely related to the problem of finding the
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size of the largest independent set of the random regular graph. For d large, this problem
was solved by Ding, Sly, and Sun [34] using an intricate version of the second-moment
method guided by insights from the 1-step replica symmetry breaking (1RSB) version
of the cavity method. But according to the physics predictions [13], the 1RSB method
runs into an inherent obstacle for small d as the model exhibits a continuous phase
transition to a more complicated ‘full replica symmetry breaking’ (full RSB) phase. In
Corollary 1.5 below we will derive a formula for the largest independent set size that
holds for all d and that accommodates the full RSB scenario.

But let us first deal with the free energy of the hard-core model, in and of itself
a well-known problem. To derive a variational formula for the free energy, obtain Kλ
from the space of all measurable functions [0, 1]2 → [0, λ/(1 + λ)] by identifying any
ν, ν′ with D�(ν, ν′) = 0. Then Kλ is a compact. In addition, we let Dλ be the space
of probability measures on Kλ. Similarly to the spin glass problem, the formula for the
free energy comes as a variational problem on a subspace D	λ of Dλ. This subspace
is defined as follows. Let (xi, j )i, j≥1 be a family of independent random variables,
uniformly distributed on [0, 1], and let N ,M ≥ 0 be integers. Then for μ ∈ Kλ we
define a random μ∗(N ,M) ∈ Kλ as follows. For s ∈ [0, 1] let

zs =
N∏

i=1

⎛

⎝1 + λ
d∏

j=1
1− μs,xi, j

⎞

⎠
M∏

i=1

(
1− μs,xi+N ,1μs,xi+N ,2

)
and

t = t(s) = t y inf

{
θ ∈ [0, 1] :

∫ θ

0
zN ,Mμ,u ds ≥ s

∫ 1

0
zN ,Mμ,u du

}

and set

μ∗(N ,M)s,x = μt,x ∈ K.

Further, suppose that π ∈ Dλ is a distribution, and write μπ ∈ Kλ for an element
chosen from π . Then we let D	λ be the set of all π ∈ Dλ such that μπ and μπ∗(N ,M)
are identically distributed for all N ,M ≥ 0. Finally, let B : Kλ → R be the function
defined by

B(μ) = E

⎡

⎣log

⎛

⎝1 + λ
∫ 1

0

d∏

j=1
1− μs,x1, j ds

⎞

⎠− d

2
log

(
1−

∫ 1

0
μs,x1,1μs,x1,2ds

)⎤

⎦ .

The variational formula for the free energy reads as follows.

Theorem 1.4. For all d ≥ 3 and λ > 0 we have

lim
n→∞

1

n
E[log Z(G)] = 
d,λ, with 
d,λ = min

π∈D	
λ

E[B(μπ )].

In the limit λ→∞ the distribution μG,λ concentrates on the maximum independent
sets of the random graph. As an application of Theorem 1.4 we therefore obtain the
following result on the size of the largest independent set, i.e., the independence number
α(G) of the random graph.

Corollary 1.5. For all d ≥ 3 we have lim
n→∞

1

n
E[α(G)] = lim

λ→∞ λ · (
d,λ+1 −
d,λ).
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The formula in Corollary 1.5may not be easy to evaluate; in particular, it may be difficult
to obtain a numerical estimate for a given value of d. Nonetheless, since the proofs show
that the optimalπ in Theorem 1.4 is closely related to the Belief Propagation fixed points
on G, it should be possible to extract combinatorial information about the independent
set problem on random graphs. In any case, Theorem 1.4 and Corollary 1.5 put a lid on
the complexity of the problem.

1.4. Organization. In Sect. 2 we present the main results of the paper, which cover a
broad family of random factor graph models. At the end of Sect. 2 we are in a posi-
tion to discuss related work in detail. Sections 3–6 deliver the proofs of these general
results. Finally, in Sect. 7 we show how Theorems 1.1–1.4 and Corollary 1.5 follow
from the general results in Sect. 2. In addition, we work through several more applica-
tions that have each received considerable attention in their own right, such as the Potts
antiferromagnet.

2. Random Factor Graphs

In this sectionwe present themain results of the paper, which cover a broad class of mod-
els called random factor graphs. The class encompasses many well-studied examples
of problems on random regular graphs or hypergraphs, including the spin glass model
from the previous section. Some other cases, such as the hard-core model or extremal
cuts, can be dealt with by taking limits; we will come to that in Sect. 7.

2.1. Definitions. To define random factor graph models, we consider a finite set� �= ∅

whose elements we call spins. Moreover, for an integer k ≥ 2 we let (�, P) be a
probability space of weight functions ψ : �k → (0, 1). We always denote by ψ an
element of � chosen from the distribution P . The space � may be finite or infinite. In
the latter case we assume that

E[exp(1/ min
σ∈�k

ψ(σ ))] <∞. (2.1)

Furthermore, we always assume that the distribution P is invariant under permutations
of the coordinates. That is, for any ψ ∈ � and for any permutation κ of {1, . . . , k}
the function ψκ : σ �→ ψ(σκ1 , . . . , σκk ) belongs to � as well and ψκ has the same
distribution as ψ . Additionally, let p be a probability distribution on � with p(ω) > 0
for all ω ∈ �. Further, let d ≥ 3, n > 0 be integers and set m = �dn/k�. Let Vn =
{v1, . . . , vn} be a set of variable nodes and let Fm = {a1, . . . , am} be a set of constraint
nodes.

Definition 2.1. Suppose that k divides dn. The random factor graph G = G(n, d, p, P)
consists of

• a weight function ψai ∈ � drawn from the distribution P independently for each
i = 1, . . . ,m and
• an independent uniformly randombijection ∂G : Fm×{1, . . . , k} → Vn×{1, . . . , d}.
The definition resembles the pairing model of random regular graphs [40]. Accord-

ingly, we use standard graph-theoretic terminology. For instance, we call xi ∈ Vn and
a j ∈ Fm adjacent if there exist s ∈ [d] and k ∈ [k] such that ∂G(a j , t) = (xi , s). We also
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use the symbol ∂G(a j , t) for the variable node xi such that ∂G(a j , t) = (xi , s). Further,
we write ∂Gxi for the set of all a j ∈ Fm that xi is adjacent to, and similarly for a j . We
omit the index and just write ∂xi , ∂a j etc. where the reference to the random graph is
apparent. In particular, G induces a bipartite graph on the variable and constraint nodes,
and thereby the shortest path metric on Vn ∪ Fm . Hence, by extension of the above
notation, we write ∂�Gu for the set of all nodes at distance precisely � from u and ∇�Gu
for set of all variable nodes at distance at most � from u.

We let S be the event that G is simple, i.e., that there do not occur multiple edges
between any variable and constraint nodes. Moreover, we denote by G the conditional
distribution of G given S . Let us make a note of the following well known fact.

Fact 2.2 ([40]).WehaveP [G ∈ S ]∼ exp
[−(d − 1)(k − 1)/2− 1{k = 2}(d − 1)2/4

]
.

The random factor graph induces a probability distribution on �Vn . To define it, we
introduce the shorthand ψai (σ ) = ψai (σ (∂(ai , 1)), . . . , σ (∂(ai , k))) for i ∈ [m] and
σ ∈ �Vn . Thus, ψai (σ ) is the weight that constraint node ai gives to σ . Further, we
introduce the total weight

ψG(σ ) =
m∏

i=1
ψai (σ ) (σ ∈ �Vn )

by multiplying up all the weight functions of the constraint nodes. The total weights
ψG(σ ) give rise to the partition function and the Boltzmann distribution:

Z(G) =
∑

τ∈�Vn

ψG(τ )

n∏

i=1
p(σ (xi )), μG(σ ) = ψG(σ )

Z(G)

n∏

i=1
p(σ (xi )) (σ ∈ �Vn ).

(2.2)

Since all the weight functions ψ ∈ � are strictly positive, the Boltzmann distribution is
a well-defined probability measure on the phase space �Vn .

We set out to investigate the structure of the Boltzmann distribution μG( · ) and to
compute the partition function Z(G) or, more specifically, its logarithm, which we call
the free energy. In Sect. 2.2 we will prove the main result of the paper, which provides
that the Boltzmann distribution decomposes into a convex combination of relatively
simple distributions called Bethe states. But before we come to that, let us look at an
example.

Example 2.3 (the k-spin model). Let � = {±1}, let k ≥ 2 be an integer and let β > 0
be a real parameter. The k-spin model is a generalization of the spin glass model from
the previous section, which corresponds to the special case k = 2. The weight functions
of the k-spin model read

ψβ,J (σ1, . . . , σk) = 1

2

(
1 + tanh(β J )

k∏

i=1
σi

)
(J ∈ R).

Thus,� = {ψβ,J : J ∈ R}, and the distribution P on� is definedby choosing J from the
standard Gaussian distribution. This distribution clearly satisfies (2.1). Geometrically,
this model lives on a generalized Bethe lattice where all variable nodes, representing
the sites, have degree d, while all constraint nodes, representing the interactions, have
degree k.
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The hard-core model from Sect. 1.3 cannot be expressed as a factor graph model
directly because of the requirement that all weight functions be strictly positive. But it is
possible to arrive at the hard-core model by taking suitable limits; see Sect. 7 for details.

2.2. Bethe states. The Belief Propagation message-passing scheme provides the main-
stay of the physicists’ non-rigorous cavity method. Our first main result vindicates its
use by showing that the Boltzmann distribution of any random factor graph model can
be described in terms of Belief Propagation fixed points.

To introduce Belief Propagation let M (G) be the message space, consisting of all
families

ν = (νv→a, νa→v)v∈Vn ,a∈Fn :v∈∂Ga

of probability measures νv→a, νa→v on �. For adjacent a, v we interpret νv→a as a
‘message’ from v to a, and νa→v as a message in the reverse direction. We equipM (G)
with the metric

D1(ν, ν
′) = 1

n

∑

v,a:v∈∂Ga

∥∥νv→a − ν′v→a

∥∥
TV +

∥∥νa→v − ν′a→v
∥∥
TV .

Belief Propagation is the operator BP :M (G)→M (G) that maps ν to ν̂ defined by

ν̂v→a(σ ) =
p(σ )

∏
b∈∂v\a νb→v(σ )∑

τ∈� p(τ )
∏

b∈∂v\a νb→v(τ )
,

ν̂a→v(σ ) =
∑
τ∈�∂a 1{τv = σ }ψa(τ )

∏
w∈∂a\v νw→a(τw)∑

τ∈�∂a ψa(τ )
∏
w∈∂a\v νw→a(τw)

. (2.3)

Further, a point ν ∈M (G) is an ε-Belief Propagation fixed point if D1(ν,BP(ν)) < ε.
For a thorough discussion and motivation of Belief Propagation we refer to [46]. The

punch line is that on acyclic factor graphs a Belief Propagation fixed point computation
provably yields the marginals of the Boltzmann distribution as well as the free energy.
Since the random graph G contains only very few short cycles, one may therefore expect
that Belief Propagation rendersmeaningful information on random factor graphs aswell,
provided that the Boltzmann distribution is free of long-range correlations.

Alas, in general long-range correlations do occur. Nevertheless, we will prove that
the Boltzmann distribution still decomposes into a convex combination of relatively few
‘Bethe states’, characterized by Belief Propagation fixed points. To be precise, suppose
that ∅ �= S ⊂ �Vn is an event. Let v be a variable node and let a ∈ ∂Gv. Then we
define μG,v→a( · |S) as the conditional marginal of v given S under the Boltzmann
distribution of the factor graph G− a obtained from G by removing the constraint node
a. In formulas, with 〈 · , μG( · |S)〉 denoting the expectation with respect to σ drawn
from μG( · |S), we have

μG,v→a(σ | S) = 〈1{σ v = σ }/ψa(σ ), μG( · |S)〉
〈1/ψa(σ ), μG( · |S)〉 (σ ∈ �). (2.4)

Similarly, we let μG,a→v( · |S) be the conditional marginal of v under the Boltzmann
distribution of the factor graph obtained from G by removing all constraint nodes b ∈
∂Gv\a and disregarding the prior of v:
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μG,a→v(σ | S) =
〈
1{σ v = σ }/(p(σ )∏b∈∂v\a ψb(σ )), μG( · |S)

〉

〈
1/(p(σ v)

∏
b∈∂v\a ψb(σ )), μG( · |S)

〉 (σ ∈ �). (2.5)

We refer to μG,v→a( · |S), μG,a→v( · |S) as the standard messages given S.

Definition 2.4. Let ε > 0. An event S ⊂ �n is an ε-Bethe state of G if the following
two conditions hold.

BS1: the standard messages given S are an ε-Belief Propagation fixed point.
BS2: if �, �′ ≤ 1/ε and if I ⊂ Vn , J ⊂ Fm are independent uniformly random sets of

sizes |I | = �, |J | = �′, then for every σ ∈ �Vn we have

E

∣∣∣∣
〈
1{∀v ∈ I ∪ ∂ J ∪ ∂2 I : σ v = σv}, μG( · |S)

〉

−
∏

v∈I

p(σv)
∏

a∈∂v ψa(σ )
∏
w∈∂a\v μw→a(σw|S)∑

χ∈� p(χ)
∏

a∈∂v
∑
τ∈�∂a ψa(τ )

∏
w∈∂a\v μw→a(τw|S) ·

∏

a∈∂ J

ψa(σ )
∏
w∈∂a μw→a(σw|S)∑

τ∈�∂a ψa(τ )
∏
w∈∂a μw→a(τw|S)

∣∣∣∣ < ε. (2.6)

Thus, on aBethe state the standardmessages form an approximate Belief Propagation
fixed point. Furthermore, locally around a bunch of randomly chosen variable and con-
straint nodes the Boltzmann distribution is characterized by the standard messages. In
particular, setting � = 0 and �′ = 1 in BS2, we see that the conditional joint distribution
μG,∂a( · |S) of the variables around a typical random constraint node a reads

μG,∂a(σ | S) = ψa(σ )
∏
w∈∂a μw→a(σw|S)∑

τ∈�∂a ψa(τ )
∏
w∈∂a μw→a(τw|S) + O(ε) (σ ∈ �∂a). (2.7)

Additionally, setting � = 1 and �′ = 0, we find that the local distribution around a typical
variable node v, i.e., the distributionμG,v∪∂2v( · |S) induced on the second neighborhood
of v, reads

μG,v∪∂2v(σ | S) =
p(σv)

∏
a∈∂v ψa(σ )

∏
w∈∂a μw→a(σw|S)∑

χ∈� p(χ)
∏

a∈∂v
∑
τ∈�∂a ψa(τ )

∏
w∈∂a μw→a(τw|S)

+ O(ε) (σ ∈ �v∪∂2v). (2.8)

Thus, for most variable nodes v the conditional Boltzmann marginalμG,v( · |S) satisfies

μG,v(σ | S) = p(σ )
∏

a∈∂v μa→v(σ |S)∑
χ∈� p(χ)

∏
a∈∂v μa→v(χ |S) + O(ε) (σ ∈ �). (2.9)

Apart from the conditioning on S, the formulas (2.7)–(2.9) coincide with the ones known
in the acyclic case [46].

In addition, (2.6) implies that if we pick a few variable and/or constraint nodes
randomly, then the joint distribution of their neighborhoods approximately factorizes.
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Applied to � = 2, �′ = 0, this means that once we condition on S, the joint distribution
of two randomly chosen variable nodes is close to a product distribution:

1

n2
∑

1≤i< j≤n
E

∥∥∥μG,vi ,v j ( · |S)− μG,vi ( · |S)⊗ μG,v j ( · |S)
∥∥∥
TV
= O(ε); (2.10)

in statistical physics jargon, the conditional distribution μG( · |S) is replica symmetric.
Confirming the picture sketched by the cavity method and vindicating the use of

Belief Propagation for the study of the Boltzmann distribution, the following theorem
shows that w.h.p. the Boltzmann distribution of a random factor graph decomposes into
a relatively small number of Bethe states.

Theorem 2.5. For any function L = L(n)→ ∞ there exists ε = ε(n)→ 0 such that
the following is true. There exists a decomposition S0 = S0(G), S1 = S1(G), . . . , S� =
S�(G), � = �(G) ≤ L, of �n into non-empty sets such that μG(S0) ≤ ε such that with
high probability S1, . . . , S� ⊂ �n are ε-Bethe states. The same statement holds with G
replaced by G.

An important feature of Theorem 2.5 is that the upper bound L on the size of the
Bethe state decomposition can be an arbitrarily slowly growing function of n. Thus, the
Gibbs measure can generally be decomposed into relatively few Bethe states, within
which long-range correlations are negligible and where short-range correlations are
characterized by Belief Propagation.

2.3. The free energy. Apart from the structure of the Boltzmann distribution, a second
key challenge is the computation of the free energy. More specifically, arguably the
single most important quantity associated with a random factor graph model is the free
energy density

lim
n→∞

1

n
E

[
log Z(G)

]
. (2.11)

Of course, it comes as no surprise that computing (2.11) generally poses a formidable
challenge. In fact, even the existence of the limit remains an unresolved problem in
several interesting cases.

The next theorem provides a formula for (and en passant establishes the existence of)
the limit (2.11) in terms of the Bethe state decomposition from Theorem 2.5 for a broad
class of models. We merely require a certain ‘convexity condition’. This condition can
be stated neatly in terms of a space that resembles the graphon space from combinatorics
[44]. Specifically, letK be the space of all measurable maps [0, 1]2 →P(�) modulo
equality (Lebesgue-)almost everywhere. We call these maps strong kernels. For (s, x) ∈
[0, 1] and μ ∈ K we let μs,x ∈P(�) denote the function value of μ at (s, x). Further,
for μ,μ′ ∈ K we define the cut distance

D�(μ,μ′) = inf
ϕ,ϕ′

sup
S,X⊂[0,1]
ω∈�

∣∣∣∣
∫

S

∫

X
μs,x (ω)− μ′ϕ(s),ϕ′(x)(ω)dx ds

∣∣∣∣ , (2.12)

where the infimum is over all measurable ϕ, ϕ′ : [0, 1] → [0, 1] that preserve the
Lebesgue measure and where the supremum runs over all measurable S, X ⊂ [0, 1].
Strictly speaking, D�( · , · ) is a pre-metric (as possibly D�(μ, ν) = 0 even though
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μ �= ν). We therefore let K be the metric space where any two μ, ν with D�(μ, ν) = 0
are identified. Then K is a compact Polish space [39]. Additionally, we write D for the
space of all probability distributions on K.

Crucially, the convexity assumption that we require comes solely in terms of the
distribution P on the set � of weight functions. Namely, let x = (xi )i≥1 be a sequence
of independent uniformly random points in [0, 1], chosen independently of ψ ∈ �.
Writing E [ · ] for the expectation on x,ψ , we make the following assumption.

For all μ,μ′ ∈ K and for every integer � ≥ 1,

E

⎡

⎢⎣

⎛

⎝1−
∑

σ∈�k

ψ(σ )

∫ 1

0

k∏

i=1
μs,xi (σi )ds

⎞

⎠
�
⎤

⎥⎦ + (k − 1)E

⎡

⎢⎣

⎛

⎝1−
∑

σ∈�k

ψ(σ )

∫ 1

0

k∏

i=1
μ′s,xi (σi )ds

⎞

⎠
�
⎤

⎥⎦

≥
k∑

h=1
E

⎡

⎢⎣

⎛

⎝1−
∑

σ∈�k

ψ(σ )

∫ 1

0
μs,xh (σh)

∏

i∈[k]\{h}
μ′s,xi (σi )ds

⎞

⎠
�
⎤

⎥⎦ .

(POS)

Wewill see in Sect. 7 thatPOS is easily verified for several interestingmodels, including
the spin glass model from Sect. 1.

To obtain the formula for the free energy, we will represent the Bethe state decom-
position of the random factor graph by a point in K. Specifically, let X,Y be random
variables with distribution Po(ω) for an integer ω > 0, mutually independent and inde-
pendent of G. Then with S1, . . . , S� the decomposition promised by Theorem 2.5 we
introduce for i = 1, . . . , �,

žG,i = μG(Si ) ·
X∏

i=1

⎛

⎝
∑

χ∈�
p(χ)

∏

a∈∂vi

∑

τ∈�∂a
1{τvi = χ}ψa(τ )

∏

w∈∂a\vi
μw→a(τw|Si )

⎞

⎠
−1

·
Y∏

i=1

⎛

⎝
∑

τ∈�∂ai
ψai (τ )

∏

w∈∂ai
μw→ai (τw|Si )

⎞

⎠
−1
, (2.13)

and we let žG =
∑�

i=1 žG,i . It will emerge that combinatorially žG,i/ žG represents the
probability mass of the Bethe state Si in the factor graph G′ where we remove the first
Y constraint nodes a1, . . . , aY as well as the first X variable nodes v1, . . . , vX along
with their adjacent constraint nodes. While this removal operation has no discernible
impact on the free energy (so long as ω = o(n)), it enables us to set up a recurrence for
computing this quantity.

The recurrence comes in terms of the messages sent out by those variable nodes that
are left with degree d − 1 after the removal operation. We thus set up a kernel that
captures these messages. Specifically, let vh1, . . . , vht be the variable nodes of degree
d − 1 in the factor graph G′ and let b1, . . . , bt be their G-neighbors that got deleted.
Then we define the kernel μ̌G,X,Y : [0, 1]2 →P(�) by letting

μ̌G,X,Y :(s, x) �→
t∑

i=1

�∑

j=1
1

⎧
⎨

⎩t − 1 ≤ x < t,
∑

h< j

žG,h < s zG ≤
∑

h≤ j

žG,h

⎫
⎬

⎭μG,vhi→bi ( · |S j ).

(2.14)

Recalling that G, X,Y are random, we write π̌n,ω ∈ D for the distribution of μ̌G,X,Y .
Analogously, we write π̌n,ω,S for the distribution of μ̌G,X,Y defined for the simple
random factor graph.
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Finally, we introduce a functional on the space D that encodes the recurrence for
computing the free energy from the Bethe state decomposition. Namely, let (xi, j )i, j≥1
be a family of random variables that are uniform on [0, 1], let (hi )i≥1 be a family of
random variables that are uniform on {1, . . . , k}, let (ψ i )i≥1 be a sequence of samples
from P , and let μπ ∈ K be a sample from π ∈ D, all mutually independent; then

B(π) = E

[
log

∫ 1

0

∑

σ∈�
p(σ )

d∏

i=1

∑

τ∈�k :
τhi=σ

ψ i (τ )
∏

j �=hi
μπs,xi, j (τ j )ds

− d(1− k−1) log
∫ 1

0

∑

τ∈�k

ψ1(τ )

k∏

j=1
μπs,x1, j (τ j )ds

]
. (2.15)

We obtain the following expression for the free energy.

Theorem 2.6. Assume that condition POS is satisfied. Then

lim
n→∞

1

n
E

[
log Z(G)

] = lim inf
ω→∞ lim inf

n→∞ B(π̌n,ω),

lim
n→∞

1

n
E

[
log Z(G)

] = lim inf
ω→∞ lim inf

n→∞ B(π̌n,ω,S ).

In particular, the limit on the left hand side exists, and it can be computed from the Bethe
state decomposition.

2.4. A variational formula. We proceed to state a variational formula for the free energy
of the random factor graph models akin to the one from Theorem 1.3 for the spin glass
model. Namely, we express the limit (2.11) variationally as the infimum of B(π) over
π chosen from a certain subspaceD	 ⊂ D. The definition ofD	 is an adaptation to the
Bethe lattice of the invariance property that Panchenko [52] put forward in the case of
the Erdős-Rényi model.

To define the subspace D	 let μ ∈ K , let s ∈ [0, 1] and let N ,M ≥ 0 be integers.
We introduce the random variable

z(s) =
N∏

i=1

⎡

⎣
∑

σ∈�
p(σ )

d∏

j=1

∑

τ∈�k

1{τhi = σ }ψdi+ j (τ )
∏

h �=hi
μs,xk(di+ j)+h (τh)

⎤

⎦

·
M∏

i=1

⎡

⎣
∑

τ∈�k

ψdN+i (τ )

k∏

j=1
μs,xdk(N+1)+ j (τ j )

⎤

⎦ . (2.16)

Further, let

t = t(s) = inf

{
θ ∈ [0, 1] :

∫ θ

0
z(u)du ≥ s

∫ 1

0
z(u)du

}
and μ∗(N ,M)s,x = μt,x .

(2.17)

Thus, for each μ ∈ K we obtain a random μ∗(N ,M) ∈ K. Further, given π ∈ D we
can apply this operation to a randomly chosen kernel μπ ∈ K, thus obtaining a random
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kernel μπ∗(N ,M). We denote the distribution of μπ∗(N ,M) by π∗(N ,M). Now, let D	 be
the set of all densities π ∈ D such that π∗(N ,M) = π for all N ,M ≥ 0. Then we obtain
the following self-contained formula for the free energy.

Theorem 2.7. Assume that POS holds. Then

lim
n→∞

1

n
E

[
log Z(G)

] = lim
n→∞

1

n
E

[
log Z(G)

] = min
π∈D	

B(π).

Admittedly, the variational formula may not be easy to evaluate. But Theorem 2.7
places a lid on the complexity of the problem, and Theorem 2.6 provides an explicit
combinatorial interpretation of the minimizer in terms of Belief Propagation fixed points
and Bethe states.

2.5. Discussion and related work. Over the past two decades an enormous amount
of research, based on both rigorous and non-rigorous techniques, has been devoted to
random factor graph models. Much of this work has been sparked by the cavity method
advanced in the original contribution ofMézard and Parisi [48]. A survey of this literature
up until about 2008 can be found in [46]. More recently models of Bayesian inference
problems such as the stochastic block model have received a great deal of attention as
well; this literature is surveyed in [1,50,58].

Rigorous work on random factor graphs and the cavity method can broadly be split
into two categories. First, contributions that investigate physics predictions on specific
models. Many of these contributions, particularly the earlier ones, rely on ‘classical’
techniques such as the second moment method, albeit frequently with physics-inspired
twists. Examples includework on the k-SAT threshold [3,6,20,21,32],which culminated
in the proof of the k-SAT threshold conjecture for large k [33], the Potts model and
the random graph coloring problem [4,11,16,26] or the hard-core model [27,34]. Some
recentwork is basedon thepowerful but technically demanding idea of ‘spatial coupling’,
which has led to important results in, e.g., coding theory [37] and random constraint
satisfaction problems [2]. A second line ofwork focused on themathematical vindication
of the cavitymethod in general,with applications to specificmodels of interest. Examples
include work on the role of spatial mixing [7,28–30], the use of the interpolation method
[14,43,55], phase transitions in inference problems [12,19], and contributions based on
the asymptotic analysis of the Boltzmann distribution such as the influential work of
Panchenko [52] as well as [10,15]. The present paper belongs to this second category.

In the following we discuss the main results and methods of the paper and how they
compare to prior mathematical research. Subsequently we compare the present work
with the physics intuition and discuss directions for future research.

Mathematical work. We regardTheorem2.5 as themain result of the paper. The theorem
confirms in great generality one of the key assumptions behind the cavity method and
explains the success of Belief Propagation as a device for analyzing random regular
factor graph models. Indeed, the existence of a Bethe state decomposition has been
conjectured explicitly, e.g., by Mézard and Montanari [46, Chapter 19]; see also Dembo
and Montanari [28].

In a prior paper [23] we constructed a Bethe state decomposition for random factor
graph models of Erdős-Rényi type, where the constraint nodes independently choose k-
tuples of adjacent variable nodes. While we will be able to use some of the general tools
developed in that work, the main argument breaks in the case of the Bethe lattice due to
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its rigid geometry. Indeed, the construction of the Bethe state decomposition hinges on
coupling arguments involving, e.g., a coupling of a factor graph with n variable and m
constraint nodes and another one with parameters n′ and m′ such that n = n′ + O(1),
m = m′ + O(1). Due to the Poisson degree distribution and the Stein-Chen property,
such arguments are pretty straightforward in the Erdős-Rényi case. One might say that
the Erdős-Rényi graph resembles a gentle climbing wall with footholds supplied by the
irregularity of the Poisson degree distribution. By contrast, the Bethe lattice with its
regular degree makes for a smooth cliff. As a consequence, the Bethe lattice requires
new ideas, leading to a rather subtle but ultimately elegant argument. The upshot is that
this proof, which we present in Sect. 4, can be expected to generalize to other random
graph models with given degrees. Apart from the appeal of such lattice-like models
from a physics perspective, these models play a vital role, e.g., in coding theory, where
a suitably chosen degree sequence is apt to greatly boost performance [56].

Similarly, the variational formula for the free energy provided by Theorem 2.7 is a
generalization and adaptation of the formula established by Panchenko [52] for models
of Erdős-Rényi type with spins � = {±1}. Panchenko’s proof relies on two ingredi-
ents: an interpolation argument and a coupling argument. So does ours. But while the
interpolation argument, an adaptation of the technique of Franz and Leone [35], goes
through without too much trouble, the coupling argument does not. Once more the rigid-
ity of the Bethe lattice poses substantial challenges that require subtle new arguments.
A further, albeit relatively minor extension is that the present work applies to relatively
general models with two or more spins, subject only to the condition POS. A further
similarity between Panchenko’s work and ours is the embedding of discrete Boltzmann
distributions into a compact metric space, which enables us to pick convergent subse-
quences. While Panchenko resorts to the Aldous-Hoover representation, here we use the
cut metric and the associated kernel space, which is convenient to link the combinato-
rial representation of the measures in terms of messages directly with the free energy
formula. That the Aldous-Hoover representation is closely related to graph limits is, of
course, a well known fact [31].

Furthermore, Bayati, Gamarnik and Tetali [14] applied the interpolation method to
factor graph models, including ones with regular degrees, to establish the existence of
the limit limn→∞ 1

nE[log Z(G)] in certain cases via a super-additivity argument. In the
process they also used arguments based on ‘cavities’, i.e., the removal of a small but
linear number of vertices from the graph; a similar trick was used in [22] as well. But
here, particularly in the construction of the Bethe state decomposition, we need to tread
much more carefully. In particular, while removal of a small linear number of vertices
does not shift the free energy too much, here we can only afford the creation of a very
small number of cavities in order to avoid a distortion of the Boltzmann distribution, an
extremely volatile object.

Theorem 2.6, which expresses the free energy density in terms of the Bethe state
decomposition, is a synthesis of Theorems 2.5 and 2.7. The proof shows that the free
energy can be expressed in terms of a particular distribution on kernels [0, 1]2 →P(�),
namely the one that encodes the Bethe state decomposition of the random factor graph
or, more specifically, the associated Belief Propagation messages. No corresponding
result was previously known even in the conceptually simpler Erdős-Rényi case.

Apart from the interpolation method and coupling arguments, the proofs of Theo-
rems 2.5–2.7 rely on some of the techniques that we developed in [10,15,19,24], par-
ticularly the cut metric and its ramifications. The cut metric, which we apply to kernel
representations of probability distributions, was originally developed in the context of
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the regularity method [36] and the theory of graph limits in combinatorics [44]. Here we
use the cut metric and certain assorted results, such as the ‘pinning lemma’ (Lemma 3.15
below) from [19] as tools, e.g., in the construction of the Bethe state decomposition.

While the present paper is concerned with diluted models where each node has
a (fixed) bounded number of neighbors, there is also a substantial literature on fully
connected models. The prime example, of course, is the Sherrington-Kirkpatrick model.
The monographs of Panchenko [54] and Talagrand [57] provide an overview of this
literature. In particular, the TAP equations, the (simplified) fixed point equations that
correspond to the Belief Propagation equations in the fully connected case, have been
established in several cases [8].

In Sect. 7 we work out several application of the general results to specific models,
such as the spin glass model from Sect. 1. Pointers to related work on the specific
problems can be found there.

The physics perspective. The seminal work ofMézard and Parisi [48] marks the starting
point of a substantial body of physics work. Highlights include the Survey Propagation
algorithm and precise predictions on phase transitions, including satisfiability thresholds
in combinatorial problems [41,47,49].

The results provided by Theorems 2.5–2.7 are perfectly in line with the physics
predictions. But we should comment on a subtle point that is apt to cause confusion.
Namely, it has been pointed out that within the replica symmetric phase of certain
models the support of the Boltzmann distribution may decompose into an exponentially
large number of tiny ‘clusters’ [41,47], a phenomenon called ‘dynamic replica symmetry
breaking’. Indeed, it has been conjectured that each of these tiny clusters induces a Bethe
state [46]; for the special case of the random graph coloring problem, this can be verified
rigorously [11]. At first glance this proliferation of Bethe states may appear to contradict
Theorem 2.5, where the number of Bethe states is upper-bounded by an arbitrarily slowly
growing function L(n). Yet the Bethe state decomposition is not unique, and despite the
abundance of tiny clusters, μG itself is replica symmetric (i.e., condition (2.10) holds
for S = �n) throughout the dynamic RSB phase. In effect, Theorem 2.5 would render
just a single Bethe state that comprises all of the tiny clusters. By contrast, beyond the
dynamic RSB phase, within the so-called condensed phase, Theorem 2.5 would yield
a non-trivial decomposition. The existence of a condensed phase has been established
rigorously in several examples [17,19].

The variational formula for the free energy furnished by Theorem 2.7 is in line with
the physics work, which does, however, provide additional clues as to the structure of the
minimizer of the functionalB( · ). Specifically, three different scenarios are expected to
occur, depending on themodel and the choice of its parameters. First, the replica symmet-
ric scenario with a single (or a bounded number of) Bethe states. Second, the so-called
‘one-step replica symmetry breaking’ scenario, where there are an unbounded number of
‘independent’ Bethe states. Third, the ‘full replica symmetry breaking’ scenario, where
the Bethe states form a hierarchical structure; see [46] for a detailed discussion. Clearly,
in order to better evaluate the variational formula it would be very valuable to establish
this additional structural information rigorously; in the Erdős-Rényi case first attempts
have been undertaken in [53].

2.6. Organization. In Sect. 3 we introduce the necessary pieces of notation and state
some basic results that we will need. Then in Sect. 3.3 we revisit the cut metric. While
much of what we need on this subject already appears in earlier papers, there are a
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few general preparations that we need to make and that we carry out in that section.
Subsequently Sect. 4 deals with the proof of Theorem 2.5. In Sects. 5 and 6we then prove
Theorem 2.7 about the variational formula for the free energy. Sect. 6 also contains the
proof of Theorem 2.6. Finally, in Sect. 7 we work through a few applications, including
the spin glass and hard-core models from Sect. 1.

3. Preliminaries

3.1. Basics. For an integer � ≥ 1 we use the shorthand [�] = {1, . . . , �}. Furthermore,
the symbols O( · ),�( · ), . . . refer to the limit n → ∞ by default. To indicate asymp-
toticswith respect to another variable K tending to infinity, wewrite OK ( · ),�K ( · ), etc.
Further, where set operations involve singletons, we usually omit braces. For instance,
if x ∈ X , then we just write X\x rather than X\ {x}.

For a finite set X we let P(X ) be the set of all probability distributions on X ,
endowed with the total variation distance. More generally, if (X ,A) is a measurable
space, then P(X ) = P(X ,A) denotes the set of all probability measures on this
space. Further, for probability measures π, π ′ ∈ P(X ) we let �(π, π ′) be the set of
all couplings of π, π ′. Thus, γ ∈ �(π, π ′) is a probability distribution onX ×X with
marginals π, π ′.

Suppose that X is a finite set, that n ≥ 1 is an integer and that μ ∈P(X n). Then
we denote by σμ, σ 1,μ, σ 2,μ, . . . a sequence of independent samples from μ. We omit
the superscript μ where it is evident from the context. Further, if f : (X n)� → R is
a function, then we write

〈
f (σ 1, . . . , σ �), μ

〉
for the expectation of f with respect to

independent samples from μ; thus,

〈
f (σ 1, . . . , σ �), μ

〉
=

∑

σ 1,...,σ �∈X n

f (σ 1, . . . , σ �)
�∏

i=1
μ(σ i ).

Suppose that �, V �= ∅ are finite sets. For a distribution μ ∈ P(�V ) and a set
I ⊂ V we denote by μI the joint distribution of the coordinates I . That is,

μI (σ ) =
∑

τ∈�n

1{∀i ∈ I : τi = σi }μ(τ) (I ⊂ V, σ ∈ �I ).

For σ ∈ �I we use the shorthand μ(σ) = μI (σ ). Moreover, if I = {i1, . . . , il} we
usually write μi1,...,il instead of μ{i1,...,il }. Additionally, if I ⊂ V and τ ∈ �V , then we
let τI = (τi )i∈I be the restriction of τ to I .

We keep the notation from Sect. 2; in particular, � continues to denote a finite set
of spins, p is a probability distribution on �, � is a measurable space of functions
�k → (0, 1), and P is a probability distribution on �. In addition throughout the paper
we denote by

xi , x̂i , si , xi, j , x′i, j , x′′i, j , x̂i, j (i, j ≥ 1)

uniformly distributed random variables with values in [0, 1]. Additionally,
ψ,ψ i ,ψ i, j ,ψ

′
i, j ,ψ

′′
i, j , ψ̂ i, j (i, j ≥ 1)

denote elements of � drawn from the distribution P . Further,

hi , hi, j , h′i , ĥi, j (i, j ≥ 1)
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are uniformly distributed random variables with values in [k]. All of the above random
variables are mutually independent as well as independently of any other sources of
randomness. These random variables yield random functions that will play an important
role: for i ≥ 1 we let

ϕi : �dk → R, σ �→
∑

χ∈�
p(χ)

d∏

j=1
1{σk( j−1)+hi, j = χ}ψ i, j (σ ),

ϕ̂i : �dk → R, σ �→
∑

χ∈�
p(χ)

d∏

j=1
1{σk( j−1)+ĥi, j = χ}ψ̂ i, j (σ ).

3.2. Factor graphs. In Sect. 2 we already introduced the random factor graph model
G(n, d, p, P). To facilitate the proofs we need the following abstract definition.

Definition 3.1. Suppose that (X ,A) is a measurable space. An X -factor graph G =
(V, F, (∂a)a∈F , (ψa)a∈F , π) consists of
• a finite set V of variable nodes,
• a finite set F of constraint nodes,
• a set ∂a ⊂ V for each a ∈ F ,
• a function ψa :X ∂a → [0,∞) for each a ∈ F and
• a probability measure p onX V , called the prior.

A factor graph induces a bipartite graph on V ∪ F , where x ∈ V is adjacent to a ∈ F
iff v ∈ ∂a. Accordingly, for a variable node v we let ∂v ⊂ F be the set of adjacent
constraint nodes (i.e., a ∈ ∂v iff v ∈ ∂a). The bipartite graph defines a metric on V ∪ F ,
the shortest path metric. For a variable or constraint node u we let ∂�u = ∂�Gu be the
set of all nodes at distance precisely � from u. Moreover, ∇�u = V ∩ (u ∪⋃

i≤� ∂ i u)
denotes the set of all variable nodes at distance no more than � from u.

Further, for an assignment σ ∈ �V and a ∈ F we use the notationψa(σ ) = ψa(σ∂a)

and we define

ψG(σ ) =
∏

a∈F
ψa(σ∂a) and Z(G) =

∫

X V
ψG(σ )dp(σ ).

Providing that Z(G) > 0,we introduce a probabilitymeasureμG onX V , theBoltzmann
distribution, by letting

dμG(σ ) = ψG(σ )

Z(G)
dp(σ ).

Mostly the factor graphs that we deal with will have a finite space X = � and the
prior pwill be the product measure p = ⊗

v∈V pv . In this case we introduce the standard
messages given an event S ⊂ �V as in Sect. 2: for a constraint node a and v ∈ ∂a we
let

μG,v→a(σ | S) = 〈1{σ v = σ }/ψa(σ ), μG( · |S)〉
〈1/ψa(σ ), μG( · |S)〉 (σ ∈ �), (3.1)

μG,a→v(σ | S) =
〈
1{σ v = σ }/(pv(σ )∏b∈∂v\a ψb(σ )), μG( · |S)

〉

〈
1/(pv(σ v)

∏
b∈∂v\a ψb(σ )), μG( · |S)

〉 (σ ∈ �). (3.2)
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In the case that S = �V is the entire phase space, we omit the conditioning from the
notation and just write μG,v→a and μG,a→v , respectively.

3.3. The cut metric revisited. The cut metric, defined in (2.12), plays a key role in the
proofs of the main results. In this section we summarize a few basic facts about the cut
metric. Although some have been proved in prior work, we will need to provide a few
extensions and adaptations for our purposes. In addition to the continuous version from
(2.12), we also need a discrete version of the cut metric, which we present in Sect. 3.3.2.

3.3.1. The continuous cut metric. We remember that K denotes the space of all mea-
surable maps [0, 1]2 → P(�), up to equality almost everywhere; we call such maps
strong kernels. The cut distance (2.12) induces a pre-metric on this space [39].Moreover,
on the space K obtained by identifying points at cut distance 0 the cut distance yields a
metric. The elements of K are called weak kernels. We drop the attribute and just speak
of kernels where there is no danger of confusion.

Proposition 3.2 ([24]). Endowed with the cut distance K is a compact Polish space.

We continue to writeD for the space of all probability measures on K. This space is
endowed with the weak topology. Since K is a compact Polish space, so is D. Hence,
there is a natural metric onD that induces the weak topology, the L1-Wasserstein metric.
We take license to denote this metric byD�( · , · ) as well. Thus, recalling that �(π, π ′)
is the set of all couplings of π, π ′ ∈ D, we have

D�(π, π ′) = inf

{∫

K×K
D�(μ,μ′) dγ (μ,μ′) : γ ∈ �(π, π ′)

}
.

For π ∈ D we let μπ ∈ K denote a sample. We just write μ where π is apparent.
By comparison to other metrics on the space of measurable functions [0, 1]2 →

P(�) the cut metric is extremely weak; this is highlighted by the compactness of the
space K provided by Proposition 3.2. Yet the cut metric is sufficiently strong to ensure
that certain functions that will be of vital interest to us are continuous. Indeed, suppose
that m, n > 0 are integers and that f : �m×n → R is a function. Then for μ ∈ K we
define the random variable

〈 f, μ〉 =
∑

σ∈�m×n
f (σ )

∫ 1

0
· · ·

∫ 1

0

m∏

i=1

n∏

j=1
μsi ,x j (σi, j )ds1 · · · dsm .

Because we average out the si and the xi are uniform, the random variables 〈 f, μ〉 and
〈 f, ν〉 are identically distributed ifD�(μ, ν) = 0. Thus, we may safely write 〈 f, μ〉 for
μ ∈ K.

Lemma 3.3. For any f : �m×n → R, � ≥ 1 the map μ ∈ K �→ E
[〈 f, μ〉�] is

continuous with respect to the cut metric.

The proof of Lemma 3.3 can be found in the appendix. For a probability distribution
π ∈ D we let 〈 f, π〉 be the random variable 〈 f,μπ 〉, with μπ chosen independently of
the xi . Since D carries the weak topology, Lemma 3.3 implies

Corollary 3.4. For any f : �m×n → R, � ≥ 1 the map π ∈ D �→ E
[〈 f, π〉�] is

continuous.
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We recall the functional B( · ) from (2.15).

Corollary 3.5. The map π ∈ D �→ B(π) is continuous.

Proof. Thanks to the tail bound (2.1), we can approximate the logarithms in (2.15) by
polynomials. Therefore, the assertion follows from Corollary 3.4. ��

The set D	 of π ∈ D that are invariant under the ∗(N ,M)-operation is a closed
subset of D. To see this, and to interpret the ∗(N ,M)-operation nicely in terms of
operations that are continuous under the cut metric, we introduce the following general
transformation. Suppose that f : �N → (0,∞) is a function and that μ ∈ K . Then
we define a random f ∗ μ ∈ K as follows. Letting

zs = z f,μs =
∑

σ∈�N

f (σ )
N∏

i=1
μs,x̂i (σi ), z = z f,μ =

∫ 1

0
z f,μs ds,

we introduce

t = t f,μs = inf

{
θ ∈ [0, 1] :

∫ θ

0
zudu ≥ s z

}
.

Now, f ∗ μs,x = μt,x . We emphasize that f ∗ μ ∈ K is random, dependent on
x̂1, . . . , x̂N . The kernel is characterized by the identity

∫ 1

0

∫ 1

0
gs,x · f ∗ μs,x (ω)dsdx = 1

z

∑

σ∈�N

f (σ )
∫ 1

0

∫ 1

0
gs,x · μs,x (ω)zsdsdx

for all g : [0, 1]2 → [0, 1], ω ∈ �.
Further, since the x̂i are uniform, we have D�( f ∗ μ, f ∗ ν) = 0 if D�(μ, ν) = 0.
Hence, the ∗-operation extends to weak kernels. Furthermore, for a distribution π we
let f ∗ π be the distribution of f ∗ μπ .

Lemma 3.6. For any function f : �k → (0,∞) the map K → D, μ �→ f ∗ μ is
continuous.

The proof of Lemma 3.6 can be found in the appendix.
The ∗(N ,M)-operation is an application of the above ∗-operation to a particular

random function f . To define this random function, we need one more piece of notation.
Namely, for functions f : �M×N → R, g : �M×L → R we define

f ⊕ g : �M×(N+L) → R, σ �→ f
(
(σi, j )i∈[M], j∈[N ]

) · g (
(σi, j+N )i∈[M], j∈[L]

)
.

In words, we stick the first N ‘columns’ of σ into f and the last L columns into g and
multiply the results. Recalling the random functions ψ̂ i , ϕ̂i from Sect. 3.1, we obtain
the following.

Lemma 3.7. For any μ ∈ K the random μ∗(N ,M) ∈ K is distributed as(⊕N
i=1 ϕ̂i ⊕

⊕M
i=1 ψ̂ i

)
∗ μ.

Proof. This is immediate from the construction of μ∗(N ,M). ��
Corollary 3.8. For any N ,M the map μ ∈ K �→ μ∗(N ,M) is continuous with respect to
the cut metric.
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Proof. SinceD carries the weak topology, which is induced by the Wasserstein metric,
the assertion follows from Lemmas 3.6–3.7 and (2.1). ��
As a further immediate consequence of Lemma 3.7 we obtain

Corollary 3.9. A distribution π ∈ D belongs to D	 if and only if π =(⊕N
i=1 ϕ̂i ⊕

⊕M
i=1 ψ̂ i

)
∗ π for all N ,M.

In particular, Corollaries 3.8 and 3.9 imply that the map π �→ π∗(N ,M) is continuous
for all N ,M ≥ 0. Consequently, D	 is a closed subset ofD.

3.3.2. The discrete version. Apart from the ‘continuous’ installment of the cut metric,
defined on kernels, we also need a discrete variant, defined on probability measures on
discrete sets. To be precise, with� �= ∅ our finite set of spins and V another finite set of
size n ≥ 1, we define a metric��( · , · ) onP(�V ) as follows. Recalling that �(μ, ν)
is the set of all couplings of probability measures μ, ν on �V , we let

��(μ, ν) = 1

n
min

γ∈�(μ,ν) max
I⊂V

B⊂�V×�V

ω∈�

∣∣∣∣∣∣

∑

i∈I

∑

(σ,τ )∈B
γ (σ, τ )(1{σi = ω} − 1{τi = ω})

∣∣∣∣∣∣

for μ, ν ∈P(�V ). (3.3)

Fact 3.10. ([23]) ��( · , · ) is a metric on P(�V ).

We refer to ��( · , · ) as the discrete cut metric.
Suppose that V is a finite set. A measure μ ∈P(�V ) can be represented by a point

μ̇ ∈ K . Indeed, assume without loss that V = [n] and that � = [q]. Then the set �V

can be ordered lexicographically as σ (1), . . . , σ (q
n). We define μ̇ ∈ K by letting

μ̇s,x =
n∑

i=1

qn∑

j=1
1{(i − 1)/n ≤ x < i/n}1

⎧
⎨

⎩
∑

h< j

μ(σ (h)) ≤ s <
∑

h≤ j

μ(σ (h))

⎫
⎬

⎭ δσ ( j)i
.

Comparing (3.3) with the definition (2.12) of the continuous cut metric, we see that

D�(μ̇, ν̇) ≤ ��(μ, ν) (μ, ν ∈ �V ). (3.4)

The discrete cut metric encodes a great deal of information about the discrete mea-
sures. A particularly important case occurs when a measure μ ∈ P(�V ) is close to a
product measure. To be precise, we say that μ is ε-extremal if ��(μ,

⊗
v∈V μv) < ε.

In words, μ is close to the product measure with the same marginals. In addition,
μ ∈P(�V ) is (ε, �)-symmetric if

1

|V |�
∑

v1,...,v�∈V

∥∥μv1,...,v� − μv1 ⊗ · · · ⊗ μv�
∥∥
TV < ε. (3.5)

Informally, if we choose � coordinates randomly, then their joint distribution typically
‘nearly’ factorizes. The following statement shows that these concepts are essentially
equivalent, up to a moderate loss in the parameters.
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Proposition 3.11 ([23]). For any � of size 1 < |�| < ∞, any 0 < ε < 1/2 and any
� ≥ 2 there exists n0 > 0 such that for all n > n0 and all μ ∈ P(�V ) the following
two statements hold.

(i) If μ is (ε/9)3-symmetric, then μ is ε-extremal.
(ii) If μ is ε3/(128|�|)4�-extremal, then μ is (ε, �)-symmetric.

It is an elementary observation that probability measures that are close in the discrete
cut metric cannot have very different marginals. Formally, we have the following.

Lemma 3.12. Forany twoprobabilitymeasuresμ, ν on�V wehave
∑
v∈V ‖μv − νv‖TV≤ 2|�|��(μ, ν).

Proof. There exists ω ∈ � such that

∑

v∈V
(μv(ω)− νv(ω)) ∨ 0 ≥ 1

2|�|
∑

v∈V
‖μv − νv‖TV. (3.6)

Let I = {i ∈ V : μi (ω) ≥ νi (ω)} and B = �V × �V . Then for any coupling γ ∈
�(μ, ν),

∑

i∈I

∑

(σ,τ )∈B
γ (σ, τ ) (1{σi = ω} − 1{τi = ω}) =

∑

i∈V
(μi (ω)− νi (ω)) ∨ 0. (3.7)

Combining (3.6) and (3.7) completes the proof. ��
The converse bound, that close marginals imply closeness in the cut metric, holds for
extremal measures.

Lemma 3.13. For any two ε-extremal μ, ν ∈ P(�V ) we have D�(μ, ν) ≤ 2ε +∑
v∈V ‖μv − νv‖TV.

Proof. Assume without loss that V = [n] and let μ̄ = ⊗n
i=1 μi and ν̄ = ⊗n

i=1 νi .
Since μ, ν are ε-extremal, we have

��(μ, μ̄) < ε, ��(ν, ν̄) < ε. (3.8)

Letγi ∈P(�×�)be anoptimal couplingofμi , νi , i.e.,‖μi − νi‖TV = ∑
σ �=τ γi (σ, τ ).

Then γ = ⊗n
i=1 γi is a coupling of μ̄, ν̄. Further, for any I ⊂ [n], B ⊂ �n×�n, ω ∈ �

we have
∣∣∣∣∣∣

∑

i∈I

∑

(σ,τ )∈B
γ (σ, τ ) (1{σi = ω} − 1{τi = ω})

∣∣∣∣∣∣

≤
∑

i∈I

∑

(σ,τ )∈B
γ (σ, τ )1{σi �= τi } ≤

n∑

i=1
‖μi − νi‖TV.

Hence, ��(μ̄, ν̄) ≤
∑n

i=1 ‖μi − νi‖TV, and thus the assertion follows from (3.8) and
the triangle inequality. ��
We also make a note of the following enhanced triangle inequality.
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Lemma 3.14 ([23]). Suppose that μ(1), ν(1), . . . , μ(�), ν(�) are probability measures on
�V and that u1, . . . , u� ≥ 0 are numbers such that

∑�
i=1 ui = 1. Then

��

(
�∑

i=1
uiμ

(i),

�∑

i=1
uiν

(i)

)
≤

�∑

i=1
ui��(μ(i), ν(i)).

Finally, we come to an important fact, intimately related to the Szemerédi regularity
lemma from combinatorics. Namely, any probability distribution μ ∈ P(�V ) is close
in the cut metric to a mixture of a ‘small’ number of product measures. To state this
results precisely, suppose that I ⊂ V and that σ ∈ �I . Let

SI,σ =
{
τ ∈ �V : τI = σ

}

be the sub-cube of�V where the entries of the coordinates in I coincide with σ . Further,
assuming that μ ∈P(�V ) and μ(SI,σ ) > 0, we let

μI,σ = μ[ · |SI,σ ] (3.9)

be the corresponding conditional distribution of μ. (If μ(SI,σ ) = 0, then we agree that
μI,σ is the uniform distribution on SI,σ .) The following key lemma shows that μI,σ is
likely ε-symmetric for suitably random I, σ .

Lemma 3.15 ([19, Lemma 3.5]). For any set � of size 1 < |�| < ∞ and any ε > 0
there exist n0 > 0 and a random variable 0 < θ ≤ 2ε−4 log |�| such that for all n > n0
and all μ ∈ P(�V ) the following holds. Let I ⊂ V be a uniformly random subset of
size θ and choose σ ∈ �I from μI . Then P

[
μI ,σ is ε-symmetric

]
> 1− ε.

We can apply Lemma 3.15 multiple times to obtain a decomposition of the set �V

into sub-cubes S1, . . . , S� such that μ[ · |Si ] is ε-symmetric. To obtain these sub-cubes
we just choose the set I randomly as in Lemma 3.15 and let σ range over all |�|θ possible
assignments of I . We then obtain the following version of the regularity lemma.

Corollary 3.16 ([10]). For any finite set � �= ∅ and any ε > 0 there exist L , n0 such
that for all n > n0 the following is true. For any μ ∈ P(�V ) there exists a partition
of �V into pairwise disjoint sets S0, . . . , S�, � ≤ L, such that μ(S0) < ε and such that
μ( · |Si ) is ε-symmetric for each 1 ≤ i ≤ �.

3.3.3. Contiguity. Suppose that � �= ∅ is a finite set and let c ≥ 1. A probability
distribution ν on�n is c-contiguous with respect to another probability distribution μ if

ν(σ ) ≤ cμ(σ) for all σ ∈ �n .

Moreover, μ, ν are mutually c-contiguous if each is c-contiguous with respect to the
other.

Lemma 3.17. For any c ≥ 1, δ > 0 there exists ε > 0 such that for all large enough n
the following is true. Assume that μ ∈P(�n) is ε-extremal and that ν is c-contiguous
with respect to μ. Then ν is δ-extremal and ��(μ, ν) < δ.
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Proof. Choose 0 < ε � η � ζ � δ and assume that n > n0(ε) is sufficiently large
and thatμ is ε-extremal. Applying Corollary 3.16 to the measure ν, we obtain a partition
S0, S1, . . . , S� of the cube �n into pairwise disjoint sets such that ν(S0) < η and such
that ν( · |Si ) is η-symmetric for every i = 1, . . . , �. Moreover, � is bounded by a number
L(η,�) > 0 that depends on η and |�| only.

Suppose that for every 1 ≤ i ≤ � with ν(Si ) ≥ η/� we have
n∑

j=1
‖ν j ( · |Si )− μ j‖TV ≤ ζn. (3.10)

Then Lemma 3.13 yields ��(ν( · |Si ), μ) ≤ 2η + ζ . Hence, Lemma 3.14 shows that

��(ν, μ) ≤ 4η + ζ < δ. (3.11)

Further, (3.10) implies that
∑n

j=1 ‖ν j − μ j‖TV ≤ ζ +2η. Hence, letting μ̄ = ⊗n
i=1 μi ,

ν̄ = ⊗n
i=1 νi and applying Lemma 3.13 a second time, we obtain ��(μ̄, ν̄) ≤ ζ + 2η.

Thus, invoking the ε-extremality of μ and (3.11), we conclude that

��(ν, ν̄) ≤ ��(ν, μ) +��(μ, μ̄) +��(μ̄, ν̄) ≤ (4η + ζ ) + ε + (ζ + 2η) < δ. (3.12)
In summary, if (3.10) is satisfied, then (3.11) and (3.12) yield ��(ν, μ) < δ and
��(ν, ν̄) < δ, as claimed.

Thus, we are left to establish (3.10). Assume for contradiction that there is 1 ≤ i ≤ �
with ν(Si ) ≥ η/� and ∑n

j=1 ‖ν j ( · |Si )− μ j‖TV > ζn. Then there exist J ⊂ [n] and
ω ∈ � such that

∑
j∈J ν j (ω|Si )− μ j (ω) > ζn/ (2|�|). In other words, the random

variable X (σ ) = ∑
j∈J 1{σ j = ω} satisfies

〈X, ν( · |Si )〉 − 〈X, μ〉 > ζn/ (2|�|) . (3.13)

Due to the η-symmetry of ν( · |Si ) and the ε-symmetry of μ, the second moments work
out as

〈X (X − 1), ν( · |Si )〉 =
∑

j, j ′∈J : j �= j ′

〈
1{σ j = σ j ′ = ω}, ν( · |Si )

〉 ≤ ηn + 〈X, ν( · |Si )〉2 ,

〈X (X − 1), μ〉 ≤ εn + 〈X, μ〉2 . (3.14)

Combining (3.13) and (3.14) with Chebyshev’s inequality and keeping in mind that
ε � η � ζ , we conclude that the event B = {X (σ ) ≥ 〈X, μ〉 + ζ/(4|�|)} satisfies

ν(B|Si ) ≥ 3/4, μ(B) ≤ ε1/4. (3.15)

However, if ν is c-contiguous with respect to μ, then (3.15) yields

cε1/4 ≥ cμ(B) ≥ ν(B) = ν(B|Si )ν(Si ) ≥ 3η/(4�) ≥ 3η/(4L(η,�)),

which contradicts the choice of the parameters ε, η. ��
Corollary 3.18. For any δ > 0 there exists ε > 0 such that the following is true. Suppose
that μ is ε-extremal and that S ⊂ �n is an event such that μ(S) ≥ δ. Then μ( · |S) is
δ-extremal and ��(μ( · |S), μ) < δ.
Proof. Since μ(σ |S) ≤ μ(σ)/μ(S) for every σ , the conditional distribution μ( · |S)
is 1/ε-contiguous with respect to μ. Thus, the assertion follows from Lemma 3.17
immediately. ��
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4. Bethe State Decompositions

In this sectionweproveTheorem2.5.Before getting into the details,whymightweexpect
the statement of the theorem tobe correct? In order to construct the desireddecomposition
of the phase space �Vn we could attempt to apply Lemma 3.15. The lemma shows that
if we randomly pick a set I ⊂ Vn of a moderate size of, say, I = O(log log n), we will
likely obtain a decomposition (S I ,σ )σ∈�I such that (2.10) is satisfied for most of its
parts. Formally, Lemma 3.15 guarantees that with high probability,

1

n2
∑

1≤i< j≤n

〈∥∥∥μG,vi ,v j ( · |S I ,σ )− μG,vi ( · |S I ,σ )⊗ μG,v j ( · |S I ,σ )
∥∥∥
TV
, μG

〉
= o(1).

(4.1)

Proposition 3.11 extends (4.1) from pairwise independence to independence of bounded
numbers of randomly chosen variable nodes. Thus, the pinning operation eliminates
long-range correlations.

But why should short-range correlations be described by Belief Propagation? Recall-
ing the standard messages from (2.4)–(2.5), Belief Propagation (2.3) asserts that with
high probability,

μG,v→a(σ | S I ,σ ) ∝
∏

b∈∂v\a

∑

τ∈�∂b
1 {τx = σ }ψb(τ )

∏

y∈∂
μG,y→b(τy | S I ,σ ) + o(1).

(4.2)

This last formula expresses the notion that once we remove x and its adjacent constraints
∂x , the spins assigned to the variables y at distance two from x in G are (essentially)
stochastically independent. This is very much in line with the absence of long-range
correlations: in G − (x ∪ ∂x), the variables y likely are far apart from one another as G
contains only few short cycles. (For a more detailed discussion of the intuition behind
Belief Propagation we refer to [46, Chapter 14].)

Yet (4.2) does not follow from (4.1) directly. Indeed, (4.1) merely states that the joint
two randomly chosen variables of G are likely approximately independent. But being
secondneighbors of x , the y variables in (4.2) are anything but a uniformly random family
of variable nodes. For random factor graph models of Erdős-Rényi type, this difficulty
is easily overcome [23] because the random factor graph obtained by removing x ∪ ∂x
has essentially the same distribution as the original model (of order n− 1). In effect, the
original factor graph is distributed nearly the same as the factor graph of order n − 1
plus a new variable plus adjacent constraints connected to a uniformly random family of
variable nodes, and (4.1) applies to these random attachments. Of course, this trick does
notwork on theBethe lattice,where the variables y stand out as they have degree less than
d. To cope with this difficulty, we will consider an auxiliary model in which a random
number of variable nodes along with their neighborhoods are removed. Moreover, we
will apply Lemma 3.15 not merely to the entire original factor graph G but also to the
variable nodes that have degree d − 1 after the removal operation, which will enable us
to establish the Belief Propagation equations on the reduced factor graph. Finally, we
will use the decorrelation property (4.1) together with the tools from Sect. 3.3 to stitch
the factor graph back up, i.e., to get back to the original model with no variables and
constraints removed. Let us now carry out this strategy in detail.
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4.1. The construction. We aim to show that the Boltzmann distribution μG is well
approximated by a collection of no more than L Belief Propagation fixed points for
an arbitrarily slowly growing L = L(n). As (4.2) shows, for a given variable node
v the corresponding fixed point equations involve the messages sent by the constraint
a ∈ ∂v, which in turn are determined by the messages sent out by the variables w
at distance precisely two from v. Thus, to express a single application of the Belief
Propagation operator we require information about the variable nodes at distance two
from v. Therefore, in addition to the Boltzmann distribution μG we will consider an
enhanced measure μ̂G that captures the joint distribution of the second neighborhoods.

To be precise, let G = (V, F, (∂a)a∈F , (ψa)a∈F , p⊗n) be a factor graph. Then its
Boltzmann distribution μG ‘lives’ on the space �G = �V . In addition, recalling that
∇2
Gv consists of all variable nodes at distance at most two from v, consider the space

�̂G =
∏

v∈V
�∇2

Gv

of second neighborhood assignments, whose elements we denote as τ = (τ (v,

w))v∈V,w∈∇2
Gv
. The factor graph G induces an embedding

�G → �̂G , σ �→ σ̂ = (σ̂ (v,w))v∈V,w∈∇2
Gv
, where σ̂ (x, y) = σ(y).

Thus, μG induces a probability distribution μ̂G on �̂G . For a variable v we denote by
μ̂G,v ∈P(�∇2

Gv) the marginal distribution of μ̂G on the v-factor of �̂G .
The enhanced measure μ̂G will play a vital role in the construction of the Bethe

state decomposition. Indeed, by comparison to the Erdős-Rényi case, the rigid geometry
of the random regular graph causes significant difficulties. More precisely, while the
Belief Propagation messages are defined in terms of removing one or a few constraints,
such operations clearly destroy regularity. Hence, we need to create a bit of wiggling
room. To this end, we remove some variable nodes along with their adjacent constraint
nodes, thereby leaving a few variable nodes with degree d − 1 rather than d. We refer to
these variables as ‘cavities’. Clearly, this operation loses some information and would
therefore by itself not suffice to prove Theorem 2.5. However, what saves the day is that
the enhanced measure μ̂G contains the extra information needed to stitch the graph back
up without losing track of the Bethe decomposition.

Unsurprisingly, the construction is subtle and involves several steps. It requires a
number of carefully chosen parameters. Specifically, given a slowly diverging mono-
tonically increasing positive integer sequence L = L(n)→ ∞ as in Theorem 2.5, we
choose a sequence 0 < ξ = ξ(L) = o(1) that tends to zero monotonically sufficiently
slowly, a further sequence ω = ω(ξ) → ∞ that tends to infinity monotonically suffi-
ciently slowly, as well as sequences 0 < ϑ = ϑ(ω) = o(1), 0 < ζ = ζ(ϑ) = o(1),
0 < β = β(ϑ) = o(1), 0 < α = α(β) = o(1), 0 < η = η(α) = o(1) and
0 < ε = ε(η) = o(1) that tend monotonically to zero slowly enough. In summary, the
pecking order reads

1� 1/ε � 1/η � 1/α � 1/β � 1/ζ � 1/ϑ � ω � 1/ξ � L � log log n,
(4.3)

and we always assume tacitly that n > n0 is sufficiently large.
We are ready to begin the construction. Let G∗ be the random factor graph obtained

from G as follows. Let θ∗ be a copy of the random variable θ ξ promised by Lemma 3.15;
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θ∗ is independent of G. Further, let U∗ be a random set of θ∗ variable nodes of G and
draw σ ∗ from μG independently of θ∗ and U∗. Now, obtain G∗ from G by changing
the prior distribution to

pG∗(σ ) =
∏

u∈U∗∪∂2U∗

1{σu = σ ∗ u}
∏

v �∈U∗∪∂2U∗

p(σv). (4.4)

Additionally, let ω be a random variable with distribution Po(ω) ∧ 2ω, independent of
everything else, and letW = {vn−ω+1, . . . , vn}. Finally, obtain G′∗ from G∗ by removing
the variable nodes in W along with their adjacent constraint nodes.

Thus, in G′∗ we pin the spins of the variable nodes in U∗ and their neighbors to the
values observed under σ ∗, which is drawn from μG . Additionally, we create cavities by
removing the last ω variable nodes along with their adjacent constraints. The following
lemma shows that the removal of the variable nodes in W does not shift the marginals
of the enhanced Boltzmann distribution much.

Lemma 4.1. With probability at least 1 − ω−10 over the choice of θ∗, σ ∗ and G the
following statements are true.

(i) both μG∗ and μ̂G∗ are ξ
1/4-extremal.

(ii) we have
∑
v∈Vn\(W∪∂2W ) ‖μ̂G∗,v − μ̂G′∗,v‖TV < ϑn.

Proof. By construction, μ̂G∗ is identical to the measure obtained through the pinning
procedure of Lemma 3.15 applied to the U∗-components of the space �̂G . Hence,
Lemma 3.15 and Proposition 3.11 imply that μ̂G∗ is ξ

1/4-extremal with probability at
least 1− ξ1/4. Since μG∗ is a projection of μ̂G∗ , we obtain (i).

Further, let V = Vn\(W ∪ ∂2W). If μ̂G∗ is ξ1/4-extremal, then by the definition
of the cut metric the distribution μ̂G∗,V induced on the neighborhoods of V is 2ξ1/4-
extremal, because |V | ≥ n/2. Additionally, there is C = C(ω) such that μ̂G∗,V is
C-contiguous with respect to μ̂G′∗,V with probability at least 1 − ω−11. This follows
from (2.1), because G′∗ is obtained from G∗ by removing no more than dω constraint
nodes. Therefore, (ii) follows from (i) and Lemma 3.17, provided that ξ, ω, ϑ are chosen
appropriately in accordance with (4.3). ��

The following proposition, which establishes the Belief Propagation equations on
G′∗, constitutes the main technical step of the proof.

Proposition 4.2. With probability at least 1− α9, G′∗ enjoys the following properties.

(i) the standard messages (μG′∗,v→a, μG′∗,a→v)v∈V (G′∗),a∈∂v form an α9d-Belief Prop-
agation fixed point.

(ii) we have

∑

v∈V (G′∗)

∑

σ∈�∇2v

∣∣∣∣∣μG′∗(σ )

− p(σv)
∏

a∈∂v ψa(σ )
∏
w∈∂a μG′∗,w→a(σw)∑

χ∈� p(χ)
∏

a∈∂v
∑
τ∈�∂a :τv=χ ψa(τ )

∏
w∈∂a μG′∗,w→a(τw)

∣∣∣∣∣ < α9dn.

Before we prove Proposition 4.2 in Sect. 4.2, let us indicate how the theorem follows.
As a final preparation we need the following basic fact.
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Lemma 4.3. For any factor graph G, for any variable node v, any S ⊂ ∂v and any
σ ∈ � we have

μG−S,v(σ ) =
〈
1{σ v = σ }/∏

a∈S ψa(σ ), μG,v∪∂2v
〉

〈
1/

∏
a∈S ψa(σ ), μG,v∪∂2v

〉 .

Proof. The partition function works out to be

Z(G − S) =
∑

σ∈�V (G)

∏

a∈F(G)\S
ψa(σ∂a)

∏

v∈V (G)
pG,v(σv)

=
∑

σ∈�V (G)

∏
a∈F(G) ψa(σ∂a)

∏
v∈V (G) pG,v(σv)∏

a∈S ψa(σ∂a)
= Z(G)

〈
1/

∏

a∈S
ψa, μG

〉
.

Hence, for any τ ∈ �V (G),

μG−S(τ ) = 1

Z(G − S)

∏

a∈F(G)\S
ψa(τ∂a)

∏

v∈V (G)
pG,v(σv)

= Z(G)

Z(G − S)

1

Z(G)

∏
a∈F(G) ψa(τ∂a)

∏
v∈V (G) pG,v(σv)∏

a∈S ψa(τ∂a)

= μG(τ )〈
1/

∏
a∈S ψa, μG

〉∏
a∈S ψa(τ∂a)

,

and the average in the denominator involves variables in v ∪ ∂2v only. ��
Proof of Theorem 2.5. For any assignment χ ∈ X = ∏

v∈U∗ �
∇2v of the variables in

U∗ and their neighborhoods let

S(χ) = {σ ∈ �̂G : ∀v ∈ U∗, w ∈ ∇2v : σ(v,w) = χ(v,w)}.

Then (S(χ))χ∈X is a decomposition of �̂G into no more than q(1+d(k−1))θ∗ sub-cubes,
corresponding to the neighborhood assignments of the θ∗ variable nodes in U∗. As
Lemma 3.15 shows, by choosing the functions from (4.3) appropriatelywe can guarantee
that q(1+d(k−1))θ∗ ≤ L . We are going to show that the decomposition (S(χ))χ meets the
requirements of the theorem w.h.p.

For χ ∈ X let G∗[χ ] be the random factor graph G∗ given that σ ∗(w) = χ(v,w)
for all v ∈ U∗ and allw ∈ ∇2v. Also let G′∗[χ ] be the factor graph obtained from G∗[χ ]
by removing the variables in W along with their adjacent constraint nodes. Further, let
Eχ be the event that the following four conditions are satisfied.

E1: Both μG∗[χ ] and μ̂G∗[χ ] are ξ1/8-extremal.
E2: We have

∑

v∈Vn\(W∪∂2W )

∥∥∥μ̂G∗[χ ],v − μ̂G′∗[χ ],v
∥∥∥
TV
< ϑn. (4.5)
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E3: On G′∗[χ ] the standard messages form an α9d -BP fixed point and
∑

v �∈W∪∂2W

∑

σ∈�∇2v∣∣∣∣∣μG′∗[χ ](σ )−
p(σv)

∏
a∈∂v ψa(σ )

∏
w∈∂a μG′∗[χ ],w→a(σw)∑

s∈� p(s)
∏

a∈∂v
∑
τ∈�∂a :τv=s ψa(τ )

∏
w∈∂a μG′∗[χ ],w→a(τw)

∣∣∣∣∣

< α9dn. (4.6)

E4: There are nomore than α10dn constraint nodes a in G such that minσ∈�k ψa(σ ) ≤
α1/4, nor are there more than ε20n constraint nodes a such that minσ∈�k ψa(σ ) ≤
ε.

Then (2.1), Lemma 4.1 and Proposition 4.2 yield E

[∑
χ μG(χ)(1− 1Eχ ) | E4

]
≤ α8.

Thus, Markov’s inequality shows

P

[
∑

χ

μG(χ)(1− 1Eχ ) ≥ α4
]
≤ ε4. (4.7)

Hence, we are left to argue that S(χ) is an ε-Bethe state of G if the event Eχ occurs.
As a first step, we are going to show that the standard messages of G′∗[χ ], G∗[χ ] are
close: given Eχ , we claim

∑

σ∈�

∑

v �∈W∪∂2W

∑

a∈∂v

∣∣∣μG∗[χ ],v→a(σ )− μG′∗[χ ],v→a(σ )

∣∣∣

+
∣∣∣μG∗[χ ],a→v(σ )− μG′∗[χ ],a→v(σ )

∣∣∣

< α8dn. (4.8)

To see this, recall that μG∗[χ ],v→a is the marginal of v in the factor graph G∗[χ ] − a
and that μG∗[χ ],v→a is the marginal of v in the factor graph obtained from G∗[χ ] by
removing all b ∈ ∂v\a and disregarding the prior. Hence, Lemma 4.3 shows that

μG∗[χ ],v→a(σ ) =
〈
1{σ v = σ }/ψa(σ ), μG∗[χ ],∇2v

〉
〈
1/ψa(σ ), μG∗[χ ],∇2v

〉 , (4.9)

μG∗[χ ],a→v(σ ) =
〈
1{σ v = σ }/(p(σ )∏b∈∂v\a ψb(σ )), μG∗[χ ],∇2v

〉

〈
1/(p(σ v)

∏
b∈∂v\a ψb(σ )), μG∗[χ ],∇2v

〉 , (4.10)

and analogously for G′∗[χ ]. Providing ϑ � αd , we obtain (4.8) from (4.5), (4.9), (4.10)
and E2, E4. Further, the estimate (4.8) and the fact that the standard messages of G′∗[χ ]
are an α9d -BP fixed point imply that the standard messages of G∗[χ ] are an η-BP fixed
point. Thus, we have established BS1.

In order to prove BS2, we estimate the derivatives of a term like in (4.6) as follows:
∣∣∣∣∣

∂

∂νw(σ )

p(σv)
∏

a∈∂v ψa(σ )
∏
w∈∂a νw(σ (w))∑

χ∈� p(χ)
∏

a∈∂v
∑
τ∈�∂a ψa(τ )

∏
w∈∂a νw(τ(w))

∣∣∣∣∣

≤ 1

mina∈∂v,τ∈�∂a ψa(τ )2d
.
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Hence, (4.5), (4.6), (4.8) and E4 and the bound |W ∪ ∂2W | = O(log n) yield

∑

v∈Vn

∑

σ∈�∇2v

∣∣∣∣∣μG∗[χ](σ )−
p(σv)

∏
a∈∂v ψa(σ )

∏
w∈∂a μG∗[χ ],w→a(σ (w))∑

χ∈� p(χ)
∏

a∈∂v
∑
τ∈�∂a ψa(τ )

∏
w∈∂a μG∗[χ ],w→a(τ (w))

∣∣∣∣∣

< α2dn. (4.11)

Additionally, we claim that

∑

b∈Fm

∑

σ∈�∂b

∣∣∣∣μG∗[χ ](σ )−
ψb(σ )

∏
w∈∂b μG∗[χ ],w→b(σ (w))∑

τ∈�∂b ψb(τ )
∏
w∈∂b μG∗[χ ],w→b(τ (w))

∣∣∣∣ < ε
9n. (4.12)

To see this, suppose that b satisfies minσ∈�k ψb(σ ) ≥ ε, that b ∈ ∂v for a variable node
v such that

∑

σ∈�∇2v

∣∣∣∣∣μG∗[χ ](σ )−
p(σv)

∏
a∈∂v ψa(σ )

∏
w∈∂a\v μG∗[χ ],w→a(σw)∑

κ∈� p(κ)
∏

a∈∂v
∑
τ∈�∂a ψa(τ )1{τv = κ}∏w∈∂a\v μG∗[χ ],w→a(τw)

∣∣∣∣∣

< αd (4.13)

and that

∑

σ∈�

∣∣∣∣∣μG∗[χ],v→b(σ )−
p(σ )

∏
a∈∂v\b μG∗[χ],a→v(σ )∑

κ∈� p(κ)
∏

a∈∂v\b μG∗[χ],a→v(κ)

∣∣∣∣∣ < η1/4, (4.14)

∑

a∈∂v

∑

σ∈�

∣∣∣∣∣μG∗[χ],a→v(σ )−
∑
τ∈�∂a 1{τv = σ }ψa(τ )

∏
w∈∂a\v μG∗[χ],w→a(τw)∑

τ∈�∂a ψa(τ )
∏
w∈∂a\v μG∗[χ],w→a(τw)

∣∣∣∣∣ < η1/4.

(4.15)

All but ε10n constraint nodes b enjoy these properties, due to E4, (4.11) and because the
standard messages of G∗[χ ] form an η-BP fixed point. For any such b and any σ ∈ �∂b
we obtain

μG∗[χ ],∂b(σ ) =
∑

τ∈�∇2v
1{τ∂b = σ }μG∗[χ ],∇2v(τ )

(4.13)=
∑

τ∈�∇2v

1{τ∂b = σ }p(σv)∏a∈∂v ψa(τ )
∏
w∈∂a\v μG∗[χ ],w→a(τw)∑

κ∈�
∏

a∈∂v
∑
τ ′∈�∂a ψa(τ ′)1{τ ′v = κ}

∏
w∈∂a\v μG∗[χ ],w→a(τ ′w)

+ O(αd )

(4.15)= p(σv)ψb(σ )
∏
w∈∂b\v μG∗[χ ],w→b(σw)

∏
a∈∂v\b μG∗[χ ],a→v(σv)

∑
τ∈�∂a ψa(τ )

∏
w∈∂a\v μG∗[χ ],w→a(τw)∑

κ∈�∂b p(κv)ψb(κ)
∏
w∈∂b\v μG∗[χ ],w→b(κw)

∏
a∈∂v\b μG∗[χ ],a→v(κ)

∑
τ∈�∂a ψa(τ )

∏
w∈∂a\v μG∗[χ ],w→a(τw)

+ O(αd )

= p(σv)ψb(σ )
∏
w∈∂b\v μG∗[χ ],w→b(σw)

∏
a∈∂v\b μG∗[χ ],a→v(σv)∑

κ∈�∂b p(κv)ψb(κ)
∏
w∈∂b\v μG∗[χ ],w→b(κw)

∏
a∈∂v\b μG∗[χ ],a→v(κ)

+ O(αd )

(4.14)= ψb(σ )
∏
w∈∂b μG∗[χ ],w→b(σw)∑

κ∈�∂b ψb(κ)
∏
w∈∂b μG∗[χ ],w→b(κw)

+ O(αd ),

whence (4.12) follows by averaging on b.
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Finally, BS2 follows from (4.11), (4.12), the ξ1/8-extremality of μ̂G∗[χ ]. Indeed, let
I, J be random sets of at most 1/ε variable/constraint nodes. For each b ∈ J pick a
variable node vb ∈ ∂b. Because μ̂G∗[χ ] is ξ1/8-extremal, Proposition 3.11 yields

E

∥∥∥∥∥∥
μ̂G∗[χ ],I∪{vb:b∈J} −

⊗

v∈I∪{vb:b∈J}
μ̂G∗[χ ],v

∥∥∥∥∥∥
TV

< α4. (4.16)

Furthermore, (4.11) and (4.12) imply that with probability at least 1−ε2 over the choice
of I, J we have

∀b ∈ J :
∑

σ∈�∂b

∣∣∣∣μG∗[χ ](σ )−
ψb(σ )

∏
w∈∂b μG∗[χ ],w→b(σ (w))∑

τ∈�∂b ψb(τ )
∏
w∈∂b μG∗[χ ],w→b(τ (w))

∣∣∣∣ < ε
3,

∀v ∈ I :
∑

σ∈�∇2v

∣∣∣∣∣μG∗[χ ](σ )−
p(σv)

∏
a∈∂v ψa(σ )

∏
w∈∂a μG∗[χ ],w→a(σ (w))∑

χ∈� p(χ)
∏

a∈∂v
∑
τ∈�∂a ψa(τ )

∏
w∈∂a μG∗[χ ],w→a(τ (w))

∣∣∣∣∣

< ε3.

If these estimates hold, then for any configuration σ ∈ �I∪∂ J∪∂2 I we obtain
∣∣∣∣

⊗

v∈I∪{vb:b∈J}
μ̂G∗[χ ],v(σ )

−
∏

v∈I

p(σv)
∏

a∈∂v ψa(σ )
∏
w∈∂a\v μG∗[χ ],w→a(σw)∑

χ∈� p(χ)
∏

a∈∂v
∑
τ∈�∂a ψa(τ )

∏
w∈∂a\v μG∗[χ ],w→a(τw)

·

·
∏

a∈J

ψa(σ )
∏
w∈∂a μG∗[χ ],w→a(σw)∑

τ∈�∂a ψa(τ )
∏
w∈∂a μG∗[χ ],w→a(τw)

∣∣∣∣ <
ε

2
. (4.17)

Thus, BS2 follows from (4.16) and (4.17).
Finally, to obtain the Bethe state decomposition of the simple factor graph G, we

merely recall that P [G ∈ S ] = �(1) by Fact 2.2. Hence, the claim about G follows
immediately form the statement for G and Bayes’ rule. ��

4.2. Proof of Proposition 4.2. By construction, the random factor graph G′∗ comprises
a pairing of variable clones (vi , h) ∈ Vn×[d] and constraint clones (a j , h) ∈ Fm ×[d].
But since we obtained G′∗ from G∗ by removing some variable nodes W along with
their adjacent constraint nodes, not all of the variable clones (vi , h) with i ≤ n − ω are
paired. We call variables with at least one unpaired clone cavities. Let C be the set of
all cavities.

The basic idea behind the proof is as follows. We will add a new variable node v+

along with new adjacent constraint nodes b1, . . . , bd to G′∗. Apart from v+, these new
constraint nodes are adjacent to some of the cavities. The fresh randomness afforded by
this construction will facilitate the study of the standard messages from v+ to the bi as
well as the reverse messages. Then we will argue that v+ is essentially indistinguishable
from a randomly chosen variable node of G′∗, thereby extending the analysis to almost
all the messages of G′∗.
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Formally, since ω is a Poisson variable with mean ω truncated at 2ω, w.h.p. we have
ω/2 ≤ |C | ≤ 2d(k − 1)ω. Given that |C | ≥ d(k − 1), obtain G−∗ from G′∗ by re-
inserting one variable node v+ = vn−ω+1 along with d new constraint nodes b1, . . . , bd .
For each of these constraint nodes a random clone (bi , hi ), hi ∈ [k], is paired with a
random clone v+. In addition, the bi are paired randomly to k − 1 cavities. The weight
functions ψbi are chosen independently from P . The following lemma shows that the
distributions of G′∗ and G−∗ are reasonably close.

Lemma 4.4. For any event E we have P
[
G′∗ ∈ E

] ≤ α−1P [
G−∗ ∈ E

]
+ O(α100).

Proof. We need to get a grip on the conditional distribution of the second neighborhood
of v+ in G given G′∗. This is non-trivial because of the revised prior of G∗ introduced by
the pinning operation (4.4); for the assignment σ ∗ is correlated with the neighborhood
of v+ in G. To begin, letA be the event that no constraint node of G is connected by two
edges with the variable nodes vn−ω+1, . . . , vn and that all cavities have degree precisely
d − 1. Then (4.3) guarantees that

P [G ∈ A ] = 1− O(ω2/n) = 1− O(n−1/2). (4.18)

Further, given A the total number of cavities of G′∗ is equal to d(k − 1)ω, and thus

P [|C | ≥ ω/2 | A ] = 1− O(ω−1). (4.19)

Let A ′ be the event that A occurs, that |C | ≥ ω/2 and that the weight functions of all
constraints adjacent to v+ take a minimum value of at least α−1/(2dk). We condition on
the eventA ′, which occurs with probability 1 + O(α100) due to (2.1), (4.18) and (4.19).

Let N1,N2 be two possible outcomes of the depth-two neighborhoods of v+ in G
given G′∗. Thus, N1,N2 specify the weight functions of the d constraints adjacent to
v+, the pairing of the clones of v+ to those of these constraint nodes, and the pairing
of these d constraint nodes and the cavities C . In addition, let G′ be the random factor
graph obtained from G′∗ by restoring the prior to p⊗n . Then we can set up a coupling
(�1,�2) of G given G′,N1,A ′ and of G given G′,N2,A ′ such that under � the two
random factor graphs differ in no more than 2dk edges: the coupling simply switches the
pairings occurring inN1 but not inN2, and vice versa. In effect, on A ′ the Boltzmann
distributions μ�1, μ�2 are mutually α−1-contiguous. Consequently, since the priors
are amended according to samples from these respective Boltzmann distribution, we
conclude that for any two outcomes N1,N2 of the second neighborhood of v+ and for
any possible outcome g of G′∗,

P
[
G′∗ = g | N2,G′,A ′] ≤ α−1 P

[
G′∗ = g | N1,G′,A ′] . (4.20)

Combining (4.18)–(4.20), we conclude that for any possible g and for any 2ω/3 ≤ ω0 ≤
3ω/2,

P
[
G′∗ = g | ω = ω0

] ≤ α−1 P
[
G−∗ = g | ω = ω0 + 1

]
+ O(α100). (4.21)

Finally, the assertion follows from (4.21) becausedTV(ω,ω+1) = O(ω−1/2) = O(α200)
and P [2ω/3 ≤ ω ≤ 3ω/2] = 1− exp(−�(ω)) = 1− O(α200). ��

Lemma 4.4 shows that studying the messages received by and emanating from v+ is
about as good as studying themessages of a randomvariable node ofG ′∗. The randomness
involved in the attachment process will help, but is not yet quite sufficient to actually
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verify the Belief Propagation equations. Namely, we also need to make sure that the
Boltzmann distribution of the cavities is extremal in order to argue that typically the
joint distribution of the variables where the new constraints b1, . . . , bd are anchored
factorizes. Unfortunately, we do not know a priori that extremality holds. Indeed, while
going from G to G′∗ renders the Boltzmann distribution ξ1/4-extremal (by Lemma 4.1),
the cavities are too few in number to conclude that their joint distribution is extremal.

Hence, we will apply a second round of pinning. But this time we will pin the cavities
directly. To be precise, recalling the random variable θ+ = θ ζ from Lemma 3.15, let
C+ ⊂ C be a random subset of size θ+ ∧ |C |. Further, draw a sample σ + from μG′∗ . The
choice of C+, σ + is independent of the choice of the constraints b1, . . . , bd , and σ + is
independent of C+. Now, obtain G′′∗ from G′∗ by changing the prior to

pG′′∗(σ ) ∝ pG′∗(σ )
∏

y∈C+

1{σ = σ +(y)}. (4.22)

Thus, we pin the cavities y ∈ C+ to the spins observed under σ +, which are independent
of b1, . . . , bd .

Lemma 4.5. The joint distributionμG′′∗,C of the cavities is ζ -symmetric with probability
at least 1− ζ .
Proof. Since |C | ≥ ω/2 with probability 1 − exp(−�(ω)), the assertion follows im-
mediately from Lemma 3.15 and the construction of G′′∗. ��
Additionally, obtain G+∗ from G−∗ by changing the prior as per (4.22) as well, i.e.,

pG+∗ (σ ) ∝ pG−∗ (σ )
∏

y∈C+

1{σ = σ +(y)}. (4.23)

We are ready to verify the Belief Propagation equations for v+ on G+∗ .

Lemma 4.6. With probability 1−O(α90) the random factor graph G+∗ has the following
properties:
∣∣∣∣∣μG+∗ ,bi→v+(σ )−

∑
τ∈�∂bi 1{τv+ = σ }ψbi (τ )

∏
w∈∂bi \v+ μG+∗ ,w→bi (τy)∑

τ∈�∂bi ψbi (τ )
∏
w∈∂bi \v+ μG+∗ ,w→bi (τw)

∣∣∣∣∣

≤ α70d ∀i ∈ [d], σ ∈ �, (4.24)
∣∣∣∣∣μG+∗ ,v+→bi (σ )−

p(σ )
∏

j �=i
∑
τ∈�∂b j 1{τv+ = σ }ψb j (τ )

∏
w∈∂b j \v+ μG+∗ ,w→b j

(τw)
∑
χ∈� p(χ)

∏
j �=i

∑
τ∈�∂b j ψb j (τ )1{τv+ = χ}

∏
w∈∂b j \v+ μG+∗ ,w→b j

(τw)

∣∣∣∣∣

≤ α70d ∀i ∈ [d], σ ∈ �, (4.25)
∣∣∣∣∣μG+∗ (σ )−

p(σ )
∏d

i=1 ψbi (σ )
∏
w∈∂bi \v+ μG+∗ ,w→bi (σw)∑

χ∈� p(χ)
∏d

i=1
∑
τ∈�∂bi 1{τv+ = χ}ψbi (τ )

∏
w∈∂bi \v+ μG+∗ ,w→bi (τw)

∣∣∣∣∣

< α70d ∀σ ∈ �∇2v+ . (4.26)

Proof. Lemma 4.5 shows that μG′′∗,C is ζ -symmetric with probability at least 1 − ζ .
Suppose it is. Then Proposition 3.11 shows that μG′′∗,C is (β, d(k − 1))-symmetric.
We may also assume that |C | ≥ ω/2, an event that occurs with probability at least
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1− exp(−�(ω)) by the construction of G′∗. Additionally, due to (2.1) we may assume
that

min
σ∈�k

ψbi (σ ) ≥ α for all i ∈ [d]. (4.27)

According to (3.2), the standard message μG+∗ ,b1→v+ is defined as the marginal of v+
in the factor graph obtained from G+∗ by removing b2, . . . , bd and replacing the prior of
v+ by the uniform distribution. By construction, this factor graph is obtained from G′′∗
by adding the variable node v+ and constraint node b1 and replacing the prior of v+ by
the uniform distribution. Therefore,

μG+∗ ,b1→v+(σ )

=
∑
τ∈�∂b1 1{τv+ = σ }ψb1(τ )

〈
1{∀w ∈ ∂b1\v+ : σw = τw}, μG′′∗,C

〉

∑
τ∈�∂b1 ψb1(τ )

〈
1{∀w ∈ ∂b1\v+ : σw = τw}, μG′′∗,C

〉 (σ ∈ �).

(4.28)

Further, the neighbors ∂b1\v+ are chosen uniformly from C (without replacement).
Because |C | ≥ ω/2 and μG′′∗,C is (β, d(k − 1))-symmetric, we conclude that

P

⎡

⎣

∥∥∥∥∥∥
μG′′∗,∂b1\v+ −

⊗

w∈∂b1\v+
μG′′∗,w

∥∥∥∥∥∥
TV

≤ β1/3
⎤

⎦ ≥ 1− β1/3. (4.29)

Combining (4.27), (4.28) and (4.29), we obtain the estimate

E

∣∣∣∣∣μG+∗ ,b1→v+(σ )−
∑
τ∈�∂b1 1{τv+ = σ }ψb1(τ )

∏
w∈∂b1\x+ μG′′∗,w(τw)∑

τ∈�∂b1 ψb1(τ )
∏
w∈∂b1\v+ μG′′∗,w(τw)

∣∣∣∣∣ ≤ β
1/4.

(4.30)

Moreover, the factor graph G+∗ − b1 is obtained from G′′∗ by adding v+ and b2, . . . , bd .
Hence, (4.27) implies thatμG+∗−b1,C is (2/α)dk-contiguouswith respect toμG′′∗,C . Since
μG′′∗,C is ζ -symmetric, Proposition3.11 andLemma3.17yield��(μG+∗−b1,C , μG′′∗,C ) <
β. Because the neighborhood ∂b1 is random, Lemma 3.12 therefore yields

E

∑

w∈∂b1\v+

∥∥∥μG′′∗,w − μG+∗ ,w→b1

∥∥∥
TV
≤ O(β). (4.31)

Combining (4.27), (4.30) and (4.31), we obtain (4.24).
The proofs of (4.25) and (4.26) are similar. Indeed, μG+∗ ,v+→b1 is the marginal of v+

in G+∗ − b1, which is obtained from G′′∗ by adding b2, . . . , bd . Hence,

μG+∗ ,v+→b1(σ )

=
∑
τ∈�{v+}∪∂2v+ p(σ )1{τv+ = σ }

〈
1{∀w ∈ ∂2v+ : σw = τw}, μG′′∗,C

〉∏d
i=2 ψbi (τ )

∑
τ∈�{v+}∪∂2v+ p(τv+)

〈
1{∀w ∈ ∂2v+ : σw = τw}, μG′′∗,C

〉∏d
i=2 ψbi (τ )

.
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Invoking the (β, d(k − 1))-symmetry of μG′′∗ and (4.27), we obtain

E

∣∣∣∣∣μG+∗ ,v+→b1(σ )−
∑
τ∈�{v+}∪∂2v+ p(σ )1{τv+ = σ }

∏d
i=2 ψbi (τ )

∏
w∈∂2v+ μG′′∗,w(τw)∑

τ∈�{v+}∪∂2v+ p(τv+)
∏d

i=2 ψbi (τ )
∏
w∈∂2v+ μG′′∗,w(τw)

∣∣∣∣∣

≤ β1/4.
Moreover, reordering the sums and products, we simplify the last expression and find

E

∣∣∣∣∣μG+∗ ,v+→b1(σ )−
p(σ )

∏d
i=2

∑
τ∈�∂bi 1{τv+ = σ }ψbi (τ )

∏
w∈∂bi \v+ μG′′∗,w(τw)∑

χ∈� p(χ)
∏d

i=2
∑
τ∈�∂bi 1{τv+ = χ}ψbi (τ )

∏
w∈∂bi vv+ μG′′∗,w(τw)

∣∣∣∣∣

≤ β1/4. (4.32)

Further, (4.27) ensures that for each i ∈ [d] the distribution μG+∗−bi ,C is (2/α)dk-
contiguous with respect to G′′∗. Consequently, since the neighbors of bi are chosen
randomly from the set C of cavities, Proposition 3.11 and Lemma 3.17 yield

d∑

i=2
E

⎡

⎣
∑

w∈∂bi\v+

∥∥∥μG′′∗,w − μG+∗ ,w→bi

∥∥∥
TV

⎤

⎦ ≤ O(β). (4.33)

Combining (4.32) and (4.33), we obtain (4.25).
Moving on to (4.26), we consider σ ∈ �{v+}∪∂2v+ . Since G+∗ is obtained from G′′∗ by

adding v+ along with b1, . . . , bd , we have the exact formula

μG+∗ (σ )

= p(σ )
〈
1{∀w ∈ ∂2v+ : σw = σw,μG′′∗

〉∏d
i=1 ψbi (σ )

∑
χ∈� p(χ)

〈∏d
i=1

∑
τ∈�∂bi 1{τv+ = χ}ψbi (τ )

∏
w∈∂bi \v+ 1{σw = τw}, μG′′∗

〉 (σ ∈ �∇2v+ ).

Since ∂2v+ is a random set of cavities, the (β, d(k − 1))-symmetry of μG′′∗ and (4.27)
ensure that

E

∣∣∣∣∣μG+∗ (σ )−
p(σ )

∏
w∈∂2v+ μG′′∗,w(σw)

∏d
i=1 ψbi (σ )

∑
χ∈� p(χ)

∏d
i=1

∑
τ∈�∂bi 1{τv+ = χ}ψbi (τ )

∏
w∈∂bi\v+ μG′′∗,w(τw)

∣∣∣∣∣

≤ β1/4. (4.34)

Finally, to complete the proof we combine (4.33) and (4.34). ��
We set up the random factor graph G+∗ so as to facilitate the verification of the BP

equations. But in a sense the model is a bit ‘out of whack’ because the prior is pinned
according to a configuration σ + drawn fromμG′∗ rather thanμG−∗ ; see (4.23). Thus, with
θ+ = θ ζ and C+ ⊂ C as before, draw σ ++ from μG−∗ and let G++∗ be the random factor

graph obtained from G−∗ by changing the prior to

pG++∗ (σ ) ∝ pG′∗(σ )
∏

w∈C+

1{σ = σ ++(w)}.

Hence, σ ++ takes v+, b1, . . . , bd into account.
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Corollary 4.7. With probability 1 − O(α80) the bounds (4.24)–(4.26) hold with G+∗
replaced by G++∗ .

Proof. The only difference between G++∗ and G+∗ lies in the choice of the configuration
to which the variable nodes in C+ get pinned. But since G+∗ is obtained from G′′∗ by the
mere addition of d constraint nodes b1, . . . , bd , (2.1) shows that σ ++ is α−1-contiguous
with respect to the distribution of σ + with probability 1 − O(α80). Thus, the assertion
follows from Lemma 4.6. ��

We are finally ready to go back to the random factor graph G′′∗. Indeed, basically the
only difference between G++∗ and G′′∗ is that the former has onemore variable node, along
with d adjacent constraint nodes. But since the number of variable nodes ofG′′∗ is random,
this difference should hardly be noticeable. Also G′′∗ is invariant under permutations of
its variable nodes. Thus, whatever we can prove for the last variable node v+ of G++∗
carries over to a random variable node of G′′∗. The following corollarymakes this precise.

Corollary 4.8. With probability 1− O(α70) we have
∑

v∈Vn

∑

b∈∂v

∑

σ∈�
∣∣∣∣∣μG′′∗,b→v(σ )−

∑
τ∈�∂b 1{τv = σ }ψb(τ )

∏
w∈∂b\v μG′′∗,w→b(τw)∑

τ∈�∂b ψb(τ )
∏
w∈∂b\v μG′′∗,w→b(τw)

∣∣∣∣∣ ≤ nα60d , (4.35)

∑

v∈Vn

∑

b∈∂v

∑

σ∈�
∣∣∣∣∣μG′′∗,v→b(σ )−

p(σ )
∏

a∈∂v\b
∑
τ∈�∂a 1{τv = σ }ψa(τ )

∏
w∈∂a\v μG′′∗,w→a(τw)∑

χ∈� p(χ)
∏

a∈∂v\b
∑
τ∈�∂a 1{τv = χ}ψa(τ )

∏
w∈∂a\v μG′′∗,w→a(τw)

∣∣∣∣∣

≤ nα60d (4.36)
∑

v∈Vn

∑

σ∈�x∪∂2x
∣∣∣∣∣μG′′∗ (σ )−

p(σ )
∏

a∈∂v ψa(σ )
∏
w∈∂a\v μG′′∗,w→a(σw)∑

χ∈� p(χ)
∏

a∈∂v
∑
τ∈�∂a 1{τv = χ}ψa(τ )

∏
w∈∂a\v μG′′∗,w→a(τw)

∣∣∣∣∣ < nα60d .

(4.37)

Proof. Consider the event E that in G′′∗, for the variable node vn−ω with the largest index
the estimate

∑

b∈∂vn−ω

∑

σ∈�

∣∣∣∣∣μG′′∗,b→vn−ω
(σ )−

∑
τ∈�∂b 1{τ(vn−ω) = σ }ψb(τ )

∏
w∈∂b\vn−ω

μG′′∗,w→b(τ (w))∑
τ∈�∂b ψb(τ )

∏
w∈∂b\vn−ω

μG′′∗,w→b(τw)

∣∣∣∣∣

≤ α69 (4.38)

holds. Since G++∗ is obtained from G+∗ by the same process that produces G′′∗ from G′∗,
Lemma 4.4 and Corollary 4.7 show that P

[
G′′∗ ∈ E

] = 1 − O(α70). But since the
distribution of G′′∗ is invariant under permutations of the n − O(ω) variable nodes of
degree d, we can replace vn−ω in (4.38) by a random variable node of degree d. Thus,
we obtain (4.35). The two bounds (4.36) and (4.37) follow analogously. ��

To complete the proof of Proposition 4.2, we finally need to get from G′′∗ back to
G′∗. Thus, we need to undo the additional pinning of the cavities that was required to
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verify the BP equations (4.35)–(4.37). The elegant insight that makes this possible is
that (4.35)–(4.37) really just describe a property of the joint distribution of the second
neighborhoods of the variable nodes vi , i �= n − ω. Indeed, by Lemma 4.3 the standard
messages, defined via the removal of a few constraints adjacent to a single variable node
v, can be expressed easily in terms of the joint distribution of the second neighborhood
of v. Furthermore, Lemma 4.1 implies that the enhanced measure μ̂G′∗ describing the

second neighborhood distributions is ξ1/4-extremal, with ξ is near the top of the pecking
order (4.3). In effect, μ̂G′∗ is impervious to the additional pinning required to go from
G′∗ to G′′∗. Let us formalize this argument to finish the proof of Proposition 4.2.

Proof of Proposition 4.2. By Lemma 4.1 the measure μ̂G∗ is ξ
1/4-extremal with prob-

ability 1 − ω−1. Consequently, since G′∗ is obtained by deleting O(ω) constraints,
Lemma 3.17 and (2.1) ensure that μ̂G′∗ is ϑ-extremal with probability 1− α10. Further-
more, μ̂G′′∗ is nothing but the conditional distribution μ̂G′∗ given the event S+ that the
spins of the θ ζ cavities C+ coincide with the ones of the reference configuration σ +.
Since σ + is drawn from μ̂G′∗ , with probability at least 1− ζ we have

μ̂G′∗(S+) ≥ ζq−θ ζ .

If so, and if μ̂G′∗ isϑ-extremal, then (4.3) andCorollary3.18 imply that��(μ̂G′′∗ , μ̂G′∗) ≤
β. In summary,

P

[
��(μ̂G′′∗ , μ̂G′∗) ≤ β

]
≥ 1− 2ζ.

In addition (2.1) ensures that with probability at least 1− α10,
∣∣∣∣

{
a ∈ F(G′∗) : min

σ∈�k
ψa(σ ) ≤ α

}∣∣∣∣ ≤ nα1000d . (4.39)

Further, by Corollary 4.8 the bounds (4.35)–(4.37) hold with probability 1− O(α70).
Thus, we are left to prove statements (i) and (ii) under the assumption that��(μ̂G′′∗ ,

μ̂G′∗) ≤ β and that (4.35)–(4.37) and (4.39) hold. Applying Lemma 3.12, we obtain

∑

v∈V

∥∥∥μ̂G′′∗,v − μ̂G′∗,v

∥∥∥
TV
≤ O(β). (4.40)

Further, Lemma4.3 shows that themessagesμG′′∗,v→a ,μG′′∗,a→v andμG′∗,v→a ,μG′∗,a→v
can be expressed in terms of themarginal distributions μ̂G′′∗,v and μ̂G′∗,v of the depth-two
neighborhood. Indeed, according to (3.1)–(3.2), for any a ∈ ∂v and σ ∈ �,

μG′′∗,v→a(σ ) =
〈
1{σ v = σ }/ψa(σ ), μ̂G′′∗,v

〉

〈
1/ψa(σ ), μ̂G′′∗,v

〉 ,

μG′′∗,a→v(σ ) =
〈
1{σ v = σ }/(p(σ )∏b∈∂v\a ψb(σ )), μ̂G′′∗,v

〉

〈
1/(p(σ v)

∏
b∈∂v\a ψb(σ )), μ̂G′′∗,v

〉 ,
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and analogously for G′∗. Hence, the total variation bound (4.40) and (4.39) imply that

∑

v∈V

∑

a∈∂v

∥∥∥μG′′∗,v→a − μG′∗,v→a

∥∥∥
TV

+
∥∥∥μG′′∗,a→v − μG′∗,a→v

∥∥∥
TV
= O(nα900d).

(4.41)

Combining (4.37) and (4.39)–(4.41), we obtain assertion (ii). Further, (4.35), (4.39) and
(4.41) readily yield

∑

v∈V

∑

b∈∂v

∑

σ∈�

∣∣∣∣∣μG′∗,b→v(σ )−
∑
τ∈�∂b 1{τ(v) = σ }ψb(τ )

∏
w∈∂b\v μG′∗,w→b(τ (w))∑

τ∈�∂b ψb(τ )
∏
w∈∂b\v μG′∗,w→b(τ (w))

∣∣∣∣∣

≤ O(nα60d). (4.42)

Moreover, combining (4.36), (4.39), (4.40) and (4.42), we obtain

∑

v∈V

∑

b∈∂v

∑

σ∈�

∣∣∣∣∣μG′∗,v→b(σ )−
p(σ )

∏
a∈∂v\b μG′∗,a→v(σ )∑

χ∈� p(χ)
∏

a∈∂v\b μG′∗,a→v(χ)

∣∣∣∣∣ ≤ O(nα50d).

(4.43)

Finally, (4.42) and (4.43) show that the standard messages are a O(α40d)-BP fixed point.
��

5. The Free Energy: Upper Bound

5.1. Outline. In this section we derive the following upper bound on the free energy.

Proposition 5.1. Assume that POS is satisfied. Then

lim sup
n→∞

1

n
E

[
log Z(G)

] ≤ inf
π∈D	

B(π), lim sup
n→∞

1

n
E

[
log Z(G)

] ≤ inf
π∈D	

B(π).

The proof of Proposition 5.1 consists of two parts. First, we will prove that any
μ ∈ K yields an upper bound on E

[
log Z(G)

]
. Specifically, recalling the notation

from Sect. 3.1, let

B′(μ) = E log

〈
n⊕

i=1
ϕi , μ

〉
, B′′(μ) = E log

〈
⊕

1≤i≤(k−1)dn/k
ψ1,i , μ

〉
.

Then we have the following generic upper bound, which may be of interest in its own
right.

Proposition 5.2. Assume that POS is satisfied. Then E
[
log Z(G)

] ≤ o(n) +B′(μ) −
B′′(μ) for any μ ∈ K .

The proof of Proposition 5.2, based on the interpolation method [38], is relatively stan-
dard, although the fact that we deal with regular graphs requires a bit of care. The details
are carried out in Sect. 5.2. This is the only place where condition POS is required.

The second step toward the proof of Proposition 5.1 is to show that for μ drawn from
π ∈ D	 the upper bound from Proposition 5.2 boils down to the expression B(π).
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Proposition 5.3. For any π ∈ D	 we have B(π) = E[B′(μπ )−B′′(μπ )].
We prove Proposition 5.3 in Sect. 5.3.

Proof of Proposition 5.1. The first assertion is immediate from Propositions 5.2 and 5.3.
To obtain the second assertion, we apply Azuma’s inequality and (2.1) to see that
n−0.51 |log Z(G)− E log Z(G)| converges to zero in probability. Hence, Fact 2.2 and
Bayes’ rule show that E log Z(G) = E log Z(G) + o(n), and thus the second assertion
follows from the first. ��

5.2. Proof of Proposition 5.2. We construct a family of random factor graph models
parametrized by t ∈ [0, 1]. The free energy of the model at t = 1 will be easy to
compute, and we will see that it is (nearly) equal to B′(μ) −B′′(μ). The model with
t = 0 essentially coincides with G. Furthermore, we will show that the derivative of
the free energy is non-negative for all t , thus obtaining the desired upper bound on
E log Z(G).

To construct this interpolating family, fix μ ∈ K and a small ε > 0. For t ∈ [0, 1]
let

mt = Po((1− t) exp(−ε)dn/k),
m′

t = Po(t exp(−ε)dn),
m′′

t = Po((1− t)(k − 1) exp(−ε)dn/k),
all threemutually independent and independent of everything else.Given kmt+m′

t ≤ dn,
we define the random factor graph Gt as follows.

INT1: the set of variable nodes is V = {s}∪Vn , and the set of spins isX = �∪[0, 1].
INT2: the set of constraint nodes is

Ft =
{
a1, . . . , amt , a

′
1, . . . , a

′
m′

t
, a′′1 , . . . , a′′m′′

t

}
.

INT3: each constraint node ai independently chooses a weight function ψai from P ,
and the ai are joined to the variable nodes v1, . . . , vn by a random pairing of
Vn × [d] and {a1, . . . , amt } × [k].

INT4: each of the constraint nodes a′i , i ∈ [m′
t ], is adjacent to the variable node s and

one further variable node from v1, . . . , vn ; the links between the a′i and the v j
are constructed by choosing a random pairing between the h′i -clone of each a′i
and the clones in Vn×[d] that are not paired to a constraint node ah . The weight
function associated with a′i reads

ψa′i (s, σ ) =
∑

τ∈�k

1{τh′i = σ }ψ ′
i (τ )

∏

h �=h′i
μs,x′i,h (τh).

INT5: the constraint nodes a′′i , i ∈ [m′′
t ], are unary, adjacent to s only. Their weight

functions read

ψa′′i (s) =
∑

τ∈�k

ψ ′′
i (τ )

k∏

h=1
μs,x′′i,h (τh).



482 A. Coja-Oghlan, W. Perkins

INT6: the prior p is a product measure

dp(σ ) = 1{σs ∈ [0, 1], ∀1 ≤ i ≤ n : σvi ∈ �}
n∏

i=1
p

(
σxi

)
dσs;

thus, for each vi ∈ Vn a spin from � is chosen independently from p, and σs is
uniform on [0, 1].

Thus, the total weight, partition function and Boltzmann distribution of Gt read

ψGt (σ ) =
mt∏

i=1
ψai (σ )

m′
t∏

i=1
ψa′i (σ )

m′′
t∏

i=1
ψa′′i (σ ), (σs ∈ [0, 1], σxi ∈ �),

Z(Gt ) =
∑

σx1 ,...,σxn∈�

∫ 1

0
ψGt (σ )dσs

n∏

i=1
p(σxi ), dμGt (σ ) =

ψGt (σ )

Z(Gt )
dp(σ ). (5.1)

The following lemma establishes the monotonicity of the free energy in t ; its proof is
the only place where we use condition POS.

Lemma 5.4. Suppose that POS is satisfied. Then uniformly for all t ∈ (0, 1) we have
1

n

∂

∂t
E

[
log Z(Gt )

] ≥ o(1).

Proof. We recall the derivative of the Poisson density: for any λ > 0, � ≥ 1,

∂

∂λ
P [Po(λ) = �] = ∂

∂λ

λ�

�! exp(−λ) =
λ�−1

(�− 1)! exp(−λ)

− λ
�

�! exp(−λ) = P [Po(λ) = �− 1]− P [Po(λ) = �] . (5.2)

The variable t affects the distribution of Gt by way of the variables mt ,m′
t ,m

′′
t . Specif-

ically, let

λt = (1− t) exp(−ε)dn/k, λ′t = t exp(−ε)dn, λ′′t = (1− t)(k − 1) exp(−ε)dn/k.
Recall that mt ,m′

t are conditional Poisson variables Po(λt ) and Po(λ′t ), respectively,
given that kmt + m′

t ≤ dn. Since ε > 0 is independent of n, (5.2) shows that for any
two integers mt ,m′t ≥ 1,

1

n

∂

∂t
P

[
mt = mt , m′

t = m′t
] = exp(−�(n)) + 1

n

∂

∂t
P [Po(λt ) = mt ]P

[
Po(λ′t ) = m′t

]

= exp(−�(n)) + 1

n

∂

∂t
P [Po(λt ) = mt ]P

[
Po(λ′t ) = m′t

]

= exp(−�(n))
+ (P [Po(λt ) = mt ]− P [Po(λt ) = mt − 1])P

[
Po(λ′t ) = m′t

]

exp(−ε)d/k
+

(
P

[
Po(λ′t ) = m′t − 1

]− P
[
Po(λ′t ) = m′t

]) ·
P [Po(λt ) = mt ] exp(−ε)d. (5.3)
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Further, given the event kmt +m′′
t ≤ dn− k let G′t be the random factor graph obtained

from Gt by adding one more constraint node amt+1 as per INT3. Similarly, given kmt +
m′′

t ≤ dn−1obtainG′′t fromGt by addingam′
t+1

according to INT4. Additionally, obtain
G′′′t from Gt by adding a unary am′′

t +1
as described in INT5. Since m′′

t is independent
of m′

t ,m
′′
t , (5.2) and (5.3) yield

1

n

∂

∂t
E[log Z(Gt )] = exp (−�(n))

+
∑

mt ,m′t ,m′′t ≥1
kmt+m′′t ≤dn−k

E

⎡

⎣log Z(Gt )

∣∣∣∣

⎛

⎝
mt
m′

t
m′′

t

⎞

⎠ =
⎛

⎝
mt
m′t
m′′t

⎞

⎠

⎤

⎦ · 1
n

∂

∂t
P

⎡

⎣

⎛

⎝
mt
m′

t
m′′

t

⎞

⎠ =
⎛

⎝
mt
m′t
m′′t

⎞

⎠

⎤

⎦

= exp (−�(n))
− exp (−ε) d

k

[
E log

Z(G′t )
Z(Gt )

− kE log
Z(G′′t )
Z(Gt )

+ (k − 1)E log
Z(G′′′t )
Z(Gt )

]
. (5.4)

Hence, it suffices to prove that for all 0 < t < 1,

E

[
log

Z(G′t )
Z(Gt )

]
− kE

[
log

Z(G′′t )
Z(Gt )

]
+ (k − 1)E

[
log

Z(G′′′t )
Z(Gt )

]
≤ 0. (5.5)

By the definition of the Boltzmann distribution (5.1),

Z(G′t )
Z(Gt )

= 〈
ψamt +1

, μGt

〉
,

Z(G′′t )
Z(Gt )

=
〈
ψa′

m′t +1
, μGt

〉
,

Z(G′′′t )
Z(Gt )

=
〈
ψa′′

m′′t +1
, μGt

〉
.

Hence,

log
Z(G′t )
Z(Gt )

= log
〈
ψamt +1

, μGt

〉 = −
∑

�≥1

1

�

〈
1− ψamt +1

, μGt

〉�
. (5.6)

Further, in terms of the kernel representation μ̇Gt of the Boltzmann distribution we
obtain

E

[〈
1− ψamt +1

, μGt

〉�] = E

⎡

⎢⎣

⎛

⎝1−
∑

σ∈�k

ψ(σ )

∫ 1

0

k∏

i=1
μ̇Gt ,z,xi (σi )dz

⎞

⎠
�
⎤

⎥⎦ . (5.7)

Combining (5.6) and (5.7) yields

E

[
log

Z(G′t )
Z(Gt )

]
= −E

⎡

⎢⎣
∑

�≥1

1

�

⎛

⎝1−
∑

σ∈�k

ψ(σ )

∫ 1

0

k∏

i=1
μ̇Gt ,z,xi (σi )dz

⎞

⎠
�
⎤

⎥⎦ . (5.8)

Due to (2.1) and Fubini’s theorem, we can exchange the sum and the expectation in
(5.8); indeed, (2.1) yields

∑

�≥1
E

∣∣∣∣∣∣∣

⎛

⎝1−
∑

σ∈�k

ψ(σ )

∫ 1

0

k∏

i=1
μ̃Gt ,z,xi (σi )dz

⎞

⎠
�
∣∣∣∣∣∣∣
≤

∑

�≥1
E

[
max
σ∈�k

|1− ψ(σ )|�
]
<∞.
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Thus, (5.8) becomes

E

[
log

Z(G′t )
Z(Gt )

]
= −

∑

�≥1

1

�
E

⎡

⎢⎣

⎛

⎝1−
∑

σ∈�k

ψ(σ )

∫ 1

0

k∏

i=1
μ̃Gt ,z,xi (σi )dz

⎞

⎠
�
⎤

⎥⎦ . (5.9)

Following similar steps, we obtain expansions for the other two terms from (5.5) as well:

E

[
log

Z(G′′t )
Z(Gt )

]

= −1

k

k∑

h=1

∑

�≥1

1

�
E

⎡

⎢⎣

⎛

⎝1−
∑

σ∈�k

ψ(σ )

∫ 1

0
μ̃Gt ,z,xh (σh)

∏

i �=h
μz,xi (σi )dz

⎞

⎠
�
⎤

⎥⎦ , (5.10)

E

[
log

Z(G′′′t )
Z(Gt )

]
= −

∑

�≥1

1

�
E

⎡

⎢⎣

⎛

⎝1−
∑

σ∈�k

ψ(σ )

∫ 1

0

k∏

i=1
μz,xi (σi )dz

⎞

⎠
�
⎤

⎥⎦ . (5.11)

Finally, the assertion follows from POS and (5.5), (5.9), (5.10) and (5.11). ��
Proof of Proposition 5.2. Integrating t from 0 to 1 and applying Lemma 5.4, we obtain
for any ε > 0,

E[log Z(G0)] ≤ E[log Z(G1)] + o(n). (5.12)

Letting

Y = log
∫ 1

0

m′′
0∏

i=1

∑

σ∈�k

ψ ′′
i (σ )

k∏

h=1
μz,x′′i,h (σh)dz,

we claim that for a certain number c = c(P) > 0,

E log Z(G) + E[Y ] ≤ E log Z(G1) + εcn. (5.13)

Indeed, at t = 0 the variable node s is adjacent to the constraint nodes a′′i , i ∈ [m′′
t ], only.

Hence, G0 decomposes into connected components, one of which comprises s and the
a′′i . Let G

′′
0 be this component, and let G′0 be the remainder of G0. Then by construction

we have E log Z(G′′0) = E[Y ]. Thus, (5.12) yields
E[log Z(G′0)] + E[Y ] = E[log Z(G0)] ≤ E[log Z(G1)] + o(n). (5.14)

Furthermore, G′0 consists of the variable nodes v1, . . . , vn and the constraint nodes
a1, . . . , am1 , where m1 is a Poisson variable Po(exp(−ε)dn/k) conditioned on taking
a value of at most dn/k. Thus, we can construct a random factor graph with the same
distribution as G from G′0 by simply adding dn/k−m1 further random k-ary constraint
nodes as per INT3. Since all weight functions ψ ∈ � take values in (0, 2), we obtain
c = c(P) > 0 such that

E log Z(G) ≤ E log Z(G′0) + εcn. (5.15)

Combining (5.14) and (5.15), we obtain (5.13).
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We further claim that there is a constant c′ = c′(P) > 0 such that

1

n
E[Y ] ≤ εc′ + o(1) +B′′(μ). (5.16)

Indeed, B′′(μ) = E[Y | m′′
0 = (k − 1)dn/k]. In other words, we can think of B′′(μ)

as the free energy of G′′0 given that m′′
0 = (k − 1)dn/k. Thus, obtain G′′′0 from G′′0 by

adding (k−1)dn/k−m′′
0 more constraint nodes according to INT5, or by removing some

random constraint nodes if m′′
0 > (k−1)dn/k. ThenB′′(μ) = E log Z(G′′′0 ). Since m′′

0
is a Poisson variable with mean exp(−ε)(k−1)dn/k, with probability 1− exp(−�(n))
we do not need to add or remove more than 2ε(k − 1)dn constraint nodes. The tail
bound (2.1) therefore implies together with the Chernoff bound that (5.16) is satisfied
for a certain c′ = c′(P).

By similar arguments, for a certain c′′ = c′′(P) we have

1

n
E[log Z(G1)] ≤ B′(μ) + εc′′ + o(1). (5.17)

Indeed,B′(μ) is nothing but the conditional expectation of log Z(G1) given that m′
1 =

dn. Hence, if we pad G1 by adding the missing dn−m′
1 constraint nodes a

′
i according to

INT4, then the total number of constraints added does not exceed 2εdn with probability
1− exp(−�(n)). Hence, (5.17) follows from (2.1) and the Chernoff bound.

Finally, combining (5.12)–(5.17), we conclude that

1

n
E log Z(G) ≤ B′(μ)−B′′(μ) + εc′′′ + o(1)

for a certain c′′′ = c′′′(P) > 0. Since this is true for any fixed ε > 0, the assertion
follows. ��

5.3. Proof of Proposition 5.3. Following Panchenko [52], who worked with factor
graphs of Erdős-Rényi type, we are going to use the invariance property of π ∈ D	

under the ∗(N ,M)-operation to simplifyB′,B′′ separately.

Lemma 5.5. Suppose that π ∈ D	. Then

E[B′′(μπ )] = d(k − 1)n

k
E

[
log

〈
ψ1, π

〉]
. (5.18)

Proof. Let φ = E
[
log

〈
ψ1, π

〉]
for brevity. We claim that for any integer m ≥ 0,

E

⎡

⎣log

〈⊕m+1
i=1 ψ i , π

〉

〈⊕m
i=1 ψ i , π

〉

⎤

⎦ = φ. (5.19)

Then (5.18) follows by summing (5.19) on 0 ≤ m < d(k − 1)n/k.
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Thus, we are left to prove (5.19). Since π ∈ D	, Corollaries 3.4 and 3.9 imply that
for any integer � ≥ 1,

E

⎡

⎢⎣

⎛

⎝

〈⊕m+1
i=1 ψ i , π

〉

〈⊕m
i=1 ψ i , π

〉

⎞

⎠
�
⎤

⎥⎦ = E

⎡

⎣
〈 ⊕m

i=1 ψ i〈⊕m
j=1 ψ j , π

〉 ⊕ ψm+1, π

〉�⎤

⎦

= E

⎡

⎣
〈
ψm+1,

m⊕

i=1
ψ i ∗ π

〉�⎤

⎦ = E

[〈
ψm+1, π

〉�]

= E

[〈
ψ1, π

〉�]
.

Consequently, for all � ≥ 1 we have

E

⎡

⎢⎣

⎛

⎝1−
〈⊕m+1

i=1 ψ i , π
〉

〈⊕m
i=1 ψ i , π

〉

⎞

⎠
�
⎤

⎥⎦ = E

[(
1− 〈

ψ1, π
〉)�]

. (5.20)

Further, because the continuous function z ∈ [−1, 1] �→ |z| is a uniform limit of
polynomials, (5.20) yields

E

∣∣∣∣∣∣∣

⎛

⎝1−
〈⊕m+1

i=1 ψ i , π
〉

〈⊕m
i=1 ψ i , π

〉

⎞

⎠
�
∣∣∣∣∣∣∣
= E

∣∣∣
(
1− 〈

ψ1, π
〉)�∣∣∣

Therefore, invoking (2.1), we obtain

∑

�≥1

1

�
E

∣∣∣∣∣∣∣

⎛

⎝1−
〈⊕m+1

i=1 ψ i , π
〉

〈⊕m
i=1 ψ i , π

〉

⎞

⎠
�
∣∣∣∣∣∣∣
=

∑

�≥1

1

�
E

∣∣∣
(
1− 〈

ψ1, π
〉)�∣∣∣

≤
∑

�≥1
E

[
max
σ∈�k

|1− ψ1(σ )|�
]
<∞.

Hence, by (5.20) and Fubini’s theorem,

E

⎡

⎣log

〈⊕m+1
i=1 ψ i , π

〉

〈⊕m
i=1 ψ i , π

〉

⎤

⎦ = −
∑

�≥1

1

�
E

⎡

⎢⎣

⎛

⎝1−
〈⊕m+1

i=1 ψ i , π
〉

〈⊕m
i=1 ψ i , π

〉

⎞

⎠
�
⎤

⎥⎦

= −
∑

�≥1

1

�
E

[(
1− 〈

ψ1, π
〉)�] = φ,

which is (5.19). ��
Lemma 5.6. Suppose that π ∈ D	. Then E[B′(μπ )] = E log

〈
ϕ1, π

〉
.
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Proof. We use a similar argument as in the proof of Lemma 5.5. This time we set
φ = E log

〈
ϕ1, π

〉
. It suffices to show that for every n ≥ 0,

E

⎡

⎣log

〈⊕n+1
i=1 ϕi , π

〉

〈⊕n
i=1 ϕi , π

〉

⎤

⎦ = φ. (5.21)

As in the proof of Lemma 5.5, we use that π ∈ D	 and apply Corollaries 3.4 and 3.9 to
obtain for any � ≥ 1,

E

⎡

⎢⎣

⎛

⎝

〈⊕n+1
i=1 ϕi , π

〉

〈⊕n
i=1 ϕi , π

〉

⎞

⎠
�
⎤

⎥⎦ = E

⎡

⎢⎣

⎛

⎝
〈 ⊕n

i=1 ϕi〈⊕n
j=1 ϕ j , π

〉 ⊕ ϕn+1, π

〉⎞

⎠
�
⎤

⎥⎦

= E

⎡

⎣
〈
ϕn+1,

n⊕

i=1
ϕi ∗ π

〉�⎤

⎦ = E

[〈
ϕ1, π

〉�]
. (5.22)

Hence, for any � ≥ 1,

E

⎡

⎢⎣

⎛

⎝1−
〈⊕n+1

i=1 ϕi , π
〉

〈⊕n
i=1 ϕi , π

〉

⎞

⎠
�
⎤

⎥⎦ = E

[(
1− 〈

ϕ1, π
〉)�]

. (5.23)

Further, approximating the absolute value by polynomials, we obtain from (5.22) that

E

∣∣∣∣∣∣∣

⎛

⎝1−
〈⊕n+1

i=1 ϕi , π
〉

〈⊕n
i=1 ϕi , π

〉

⎞

⎠
�
∣∣∣∣∣∣∣
= E

∣∣∣
(
1− 〈

ϕ1, π
〉)�∣∣∣ .

Thus, (5.21) follows from (5.23) and Fubini’s theorem. ��
Finally, Proposition 5.3 is immediate from Lemmas 5.5 and 5.6.

6. The Free Energy: Lower Bound

6.1. Outline. In this section we prove the following lower bound on the free energy that
matches the upper bound from Proposition 5.1. The lower bound does not require the
assumption POS.

Proposition 6.1. We have

lim inf
n→∞

1

n
E

[
log Z(G)

] ≥ inf
π∈D	

B(π), lim inf
n→∞

1

n
E

[
log Z(G)

] ≥ inf
π∈D	

B(π).

Theorem 2.7 follows immediately from Propositions 5.1 and 6.1.
The proof of Proposition 6.1 is based on a kind of coupling argument that is colloqui-

ally referred to as the ‘Aizenman–Sims–Starr’ scheme. This technique has been applied
with great success to random factor graphs of Erdős-Rényi type, where the degree distri-
bution is approximately Poisson [15,22,52]. The basic idea is to couple a random factor
graph with n variable nodes with a random factor graph with n + 1 variable nodes and
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to calculate the difference of their free energies very precisely. This coupling is very
easy to set up in the Erdős-Rényi case due to the Stein-Chen property of the Poisson
distribution.

However, in the case of random regular graphs matters are more intricate. Due to the
rigid local structure there is no obvious way of coupling random regular factor graphs
with n and n + 1 variable nodes. As in Sect. 4, we therefore resort to the idea of creating
a bit of wiggling room by carving out a few cavities, in such a way that the free energy
does not change significantly. But the details of the construction are delicate.

Let n, ω be integers and let X,Y be two independent Poisson variables with mean
ω. The protagonist of the proof is the random factor graph Gn,ω defined as follows. Let

Nn,ω = k∨(n − X) and let �n,ω
d=Be(dNn,ω/k − �dNn,ω/k�)

be independent of Y . Further, set

Mn,ω = d∨ (�dNn,ω/k� ∧
(�dNn,ω/k� +�n,ω − dX − Y

))
.

Then Gn,ω has Nn,ω variable nodes vi , i ∈ [Nn,ω], and Mn,ω constraint nodes ai ,
i ∈ [Mn,ω]. The weight functions ψai are chosen independently from P . Furthermore,
the variable and constraint nodes are linked through a random (one-to-one) pairing

FMn,ω × [k] → VNn,ω × [d].
Since kMn,ω ≤ dNn,ω by construction, such a pairing exists, but some variable clones
may go unpaired. We are going to harness these unpaired ‘cavities’ to set up a coupling
of Gn,ω and Gn+1,ω.

To this end, consider a further random factor graph Ĝn,ω with Nn,ω variable nodes and
M̂n,ω = Mn+1,ω − d constraint nodes. The weight functions are chosen independently
from P , and the connections between the constraint and variable nodes are induced by
a random pairing

FM̂n,ω
× [k] → VNn,ω × [d].

Rather than coupling Gn,ω and Gn+1,ω directly, we will couple Gn,ω and Ĝn,ω as well
as Gn+1,ω and Ĝn,ω.

This construction leads to an approximate formula for the free energy of Gn,ω that
comes in terms of the kernel representation of the Boltzmann distribution of Ĝn,ω. To
be precise, let Ĉ be the set of variables vi ∈ VNn,ω with at least one unpaired clone in

Ĝn,ω. Consider the random kernel

ρ̂n,ω = μ̇Ĝn,ω,Ĉ
∈ K

representing the joint distribution of the cavities Ĉ . Further, let π̂n,ω ∈ D be the
distribution of ρ̂n,ω. To deal with the conditioning on the event S , we also intro-
duce versions Gn,ω, Ĝn,ω of the above random factor graphs conditional on S . Let
ρ̃n,ω = μ̇Ĝn,ω,Ĉ

∈ K be the kernel representation of the corresponding Boltzmann dis-

tribution, and let π̃n,ω ∈ D be the law of ρ̃n,ω. In Sect. 6.2 we will derive the following
formula.
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Proposition 6.2. For any ε > 0 there exists ω > 0 such that

lim inf
n→∞ E

[
log

Z(Gn+1,ω)

Z(Gn,ω)

]
− E

⎡

⎢⎣log
〈
ϕ1, ρ̂n,ω

〉− log

〈
⊕

M̂n,ω<i≤Mn,ω

ψ1,i , ρ̂n,ω

〉⎤

⎥⎦ ≥ −ε,

lim inf
n→∞ E

[
log

Z(Gn+1,ω)

Z(Gn,ω)

]
− E

⎡

⎢⎣log
〈
ϕ1, ρ̃n,ω

〉− log

〈
⊕

M̂n,ω<i≤Mn,ω

ψ1,i , ρ̃n,ω

〉⎤

⎥⎦ ≥ −ε.

There are still two gaps to fill toward the proof of Proposition 6.1. First, the estimate of
the free energy provided by Proposition 6.2 does not quitematch the functionalB(π̂n,ω).
Second, the distribution π̂n,ω ∈ D does not generally belong to the subspace D	. The
following proposition deals with the second issue, which holds the key to resolving the
first. Recall that the topology of D is induced by the Wasserstein metric D�( · , · ). We
introduce a relaxed version of D	 by letting

D	ε,N ,M =
{
π ∈ D : D�(π, π∗(u,w)) ≤ ε for all u ≤ N and w ≤ M

}
.

Since (2.1) and Lemma 3.6 show that the map π �→ π∗(u,w) is continuous,D	ε,N ,M is a
closed subspace of the compact Polish space D.

Proposition 6.3. For any ε, L > 0 there is ω0 > 0 such that for every ω > ω0 for large
enough n we have

π̂n,ω, π̃n,ω ∈ D	ε,L ,L .

The proof of Proposition 6.3 can be found in Sect. 6.3. Finally, in Sect. 6.4 we derive
Proposition 6.1 from Propositions 6.2 and 6.3.

6.2. Proof of Proposition 6.2. We assume throughout that ω > ω0 for a big enough
ω0 = ω0(d, P) and that n sufficiently large.

Obtain the random factor graph G′n,ω from Ĝn,ω by adding Mn − M̂n,ω new random

constraint nodes ai , M̂n,ω < i ≤ Mn , whose weight functions are drawn from P
independently and that are linked with the variable nodes via a random pairing with the
cavities Ĉ of Ĝn,ω.

Further, if kM̂n,ω ≤ dNn,ω − d(k − 1), then obtain G′′n,ω from Ĝn,ω by adding
one new variable node v̂ = vNn,ω+1 along with d random constraint nodes â1, . . . , âd
adjacent to v̂ whose weight functions are drawn independently from P . To be precise,
the clones of v̂ are paired each with a uniformly random clone ĥi of âi for i = 1, . . . , d,
and the remaining d(k− 1) clones of the âi are paired with randomly chosen cavities of
Ĝn,ω. If kM̂n,ω > dNn,ω − d(k − 1), then obtain G′′n,ω from Ĝn,ω by just adding a new
isolated variable node v̂.

Obtain G
′
n,ω,G

′′
n,ω analogously from Ĝn,ω while conditioning on the event that the

outcome is simple. If it is impossible to add the required number of constraint nodes in
such a way that the resulting factor graph is simple, then do not add any.
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Lemma 6.4. For ω > 0 we have

∣∣E log Z(Gn,ω)− E log Z(G′n,ω)
∣∣ = o(1),

∣∣E log Z(Gn+1,ω)− E log Z(G′′n,ω)
∣∣ = oω(1),∣∣E log Z(Gn,ω)− E log Z(G′

n,ω)
∣∣ = oω(1),

∣∣E log Z(Gn+1,ω)− E log Z(G′′
n,ω)

∣∣ = oω(1).
(6.1)

Proof. Since d ≥ 3 and k ≥ 2,

M̂n,ω − �dNn,ω/k� ≤ dNn,ω/k + 1 + d/k − d − �dNn,ω/k� ≤ 2− d(1− 1/k) ≤ 1/2.

Because the left-hand side is an integer, we conclude that M̂n,ω ≤ �dNn,ω/k�. Similarly,

M̂n,ω −
(�dNn,ω/k� +�n,ω − dX − Y

) ≤ 2− d(1− 1/k) ≤ 1/2.

Thus, Mn,ω ≥ M̂n,ω. Hence, Gn,ω and G′ are identically distributed.
Moving on to the second claim, we consider the event A that the last variable node

is adjacent to precisely d distinct constraint nodes. Then

P
[
Gn+1,ω ∈ A

] = 1− O(ω/n), (6.2)

while G′′n,ω ∈ A with certainty. GivenA and given that X +Y ≤ √n, say, the subgraph

G̃n+1,ω obtained from Gn+1,ω by deleting ṽ along with its adjacent constraint nodes is
distributed precisely as Ĝn,ω, and therefore G′′n,ω and Gn+1,ω can be coupled identically.
Hence,

E
[
log Z(G′′n,ω) | X + Y ≤ √n

] = E
[
log Z(Gn+1,ω) | A , X + Y ≤ √n

]
. (6.3)

If, on the other hand, X + Y ≤ √
n but A does not occur, then we can couple Gn+1,ω

and G′′n,ω such that both disagree on at most 2d constraint nodes. Indeed, suppose

that vNn+1,ω has d̃ < d adjacent constraints in Gn+1,ω. Then the subgraph obtained
by removing vNn+1,ω , its d̃ neighbors and another d − d̃ random constraint nodes is

distributed precisely as Ĝn,ω. Hence, we can obtain both Gn+1,ω and G′′n,ω from Ĝn,ω
by adding d (possibly distinct) constraint nodes. Thus, (2.1) ensures that

E
[
log Z(G′′n,ω) | X + Y ≤ √n

] = E

[
log Z(Gn+1,ω) | A , X + Y ≤ √n

]
+ O(1).

(6.4)
Furthermore, (2.1) ensures that

E
[
log Z(G′′n,ω) | X,Y

]
,E

[
log Z(Gn+1,ω) | X,Y

] = O(n). (6.5)

Since P
[
X + Y >

√
n
] = o(n−2), (6.2)–(6.5) yield the second assertion.

Matters get slightly more complicated once we condition on S . Since X + Y ≤
log n with probability 1 − O(n−k), due to (2.1) the event X + Y > log n contributes
no more than an additive o(1) to the difference of the free energies. Hence, we may
condition on X + Y ≤ log n. Let d ′ be the vector comprising the variable degrees
in Ĝn,ω. Let D be the set of all such sequences with entries either d or d − 1. A
standard moment calculation shows that given any possible d ′, the event Ĝn,ω ∈ S has
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probability (1 + o(1)) exp
[−(d − 1)(k − 1)/2− 1{k = 2}(d − 1)2/4

]
(cf. Fact 2.2).

Therefore, with Õ( · ) hiding poly-logarithmic terms,

P
[
d ′ ∈ D | X + Y ≤ log n

] = 1− Õ(1/n). (6.6)

Similarly, let d comprise the variable degrees of the factor graph G
−
n,ω obtained from

Gn,ω by deleting the last d constraint nodes. Then

P
[
d ∈ D | X + Y ≤ log n

] = 1− Õ(1/n). (6.7)

Additionally, let E be the set of all factor graphs that have a constraint node that is
adjacent to variable nodes of degree less than d only. Then

P

[
Ĝn,d ∈ E | X + Y ≤ log n

]
,P

[
G
−
n,ω ∈ E | X + Y ≤ log n

] = Õ(n1−k). (6.8)

Further, on the eventD\E we can couple G
′
n,ω and Gn,ω identically, because there is no

way of adding the missing constraint nodes to Ĝn,ω without obtaining a simple factor
graph. Hence,

E
[
log Z(Gn,ω) | d ∈ D, G

−
n,ω �∈ E , X + Y ≤ log n

]

= E

[
log Z(G′

n,ω) | d̂ ∈ D, Ĝn,ω �∈ E , X + Y ≤ log n
]
. (6.9)

But (6.9) does not yet suffice to prove (6.1) because outside the event D\E the free
energies of the two factor graphs may differ by �(n). Hence, we also need to consider
the event D ′ that d has a single d − 2 entry; this suffices because

P
[
d �∈ D ∪D ′ | X + Y ≤ log n

]
,P

[
d̂ �∈ D ∪D ′ | X + Y ≤ log n

]
= 1− Õ(n−2)

(6.10)

and thus the contribution of the complement of D ∪ D ′ to the free energy difference
is o(1) due to (2.1). Considering the event D ′ is indeed necessary because P[d̂ ∈ D ′ |
X + Y ≤ log n] > P[d ∈ D ′ | X + Y ≤ log n]. Indeed, while Ĝn,ω is just a uniformly
random simple factor graph with Nn,ω variable and M̂n,ω constraint nodes, G

−
n,ω has

a tilted distribution, with each possible simple graph being weighed according to the
number of extensions into a simple graph with Mn,ω constraints. In effect, since variable
nodes of degree less than d − 1 leave us with fewer extensions, the event D ′ is less
likely in G

−
n,ω. Yet because Mn,ω − M̂n,ω is bounded, on the event D ′ we can couple

Gn,ω and G
′
n,ω such that both differ only in a bounded number of constraint nodes. As

a consequence,

E
[
log Z(Gn,ω) | d ∈ D ′, G

−
n,ω �∈ E , | X + Y ≤ log n

]

= E

[
log Z(G′

n,ω) | d̂ ∈ D ′, Ĝn,ω �∈ E , | X + Y ≤ log n
]
+ O(1). (6.11)

Additionally, we claim that also Gn,ω given d ∈ D and G
′
n,ω given d̂ ∈ D ′ can be

coupled such that with probability 1− Õ(1/n) both differ only in Õ(1) constraint nodes
and that, in effect,

E
[
log Z(Gn,ω) | d ∈ D, G

−
n,ω �∈ E , | X + Y ≤ log n

]

= E

[
log Z(G′

n,ω) | d̂ ∈ D ′, Ĝn,ω �∈ E , | X + Y ≤ log n
]
+ Õ(1). (6.12)
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To see this, let u1, . . . , u� be the variables nodes of degree less than d in G
−
n,ω; suppose,

indeed, that all of them have degree d − 1. Similarly, let u′1, . . . , u′�−1 be the cavities of
Ĝn,ω, all of degree d−1 except for u′�−1, which has degree d−2. Pick a further variable

node u′� of degree d randomly. Then with probability 1− Õ(n−1) the second neighbor-
hoods ∂2{u1, . . . , u�}, ∂2{u′1, . . . , u′�} both have size �(k−1)(d−1). Consequently, the

subgraphs ofG
−
n,ω and Ĝn,ω obtained by removing u1, . . . , u� and u′1, . . . , u′� alongwith

their neighbors, respectively, can be coupled such that both coincide with probability
1 − Õ(1/n). Thus, Gn,ω and G

′
n,ω can be coupled such that the expected number of

constraint nodes on which the two factor graphs differ is Õ(1), whence we obtain (6.12).
To deal with the event E , we may assume that k = 2 due to (6.6). Furthermore,

because of (6.8) and as

P[d ′ �∈ D | Ĝn,ω ∈ E , | X + Y ≤ log n] = Õ(1/n),

P[d �∈ D | G
−
n,ω ∈ E , | X + Y ≤ log n] = Õ(1/n), (6.13)

we may assume that d, d ′ ∈ D . Since

P

[
Ĝn,ω ∈ E | d ′ ∈ D, X + Y ≤ log n

]
≥ P

[
G
−
n,ω ∈ E | d ∈ D, X + Y ≤ log n

]

(6.14)

because the event E precludes certain extensions into a simple factor graph with Mn,ω

constraints, we just need to consider the case that Ĝn,ω ∈ E and G
−
n,ω �∈ E given that

d, d ′ ∈ D . Let u1, . . . , u� and u′1, . . . , u′� be the cavities of G
−
n,ω and Ĝn,ω, respectively.

Pick one further constraint node b of Ĝn,ω. Then with probability 1 − Õ(1/n) the set
∂2{u1, . . . , u�} has size �(d−1), and all variable nodes in this set have pairwise distance
at least four. The same is true of the set ∂2{u′1, . . . , u′�}∪∂bwith probability 1− Õ(1/n).
If these two events occur, then Gn,ω and Gn,ω′ can be coupled such that they only differ
on the Õ(1) constraint nodes that are adjacent to u1, . . . , u� and u′1, . . . , u′� and b. Hence,
we obtain a coupling such that Gn,ω and Gn,ω′ only differ on Õ(1/n) variable nodes in
expectation, and thus

E

[
log Z(G′

n,ω) | d ′ ∈ D, Ĝn,ω ∈ E , X + Y ≤ log n
]

= E
[
log Z(Gn,ω) | d ∈ D, G

−
n,ω �∈ E , X + Y ≤ log n

]
+ Õ(1). (6.15)

Moreover, because givenE there is precisely one constraint involving variables of degree
d − 1 only with probability 1− Õ(1/n), we obtain

E

[
log Z(G′

n,ω) | d ′ ∈ D, Ĝn,ω ∈ E , X + Y ≤ log n
]

= E
[
log Z(Gn,ω) | d ∈ D, G

−
n,ω ∈ E , X + Y ≤ log n

]
+ Õ(1). (6.16)

Combining (6.15)–(6.16), we obtain the left bound stated in (6.1).
We proceed similarly to derive the right bound in (6.1). Indeed, in this case we do

not need to consider the event E separately, because all additional constraint nodes are
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connectedwith a variable node that does not belong to Ĝn,ω orG−
n,ω, respectively. Hence,

on the event D we can couple G
′′
n,ω and Gn+1,ω identically, and thus

E
[
log Z(Gn+1,ω) | d ∈ D, X + Y ≤ log n

] = E
[
log Z(G′′

n,ω) | d ′ ∈ D, X + Y ≤ log n
]
.

(6.17)

In effect, due to (6.10) we just need to construct a coupling in the event that Ĝn,ω ∈ D ′
and Ĝ

−
n,ω ∈ D . To this end,we proceed as above by coupling Ĝn,ω,G−

n,ω given the second

neighborhoods of the cavities such that both only differ in an expected Õ(1/n) constraint
nodes. Since P

[
d ′ ∈ D ′ | X + Y ≤ log n

]
,P

[
d ∈ D ′ | X + Y ≤ log n

] = Õ(1/n) and
P

[
d ∈ D ′ | X + Y ≤ log n

] ≥ P
[
d ′ ∈ D ′ | X + Y ≤ log n

]
, the second part of (6.1)

follows from (6.17). ��

We are ready to compare the free energies of Z(G′′), Z(Ĝ) and Z(G′), Z(Ĝ) and of
the corresponding simple graphs. We will carry the proofs out for the case of the simple
random factor graph Ĝ; the other case is simply obtained by skipping any deliberations
pertinent to the event S .

Lemma 6.5. We have

E

[
log

Z(G′′n,ω)
Z(Ĝn,ω)

]
= E

[
log

〈
ϕ1, ρ̂n,ω

〉]
+ oω(1),

E

[
log

Z(G′′
n,ω)

Z(Ĝn,ω)

]
= E

[
log

〈
ϕ1, ρ̃n,ω

〉]
+ oω(1).

Proof. Let A be the event that Ĝn,ω has at least ω/2 cavities, that all variable nodes
have degree either d or d−1 and that no two variable nodes of degree d−1 are adjacent
to the same constraint node. Then P [A ] = 1 − exp(−�ω(ω)). Hence, (2.1) ensures
that

E[log(Z(G′′
n,ω)/Z(Ĝn,ω))] = E[log(Z(G′′

n,ω)/Z(Ĝn,ω))|A ] + oω(1). (6.18)

Moreover, on A the random factor graph G
′′
n,ω is obtained from Gn,ω by adding one

variable node v̂ along with d constraint nodes â1, . . . , âd , whose weight functions are
drawn from P independently. Further, on the event A all neighbors of the âi except v̂
belong to the set Ĉ of cavities. Therefore, we have the exact formula

Z(G′′
n,ω)

Z(Ĝn,ω)
=

〈
∑

χ∈�
p(χ)

d∏

i=1

∑

τ∈�∂ âi
ψâi (τ )1{τx̂ = χ, ∀y ∈ ∂ âi\x̂ : σ y = τy}, μĜn,ω,Ĉ

〉
.

(6.19)
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To proceed, let (vi, j )i, j be a sequence of uniformly and independently chosen cavities
vi, j ∈ Ĉ . We claim that on the event A ,

E

[
log

Z(G′′
n,ω)

Z(Ĝn,ω)

∣∣∣∣ Ĝn,ω

]

= oω(1)

+ E

⎡

⎣log

〈
∑

χ∈�
p(χ)

d∏

i=1

∑

τ∈�k

ψ i (τ )1{τhi = χ, ∀h ∈ [k]\hi : σvi,h = τh}, μĜn,ω, ˆC

〉 ∣∣∣∣ Ĝn,ω

⎤

⎦ .

(6.20)

Indeed, the only difference between (6.19) and (6.20) is that in the former the neighbours
∂ âi\v̂ are chosen from Ĉ without replacement, whereas the vi, j are chosen indepen-
dently, i.e., with replacement. But since we choose a mere dk cavities (vi, j )i∈[d], j∈[k]
out of a total of at least ω/2, the probability of hitting the same cavity twice is oω(1),
and thus (6.20) follows from (2.1). Further, unravelling the definitions of ρ̃n,ω and ϕ1,
we see that

E

⎡

⎣log

〈
∑

χ∈�
p(χ)

d∏

i=1

∑

τ∈�k

ψ i (τ )1{τhi = χ, ∀h ∈ [k]\hi : σvi,h = τh}, μĜn,ω, ˆC

〉 ∣∣∣∣ Ĝn,ω

⎤

⎦

= E

[
log

〈
ϕ1, ρ̃n,ω

〉 | Ĝn,ω

]
. (6.21)

Finally, the assertion follows from (6.18)–(6.21) by taking the expectation on Ĝn,ω. ��
Lemma 6.6. We have

E

[
log

Z(G′n,ω)
Z(Ĝn,ω)

]
= E

〈
log

⊕

M̂n,ω<i≤Mn,ω

ψ1,i , ρ̂n,ω

〉
+ oω(1),

E

[
log

Z(G′
n,ω)

Z(Ĝn,ω)

]
= E

〈
log

⊕

M̂n,ω<i≤Mn,ω

ψ1,i , ρ̃n,ω

〉
+ oω(1).

Proof. The proof is similar in spirit to the previous one. Once more we consider the
event A that Ĝn,ω has at least ω/2 cavities, that all variable nodes have degree either
d or d − 1 and that no two variable nodes of degree d − 1 are adjacent to a common
constraint node. Then P [A ] = 1− exp(−�ω(ω)) and

E[log(Z(G′
n,ω)/Z(Ĝn,ω))] = E[log(Z(G′′

n,ω)/Z(Ĝn,ω))|A ] + oω(1). (6.22)

Moreover, we have the pointwise exact formula

Z(G′
n,ω)

Z(Ĝn,ω)
=

〈
∏

M̂n,ω<i≤Mn,ω

∑

τ∈�∂ai
ψai (τ )1{σ ∂ai = τ }, μĜn,ω,Ĉ

〉
. (6.23)



Spin Systems on Bethe Lattices 495

With (vi, j )i, j a sequence of independently chosen cavities vi, j ∈ Ĉ , we claim that on
A ,

E

[
log

Z(G′
n,ω)

Z(Ĝn,ω)

∣∣∣∣ Ĝn,ω

]
= oω(1)

+ E

⎡

⎣log

〈Mn,ω−M̂n,ω∏

i=1

∑

τ∈�k

ψ i (τ )

k∏

j=1
1{σvi, j = τ j }, μĜn,ω, ˆC

〉 ∣∣∣∣ Ĝn,ω

⎤

⎦ .

(6.24)

Indeed, the only difference is that in (6.24) the vi, j are chosen independently, whereas in
(6.23) the neighbors of the ai are chosen without replacement. But since Mn,ω − M̂n,ω
is bounded while there are at least ω/2 cavities, the two terms coincide up to oω(1).
Finally, the construction of ρ̃n,ω ensures that

E

⎡

⎣log

〈Mn,ω−M̂n,ω∏

i=1

∑

τ∈�k

ψ i (τ )

k∏

j=1
1{σvi, j = τ j }, μĜn,ω,Ĉ

〉 ∣∣∣∣ Ĝn,ω

⎤

⎦

= E

⎡

⎣log

〈Mn,ω−M̂n,ω⊕

i=1
ψ1,i , ρ̂n,ω

〉 ∣∣∣∣ Ĝn,ω

⎤

⎦ , (6.25)

and thus the assertion follows from (6.22)–(6.25) by taking the expectation. ��
Finally, Proposition 6.2 is an immediate consequence of Lemmas 6.4, 6.5 and 6.6.

6.3. Proof of Proposition 6.3. Once more we will carry the proof out for the simple
random factor graph, which is the (slightly) more intricate case; the unconditional case
follows by skipping any considerations pertaining to the conditioning. The basic idea
behind the proof of Proposition 6.3 is quite simple. With probability 1 − oω(1) the
random graph Ĝn,ω consists of Nn,ω variable and M̂n,ω constraint nodes and we have
Nn,ω = n − X and

M̂n,ω = Mn+1,ω − d = �dNn,ω/k� ∧
(�dNn,ω/k� +�n,ω − dX − Y

)− d

with independent Po(ω) variables X,Y . Fix two integers �, �′ ≥ 0. Given that X ≥ �
and kM̂n,ω ≤ dNn,ω − k�′ − d(k − 1)�, let Ĝn,ω

[
�, �′

]
be the random factor graph

obtained from Ĝn,ω by adding

• � more variable nodes v̂1 = vNn,ω+1, . . . , v̂� = vNn,ω+� along with d� new con-
straint nodes âi, j , i ∈ [�], j ∈ [d], each with a weight function chosen from P

independently; connect a random clone ĥi, j of each âi, j with a random clone of v̂i
and pair the other k − 1 clones of âi, j with random cavities of Ĝn,ω left pending by
the previous additions.
• �′ more constraint nodes â1, . . . , â�′ , each endowed with a weight function chosen
from P independently and each connected with k random cavities of Ĝn,ω left vacant
by the previous operations.
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The resulting random factor graph Ĝn,ω
[
�, �′

]
is not necessarily simple. Yet the key

insight behind Proposition 6.3 is that for any �, �′ the distribution of Ĝn,ω
[
�, �′

]
is

close to that of the original graph Ĝn,ω, provided that ω is big enough. Moreover,
the perturbation of the Boltzmann distribution that ensues upon going from Ĝn,ω to
Ĝn,ω

[
�, �′

]
is close to the perturbation induced by the ∗(�, �′)-operation. We introduce

similar notation Ĝn,ω[�, �′] for the random graph without the conditioning onS .
To formalize this idea, we first compare the distributions of Ĝn,ω and Ĝn,ω

[
�, �′

]
.

For integers x, y we denote by Ĝn,ω,x,y the conditional Ĝn,ω given that X = x and
Y = y.

Lemma 6.7. For any �, �′ ≥ 0 we have dTV
(
Ĝn,ω, Ĝn,ω

[
�, �′

]) = oω(1) and analo-

gously dTV
(
Ĝn,ω, Ĝn,ω

[
�, �′

]) = oω(1).

Proof. The event A = {ω/2 ≤ X ≤ 2ω, ω/2 ≤ Y ≤ 2ω} has probability 1 − oω(1).
Further, because X,Y are independent Poisson variables with a large mean ω while �, �′
are fixed, the total variation distance of the pairs (X,Y) and (X − �,Y − �′) is of order
Oω(ω−1/2). Hence, given A the total variation distance of Ĝn,ω and Ĝn,ω,X−�,Y−�′ is
oω(1); in symbols,

dTV
(
Ĝn,ω | A , Ĝn,ω,X−�,Y−�′ | A

)
= oω(1). (6.26)

Further, let A ′ be the event that Ĝn,ω enjoys the following additional properties.

(i’) The last � variable nodes of Ĝn,ω satisfy
∣∣∣∂2{vNn,ω−�+1, . . . , vNn,ω }\Ĉ

∣∣∣ = �d(k−
1).Hence, there are �d(k−1) distinct second neighbors, none of which is a cavity.

(ii’) The last �′ constraint nodes of Ĝn,ω satisfy
∣∣∣∂{aM̂n,ω−�′+1, . . . , aM̂n,ω

}\Ĉ
∣∣∣ = k�′.

Hence, there are k�′ distinct second neighbors, none of them a cavity.
(iii’) We have ∂{vNn,ω−�+1, . . . , vNn,ω } ∩ {aM̂n,ω−�′+1, . . . , aM̂n,ω

} = ∅.
(iv’) Let

U = Ĉ ∪ ∂2{vNn,ω−�+1, . . . , vNn,ω } ∪ ∂{aM̂n,ω−�′+1, . . . , aM̂n,ω
}.

Then for any constraint node a �∈ ∂{vNn,ω−�+1, . . . , vNn,ω }∪aM̂n,ω−�′+1, . . . , aM̂n,ω

wehave |∂a∩U | ≤ 1.Thus, only the constraint nodes adjacent to the last �variable
nodes or the ai with i > M̂n,ω − �′ may be adjacent to more than one variable
node in U .

(v’) All variable nodes u ∈ U have degree d or d − 1.

Additionally, let A ′′ be the event that Ĝn,ω,X−�,Y−�′ has the following properties.

(i’) all variable nodes have degree either d or d − 1.
(ii’) no two variable nodes of degree d − 1 are adjacent to the same constraint node.

Then

P

[
Ĝn,ω ∈ A ′ | A

]
= 1− oω(1), P

[
Ĝn,ω,X−�,Y−�′ ∈ A ′′ | A

]
= 1− oω(1).

(6.27)
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Furthermore, given A ′′ ∩ A , the random factor graph Ĝn,ω,X−�,Y−�′ [�, �′] obtained
by attaching � new variable nodes and �′ new constraint nodes is distributed pre-
cisely as Ĝn,ω given A ′ ∩ A . Indeed, the construction of the enhanced factor graph
Ĝn,ω,X−�,Y−�′ [�, �′] expressly ensures that (i’)–(iii’) are satisfied, and (iv’)–(v’) follow
from (i”)–(ii”). Hence, (6.27) yields

dTV
(
Ĝn,ω | A , Ĝn,ω,X−�,Y−�′ [�, �′] | A

)
= oω(1). (6.28)

Finally, since P [A ] = 1− oω(1), the assertion follows from (6.26) and (6.28). ��
Let ˆC [�, �′] be the set of cavities of Ĝn,ω

[
�, �′

]
and let ρ̂n,ω[�, �′] ∈ K be the kernel

representing μĜn,ω[�,�′], ˆC [�,�′]. Let π̂n,ω
[
�, �′

] ∈ D be the distribution of ρ̂n,ω[�, �′].
Define C̃ [�, �′], ρ̃n,ω[�, �′] analogously for Ĝn,ω.

Lemma 6.8. For any �, �′ ≥ 0 we have

D�
(
π̂∗(�,�′)n,ω , π̂n,ω

[
�, �′

]) = oω(1), D�
(
π̃∗(�,�′)n,ω , π̃n,ω

[
�, �′

]) = oω(1).

Proof. The eventA1 = {ω/2 ≤ X,Y ≤ 2ω} occurs with probability 1−oω(1). So does
the event A2 that all variable nodes of Ĝn,ω have degree either d or d − 1, and thus the
same is true ofA = A1 ∩A2. Moreover, the construction of Ĝn,ω[�, �′] is such that on
the event A we have the exact formula

Z(Ĝn,ω[�, �′])
Z(Ĝn,ω)

=
〈
�∏

i=1
ϕi (σ )

�′∏

i=1
ψâi (σ ), μĜn,ω,Ĉ

〉
, where

ϕi (σ ) =
∑

χ∈�
p(χ)

d∏

j=1

∑

τ∈�∂ âi, j
ψâi, j (τ )1{τv̂i = χ, ∀w ∈ ∂ âi, j\v̂i : σw = τw}.

Consequently, the joint distribution of the cavities C̃ [�, �′] of Ĝn,ω[�, �′] reads
μ
Ĝn,ω[�,�′], ˜C [�,�′](σ )

=
〈
1{∀u ∈ C̃ [�, �′] : σ u = σu}∏�

i=1 ϕi (σ )
∏�′

i=1 ψâi (σ ), μĜn,ω
(σ )

〉

〈∏�
i=1 ϕi (σ )

∏�′
i=1 ψâi (σ ), μĜn,ω, ˜C

〉 (σ ∈ � ˜C [�,�′]).

(6.29)

Thus, with probability 1 − oω(1), namely on the event A , ρ̃n,ω[�, �′] is just the
kernel representing the right hand side of (6.29) We claim that in this case ρ̃n,ω[�, �′]
and ρ̃∗(�,�

′)
n,ω can be coupled to coincide with probability 1 − oω(1). Indeed, the weight

functions associated with the âi and the âi, j are chosen from P independently, and
they are connected to the cavities of Ĝn,ω by a random pairing. By comparison, we

construct ρ̃∗(�,�
′)

n,ω by adjoining ϕ1, . . . ,ϕ� and ψ1, . . . ,ψ�′ that evaluate the kernel ρ̃n,ω
at independent uniformly random points of the unit interval. Combinatorially, this is
equivalent to attaching the new variable and constraint nodes to random cavities chosen
with replacement, rather than without replacement as in the construction of Ĝn,ω[�, �′].
But since the number of cavities of Ĝ is�ω(ω), the two constructions have total variation
distance oω(1). ��
Proof of Proposition 6.3. The proposition is immediate from Lemmas 6.7 and 6.8. ��
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6.4. Proof of Proposition 6.1. We begin with the following lemma, whose proof is
similar to the proof of Lemma 5.5.

Lemma 6.9. We have

E

⎡

⎢⎣log
〈
ϕ1, π̂n,ω

〉− log

〈
⊕

M̂n,ω<i≤Mn,ω

ψ1,i , π̂n,ω

〉⎤

⎥⎦ = B(π̂n,ω) + oω(1),

E

⎡

⎢⎣log
〈
ϕ1, π̃n,ω

〉− log

〈
⊕

M̂n,ω<i≤Mn,ω

ψ1,i , π̃n,ω

〉⎤

⎥⎦ = B(π̃n,ω) + oω(1).

Proof. Let π = π̂n,ω or π = π̃n,ω. Since E[Mn,ω − M̂n,ω] = d(k − 1)/k + oω(1), due
to (2.1) it suffices to show that

E

⎡

⎢⎣log

〈
⊕

M̂n,ω<i≤Mn,ω

ψ1,i , π

〉⎤

⎥⎦ = oω(1) + E[Mn,ω − M̂n,ω] · E
[
log

〈
ψ1,1, π

〉]
.

(6.30)

Thus, we need to cope with the correlations between Mn,ω − M̂n,ω and Ĝn,ω or Ĝn,ω,
respectively. In other words, we need to assess the correlations between Mn,ω − M̂n,ω

and N̂n,ω, M̂n,ω. With probability 1− exp(−�ω(ω)) we have

Mn,ω − M̂n,ω = W, where W = �dNn,ω/k�
− �d(1 + Nn,ω)/k� +�n,ω −�n+1,ω + d, (6.31)

with independent Bernoulli variables�n,ω,�n+1,ω. Thus, W ≤ d + 1 and (2.1) ensures
that

E

⎡

⎢⎣log

〈
⊕

M̂n,ω<i≤Mn,ω

ψ1,i , π

〉⎤

⎥⎦ = E

[
log

〈
W⊕

i=1
ψ1,i , π

〉]
+ oω(1)

= E

[
1
{∣∣∣N̂n,ω − E[N̂n,ω]

∣∣∣ ,
∣∣∣M̂n,ω − E[M̂n,ω]

∣∣∣ ≤
√
ω logω

}
log

〈
W⊕

i=1
ψ1,i , π

〉]
+ oω(1).

(6.32)

Furthermore, since X,Y are independent Poisson variables with mean ω while W is
bounded, for any n̂, m̂ such that |n̂ − E[N̂n,ω]|, |m̂ − E[M̂n,ω]| ≤ √

ω logω we obtain
from (6.31) that

P

[
M̂n,ω = m̂ | N̂n,ω = n̂

]
= (1 + oω(1))P

[
M̂n,ω = m̂ | Nn,ω = n̂, W = h

]

for any 0 ≤ h ≤ d + 1.
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Hence, introducing an independent copy W ′ of W , we obtain from (2.1) and (6.32) that

E

⎡

⎢⎣log

〈
⊕

M̂n,ω<i≤Mn,ω

ψ1,i , π

〉⎤

⎥⎦ = E

⎡

⎣log

〈
W ′⊕

i=1
ψ1,i , π

〉⎤

⎦ + oω(1). (6.33)

Additionally, we claim that for any 0 ≤ w ≤ d + 1,

E

⎡

⎣log

〈⊕w+1
i=1 ψ1,i , π

〉

〈⊕w
i=1 ψ1,i , π

〉

⎤

⎦ = E
[
log

〈
ψ1,1, π

〉]
+ oω(1). (6.34)

Indeed, as in the proof of Lemma 5.5 we obtain

E

⎡

⎢⎣

⎛

⎝

〈⊕w+1
i=1 ψ i , π

〉

〈⊕w
i=1 ψ i , π

〉

⎞

⎠
�
⎤

⎥⎦ = E

⎡

⎣
〈
ψw+1,

w⊕

i=1
ψ i ∗ π

〉�⎤

⎦ . (6.35)

Further, (2.1), Corollary 3.4 and Proposition 6.3 yield

E

⎡

⎣
〈
ψw+1,

w⊕

i=1
ψ i ∗ π

〉�⎤

⎦ = E

[〈
ψw+1, π

〉�] + oω(1). (6.36)

As the logarithm can be approximated arbitrarilywell by polynomials due to (2.1), (6.34)
follows from (6.35)–(6.36). Finally, (6.30) follows from (6.33) and (6.34). ��
Proof of Proposition 6.1. Proposition 6.3 and Lemma 6.9 show that for any � ≥ 1 there
exists ω� > ω�−1 such that for all sufficiently large n we have π̂n,ω� ∈ D	1/�,�,� and

1

n
E log Z(G) ≥ B(π̂n,ω�)− 1/�. (6.37)

Since D is compact, the sequence (π̂n,ω�)n has a convergent subsequence, whose limit
π̂ (�) lies in the closed set D	1/�,�,�. Furthermore, because Lemma 3.3 shows that B( · )
is continuous, (6.37) yields

lim inf
n→∞

1

n
E log Z(G) ≥ B(π̂ (�))− 1/�. (6.38)

Additionally, (π̂ (�))� has a subsequence that converges to π̃ ∈ D	 = ⋂
�D

	
1/�,�,�.

Thus, the first assertion follows from (6.38) and the continuity of B( · ) established by
Corollary 3.5.

The second assertion concerning the simple random factor graph G is immediate
from the first. Indeed, due to (2.1) a standard application of Azuma’s inequality shows
that n−0.51| log Z(G) − E log Z(G)| → 0 in probability. Hence, Fact 2.2 and Bayes’
rule imply that E log Z(G)− E log Z(G) = o(n). ��
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6.5. Proof of Theorem 2.6. We begin by showing that the free energy of G can be
expressed in terms of the functional B applied to π̂n,ω or π̃n,ω, respectively. Once
more we will carry the details out for G; the unconditioned random factor graph G is
easier to deal with, and the proofs are just obtained from the G case by dropping any
considerations regarding multiple edges.

Lemma 6.10. If POS is satisfied, then

lim
n→∞

1

n
E log Z(G) = lim inf

ω→∞ lim inf
n→∞ B(π̂n,ω),

lim
n→∞

1

n
E log Z(G) = lim inf

ω→∞ lim inf
n→∞ B(π̃n,ω).

Proof. Proposition 6.2 and Lemma 6.9 show that for any ε > 0 there exists ω0 such
that for all ω > ω0 there exists n0 such that for all n > n0 we have n−1E log Z(G) ≥
B(π̃n,ω)− ε. Hence, for any ε > 0 there is ω0 > 0 such that for all ω > ω0 we have

lim inf
n→∞

1

n
E log Z(G) ≥ lim inf

n→∞ B(π̃n,ω)− ε. (6.39)

Indeed, since Propositions 5.1 and 6.1 show that ( 1nE log Z(G))n converges, (6.39) yields

lim
n→∞

1

n
E log Z(G) = lim inf

n→∞
1

n
E log Z(G) ≥ lim inf

ω→∞ lim inf
n→∞ B(π̃n,ω). (6.40)

We are left to prove the converse inequality. The space D is compact and separable.
Therefore, for anyω the sequence (π̃n,ω)n has a subsequence that converges to π̃ (ω) ∈ D

such that lim infn→∞B(π̃n,ω) = B(π̃ (ω)). Further, (π̃ (ω))ω has a subsequence that
converges to π̃∗ such that

lim inf
ω→∞ B(π̃ (ω)) = B(π̃∗). (6.41)

Proposition 6.3 shows that π̃∗ ∈ D	. Hence, Proposition 5.1 implies that

lim
n→∞

1

n
E log Z(G) ≤ B(π̃∗) = lim inf

ω→∞ B(π̃ (ω)) = lim inf
ω→∞ lim inf

n→∞ B(π̃n,ω). (6.42)

Thus, the assertion follows from (6.40)–(6.42). ��
To proceed we need a small twist on Lemma 6.10. Namely, instead of using Ĝn,ω as

our reference point, we are going to work with Gn,ω. Thus, let C be the set of cavities of
Gn,ω and let ρn,ω,S ∈ K be the kernel representing μGn,ω,C . Further, let πn,ω,S ∈ D
be the distribution of ρn,ω,S . Define ρn,ω, πn,ω analogously with respect to Gn,ω.

Corollary 6.11. If POS is satisfied, then

lim
n→∞

1

n
E log Z(G) = lim inf

ω→∞ lim inf
n→∞ B(πn,ω),

lim
n→∞

1

n
E log Z(G) = lim inf

ω→∞ lim inf
n→∞ B(πn,ω,S ).
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Proof. Since X,Y are Poisson variables with a large mean ω, M̂n,ω and Mn,ω can be
coupled so that both coincide with probability 1−oω(1). This coupling naturally extends
to a coupling of Ĝn,ω and Gn,ω under which Gn,ω = Ĝn,ω with probability 1− oω(1).
Consequently, recalling thatD�( · , · ) stands for the Wasserstein metric onD, we have
D�(πn,ω,S , π̃n,ω) = oω(1). Thus, the assertion follows from the Corollary 3.5. ��

We recall the construction of the kernel μ̌G,X,Y ∈ K from (2.14). Let π̌n,ω ∈ D be the
distribution of μ̌G,X,Y , and define μ̌G,X,Y ∈ K, π̌n,ω,S ∈ D analogously with respect
to G. Due to the inevitable divisibility condition required to construct a regular factor
graph, these kernels are defined whenever k|dn. The following proposition summarizes
the main step toward the proof of Theorem 2.6.

Proposition 6.12. For any α > 0 there is ω0 > 0 such that for every ω > ω0 there
exists n0 > 0 such that for all n > n0 with k|dn we have

D�(π̌n,ω, πn,ω) < α, D�(π̌n,ω,S , πn,ω,S ) < α.

To prove Proposition 6.12 we let V = {vi : i > Nn,ω} and A = {ai : i >
Mn,ω} ∪ ⋃

v∈V ∂v be the sets of variable and constraint nodes, respectively, that are
present in G but not in Gn,ω. Similarly as in Sect. 6.3, conditioning on the event that
kMn,ω ≤ dNn,ω− d(k− 1)X − kY , we define an enhanced random factor graph G

# by

• adding the variable nodes V to Gn,ω along with with dX new constraint nodes a#v, j ,

v ∈ V , j ∈ [d]. Each a#v, j is adjacent to v and k − 1 random cavities of Gn,ω,

• adding Y more constraint nodes a#1 , . . . , a
#
Y , each connected with k random cavities

of Gn,ω.

Of course, the cavities in the above construction are drawn without replacement and all
weight functions are chosen from P independently. We do not require that the outcome
G

# be simple. Let

A # = {a#v, j : v ∈ V , j ∈ [d]} ∪ {a#i : i ≤ Y}
comprise the new constraint nodes.

Lemma 6.13. We have dTV(G,G#) = oω(1).

Proof. Similarly as in the proof of Lemma 6.7, we consider the event E = {ω/2 ≤ X ≤
2ω, ω/2 ≤ Y ≤ 2ω}, which has probability 1− oω(1). Further, let E ′ be the event that
G enjoys the following additional properties.

(i’) We have |∂2V | = |V |d(k − 1).
(ii’) |∂{aMn,ω+1, . . . , am}| = k(m − Mn,ω) and ∂V ∩ {aMn,ω , . . . , am} = ∅.
(iii’) If a �∈ A , then a is connected to the set ∂A by at most one edge.

Additionally, let E ′′ be the event that Gn,ω has the following properties.

(i”) all variable nodes have degree either d or d − 1.
(ii”) no two cavities are adjacent to the same constraint node.

We have

P [E ] = 1− oω(1), P
[
G ∈ E ′

] = 1− o(1), P
[
Gn,ω ∈ E ′′

] = 1− o(1). (6.43)

Moreover,G given E ′ is distributed precisely asG
# given E ′′. Thus, the assertion follows

from (6.43). ��
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Due to Lemma 6.13 we can apply Theorem 2.5 to G
#. Let S#1 , . . . , S

#
� denote the

resulting Bethe state decomposition of G
#. Let T #

i = S#i ∩ �Vn\V for i ∈ [�]. Further,
we introduce

zG#,i =
〈
1{σ ∈ S#i }

/ ∑

τ∈�V

∏

v∈V
p(τv)

∏

a∈A #

ψa(σ Vn\V , τ ), μG#

〉
,

μG#,i (σ ) =
μG# (σ )1{σ ∈ T #

i }
zG#,i

∑
τ∈�V

∏
v∈V p(τv)

∏
a∈A # ψa(σ, τ )

(σ ∈ �Vn\V ).

(6.44)

Thus, μG#,i ∈P(�Vn\V ).

Lemma 6.14. With probability 1−oω(1) the sets T #
1 , . . . , T

#
� are pairswise disjoint and

we have

μG#,i (τ ) = μGn,ω (τ |T #
i ) for all τ ∈ T #

i and μGn,ω (T
#
i ) = zG#,i

/ �∑

j=1
zG#, j .

(6.45)

Proof. We recall from Sect. 4.1 that the decomposition S#1 , . . . , S
#
� is constructed by

pinning the values of a random set U∗ of variables to specific spins. Since the size of
this set is bounded, with high probability we have (C ∪ V ) ∩ U∗ = ∅. We will prove
that in this case, μG#,i (σ ) = μGn,ω (σ |T #

i ) for all i, σ .
If (C ∪ V ) ∩ U∗ = ∅, then T #

1 , . . . , T
#
� are pairwise disjoint. Thus, fix i ∈ [�] and

σ ∈ T #
i . Then by the construction of G

#,

μGn,ω (σ ) =
Z(G#)

Z(Gn,ω)
· μG# (σ )∑

τ∈�V

∏
v∈V p(τv)

∏
a∈A # ψa(σ, τ )

, (6.46)

Z(Gn,ω)

Z(G#)
=

〈
1

/ ∑

τ∈�V

∏

v∈V
p(τv)

∏

a∈A #

ψa(σ , τ ), μG

〉
=

�∑

j=1
zG#, j . (6.47)

Combining (6.46) and (6.47), we obtain the second identity in (6.45). Further, combining
the second part of (6.45) with (6.46) and (6.47), we find

μGn,ω (σ | T #
i ) =

μGn,ω (σ )

μGn,ω (T
#
i )

=
∑�

j=1 zG#, j

zG#,i
· Z(G#)

Z(Gn,ω)
· zG#,i · μG#,i (σ ) = μG#,i (σ ),

thereby establishing the first part of (6.45). ��
W.h.p. each cavity v ∈ C of Gn,ω has degree d − 1. In this case, we denote by bv

the unique neighbour of v in G
# that is not present in Gn,ω. Further, for i ∈ [�] let

νG,i ∈P(�C ) be the product measure

νG#,i =
⊗

v∈C
μG#,v→bv ( · |S#i ).
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In close analogy to the weights introduced in (2.13), we also define

ž#i = μG# (S#i ) ·
∏

v∈V

⎛

⎝
∑

χ∈�
p(χ)

∏

a∈∂v

∑

τ∈�∂a
1{τv = χ}ψa(τ )

∏

w∈∂a\v
μG#,w→a(τw|S#i )

⎞

⎠
−1

·
Y∏

i=1

⎛

⎜⎝
∑

τ∈�∂a#i
ψa#i
(τ )

∏

w∈∂a#i
μ
G#,w→a#i

(τw|S#i )
⎞

⎟⎠

−1

. (6.48)

Lemma 6.15. With probability 1− oω(1) we have
∑�

h=1
∣∣∣zG#,h − ž#h

∣∣∣ = o(1) and

�∑

h=1
μGn,ω (T

#
h )

∥∥∥μGn,ω,C ( · |T #
h )− νG#,h

∥∥∥
TV
= o(1).

Proof. Fix h ∈ [�] and suppose that S#h is an o(1)-Bethe state, which occurs with
probability 1 − oω(1) due to Theorem 2.5 and Lemma 6.13. Then by BS2 w.h.p. we
have for any σ ∈ �V ∪C ,

μG# (σ |S#h ) ∼
∏

v∈V

p(σvi )
∏

a∈∂v ψa(σ )
∏
w∈∂a μG#,w→a(σw|S#h )∑

χ∈�
∏

a∈∂vi
∑
τ∈�∂a 1{τv = χ}ψa(τ )

∏
w∈∂a μG#,w→a(τw|S#h )

·
Y∏

i=1

ψa#i
(σ )

∏
w∈∂a#i μG#,w→a#i

(σw|S#h )∑
τ∈�∂a#i ψa#i

(τ )
∏
w∈∂a#i μG#,w→a#i

(τw|S#h )
. (6.49)

Further, w.h.p. each cavity ofGn,ω has degree d−1; in this case, denote by cv the unique
neighbor of v in G

# that is absent in Gn,ω. Then by (6.49) w.h.p. we have

zG# ,h = μG# (S#h )

〈
1

/ ∑

τ∈�V

∏

v∈V
p(τv)

∏

a∈A #

ψa(σ V \V , τ ), μG# ( · |S#h )
〉

∼ μG# (S#h )

∑

σ∈�V ∪C

∏

v∈V

p(σv)
∏

a∈∂v ψa(σ )
∏
w∈∂a\v μG# ,w→a(σw |S#h )

p(σv)
∏

a∈∂v ψa(σ ) ·∑χ∈� p(χ)
∏

a∈∂v
∑
τ∈�∂a 1{χ = τv}ψa(τ )

∏
w∈∂a\v μG# ,w→a(τw |S#h )

·
Y∏

i=1

ψa#i
(σ )

∏
w∈∂a#i μG# ,w→a#i

(σw |S#h )
ψa#i
(σ ) ·∑

τ∈�∂a#i ψa#i
(τ )

∏
w∈∂a#i μG# ,w→a#i

(τw |S#h )

= μG# (S#h )
∏

v∈V

∑
σ∈�∂2v

∏
a∈∂v

∏
w∈∂a\v μG# ,w→a(σw |S#h )∑

χ∈� p(χ)
∏

a∈∂v
∑
τ∈�∂a 1{χ = τv}ψa(τ )

∏
w∈∂a\v μG# ,w→a(τw |S#h )

·
Y∏

i=1

∑
σ∈�∂a#i

∏
w∈∂a#i μG# ,w→a#i

(σw |S#h )
ψa#i
(σ ) ·∑

τ∈�∂a#i ψa#i
(τ )

∏
w∈∂a#i μG# ,w→a#i

(τw |S#h )
= ž#h . (6.50)

Summing on h completes the proof of the first assertion.
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With respect to the second assertion, for σ ∈ �C we have w.h.p.

μGn,ω ,C (σ |T #
h ) = μG# ,h(σ ) [by Lemma 6.14]

= μG# (S#h ) ·
μG# (σ |S#h )

zG# ,h
∑
τ∈�V

∏
v∈V p(τv)

∏
a∈A # ψa(σ, τ )

[by (6.44)]

∼ μG# (S#h )

zG# ,h

⎛

⎝
∑

τ∈�V

∏

v∈V
p(τv)

∏

a∈A #

ψa(σ, τ )

⎞

⎠
−1

·
Y∏

i=1

ψa#i
(σ )

∏
w∈∂a#i μG# ,w→a#i

(σw |S#h )∑
τ∈�∂a#i ψa#i

(τ )
∏
w∈∂a#i μG# ,w→a#i

(τw |S#h )

·
∏

v∈V

p(σvi )
∏

a∈∂v ψa(σ )
∏
w∈∂a μG# ,w→a(σw |S#h )∑

χ∈�
∏

a∈∂vi
∑
τ∈�∂a 1{τv = χ}ψa(τ )

∏
w∈∂a μG# ,w→a(τw |S#h )

[by (6.49)]

= μG# (S#h )

zG# ,h

Y∏

i=1

∏
w∈∂a#i μG# ,w→a#i

(σw |S#h )∑
τ∈�∂a#i ψa#i

(τ )
∏
w∈∂a#i μG# ,w→a#i

(τw |S#h )

·
∏

v∈V

∏
a∈∂v

∏
w∈∂a μG# ,w→a(σw |S#h )∑

χ∈�
∏

a∈∂vi
∑
τ∈�∂a 1{τv = χ}ψa(τ )

∏
w∈∂a μG# ,w→a(τw |S#h )

= νG# ,h(σ ), [by (6.50)]

as claimed. ��
Proof of Proposition 6.12. Let νG# = ∑�

i=1 ž
#
i νG#,i/

∑�
i=1 žG#,i and let π#

n,ω,S be
the distribution of the kernel representation ν̇G# ∈ K. Then up to a renumbering of
the variable and constraint nodes, μ̌G#,X,Y ∈ K is distributed as the representation
of νG# . Specifically, in (2.14) we renumbered the nodes such that V comprises the
first X variable nodes and such that the a#i , i ∈ [Y ], are the first Y constraint nodes.
Due to Lemma 6.13 and because G and G are invariant under node permutations, we
conclude that D�(π#

n,ω,S , π̌n,ω,S ) = oω(1). Furthermore, combining Lemmas 3.14,
6.14 and 6.15, we see that E[��(μGn,ω,C , νG# )] = oω(1). Hence, invoking (3.4),
we conclude that E[D�(ρn,ω,S , ν̇G# )] = oω(1). Thus, the triangle inequality yields
D�(πn,ω,S , π̌n,ω,S ) = oω(1). The same argument applies to πn,ω and π̌n,ω. ��

As a final preparation toward the proof of Theorem 2.6, we need the following simple
lemma.

Lemma 6.16. For any fixed integer � we have

D�(πn,ω, πn+�,ω) = oω(1), D�(πn,ω,S , πn+�,ω,S ) = oω(1).

Proof. The random factor graph Gn,ω or Gn,ω, respectively, has n − X variable nodes
with probability 1−oω(1). Similarly, the number of variable nodes of Gn+�,ω or Gn+�,ω
is n + �− X with probability 1− oω(1). Since X is a Poisson variable with mean ω, we
have dTV(n + �− X, n − X) = oω(1). Hence, we can couple Gn+�,ω and Gn,ω as well
as Gn+�,ω and Gn,ω in such a way that both coincide w.h.p. This coupling extends to the
distributions ρn,ω,S , ρn+�,ω,S and ρn,ω, ρn+�,ω. ��
Proof. Corollary 6.11 yields the free energy formula in terms of the distributions πn,ω
and πn,ω,S , respectively. Furthermore, Proposition 6.12 implies together with Corol-
lary 3.5 that

lim inf
ω→∞ lim inf

n→∞,k|dnB(πn,ω) = lim inf
ω→∞ lim inf

n→∞,k|dnB(π̌n,ω), (6.51)

lim inf
ω→∞ lim inf

n→∞,k|dnB(πn,ω,S ) = lim inf
ω→∞ lim inf

n→∞,k|dnB(π̌n,ω,S ), (6.52)



Spin Systems on Bethe Lattices 505

with the limit on n confined to integers such that k|dn each time. But Lemma 6.16
implies with Corollary 3.5 that this divisibility condition does not alter the limits on the
left hand side of these equations, i.e.,

lim inf
ω→∞ lim inf

n→∞,k|dnB(πn,ω) = lim inf
ω→∞ lim inf

n→∞ B(πn,ω), (6.53)

lim inf
ω→∞ lim inf

n→∞,k|dnB(πn,ω,S ) = lim inf
ω→∞ lim inf

n→∞ B(πn,ω,S ). (6.54)

Thus, combining (6.51)–(6.54) and invoking Corollary 6.11, we obtain

lim
n→∞

1

n
E log Z(G) = lim inf

ω→∞ lim inf
n→∞ B(π̌n,ω),

lim
n→∞

1

n
E log Z(G) = lim inf

ω→∞ lim inf
n→∞ B(π̌n,ω,S ),

where, of course, the limit is confined to n such that k|dn becauseG, G and π̌n,ω, π̌n,ω,S
are defined only for such n; this is the assertion. ��

7. Applications

In Sect. 7.1 we prove that the spin glass model from Sect. 1.2 satisfies the condition
POS; the results stated in Sect. 1.2 are then immediate from those in Sect. 2. Further, in
Sections 7.2 and 7.3 we apply the results from Sect. 2 to two further models, the Potts
antiferromagnet and the random regular k-SAT model. Finally, in Sect. 7.4 we show
how the theorems from Sect. 2 can be brought to bear on the hard-core model, thereby
proving the results stated in Sect. 1.3.

7.1. The spin glass. To derive the results on the spin glass model stated in Sect. 1 from
the general theorems in Sect. 2, we just need to verify the condition POS for the spin
glass model. In Example 2.3 we introduced the relevant weight function even in the
more general case of the k-spin model; the case k = 2 corresponds to the spin glass on
the Bethe lattice.

Lemma 7.1. The k-spin model satisfies POS for all d ≥ 3, β > 0 and all even k ≥ 2.

Proof. The lemma is already implicit in [35,55]; but let us carry the simple proof out
for completeness. Let J be a standard Gaussian. Upon substituting the weight functions
from Example 2.3 into POS and multiplying by 2�, POS reads

E

⎡

⎣
(
1− tanh(β J)

∫ 1

0

k∏

i=1

(
2μs,xi − 1

)
ds

)�⎤

⎦

+ (k − 1)E

⎡

⎣
(
1− tanh(β J)

∫ 1

0

k∏

i=1

(
2μs,xi − 1

)
ds

)�⎤

⎦

− kE

⎡

⎣
(
1− tanh(β J)

∫ 1

0
(2μs,x1 − 1)

k∏

i=2
(2μ′s,xi − 1)ds

)�⎤

⎦ ≥ 0. (7.1)
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for all measurable μ,μ′ : [0, 1]2 → [0, 1]. Expanding the first expectation yields

E

⎡

⎣
(
1− tanh(β J)

∫ 1

0

k∏

i=1

(
2μs,xi − 1

)
ds

)�⎤

⎦

=
�∑

j=0

(
�

j

)
(−1) jE

⎡

⎣tanh(β J) j
(∫ 1

0

k∏

i=1

(
2μs,xi − 1

)
ds

) j⎤

⎦

Since J is independent of the xi , the last expectation vanishes if j is odd, while
tanh(β J) j ≥ 0 if j is even. Thus, in order to establish (7.1) it suffices to show that
for any even j ≥ 2,

E

⎡

⎣
(∫ 1

0

k∏

i=1

(
2μs,xi − 1

)
ds

) j

+ (k − 1)

(∫ 1

0

k∏

i=1

(
2μs,xi − 1

)
ds

) j

−k
(∫ 1

0
(2μs,x1 − 1)

k∏

i=2
(2μ′s,xi − 1)ds

) j⎤

⎦ ≥ 0. (7.2)

Let s1, . . . , s j ∈ [0, 1] be uniformly distribution and mutually independent as well as
independent of the xi . Then Fubini’s theorem yields

E

⎡

⎣
(∫ 1

0

k∏

i=1

(
2μs,xi − 1

)
ds

) j⎤

⎦ , = E

⎡

⎢⎣E

⎡

⎣
j∏

h=1
(2μsh ,x1 − 1)

∣∣∣∣s1, . . . , s j

⎤

⎦
k
⎤

⎥⎦ ,

(7.3)

E

⎡

⎣
(∫ 1

0

k∏

i=1

(
2μ′s,xi − 1

)
ds

) j⎤

⎦ = E

⎡

⎢⎣E

⎡

⎣
j∏

h=1
(2μ′sh ,x1 − 1)

∣∣∣∣s1, . . . , s j

⎤

⎦
k
⎤

⎥⎦ ,

(7.4)

E

⎡

⎣
(∫ 1

0

(
2μs,x1 − 1)

) k∏

i=2
(2μ′s,x2 − 1)ds

) j⎤

⎦ = E

⎡

⎣
j∏

h=1
(2μsh ,x1 − 1)

∣∣∣∣s1, . . . , s�

⎤

⎦

E

⎡

⎣
j∏

h=1
(2μ′sh ,x1 − 1)

∣∣∣∣s1, . . . , s�

⎤

⎦
k−1
. (7.5)

Since for even k we have Xk + (k − 1)Y k − kXY k−1 ≥ 0 for all X,Y ∈ R, (7.3)–(7.5)
yield (7.2). ��
Due to Lemma 7.1, Theorem 1.1 follows from Theorem 2.5, Theorem 1.2 follows from
Theorem 2.6 and Theorem 1.3 follows from Theorem 2.7.

Remark 7.2. Indeed, together with Lemma 7.1 the results from Sect. 2 yield the Bethe
state decomposition and the corresponding formulas for the free energy for the k-spin
model for any even k ≥ 2.
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7.2. ThePottsmodel. For an integerq ≥ 2 let� = {1, . . . , q} be a set ofq distinct colors
Also let β > 0 be a real parameter, the inverse temperature. The Potts antiferromagnet
on G is the distribution on �Vn defined by

μG,β(σ ) = 1

Zβ(G)
exp

⎡

⎣−β
∑

1≤i< j≤n
1{vi ∈ ∂v j , σ (vi ) = σ(v j )}

⎤

⎦ , (σ ∈ �Vn ),

where the partition function Zβ(G) provides normalization; we omit the reference to β
where possible. Thus, for a given σ ∈ �Vn each monochromatic edge of G incurs an
exp(−β) penalty factor.

The Potts antiferromagnet and the associated optimization problems, the Max q-
Cut problem, are of fundamental importance in combinatorics. Krzakala and Zdeborová
[42] brought the cavity method to bear on this model. In the following we show how the
main results of the present paper apply to this model to underpin the predictions from
[42] rigorously. In particular, we specialize the Belief Propagation equations to the Potts
model, work out the variational formula for the free energy and apply this formula to
the Max q- Cut problem on the random regular graph.

The Potts model on G(n, d) can be cast as a random factor graph model with a single
weight function

ψβ : �2 → (0, 1), (σ, τ ) �→ exp(−β1{σ = τ }).
Thus, k = 2, � = {ψβ} and P(ψβ) = 1 and the prior distribution p is uniform on �.
Since the constraints are binary, the random regular factor graph G can be identified
with the usual random d-regular graph G, with the edges representing the factor nodes.

Lemma 7.3. The Potts model satisfies condition POS for all β > 0.

Proof. We plug the definition ofψβ into POS and notice that the 1−e−β factors cancel.
Hence, the desired inequality reads

E

⎡

⎣
( q∑

σ=1

∫ 1

0
μs,x1(σ )μs,x2(σ )

)�
+

( q∑

σ=1

∫ 1

0
μ′s,x1(σ )μ

′
s,x2(σ )

)�

−2
( q∑

σ=1

∫ 1

0
μs,x1(σ )μ

′
s,x2(σ )

)�⎤

⎦ ≥ 0 (μ,μ′ ∈ K). (7.6)

Applying Fubini’s theorem to take the expectation on x1, x2 inside, we find

E

⎡

⎣
( q∑

σ=1

∫ 1

0
μs,x1(σ )μs,x2(σ )

)�⎤

⎦ =
q∑

σ1,...,σ�=1
E

[
�∏

h=1
μsh ,x1(σh)μsh ,x2(σh)

]

=
q∑

σ1,...,σ�=1
E

[
E

[
�∏

h=1
μsh ,x1(σh)

∣∣∣∣s1, . . . , s�

]

E

[
�∏

h=1
μsh ,x2(σh)

∣∣∣∣s1, . . . , s�

]]
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=
q∑

σ1,...,σ�=1
E

⎡

⎣E

[
�∏

h=1
μsh ,x1(σh)

∣∣∣∣s1, . . . , s�

]2⎤

⎦ .

(7.7)

Similar manipulations yield

E

⎡

⎣
( q∑

σ=1

∫ 1

0
μ′s,x1(σ )μ

′
s,x2(σ )

)�⎤

⎦ =
q∑

σ1,...,σ�=1
E

⎡

⎣E

[
�∏

h=1
μ′sh ,x1(σh)

∣∣∣∣s1, . . . , s�

]2⎤

⎦ ,

(7.8)

E

⎡

⎣
( q∑

σ=1

∫ 1

0
μs,x1(1)μ

′
s,x2(1)

)�⎤

⎦ =
q∑

σ1,...,σ�=1
E

[
E

[
�∏

h=1
μsh ,x1(σh)

∣∣∣∣s1, . . . , s�

]

E

[
�∏

h=1
μ′sh ,x1(σh)

∣∣∣∣s1, . . . , s�

]]
. (7.9)

Combining (7.7)–(7.9), we conclude that the l.h.s. of (7.6) is the expectation of a sum
of squares, and thus non-negative. ��

The message space S (G) of the Potts model boils down to the set of all families
(μv→w)v∈Vn ,w∈∂w, withμv→w ∈P(�).With this simplification theBelief Propagation
operator BP : S (G)→ S (G), ν �→ ν̂ of the Potts model reads

ν̂v→u(σ ) =
∏
w∈∂v\u 1− (1− e−β)μw→v(σ )∑

τ∈�
∏
w∈∂v\u 1− (1− e−β)μw→v(τ )

(σ ∈ �). (7.10)

With respect to Bethe states, we expect that the phase space �n decomposes into
S1, . . . , S� such that the conditional distribution μG[ · |Si ] are free of long-range cor-
relations, that their standard messages form an approximate fixed point of BP and that
the conditional marginals derive from the messages. In formulas, with high probability
over the choice of the graph and with (μ̂G,v→u[ · |Sh])u∈∂v = BP(μG,v→u[ · |Sh])u∈∂v ,
we aim to show that

1

n2
∑

1≤i< j≤n

∥∥μG,vi ,v j [ · |Sh] − μG,vi [ · |Sh] ⊗ μG,v j [ · |Sh]
∥∥
TV
= o(1),

(7.11)

1

n

n∑

i=1

∑

u∈∂vi

∥∥μG,vi→u[ · |Sh] − μ̂G,vi→u[ · |Sh]
∥∥
TV = o(1),

(7.12)

1

n

n∑

i=1

∑

σ∈�

∣∣∣∣∣μG,vi [σ |Sh] −
∏
w∈∂vi 1− (1− e−β)μG,vi→w(σ)∑

τ∈�
∏
w∈∂vi 1− (1− e−β)μG,vi→w(τ)

∣∣∣∣∣ = o(1).

(7.13)

The following theorem establishes these facts.
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Theorem 7.4. For any sequence L = L(n) → ∞ and all d ≥ 3, β > 0 the following
is true. With high probability G admits a decomposition S0, S1, . . . , S�, � ≤ L, of the
phase space �n such that μG(S0) = o(1) and such that (7.11)–(7.13) are satisfied for
h = 1, . . . , �.

Proof. This is immediate from Theorem 2.5 applied to the factor graph representation
of the Potts model. ��

With respect to the free energy, let X,Y be two independent Poisson variables with
mean ω. Let u1, . . . , uX and v1w1, . . . , vYwY be uniformly random vertices and edges
of G, chosen independently. With S1, . . . , S� the decomposition from Theorem 7.4, we
introduce the weights

zG,h = μG(Sh)
X∏

i=1

⎛

⎝
∑

σ∈�

∏

v∈∂ui
1− (1− e−β)μG,v→ui (σ |Sh)

⎞

⎠
−1

Y∏

i=1

(
1− (1− e−β)

∑

σ∈�
μG,vi→wi (σ |Sh)μG,wi→vi (σ |Sh)

)−1

and zG = ∑�
h=1 zG,h . Further, let C (G) be the set of all vertices of degree less than

d in the graph obtained from G by removing v1, . . . , vX and v1w1, . . . , vYwY . Then
with high probability each c ∈ C (G) has degree precisely d − 1, and we write c′
for the missing d’th neighbor of c. Then with c1, c2, . . . a sequence of uniformly and
independently chosen elements of C (G), we let

B(G) = E

[
log

�∑

h=1

zG,h
zG

∑

σ∈�

d∏

i=1
1− (1− e−β)μG,ci→c′i (σ )

−d

2
log

�∑

h=1

zG,h
zG

1− (1− e−β)
∑

σ∈�
μG,c1→c′1(σ )μG,c2→c′2(σ )

∣∣∣∣G
]
.

Theorem 7.5. For all d ≥ 3, β > 0 we have limn→∞ 1
nE[log Z(G)] = lim infω→∞

lim infn→∞ E[B(G)].
Proof. This is an immediate consequence of Theorem 2.6 and Lemma 7.3. ��

Additionally, Theorem 2.7 yields a variational formula for the free energy. Writing
out the specifics of the Potts case, we see that D	 consists of all π ∈ D that satisfy the
following property. For a measurable μ : [0, 1]2 → P(�) with � = [q] and integers
N ,M ≥ 0 let

zN ,Mμ,s =
N∏

i=1

⎛

⎝
q∑

σ=1

d∏

j=1
1− (1− e−β)μs,xi, j (σ )

⎞

⎠
M∏

i=1

(
1− (1− e−β)

q∑

σ=1
μs,xi+N ,1 (σ )μs,xi+N ,2 (σ )

)
,

and set t = t(s) = inf

{
u ∈ [0, 1] :

∫ u

0
zN ,Mμ,u ds ≥ s

∫ 1

0
zN ,Mμ,u du

}
.

Thenwe letμ∗(N ,M)s,x = μt,x . NowD	β is the set of allπ ∈ D such that for a randomμπ ∈
K drawn from π , the perturbed μπ∗(N ,M) ∈ K again has distribution π . Furthermore, in
the Potts model the functional B( · ) reads
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Bβ(π) = E

⎡

⎣log

⎛

⎝
q∑

σ=1

∫ 1

0

d∏

j=1
1− (1− e−β)μs,x1, j (σ )ds

⎞

⎠

−d

2
log

(
1− (1− e−β)

q∑

σ=1

∫ 1

0
μs,x1,1(σ )μs,x1,2(σ )ds

)]
.

Theorem 7.6. For all d ≥ 3, β > 0 we have

lim
n→∞

1

n
E[log Z(G)] = 
d,β with 
d,β = inf

π∈D	
β

Bβ(π).

As a further application we obtain a variational formula for the Max q- Cut of the
random regular graph, which is defined as

MCq(G) = dn

2
− 1

2
min

σ :[n]→[q]

n∑

v,w=1
1{w ∈ ∂v, σ (v) = σ(w)}. (7.14)

Thus,MCq(G) equals the total number of edges ofGminus the ground state energy of the
Potts model. In other words,MCq(G) is the maximum, over the choice of σ : [n] → [q],
of the number of edges that link vertices of different colors The Max q- Cut problem
is well-studied in combinatorics and computer science. In particular, the problem is well
known to be NP-hard on worst-case instances.

Corollary 7.7. For all d ≥ 3 we have MCq(G)/n
n→∞−→ d

2
+ lim
β→∞
d,β+1 − 
d,β in

probability.

Proof. SinceAzuma’s inequality shows thatMCq(G) is concentratedwithinO(
√
n log n)

about its mean, it suffices to prove that

lim
n→∞

1

n
E[MCq(G)] = d

2
+ lim
β→∞
d,β+1 −
d,β . (7.15)

Further, introducing HG(σ ) = 1
2

∑n
v,w=1 1{w ∈ ∂v, σ (v) = σ(w)} and recalling

(7.14), we can rewrite (7.15) as

lim
n→∞

1

n
E

[
min

σ :[n]→[q]HG(σ )

]
= lim
β→∞
d,β −
d,β+1. (7.16)

To prove (7.16) we write μG,β ∈ P([q]V (G)) for the Potts distribution induced by
a d-regular graph G = (V (G), E(G)). Moreover, let us denote the Potts Hamiltonian
by HG and the partition function by Zβ(G). It is well known that for any ε > 0 there
exists β0(ε) > 0 such that for all β > β0(ε) and all d-regular graphs G we have

〈
HG , μG,β

〉− ε|V (G)| ≤ min
σ :V (G)→[q]HG(σ ) ≤

〈
HG, μG,β

〉
. (7.17)

Consequently, for all β > β0(ε) we have
∫ β+1

β

〈
HG, μG,b

〉
db − ε|V (G)| ≤ min

σ :V (G)→[q]HG(σ ) ≤
∫ β+1

β

〈
HG, μG,b

〉
db.

(7.18)
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Since
〈
HG, μG,β

〉 = − ∂
∂β

log Zβ(G), (7.18) yields

log Zβ(G)− log Zβ+1(G)− ε|V (G)|
≤ min
σ :V (G)→[q]HG(σ ) ≤ log Zβ(G)− log Zβ+1(G). (7.19)

Applying (7.19) to the random regular graph G and taking expectations, we obtain

1

n
E[log Zβ(G)] − 1

n
E[log Zβ+1(G)] − ε ≤ 1

n
E

[
min

σ :[n]→[q]HG(σ )

]

≤ 1

n
E[log Zβ(G)] − 1

n
E[log Zβ+1(G)]. (7.20)

Hence, taking n →∞, we obtain for all β > β0(ε),


d,β −
d,β+1 − ε ≤ lim inf
n→∞

1

n
E

[
min

σ :[n]→[q]HG(σ )

]

≤ lim sup
n→∞

1

n
E

[
min

σ :[n]→[q]HG(σ )

]
≤ 
d,β −
d,β+1. (7.21)

Finally, there exists a subsequence (nl) along which E
[
minσ :[nl ]→[q]HG(nl ,d)(σ )

]
/nl

converges to a number ξ ≥ 0. Taking the limit of (7.20) along this subsequence,we obtain
ξ ≤ 
d,β −
d,β+1 ≤ ξ + ε for all β > β0(ε). Consequently, the limit limβ→∞
d,β −

d,β+1 exists. Therefore, taking β →∞ in (7.21), we conclude that

lim
n→∞ n−1E

[
min

σ :[n]→[q]HG(σ )

]

exists as well and that (7.16) is satisfied. ��

7.3. The regular k-SAT model. The k-SAT problem plays a major role in computer sci-
ence, particularly in computational complexity theory. In its optimization version, known
as the Max k- SAT problem asks for the largest number of clauses of a propositional
formula in conjunctive normal form with clauses of length k that can be satisfied simul-
taneously. Random instances of k-SAT andMax k- SAT have been studied extensively
as instructive benchmarks [5].

We can express the Max k- SAT problem as a factor graph model with spins � =
{−1, 1} corresponding to the Boolean values ‘true’ and ‘false’ as follows. With k ≥ 2
an integer and β > 0 be a real parameter, we introduce the weight functions

ψβ,χ : {±1}k → (0, 1), σ �→
1− tanh

(
β

∏k
i=1 χiσi

)

2
(χ ∈ {±1}k).

Let p be the uniform distribution on� and let P be uniform on�β = {ψβ,χ : χ ∈ �k}.
In terms of propositional formulas, the semantics is that ψβ,χ encodes a k-clause whose
i th literal is negated if χi = 1 and positive if χi = −1. Thus, ∏k

i=1 χiσi = 1 if the
truth assignment σ fails to satisfy the clause, and

∏k
i=1 siσi = −1 otherwise. In effect,

ψβ,s(σ ) = (1 − tanh β)/2 → 0 as β → ∞ if σ fails to satisfy the clause, whereas
ψβ,s(σ ) = (1 + tanh β)/2 → 1 if σ is satisfying. Hence, the random factor graph G
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models a random k-SAT formula in which every variable appears precisely d times, the
regular k-SAT model. We are going to derive variational formulas for its free energy and
its ground state energy.

Lemma 7.8. The regular k-SAT model satisfies POS for all d, k ≥ 3 and all β > 0.

Proof. Once more this is already implicit in [35,55], but we carry out the argument here
for completeness. Let us write χ for a uniformly random element of {±1}k . Substituting
ψβ,χ into POS and cancelling positive constants, we are left to verify the inequality

E

⎡

⎣
(∫ 1

0

k∏

i=1
μs,xi (χ i )ds

)�
+

(∫ 1

0

k∏

i=1
μ′s,xi (χ i )ds

)�

−(k − 1)

(∫ 1

0
μs,x1(χ1)

k∏

i=2
μ′s,x2(χ i )ds

)�⎤

⎦ ≥ 0 (μ,μ′ ∈ K). (7.22)

Fubini’s theorem yields

E

⎡

⎣
(∫ 1

0

k∏

i=1
μs,xi (χ i )ds

)�⎤

⎦ = E

⎡

⎣E

[
�∏

h=1
μsh ,x1(χ1)

∣∣∣∣s1, . . . , s�

]k⎤

⎦ ,

(7.23)

E

⎡

⎣
(∫ 1

0

k∏

i=1
μ′s,xi (χ i )ds

)�⎤

⎦ = E

⎡

⎣E

[
�∏

h=1
μ′sh ,x1(χ1)

∣∣∣∣s1, . . . , s�

]k⎤

⎦ ,

(7.24)

E

⎡

⎣
(∫ 1

0
μs,x1(χ2)

k∏

i=2
μ′s,x2(χ i )ds

)�⎤

⎦ = E

[
E

[
�∏

h=1
μsh ,x1(χ1)

∣∣∣∣s1, . . . , s�

]

E

[
�∏

h=1
μ′sh ,x1(χ2)

∣∣∣∣s1, . . . , s�

]k−1⎤

⎦ .

(7.25)

Since Xk + (k − 1)Y k − kXY k−1 ≥ 0 for X,Y ≥ 0, (7.23)–(7.25) yield (7.22). ��
Due to Lemma 7.8 we can bring the results from Sect. 2 to bear on the random regular

k-SAT model. Specifically, for a measurable μ : [0, 1]2 → P(�) with � = {±1} and
integers N ,M ≥ 0 let (χ i, j )i, j≥1 be independent uniformly random elements of � and
let

zN ,Mμ,s =
N∏

i=1

⎛

⎝
∑

σ∈�

d∏

j=1
1− tanh(β)

∑

τ∈�k−1
χ i,kσ

k−1∏

j=1
χ i, jτ jμs,xi, j (τ j )

⎞

⎠

M∏

i=1

⎛

⎝1− tanh (β)
∑

τ∈�k

k∏

j=1
χ i+N , jτ jμs,xi+N , j (τ j )

⎞

⎠ .
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Further, let

t = t(s) = inf

{
u ∈ [0, 1] :

∫ u

0
zN ,Mμ,u ds ≥ s

∫ 1

0
zN ,Mμ,u du

}
.

and μN ,M
s,x = μt,x . ThenD	β consists of all π ∈ D such that μπ,N ,M has distribution π .

Furthermore, the functional B( · ) reads

Bβ(π) = E

⎡

⎣log

⎛

⎝
q∑

σ∈�

∫ 1

0

∑

σ∈�

d∏

j=1
1− tanh(β)

∑

τ∈�k−1
χ i,kσ

k−1∏

j=1
χ i, jτ jμs,xi, j (τ j )ds

⎞

⎠

⎤

⎦

+
d(k − 1)

k
E

⎡

⎣

⎛

⎝
∑

τ∈�k

1− tanh β
∫ 1

0

k∏

j=1
χ1, jτ jμs,x1, j (τ j )ds

⎞

⎠

⎤

⎦− dk log 2.

Let


d,β = inf
π∈D	

β

Bβ(π).

Theorem 7.9. For all d, k ≥ 3, β > 0 we have limn→∞ 1
nE[log Z(G)] = 
d,β .

Proof. This follows immediately from Theorem 2.7 and Lemma 7.8. ��
As a further application we also obtain a variational formula for the Max k- SAT

problem. Specifically, with the interpretation of σ ∈ �n as a truth assignment, define
HG(σ ) as the number of propositional clauses of G that σ fails to satisfy. Further, let
OPT(G) = dn/k − minσ∈�k HG(σ ) be the maximum number of clauses that can be
satisfied simultaneously. Following the steps of the proof of Corollary 7.7 precisely, we
obtain the following result.

Corollary 7.10. For all d, k ≥ 3 we have

1

n
OPT(G)

n→∞−→ d

k
+ lim
β→∞
d,β+1 −
d,β in probability.

7.4. The hard-core model. The proofs of Theorem 1.4 and Corollary 1.5 are not entirely
straightforward because the hard-core model cannot be cast directly as a factor graph
model as in Sect. 2. This is because of the ‘hard’ constraint that σ vσw = 0 for any
adjacent v,w. We therefore prove Theorem 1.4 and Corollary 1.5 by way of a relaxed
‘soft-core model’ and taking two limits, first in the ‘softness’ and then in the fugacity.
Specifically, we obtain a random factor graph model with � = {0, 1} and the prior
p(0) = 1/(1 + λ) and p(1) = λ/(1 + λ). In addition, to mimic the hard-core constraints
we would like to introduce a binary weight function that forbids its two adjacent variable
nodes from both taking the spin 1. But since it would take values {0, 1}, we instead
introduce

ψβ : �2 → (0, 1), (σ1, σ2) �→ 1− (1− e−β)σ1σ2.

Thus, β > 0 is a ‘softness parameter’, and upon taking β →∞we recover the hard-core
constraint:ψ∞(σ1, σ2) = 1−σ1σ2. For any β, λ and d ≥ 3 we obtain the random factor
factor graph model Gλ,β with the single binary weight function ψβ .



514 A. Coja-Oghlan, W. Perkins

Lemma 7.11. The model Gλ,β satisfies POS for all d ≥ 3, λ > 0, β ∈ (0,∞].
Proof. Substituting ψβ into POS and noticing that 1− e−β > 0, we see that it suffices
to verify the inequality

E

[(∫ 1

0
μs,x1(1)μs,x2(1)ds

)�
+

(∫ 1

0
μ′s,x1(1)μ

′
s,x2(1)ds

)�

−2
(∫ 1

0
μs,x1(1)μ

′
s,x2(1)ds

)�]
≥ 0 (μ,μ′ ∈ K). (7.26)

By Fubini’s theorem,

E

[(∫ 1

0
μs,x1 (1)μs,x2 (1)

)�]
= E

[
�∏

h=1
μsh ,x1 (1)μsh ,x2 (1)

]

= E

[
E

[
�∏

h=1
μsh ,x1 (1)

∣∣∣∣s1, . . . , s�

]
E

[
�∏

h=1
μsh ,x2 (1)

∣∣∣∣s1, . . . , s�

]]

= E

⎡

⎣E

[
�∏

h=1
μsh ,x1 (1)

∣∣∣∣s1, . . . , s�

]2⎤

⎦ , (7.27)

and analogously

E

[(∫ 1

0
μ′s,x1 (1)μ

′
s,x2 (1)

)�]
= E

⎡

⎣E

[
�∏

h=1
μ′sh ,x1 (1)

∣∣∣∣s1, . . . , s�

]2⎤

⎦ , (7.28)

E

[(∫ 1

0
μs,x1 (1)μ

′
s,x2 (1)

)�]
= E

[
E

[
�∏

h=1
μsh ,x1 (1)

∣∣∣∣s1, . . . , s�

]
E

[
�∏

h=1
μ′sh ,x1 (1)

∣∣∣∣s1, . . . , s�

]]
.

(7.29)

Combining (7.27)–(7.29), we conclude that the l.h.s. of (7.26) is the expectation of a
square. ��

We proceed to prove Theorem 1.4. In light of Lemma 7.11, Theorem 2.7 readily
yields a variational formula for Gλ,β . The main issue that we have to confront is that
the resulting variational problem for given λ, β ranges over a spaces that depends on
these parameters. In effect, it is not a priori clear that these variational problems bear
any relationship to the one stated in Theorem 2.7. To deal with this issue, let Dλ be the
set of all π ∈ D that are supported on μ ∈ K such that μs,x (1) ≤ λ/(1 + λ) for all
s, x ∈ [0, 1]. Further, for π ∈ Dλ we let π∗β(N ,M) be the distribution obtained by the
adjoining operation with respect to the weight function ψβ . Finally, let

D	λ,β =
{
π ∈ Dλ : for all N ,M ≥ 0 we have π∗β(N ,M) = π}

.

Lemma 7.12. For any N ,M ≥ 0 the map π ∈ Dλ �→ π∗∞(N ,M) is continuous.
Like in the case of Lemma 3.7, the proof is based on arguments involving the cut

metric. The details can be found in Appendix A.

Lemma 7.13. Let N ,M ≥ 0be integers.Uniformly for allπ ∈ Dλwehaveπ∗β (N ,M) →
π∗∞(N ,M) as β →∞.
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Proof. Let ε > 0 For any μ ∈ K let ZN ,M
μ,β (s) be the weight from (2.16) with respect

to the weight function ψβ . Then we see that, uniformly for all μ and s,

ZN ,M
μ,β (s)→ ZN ,M

μ,∞ (s) as β →∞. (7.30)

Furthermore, if μs,x ≤ λ/(1 + λ) for all s, x , then for all β ∈ (0,∞] we have

ZN ,M
μ,β (s) ≥

(
1

1 + λ

)N
(
1−

(
λ

1 + λ

)2
)M

> 0. (7.31)

Combining (7.30) and (7.31) and recalling the construction ofμ∗β (N ,M),we can construct
a measurable map ξ : [0, 1] → [0, 1] that preserves the Lebesgue measure such that for
large enough β for all S, X ⊂ [0, 1],

∣∣∣∣
∫

S

∫

X
μ
∗β(N ,M)
s,x − μ∗∞(N ,M)ξ(s),x dx ds

∣∣∣∣ < ε.

Thus, D�(μ∗β(N ,M), μ∗∞(N ,M)) < ε for large β. Since Dλ is endowed with the W1-
metric, the assertion follows. ��
Lemma 7.14. The set Kλ is closed.

Proof. We can view Kλ as a scaled version of the space of weak kernels. Therefore,
since K is complete, so is Kλ is complete. Hence, any Cauchy sequence in Kλ has a limit
within this set, and thus Kλ is a closed subspace of K. ��
Corollary 7.15. The setDλ is closed.

Proof. By Lemma 7.14 there exists an increasing sequence of continuous functions un :
K→ [0, 1] that converges pointwise to 1−1Kλ. Thus,Dλ = ⋂

n≥1
{
π ∈ D : ∫ undπ=0

}

is closed in the weak topology. ��
Corollary 7.16. We have lim infn→∞ 1

nE
[
log Z(Gλ,β)

] ≥ infπ∈D	
λ
B(π).

Proof. Since D	 is compact, Proposition 6.1 shows that there exists π ∈ D	 such that

lim inf
n→∞

1

n
E

[
log Z(Gλ,β)

] ≥ B(π). (7.32)

The construction of the π for which the lower bound is attained is based on Proposi-
tion 6.2, whose proof shows that the measure πλ,β for which the lower bound is attained
in the limit of a sequence of distributions (πλ,β,n)n≥1 that come from random factor
graphs with the weight function ψβ . Specifically, we considered a random factor graph
Gλ,β,n,ω with a random number of ‘cavities’ for a slowly growing ω = ωn → ∞.
With μn ∈ P(�C ) the joint Boltzmann distribution of the spins of the cavities C , the
measure πλ,β,n is defined as the distribution of the representation of μn as an element
of M . Thus, we just need to show that these representations converge to points in Kλ.

The proof of this fact is based on Corollary 3.16. Specifically, let ε > 0. We obtain
a decomposition S1, . . . , S� of �C into classes by pinning a random set  ε of cavities.
The size | ε| of this set depends on ε only and

��(μn, μ̄n) < ε, where μ̄n =
�∑

i=1
μ(Si )

⊗

v∈C
μv( · |Si ). (7.33)
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Now, consider a cavity v ∈ C \ ε, let 1 ≤ i ≤ � and consider a configuration σ ∈ Si
with σv = 1. Obtain σ ′ by setting σ ′v = 0 and σ ′w = σw for all w �= v. Then σ ′ ∈ Si
and the construction of the Boltzmann distribution ensures thatμn(σ |Si ) ≤ λμn(σ

′|Si ).
Hence, μv(1|Si ) ≤ λ/(1 + λ). Since | ε| is bounded in terms of ε only, whereas |C | ≥
ωn/2→∞with high probability, we deduce from (7.33) that the representation μ̌n ∈ K
satisfies D�(μ̌n,Kλ) < ε with high probability. Since, furthermore, the Wasserstein
metric induces the weak topology on D, we conclude that πλ,β,n converges to a point
π on in the closure of Dλ; but since Dλ is closed, we conclude that π ∈ Dλ. Finally,
Corollary 7.15 implies that π ∈ Dλ∩D	 = D	λ. Thus, the assertion follows from (7.32).

��
We are ready to establish the lower bound on the free energy.

Proposition 7.17. For all d ≥ 3, λ > 0we have lim infn→∞ 1
nE[log Z(Gλ,∞)] ≥ 
d,λ.

Proof. For any β, λ > 0 Corollary 7.16 supplies πλ,β ∈ D	λ such that

lim inf
n→∞

1

n
E

[
log Z(Gλ,β)

] ≥ Bd,λ,β(πλ,β). (7.34)

Now consider the sequence (πλ,β)β=1,2,.... SinceDλ is compact, a subsequence (πλ,β j ) j
converges to πλ ∈ Dλ, i.e.,

lim
j→∞D�(πλ,β j , πλ) = 0. (7.35)

Further, since π
∗β j (N ,M)
λ,β j

= πλ,β j for all j and N ,M ≥ 0, Lemma 7.13 implies that for
all pairs N ,M ≥ 0,

lim
j→∞D�(πλ,β j , π

∗∞(N ,M)
λ,β j

) = 0. (7.36)

Combining (7.35) and (7.36) with Lemma 7.12, we conclude that πλ ∈ D	λ. Finally,
since for every β > 0 we have Bd,λ,β( · ) ≥ Bd,λ,∞( · ) on Dλ, the assertion follows
from (7.34) and the continuity of the functional Bd,λ,∞( · ). ��

A separate argument is needed to derive the upper bound on the free energy. Basically,
wewill prove the following proposition by checking that the interpolation argument from
Sect. 5 goes through for the hard-core model.

Proposition 7.18. For all d ≥ 3, λ > 0 we have lim supn→∞ 1
nE[log Z(Gλ,∞)] ≤


d,λ.

With ϕi and ψ1,i defined with respect to the hard-core weight function ψ∞, let

B′(μ) = E log

〈
n⊕

i=1
ϕi , μ

〉
, B′′(μ) = E log

〈
⊕

1≤i≤dn/2
ψ1,i , μ

〉
.

Lemma 7.19. For any λ > 0 and any μ ∈ Kλ we have E
[
log Z(Gλ,∞)

] ≤ B′(μ) −
B′′(μ) + o(n).
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Proof. This follows along the lines of the proof of Proposition 5.2. In that proof we
required the assumption that all weight functions are strictly positive, but only in one
place. Namely, we required positivity in order expand the logarithm into a power series
in equations (5.9)–(5.11). Yet this approximation is still valid in the hardcore model.
Indeed, the term

〈
ψamt +1

, μGt

〉
, whose logarithm we calculate in (5.9), is lower-bounded

by 1− λ/(1 + λ), because in the hard-core model the marginal probability that a single
variable node has spin one is upper-bounded by λ/(1 + λ). Similarly, the arguments of
the logarithms in (5.10) and (5.11) are lower-bounded by 1−λ/(1+λ) because μ ∈ Kλ.

��
Proof of Proposition 7.18. BasedonLemma7.19,we follow theproof of Proposition5.3
to complete the proof of Proposition 7.18. Specifically, we claim that for any π ∈ D	λ,

E[B′′(μπ )] = dn

2
E

[
log 〈ψ∞, π〉

]
, and E[B′(μπ )] = E log

〈
ϕ1, π

〉
. (7.37)

This follows along the lines of Lemmas 5.5 and 5.6. In both cases we assumed that
the weight functions are strictly positive in order to ensure that the arguments of the
logarithms on the l.h.s. are bounded away from zero so that the logarithmic series applies.
But the condition π ∈ D	λ guarantees that

〈
n⊕

i=1
ϕi , μ

〉
≥ (1/(1 + λ))n and

〈
⊕

1≤i≤dn/2
ψ1,i , μ

〉
≥ (1/(1 + λ))dn/2.

Thus, the same manipulations as before yield (7.37). Finally, the assertion follows from
(7.37) and Lemma 7.19. ��
Proof of Theorem 1.4. The theorem is an immediate consequence of Propositions 7.17
and 7.18. ��
Proof of Corollary 1.5. For a graph G = (V (G), E(G)) let μG,λ ∈ P({0, 1}V (G))
denote the hard-core model on G with fugacity λ, and let Zλ(G) be the corresponding
partition function. Further, let αλ(G) = ∑

v∈V (G)
〈
σ v, μG,λ

〉
be the average size of

an independent set drawn from μG,λ. Additionally, we write α(G) for the maximum
independent set size. It is well known that

αλ(G) = λ ∂
∂λ

log Zλ(G) (7.38)

and that

αλ(G)

|V (G)|
λ→∞−→ α(G)

|V (G)| uniformly for all G. (7.39)

As an immediate consequence of (7.38) we obtain

log Zλ+1(G)− log Zλ(G) =
∫ λ+1

λ

αt (G)

t
dt

{
≤ αλ+1(G)/λ,
≥ αλ(G)/(λ + 1).

Hence, (7.39) shows that for any ε > 0 there exists λ0 > 0 such that for all λ ≥ λ0 and
all d-regular graphs G we have

(1− ε)α(G) ≤ λ

1 + λ
αλ(G) ≤ λ(log Zλ+1(G)− log Zλ(G)) ≤ αλ(G) ≤ α(G).

(7.40)
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Applying (7.40) to the random graph Gλ and taking expectations, we obtain

(1− ε)E
[
α(G)

n

]
≤ E

[
λ(log Zλ+1(G)− log Zλ(G))

] ≤ E

[
α(G)

n

]
. (7.41)

Theorem 1.4 guarantees that the sequence
(
E

[
λ(log Zλ+1(G)− log Zλ(G))

])
n con-

verges, and thus (7.41) yields

(1− ε) lim sup
n→∞

E

[
α(G)

n

]
≤ λ(
d,λ+1 −
d,λ) ≤ lim inf

n→∞ E

[
α(G)

n

]
. (7.42)

Further, there exists a subsequence (nl)l≥1 along which E[α(G)/n] converges to α∗ ∈
[0, 1], whence (7.41) yields

(1− ε)α∗ ≤ λ(
d,λ+1 −
d,λ) ≤ α∗. (7.43)

Since (7.43) holds for every ε > 0 for large enoughλ,we conclude that limλ→∞ λ(
d,λ+1−

d,λ) exists. Hence, taking the limit ε→ 0, and thus λ→∞, in (7.42) completes the
proof. ��
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Appendix A. Proof of Lemmas 3.6 and 7.12

The proof of Lemma 3.6 requires the regularity lemma for measures from [24].3 Let λ
denote the Lebesgue measure. For μ ∈ K and measurable S, X ⊂ [0, 1] we write

μS,X = 1

λ(S)λ(X)

∫

S

∫

X
μs,xdxds ∈P(�),

with the convention that μS,X is uniform if λ(S)λ(X) = 0. Further, let X = (X1, . . . ,

XK ), S = (S1, . . . , SL) be a partitions of [0, 1) into pairwise disjoint measurable sets.
We write #X, #S for the number K , L of classes, respectively. Then μ is ε-regular with
respect to (X, S) if there exists R ⊂ [#X] × [#S] such that the following conditions
hold.

REG1: λ(Xi ) > 0 and λ(S j ) > 0 for all (i, j) ∈ R.
REG2:

∑
(i, j)∈R λ(Xi )λ(S j ) > 1− ε.

REG3: for all (i, j) ∈ R and almost all s, s′ ∈ S j we have ‖
∫
Xi
μs,x − μ′s′,xdx‖TV <

ελ(Xi ).
REG4: if (i, j) ∈ R, then for every U ⊂ Xi with λ(U ) ≥ ελ(Xi ) and every T ⊂ S j

with λ(T ) ≥ ελ(S j ) we have
∥∥μS,Xi − μT,U

∥∥
TV < ε.

A refinement of a partition (X, S) is a partition (X ′, S′) such that for every pair
(i ′, j ′) ∈ [#X ′]× [S′] there is a pair (i, j) ∈ [#X]× [S] such that (X ′i ′ , S′j ′) ⊂ (Xi , S j ).

3 The arguments in the appendix are special cases of more general results on the cut metric from [18].
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Theorem A.1 ([24]). For any ε > 0 there exists N = N (ε,�) such that for every
μ ∈ K the following is true. Every partition (X0, S0) with #X0 + #S0 ≤ 1/ε has a
refinement (X, S) such that #X + #S ≤ N with respect to which μ is ε-regular.

Additionally, we need the strong cut metric, defined by

D�(μ, ν) = sup
S,X,ω

∣∣∣∣
∫

S

∫

X
μs,x (ω)− νs,x (ω)dxds

∣∣∣∣ (μ, ν ∈ K ),

where S, X range over measurable subsets of the unit interval and ω ∈ �. It is well
known that D�( · , · ) induces a metric on K .

For μ, ν ∈ K we define μ⊕ ν : [0, 1]3 →P(�2) by μ⊕ νs,x1,x2 = μs,x1 ⊗μs,x2 .
Since [0, 1]2 with the Lebesgue measure is isomorphic as a measure space to [0, 1]
with the Lebesgue measure, we can view μ ⊕ ν as a strong P(�2)-valued kernel. In
particular, it makes sense to apply the strong cut metric to these kernels.

Proposition A.2. The map (μ, ν) �→ μ⊕ ν is continuous with respect to the strong cut
metric.

Proof. Given ε > 0 pick a small enough δ > 0 and assume that D�(μ,μ′) < δ. Due
to the triangle inequality it suffices to prove that D�(μ ⊕ ν, μ′ ⊕ ν) < ε for every ν.
Thus, we need to show that for any X ⊂ [0, 1]2, S ⊂ [0, 1] and σ, τ ∈ �,

∣∣∣∣
∫

X

∫

S

(
μs,x1(σ )− μ′s,x1(σ )

)
νs,x2(τ )dsdx1dx2

∣∣∣∣ < ε. (A.1)

To this end, wemay assume that λ(S) > ε2 and that
∫
S νs,x2(τ )ds > ε

2 for all (x1, x2) ∈
X . Further, with z = ∫ 1

0 νs,x2(τ )ds consider the variable transformation

dt = νs,x2(τ )ds

z
. (A.2)

Let T be the inverse image of S under the transformation (A.2). Then we obtain for any
X1 ⊂ [0, 1],

∫

X1

∫

S

(
μs,x1(σ )− μ′s,x1(σ )

)
νs,x2(τ )dsdx1 = z

∫

X1

∫

T
μt,x1(σ )− μ′t,x1(σ )dtdx1.

(A.3)

But the assumption D�(μ,μ′) < δ implies that the double integral on the r.h.s. of (A.3)
is bounded by ε4 in absolute value (providing δ is small enough). Thus, (A.1) follows.

��
Proof of Lemma 3.6. We may assume without loss that f (τ ) = 1{τ = σ } for some
σ ∈ �k . Let ε > 0, pick α = α(ε), ξ = ξ(α) > 0 small enough and assume that
μ, ν ∈ K are such that D�(μ, ν) < δ for a small enough δ = δ(ξ) > 0. Applying
Theorem A.1 twice, we obtain (X, S)with respect to which both μ, ν are ξ -regular, and
L = #X + #S is bounded in terms of ξ only. Let R′ be the set of all pairs for which
REG1–REG4 are satisfied for both μ, ν and that satisfy λ(X i , S j ) > ξ

8/L . Assuming
that δ is sufficiently small, we obtain

|μSi ,X j − νSi ,X j | < ξ8 for all (i, j) ∈ R′. (A.4)
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Furthermore, consider the random variables

zi =
k∏

h=1
μSi ,xh (σh), z =

∑

i≤#S
zi ,

z′i =
k∏

h=1
νSi ,xh (σh), z′ =

∑

i≤#S
z′i

and define μ′, ν′ ∈ K as follows. To construct μ′, partition the interval [0, 1] into
pairwise disjoint sets Ti , i ∈ [#S], of measure zi/z and fill the strip Ti × [0, 1] with a
suitably scaled copy of (μs,x )s∈Si ,x∈[0,1]. Construct ν′ analogously from the z′i . Then
D�(μ′, f ∗ μ) = D�(ν′, f ∗ ν) = 0. Furthermore, Proposition A.2 shows that with
probability at least 1− α we have

#S∑

i=1
λ(Si )|zi − z′i | < α2,

provided that ξ, δ are chosen small enough. Since also z ≥ α because the function f is
strictly positive,we conclude thatwith probability at least 1−αwehaveD�(μ′, ν′) < α.
We thus obtain a coupling of the random variables f ∗μ, f ∗ν under which the expected
cut distance is bounded by ε, as desired. ��
Proof of Lemma 7.12. We proceed precisely as in the proof of Lemma 3.6, up until the
point where the positivity of f is used. In the setup of Lemma 7.12, the function f may
take the value 0 on kernels that take the value 1 with positive probability; however, since
we are assuming that the values of the kernels are bounded by λ/(1 + λ). Therefore, the
function f always attains values that are bounded away from 0. ��

Appendix B. Proof of Lemma 3.3

The proof of Lemma 3.3 requires the following operation. For functions f : �M×N →
R, g : �L×N → R we define

f ⊗ g : �(M+L)×N → R, σ �→ f
(
(σi, j )i∈[M], j∈[N ]

) · g (
(σi+M, j+N )i∈[L], j∈[N ]

)
.

Thus, the first M rows of σ go into f , the last L rows go into g and we multiply the
results.

We define a corresponding operation on kernels. Namely, for μ, ν ∈ K we define
μ⊗ν : [0, 1]3 →P(�2) byμ⊕νs,t,x = μs,x⊗νt,x . Since ([0, 1]2, λ⊗λ) is isomorphic
([0, 1], λ), we can view μ⊗ ν as aP(�2)-valued kernel, and the cut metric extends to
these kernels. Since the cut metric is invariant under swapping the axes, Proposition A.2
readily yields the following.

Proposition B.1. The map (μ, ν) �→ μ⊗ ν is continuous with respect to the cut metric.
As a final preparation toward the proof of Lemma 3.3 we need the following fact.

Lemma B.2. For any f : �→ R the map μ ∈ K �→ E 〈 f, μ〉 is continuous.
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Proof. We may assume without loss that f (τ ) = 1{σ = τ } for some σ ∈ �. Then

E 〈 f, μ〉 =
∫ 1

0

∫ 1

0
μs,x (σ )dxds,

and it is immediate from the definition of the cut metric that the integral on the right
hand side is a continuous function of μ. ��
Proof of Lemma 3.3. Let f : �m×n → R and letμ ∈ K.Define ν = (μ⊕n)⊗m . Then ν is
a kernel with values in�mn and the definition of 〈 · , · 〉 ensures thatE 〈 f, μ〉 = E 〈 f, ν〉.
This already shows that the map μ �→ E 〈 f, μ〉 is continuous, because the map μ �→ ν

is continuous by Proposition A.2 and B.1 and the map ν �→ E 〈 f, ν〉 is continuous by
Lemma B.2. Now fix an integer � ≥ 2 and let η = ν⊗�. Then

E

[
〈 f, μ〉�

]
= E [〈 f, η〉]

and thus the continuity of the map μ �→ E
[〈 f, μ〉�] follows from Proposition B.1 and

Lemma B.2. ��
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