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Abstract: The partition function of the directed polymer model on Z>*! undergoes
a phase transition in a suitable continuum and weak disorder limit. In this paper, we
focus on a window around the critical point. Exploiting local renewal theorems, we
compute the limiting third moment of the space-averaged partition function, showing
that it is uniformly bounded. This implies that the rescaled partition functions, viewed
as a generalized random field on R2, have non-trivial subsequential limits, and each
such limit has the same explicit covariance structure. We obtain analogous results for
the stochastic heat equation on R?, extending previous work by Bertini and Cancrini (J
Phys A Math Gen 31:615, 1998).
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1. Introduction and Results

WesetN := {1, 2, 3, ...}and Ny := NU{0}. We writea,, ~ b, tomeanlim,_, 5 a,/b, =
1. We denote by Cp, (Rd) (resp. Ce (Rd)) the space of continuous and bounded (resp. com-
pactly supported) real functions defined on R?, with norm |¢|s0 1= SUp, crd 1P (x)].

1.1. Directed polymer in random environment. One of the simplest, yet also most inter-
esting models of disordered system is the directed polymer model in random environment
on Z4*!, which has been the subject of the recent monograph by Comets [Com17].

Let S = (Sp)nen, be the simple symmetric random walk on Z4 . The random envi-
ronment (or disorder) is a collection @ = (@n,x)(n,x)enxzd Of 1.1.d. random variables.
We use P and E, resp. IP and E, to denote probability and expectation for S, resp. for w.
We assume that

Elwpx] =0, Varlw,x]=1, A(f):= logE[eﬂ“’"’x] € R for small 8 > 0.
(1.1)

Given w, polymer length N € N, and inverse temperature (or disorder strength)
B > 0, the polymer measure Pfi, is then defined via a Gibbs change of measure for S:

e Zn= (Bon.s,—1(B)

B
Zy

PP (8) ==

P(S), (1.2)

where Z f, is the normalization constant, called partition function:
N-1
78 =E [eznzl (ﬂwn,s,ﬁk(ﬂ))]. (1.3)

(We stop the sum at N — 1 instead of N, which is immaterial, for later notational

convenience.) Note that Z f, is a random variable, as a function of w.
We use P, and E; to denote probability and expectation for the random walk starting

at Sp = z € Z¢. We denote by Z ﬁ, (z) the corresponding partition function:
Z3 (@) = B [ 2=t Pons =00 . (1.4)
We investigate the behavior as N — oo of the diffusively rescaled random field

[Z0 (V) © 150 xer?), (1.5)

for suitable § = By, where we agree that Zf, (z) := Z’Ejj\,J (Lz]) for non-integer N, z.
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In dimension d = 1, Alberts, Khanin and Quastel [AKQ14] showed that for Sy =
BN —1/4 the random field (1.5) converges in distribution to the Wiener chaos solution
u(t, x) of the one-dimensional stochastic heat equation (SHE)

au(at[, x) — %Au(t,x) +/§W(t,x)u(t,x), u((), _x) = 1, (16)

where W is space-time white noise on R x R. The existence of such an intermediate
disorder regime is a general phenomenon among models that are so-called disorder
relevant, see [CSZ17a], and the directed polymer in dimension d = 1 is one such
example.

A natural question is whether an intermediate disorder regime also exists for the
directed polymer in dimension d = 2. We gave an affirmative answer in [CSZ17b],
although the problem turns out to be much more subtle than d = 1. The standard Wiener
chaos approach fails, because the model in d = 2 is so-called marginally relevant, or
critical. We will further elaborate on this later. Let us recall the results from [CSZ17b],
which provide the starting point of this paper.

Henceforth we focus ond = 2, s0 S = (S,)sen, is the simple random walk on Z2.
Let

Zhen =121, 20) € ZF 21 + - + 71 is even). (1.7)

Due to periodicity, if we take Sy € Z2,, then (n, S,) € Z2., for all n € N. The

transition probability kernel of S will be denoted by

even

gn(x) :=P(S, =x|Sp=0) = (gn/z(x) +o(- )) 210z, asn — 0o,
(1.8)

by the local central limit theorem, where g, (-) is the standard Gaussian density on RZ:

1
gu(x) = —e 2, u>0, xR (1.9)
2mu
For notational convenience, we will drop the conditioning in (1.8) when the random
walk starts from zero. The multiplicative factor 2 in (1.8) is due to periodicity, while the
Gaussian density g,/2(x) is due to the fact that at time 7, the walk has covariance matrix
n
Ly
51
The overlap (expected number of encounters) of two independent simple symmetric
random walks S and S’ on Z? is defined by

N
Ry:=) P(S,=S$,)= Z Y a0’ = Zqz,,(m (1 +o(1) (L.10)

n=1 n=1 yez72

where the asymptotic behavior follows from (1.8). It was shown in [CSZ17b] that the
correct choice of the disorder strength is 8 = By = B/+/ Ry . More precisely, denoting
by W; a standard normal, we have the following convergence in distribution:

Wy — 1 %) if § < 1
zRy {exp (Uﬂ 2% ! '?< where o2 := log
N—o0 B

3

0 iff>1 1- ,32~
(1.11)
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This establishes a weak to strong disorder phase transition in ,é (with critical point
ﬁc = 1), similar to what was known for the directed polymer model in 74+ withd > 3
[Com17]. It was also proved in [CSZ17b, Theorem 2.13] that for ,3 < 1, after centering
and rescaling, the random field of partition functions (1.5) converges to the solution of the
SHE with additive space-time white noise, known as Edwards—Wilkinson fluctuation.
Similar results have been recently obtained in [GRZ17] for the SHE with multiplicative
noise.

The behavior at the critical point ,3 = ﬁc, i.e. By = 1/+/Ry, is quite subtle. For each

x € R? and t > 0, the partition function Zf,"t’ (x+/N) converges to zero in distribution

as N — oo, by (1.11), while its expectation is identically one, see (1.4), and its second
moment diverges. This suggests that the random field x +— Zg’g (x~/N) becomes rough

as N — 00, so we should look at it as a random distribution on R? (actually a random
measure, see below). We thus average the field in space and define

1
0 () = Y ¢ ZR(xV/N).  for ¢ € Ce(R?). (1.12)

17
xemZ

The first moment of Z f,’;’ (¢) is easily computed by Riemann sum approximation:

1
Jdim BZ @] = tim Y e = [ swan @y
xeﬁzz R

Our main result is the sharp asymptotic evaluation of the second and third moments.
These will yield important information on the convergence of the generalized random
field (1.12).
Let us first specify our choice of § = By. Recalling that A(-) is the log-moment
generating function of the disorder w, see (1.1), we fix By such that
1

4
oy = EPREN 1 = — 1+ ——(1+0(1))), forsome® €R.
N—oo Ry log N

(1.14)
Since A(t) ~ %tz ast — 0, we have By ~ 1/+/Ry, so we are indeed exploring a

window around the critical point Be = 1. Let us recall the Euler—Mascheroni constant:

o0
y = —/ e " logudu >~ 0.577. (1.15)
0

Remark 1.1. The asymptotic behavior in (1.10) can be refined as follows:

Ry = l"%N+%+o(l) where o :=y +logl6—m, (1.16)

see [CSZ18, Proposition 3.2]. This leads to an equivalent reformulation of (1.14):
2 0 —
oNy = logN(1 + log]o\(’(1 + 0(1)))

It is possible to express this condition in terms of By (see [CSZ18, Appendix A.4]):

2 3/2 T —a)+n2 (k2= — Tiy)
BN = fogN ~ Tosmy® * Toav— 2 (L+o(), (1.17)

where k3, k4 are the disorder cumulants, i.e. A(f) = %tz + %t3 + %t“ +0()ast — 0.
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We define the following special function:

o0 e(ﬂfy)s s wxfl
Gy (w) :=/ —  ds, we(0,00). (1.18)
0 I's+1)

We now state our first result, where we compute the second moment of Zg’\t’ (0).

Theorem 1.2 (Second moment). Let ¢ € C.(R?), t > 0, 9 € R. Let By satisfy (1.14).
Then

lim Var [Zf,’: (qﬁ)] = / $(2) p(Z) K p(z —7')dzd7, (1.19)
N—o0 R2xR2
where the covariance kernel K; »(-) is given by

Kip(x):=m / gu(x) Gy (v — u) dudv. (1.20)

O<u<v<t

The same covariance kernel K; 3 was derived by different methods by Bertini and
Cancrini [BC98] for the 2d Stochastic Heat Equation, see Sect. 1.2. It is not difficult to
see that

Ki9(x) ~ Cilog g, as x| = 0, (1.21)

with C; € (0, 00), and hence the integral in (1.19) is finite.

Remark 1.3 (Scaling covariance). It is easily checked from (1.20) that for any # > 0,
Kip(x) = K19, (x/~/1)  with 9, := 9 +logt. (1.22)

This is also clear because we can write Zf,’;’ () = Zf,IN (¢py) with M := Nt and ¢, (x) :=

t ¢ (/1x), see (1.12), and note that By can be expressed as By, provided ¢ is replaced
by 9 = ¥ +logt (just set N equal to Nt in (1.14), and recall (1.16)).

The starting point of the proof of Theorem 1.2 is a polynomial chaos expansion of
the partition function. The variance computation can then be cast in a renewal theory
framework, which is the cornerstone of our approach (see Sect. 1.3 for an outline). This
allows us to capture the much more challenging third moment of the field. Let us extend
the function G (w) in (1.18) with a spatial component, recalling (1.9):

Gy(w,x) := Gy(w) gu/a(x), w>0, x¢€e R>. (1.23)

We can now state the main result of this paper.

Theorem 1.4 (Third moment). Let ¢ € C.(R?), t > 0, ¥ € R. Let By satisfy (1.14).
Then

Jim B[(25 @) - E[Z @)])]

= /d)(z)qﬁ(z’)qb(z”) M, 5(z,7,7")dzdz’ d7” < oo, (1.24)
(R?)3
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where the kernel M; »(-) is given by

o0
Miy(z.2. ") =Y 2" (T (e 2 )+ I (L ) + I @z D)
m=2
(1.25)

with I[(Z;)(-) defined as follows:

L0y 2 2 = / / didbddy goy (v1 —2) goy (v1 — ) g (2 = )

O<a)<by<---<ay, <by, <t
X1,)1 ,..-,Xm‘ymERZ

-Gy (b1 —ar, y1 —X1)gnz;b1 (x2 = y1) Gy(by —az, y2 — x2)

~]"[gai-;i,2(x, ¥i-2) aimioy (i = i) Gy (by — i, yi = %),
(1.26)

The expression (1.26) reflects a key combinatorial structure which emerges from
our renewal framework. Establishing the convergence of the series in (1.25) is highly
non-trivial, which shows how delicate things become in the critical window.

We remark that relation (1.24) holds also for the mixed centered third moment with
different test functions ¢, @, ) e C.(R?), with the same kernel M, (z, 7, z").
Note that this kernel is invariant under any permutation of its variables, because
I%) (z,7',7") is symmetric in z and z’ (but not in z”, hence the need of symmetrization
in (1.25)).

Let us finally come back to the convergence of the random field ZB N (x\/_ N) of
diffusively rescaled partition functions. By averaging with respect to a test functlon as
in (1.12), we regard this field as a random measure on R*. More explicitly, if we define

20V (dx) :=% > ZR(yVN) 8y (dx), (1.27)

yGTZZ

we can write Z M) = [radx) Qﬁ{,}?](dx), see (1.12). Note that (&W]\’?I’")NeN is a

sequence of random variables taking values in M (R?), the Polish space of locally
finite measures on R? with the vague topology (i.e. v, — v in M(R?) if and only if
[ ¢dv, — [¢dvforany ¢ € C. (R?)). We can make the following remarks.

e The convergence of the first moment (1.13) implies tightness of (Z, ]5;" )NeN, see
[K97, Lemma 14.15]. This yields the existence of weak subsequential limits:

Zy By ; (dx) LN Z(dx) as N — oo along a subsequence,

where the limit Z(dx) = Z; »(dx) can in principle depend on the subsequence.
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e The convergence of the second moment (1.19) implies uniform integrability of

Zf,’f (¢). It follows that any subsequential limit Z(dx) has mean measure given

by Lebesgue measure: E[ [p> ¢(x) Z(dx)] = [ ¢ (x) dx. Moreover, by (1.19) and
Fatou’s Lemma,

Var |:/ ¢ (x) Z(dx)] < / o) P() K9z — 7)dzd7 < oo.
R2 R2xR?
(1.28)

However, this does not rule out that the variance in (1.28) might actually vanish, in
which case the limit Z(dx) would just be the trivial Lebesgue measure.
e The convergence of the third moment (1.24) rules out this triviality. Indeed, (1.24)

implies that E[|Z4Y (#)13] < EIZAY (1¢1)] is bounded, so the squares Z4Y ()% are

uniformly integrable and the inequality in (1.28) is actually an equality.

We can combine the previous considerations in the following result.

Theorem 1.5. Let t > 0, ¥ € R. Let By satisfy (1.14). The random measures (Q”A'ZV
(dx))nen in(1.27) admit weak subsequential limits Z; (dx), and any such limit satisfies

E|:v/Rz¢(x) Z;pdx) | = /¢(x)dx (1.29)

Var [/ ¢(x) Z;9(dx) | = / ¢ () ¢() K19 (z —2')dzd (1.30)
R2 _ R2xR2

3_
< 00. (1.31)

E[ ‘ / 6 () Z1.0 ()
RZ

In particular, every weak subsequential limit Z; 3 (dx) is a random measure with the
same covariance structure. It is natural to conjecture that the whole sequence

(Z zgtN (dx))nen has a weak limit, but this remains to be proved.
We conclude with a remark on intermittency. As the asymptotics behavior (1.21)
suggests, when we fix the starting point of the partition function instead of averaging

over it, i.e. we consider Z f,” defined in (1.3), the second moment blows up like log N.
More precisely, in [CSZ18, Proposition A.1] we have shown that as N — oo

E[(ZiV)?] ~ c(logN),  with ¢ = [} Gy(r)dr. (1.32)

This is a signature of intermittency, because it shows that E[(Zg” )2] > E[Zﬁ’\’ 1?=1.
It also implies that for any g > 2 we have the bound

E[(ZiV)] = ¢ (log N)?~". (1.33)
Indeed, since IE[Zf,N ] = 1, we can introduce the size-biased probability P*(A) :=

E[1 4 Z2¥]andnote that E[ (28¥)4] = B*[(z8Vy1=1] = B*[ 28]~ = E[(ZfM)2]"~
by Jensen.

1

Remark 1.6. We formulated our results only for the directed polymer on Z>*!, but our
techniques carry through for other marginally relevant directed polymer type models,
such as the disordered pinning model with tail exponent 1/2, and the directed polymer
on Z™! with Cauchy tails (see [CSZ17b]).
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1.2. The 2d stochastic heat equation. An analogue of Theorem 1.2 for the stochastic
heat equation (SHE) in R? was proved by Bertini and Cancrini in [BC98], although they
did not obtain the analogue of Theorem 1.4. We formulate these results next.

The SHE as written in (1.6) is ill-posed due to the product W - u. To make sense of
it, we mollify the space-time white noise W in the space variable. Let j € COO(RZ) be
a probability density on R? with j(x) = j(—x), and let

Ji=jx*]J.

For e > 0, let j,(x) := ¢ 2j(x/e). Then the space-mollified noise We is defined by
Wg(t X) = fRz Je(x — y)W(t y)dy. We consider the mollified equation

w1 .
a”t = JAU + Bt W w0 x) =1 VxR, (1.34)

which admits a unique mild solution (with Ito integration).

It was shown in [CSZ17b] that if we rescale B, := ,8 —=ZL__then for any fixed

10 &
(t, x) € R* x R? the mollified solution u*(z, x) converges in distribution as ¢ — 0 to
the same limit as in (1.11) for the directed polymer partition function, with 8. = 1 being
the critical point.

In [BCO98], Bertini and Cancrini considered the critical window around 30 = 1 given
by

2 _ 21 Q+0(1)
’ log— (log 1)?”

with o € R. (1.35)

This is comparable to our choice of B, see (1.14) and (1.17), if we make the identification
e2=1 /N (note that the third cumulant 3 = 0 for Gaussian random variables). In this
critical window, u® (¢, x) converges to 0 in distribution, while its expectation is constant:

IE|:/ d)(x)ug(t,x)dx] E/ ¢ (x)dx. (1.36)
R2 R2

Bertini and Cancrini showed that when interpreted as a random distribution on R2,
u®(t, -) admits subsequential weak limits, and they computed the limiting covariance.
This is the analogue of our Theorem 1.2, which we now state explicitly. Let us set

ul(t, ¢) = / dx)ut(t,x)dx, forg € C.(R).
RZ
Theorem 1.7 [BC98]. Let f; be chosen as in (1.35). Then, for any ¢ € C.(R?),
Slin(r)h Var [u®(t, )] =2 /szmz $(2) P(2) K,,,y(z——é’) dzd7/, (1.37)

where K; y is defined as in Theorem 1.2, with

1
- 10g4+2/ / J(x) log J(O)dxdy —y + 2. (1.38)
R2 JR2 lx — ¥ b4
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In Sect. 8 we provide an independent proof of Theorem 1.7, which employs the
renewal framework of this paper. Note that, by Feynman—Kac formula, the mollified
solution u®(z, ¢) can be interpreted as the partition function of a continuum directed
polymer model.

Remark 1.8. The covariance kernel in (1.37) coincides with the one in [BC98, eq. (3.14)],
provided we identify the parameter 8 in [BC98] with e” =7 . If we plug 8 = ¢” 7 into
[BC98, eq. (2.6)], with ¢ given by (1.38), we obtain precisely (1.35).

Our renewal framework leads to analogues of Theorems 1.4 and 1.5 for the SHE.
For simplicity, we content ourselves with showing that the third moment is bounded,
but the same techniques would allow to compute its sharp asymptotic behavior, as in
(1.24)—(1.26).

Theorem 1.9. Follow the same assumptions and notation as in Theorem 1.7. Then

3
su%) E [(us(t, }) — [pap(x) dx) ] < 00.
&>

If uy(t,-) is any subsequential weak limit in M(R?) of u®(t,-) as ¢ — 0%, then
uy (t,-) satisfies the analogues of (1.29)—(1.31), with K, y(z — z) in (1.30) replaced

by 2Kt,79 (Z_—\/g)

1.3. Outline of the proof strategy. We present the key ideas of our approach. First we
compute the second moment of the partition function, sketching the proof of (1.32). Then
we describe the combinatorial structure of the third moment, which leads to Theorem 1.4.
This illustrates how renewal theory emerges in our problem.

Second moment. We start from a polynomial chaos expansion of the partition function
Z ﬁ,, which arises from a binomial expansion of the exponential in (1.3) (see Sect. 2.1):

Zf] =1+ Z Z qnl(xl)gnl,xl . qnz—nl(XZ _xl)gnz,xz .

k=1 O0<ny<--<np <N
Xlyeen xk€Z2 (139)

Teee an—nkfl(xk _-xk—l)snk,xkv

where we set &, , = ePNens—tBN) _ 1 forn € N, x € Z2. Note that &n x are 1.1.d. with
mean zero and variance o2 = 2P =2AB) _ | gee (1.14). Then

Var[zﬁ] = Z (02)/( Z qm (X])2 ° an—nl (.X2 - X|)2 ot an—nkfl (Xk - Xk_])2

k>1 O<np<--<np<N
R PPN xkEZZ
_ 2\k 2 2 2
- Z (@) Z Unp * Ung—ny =" Ung—ny_y» (1.40)
k>1 O<np<--<ng<N

where we de-fine

2= gnx)? = g2 (0) = L 0<i>. (1.41)

n n?
xeZ?
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Incidentally, (1.40) coincides with the variance of the partition function of the one-
dimensional disordered pinning model based on the simple random walk on Z [CSZ18].

The key idea is to view the series of convolutions (1.40) through the lenses of renewal
theory. The sequence uﬁ is not summable, but we can normalize it to a probability on

{1, ..., N}. We thus define a triangular array of independent random variables (Ti(N)),-eN
by
| N
P(Ti(N) = n) = H ”3 Tii<n<ny, where Ry = Zu% (1.42)
n=1

We stress that Ry = %logN + O(1) is the same as in (1.10). If we fix By satisfying
(1.14), and define the renewal process

N N N
i =1™M 1™, (1.43)

we can rewrite (1.40) for 8 = By as follows:

k k
Var [Z[}?/N] — Z (0'1%/' RN)kP(TIEN) < N) _ Zeﬂm*'o((log[v)z) P(Tk(N) < N)

k>1 k>1
(1.44)
This shows that Var [ Z P ] can be interpreted as a (weighted) renewal function for 7.

The renewal process

(TL(SAi())g NJ/N)S>0 converges in law as N — oo to a special Lévy process ¥ = (¥y)s>0,

called the Dickman subordinator, which admits an explicit density:

tk(N) is investigated in [CSZ18], where we proved that

P(Y; edr) e "sr!
dr T TG+ 1D

fs(t) == fort € (0, 1). (1.45)

(N)
slog N

BN 1 1
Var [Z 00
im 2] :/ dt(/ ds &% fs(t)> :/ dt Gy (1),
N—o0 lOgN 0 0 0

where Gy (-) is the same as in (1.18), which can now be interpreted as a renewal function
for the Lévy process Y. This completes the derivation of (1.32).

Then P(t
tion

<N)->PX; <1 = fol fs(¢) dt, and by Riemann sum approxima-

Similar arguments can be applied to the partition function Zf,” (¢) averaged over the
starting point, to prove Theorem 1.2 using renewal theory.

Third moment. The proof of Theorem 1.4 is more challenging. In the second moment
computation, the spatial variables xi, ..., xx have been summed over to get (1.40),
reducing the analysis to a one-dimensional renewal process. Such a reduction is not
possible for Theorem 1.4. In addition to the “point-to-plane” partition functions (1.3)-
(1.4), it will be important to consider point-to-point partition functions, where we also
fix the endpoint Sy:

N-1
ZII?/(O, y) = EO [eZn:l (ﬂwn,sn _)‘(ﬂ)) ]l{SN=}'}]'
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IEN) with a

We need to extend our renewal theory framework, enriching the process t,

spatial component S ,EN) (see (2.13)—(2.14) below). This will yield the following analogue
of (1.44):

YE[Z 0.9 =Y (0 Rw) P(zN) = M. SV = y), (1.46)
k=1

which is now a local (weighted) renewal function for the random walk (tk(N), S,EN)) £>0-

Its asymptotic behavior as N — oo was determined in [CSZ18]:

log N

VE[Z)Y 0.9)7] ~ === Go(§. F5)- (1.47)

where Gy (t, z), defined in (1.23), is a continuum local renewal function.
We now explain how the second moment of the point-to-point partition function

(1.46) enters in the third moment computation. We consider the partition function Z f,
started at the origin, see (1.3), but everything extends to the averaged partition function

Z5(9).
We compute E[(Z f, -3 using the expansion (1.39). This leads to a sum over three

sets of coordinates (nl?", xf), (n?, x;? ), (nlc, xf), with associated random variables &, ,,
say

B 37 _
RIGESNED DD "N,{<n;',x;1>,(nﬁ,x?x(n;,x;)}E[HSH?»X? Ent 5%?%?}’

K4Z1 (nf x()iz1,. xa i, ).l
kb >l b
ks (7, xj.)j 1,..kb

(nf X )i=1, .. k€

(1.48)

for suitable (explicit) coefficients cy ...;. The basic observation is that if a coordinate,
say (nf, xi"), is distinct from all other coordinates, then it gives no contribution to (1.48),
because the random variable &, ,, is independent of the other &, ’sandithas E[§,, ;] =
0. This means that the coordinates in (1.48) have to match, necessarily in pairs or in
triples.! We will show that triple matchings can be neglected, so we restrict to pairwise
matchings.

Let D C {1,..., N} x Z? be the subset of space-time points given by the union of all
coordinates (n{, x'), (nlj’., x?), (n7, x;) in (1.48). By the pairwise matching constraint,
any index (n, x) € D must appear exactly twice among the three sets of coordinates
with labels a, b, c. So we can label each index in D as either ab, bc or ac, and we say
that consecutive indexes with the same label form a stretch. This decomposition into
stretches will lead to the integral representation (1.26) for the third moment, as we now
explain.

Letuswrite D = {(n;, x;) : i = 1, ..., r}and consider the case when the first stretch
has, say, label ab and length k < r (this means that (n;, x;) = (n{, xj') = (nf’, xf’) for
i =1, ..., k). The key observation is that, if we fix the last index (ng, x;) = (M, y) and
sum over the number k and the locations (n;, x;) of previous indexes inside the stretch,
then we obtain an expression similar to (1.40), except that the last index is not summed

! Note that coordinates (nf, x¥) with the same label & € {a, b, c} are distinct, by n¥ < n?,, see (1.39),
hence more than triple matchings cannot occur.
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but rather fixed to (nx, xx) = (M, y) (see Sect. 5 for the details). But this turns out to be
precisely the second moment (1.46) of the point-to-point partition function Zf,[ O, y).
In summary, when computing the third moment from (1.48), the contribution of each
stretch of pairwise matchings is given asymptotically by (1.47). This is also the case
when we consider the partition function Zﬁ,’v (¢) averaged over the starting point.
We can finally explain qualitatively the structure of the kernel (1.25)—(1.26) in The-
orem 1.4:

e the index m of the sum in (1.25) corresponds to the number of stretches;
e each stretch gives rise to a kernel Gy (b; — a;, y; — x;) in (1.26), by (1.47);
e the switch from a stretch to the following consecutive stretch gives rise to the
remaining kernels g, —n,_, (Xj — yi—2) §a;—b;_y (Xi — yi—1) in (1.26).
2
We stress that the knowledge of precise asymptotic estimates such as (1.47) is crucial to
compute the limiting expression (1.25)—(1.26) for the third moment.
We refer to Sect. 5 for a more detailed exposition of the combinatorial structure in
the third moment calculation, which lies at the heart of the present paper.

1.4. Discussion. To put our results in perspective, we explain here some background.
The key background notion is disorder relevance/irrelevance. The directed polymer is
an example of a disordered system that arises as a disorder perturbation of an underlying
pure model, the random walk S in this case. A fundamental question is whether the
disorder perturbation, however small 8 > 0 is, changes the qualitative behavior of
the pure model as N — oo. If the answer is affirmative, then disorder is said to be
relevant; otherwise disorder is said to be irrelevant. For further background, see e.g. the
monograph [G10].

For the directed polymer on Z?*!, the underlying random walk S is diffusive with
|Sy| A N'/2, while under the polymer measure J 4 , it has been shown that for d > 3,
there exists a critical value B.(d) > O such that for B < B.(d), |Sy| ~ N/% (see e.g.
[CYO06]); while forany 8 > Oind = 1,2 and for 8 > B.(d) ind > 3, itis believed that
ISy > N 172 Thus the directed polymer model should be disorder irrelevant in d > 3,
disorder relevant in d = 1, while d = 2 turns out to be the critical dimension separating
disorder relevance vs irrelevance, and disorder should be marginally relevant.

In [AKQ14], Alberts, Khanin and Quastel showed that on the intermediate disorder
scale By = /§ /N4, the rescaled partition functions of the directed polymer on Z!'*!
converges to the solution of the 1-dimensional SHE (1.6). We note that the idea of con-
sidering polymers with scaled temperature had already appeared in the physics literature
[BD00O,CDR10].

Inspired in particular by [AKQ14], we developed in [CSZ17a] a new perspective on
disorder relevance vs irrelevance (see also [CSZ16]). The heuristic is that, if a model is
disorder relevant, then under coarse graining and renormalization of space-time, the ef-
fective disorder strength of the coarse-grained model diverges. Therefore to compensate,
it should be possible to choose the disorder strength 8y | O (known as weak disorder
limit) as the lattice spacing é := 1/N | 0 (known as continuum limit) in such a way
that we obtain a continuum disordered model. In particular, the partition function Z 1‘(’, B
should admit a non-trivial random limit for suitable choices of 8y | 0. In [CSZ17a],
we formulated general criteria for the partition functions of a disordered system to have
non-trivial continuum and weak disorder limits. These criteria were then verified for the
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disordered pinning model, a family of (possibly long-range) directed polymer on Z!*1,
and the random field perturbation of the critical Ising model on Z2. However, the gen-
eral framework developed in [CSZ17a] does not include models where disorder is only
marginally relevant, such as the directed polymer on Z>*!, which led to our previous
work [CSZ17b] and to our current work.

Disorder relevance/irrlevance is also closely linked to the classification of singular
stochastic partial differential equations (SPDE), such as the SHE or the KPZ equation,
into sub-critical, critical, or super-critical ones, which correspond respectively to disor-
der relevance, marginality and disorder irrelevance. For sub-critical singular SPDEs, a
general solution theory called regularity structures has been developed in seminal work
by Hairer in [H13,H14], and alternative approaches have been developed by Gubinelli,
Imkeller, and Perkowski [GIP15], and also by Kupiainen [K14]. However, for critical
singular SPDEs such as the SHE ind = 2, the only known results so far are: our previous
work [CSZ17a], which established a phase transition in the intermediate disorder scale
Be = B(2m/ log 1)1/2 and identified the limit in distribution of the solution u®(r, x) in
the subcritical regime B < 1; the work of Bertini and Cancrini [BC98], which computed
the limiting covariance of the random field u®(z, -) at the critical point ,é = 1; and our
current work, which establishes the non-triviality of subsequential weak limits of the
random field at the critical point B=1.

Let us mention some related work on the directed polymer model on the hierarchi-
cal lattice. In particular, for the marginally relevant case, Alberts, Clark and Koci¢ in
[ACK17] established the existence of a phase transition, similar to [CSZ17a]. And more
recently, Clark [Clal7] computed the moments of the partition function around a criti-
cal window for the case of bond disorder. The computations in the hierarchical lattice
case employ the independence structure inherent in hierarchical models, which is not
available on Z7.

Note added in publication. More recently, Gu, Quastel and Tsai [GQT19] proved the
existence of all moments for the 2-dimensional SHE in the critical window. They use
different, functional analytic methods inspired by Dimock and Rajeev [DRO4].

1.5. Organization of the paper. In Sect. 2, we recall the polynomial chaos expansion
for the partition functions and introduce the renewal framework, which are then used in
Sect. 3 to prove Theorem 1.2 on the limiting second moment of the partition function. In
Sect. 4, we derive a series expansion for the third moment of the averaged point-to-point
partition functions, whose terms are separated into two groups: ones with so-called triple
intersections, and ones with no triple intersection. Terms with no triple intersection is
shown in Sect. 5 to converge to the desired limit, while terms with triple intersections are
shown to be negligible in Sect. 7, using bounds developed in Sect. 6. Lastly, in Sect. 8,
we prove Theorems 1.7 and 1.9 for the stochastic heat equation.

2. Polynomial Chaos and Renewal Framework

In this section, we describe two key elements that form the basis of our analysis:

(1) polynomial chaos expansions, which represent the partition function as a multilinear
polynomial of modified disorder random varibles, see Sect. 2.1.

(2) arenewaltheory framework, which allows to relate the second moment of the partition
function to suitable renewal functions, see Sect. 2.2.
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We will use P, and E, x to denote probability and expectation for the random
walk S starting at time a from position S, = x € Z?, with the subscript omitted when
(a,x) = (0, 0).Recalling (1.7), we define the family of point-to-point partition functions
by

b1
Z0 ,(x.y) == Eax [eznza+l<ﬁwn-Sn*W”n{s,,:y}], (@,x), (b, y) € Liyep, a < b.
2.1

The original point-to-plane partition function Zf, (x), see (1.4), can be recovered as
follows:

R = > Z (). (2.2)

yez?

We note that the point-to-plane partition function has E[Z 5 »(X)] = 1, while for the
point-to-point partition function we have

E[Z] ,(x. )] = qap(x. ¥) = gp—a(y — ). (2.3)

the transition probability kernel defined in (1.8). We will need to average the partition

functions Zf »(X, y) over either x or y, or both, on the diffusive scale. More precisely,
we define for N € N

Zod o) =30 20, nv(d5), v e G®Y, (2.4)
yezZ?

Zo @) =Y #(35) Zhyx ). ¢ e C®), 25)
xeZ?
1

Zy) @) = Zzch(ﬁ) ZhyeNV(JR). @€ C®), ¥ € Co®).

X,y€
(2.6)

The reason that the terminal function ¥ is only required to be bounded and continuous,
while the initial function ¢ is compactly supported is that, we would like to include the
case ¥ = 1, which corresponds to the point-to-plane polymer partition function. On the
other hand, the initial function ¢ plays the role of a test function used to average the
partition function. (In general, the fact that at least one between ¢ and ' is compactly

supported ensures finiteness of the average (2.6).) Note that Z (@) in (1.12) coincides
with Z(})V/\ft (¢, ¥) with ¢ = 1. From (2.3) we compute

E[Zy) (0] = 4y ¥) == 3 ah-aly = 1) ¥ (), @.7)
yeZ?
E[Zy) @ 0] = ably @, ) = Y ¢(F5)ap-aly — ), (2.8)
xEZZ
EZ) @ v =al,@.v) = — Z D) a-a -0 U (). 9
xyeZz

Note that these expectations are of order 1 fora = 0 and b = N, because gy (y — x) ~
1/N forx, y = O(v/N),see (1.8)—(1.9). This explains the normalizations in (2.4)—(2.6).
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2.1. Polynomial chaos expansion. Let us start by rewriting the point-to-point partition
function from (2.1) as

b—1 _
Zg,b(x’ y) — Ea’x I:eZn:aH(ﬁwn,Sn )‘(ﬁ))]l{sh:y}]

=EM[ T [T e @ tm= ll{sbzy}].

a<n<b ;e72

Using the fact that e*Liner) = 1 4 (¢¥ — D1yyer) for x € R, we can write

b—1
nyb(x: ) = Eqx [ l_[ 1_[ (1 +&n.z ]I{Sn=z})]1Sb=y:|»

n=a+1 ze72

(2.10)

where gn,z = eﬁw",Z_)h(ﬁ) 1.

The random variables &, , are i.i.d. with mean zero (thanks to the normalization by
A(B)) and with variance Var[£, ,] = ¢*@#)~24() _ | Recalling (2.3) and expanding
the product, we obtain the following polynomial chaos expansion:

Z0 ) = qas )+ Y Y Gam @ x1)

k>1 a<ny<--<np<b

. 2.11)

) { 1_[ an1,nj(xj—lvxj)€:nj,xj}an,b(xks )’),

j=2

with the convention that the product equals 1 when kK = 1. We have written Z 5 » (X, )
as a multilinear polynomial of the random variables &, .

Analogous expansions hold for the averaged point-to-point partition functions: by
(2.6)

1
Zy) @) =al @+ D0 D b @ ) Eu

k>1 a<ny<--<ng<b

. Xlyeery kaZZ (212)
: { 1_[ QHj,l,nj (xjfl’ -x]) Snj,x/- } qy]l\,]()b(xkr I/f)

j=2

Similar expansions hold for Z;V;ﬂ (x,¥r) and chlvf (¢, y), without the factor %

2.2. Renewal theory framework. Given N € N, we define a sequence of i.i.d. random
variables ((Tl.(N)  x ), taking values in N x Z?, with marginal law

qn(x)?
Ry

P((T"", X)) = (n, x)) := L..n (), (2.13)
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where we recall that g, (x) is defined in (1.8) and Ry = Zfl\/:] erzz qn (x)? is the
replica overlap, see (1.10). We then define the corresponding random walk” on N x Z>

(5, 50 = (T 1 XXV ken @14)

Note that the first component tk(N) is the renewal process that we introduced in Sect. 1.3,

see (1.42)—(1.43).

‘We now describe the link with our model. We note that 01%,, see (1.14), is the variance
of the random variables &, , = ef“x=*() _ | which appear in (2.11). Recalling (2.1)
and (2.3), we introduce a crucial quantity Uy (n, x), that will appear repeatedly in our
analysis, which is a suitably rescaled second moment of the point-to-point partition
function:

Un(n,x) = op B[Z)"(0, )] = 0% {gu()? + Var [Z5%(0,0)]}, n > 1,

(2.15)
Un(@0,x) :=6x0 = Tx=0}.
By (2.11), we then have
Un(n,x) =05 qon(0. )% + Y (o)™ 3" gon (0,x1)7 -
k>1 O<ny<--<np<n
Xlyeny xkEZ
k

: { [Tan-1m; (xj_l,xpz} Ggen (k. ). (2.16)

Jj=2
Looking at (2.13)—(2.14), we have the following key probabilistic representation:

Unn.x) =Y ) PN =n, SN =x),  where Ay :=oy Ry. (2.17)
r>1

It is also convenient to define

Un(n) =Y Un(m,x)=Y ) PN =n). (2.18)

xez? rz1

Thus Uy (n, x) and Uy (n) can be viewed as (exponentially weighted) local renewal
functions.

We investigated the asymptotic properties of the random walk (tk(N) , S,EN)) in[CSZ18].
In particular, introducing the rescaled process

(N) s

T
Y(N) = (Y(N)’ V(N)) = ( Ls IOgNJ , Ls IOgNJ )’ § > O7 (2.19)
N s N N \/ﬁ -

we proved in [CSZ18] that Y) converges in distribution as N — o0 to the Lévy
process Y on [0, 00) x R? with Lévy measure

v(dt, dx) =

To,1y(®)
~ 5 gyja) di dx,

2 §(N) should not be confused with the random walk S in the definition of the directed polymer model.
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where g, (x) is the standard Gaussian density on R?, see (1.9). Remarkably, the process
Y admits an explicit density:
P(Y, € (dr,dx)) e VSsr5!
fe(t, x) = - =
dr dx Ls+1)

which leads to a corresponding explicit expression for the (weighted) local renewal
function

00 5 00 e(ﬂ—y)ssts—l
t = S f,x)ds = —d
Gy(t, x) /O e’ fs(t,x)ds </0 e+l S)gt/4(x)

ga(x)  fort € (0,1), x € R?,

= Gyp(t) grja(x),

where the functions Gy () and Gy (¢, x) match with (1.18) and (1.23).
We showed in [CSZ 18] that the sharp asymptotic behavior of Uy (n, x) and Uy (n) is
captured by the functions Gy (n, Jg) and Gy (x). Note that for the weight Ay in (2.17)—

(2.18) we can write Ay = 1 + m(l +0(1)) as N — oo, by our assumption (1.14).

Then we can rephrase [CSZ18, Theorem 1.4 and Theorems 2.3-2.4] as follows.

Proposition 2.1. Fix 8y such that (1.14) holds, for some 9 € R. Let Uy (n) be defined
as in (2.18). For any fixed § > 0, as N — 0o we have

log N n .
Uy@n) = N (Gg(ﬁ) +0(1)), uniformly for SN <n < N, (2.20)
where Gy is defined in (1.18). Moreover, there exists C € (0, 0o) such that forall N € N
log N
Uy(n) < C % Go(%), VI<n<AN. 2.21)

Proposition 2.2. Fix Sy such that (1.14) holds, for some 9 € R. Let Uy (n, x) be defined
as in (2.16)—(2.17). For any fixed § > 0, as N — 00 we have

log N
Un(n.x) = =55 (G

n
N
uniformly for SN <n < N, |x| < %\/ﬁ,

X
%) +0) 2146 ez )0 (2.22)

where Gy (t, x) is defined in (1.23). Moreover, there exists C € (0, 0o) such that for all
N eN

Z Un(n, x) < C

U e
x€Z2: |x|>Mn N ()

Vi<n<N, YM > 0. (2.23)

We will also need the following asymptotic behavior on Gy () from [CSZ18].

Proposition 2.3. For every fixed ¥ € R, we have that
1 29 +o(1
Gy(t) = — 01( ) s 0, (2.24)
t(log)?*  t(log ;)3
It follows that there exists ¢y € (0, 00) such that
G <Gyt)i=—" =D vie@©1. (229
t2+log)? 1 (log )2

By direct computation (%G(t) < Oforallt € (0, 1), hence Glg(-) is strictly decreasing.
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3. Proof of Theorem 1.2
Recall the definition (1.9) of g;(x). Given a bounded function ¢ : R2 — R, we define

Py (x) = (¢ *gs/2)(x) = /2 ¢(x—y) gp(y)dy, s>0,xeR @31

The averaged partition function Z (d)) in Theorem 1.2, see (1.12), coincides with
(I)VA']S[N (¢, ¥) with ¢y = 1, see (2.6). By the expansion (2. 12) with ¢ = 1, we obtain

1
VarlZy @) = 25 > e)* Y qéYnl(¢,x1)2ﬂqn_,_l,n_,.<xjfl,xj>2.

k>1 O<nj<--<np<Nt j=2

(3.2)

We isolate the term k = 1, because given (n1,x1) = (m, x) and (ng, xx) = (n,y),
the sum over k > 2 gives E[Z0Y, (x, )21 = Uy(n —m, y — x)/o%, by (2.15)~(2.16).
Therefore

o2 4
o
Var[Z4y ()] = N2 Do @07+ 5 DT a)l (@ 0 EIZ ()
O<n<Nt O<m<n<Nt
xez? x,yeZ?

Ul%/ N 2 U/%/ N 2
= m Z qov”(¢’x) + m Z qo,m(¢7x) UN(l’l—m),
O<n<Nt O<m<n<Nt
xeZ? X€Z

(3.3)

where in the second equality we summed over y € Z? — this is the reason that only
Uy (n — m) appears instead of Uy (n — m, y — x); recall (2.17) and (2.18).

We now let N — oo. We first show that the first term in the RHS of (3.3) vanishes as
O(oy) = 0(@), see (1.10) and (1.14). Note that for v € (0, 1) and x € R? we have

Jim gy, (¢, VNx) = (), sup g (9.2) < Ploo < 00, (3.4)

meN, zeZ?

see (2.8), (1.8) and (3.1). Then, by Riemann sum approximation, we have

2 1 r\2
2 @0 v 2 ()

O<n<Nt O<n<Nt
xeZ? xeZ?
SN @, (x)>dvdx € (0, c0).

N—o0 0,1)xR2

Indeed, the approximation is uniform for Ne < n < Nt, with fixed ¢ > 0, while the
contribution of n < Ne¢ is small, for ¢ > 0 small, by the uniform bound in (3.4).
It remains to focus on the second term in the RHS of (3.3). By (2.20)—(2.21) and (3.4),

together with cr[%, ~ @, see (1.14) and (1.10), another Riemann sum approximation
gives
Var[ZﬂN (¢)] b4 f @, (x)> Gy (v — u)dudvdx, 3.5)
— 00
O<u<v<t

xeR?
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Integrating out x, we obtain

/Rz @, (x) dx = /Rz (/RQ R2¢(z)¢(z/) Qup(x — 2) gupp(x — 2 dz dz/)dx

= / ¢ (2) ¢(2) gu(z — 2')dzdZ/,
R2xRR2

which plugged into (3.5) proves (1.19). O

4. Expansion for the Third Moment

In this section, we give an expansion for the third moment of the partition function, which
forms the basis of our proof of Theorem 1.4. We actually prove a more general version
for the averaged point-to-point partition functions, which is of independent interest.

Theorem 4.1 (Third moment, averaged point-to-point). Lett > 0, ¢ € R and By satisfy
(1.14). Fix a compactly supported ¢ € C.(R?) and a bounded € Cj,(R?). Then

Jim B[ (2555 @) ~ B2 6. )]

= Mi(p. ) =3 Y 2" ' am I/ (¢, ¥) < o0, (4.1)

m=2

where we set ®; := ¢ x g5/2 and Vg := Y * g5/, see (3.1), and define

It(m)((bv w) = / .. / q>(2“ (x1) (Daz ()CQ) .

O<aj<bi<ar<by<---<apym<by, <t
X1,Y1,X2,Y25--15 Xni,}’mERZ

- Gy(by — a1, y1 — x1) 8ay—by (X2 — ¥1) Gy (b2 — az, y2 — x2) -
> 4.2)

: l_[ga,-—b,-_z (xi = yi—2) 8ai—bi_y (Xi — yi—1) Gy (bi — ai, yi — xi) -
. 2 2

W Gm—D)WE, () da dbd d5.

We observe that Theorem 1.4 is a special case of Theorem 4.1: it suffices to take

¥ = 1 so that ZN e N, v) = ZﬁN (¢), see (2.6) and (1.12), and it is easy to check that
4.1)-(4.2) match w1th (1.24)—(1. 26) since ¥, = 1.

It remains to prove Theorem 4.1. This will be reduced to Propositions 4.2 and 4.3
below. We exploit the multilinear expansion in (2.12) for the partition function, which
leads to the following representation for the centered third moment (recall (2.7)—(2.9)):

E[(@% @ v — B2l 6. )]

1
= > 5 Do @ X040, @, 30) - a5, (@, 20

A, B, CC{s+1,....1—1}xZ?
[A>1,|B|>1,|C|>1
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|A] |B| IC]
[sA,]'[sA q(Ai1, Ai) - &, ]'[sB q(Bj_1.Bj) -£c, [ | &ce a(Ci-r. cm]

=2 k=2
S ARRICIIR QY AMMC IS qqc‘,,(zma v, (4.3)
where we agree that A = (Ay, ..., Aj4)) with A; = (a;, x;) € Zeven, and B, C are

defined similarly, with B; = (b;, y ]) Cr = (ck, zx), and we set for short
q(Ai—1, A}) == qa;—a;_ (Xi — Xi—1).

(When |A| = 1, the product H!ilz ... equals 1, by definition, and similarly for B and
C)

We now split the sum in (4.3) into two parts:
E[(257 @9 = BIZ5™ @ 0] | = MU @0 + M @), @)

defined as follows:

N NT (¢, ¥) is the sum in (4.3) restricted to A, B, C suchthat AN BNC = &,
Wthh we call the case with no triple intersections;

° MfYt’T(¢>, Yr) is the sum in (4.3) restricted to A, B, C suchthat AN BN C # &,
which we call the case with triple intersections.

These parts are analyzed in the following propositions, which together imply Theo-
rem 4.1.

Proposition 4.2 (Convergence with no triple intersections). Let the assumptions of The-
orem 4.1 hold. Then

Jim MYRT @9 = M. 9) =3 32" A" T y) <00 (45)

m=2

Proposition 4.3 (Triple intersections are negligible). Let the assumptions of Theorem 4.1
hold. Then

. N.T _
ngnoo M()’Nt((pv W) =0. (46)

Proposition 4.2 is proved in the next section. The proof of Proposition 4.3 will be
given later, see Sect. 7.

5. Convergence Without Triple Intersections

In this section, we prove Proposition 4.2 and several related results.
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5.1. Proof of Proposition 4.2. We first derive a representation for M YNI NT (¢, ), which
collects the terms in the expansion (4.3) with AN BN C = &.
Denote D :== AUBUC C {s+1,...,t — 1} x Z*, with D = (Dy, ..., Dp)

and D; = (d;, w;). Since E[£,] = 0, the contrlbutlons to MSN p NT

A, B, C where the points in A U B U C pair up. In particular,

(¢, ¥) come only from

1
=Dl = 5 (|A[+[B]+|C]) = 2,

and each point D; belongs to exactly two of the three sets A, B, C, and hence we
can associate a vector £ = (£1,...,¢) of labels £; € {AB, BC, AC}. Note that
there is a one to one correspondence between (A, B, C) and (D, £). We also recall that
£ . = ePNOD=MBN) _ 1 hence o}, = E[£7], see (1.14). From (4.3) we can then write

MY (@, y) = stf’ > >

k=2 DC{s+1,....t—1}xZ> Le{AB, BC, AC}*
|D|=k>2

Y, @.x1)qY, @, y) e, @.21) -
[A] |B| IC|
Hq(A, 1.AD [TaBi-1.B) [] a(Cmt.Cm)-

j=2 m=2
: qa|A‘,[(x|A|v 1,0) Qb‘B‘,[(y|B|v lﬂ) chl’t(Z\Ch 1//)’ (51)

where we agree that A, B, C are implicitly determined by (D, £).

We now make a combinatorial observation. The sequence £ = ({1, ..., €;) consists
of consecutive stretches ({1, ..., £;), ({is1, ..., £;),etc., such that the labels are constant
in each stretch and change from one stretch to the next. Any stretch, say (£, ..., {,),
has a first point D, = (a, x) and a last point D, = (b, y). Let m denote the number of
stretches and let (a;, x;) and (b;, y;), with a; < b;, be the first and last points of the i-th
stretch.

We now rewrite (5.1) by summing over m € N, (ai,by,...,an,by), and
(X1, Y15 -+ - » Xm» Ym)- The sum over the labels of £ leads to a combinatorial factor 3-2"~ L
because there are 3 choices for the label of the first stretch and two choices for the label
of the following stretches. Once we fix (aj, x1) and (b1, y1), summing over all possible
configurations inside the first stretch then gives the factor

,
2(r+1
oy > [T Gio1.20* = o Un (b1 — ar. y1 = x1),

r=1 aj=ty<t] <---<tr=bg i=1
Z0=X1, 21,22+ Zr—1 €72, 2=

where we recall that Uy is defined in (2.15)—(2.16). A similar factor arises from each
stretch, which leads to the following crucial identity (see Fig. 1):

M (p, ) = 23-2"“1§,7""><¢,w>, where

2m
(N,m) N 2 N
"0 = N— > q, (@ x1)7 g, (9. x2) -
s<ar<bi<ar<by<--<ay <by<t
X1, V12X25 Y2 eees Xy Yin €22
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(0,22)

(0, 23)

Fig. 1. Diagramatic representation of the expansion (5.2) of the third moment. Curly lines between nodes
(aj, x;) and (b;, y;) have weight Uy (b; — x;, y; — x;), coming for pairwise matchings between a single
pair of copies AB, BC or CA, while solid, curved lines between nodes (a;, x;) and (b; 1, y;—1) or between
(aj, x;) and (bj_p, y;—2) indicate a weight gp, | 4, (Vi—1,X;) and gp,_, 4, (yi—2, x;), respectively

~Un(b1 — a1, y1 — X1) qby,a, (Y1, X2) Un (b2 — a2, y2 — x2) -

m

11 {%,-_z,a,- (Yi-2: %) qb;_y.a; Vi1, Xi) UN (bi — @i, yi — xi)} :
i=3

g Ome1. V) g G V)7, (5.2)

with the convention that [ ;" 4{...} = 1 for m = 2. Note that the sum starts with m = 2
because in (5.1), we have |A|, |B], |C| > 1.

If we compare (5.2) with (4.5) and (4.2), we see that Proposition 4.2 follows from
the following result and dominated convergence. O

Lemma 5.1. For m > 2, let I\, (¢, %) = I{ " (¢, V) be defined as in (5.2), and
let It(m)(qb, ) be defined as in (4.2). Then

Jim 1 @) = 7" T g Y)Yz 2. (5:3)
Furthermore, for any C > 0 we have
|11(\,At]’m)(¢, )| < e m forallm, N sufficiently large. (5.4)

The proof of Lemma 5.1 is given later, see Sect. 5.3. We first prove the next result on
I,(m)((f), ), which will reveal a structure that will be used in the proof of Lemma 5.1.

Lemma 5.2. For ¢ € Co(R?), ¥ € Cp(R2), and I"™ (¢, V) defined as in (4.2), we
have:

Vae (0,00, Y a"[Z" (¢, ¥ < oo. (5.5)

m=2
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5.2. Proof of Lemma 5.2. In light of Remark 1.3, we may assume ¢ = 1. Recall that

TG, ) =T (@, Y) = f~f 2 (x1) By (1) -

O<aj<bi<ar<by<--<apy<by, <1
X15Y15X25 V250005 XmsYm €R2

- Gy(by —ai, y1 — x1)802;b1 (x2 = y1) Gy(by —az, y» — x2) -

m
: Hgai_[’i—Z (xi — yi-2) 8ahio) (xi = yi—1) Gy (bi — ai, yi — xi) -
2
i=3
Wi, D)W, (ym) dd db ¥ d5, (5.6)

where Gy (t,x) := Gy(t)g;/4(x), with g,/4(x) being the heat kernel, see (1.9), and
Gy defined in (1.18). We also recall that @, (x) = (¢ * g4/2)(x), ¥15(y) = (¥ *
ga-b)2) ().

Note that we obtain an upper bound if we replace ¢ by |@|, so we may assume that
¢ > 0. Similarly, we may replace ¥ by the constant ||, and we take || < 1
for simplicity. We thus bound Z(™ (¢, ¥) < ZU (¢, 1), with ¢ > 0, and we focus on
Zm (g, 1).

We first show that, by integrating out the space variables, we can bound

ZM(p, 1) < CyJ™,  where Cy:=|p|% /2¢(Z)dz, and
R

da db.

m Gy (bi — ai)
Jm ;:/.../G (br —aGy by — a2) ﬂ
9 (b1 —a1)Gy(by — a2 ,'11\/(ai —bi_1)(a; — bi_»)

O<aj<bi<-<ay<by,<l

(5.7)

Note thatin (5.6) we have W = 1 (by ¥ = 1) and y,, appears only in Gy (b, — @, Y —
Xm). Then we can integrate out y,, € R? to obtain

/2 Gy by — am, Ym — Xm) dym = Gy (b — an).
R

We are then left with two factors containing x,,, and the corresponding integral is

[ 8 am—by 1 (xm - ym—l) 8am—by_o (xm - ym—Z)d-xm = 82am—by_1—by_» (ym—l - )’m—Z)
R2 2 2 2

1 - 1 1
TQam = b = bm—2) = 27 \fay — bu—1)(@n — bp—2)’

= 8 2am—by_1—by—2 (0) =
2

having used o8 < %(Ol2 + B?) in the last inequality.
We now iterate. Integrating out each y;, for i > 2, replaces Gy (b; — a;, yi — X;i)
by Gy (b; — a;), while integrating out each x;, for i > 3, replaces ga;—s;_, (x; —
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Yi—2) ai—bi_y (Xi — yi—1) by 27/(a; — bj—1)(a; — bi—>))~!. This leads to
2

1 o
T < s // ddi db dv, dy, dxs

O<ay<bi<ay<by<--<am<by, <1
x1.y1.%2€R?

3, (x1) Pas (12) 8- (31 x1)g@ (X2 — y1) - (5.8)

Gy (bi —a;)
—bi—1)(@ —bi—2)

- Gy (b1 —a1) Gy(by — ar) ﬂ | &

We finally bound @, (x2) < |@|eo, see (3.1), then perform the integrals over x; and yj,
which both give 1, and note that [ ®q, (x1)*dx) < [¢loc [z2 ¢(2) dz, which yields
(5.7).

We can now bound the quantity in Lemma 5.2 using (5.7), to get

Za 2™ (b, y)| < 2)? C¢Z( ) Jom, (5.9)

m=2

It remains to show that /) decay super-exponentially fast. For any A > 0, we have

I < e Gy (b — ane PTGy (by — an)
O<a)<by<--<ay,<by<l1
" e bi=bi-)G (b — a: R
‘ 0B =) 4z g,
i3 V(@i —bi—1)(ai — bi—)

Denote u; := a; — b;—1 and v; := b; — a; for 1 <i < m, where by := 0. Then observe
that a; — bj_p = u;—1 +vj_1 +u; > u;—1 +u;. Since b; — b;_; > v;, we can bound
Jm by

Jm < o / /{He)‘”’G,g(v, }{H = +u)u }diidl—}
vV \Ui—1 i

uj v €(0.1) i=1 i=
Z[’.”Zl(ui+vi)<l

1 m
A G (o) d ) / g 610
=¢ </0 ‘ y W) dy 1—[ wi(ui +ui—1) !

Ut €(0,1) 1=3

1 m
<el< / e*“@(v)dv) / ¢ (u2) dus,
0 0

where in the last inequality we have bounded Gy (-) < Gﬂ( ), see (2.25), and we define

#Qw):=1, and % V(s)ds, VkeN.

! 1
(k) R
o7 '_/0 s(s +u)
(5.11)

We will show the following results.
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Lemma 5.3. There is a constant Cy < oo such that for every A > 1

1
—Av A Cy
G dv<(Cj i= ———M. 5.12
foe p)d = €y 1= =S (5.12)

Lemma 5.4. For all k € N, the function ¢® (-) is decreasing on (0, 1) and satisfies

2 i
¢>(k)(v)<32k2 (log )<3zk%, Vo € (0, 1). (5.13)

<

With Lemmas 5.3 and 5.4, it follows from (5.10) that
1
Jm L ot 32’"*2/ dv <O R 220 < (20", (5.14)
0 Vv
If we choose A = m, then by (5.9) and the definition (5.12) of C) we get
(m) m 7(m) 32ae Cﬂ
Za 17" (p, ¢)|<C¢Z J <C¢Z <00, (5.15)

— 2+logm

which concludes the proof of Lemma 5.2. O
It remains to prove Lemmas 5.3 and 5.4.

Proof of Lemma 5.3. Recall that Glg (+) is defined in (2.25) and it is decreasing. Then
1 ~ ~ 0 ~ e ! % ~
[ e awan<éod [T era=Gah <t [T G
1 1 0
A A

hence

(I+e Hey 2cy
2+logh  2+logh’

1 Ia
/ e M Gy(w)dv < (1 +e*‘)/ Gy(v)dv = (5.16)
0 0

We have proved that (5.12) holds, provided we chose Cy :=2cyp. O

Let us prove the first inequality in (5.13). Recall the definition (5.11) of ¢, Then

Proof of Lemma 5.4. The second inequality in (5.13) follows from Z —0 l, <e*

1 d v d
¢ @) = fo \/Y(Y+U) - fo «/z(z+1) f NG +f1 zZ = 2+10g_

(5.17)
To iterate this argument and bound qﬁ(k), we claim that
»® () < Zk:i <1og é)i Vo e (0,1), (5.18)
P 204! v

for suitable choices of the coefficients ¢ ;. For k = 1, we see from (5.17) that

c10=0, c11 =2. (5.19)
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Inductively, we assume that (5.18) holds for kK — 1 and we will deduce it for k. Note that
plugging (5.18) for k — 1 into (5.11) gives

o (v) < c" LJ / (log & (5.20)
0

2/]' s(s+v

To identify ¢ ; for 0 <i < k, we need the following Lemma, proved later.

Lemma 5.5. For all k € Ny, we have

| 2\k k+1 e2\i
f (log < )) ds <21k Y (log v) Yv € (0, 1). (.21
0 i=0

s(s+v 2t !

If we plug (5.21) with k = j into (5.20) we get that, for all v € (0, 1),

bt Jj+1 (l()g é)i k 1 k—1 5
(k) / j+1 _ ) Y
’ (”’<Z T GRS B DT CHD SRS (VLR
i=0 i=0 j=G—-1*
This shows that (5.18) indeed holds, with
Ci=2 Y o1 (5.22)

j=l=1*

We have the following combinatorial bound on the coefficients c ;, which we prove
later by comparing with the number of paths for a suitable random walk.

Lemma 5.6. For everyk € Nandi € {0, ..., k} we have ci; < 32k,
Plugging this bound into (5.18) we obtain, for all k € N and v € (0, 1),

2\ I
¢® (v) < 32* Z <-1 g ) (5.23)

which is the first inequality in (5.13). This concludes the proof of Lemma 5.4. O
It remains to prove Lemmas 5.5 and 5.6.

Proof of Lemma 5.5. By a change of variable s = vz,
I (log £)* 3 (log £)F I (log 2)* i (log2)*
/ —( e5) dS:/ —( gvz) dz < —( gvz) dz+f —( gvz) dz.
0 Vs(s+v) 0 ~z(z+1) 0 Wz 1 z
A B

(5.24)

Let us look at B: the change of variable z = v*~!, with o € (0, 1), gives

UD(

! (log 5_2)]( a—1 1 1 ! 1\k 1 e \k+1
B = —g log &+ do = log (2+a10g5) dafm(logv) .
0 0
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We now look at A: the change of variable z = x ¢2/v, with x € (0, é%), followed by
x=e ¥, with y € (Llog <, 00), yields

v k
2 (lo 1 e} 2 k 2k+1 [}
LRl e e o
Vv Jo Vx Vv floge € Y Vv log—

Let (N;);>0 be a Poisson process with intensity one, and let (X;);>; denote its jump
sizes, which are i.i.d. exponential variables with parameter one. For all t > 0 we can
write

k

o] B [
/ ye ™ dy=T(k+ 1)P<in > z) =T'(k+1)P(N, gk)ze—’2£t’.
¢ !

i=1 i=0
Choosing 1 = 1 log %, it follows that
e 2k+1 k! N

! , .
A= o I‘Og*Zi! ($1log )’ :Z%2k+1—'(1og§)’. (5.26)

i=0 i=0

We have thus shown that

k+1
A+B= Z 9EH (log 2,

which coincides with the RHS of (5.21). O

Proof of Lemma 5.6. We iterate the recursion relation (5.22), to get

k—1 k—1 k—2
wi=2 D a-lj =4 Y > G =
Je—1=>{—=1* Je—1={=D* jr2=(r—1—D*

k—1 k=2

2 1
=21 ) > S > e (5.27)

Je—1==D* jr—2=(x—1—D* J2=03=D* ji=02—D*
Since ¢;1 =2 and ¢1,0 = 0, see (5.19), we can restrict to j; = 1. Also observe that
Ji = (isr — DT ifandonlyif  j; >0 and iy < ji+1,

hence we can reverse the order of the sums in (5.27) and write

cri =2k (5.28)

where | Sy (i)| denotes the cardinality of the set

Sk(i)ZZ{(j1,...,jk)€NO J1=1, jk=1, ju+1 < jn+an=1,...,k—l}.
(5.29)

In words, Sk (i) is the set of non-negative integer-valued paths (ji, ..., ji) that start
from j; = 1, arrive at jz = i, and can make upward jumps of size at most 1, while



412 F. Caravenna, R. Sun, N. Zygouras

the downward jumps can be of arbitrary size (with the constraint that the path is non-
negative).
To complete the proof, it remains to show that

ISk ()] < 16"

We define a correspondence which associates to any path j = (ji, ..., jr) € Sk(@@)
a nearest neighbor path £ = ({1, ..., ¢,), with length n = n(j) € {k, ..., 2k}, with
increments in {—1, 0, 0*, +1}, where by 0* we mean an increment of size 0 with an extra
label “x (that will be useful to get an injective map). The correspondence is simple:
whenever the path j has a downward jump (which can be of arbitrary size), we transform
it into a sequence of downward jumps of size 1, followed by a jump of size 0*.

Note that if m = m(j) denotes the number of downward jumps in the path j, then
the new path £ = ({1, ..., £,) has length

n=n(j) =k+ (01 +--+om),

where o; is the size of the i-th downward jump of j. The total size of downward jumps
is

k—1
o1+ +on) =A"(j) = Z(ji+1 —Ji) -

i=1
Defining A*(j) := Y{Z] (jix1 — ji)*, we have
AT =A(H=jk—h=i—-1
However A*(j) < k — 1, because the upward jumps are of size at most 1, hence
AT(H <k =D —=(G—-1) <k,

which shows that n = n(j) < 2k, as we claimed.

Note that the correspondence j +—> £ is injective: the original path j can be recon-
structed from £, thanks to the labeled increments 0*, which distinguishes consecutive
downward jumps from a single downward jump with the same total length. Since the

path £ = (€1, ..., £,) has n — 1 increments, each of which takes four possible values,
we get the desired estimate:

2% 2%k 165 — 1
S <Y 4ty 4t = T < 16~
n=k n=1
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5.3. Proof of Lemma 5.1. We follow the same strategy as in the proof of Lemma 5.2.
We first prove the exponential bound (5.4). We recall that / /E,I;]’m)(qb, v) = Ié]\jlv’;")(qb, V),
see (5.2). We may take r = 1, ¢ > 0, and y = 1, so that the last terms in (5.2) are

qli\:nfl,t(ymfl’ ¥) =1, qé\r’mt(ym, Y¥) = 1. We can thus rewrite (5.2) as follows:

2m
(N.m) _ 9N N 2 N
Iy "¢, 1) = > 40y (@ X1)> 40’4, (B, x2) -
O<a1<hr<ary<hr<--<am<by<N
XLVLX2,Y20een X Y €27

Uy (b1 — a1, y1 — X1) qby.ay V1, ¥2) Un (b2 — a2, y2 — x2) - (5.30)
m

’ 1_[ {qbifZ’“i (Vi—2, Xi) qb;_y,a; Vi—1, X)) UN(bi — ai, yi — xi)}~
i=3

Similar to (5.7), we first prove the following bound:

N (g, 1) < Cp JN™ | where
o_2m -
oz e IS Uy —an) Un b2 —an [ ]

O<a;<hr<... i=3
.<am<by <N

Un(bi — a;)
V@i —bi—1)(a; — bi—2)

(5.31)

for suitable constants Cy, c < co. We first note that y,, appears in (5.30) only in the
term Uy (by, — am, ym — Xm) and hence we can sum it out as

D" Un(bw = am, ym = Xm) =t Un (b — am). (5.32)
Yin €77

We next sum over x;,: since g ;(x, y) < sup, ¢;—5(z) < ﬁ, see (2.3) and (1.8), we
have

D @b Gt m) @by say G20 %m) < SUP_ by, ., (¥, X)
2 x,yeZ?
et (5.33)
C c

< < .
(am — bm—2) \/(am —bp_1)(am — bp-2)
We can now iterate, integrating out y; fori > 2 and x; fori > 3, to obtain

cm72 2m
e —Et 3 PR RCIEN T RO

O<aj<bi<ay--<am<bny <N xl,xz,y1eZZ
-Un (b1 — a1, y1 — x1) qby,a, (Y1, X2) Un (b2 — a2)

Un(bi — a;i)
’ 5.34
ill V(@i —bi_)(ai — bi—2) (5.34)

After bounding q&’az (@, x2) < |P|oo, see (2.8), the sum over xp gives 1, because
qb,.a» (Y1, -) 1s a probability kernel. Then the sum over y; gives Uy (by — ay). Finally,
the sum over x; gives

D 40 @20 <l D 40, @ x1) = 19loo ) d(F) <cp N (535

x1€72 x1€Z? zeZ?
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for a suitable ¢y < oo, because ¢ has compact support. This completes the proof of
(5.30D).

Next we bound J - in (5.31), similarly to the continuum analogue (5.10). Namely,
we denote u; = a; — b;_1 and v; := b; — a; for 1 <i < m, with bg := 0, we insert the

factor * ]_[;”zl e M%) > 1, and then we use a; —b;_> > u;_1 +u; to obtain the bound

N m m
v 1
JWNm) < Gk om (02 E e VU (v)) {— E }
- Nv=0 ! N? u<N1_[\/u(ul 1+ui)

(5.36)

Note that 03 < ]OgN,see(l 14), and Uy (1) < ¢ (]l{u:o}+1°§,N G@(%)),see (2.21)

and (2.25). Since G@( ) is decreasing, we can bound the Riemann sum by the integral
and get

N
Y MUy = 22 (1 LY éﬂ(ﬁ)

v=1

< cre 1+10gN/‘1@_MCA}79(v)dv < cio ! +Cy ),
log N 0 log N

(5.37)

where in the last inequality we have applied (5.12).

The multiple sum over the u;’s in (5.36) is bounded by the iterated integral in (5.10),
by monotonicity (note that if we replace u; by Nu;, withu; € %Z N (0, 1), then we get
the correct prefactor 1/N", thanks to the term 1/N? in (5.36)). Then

J(N’m)ée)“cm(logN+C;\) / " D) du < &> 320)" (1ogN+C?») ,
(5.38)

because the integral is at most 32, by (5.13) (see also (5.14)). Since C), = %’ see

(5.12), if we choose A and N large enough, then it is clear by (5.38) that J V") decays
faster than any exponential in m. This proves (5.4).

We next prove (5.3), for simplicity with # = 1. This is easily guessed because
Il(N’m) (¢, V) (see (5.2)) is close to a Riemann sum for nmIfm) (¢, V) (see (4.2)), by the
asymptotic relations

N~ fog N’ @@ ) ~ Pe(F2). a0 ) ~ s (). (5.39)
1 logN !
Gra(y: )~ 5 8e (). Unb—ary =) ~ =5 Go (U5 75). (5:40)

see (1.10), (1.14), (3.4) and (1.8), (2.22).3 We stress that plugging (5.39)—(5.40) into
(5.2) we obtain the correct prefactor 1/N 2m thanks to the extra term 1 /N 3in (5.2).

3 For simplicity, in relations (5.40) we have omitted the “periodicity correction” 2 1 ,see (1.8)

Y ) {(”A,X)Engen}
and (2.22), because this disappears upon summation.
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To justify the replacements (5.39)—(5.40), we proceed by approximations. Henceforth
m > 2 is fixed. We define Ifm)’(g) (¢, ¥) by restricting the integral in (4.2) to the set

{a,‘—b,;]ZS Vi<i<m+1, bj—a >c¢ Vlfifm}, 5.41)

where by := 0 and a1 := 1. Note that 7" (¢, y) — T (¢, v) is small, if we
choose ¢ > 0 small, simply because the integrated integral Il(m)(q§, ) is finite.
We similarly define 7 ,(\,N’m)’(s) (¢, ¥) by restricting the sum in (5.2) to the set

{ai—bio1 > eN V1 <i<m+1, bi—ai>=eNVl<i<m}, (542)

where by := 0 and @41 := N. The difference 1\ (¢, ¥) — 11" (¢, ¥) is
bounded by the sum in (5.31) restricted to the complementary set of (5.42). By the
uniform bound (2.21), this sum is bounded by the integral in (5.7) restricted to the

complementary set of (5.41). Then I{""™ (¢, y) — I{"""™"®) (¢, ¥) is small, uniformly
in large N, for & > 0 small.
As a consequence, to prove (5.3) it suffices to show that

lim 1V @, ) =2 7" (p,¢)  foreach s > 0.
—00

‘We next make a second approximation. For large M > 0, we define 7, fm)’(g’M) (@, V)
by further restricting the integral in (4.2) to the bounded set
{lxil <M,y —xil S Mybi—a; V1 <i<m,

(5.43)
Ixi — yi—il < MyJaj —bi—y Y2 <i<m}.

We similarly define 7 Ii,N’m)’(s’M) (¢, ¥), by further restricting the sum in (5.2) to the set

{lxi] < MVN, |y —xil < My/b; —a; Y1 <i <m,

(5.44)
lxi — yi—1l < MyJa; —bi—y ¥Y2<i <m}.

Clearly, lim;_, oo Il(m)’(g’M) (P, V) = Il(m)’(s) (¢, ¥). We claim that, analogously,

im limsup |10 M @, gy — 18O (g, )| = 0. (5.45)

|
M—00 N 00

Then we can complete the proof of Lemma 5.1: the asymptotic relations (5.39) and (5.40)
hold uniformly on the restricted sets (5.42) and (5.44), so by dominated convergence

foreverye >0, M < 00 : Nlim I,%N’m)’(g’M)(q&, Y) =n" Il(m)’(s’M)(q), ).
— 00
It remains to prove (5.45). We can upper bound the difference in (5.45) as in (5.31)-
(5.34): we sum out the spatial variables recursively, starting from y,,, then x,,, then
Ym—1, €tC.

e When we sum out yy,, if |y, — x| > M /by, — a,, then by (5.32) and (2.23) we
pick up at most a fraction §(M) < C/M? of the upper bound in (5.34). The same
applies when we sumout y; for2 <i <m — 1,if |y; — x;| > M/b; — a;.



416 F. Caravenna, R. Sun, N. Zygouras

e When we sum out x,,,, if [x;, — yi—1| > M+/am — by —1, then we restrict the sum in
(5.33) accordingly, and we pick up again at most a fraction § (M) < 1/M? of the upper
bound in (5.34), simply because Z|x|>Mﬁ gn(x) =P(S,| > M/n) < 1/M?. The
same applies when we sum out x; for 3 <i <m — 1.

e The same argument applies to the sums over xp and yj, see the lines following
(5.34).

e For the last sum over x1, if |x{| > M VN, by (2.8) and the fact that ¢ has compact
support, we pick up at most a fraction § (M) = O (1/M?) of the sum (5.35).

Since for fixed m, there are only finitely many cases that violate (5.44), while §(M) — 0
as M — oo, then (5.45) follows readily. O

6. Further Bounds Without Triple Intersections

We recall that the centered third moment E[ (Z; ZNPV (@, gy — E[ZN AV (o, 1//)])3] of the
partition function averaged over both endpomts admits the expansion (4.3). We then

denoted by M SN P NT (¢, ¥) the contribution to (4.3) coming from no triple intersecitons,

see (4.4).
We now consider the partition functions Z;’ tﬂ N(w, ¥), ZN PN (8, 2) averaged over
one endpoint, see (2.4), (2.5), and also the point-to-point partition function Zﬁ Y(w, 2),

see (2.1) (we sometimes write Zi\’]; Py (w, z), even though it carries no explicit dependence
on N).

The centered third moment E[(Z;Y,’ﬁN (%, 1) — B[ZNPY (x, T)]) ] for x € {¢, w},
T € {¥, z} can be written as in (4.3), starting from the polynomlal chaos expansions
(2.11)—(2.12). In analogy with (4.4), we decompose

E[(ZYPY (1) = BIZYY 6, 1) ] = MENT G, 1)+ MY T ), 6.1)

where MY / T(x, 1) and MYN, NT(, ) are the contributions with and without triple in-

tersections. In this section we prove the following bounds, which will be used to
prove Proposition 4.3.

Lemma 6.1 (Bounds without triple intersections). Let ¢ € C, (R2), ¥ € Cp(R?) and
w,z € 72 Forany e > 0, as N — o0, we have

My (w, ¥) = O(N¥), (6.2)
Yo My w2 =0, 6.3)
1<a<N ze72
Z Z NNT(¢ ) = 0(N2+e) (6.4)

1<a<N zez72

We prove relations (6.2)—(6.4) separately below. For the quantity M SN ; NT(*, 1), when
both arguments *, | are functions, we derived the representation (5.2). Analogous rep-
resentations hold when one of the arguments *, | is a point. For instance, in the point-
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to-point case:

o0
MMM w2y =" 32" 1w, 7). where
m=2

N,
L™ (w, 2) = o > Gs.ar (W, X1)* .y (W, X2) -
s<ay<bhi<ay<by<-<apy<by <t
X1, Y15X25 Y2, eves X, Yim €Z2 (6.5)

~Un(by — a1, y1 — x1) gby,a, (01, X2) Un (b2 — a2, y2 — x2) -
m

11 [%i,z,ai (Vi—25 Xi) Gb;_y,a; Yi—1, X)) Un (bi — ai, yi — xz')} :
i=3

Gyt Om—152) @yt O )%

Note that in contrast to (5.2) there is no factor N =3, because the definition of Z ﬁg ?’ (w, 2),
unlike Zﬁ’,’ﬂ N (¢, ¥), contains no such factor, cf. (2.1) and (2.6).

The identity (6.5) holds also for M, (¢, z) (replace gy,q, (w, x;) by ¢, (¢, x;),
i = 1,2) and for M;"" (w, ¥) (replace gy, ;(yi. 2) by ) ,(vi. ¥).i = m — 1, m).

Proof of (6.2). To estimate Io(f\ll\}m)(w, Yr), we replace ¢ by the constant ||, and we
take |V|oo < 1. We then focus on Iéf\ll\}m)(w, 1), and we can set w = 0, by translation
invariance. By the analogue of (6.5) (note that q{)\i’,t(y,-, Y) = 1for ¢ = 1), we get

(N,m) 2 2
L™ (w. ) <oy > Ga) (x1)*Un (b1 — a1, y1 — x1) -
O<a1<hr<ary<hr<-<am<bp<N
X1, Y1,X2,Y25-05 xvamGZZ (66)

m
: l—[ {q}),'_z,a; (Yi—2, %) qb;_y,a; Vi1, X)) Un(b; — a;, yi — xi)},
i=2

where we stress that the product starts from i = 2 and we set by := 0 and yo := 0. By
the definition of Uy in (2.15)—(2.16), we have the following identity, for fixed b; € N,
V1 € Z2:

oy Y. G G)? Un(br —ar,yi —x1) = Un (b, y1). (6.7)

O<a;<bp, x1 eZ?

Therefore we can rewrite (6.6) as

2 —
1w, ) < oy 2 UG

O<by<ar<by<-<ay, <by<N
V1:X2,¥2 s Xm s Ym ez? (6 8)

11 {%,-,z,a,- (Vi—2, Xi) Gb;_y,a; Yi—1, i) Un (bi — ai, yi — Xi)}~

m
i=2
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We now sum out the spatial variables y,,, X, ..., ¥2, X2, ¥1, arguing as in (5.32)—
(5.33), to get the following upper bound, analogous to (5.31), for a suitable ¢ < oo:

Un(b; — aj)
IO(’]\II\}m)(w w) < Cm 2(m 1) Z UN(bl)l_[ i i . (69)
0<bi <ar<br<... \/(az bi_1)(a; — bi_2)
<y Kby <N
Then we set u; := a; — bj_1, v; := b; —a; for 2 < i < m, and we rename u := bj.

This allows to bound a@; — bj_» > u; + u;j—1 for all i > 2 (including i = 2, since

a; —bi_o» = a» > ur + by). Then, for » > 0, we insert the factor e* ]_[;":2 e_’\(ﬁf) > 1
and we estimate, as in (5.36),

N
(N m)(w V) < et <J,%,Ze_)‘1€’UN(v))
1 Soven Y [

=1 O<uz,...,um<N i=2 wi (uj +ui—1) }

m—1

(6.10)

The first parenthesis is < ¢ (logN + C;.), see (5.37). Then we replace u; by Nu;, with

u; € %Z, and bound Riemann sums by integrals, by monotonicity. This yields (for a
possibly larger c)

-1

1N w, ) < e (i + Ca)”

log N

: Uyn(N diip. (6.11)
{ Zl v / H\/“(”t"'”l 1) u}

MIENZ O<un,.utm<l ! 2
F<ui<l

The integral equals ¢~ (u1), see (5.11). We bound Uy (Nuj) < cz N G,;x(ul) by
(2.21) and (2.25), since u; > 0. Recalling that 1 (.) is decreasing, we get

log N A _
Ié%m)(w,w)ge)‘c (10gN+C)~) { N Z Gz?(lft])}(ﬁ(m l)(%)
uleﬁz

O<uy<l

<" (i +C)" ! (log N) Crp™ D (), (6.12)
where for the last inequality, recalling that Gy (+) is decreasing, we bounded the Riemann

sum in brackets by the integral fol Gy uy)du; < Gy, see (5.12).
Putting together (6.5) and (6.12), we can finally estimate

NNT(w W)<322"1[(Nm)(w w)

m>=2

Ci)]" o™V (),

m>=2
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and using the first inequality in (5.13) we obtain

m

1 ,

MR w, ) <3¢ (og N) Y [bde (1 + C1)]" Y = (3 log(e?N))’
m>2 i=0

1 i
<3¢ (logN) ) i—|(% log(e’N))" ) [64¢ (1oaw + C1)]"

i>0 m>i
= e N+cm (logN) Y = (32c (o + €2 log(e N))
* i>0"
1
= 3+ (10g N) (e N)320(W+C)‘).

1—[64c (log'N+C~A)]

Since lim; _, o, C) = 0, see (5.12), given ¢ > 0 we can fix A large so that 32¢ C; <

&
E .
Then for large N the exponent of (€2N ) in the last term is < &, which proves (6.2). O

Proof of (6.3). From the first line of (6.5) we can write

Y MM w =Y 327 Y S M. (6.13)

1<a<N ze7? m>=2 1<a<N ze72

Toestimate ) _, <a<N Y oem? Ié]Z’m) (w, z), we use the representation (6.5) withs = 0
and t = a. We may also set w = O (by translation invariance). We first perform the sum
over a; and b,,, using (6.7) and the symmetric relation

2 2
ON Z Uy (b, _am7ym_xm)q17m,a(ym»z) =Un(a — am, 7 — xm).
am<bp<a, )’mGZZ

(6.14)

‘We then obtain

2(m—2
Z I(;,Na’m)(w’Z)zoN(m ) Z Un (b1, y1) -

IS”SZN O0<by<ay<ba<--<am<a=<N
2€L ylaXZa--nym—]axm,ZEZz
m—1

: l_[ [Clb,-,z,a,» (Vi—25 %) gb; _y .a; Vi1, %) Un (bj — ai, yi — Xi)}
=2

i

Dbr—rsam Vm—2> Xm) Qb1 am Ym—1, Xm) Uy (@ — ap, 2 — xm)} Do_r,aYm—1,2).
(6.15)

If we rename y,, := z and b,, := a, then we see that (6.15) differs from (6.8)
only for the factor 0]%,('"_2) (instead of af,(m_l)) and for the presence of the last kernel

Dbp_1.aYm—=1,2) = qb,,_1,by Ym—1, ym). The latter can be estimated using (1.8):

c C
=< - 6.16
Gbp—1.aYm—1,2) = by —bp—1 ~ by — by ( :
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for some suitable constant c. As in (6.9), we first sum out the spatial variables, getting

N 2(m—2
Yo " ) <oy P S Uniby)

ﬁ Uy (bi —ai) !
5 V(@ —bi—1)(ai — bi—2) b — b1
Then we set u; :— b] and u; :=a; —b;_1,v; := b; —a; for2 <i < m, which allows to

bounda; —b;_» > u; +u;_q fori > 2,aswellas b,, —b,,—1 > u,,. Then, for A > 0, we
insert the factor ¢* [T, e %) > 1 and, by (5.37), we obtain the following analogue
of (6.10):

>IN w,2) < ¢ et (log N) (e +C1)"
1<a<N
zeZ?

—1

{Eme © Mot v

ur=1 O<uo,...,upm<N i=2
6.17)

where the extra log N comes from having 01%,('"72) instead of 01%,('"71) (by (1.14) and
(1.10)).

We now switch to macroscopic variables, replacing u; by Nu;, withu; € 1 Zﬂ 0, 1),

and bound Uy (Nup) < ¢ log Gﬁ(l/l]) since #1 > 0, by (2.21) and (2. 25) We then
replace the Riemann sum in brackets by the corresponding integrals, similar to (6.11),
with an important difference (for later purposes): since u; € %Z and u; > 0, we can

restrict the integration on u; > % (possibly enlarging the value of ¢). This leads to

-1
> I (. 2) < (log N) et e (mw +C)"

1<a<N
z€7?
log N / < > 1 4}
. G dut, 6.18
N{ ﬂW)HEEﬁIT (6.18)

NgulaMZ ~~~~~ upm <l

where the factor

1/ . R
If we define ¢ () as the following modification of (5.11):

PO =L andfork > 1 V@) = [} LG D) ds,

1‘3}% comes from the estimate on Uy (Nu;) and from the last kernel

(6.19)
then, recalling (5.12), we can rewrite (6.18) as follows:
log N)> Pa o
> IV (w, z) < et ™ % ()" /1 Gy () 9"V (w) du,
1Za=N N N (6.20)
ze2?
where we set C) n : loéN +C = ]ogN + 2+(1:ggx
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Similar to Lemma 5.4, we have the following bound on a(k), that we prove later.

Lemma 6.2. For all k € N, the function a(k)(v) is decreasing on (0, 1), and satisfies

. cn 1 (log(e?Nuwy)' . )
o® ) < 32 ZﬁTgw evN, Yue(L.1). (62D
i=0 :

We need to estimate the integral in (6.20), when we plug in the bound (6.21). We
first consider the contribution from u < ﬁ In this case Gy (1) < dop 1 gee (2.25),

(log N)? u”
hence
1 i 1 i

TN A log(¢?N 4 7v (log(e®N
ﬁmGﬁ(u)Mduf . c;)zflm( g(e3 u)) du

1 u (0] 1 5

% i £ N u? (6.22)

/ o0 o0
< Zeo v (log;u) dw = VN [T i sgs = 0 YN,
(log N)? J, w3 (log N)? Jo (log N)?

where we first made the change of variables e?Nu = w, and then w = €%, and denote
C = 8ecy for short. Then it follows by (6.21) that

1
L N
/ﬁ Go () 3™ D)y du < C32"m —2
1 (log N)2
N e —
Am.N

‘We then consider the contribution from u > %ﬁ Since (A;la (un) < ”7”, we have

1

1 2 i )
_/4 éﬁ(u)wdu < ey (log(e?N))' /

= 2¢ N (log(e*N))'
i N L ’ ’

hence by (6.21)

1 m—2
A () §m=D Py L 2Ny)
/L Gy(u) " (u)du < C32" N+ Zzi“(log(e N)).
IN i=0
Bm,N
By (6.13) and (6.20), we finally see that
(log N)?

2 D Mol (w2 <33 2 e = (G €32 A + B

1<a<N ze72 m>2

2 m=2 )
<c e*{ D (G4cCn)" Im+ Y (64c CA,N>'"*1<(1°]gV ;V) > 2}1,! (1og(e2zv>)’)},

mz=2 m>=2 i=0
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with C’ := 3 - 32¢. If we fix A large enough, then for large N we have 64¢Cn ) < 1
(recall (6.20)), then the first sum in the RHS is finite, in agreement with our goal (6.3).
Concerning the second sum, we can estimate it by

(log N)? 1
i— > 5 (log@N) Y2 (64c Gy
Y0 m=i+2
(logN>2 Z (log(e2N)) (64cCry)’ _ (ogN)? (e2N)*2¢Chn
S N4 21 gl 1 -64cC; N N% 1—64CC1,N.

If we fix A large enough, then for large N we have that the exponent is 32¢ Cy y < 4—1‘,
hence the last term is o(1) as N — oo. This completes the proof of (6.3). O
In order to prove Lemma 6.2, we need the following analogue of Lemma 5.5.

Lemma 6.3. Foralli € Ny and v € (% 1),

ds < i!

1 - ’ it
v SVs+tv Jv = 27 j!
Proof. We can bound

! (log(e2Ns)))’ 1 v (log(e2Ns)))’ I (log(e*Ns)))'
/% BT ﬁ/i —df BV

B A

/1 (1og(e2Ns)))i 2 M (6.23)

For B, we make the change of variable u = log(¢>N's) to obtain

2 .
_ L floge Nv uidu _ (IOg eZNv)t+l 6.24)
NN T+ .

For A, we make the change of variable y = % log > Ns and apply (5.25) to obtain

i,
A< 21+le / / yie—ydy < 2i+le /Ne—%logesz Z l_'(l
= i

lo esz>j
2 °8 '

loge?Nv

(6.25)
Combined with the bound for B, this gives precisely (6.23). O
Proof of Lemma 6.2. We follow the proof of Lemma 5.4. We first show that forallk € N

1
PP ) < f Z i ( L (log(e®Nv)) Vv e (ﬁ’ 1), (6.26)

for suitable coefficients ¢ ;. For k = 1, note that by (6.19)

log(esz)

FOw) = /mf /ﬁsds+/;l s < R
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Therefore (6.26) holds for k = 1 with ¢; o =0and ¢;,; = 1.
Assume that we have established (6.26) up to k — 1, then

1 k—1 4 5
o® () = /1{1 \/ﬁ d*D(s)ds < 2! ; C;z_l]yl /1 losg(@s _]:]Z)
(6.27)
Applying Lemma 6.3, we obtain
P (v) < 2k~ 12 C; 1 2”1)] i (log(jj{\!/v))j
Jj=0
Z ( Z : ) (log e’ Nv)/
=0 i=(j-1* o 2jr
This shows that (6.26) holds, provided the coefficients ¢ ; satisfy the recursion
k—1
Gj= Y. Gkewi (6.28)

i=(j—1*

which differs from the recursion (5.22) for ¢, ; by a missing factor of 2. Note that ¢;
here is also only half of ¢ 1 in (5.19). Therefore we have the identity ¢, ; = 2k ck.i>and
Lemma 5.6 gives the bound ¢ ; < 16%. Substituting this bound into (6.26) then proves
Lemma 6.2. O

Proof of (6.4). We start from the analogue of (6.5), with g, 4, (w, x1), gs,q; (W, x1) TE-
placed by ¢, (¢. x1). ¢, (¢. x2). Applying relation (6.14), we can write

Z ](N m)(¢ 7) = 2(m b Z qé\{al(¢,x1)2qé\{a2(¢,x2)'

1<a<N O<aj<bi<ar<--<apm<a<N
772 X1aY12X2. V2o X ZEZ2
~Un (b1 — a1, y1 — X1)qby,a; V1, X2)Un (b2 — az, y2 — x2) -
m
: 1_[ [%,-,z,a,- (Vi-2, Xi) Gb;_y,a; Yi—1, Xi) Un (bi — ai, yi — Xi)}%m,l,a(ym—l, 2).
i=3
(6.29)
We rename y,, := z, by, := a and bound gp,, ;.o (Ym—-1,2) < (c/bm — bn—1)" L,
as in (6.16). Next we sum over the space variables y,, x,,, ... until y3, x3, y2, as in

(5.32)—(5.33), which has the effect of replacing Uy (b; —a;, yi — x;) by Un (b; —a;) and
Qbir.a; (Vi—2s Xi) qb; .0 (Vi—1. Xi) by ¢ (\/(ai — bi—1)(a; — bi—2))~". Then we bound
q&’az (@, x2) < |Ploo, see (2.8), after which the sum over x; gives 1, the sum over y;

gives Uy (b1 — a1), and the sum over x; is bounded by ¢ N, as in (5.35). This leads to
estimate the RHS of (6.29) by

Un(bi —a;) 1
bi—1)(@ — bi—2) ~/bm —bm—1

M No 2(m D Z UN(bl —al)UN(bz —612)1_[ \/(a

O<a1<br<...
---<am<bm<N
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We now set u; := a; — b;_1 and v; := b; — a; for 1 < i < m, with by := 0,
and bound a; — b;_» > u; + u;_y, while b,, — b,,,_1 > u,,. Then we insert the factor

et [T, e_’\(%) > 1, for A > 0, and by (5.37) we bound the last display by

cmeAN(logN)(logN+C;L) { Z 1_[

O<uy,..., up<N i=3

1
N }, (6.30)

wi(uj +ui_1)

which is an analogue of (6.17). The exponent of (@ + C)) equals m, because we have

m factors Uy (b; — a;), and the extra log N comes from having m — 1 powers of 01%].
‘We now switch to macroscopic variables, replacing u; by Nu;, withu; € ﬁZﬂ O, 1),

and replace the Riemann sum in brackets by the corresponding integrals, where as in

(6.18) we restrict the integration on u; > % (possibly enlarging the value of ¢). This
leads to

S I @) <N (log N) (g + Co)"
1<a<N
7€7Z?

3 - 1 1
-N2 duy, (6.31)
{ / (ll \/”i(“i"'ui—l)) N tm u}

i
%gul,uz ..... U<l

3. . . .
where the factor N2 arises by matching the normalization factor N~ of the Riemann

sum and the term N~ ("=2=3 generated by the square roots, when we set u; ~» Nu;.
Note that the variable u| does not appear in the function to be integrated in (6.31),
so the integral over u is at most 1. Recalling the definition (6.19) of qb(k) we have

1
> 0.0 <N Qg N) (hy + C)" [ 97 ) s,
1<a<N v
ze2?

By Lemma 6.2, we have

2 2 i
il !

Therefore, if we set Cy y := Cy y := @ + C; as in (6.20), recalling (6.5) we get

Y M@ <3N 2" Y (6.0

1<a<N m>=2 1<a<N
772 zeZ?

m 2 l'
PR (log(e“N))
<3e¢" N2 (logN) E (64c G, N)" E T

mz=2 i=0

<3¢ N2 (log N) Z M 2(64c Cn)"
i=0 m>i



Critical Directed Polymer and Stochastic Heat Equation on Z2+l 425

3¢t 32¢ C. v log(e?N))'
< e N% (10gN)Z( ¢ A,N. g(e ))
1 —64cCy N = i!
3 et 5
— —Nj 1 N 2N 320C}»,N.
[ 6hcCry - logM )

Given ¢ > 0 we can fix X large so that 32¢ C, < %.Thenwehave CiN = @+Ck <

%8 for large N. This concludes the proof of (6.4). O

7. Bounds on Triple Intersections

In this section, we prove Proposition 4.3. First we derive a representation for M, §V ,’T (@, V),
which denotes the sum in (4.3) restricted to A N B N C # & (recall (4.4)).

Wedenoteby D = (Dy, ..., D|p)) := ANBNC,with D; = (d;, w;), thelocations of
the triple intersections. If we fix two consecutive triple intersections, say D;_1 = (a, w)
and D; = (b, z), the contribution to (4.3) is given by

E[(Zy3™ w.2)"] = M (. 2),

whereM b (w z) is defined in (6.1), togetherw1thM b ((]5 z)and M b (w ). Then

we obtain from (4.3) the following representation for M Q’,T(qﬁ, V) (where E[£3] :=
EL; 1)

1
M @) = 55 > BN (B2 @ wn)’] - MY @) -

DC{s+1,....t—1}xZ?

D31
|D|
’ l_[ (E[(chlv /?Nd (wi-1, wi)) ] Md d; (wi—1, wz))
i=2
(BLZ s o )] = M o). (7.1)

To prove Proposition 4.3 we may assume ¢ = 1, by Remark 1.3, and also ¢ > 0,
Y > 0 (otherwise just replace ¢ by |¢| and ¢ by || to obtain upper bounds). If we
rename (d;, wi) = (a, x) and (d\DI’ wp|) = (b, y) in (7.1), we get the upper bound

MY Tl < IELE N% > (Bl @, 0)] - MY @.0)

1<a<N
xeZ2
AN
00 (7.2)
(Xen) - sw (BLZ)30 00 0) ] = M L)),
By
where we set
= EE*] ) (E (Zo: 0, 20)"] = MY, z)). (7.3)

1<a<N
272
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Note that IE[$3] actually depends on N, and vanishes as N — oo. Indeed, recalling
that &, , = ePVor==2B¥) — 1 and A(B) = $B% + O(B>) as p — 0, see (2.10) and (1.1),
we have

]E[Ez] — *GBN)=3MBN) _ 3 H2BN)=20(BN) 4 o 0(1813\7) — 0((10g N)_%), (7.4)

where the last equality holds by (1.14) and (1.10).
Then, to prove Proposition 4.3, by the bound (7.2) it would suffice to show that

limsupAy - By < oo  and limsupon < 1,
N—o0 N—oo

so that the series Y o oy = (1 — on)~! is bounded. We are going to prove the

following stronger result, which implies the bound |M(1)V j’VT(qb, V)| = o(N~V/Zn) for
any fixed n > 0.

Lemma 7.1. The following relations hold as N — oo, for any fixed & > 0:

(a) Ay = o(N~1/2);
(b) By = o(N?®);
() oy = O((log N)~1/?).

Before the proof, we recall that E[(Z, ZNPY (e, 1) — gk, G, T)) ] = aIY,;T(*, T) +
NNT(* 1), for any x € {w, ¢}, T € {z, 1//} hence

B[(Z0" 6 )] = Myl e )

(7.5)
—Clab(* )? +3qab(* T) Var (Z NﬁN(* )+ M NNT( .

Also note that M;VbNT(*, 1) > 0, see (4.3) and (6.5).
Proof of Lemma 7.1. We first prove point (b). By definition, see (2.7),

BN ) =Y an-s@ = V() < Wl

772
If we replace ¥ by the constant 1 in the averaged partition function Z, NN (v, V) we
obtain the point-to-plane partition function Z 1’?,”7 »(¥),see(2.4)and (1.4). Then, by (1.32),
Var (Zy " (v, ¥)) < E[Z, 3 (v, ¥)*] < 191G E[ZRY, ()] = O(log N).(7.6)
Lastly, by (6.2), we have
MR () = O(N®).

It suffices to plug these estimates into (7.5) with * = y, ¥ = i and point (b) follows.
Next we prove point (a). First note that

N3 Z qu(¢ N3 Z (Z¢ %Qa(x_y)>

l<a<N I<a<N 2
€Z
xez? xez2 Y
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N

P S Y - mo)=2% ¥ ¥ ()

1= yer? I<a<N ye7?
XE.

2
- X v = o(5)

where the last sum converges to [ ¢ (x)dx by Riemann sum approximation. Next note

that we can bound Var ( zV ‘3"’ (¢, %) < lol% E[Z¥ (x)2] = O(log N), arguing as in
(7.6) hence

e Z 40'0(¢. ) Var (2o (¢,0)) < =5 D ¢(I5)da(x = y) Olog N)
o e
1 log N
— L _
=  Ollog N) XZ: ) ( N )
Lastly, by (6.4), we have
e Z MYNT (g, x) = OV D),
1<a<N
xez?

Plugging these estimates into (7.5) with * = ¢ and = x, point (a) follows.
We finally prove point (c). By the local limit theorem (1.8) we have g, (x) < g for

some ¢ < 0o, uniformly ina € Nand x € 72. Therefore, recalling (7.4), we have

2 2
3 N 3 3 < _ 3 < _ -3/2
E[§7] ISEcth 90.40,2)" <E[§7] IEHSN ) qa(z) = E[§ ]1<EG<N e O((log N)™7/%).
ze72 ze72 -

Next we bound Var (Z (O, z)) oy UN (a, z), see (2.15), and note that

Y Un(a,2) = Uy(@) < C log N
N(a,z) =Un(a) < Ccy ——>——,
€72 a log(e?N/a)

by (2.18), (2.20) and (2.25). Bounding g, (x) < g and algz = O(log N), see (1.14) and
(1.10), we obtain

U 0.0 Var (20 0.0) < R Y 5 LB
i R a? log(e’N/a)’
feaZSz 1<a<N

For a < \/ﬁ we can bound log(ezN/a) log(ezx/—) > 5 logN while for \/N <
< N we can simply bound log(e?N /a) > log e* = 2. This shows that the last sum is
2 2
unlformly bounded, since Za>l 2 logN + Za>f “"faI\Z’) = O(logN) + 0(%).
We thus obtain
EE*] D qdl,0.2) Var (2 (0.2)) = O(E[£*] og N) = 0((log N)~'72).

I<a<N
272
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Lastly, by (6.3), we also have

Elg Y MyNT(0.2) = EIE10(1) = O((log N) ™).
1<a<N

272

If we plug the previous bounds into (7.5) with x* = 0 and | = z, point (c) is proved. O

8. Proof for the Stochastic Heat Equation

In this section we prove Theorems 1.7 and 1.9 on the variance and third moment of the
solution to the stochastic heat equation.

We first give a useful representation of u® (¢, ¢) := fRZ ¢ (x)uf(t, x) dx. By aFeynman—
Kac representation and the definition of the Wick exponential (see [CSZ17b] for details),
it follows that u® (¢, ¢) is equal in distribution to the Wiener chaos expansion

d r
“(1,9) L d - W (dt; dax;) -
u®(t, ¢) /Rz¢(x) x+Z,3 /0<;1<,..<t,<a21 /(Rz)r l_[ (dz; dx;)

r>1 i=1

. {/ dx %¢ (ex) ng,-—r,»,l(fi—l,)?i)j()?i —x;) d%; } (8.1)
R2 (R2

izl

with the convention that 7y := 0 and X9 = x.

Expression (8.1) is the starting point to prove both Theorems 1.7 and 1.9. To analyze
this expression, we first need to extend the renewal theory framework, described in
Sects. 1.3 and 2.2 , to continuum distributions. The key results, described in the next
subsection, are analogous to those obtained in the discrete setting, see [CSZ18, Remark
1.7].

8.1. Renewal framework. Fix a continuous function r : [0, co) — (0, co) such that*

r(t) = ﬁ(l +0(1)) ast — oo. (8.2)

For ¢ > 0, we consider i.i.d. random variables (Tle )l.>1 with density

P(7,° edt) = rR(t)

Lyg.02)(1) dt, (8.3)

&

-2
where R, = fos r(t) dt is the normalization constant. Note that 7° + --- + 7% is a

continuum analogue of ‘L'k(N) in(1.43), see (1.41)—(1.42), with the identification N = ¢ ~2.
Let us quote some relevant results from [CSZ18] that will be needed in the sequel.

e By [CSZ18, Proposition 1.3], we have the convergence in distribution

5 d
(8 (7—18+"'+7'L§10g8*2J)>s>o o0 Tsdsz0, @4

where (Yy)s>0 is the Dickman subordinator, whose marginal density is given by
(1.45).

4 The precise constant 457 in (8.2) is the one relevant for us, but any other positive constant would do.
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e By [CSZ18, Lemma 6.1], the following large deviations bound holds, with ¢ €
(0, 1):

P(Tf +--- + T oge2) S e7?) < melE e € (0, 1), Vs € [0, 00).
(8.5)
Let us now take A, such that
e =1+ s(1+0(1)),  forsome ¥ € R. (8.6)
loge™

Then it follows by Riemann sum approximation (setr = s loge~2) thatforall T € [0, 1]

1 -2 > ¥
log?;xgp(zu.-.m?gs T) — i M P(Y, < T)du. (37

This relation will play a crucial role. We now list some approximations that we can
make in the left hand side of (8.7), without affecting the convergence.

(1) We can restrict the sum tor < K log 8_2,f0}’ large K > 0. Indeed, it is easily seen
by (8.5) and (8.6) that the contribution of r > K log &2 to the sum in (8.7) is small,
uniformly in &, for K large.

(2) We can restrict the probability to the event “there are no consecutive short incre-
ments”, where we say that an increment 7, is short if and only if 7.* < (log %)%,
Indeed, the probability that an increment is short is, by (8.2)—(8.3),

(loge™2) -2

t)dr log(l

pe = P(TF < (loge2?) = 0TI _ (logloge D) =g )
Jo r(de log e

hence the probability of having two consecutive short increments among 7,7, ..., 7,
is

Tl e N —2\2 2 r (log(loge™)’
P U{,]; < (loge™)7, 7,1, < (loge )} <rp;, <0 (loge——z)z s

i=1

which vanishes as ¢ — 0, when we restrict to r < K log g2,
(3) We can further restrict the probability to the event “the first increment T is long,
i.e. not short”, simply because p, — 0 as e — 0, see (8.8).

8.2. Proof of Theorem 1.7. Tt follows from the expansion (8.1) that E[u®(z, ¢)] =
fRZ ¢ (x) dx and that the variance of u®(t, ¢) is given by

Var (u®(t, ¢)) = & /

R2xR

| D) $(eX) KJ (R, 5) df di (8.9)
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where, using the conventions Xy = X, Xo =

Kf(x, %) = 2r/ / dx; / dx; dx;
! Z’Be <t|<--<t,<e~2t Rz)’ l_[ l R2)2r 1_[ o

r>1 0

=

and 7 = (t1,...,t), we define

i
: l_[ 8ti—ti Kic1. X0) 8ri—p (Ki1, Xi) J (X — xi) j (% — x;)

i=1
= Z 1382r / /(RZ)Zr l:ldx, dx;

r>1 O0<t) <--<tr <&~ 2t

(8.10)

.
: 1_[ 8-t (X1, Xi) 8r—; (K1, X)) J (X — 1),
i=1

where the second equality holds because j(—x) = j(x) and we recall that J = j * j.
We now exploit the identity

81(x) g1(y) =482 (x —y) gulx +y). (8.11)

If we set x; — X; =: z; and X; + X; = w; and take into account that the Jacobian of the
transformation (x, y) — (x—y, x+y) on (R2)2 equals 1/4, we obtain, with zg = X — X,

KE(R, %) = ,32’/ d?/ dz dw
! Z ¢ O<t] <--<tr<e™2t (R2)2r

r>1

l_[g2(z,-—z,-,1)(wi —Wi—1) &2(;—4;_1)(Zi — zi—1) J(zi) (8.12)
i=1
p
= Zﬂgzr/ dr / dz 1_[ 82011 (@i — zi—1) J (Zi)-
=1 O<ty<--<tp<e™2t (R2)r el

Note that variables z; with i > 1 lie in supp(J), which is a compact subset of R2,

while zo = x — X is of order ¢!, in view of (8.9). For this reason, it is convenient

to isolate the integrals over #;, z; and change variable t; — e 721 Observing that
ge-2,(x) = e2g,(ex), and renaming (1, z1) as (s, z), we obtain

t
Kf()?,)?):/o ds fRz dz gos(e(z — (F — X)) J(2) Ki_(2), (8.13)

where we define the new kernel K%.(z) as follows:

.
K5(z) =) g2ty / d?f 4z [ g2 @i — 2i-1) J (@),
<t|<--<t,<e 2T (R2)"

>0 0 i=1
(8.14)

where z¢ := z and we agree that for » = 0 the integrals equal 1.
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This key expression will be analyzed using renewal theory. Note that by (1.9)

1 1
gy —x)=—+0| =5 ast — 00, uniformly in x, y € supp(J),
4rt 12

(8.15)
so the dependence on the space variables z; in (8.14) should decouple. We can make this

precise using the approximations described in Sect. 8.1. We proceed in three steps.
Step 1: First approximation. Note that f,, see (1.35), may be rewritten as follows:

2 4 40 +o(1)

= . 8.16
 loge=?  (loge—2)2 (8.16)
We first obtain a domination of K7.(z) by a renewal quantity. Let us define
F(t) '= sup / gu(z—7) J(2)dz. (8.17)
7/ esupp(J) JR2
Note that 7(¢) = # + 0(%2) ast — 00, thanks to (8.15), hence
_ g2 1
Re = f r(t)dt = — loge_2 +0(1) ase— 0. (8.18)
0 4

If we denote by (7_;8 )ien 1.i.d. random variables defined as in (8.3), more precisely

&

we can bound K%.(z) from above for 7 < 1, uniformly in z € supp(J), as follows:

r

sup K5 (2) < B2 Z,Bf’ / 1_[ F(ti — ;1) df
O<t<---<t, <€ 2T

zesupp(J) = 1
= B2 S (B2R P 44T <272 820)
r=0
< 10;—2 Z (1 + 10;§—Z)r P('Z_'f“ .. +7‘—ra - S—ZT)’
r=0

where the last inequality holds by (8.16) and (8.18), for suitable ¢, ¢z € (0, 00).
The last line of (8.20) is comparable to the left hand side of (8.7), so we can apply
the approximations (1)—(3) described in Sect. 8.1. In terms of K eT(z), see (8.14), these

approximations correspond to restricting the sum to r < K loge~2 for a large constant
K > 0, by (1), and to restricting the integral over ¢ to the following set, by (2)—(3):

TJST = {O <H<--<t < §2T: t > (logg_l)2 and, forevery 1 <i <r —1,
either t; —t;_1 > (log‘s_z)2 or tiy1 —t; > (loge_z)2 } (8.21)

Summarizing, when we send ¢ — 0 followed by K — 00, we can write

K5(z2) = K7 (@) +o(1)  uniformly for z € supp(J), (8.22)
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where we define, with 7y := 0 and zg := z,
K loge™2

i(sT,K(Z) — Z ﬁg(wl)/ d;/
r=0 T (

.
oy dz E &2t —t_1) (@i — zi—1) J(2i).

(8.23)

Step 2: Second approximation. Given r € N, let us denote by S, and L, the subsets of
indexes i € {1, ..., r} corresponding to short and long increments:

Sei={ief{l,....r}: t —ti_y < (loge )2,
Lo:=f{ie{l,....r}: t; —ti_1 > (loge~%)?}.

We can then decompose the last product in (8.23) as follows:

r
1_[g2(liffi,1)(zi - Zi*l) J(Zi) = l_[ g2(t,'7t,',1)(zi - Zi*])

i=1 i€S;
.
l_[ 82(t—1;—1) (i — Zi—1) l_[ J(zi).
ieLe i=1

We now make replacements and integrations, in order to simplify this expression.
For each i € L, we replace g2¢;—,_,)(zi — zi—1) by r(t; — t;—1), where we set

r(t) :=(J, g J) :=/ / J(x)gar(x — y)J(y)dxdy. (8.24)
R2 JRR2

The error from each such replacement is exp { 0((log 8_1)_2) } since one easily sees
that g, —,_)(zi — zi=1) = -1 — ¥) exp{O((ti — ti—1)~')} and we have
t; —ti—1 > (log e™)2 (recall that x — y and z;j+1 — z; are in the support of J, which is
compact). Since we are restricted tor < K log e 2, see (8.23),wehave|L.| < K log 72,
hence the total error from all these replacements is exp { O ((loge=1)~!)} = (1+0(1)).
We have shown that

.
1_[ 82—t (@i — zi—1) J(2i)

i=1

= (1+o) [] 20— i —zi—) [] r — 10 [] 7o)

ieS, iel, i=1

We now proceed by integrating successively dz; fori =r,r — 1, ..., 1 as follows:

e fori € L, the integral over dz; amounts to fR2 J(zi)dz; = 1;
e fori € S, we integrate both dz;_; and dz; which gives, see (8.24),

/ . J(zi) &26ti—1_) (@i — zi—1) J(zi) dzi—1dzi = (J, g2¢s—si_J) =r(ti — ti—1).
(R#)
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This sequence of integrations is consistent, i.e. it does not result to integrating a variable
dz; twice, because on the set J%., see (8.23) and (8.21), there are not two consecutive

indices i in S;. Therefore, uniformly for » < K log £~ 2, we have shown that

r

/(Rz) @z [ 2610 Gi = 20 I @) = (1+0(D) []rti —ti). 8:25)
i=1

i=1

Note that r (1) = 7 + O (%), by (8.24) and (8.15), so we can consider i.i.d. random
variables ’Z;s with law (8.3). When we plug (8.25) into (8.23), the approximations (1)—(3)

described in Sect. 8.1 show that we can remove the restrictions r < K loge™2 on the
sum and ¢ € J% on the integral. Recalling (8.22), we have finally shown that as ¢ — 0

K?(z) = (l +0(1)) IA(ST + o(1) uniformly for z € supp(J), (8.26)

where, recalling (8.16), we define

r

~AE . 2 2, -

KT = 135 § IBsr / | | r(ti - ti—l)dt
>0 O<ty<--<tp<e2T i—1

r>= i=

(8.27)
1
= (47 +0(1)) oz D BIR) P(Tf +- -+ TF < e7°T).

r=0

Step 3: Variance computation. We can finally complete the proof of Theorem 1.7, by
proving relation (1.37). Assume that we have shown that, for some ¥ € R,

2p
B:Re =1+ oge=? (1+o(). (8.28)
Then, by (8.7) and (8.27), we can write
AL 00
lim K, =47 / e’ P(Y, < T)du, (8.29)
e—0 0

and the convergence is uniform in 7' € [0, 1] (because both sides are increasing and the
right hand side is continuous in 7). Looking back at (8.9), (8.13) and (8.26), after the
change of variables X, ¥ — e 1%, e71%, we obtain

Var (u(1,¢)) = (1 +0(1)) /Rz . dx dx ¢ (%) ¢ (%)

t
/ ds/ dz gas(s2 — (& — ) J@ K,_; + o(1).
0 R2

Recalling (8.29), since fRZ J(z) dz = 1, we have shown that

lin})Var (u®(, 9)) =/ X dx dX ¢(®) ¢(X) Q(& — %),

R2xR

where

t oo
0(x) :=471/ dsgzs(x)/ PPy, <t —s)du.
0 0
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Recalling that f;(-) denotes the density of Y, see (1.45), and using the definition (1.18)
of Gy (-), we can rewrite Q(x) as follows:

t (e} 1—s
O(x) =4n / ds gas (x) / e”“< / fu(r)dr> du
0 0 0

t t—s
=4 f ds gas(x) / Gy(r)dr =4m / g2s(x) Gy (v —s)dsdv
0 0 O<s<v<t

=21 / gs(x/x/z) Gy (v —s)dsdv.
O<s<v<t

A look at (1.20) shows that Q(x) = 2K,,g(x/«/§), hence relation (1.37) is proved.
It only remains to prove (8.28) and to identify . Note that by (1.9)

g2 g2 — byl oo —u
1 e H 1 e
./0 sulx =y)dt =2 /o ‘ 4 /szxm w

Using the following representation of the Euler—Mascheroni constant:

| G =) o=
o \t@+1) t =¥

see [GRO7, Entry 8.367 (9), page 906], and since

R | > 1 1 -
dr = ———— )dt =log(l+a "),
a t@+1) a t t+1

we see that as ¢ — 0,

g2 1 4
/0 th(x_y)dt=E{log<l+m)—y+0(l)}.

Recalling the definition (8.24) of r(¢), we have

-2

& g2
Ry = / F(t)dr = / T I / g (x — y)di dxdy
0 (Rz)2 0

1 1
= — 10g8_2+10g4+2/ / J(x)log J(y)dxdy —y +o(l)y¢.
4 Rr2 JR2 [x =yl
Finally, recalling (8.16), we obtain

log4+2 [ [ J (0 log i J( dxdy — y +o/n
log e—2

BiRe =1+ (1+0(1)).

This shows that (8.28) holds, with the expression in (1.38) for ##. O
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- ~
l ~

(0,21) ‘\\ -
jeoion ®
(0, 22> ‘\ (ti, ) S~ -
P @@@@
FOR (i, 7)

S <

Fig. 2. Diagramatic representation of the expansion (8.39) of the third moment of the solution of SHE. Due
to the space-mollification of the noise, we have non trivial correlations between space-time points (7;, X;) and
(t; , X;)—which intuitively belong to two copies of the continuum polymer path, i.e. Brownian motion—only
when X; — X; is in the support of J(-). This is slightly different from the lattice case, cf. the corresponding
expansion (5.2) for the directed polymer, where non trivial correlations occur only if X; = %;, i.e. two copies of
the polymer exactly meet. The disks represent the support of J(-) and should be understood as disks in space
R2 (we drew them in space-time for graphical clarity). An array of consecutive disks represents the quantity
Ue (s, t; x, y) in (8.31), with (s, x) and (7, y) corresponding to space time location of the points inside the
first and the last disk in a sequence. They are the analogues of the wiggled lines in Fig. 1

8.3. Proof of Theorem 1.9. We use the expansion (8.1) to evaluate

E [(uf(t, $) — fu2 $(x) dx)3]. (8.30)

We are going to expand the third power and compute the expectation, which amounts to
“pairwise matchings” of the instances of the noise W (d#; dx;) (note that “triple match-
ings” are automatically ruled out, because Gaussians have vanishing third moment). This
will lead to an expression, see (8.39) below, which is similar to the one we found for the
directed polymer, cf. (5.2), with some additional complications due to the continuous
setting.

Before entering the technical details, let us give the heuristic picture, which is rep-
resented in Fig. 2. When taking the third power of the expansion (8.1), we have three
sets of coordinates, that we may label a, b, c, that have to match in pairs. Each matching
can be of three types ab, bc, ac, and we say that consecutive matching of the same type
form a stretch. The contribution of each stretch is encoded by a quantity U (s, t; x, y).

The rest of the proof is divided in two steps.

e In the first step, we define the single-stretch quantity U (s, t; x, y) and we provide
some key estimates on it, based on local renewal theorems obtained in [CSZ18].

e In the second step, we express the centered third moment (8.30) as a sum over the
contributions of stretches, see (8.39). We then derive the asymptotic behavior of this
expression and show that it is bounded, completing the proof of Theorem 1.9.

Step 1: Single stretch. We introduce a quantity U, (s, ¢; x, y) which is an analogue of
Un(t —s, y — x) in the discrete setting, see (2.15), linked to the point-to-point variance.
Due to the presence of the mollifier, the space variables are couples x = (x,X),y =
(3, 7) € (R?)?. Here is the definition:

Us(s,15x,y) i= BEar—s(E,9) g—s & 1) I — 7)

+ B2y B / IL[dt,- / ]L[dz,-dz,»

= S<t]<--<tp <t i=l1 (R2)2r i=1
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“8n—s (X, 21) 8n—s (X, 20) J (21 — Z1) -

r
: Hg,i,ti_] (Zi—1,2i) 84—t Gim1,20) J(Zi — Zi) -
i=2

81,2, ) 811, (Zr, ) I — §), (8.31)

where we recall that J = j x j and we agree that the product equals 1 for r = 1.

Let us now evaluate f(R2)2 U (s, t; x,y)dy. We use the identity (8.11) and make
the change of variables w; = Z; + Z;, z; := z; — Z; fori = 1,...,r, as well as
Wyl ‘= Y+ Y, 2r41 ;= Y — y. Integrating out all the w;’s fori =r +1,r,..., 1, as we
did in (8.10)—(8.12), we obtain

r r+l1
[uwsnwna=g> [ [le [ [le
® r=0 s<tj<-<tp<t =1 (R2)r+! i=l
829 (21 — G —5) Jz1)- (8.32)
r+l
NJe2w—u0G@ —zi-0 I @),
i=2

where we set .1 := t. We can rewrite this relation more compactly as follows:
[ U rixyydy = Uate = si = ), (8.33)
(R?)?

where we set, with 7y := 0 and z¢ := z,

r+l

Uelt:z) = »_ I+ f dr / 4z [ 200G — zim0) T ).

rz0 O<ty<--<tp<t (R2)r+1 i=l1

(8.34)

Note that U, (¢; z) looks similar to K¥(z), see (8.14), with an important difference: the
product in (8.34) includes one more term i = r + 1. This extra term makes U,(¢; z) close
to a local renewal function, as we now explain.

Since we content ourselves with an upper bound, recalling the definition (8.17) of
7 (1), we can estimate

r+l

sup U(;2) < g7 f & [[r@—non. 839
i=1

zesupp(J) >0 Oty <st, <t

Let us introduce i.i.d. random variables ('Z_;E),-GN as in (8.19), and denote by f,f(t) the
density of the associated random walk:
P(Tf +...+T¢ edn)

S @ = T

We can then rewrite (8.35) as follows:

sup Ue(t:2) <Y At fE (). where Ao :=BIR..  (8.36)
zesupp(J) >0
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The right hand side can be viewed as a (weighted) renewal function: it is the continuum
version of the quantity Uy (n) in (2.18) (with the usual identification N = 8_2). We
already remarked that A, = 1 + O(R)g%), by (8.16) and (8.18). Proposition 2.1 holds

in this continuum setting [CSZ18, Remark 1.7], hence by the analogue of relation (2.21)
we get

loge 2

= Gy (e%1). (8.37)

sup U:(t;2) <C
zesupp(J)

In conclusion, by (8.33), we have proved the crucial upper bound

sup Us(s, t;x, y)dy < Ce? loge > Gy(e2(r — 5)).
xe(R2)2: £—% e supp(J) J (R?)?

(8.38)

Step 2: Third moment computation. We expand the third power in (8.30) using the Wiener
chaos representation (8.1). We then compute the expectation, which forces pairwise
matchings of the instances of the noise W (d¢; dx;). Since

/sz()?i —x) j& —xp)dx; = J(& — %),

we obtain the following expression (analogous to the directed polymer case, see (5.2)),
where U, (a;, b;; x;, y;) are the contributions of stretches of consecutive pairwise match-
ings:

E [(uf(z, $) — fro ¢(x)dx>3] =3 3gem with

m>2

It(g’m) = g // da db dx dy /dmdzz dz3 %@ (ez1)p(e22) (623) -

O<aj <bj <ay<by <+ <am <by <¢ 2t (R2)3
2,2
X1, Y15 Xm, Yy € (RY)

- 8ay (21, X1) 8ay (22, %1) J (X1 — X1) Ug(ar, br; x1, yy) -

D 8 (23, %2) 8arty (Y1, £2) J (B2 — F2) Ue (a2, ba; X2, y5) -
Vel i)
m
Z 8ai—bi (Yic1, Xi) 8a—b;_», (Yi—2, Xi) -

3 )A/i—le{}A'i—lvii—lA}
Yiae{$i-2,Ji—2\{Yi-2}

- J (& = X) Uglai, bis xi, y;). (8.39)

i=3

Remark 8.1. This formula looks actually slightly different than the corresponding ex-
pansion for the directed polymer (5.2), for the presence of the sums over )A’i_l and 17,-_2.
The reason is that, each time that two copies of the continuum polymers “spilt” (i.e. at
the end of each stretch) we have to decide which one will meet the unmatched copy and
which one will wait until the next split. But since the two continuum polymers do not
match exactly but rather lie inside the support of J(-), the symmetry that was present
in the discrete case is broken. This gives rise to the sum over IA/,-_ 1 € {9i—1, ¥i—1} and

Yia € ($i—2, Jio2} \ {¥ioa).
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It(&m)

We estimate as follows. We start by integrating y,, using (8.38), to get

. Ue @, bys Xy ) Ay, < C &2 loge™ Gy (62 (b — am)),
®2)

uniformly over the allowed x,,. Next we integrate over X, and X,, to get:

/ - dfm dx;, 8ay—by—1 (?m—lv )?m) gam—bm,z(im—L )Em)-/()?m - )Em)
(R?)

= (gam—bmq *J *gam—bmfz)(?m—l - ?m—Z)
= (82ap—bp_1—bm_s * J)(f’m—l — Ye2)

< 182am —bm_1—bm—s * I oo < 1182am —bm—1—bpm—2 lloo
1 1

= g 3
27 2am — bp—1 — by—2) 477\/(am —bp—1) (am — bp—2)

having used 2xy < x2 + y? in the last equality.

We iterate this procedure fori = m—1, m—2, .. .untili = 3: we can first integrate out
y; and then %; and X;. This replaces U, (a;, b;; xi, y;) by C &2 log e72Gy(e2(b; — ap))
and go,—p;_, (Yi—1, %) 8a—b;_» (Yi—2. Xi) by (4mr/(a; — bi—1) (a; — bj—2))~'. We also
recall that :352 < C(log e~ see (8.16). Looking back at (8.39), we obtain for some
C <o

™ < (BD)? (C ey ? // da db d% dy
O<aj <by<ar<by<--<ay <bpy <€~ 2t
X1,Y1,X2,; € (R?)?

/ dz1 dza dzs €8 p(ez))d (e22)b(e3) -
(R?%)3
- 8ay (21, X1) 8ay (22, %1) J (X1 — X1) U (a1, bis x1, y1) -
D (23, 52) garty (Y1, £2) J (B2 — F2) Ue (a2, ba; X2, y5) -
Y€1)
m

. Gy (> (b — ar))
i3 V@ —bu—1) (@m —bm—2)

‘We can now conclude with the last bounds.

e We integrate out y,, replacing U, (az, ba; x2, y,) by C &2 log g2 Gﬁ(gz(b2 —a)),
see (8.38). Then we bound ¢ (ez3) < ||¢]lo and we integrate out z3z (which makes
8a, (23, X2) disappear) followed by x> and x> (which make g4, _p, (Y1, £2) J (%2 — %2)
disappear).

e We integrate out y, replacing U (a1, b1; x1, y;) by C g2 log g2 Gg(ez(bl —ay)),
see (8.38). Then we bound ¢ (ez1) < ||¢]lo and we integrate out z; (which makes
8a, (21, X1) disappear) followed by x| and x| (which make g4, (z2, X1) J (X1 — X1)
disappear). Lastly, we integrate out z1, which turns the factor £° into &*.
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This leads to

o™ < (CePym et / e f dadb Gy(e*(by — a1)) Gy (e*(by — a2)) -

0<ay <by<ay<by<-—<day <by,<e~2t

. ﬁ Gy (e° (b — ap)
i=3 \/(am

—bp—1) (am — bp—2) .

Finally, the change of variables a; — e 2a;, b — &72b; gives

e < o /f dadb Gy(by —a1) Gy(hy — az) -

O<aj<bi<ay<by<--<aym<bpy<t

. ﬁ Gy (bi —a;)
i=3 V(@

—bp—1) (am — bp—2) .

Note that the right hand side, which carries no dependence on ¢, coincides for t = 1
with J™ defined in (5.7). We already showed that J ™ decays super-exponentially fast
as m — 00, see (5.14)—(5.15). Looking at the first line of (8.39), we see that the proof
is completed. O
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