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Abstract: We study the problem of finding good gauges for connections in higher gauge
theories. We find that, for 2-connections in strict 2-gauge theory and 3-connections in 3-
gauge theory, there are local “Coulomb gauges” that are more canonical than in classical
gauge theory. In particular, they are essentially unique, and no smallness of curvature is
needed in the critical dimensions. We give natural definitions of 2-Yang–Mills and 3-
Yang–Mills theory and find that the choice of good gaugesmakes them essentially linear.
As an application, (anti-)selfdual 2-connections over B6 are always 2-Yang–Mills, and
(anti-)selfdual 3-connections over B8 are always 3-Yang–Mills.

1. Introduction

An aspect of gauge theory that has proven to be very important in geometry and topology
is the control of Sobolev norms by the Yang–Mills functional.

Assume thatwe areworkingon a trivial principal fibre bundle Bm×G,where Bm is the
unit ball inR

m and G is a compact Lie group. Assume g is the Lie algebra of G, equipped
with an adG -invariant scalar product. A connection of the bundle can be described as the
differential operator dA on g-valued functions acting as dA X := d X + [A, X ]. Here A is
a g-valued 1-form. This dA induces similar operators on g-valued k-forms also denoted
by dA. One of the important aspects of such connections is how they transform under
pointwise coordinate transformations of the fibres. (This may look unnecessary for the
trivial bundle, but it becomes essential when we glue trivial bundles to get nontrivial
ones.) Assume we have a field of transformations adg(x)−1 acting on the fibres {x} × g

of Bm × g, which defines a mapping g : Bm → G. Assume that g is C1, say, and that
we want to know what our dA looks like after we have applied the coordinate change
adg(x)−1 on all of our fibres. It turns out that the connection dA is transformed to dg∗ A,
where g∗ A := g−1dg + g−1Ag. This is called a gauge transformation of A.

Observe that the (sufficiently regular) maps g : Bm → G form the group of gauge
transformations acting from the right on the space of connections. That the action is
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from the right is not essential and a matter of convention. The important point of gauge
theory is that there are quantities derived from A that transform more naturally under
gauge transformations than A itself, i.e. like a tensor instead of a differential operator.
The most important such quantity is the curvature

FA := d A + A ∧ A = d A +
1

2
[A, A]

of A, a g-valued 2-form that simply transforms as Fg∗ A = g−1FAg. This implies
|Fg∗ A| = |FA| since the norm on g is adG-invariant. Hence the Yang–Mills functional

YM(A) := 1

2

∫
Bm

|FA|2 dx

does not change if we transform A by any gauge transformation. It is therefore a very
natural functional to consider. As this is well-known, we do not go into details.

Given any connection A, natural norms like the W 1,2-norm of A are not gauge-
invariant and hence depend on more than only “the geometric properties of A”. Maybe
‖A‖W 1,2(Bm ) is rather large, but only because we look at A in an unfortunately cho-
sen gauge. Can we find a gauge transformation such that ‖g∗ A‖W 1,2(Bm ) is controlled
by ‖Fg∗ A‖L2(Bm ) = ‖FA‖L2(Bm )? The answer is yes if m ≤ 4 and the L2-norm of
the curvature is small enough. This is Uhlenbeck’s [13] gauge theorem, which is one
of the most important results in gauge theory. In dimensions m ≥ 5, one can still
control ‖g∗ A‖W 1,m/2(Bm ) by ‖Fg∗ A‖Lm/2(Bm ) after a suitable gauge transformation if
‖FA‖Lm/2(Bm ) is sufficiently small. There are more global versions of this, but for us the
following local version will be sufficient.

Theorem 1.1 (Uhlenbeck’s gauge theorem [13]). Assume we are given a compact Lie
group G. Assume A ∈ W 1,p�1(Bm, g) for some p ≥ 2 if 2 ≤ m ≤ 4, or p ≥ m

2 if
m ≥ 5, represents some connection on the trivial bundle Bm × G. There are constants
κ > 0 and c < ∞ depending on m and p only such that, whenever ‖FA‖L p(Bm ) ≤ κ ,
there is a gauge transformation g ∈ W 2,p(Bm, G) such that the transformed connection
A′ := g∗ A fulfills d∗ A′ = 0, A′

N = 0 on ∂ Bm, and

‖A′‖W 1,p(Bm ) ≤ c‖FA′ ‖L p(Bm ).

The gauge transformation can be estimated by

‖dg‖W 1,p(Bm ) ≤ c‖A‖W 1,p(Bm ).

Hence the Yang–Mills functional on 4-dimensional manifolds (where it is also con-
formally invariant) locally controls Sobolev norms. Our paper will be concerned with
the question whether there is something similar for higher gauge theories.

Higher gauge theories have evolved from attempts to deal with questions that involve
parallel transport not only of vectors (“point locations”), which is what connections are
made for, but also of higher-dimensional objects. In string theory, the notion of parallel
transport of strings should be useful, and in M-theory, it could help to do likewise with
2-dimensional branes. In a rich interplay between ideas from physics and from higher
category theory, several higher gauge theories have evolved, among them the (strict)
2-gauge theory and 3-gauge theory that we study in this paper. We cannot even attempt
to summarize the rich history that has led to these ideas, and we refer to Baez’ and
Huerta’s paper [3] for an excellent overview and an introduction of 2-gauge theory. An
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important step towards 2-gauge theory was a study of nonabelian gerbes by Breen and
Messing [6]. For 2-gauge theory, the reader may also wish to consult foundational papers
by Bartels [5] and by Baez and Schreiber [4] (as well as muchmore work by Baez and/or
Schreiber). For 3-gauge theory, we refer to papers by Sämann and Wolf [11] where the
theory has been developed, and by Wang [14].

Very roughly, 2-gauge theory is about 2-connections on 2-bundles. A trivial principal
2-bundle is described by several data that form a structure known as a Lie crossed
module. We need two Lie groups G and H and homomorphisms t : H → G and
α : G → Aut(H) satisfying certain relations. A 2-connection is described by a g-
valued 1-form A and an h-valued 2-form B, related to each other by t(B) = FA, where
here t is the differential of t at e ∈ H . There is a natural h-valued 3-form

Z A,B := d B + α(A) ∧ B

which again transforms naturally under 2-gauge transformations. The latter are given
by a pair (g, χ) of a function g : Bm → G and an h-valued 1-form χ . They also
form a group acting from the right on the space of 2-connections. We will give precise
formulae in Sect. 3. The L2-norm of Z A,B turns out to be invariant under all 2-gauge
transformations, just as ‖FA‖L2 is invariant under gauge transformations (but not under
all 2-gauge transformations). Therefore we may reasonably hope that the L2-norm of
Z A,B plays a role in 2-gauge theory that is similar to the role of theYang–Mills functional
in gauge theory. We expect it to be particularly natural in 6 dimensions, where it is also
conformally invariant. We therefore call

YM2(A, B) :=
∫

Bm
|Z A,B |2 dx

the 2-Yang–Mills functional. The attempt to provide a good notion of 2-Yang–Mills has
already been undertaken in 2002 by Baez in the preprint [2]. Back then, the significance
of the condition t(B) = FA had not yet been fully established in the theory, hence Baez
works without that condition and considers the functional

∫
(|Z A,B |2 + |FA − t(B)|2) dx

instead. This is quite natural in the theory without t(B) = FA. In particular, it is also
gauge invariant, but no longer conformally invariant in any dimension. Nevertheless,
there are some interesting aspects in that paper, including some notion of self-duality in
five (!) dimensions.

Our focus is different here, since we have a 2-Yang–Mills functional that really
resembles Yang–Mills. Therefore, it is tempting to ask whether there is a higher form of
Uhlenbeck’s gauge theorem, controlling norms like ‖A‖W 2,2 + ‖B‖W 1,2 by ‖Z A,B‖L2 in
dimensions m ≤ 6 once a suitable 2-gauge is fixed, maybe under a smallness condition
for the latter norm. One of our results will be that this really works. But, surprisingly
enough for the author, it turns out that the good 2-gauge exists without a smallness
condition, and moreover the transformed 2-connection has a canonical form that has the
potential to simplify the theory very much. More precisely, we can 2-gauge transform
(A, B) to get some (A′, B ′) where A′ = 0, d∗ B ′ = 0, and B ′ takes its values in the
abelian subalgebra Ker t of h, plus of course the estimates mentioned above. We call this
the canonical 2-gauge for (A, B), and we prove that it is even unique up to a constant
gauge transformation. See Sect. 4 for details.

The proof of the existence of the canonical 2-gauge is considerably simpler than
that of Uhlenbeck’s theorem. Not surprisingly so, since we use the latter—but only for
connections with FA = 0, for which Uhlenbeck’s theorem might look a bit trivial (but
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actually, under the weak regularity assumptions, it isn’t). The other important ingredient
in the proof is Hodge decomposition on manifolds with boundary.

The existence of a canonical gauge for which A′ vanishes and B ′ maps to the abelian
subalgebra Ker t makes 2-Yang–Mills theory an essentially linear theory, since Z0,B′ =
d B ′, and the 2-Yang–Mills equation becomes the Laplace equation for B ′. Is this good
news or bad news? On one hand, 2-gauge theory is a natural theory that has a geometric
content in describing parallel transport of 1-dimensional objects, hence we should be
happy to find that the theory turns out to be easier than classical gauge theory. On the
other hand, a theory that is not genuinely nonlinear may be not the best candidate for
for a Yang–Mills-like theory. That fact may actually diminish our hope for interesting
topological implications. And the author suspects that also physics would be served
better with a less linear theory.

Of course, the “essentially linear nature” of 2-gauge theory has been remarked before,
e.g. in the introduction of [11], observing that t(Z A,B) = 0 follows from Bianchi type
identities, whichmeans the 2-curvature is always in the “abelian” part of the theory. Also,
it has been remarked that there are no examples of solitons that are “non-abelian”. Our
result makes precise in which sense the theory is “linear”. It says that after a canonical
2-gauge transformation,we can alwayswork in abelianLie subalgebras,where theEuler-
Lagrange equations for curvature L2-integrals are linear. The 2-gauge transformation
itself, however, depends of course on the 2-connection and solves a nonlinear system of
differential equations.

One way around having a 2-gauge theory that is “too abelian” may be to “embed”
it into 3-gauge theory where the relations of 2-gauge theory do not hold strictly. (This
can be given a precise meaning in the framework of categorification, see [11].) In 3-
gauge theory, there is a third Lie group L involved, 3-connections additionally depend
on an l-valued 3-form C , and 3-gauge transformations on an additional l-valued 2-form
λ. There is a curvature 4-form YA,B,C , the L2-norm of which is gauge-invariant, and
conformally invariant in 8 dimensions. We can ask the same questions as for 2-gauge
theory. For m ≤ 8, we find canonical gauges where A′ = 0, B ′ = 0, and this time C ′ is
in some abelian Lie subalgebra of l.

One of the points [11] made in introducing 3-gauge theory is that in its framework the
curvature 3-form Z A,B no longer is restricted to some abelian Lie algebra. The curvature
4-form YA,B,C , however, does have that restriction, and this is what makes our results
on 3-gauges very similar to the ones for 2-gauges. Note also that Z A,B is not 3-gauge
covariant in 3-gauge theory, just as FA is not 2-gauge covariant in 2-gauge theory. The
setting of 3-gauge theory will be described in Sect. 5, and our gauge theorem in Sect. 6.

Our gauge theorems can be applied to flat 2-connections satisfying Z A,B ≡ 0, which
then turn out to be 2-gauge equivalent to the trivial connection (0, 0), and similarly to
flat 3-connections (YA,B,C ≡ 0), which are seen to be 3-gauge equivalent to (0, 0, 0).
These two statements can be seen as higher generalizations of the Poincaré lemma and
have been proven by Demessie and Sämann [7, Thm. 2.7 and Thm. 2.12]. The results
are special cases of our gauge theorems, and they are proven here under rather weak
regularity assumptions.

The curious reader may wonder about 4-gauge theory or even higher ones. The
notion of a 3-crossed module, which should be the basis for 4-gauge theory, has been
developed in [1]. The number of mappings and relations needed to describe a (k − 1)-
crossed module grows quickly with k, and that may limit our approach of writing down
rather “explicit” gauge transformations to small values of k. There are more abstract
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ways to describe differential (k − 1)-crossed modules using L∞-algebras (see [9] for a
thorough introduction), which may help for future extensions.

Starting from our gauge theorem, there is another aspect of gauge theory that turns
out to be shared by 2-gauge and 3-gauge theory. In 4 dimensions, a connection A is called
selfdual or anti-selfdual if ∗FA = ±FA. One of the basic facts in gauge theory is that
every (anti-)selfdual connection is Yang–Mills, i.e. it solves the Euler-Lagrange equation
d∗

A FA = 0 for YM . Using our canonical gauges, we prove that in 6 dimensions every
2-connection (A, B) with ∗Z A,B = ±Z A,B solves the Euler-Lagrange equation for
YM2. A similar result holds for 3-connections in 8 dimensions. We provide details in the
Corollaries 4.2 and 6.2 below. (We always work on Bm with the Euclidean metric, which
has turned out to be enough for all applications of Uhlenbeck’s theorem. Our methods
can be adapted without significant changes to domains with Riemannian metrics.)

It is a pleasure to thank the anonymous referee for many helpful suggestions.

2. Preliminaries on Differential Forms

We will need two nontrivial ingredients about differential forms in our study, the Hopf
decomposition with boundaries and Gaffney’s inequality. In preparation of these, we
recall that there are two useful forms of boundary conditions for differential forms. If M
is a Riemannian manifold with smooth boundary, then we can choose coordinates in the
neighborhood V of any boundary point y such that dxn is the dual of the outer normal
on ∂ M ∩ V . Let m := dim M and 0 ≤ k ≤ m. Any k-form ω on V can be decomposed
as ω = ωT + ωN , where

ωT :=
∑

1≤i1<...<ik≤n−1

ωi1,...,ik dxi1 ∧ . . . ∧ dxik ,

ωN :=
∑

1≤i1<...<ik=n

ωi1,...,ik dxi1 ∧ . . . ∧ dxik .

On ∂ M , this decomposition does not depend on the choice of coordinates, and therefore
the boundary conditions ωN = 0 and ωT = 0 make sense for k-forms, and they do play
a role in natural problems.

A version of the Hodge decomposition suitable for our needs has been given by
Iwaniec, Scott, and Stroffolini—they, as well as Schwarz, proved several different de-
compositions with different sets of boundary conditions. The one we need is from [8,
Remark 5.1 and Theorem 5.7], improved with arguments from [12, Lemma 2.4.11] for
higher order Sobolev spaces. In what follows,H	

N (M) is the space of harmonic forms on
M with normal part vanishing on ∂ M . Likewise, we use the index N to modify Sobolev
spaces.

Proposition 2.1 (Hodge decomposition with boundary). Let M be a compact m-
dimensional manifold with smooth boundary. For 1 < p < ∞, k ∈ N0 and every
	 ∈ {0, . . . , m}, the space W k,p�	(M) decomposes as a direct sum

W k,p�	(M) = dW k+1,p�	−1(M) ⊕ d∗W k+1,p
N �	+1(M) ⊕ H	

N (M).

Correspondingly, any ω ∈ W k,p�	(M) can be decomposed as

ω = dα + d∗β + h with βN = 0 and hN = 0.
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The forms α, β, h are uniquely determined under the further conditions

α ∈ d∗W k+2,p
N �	(M), β ∈ dW k+2,p�	(M).

There is a constant c depending on k, p, and M only such that

‖α‖W k+1,p(M) + ‖β‖W k+1,p(M) + ‖h‖W k,p(M) ≤ c‖ω‖W k,p(M).

If 1 ≤ k ≤ m, m ≥ 2, and M = Bm, we always have h ≡ 0.

The case M = Bm mentioned in the last sentence is not explicitly discussed in the
sources mentioned above. We can prove it as follows. For 1 ≤ k ≤ m, by Poincaré’s
Lemma together with the Hodge isomorphism (see [12, Theorem 2.6.1] for details), we
have Hk

N (Bm) = {0}, which means h ≡ 0. ��
Hodge theory on manifolds with boundary has been developed to quite some extent.

Both [8,12] are excellent references. A closely related mathematical fact is Gaffney’s
inequality. We state it in a version that combines [8, Thms. 4.8 and 4.11] and the con-
siderations we just made for the special case M = Bm .

Proposition 2.2 (Gaffney’s inequality). Let M be a compact m-dimensional Riemannian
manifold with smooth boundary, 1 < p < ∞, 0 ≤ k ≤ m − 1. For every k-form ω on
M with ω, dω and d∗ω in L p and ωN = 0 or ωT = 0 on ∂ M, we have ω ∈ W 1,p (in
the sense that its full covariant derivative is also in L p) with the estimate

‖ω‖W 1,p(M) ≤ c(‖ω‖L p(M) + ‖dω‖L p(M) + ‖d∗ω‖L p(M)).

The constant c depends on M and p only.
Moreover, if M = Bm and 1 ≤ k ≤ m − 1, the simpler estimate

‖ω‖W 1,p(M) ≤ c(‖dω‖L p(M) + ‖d∗ω‖L p(M))

holds.

3. The Setting of 2-Gauge Theory

A crossed module is (G, H, t, α), where G and H are groups, and t : H → G and
α : G → Aut(H) are homomorphisms satisfying G-equivariance of t ,

t (α(g)(h)) = gt (h)g−1 (1)

for all g ∈ G, h ∈ H , and the Peiffer identity,

α(t (h1))(h2) = h1h2h−1
1 (2)

for all h1, h2 ∈ H . If G, H are Lie groups and t, α are Lie group homomorphisms, then
(G, H, t, α) is called a Lie crossed module.

Given a Lie crossed module, we can linearize everything and get Lie algebras g and
h with Lie algebra homomorphisms t : h → g and α : g → aut(h). They satisfy the
linearized versions of the identities above,

t(α(x)(ξ)) = [x, t(ξ)] (3)

for all x ∈ g, ξ ∈ h, and
α(t(ξ))(ν) = [ξ, ν] (4)
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for all ξ, ν ∈ h. Such a structure (g, h, t, α) is called a differential crossed module.
Besides the g-action on h via α, we also have a G-action on h, induced by the action

via α on H and also denoted by α. For later use, we assume that h is equipped with
a norm that is G-invariant under the action described by α. We will also assume that
the Lie algebra g carries a norm that is invariant under the adjoint action of G. In the
theorems, we will formulate that shortly as g and h having G-invariant norms.

From (1) and (2), we infer the “mixed relations” (cf. [10, Section 2.1.1])

t((α(g)(ξ)) = gt(ξ)g−1 (5)

for all g ∈ G, ξ ∈ h, and
α(t (h))(ξ) = hξh−1 (6)

for all h ∈ H , ξ ∈ h. (We can always pretend working in matrix Lie algebras, and
therefore write hξh−1 instead of adh(ξ).)

Assume we are given a Lie crossed module G := (G, H, t, α) and a manifold M .
The trivial principal G-2-bundle over M is just the product M × G × H equipped with
the homomorphisms t and α. A 2-connection on that 2-bundle is given by a pair (A, B)

of a g-valued 1-form A and an h-valued 2-form B on M , where for the moment we
assume them to be smooth. For (A, B) to represent a 2-connection, we further require
the vanishing fake curvature condition

d A + A ∧ A − t(B) = 0.

The notation is to be understood as follows. Let �k(U, k) be the vector space of all
k-valued k-forms on U ⊆ R

m , where k is any matrix Lie algebra. Every V ∈ �k(U, k)
can be written as

∑
i V i Xi , where Xi ∈ k (they need not form a basis), and the V i are

scalar k-forms. Similarly, W ∈ �	(U, k) equals
∑

j W j X j . Then we write

V ∧ W :=
∑
i, j

V i ∧ W j Xi X j ,

[V ∧ W ] :=
∑
i, j

V i ∧ W j [Xi , X j ].

For any 2-connection (A, B), we define FA and the 2-curvature Z A,B by

FA := d A + A ∧ A,

Z A,B := d B + α(A) ∧ B.

Basic facts about the curvatures are the two Bianchi identities

d FA + A ∧ FA = 0,

d Z A,B + α(A) ∧ Z A,B = 0,

and their consequence

t(Z A,B) = 0.

A 2-gauge transformation is given by a function g : U → G and an h-valued 1-form
χ on M . They transform a 2-connection (A, B) to another 2-connection (A′, B ′) via

A′ = g−1Ag + g−1dg − t(χ),

B ′ = α(g−1)(B) − α(A′) ∧ χ − dχ − χ ∧ χ.
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We write (A′, B ′) =: (g, χ)∗(A, B) and find

(g′, χ ′)∗(g, χ)∗(A, B) = (gg′, α(g′−1)(χ) + χ ′)∗(A, B),

which means that the group of 2-gauge transformations is that of functions with values
in the semi-direct product G �α h acting from the right on the 2-connections.

The remarkable thing about the 2-curvature Z A,B is its covariance under 2-gauge
transformations (g, χ). Those transform Z A,B according to

Z A′,B′ = α(g−1)(Z A,B),

while FA does not transform nicely. Since the norm on h is assumed to be G-invariant
via α, this implies that

YM2(A, B) :=
∫

U
|Z A,B |2 dx

is 2-gauge invariant (and conformally invariant on R
6). Therefore it is a promising

candidate for a “higher” variant of the Yang–Mills functional.
We have remarked that t(Z A,B) = 0. This gives the theory the abelian flavor we

already mentioned, since Ker t is an abelian subalgebra of h, which is seen immediately
from (4) since [ξ, ν] = α(t(ξ))(ν) = α(0)(ν) = 0 for all ξ ∈ Ker t and all ν ∈ h.

4. Canonical 2-Gauges in 2-Gauge Theory

A basic aim in gauge theory is to control natural quantities like norms of connections
by gauge invariant quantities, after applying a suitable gauge transformation. A good
example is Uhlenbeck’s theorem discussed in the introduction. Its proof is quite non-
trivial, and the smallness condition cannot be entirely removed. Compared to this, the
corresponding 2-gauge theorem for 2-connections is much simpler.

Gauge theorems can be proven to hold on sufficiently smooth Riemannianmanifolds.
There is, however, hardly any need for that, since any of the norms involved defined with
respect to one Riemannianmetric can be estimated by a corresponding normwith respect
to any othermetric. Therefore, Uhlenbeck proved her theoremwith respect to flatmetrics
only, and that turned out to be good enough. In her book [15], Wehrheim proved that
all tools are sufficiently well developed to perform the arguments with a Riemannian
metric. The same all but surely applies to our theorems, but we will always work on Bm

with its flat metric as we want to keep the paper readable. We will also not bother about
a formulation for m = 2, where the 2-curvature 3-form Z A,B always vanishes.

Theorem 4.1 (Canonical 2-gauges for 2-connections). Assume we are given a Lie crossed
module (G, H, t, α) where G is a compact Lie group, and that the Lie algebras g
and h are equipped with G-invariant norms. Assume 3 ≤ m ≤ 6 and that (A, B) ∈
W 2,2�1(Bm, g)× W 1,2�2(Bm, h) represents a 2-connection of the trivial 2-bundle as-
sociated with (G, H, t, α) over Bm. Then there is a 2-gauge transformation (g, χ) ∈
W 3,2(Bm, G) × W 2,2�1(Bm, h) such that (A′, B ′) := (g, χ)∗(A, B) satisfies

A′ = 0, t(B ′) = 0, d∗ B ′ = 0, (B ′
N )|∂ Bm = 0,

and its norm is controlled by the 2-curvature,

‖B ′‖W 1,2(Bm) ≤ c‖Z0,B′ ‖L2(Bm ) = c‖Z A,B‖L2(Bm) .
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The 2-gauge transformation obeys the estimates

‖dg‖W 2,2(Bm ) ≤ c‖A‖W 2,2(Bm ),

‖χ‖W 2,2(Bm ) ≤ c(‖A‖W 2,2(Bm ) + ‖A‖3W 2,2(Bm )
+ ‖B‖W 1,2(Bm ) + ‖B‖3/2

W 1,2(Bm )
).

The 2-connection (A′, B ′) = (0, B ′) is unique up to a constant gauge transformation,
i.e. up to a 2-gauge transformation (g0, 0) with some g0 ∈ G.

Proof. SinceG is compact, g is a compact Lie algebra, i.e. the direct sumof a semisimple
and an abelian Lie algebra. The image t(h) of the Lie algebra homomorphism h is a Lie
subalgebra of g. Even better, it is an ideal in g, [t(h), g] ⊆ t(h) because of (3). Now, for
any ideal in a semisimple Lie algebra, the Lie algebra is the direct sum of the ideal and
its orthogonal complement with respect to the Killing form. In our case, this also means
that t(h)⊥ is a Lie subalgebra of g.

Fix a right inverse t−1 : t(h) → h of t for which t ◦ t−1 is the identity of t(h).
Decompose A = A� + A⊥ according to the direct sum t(h)⊕ t(h)⊥. Under the 2-gauge
transformation (e, χ1) := (e, t−1(A�)), (A, B) transforms to

(A1, B1) = (A⊥, B − α(A⊥) ∧ t−1(A�) − d(t−1(A�)) − t−1(A�) ∧ t−1(A�)).

Since A⊥ takes its values in t(h)⊥, so do d A⊥ and A⊥ ∧ A⊥, the latter because t(h)⊥ is
a Lie subalgebra. Hence FA1 is a t(h)⊥-valued 2-form. But it is also t(h)-valued because
of t(B1) = FA1 . This means that FA1 = 0.

Now that we know FA1 = 0, we have ‖FA1‖L3(Bm ) = 0, and of course A1 ∈ W 1,3

because of Sobolev’s embedding W 2,2 ↪→ W 1,3. Hence Uhlenbeck’s theorem gives
us a gauge transformation g2 ∈ W 2,3(Bm, G) such that g∗

2 A1 = 0 on Bm because of
‖g∗

2 A1‖W 1,3(Bm ) ≤ c‖FA1‖L3(Bm ) = 0. This means we can apply the 2-gauge transfor-
mation (g2, 0) to (A1, B2) to find that (A, B) is 2-gauge equivalent to

(A2, B2) = (0, α(g−1
2 )(B1)).

Apart from having A2 = 0, we also know that B2 is quite simple (like B1, in fact)
because we have t(B2) = FA2 = 0, hence B2 takes its values in Ker t , and we have seen
above that on Ker t ⊆ h, the Lie bracket of h vanishes. Remember that Z always takes
its values in Ker t . And now that we have A2 = 0, we have Z A2,B2 = d B2.

The question of finding a good 2-gauge at this stage is reduced to a completely linear
problem. We have Z A2,B2 = d B2 and

(e, χ3)
∗(0, B2) = (0, B2 − dχ3)

if we assume that also χ3 takes its values in Ker t . But now that everything is linear and
without Lie brackets, the gauge problem reduces simply to a question in Hodge theory.
Weuse theHodgedecomposition fromProposition2.1.Having B2 ∈ W 1,2�2(Bm,Ker t),
we find unique forms a ∈ d∗W 3,2�2(Bm,Ker t) and b ∈ dW 3,2�2(Bm,Ker t) satisfy-
ing bN = 0 on ∂ Bm such that B2 = da + d∗b. We then choose χ3 := a and find

(A′, B ′) := (e, χ3)
∗(0, B2) = (0, d∗b),

which proves the existence of a suitable gauge.
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Concerning the estimate of the norm of B ′ by Z , we note that bN = 0 implies
d∗bN = 0 on ∂ Bm . We therefore have d∗ B ′ = 0, d B ′ = Z0,B′ , and (B ′

N )|∂ Bm = 0,
which means we can use Gaffney’s inequality Proposition 2.2 to estimate

‖B ′‖W 1,2(Bm ) ≤ c(‖d B ′‖W 1,2(Bm ) + ‖d∗ B ′‖W 1,2(Bm )) ≤ c‖Z0,B′ ‖L2(Bm ).

What remains to be shown are estimates for g and χ , which are given by composition
of (e, χ1), (g2, 0), and (e, χ3),

g = g2,

χ = α(g2)(t−1(A�)) + a.

By an easy consequence of Uhlenbeck’s theorem (that is, bootstrapping and using the
equation dg2 = −A1g2 as in [15, Lemma A.7]), we have

‖dg2‖W 2,2(Bm ) ≤ c‖A1‖W 2,2(Bm) ≤ c‖A‖W 2,2(Bm ).

Before we proceed with estimating χ , a few words about the technique for read-
ers not so familiar with that sort of analysis. We will need to estimate derivatives of
α(γ )(ξ), where γ is a G-valued function and ξ an h-valued form. Note that that α(γ )(ξ)

depends linearly on ξ , but nonlinearly on γ . We are going to write D for total deriva-
tives, α(γ )(ξ) =: α(γ, ξ), and D1α, D2α for the total derivatives of α with respect to
the γ -variables and the ξ -variables, respectively. By linear dependence on ξ , we have
D2α(γ, ξ)Dξ = α(γ )(Dξ). The chain rule gives us

D[α(γ )(ξ)] = D1α(γ, ξ)Dγ + α(γ, Dξ),

D2[α(γ )(ξ)] = D2
1α(γ, ξ)(Dγ, Dγ ) + D1α(γ, ξ)D2γ

+D1α(γ, Dξ)Dγ + α(γ, D2ξ).

By compactness of G and Linearity of α in ξ , we have

|Dkα(γ, ξ)| ≤ c |ξ |,
with c depending on k ∈ N0 only. Therefore, the equations above imply the estimates

|D[α(γ )(ξ)]| ≤ c(|ξ | |Dγ | + |Dξ |), (7)

|D2[α(γ )(ξ)]| ≤ c(|ξ | |Dγ |2 + |ξ | |D2γ | + |Dξ | |Dγ | + |D2ξ |). (8)

Wewill have to integrate such inequalities and proceed the right-hand side usingHölder’s
inequality and then Sobolev’s, like in the simple example

‖α(γ )(ξ)‖W 1,2 = ‖α(γ )(ξ)‖L2 + ‖D[α(γ )(ξ)]‖L2

≤ c‖ξ‖L2 + c(‖Dξ‖L2 + ‖|ξ ||Dγ |‖L2)

≤ c(‖ξ‖W 1,2 + ‖ξ‖L3‖Dγ ‖L6)

≤ c(‖ξ‖W 1,2 + ‖ξ‖W 1,2‖Dγ ‖W 2,2).

Now we return to estimating χ = α(g2)(t−1(A�)) + a, using (7), (8), and the tech-
niques we just explained. Using also the trivial estimates ‖A�‖W 2,2(Bm ) ≤ ‖A‖W 2,2(Bm )

and ‖g2‖W 3,2(Bm ) ≤ c + ‖dg2‖W 2,2(Bm ), we find
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‖α(g2)(t−1(A�))‖W 2,2

≤ c(‖A‖W 2,2 + ‖A‖W 1,3‖g2‖W 1,6 + ‖A‖L6(‖g2‖2W 1,6 + ‖g2‖W 2,3))

≤ c(‖g‖2W 3,2‖A‖W 2,2)

≤ c(‖A‖W 2,2 + ‖A‖3W 2,2),

with all norms to be taken on Bm . Observe that we are making frequent use of Sobolev’s
embedding in the form W k,2 ↪→ W k−1,3 ↪→ W k−2,6 which holds when m ≤ 6. Com-
bining that with the estimate from the Hodge decomposition,

‖a‖W 2,2 ≤ c‖B2‖W 1,2

= c‖α(g−1
2 )(B − α(A⊥) ∧ t−1(A�) − d(t−1(A�)) − t−1(A�) ∧ t−1(A�))‖W 1,2

≤ c(‖B‖W 1,2 + ‖A‖W 1,3‖A‖L6 + ‖d A‖W 1,2)

+c‖dg2‖L6(‖B‖L3 + ‖A‖2L6
+ ‖d A‖L3)

≤ c(‖B‖W 1,2 + ‖B‖3/2
W 1,2 + ‖A‖W 2,2 + ‖A‖3W 2,2),

we have proven the estimates for g andχ . (In case you arewonderingwhere the exponent
3
2 comes from: we have estimated ‖A‖ ‖B‖ using Young’s inequality xy ≤ 1

3 |x |3 +
2
3 |y|3/2.)

Now we turn to the uniqueness of B ′. Assume that we have a “canonical gauge”
(0, B ′′) of (A, B) with the same properties as (0, B ′). Then there exists a 2-gauge
transformation, again denoted by (g, χ), such that (0, B ′′) = (g, χ)∗(0, B ′), which
means

0 = g−1dg − t(χ), (9)

B ′′ = α(g−1)(B ′) − dχ − χ ∧ χ. (10)

Observe that (9) implies g−1dg ∈ t(h) almost everywhere, which means that g is
of the form g0t (h) for some constant g0 ∈ G and some h ∈ W 3,2(Bm, H). And
α(g−1

0 )(B ′) ∈ Ker t because t(B ′) = 0 implies t(α(g−1
0 )(B ′)) = g−1

0 t(B ′)g0 = 0
via (5). Since the adjoint action of H on the abelian subalgebra Ker t of h is trivial, using
(6), we find

α(g−1)(B ′) = α(t (h−1))(α(g−1
0 )(B ′)) = h−1α(g−1

0 )(B ′)h = α(g−1
0 )(B ′),

Now this means that (10) simplifies to

B ′′ = α(g−1
0 )(B ′) − dχ − χ ∧ χ =: α(g−1

0 )(B ′) − ν. (11)

Applying d to (11), we have

d B ′′ = α(g−1
0 )(d B ′) − dν,

which we compare to an equation using the transformation behavior of Z and A′ =
A′′ = 0,

d B ′′ = Z0,B′′ = α(g−1)(Z0,B′) = α(g−1
0 )(Z0,B′) = α(g−1

0 )(d B ′),

where the third “=” is justified as above using t(Z0,B′) = 0. Comparing the last two
equations, we find dν = 0.
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We can also apply d∗ to (11) to find d∗ν = 0 because of d∗ B ′′ = 0 and d∗ B ′ = 0.
And similarly, we observe νN = 0 on ∂ Bm since B ′

N = 0 and B ′′
N = 0 on ∂ Bm . Now we

know dν = 0 and d∗ν = 0 on Bm , and νN = 0 on ∂ Bm , which together imply ν = 0,
again by Gaffney’s inequality. Then (11) reads B ′′ = α(g−1

0 )(B ′), which is the asserted
uniqueness of B ′ modulo constant gauge transformations. ��
Remarks. (1) We have formulated our gauge theorem under the minimal regularity
assumptions on A and B. If both A and B have more regularity, we will have more
regularity of B ′, dg, and χ , by the same proof combined with some iterated estimates.
This way, we can easily formulate W k,p- and Ck,α-versions of the gauge theorem.
For example, if A ∈ W k+1,2, B ∈ W k,2 for some k ≥ 1, we can choose the gauge
transformation (g, χ) in W k+2,2 × W k+1,2 and control B ′ in W k,2.

(2) If (0, B ′) is in the “canonical” gauge and 2-Yang–Mills, then it is stationary for
the 2-YM functional among all connections in canonical gauge. And since Z0,B′ = d B ′
for those connections, the Euler-Lagrange equation for that problem is d∗d B ′ = 0.
Together with d∗ B ′ = 0 (and the boundary condition for B ′), we find that �B ′ = 0
is equivalent to the 2-Yang–Mills equation for all connections in canonical gauge. This
means that transforming to the canonical gauge, the (nonlinear) 2-Yang–Mills equation
reduces to the (linear) Laplace equation.

In contrast to this, the Euler-Lagrange equation for the 2-Yang–Mills energy is more
difficult towrite down in general gauge, because the Euler-Lagrange equation for

∫ |d B+
α(A)∧ B|2 dx has to be derived under the side condition FA − t(B) = 0. The full system
looks like

d∗
AdA B = t∗(λ),

d∗λ + [A � λ] = −α∗(B � dA B),

FA = t(B),

where λ ∈ �2(Bm, g) is an unknown Lagrange multiplier, and “�” denotes suitable
contractions of forms.

(3) The previous remark has an interesting consequence, which generalizes the clas-
sical fact that (anti-)selfdual connections in 4 dimensions are Yang–Mils. For any 2-
connection (A, B) over B6, the 2-curvature Z A,B is (anti-)selfdual if ∗Z A,B = ±Z A,B .
We then call also (A, B) an (anti-)selfdual 2-connection. For a 2-connection (0, B ′)
in canonical gauge, (anti-)selfduality means d B = ± ∗ d B. We then have d∗d B ′ =
± ∗ d ∗ (d B ′) = ± ∗ d ∗ ∗d B ′ = 0. Again, together with d∗ B ′ = 0, we find �B ′ = 0.
Hence any (anti-)selfdual 2-connection in canonical gauge is also 2-Yang–Mills. And
since both the (anti-)selfduality and the 2-Yang–Mills functional (and hence its equa-
tions) are invariant under 2-gauge transformations, this proves:

Corollary 4.2. Every (anti-)selfdual 2-connection (A, B) over B6 is also 2-Yang–Mills.

5. The Setting of 3-Gauge Theory

There is a notion of 3-gauge theory which is based on Lie 2-crossed modules. It has
been developed systematically by Sämann and Wolf [11]. We refer to [14] for a concise
presentation of the algebraic aspects of the local theory. It is described using a complex
of Lie groups

L
τ−→ H

t−→ G
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(with t ◦τ ≡ e).We also need homomorphisms α : G → Aut(H) and β : G → Aut(L),
with respect to which t and τ are again G-equivariant. That means (1) holds, and also
τ(β(g)(	)) = α(g)(τ (	)) for all g ∈ G, 	 ∈ L . The Peiffer identity is now replaced by
a Peiffer lifting which is a smooth function { · , · } : H × H → L that is G-equivariant
in the sense that

β(g)({h, k}) = {α(g)(h), α(g)(k)}
for all g ∈ G, h, k ∈ H . Moreover, it must satisfy the relations

τ({h, k}) = hkh−1α(t (h))(k−1) =: 〈h, k〉,
lml−1m−1 = {τ(l), τ (m)},

{hj, k} = {h, jk j−1}β(t (h))({ j, k}),
{h, jk} = {h, j}{h, k}{〈h, k〉−1, α(t (h))( j)},

{τ(l), h}{h, τ (l)} = lβ(t (h))(l−1) (12)

for all h, j, k ∈ H and l, m ∈ L .
Correspondingly, a differential 2-crossed module is described by a complex of Lie

algebras

l
τ−→ h

t−→ g

with t ◦ τ ≡ 0 and a Peiffer lifting { · , · } : h×h → lwhich is g-equivariant in the sense
that

β(a)({u, v}) = {α(a)(u), v} + {u, α(a)(v)}
for all a ∈ g, u, v ∈ h, where here α : g → aut(h) and β : g → aut(l) are Lie algebra
homomorphisms, and τ and t are g-invariant with respect to α and β. The relations for
the Peiffer lifting in their linearized versions read

τ({u, v}) = [u, v] − α(t(u))(v), (13)

[x, y] = {τ(x), τ (y)}, (14)

{[u, v], w} = β(t(u))({v,w}) + {u, [v,w]} − β(t(v))({u, w}) − {v, [u, w]},
{u, [v,w]} = {τ({u, v}), w} − {τ({u, w}), v},

{τ(x), u} + {u, τ (x)} = −β(t(u))(x) (15)

for u, v, w ∈ h and x, y ∈ l.
Between (12) and (15), there is another “mixed relation” concerning the G-operation

on l. We rewrite (12) as

β(t (h))(	) = 	{τ(	−1), h}{h, τ (	−1)}.
Using {eH , h} = {h, eH } = eL and letting 	 = exp(r x), we can differentiate at r = 0
to find

β(t (h))(x) = x{τ(eL), h}{h, τ (eH )} − eL{τ(x), h}{h, τ (eL)} − eL{τ(eL), h}{h, τ (x)}
= x − {τ(x), h} − {h, τ (x)} (16)
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for all h ∈ H, x ∈ l, in a calculation that involves three different { · , · } living on H × H ,
H × h, and h × H . The mixed relation from the G-equivariance of τ is

τ(β(g)(x)) = α(g)(τ (x))

for all g ∈ G, x ∈ l.
It has been proven in [14, Proposition 2.2(1)] that for 1-forms χ, η ∈ �1(U, h), (13)

implies
α(t(χ)) ∧ η = [χ ∧ η] − τ({χ ∧ η}), (17)

and in particular

χ ∧ χ = 1

2
[χ ∧ χ ] = 1

2
α(t(χ)) ∧ χ +

1

2
τ({χ ∧ χ}). (18)

A 3-connection on the trivial 3-bundle over U is a triple

(A, B, C) ∈ �1(U, g) × �2(U, h) × �3(U, l)

satisfying two “fake curvature conditions”

d A + A ∧ A = t(B), (19)

d B + α(A) ∧ B = τ(C). (20)

A 3-gauge transformation is a triple (g, χ, λ) of a function g : U → G, an h-valued
1-form χ ∈ �1(U, h), and an l-valued 2-form λ ∈ �2(U, l), acting on 3-connections
via

A′ = g−1Ag + g−1dg − t(χ),

B ′ = α(g−1)(B) − A′ ∧ χ − dχ − χ ∧ χ − τ(λ),

C ′ = β(g−1)(C) − dλ − β(A′) ∧ λ + {B ′ ∧ χ} + {χ ∧ α(g−1)(B)} + {τ(λ) ∧ χ}.
In particular, any (g, 0, 0) acts via

A′ = g−1Ag + g−1dg,

B ′ = α(g−1)(B),

C ′ = β(g−1)(C),

while (e, χ, 0) acts via

A′ = A − t(χ),

B ′ = B − α(A′) ∧ χ − dχ − χ ∧ χ,

C ′ = C + {B ′ ∧ χ} + {χ ∧ B}, (21)

and (e, 0, λ) via

A′ = A,

B ′ = B − τ(λ),

C ′ = C − dλ − β(A′) ∧ λ.
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The 3-curvature, transforming naturally under any of these, is an l-valued 4-form given
by

YA,B,C := dC + β(A) ∧ C + {B ∧ B}.
In particular, the 3-Yang–Mills functional

YM3(A, B, C) :=
∫

U
|YA,B,C |2 dx

is invariant under all 3-gauge transformations, and conformally invariant if m = 8. Of
course, this uses YA′,B′,C ′ = β(g−1)(YA,B,C ) for (A′, B ′, C ′) := (g, χ, λ)∗(A, B, C),
and the asserted invariance of YM3 can only hold if we have assumed G-invariance (via
β) of the norm we have chosen on l.

Of course, the 3-gauge transformations form a group. The group law is interesting,
and has (as far as I am aware) not been formulated before.

Proposition 5.1 (Composition of 3-gauge transformations). In the setting described
above, the composition of two 3-gauge transformations (acting from the right) is given
by

(g, χ, λ)(g′, χ ′, λ′) =
(

gg′, α(g′−1)(χ) + χ ′, β(g′−1)(λ) + λ′ − {χ ′ ∧ α(g′−1)(χ)}
)
.

Proof. Since the dependence on g, g′, λ, λ′ is easy, we prove only

(e, χ, 0)(e, η, 0) = (e, χ + η,−{η ∧ χ}),
withη insteadofχ ′ for readability.Applying (e, η, 0) to (A′, B ′, C ′) := (e, χ, 0)∗(A, B, C)

given in (21), we find that (e, η, 0)∗(A′, B ′, C ′) =: (A′′, B ′′, C ′′) reads

A′′ = A − t(χ + η),

B ′′ = B − α(A′) ∧ χ − dχ − χ ∧ χ − α(A′′) ∧ η − dη − η ∧ η

= B − α(A′′) ∧ χ − α(t(η)) ∧ χ − α(A′′) ∧ η − dχ − dη

−(χ + η) ∧ (χ + η) + [η, χ ]
= B − α(A′′) ∧ (χ + η) − d(χ + η) − (χ + η) ∧ (χ + η) + τ({η, χ}),

where we have used (17) in the last line. We read off that (e, η, 0)∗(e, χ, 0)∗ transforms
A and B just like (e, χ + η,−{η ∧ χ})∗. We still have to show the same for C . First we
apply (e, η, 0) to C ′ from (21) and find

C ′′ = C + {B ′ ∧ χ} + {χ ∧ B} + {B ′′ ∧ η} + {η ∧ B ′}
= C + {B ′′ ∧ (χ + η)} + {(χ + η) ∧ B}

+{(α(A′′) ∧ η) ∧ χ} + {dη ∧ χ} + {(η ∧ η) ∧ χ}
−{η ∧ (α(A′′) ∧ χ)} − {η ∧ (α(t(η)) ∧ χ)} − {η ∧ dχ} − {η ∧ (χ ∧ χ)}.

This must coincide with (e, χ + η,−{η ∧ χ}) applied to C , which would give

C ′′ = C + {B ′′ ∧ (χ + η)} + {(χ + η) ∧ B}
+d{η ∧ χ} + β(A′′) ∧ {η ∧ χ} − {τ({η ∧ χ}) ∧ (χ + η)}.
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In order to show that the right-hand sides coincide, we need to prove four equations,

d{η ∧ χ} = {dη ∧ χ} − {η ∧ dχ}, (22)

β(A′′) ∧ {η ∧ χ} = {(α(A′′) ∧ η) ∧ χ} − {η ∧ (α(A′′) ∧ χ)}, (23)

−{τ({η ∧ χ}) ∧ χ} = −{η ∧ (χ ∧ χ)}, (24)

−{τ({η ∧ χ}) ∧ η} = {(η ∧ η) ∧ χ} − {η ∧ (α(t(η)) ∧ χ)}. (25)

Now (22) ist just the graded version of Leibnitz’ rule, and (23) is the graded version
of the g-equivariance of { · , · }, while (24) is [14, Proposition 2.2(4)]. Finally, to prove
(25), we use [14, Proposition 2.2(5)], [14, Proposition 2.2(3)], and (17) in

{(η ∧ η) ∧ χ} = {η ∧ [η ∧ χ ]} + β(t(η)) ∧ {η ∧ χ}
= {η ∧ [η ∧ χ ]} − {η ∧ τ({η ∧ χ})} − {τ({η ∧ χ}) ∧ η}
= {η ∧ (α(t(η)) ∧ χ)} − {τ({η ∧ χ}) ∧ η}.

This completes the proof of the proposition. ��

6. Canonical 3-Gauges in 3-Gauge Theory

Here is our analogue of Theorem 4.1 for 3-connections.

Theorem 6.1 (Canonical 3-gauges for 3-connections). Assume we are given a Lie 2-
crossed module (G, H, L , t, τ, α, β) where G is a compact Lie group, and that the
Lie algebras g, h, and l are equipped with G-invariant norms. Assume 4 ≤ m ≤ 8
and that (A, B, C) ∈ W 3,2�1(Bm, g) × W 2,2�2(Bm, h) × W 1,2�3(Bm, l) represents
a 3-connection of the trivial 3-bundle associated with (G, H, L , t, τ, α, β) over Bm.
Then there is a 3-gauge transformation (g, χ, λ) ∈ W 4,2(Bm, G) × W 3,2�1(Bm, h) ×
W 2,2�2(Bm, l) such that (A′, B ′, C ′) := (g, χ, λ)∗(A, B) satisfies

A′ = 0, B ′ = 0, τ (C ′) = 0, d∗C ′ = 0, (C ′
N )|∂ Bm = 0,

and its norm is controlled by the 3-curvature,

‖C ′‖W 1,2(Bm ) ≤ c‖Y0,0,C ′ ‖L2(Bm ) = c‖YA,B,C‖L2(Bm ) .

The 3-gauge transformation obeys the estimates

‖dg‖W 3,2(Bm ) ≤ c‖A‖W 3,2(Bm),

‖χ‖W 3,2(Bm ) ≤ c(‖A‖W 3,2(Bm ) + ‖A‖4W 3,2(Bm)
+ ‖B‖W 2,2(Bm ) + ‖B‖2W 2,2(Bm)

),

‖λ‖W 2,2(Bm ) ≤ c(‖A‖W 3,2(Bm ) + ‖A‖6W 3,2(Bm)
+ ‖B‖W 2,2(Bm ) + ‖B‖7/2

W 2,2(Bm)

+‖C‖W 1,2(Bm ) + ‖C‖4/3
W 1,2(Bm)

).

Proof. Exactly as in the proof of Theorem 4.1, we make gauge transformations that
transform (A, B, C) to (0, B2, C2) with B2 a Ker t-valued 1-form. Now decompose
B2 = B�

2 + B⊥
2 according to the direct sum τ(l)⊕ τ(l)⊥. Assume again we have chosen

some fixed right inverse τ−1 : τ(l) → l of τ . Apply the gauge transformation

(A3, B3, C3) := (e, 0, τ−1(B�
2 ))∗(0, B2, C2)
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and find

A3 = 0,

B3 = B⊥
2 ,

C3 = C2 − τ−1(d B�
2 ).

Now that we know B3 is a τ(l)⊥-valued 1-form, we can Hodge-decompose B3 in the
space of such forms, which means we find unique forms a ∈ d∗W 4,2�2(Bm, τ (l)⊥) and
b ∈ dW 4,2�2(Bm, τ (l)⊥) satisfying bN = 0 on ∂ Bm such that B3 = da + d∗b. Having
that, we perform the gauge transformation

(A4, B4, C4) := (e, a, 0)∗(0, B3, C3)

with the result

A4 = 0,

B4 = d∗b − a ∧ a,

C4 = C3 + {B4 ∧ a} + {a ∧ B3}.
From t(a) = 0 and (18), we find

a ∧ a = 1

2
τ({a ∧ a}),

which means our next step should be the gauge transformation

(A5, B5, C5) := (e, 0,−1

2
{a ∧ a})∗(0, B4, C4),

where here

A5 = 0,

B5 = d∗b,

C5 = C4 +
1

2
d{a, a}.

Now we have that B5 is a τ(l)⊥-valued 2-form, which implies that also d B is τ(l)⊥-
valued. On the other hand, (20) (together with A5 = 0) implies that d B5 = Z0,B5 =
τ(C5) takes its values in τ(l), which means d B5 = 0. Since also d∗ B5 = d∗d∗b = 0,
and (B5)N = 0, we now know that actually B5 = 0 by Gaffney’s inequality.

We have reached a situation that parallels that for (0, B2) in the previous section.
We know that (A5, B5, C5) = (0, 0, C5), and because of τ(C5) = Z0,0 = 0, we know
that C5 takes its values in Ker τ ⊂ l. Because of (14), the Lie subalgebra Ker τ of
l is abelian. We can again perform Hodge decomposition, this time C5 = dp + d∗q,
p ∈ d∗W 3,2�3(Bm,Ker τ) and q ∈ dW 3,2�3(Bm,Ker τ) with qN = 0 on ∂ Bm . We
let

(A′, B ′, C ′) := (e, 0, p)∗(0, 0, C5) = (0, 0, d∗q),

which is the transformed 3-connection as stated in the theorem. The estimates for the
gauge transformation put together from those in the proof are a long routine calculation
along the lines of the proof of Theorem 4.1. In that calculation, it is crucial to know
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the composition law Proposition 5.1 in order to compute (g, χ, λ) from the six 3-gauge
transformations performed above.

The uniqueness proof for C ′ is also similar, but needs a few modifications. Assume
again that we have two canonical gauges (0, 0, C ′) and (0, 0, C ′′) of (A, B, C). Then
there exists a 3-gauge transformation, again denoted by (g, χ, λ), such that (0, 0, C ′′) =
(g, χ, λ)∗(0, 0, C ′), meaning

t(χ) = g−1dg, (26)

τ(λ) = −dχ − χ ∧ χ, (27)

C ′′ = β(g−1)(C ′) − dλ + {τ(λ) ∧ χ}. (28)

As before, (26) implies g = g0t (h) with g0 ∈ G constant. From (16), we have

β(t (h−1))(X) = X − {τ(X), h−1} − {h−1, τ (X)} = X

for any k-form X with values in Ker τ . We can apply this to X = β(g−1
0 )(C ′) to simplify

(28), finding

C ′′ = β(g−1
0 )(C ′) − dλ + {τ(λ) ∧ χ} =: β(g−1

0 )(C ′) − ξ, (29)

and to X = dC ′ in

dC ′′ = Y0,0,C ′′ = β(g−1)(Y0,0,C ′) = β(g−1
0 )(Y0,0,C ′) = β(g−1

0 )(dC ′).

Comparing the latter to d(29), we have dξ = 0, and from d∗(29) and (29)N , we again
have d∗ξ = 0 on Bm and ξN = 0 on ∂ Bm . Hence ξ = 0,which completes the uniqueness
proof. ��

All remarks made about our 2-gauge theorem apply similarly here. In particular, by
the same reasoning as for Corollary 4.2, we have a selfduality theorem. In the case of
an 8-dimensional base of the 3-bundle, we call a 3-connection (A, B, C) (anti-)selfdual
if ∗YA,B,C = ±YA,B,C .

Corollary 6.2. Every (anti-)selfdual 3-connection (A, B, C) over B8 is also 3-Yang–
Mills.
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