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Abstract: The partition function of the directed polymer model on Z
2+1 undergoes

a phase transition in a suitable continuum and weak disorder limit. In this paper, we
focus on a window around the critical point. Exploiting local renewal theorems, we
compute the limiting third moment of the space-averaged partition function, showing
that it is uniformly bounded. This implies that the rescaled partition functions, viewed
as a generalized random field on R

2, have non-trivial subsequential limits, and each
such limit has the same explicit covariance structure. We obtain analogous results for
the stochastic heat equation on R

2, extending previous work by Bertini and Cancrini (J
Phys A Math Gen 31:615, 1998).
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1. Introduction and Results

WesetN := {1, 2, 3, . . .} andN0 := N∪{0}.Wewritean ∼ bn tomean limn→∞ an/bn =
1.We denote byCb(R

d) (resp.Cc(R
d)) the space of continuous and bounded (resp. com-

pactly supported) real functions defined on R
d , with norm |φ|∞ := supx∈Rd |φ(x)|.

1.1. Directed polymer in random environment. One of the simplest, yet also most inter-
estingmodels of disordered system is the directed polymermodel in randomenvironment
on Z

d+1, which has been the subject of the recent monograph by Comets [Com17].
Let S = (Sn)n∈N0 be the simple symmetric random walk on Z

d . The random envi-
ronment (or disorder) is a collection ω = (ωn,x )(n,x)∈N×Zd of i.i.d. random variables.
We use P and E, resp. P and E, to denote probability and expectation for S, resp. for ω.
We assume that

E[ωn,x ] = 0, Var[ωn,x ] = 1, λ(β) := logE[eβωn,x ] ∈ R for small β > 0.

(1.1)

Given ω, polymer length N ∈ N, and inverse temperature (or disorder strength)
β > 0, the polymer measure Pβ

N is then defined via a Gibbs change of measure for S:

Pβ
N (S) := e

∑N−1
n=1 (βωn,Sn −λ(β))

Zβ
N

P(S), (1.2)

where Zβ
N is the normalization constant, called partition function:

Zβ
N := E

[
e
∑N−1

n=1 (βωn,Sn −λ(β))
]
. (1.3)

(We stop the sum at N − 1 instead of N , which is immaterial, for later notational
convenience.) Note that Zβ

N is a random variable, as a function of ω.
We use Pz and Ez to denote probability and expectation for the random walk starting

at S0 = z ∈ Z
d . We denote by Zβ

N (z) the corresponding partition function:

Zβ
N (z) := Ez

[
e
∑N−1

n=1 (βωn,Sn −λ(β))
]
. (1.4)

We investigate the behavior as N → ∞ of the diffusively rescaled random field
{

ZβN
Nt

(
x
√

N
) : t > 0, x ∈ R

d
}
, (1.5)

for suitable β = βN , where we agree that Zβ
N (z) := Zβ

�N	(�z	) for non-integer N , z.
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In dimension d = 1, Alberts, Khanin and Quastel [AKQ14] showed that for βN =
β̂N−1/4, the random field (1.5) converges in distribution to the Wiener chaos solution
u(t, x) of the one-dimensional stochastic heat equation (SHE)

∂u(t, x)

∂t
= 1

2
�u(t, x) + β̂ Ẇ (t, x) u(t, x), u(0, x) ≡ 1, (1.6)

where Ẇ is space-time white noise on R × R. The existence of such an intermediate
disorder regime is a general phenomenon among models that are so-called disorder
relevant, see [CSZ17a], and the directed polymer in dimension d = 1 is one such
example.

A natural question is whether an intermediate disorder regime also exists for the
directed polymer in dimension d = 2. We gave an affirmative answer in [CSZ17b],
although the problem turns out to be much more subtle than d = 1. The standardWiener
chaos approach fails, because the model in d = 2 is so-called marginally relevant, or
critical. We will further elaborate on this later. Let us recall the results from [CSZ17b],
which provide the starting point of this paper.

Henceforth we focus on d = 2, so S = (Sn)n∈N0 is the simple random walk on Z
2.

Let

Z
k
even := {(z1, . . . , zk) ∈ Z

k : z1 + · · · + zk is even}. (1.7)

Due to periodicity, if we take S0 ∈ Z
2
even, then (n, Sn) ∈ Z

3
even for all n ∈ N. The

transition probability kernel of S will be denoted by

qn(x) := P(Sn = x | S0 = 0) = (
gn/2(x) + o( 1n )

)
21{(n,x)∈Z3

even} as n → ∞,

(1.8)

by the local central limit theorem, where gu(·) is the standard Gaussian density on R
2:

gu(x) := 1

2πu
e− |x |2

2u , u > 0, x ∈ R
2. (1.9)

For notational convenience, we will drop the conditioning in (1.8) when the random
walk starts from zero. The multiplicative factor 2 in (1.8) is due to periodicity, while the
Gaussian density gn/2(x) is due to the fact that at time n, the walk has covariance matrix
n
2 I .

The overlap (expected number of encounters) of two independent simple symmetric
random walks S and S′ on Z

2 is defined by

RN :=
N∑

n=1

P(Sn = S′
n) =

N∑

n=1

∑

x∈Z2

qn(x)2 =
N∑

n=1

q2n(0) = log N

π

(
1 + o(1)

)
(1.10)

where the asymptotic behavior follows from (1.8). It was shown in [CSZ17b] that the
correct choice of the disorder strength is β = βN = β̂/

√
RN . More precisely, denoting

by W1 a standard normal, we have the following convergence in distribution:

ZβN
N

d−−−−→
N→∞

{
exp

(
σ

β̂
W1 − 1

2σ
2
β̂

)
if β̂ < 1

0 if β̂ � 1
, where σ 2

β̂
:= log 1

1−β̂2 .

(1.11)
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This establishes a weak to strong disorder phase transition in β̂ (with critical point
β̂c = 1), similar to what was known for the directed polymer model in Z

d+1 with d ≥ 3
[Com17]. It was also proved in [CSZ17b, Theorem 2.13] that for β̂ < 1, after centering
and rescaling, the randomfield of partition functions (1.5) converges to the solution of the
SHE with additive space-time white noise, known as Edwards–Wilkinson fluctuation.
Similar results have been recently obtained in [GRZ17] for the SHE with multiplicative
noise.

The behavior at the critical point β̂ = β̂c, i.e. βN = 1/
√

RN , is quite subtle. For each
x ∈ R

2 and t > 0, the partition function ZβN
Nt (x

√
N ) converges to zero in distribution

as N → ∞, by (1.11), while its expectation is identically one, see (1.4), and its second
moment diverges. This suggests that the random field x 
→ ZβN

Nt (x
√

N ) becomes rough
as N → ∞, so we should look at it as a random distribution on R

2 (actually a random
measure, see below). We thus average the field in space and define

ZβN
Nt (φ) := 1

N

∑

x∈ 1√
N
Z2

φ(x) ZβN
Nt

(
x
√

N
)
, for φ ∈ Cc(R

2). (1.12)

The first moment of ZβN
Nt (φ) is easily computed by Riemann sum approximation:

lim
N→∞ E

[
ZβN

Nt (φ)
] = lim

N→∞
1

N

∑

x∈ 1√
N
Z2

φ(x) =
∫

R2
φ(x) dx . (1.13)

Our main result is the sharp asymptotic evaluation of the second and third moments.
These will yield important information on the convergence of the generalized random
field (1.12).

Let us first specify our choice of β = βN . Recalling that λ(·) is the log-moment
generating function of the disorder ω, see (1.1), we fix βN such that

σ 2
N := eλ(2βN )−2λ(βN ) − 1 =

N→∞
1

RN

(

1 +
ϑ

log N

(
1 + o(1)

)
)

, for some ϑ ∈ R.

(1.14)

Since λ(t) ∼ 1
2 t2 as t → 0, we have βN ∼ 1/

√
RN , so we are indeed exploring a

window around the critical point β̂c = 1. Let us recall the Euler–Mascheroni constant:

γ := −
∫ ∞

0
e−u log u du � 0.577. (1.15)

Remark 1.1. The asymptotic behavior in (1.10) can be refined as follows:

RN = log N
π

+ α
π
+ o(1) where α := γ + log 16 − π, (1.16)

see [CSZ18, Proposition 3.2]. This leads to an equivalent reformulation of (1.14):

σ 2
N = π

log N

(
1 + ϑ−α

log N (1 + o(1))
)
.

It is possible to express this condition in terms of βN (see [CSZ18, Appendix A.4]):

β2
N = π

log N − κ3 π3/2

(log N )3/2
+

π(ϑ−α)+π2( 32 κ23− 1
2− 7

12 κ4)

(log N )2

(
1 + o(1)

)
, (1.17)

where κ3, κ4 are the disorder cumulants, i.e. λ(t) = 1
2 t2 + κ3

3! t3 + κ4
4! t4 + O(t5) as t → 0.
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We define the following special function:

Gϑ(w) :=
∫ ∞

0

e(ϑ−γ )s s ws−1

�(s + 1)
ds, w ∈ (0,∞). (1.18)

We now state our first result, where we compute the second moment of ZβN
Nt (φ).

Theorem 1.2 (Second moment). Let φ ∈ Cc(R
2), t > 0, ϑ ∈ R. Let βN satisfy (1.14).

Then

lim
N→∞ Var

[
ZβN

Nt (φ)
]

=
∫

R2×R2
φ(z) φ(z′) Kt,ϑ (z − z′) dz dz′, (1.19)

where the covariance kernel Kt,ϑ (·) is given by

Kt,ϑ (x) := π

∫

0<u<v<t

gu(x) Gϑ(v − u) du dv. (1.20)

The same covariance kernel Kt,ϑ was derived by different methods by Bertini and
Cancrini [BC98] for the 2d Stochastic Heat Equation, see Sect. 1.2. It is not difficult to
see that

Kt,ϑ (x) ∼ Ct log 1
|x | , as |x | → 0, (1.21)

with Ct ∈ (0,∞), and hence the integral in (1.19) is finite.

Remark 1.3 (Scaling covariance). It is easily checked from (1.20) that for any t > 0,

Kt,ϑ (x) = K1,ϑt (x/
√

t) with ϑt := ϑ + log t. (1.22)

This is also clear because we can write ZβN
Nt (φ) = ZβN

M (φt )with M := Nt and φt (x) :=
t φ(

√
t x), see (1.12), and note that βN can be expressed as βM , provided ϑ is replaced

by ϑt = ϑ + log t (just set N equal to Nt in (1.14), and recall (1.16)).

The starting point of the proof of Theorem 1.2 is a polynomial chaos expansion of
the partition function. The variance computation can then be cast in a renewal theory
framework, which is the cornerstone of our approach (see Sect. 1.3 for an outline). This
allows us to capture the much more challenging third moment of the field. Let us extend
the function Gϑ(w) in (1.18) with a spatial component, recalling (1.9):

Gϑ(w, x) := Gϑ(w) gw/4(x), w > 0, x ∈ R
2. (1.23)

We can now state the main result of this paper.

Theorem 1.4 (Third moment). Let φ ∈ Cc(R
2), t > 0, ϑ ∈ R. Let βN satisfy (1.14).

Then

lim
N→∞ E

[(
ZβN

Nt (φ) − E
[
ZβN

Nt (φ)
] )3

]

=
∫

(R2)3

φ(z) φ(z′) φ(z′′) Mt,ϑ (z, z′, z′′) dz dz′ dz′′ < ∞, (1.24)
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where the kernel Mt,ϑ (·) is given by

Mt,ϑ (z, z′, z′′) :=
∞∑

m=2

2m−1 πm {
I(m)

t,ϑ (z, z′, z′′) + I(m)
t,ϑ (z′, z′′, z) + I(m)

t,ϑ (z′′, z, z′)
}
,

(1.25)

with I(m)
t,ϑ (·) defined as follows:

I(m)
t,ϑ (z, z′, z′′) :=

∫

· · ·
∫

0<a1<b1<···<am<bm<t
x1,y1,...,xm ,ym∈R2

d�a d�b d�x d�y g a1
2
(x1 − z) g a1

2
(x1 − z′) g a2

2
(x2 − z′′)

· Gϑ(b1 − a1, y1 − x1) g a2−b1
2

(x2 − y1) Gϑ(b2 − a2, y2 − x2)

·
m∏

i=3

g ai −bi−2
2

(xi − yi−2) g ai −bi−1
2

(xi − yi−1) Gϑ(bi − ai , yi − xi ).

(1.26)

The expression (1.26) reflects a key combinatorial structure which emerges from
our renewal framework. Establishing the convergence of the series in (1.25) is highly
non-trivial, which shows how delicate things become in the critical window.

We remark that relation (1.24) holds also for the mixed centered third moment with
different test functions φ(1), φ(2), φ(3) ∈ Cc(R

2), with the same kernel Mt,ϑ (z, z′, z′′).
Note that this kernel is invariant under any permutation of its variables, because
I(m)

t,ϑ (z, z′, z′′) is symmetric in z and z′ (but not in z′′, hence the need of symmetrization
in (1.25)).

Let us finally come back to the convergence of the random field ZβN
Nt (x

√
N ) of

diffusively rescaled partition functions. By averaging with respect to a test function, as
in (1.12), we regard this field as a random measure on R

2. More explicitly, if we define

Z
βN
Nt (dx) := 1

N

∑

y∈ 1√
N
Z2

ZβN
Nt

(
y
√

N
)
δy(dx), (1.27)

we can write ZβN
Nt (φ) = ∫

R2 φ(x)Z
βN
Nt (dx), see (1.12). Note that (Z

βN
Nt )N∈N is a

sequence of random variables taking values in M(R2), the Polish space of locally
finite measures on R

2 with the vague topology (i.e. νn → ν in M(R2) if and only if∫
φ dνn → ∫

φ dν for any φ ∈ Cc(R
2)). We can make the following remarks.

• The convergence of the first moment (1.13) implies tightness of (Z
βN
Nt )N∈N, see

[K97, Lemma 14.15]. This yields the existence of weak subsequential limits:

Z
βN
Nt (dx)

d−→ Z(dx) as N → ∞ along a subsequence,

where the limit Z(dx) = Z t,ϑ (dx) can in principle depend on the subsequence.
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• The convergence of the second moment (1.19) implies uniform integrability of
ZβN

Nt (φ). It follows that any subsequential limit Z(dx) has mean measure given
by Lebesgue measure: E

[ ∫
R2 φ(x)Z(dx)

] = ∫
φ(x) dx . Moreover, by (1.19) and

Fatou’s Lemma,

Var

[ ∫

R2
φ(x)Z(dx)

]

≤
∫

R2×R2
φ(z) φ(z′) Kt,ϑ (z − z′) dz dz′ < ∞.

(1.28)

However, this does not rule out that the variance in (1.28) might actually vanish, in
which case the limit Z(dx) would just be the trivial Lebesgue measure.

• The convergence of the third moment (1.24) rules out this triviality. Indeed, (1.24)
implies that E[|ZβN

Nt (φ)|3] � E[ZβN
Nt (|φ|)3] is bounded, so the squares ZβN

Nt (φ)2 are
uniformly integrable and the inequality in (1.28) is actually an equality.

We can combine the previous considerations in the following result.

Theorem 1.5. Let t > 0, ϑ ∈ R. Let βN satisfy (1.14). The random measures (Z
βN
Nt

(dx))N∈N in (1.27)admit weak subsequential limitsZ t,ϑ (dx), and any such limit satisfies

E

[ ∫

R2
φ(x)Z t,ϑ (dx)

]

=
∫

φ(x) dx (1.29)

Var

[ ∫

R2
φ(x)Z t,ϑ (dx)

]

=
∫

R2×R2
φ(z) φ(z′) Kt,ϑ (z − z′) dz dz′ (1.30)

E

[ ∣
∣
∣
∣

∫

R2
φ(x)Z t,ϑ (dx)

∣
∣
∣
∣

3 ]

< ∞. (1.31)

In particular, every weak subsequential limitZ t,ϑ (dx) is a random measure with the
same covariance structure. It is natural to conjecture that the whole sequence
(Z

βN
Nt (dx))N∈N has a weak limit, but this remains to be proved.
We conclude with a remark on intermittency. As the asymptotics behavior (1.21)

suggests, when we fix the starting point of the partition function instead of averaging
over it, i.e. we consider ZβN

N defined in (1.3), the second moment blows up like log N .
More precisely, in [CSZ18, Proposition A.1] we have shown that as N → ∞

E
[
(ZβN

N )2
] ∼ c (log N ), with c = ∫ 1

0 Gϑ(t) dt. (1.32)

This is a signature of intermittency, because it shows that E
[
(ZβN

N )2
] � E[ZβN

N ]2 = 1.
It also implies that for any q � 2 we have the bound

E
[
(ZβN

N )q] � c′ (log N )q−1. (1.33)

Indeed, since E[ZβN
N ] = 1, we can introduce the size-biased probability P

∗(A) :=
E[1A ZβN

N ] andnote thatE[
(ZβN

N )q
] = E

∗[(ZβN
N )q−1

]
� E

∗[ZβN
N

]q−1 = E
[
(ZβN

N )2
]q−1

by Jensen.

Remark 1.6. We formulated our results only for the directed polymer on Z
2+1, but our

techniques carry through for other marginally relevant directed polymer type models,
such as the disordered pinning model with tail exponent 1/2, and the directed polymer
on Z

1+1 with Cauchy tails (see [CSZ17b]).
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1.2. The 2d stochastic heat equation. An analogue of Theorem 1.2 for the stochastic
heat equation (SHE) in R

2 was proved by Bertini and Cancrini in [BC98], although they
did not obtain the analogue of Theorem 1.4. We formulate these results next.

The SHE as written in (1.6) is ill-posed due to the product Ẇ · u. To make sense of
it, we mollify the space-time white noise Ẇ in the space variable. Let j ∈ C∞

c (R2) be
a probability density on R

2 with j (x) = j (−x), and let

J := j ∗ j.

For ε > 0, let jε(x) := ε−2 j (x/ε). Then the space-mollified noise Ẇ ε is defined by
Ẇ ε(t, x) := ∫

R2 jε(x − y)Ẇ (t, y)dy. We consider the mollified equation

∂uε

∂t
= 1

2
�uε + βε uε Ẇ ε, uε(0, x) = 1 ∀ x ∈ R

2, (1.34)

which admits a unique mild solution (with Ito integration).

It was shown in [CSZ17b] that if we rescale βε := β̂
√

2π
log ε−1 , then for any fixed

(t, x) ∈ R
+ × R

2 the mollified solution uε(t, x) converges in distribution as ε → 0 to
the same limit as in (1.11) for the directed polymer partition function, with β̂c = 1 being
the critical point.

In [BC98], Bertini and Cancrini considered the critical window around β̂c = 1 given
by

β2
ε = 2π

log 1
ε

+
� + o(1)

(log 1
ε
)2

, with � ∈ R. (1.35)

This is comparable to our choice ofβN , see (1.14) and (1.17), ifwemake the identification
ε2 = 1/N (note that the third cumulant κ3 = 0 for Gaussian random variables). In this
critical window, uε(t, x) converges to 0 in distribution, while its expectation is constant:

E

[ ∫

R2
φ(x)uε(t, x)dx

]

≡
∫

R2
φ(x) dx . (1.36)

Bertini and Cancrini showed that when interpreted as a random distribution on R
2,

uε(t, ·) admits subsequential weak limits, and they computed the limiting covariance.
This is the analogue of our Theorem 1.2, which we now state explicitly. Let us set

uε(t, φ) :=
∫

R2
φ(x) uε(t, x) dx, for φ ∈ Cc(R

2).

Theorem 1.7 [BC98]. Let βε be chosen as in (1.35). Then, for any φ ∈ Cc(R
2),

lim
ε→0+

Var
[
uε(t, φ)

] =2
∫

R2×R2
φ(z) φ(z′) Kt,ϑ

( z−z′√
2

)
dz dz′, (1.37)

where Kt,ϑ is defined as in Theorem 1.2, with

ϑ = log 4 + 2
∫

R2

∫

R2
J (x) log

1

|x − y| J (y) dxdy − γ +
�

π
. (1.38)
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In Sect. 8 we provide an independent proof of Theorem 1.7, which employs the
renewal framework of this paper. Note that, by Feynman–Kac formula, the mollified
solution uε(t, φ) can be interpreted as the partition function of a continuum directed
polymer model.

Remark 1.8. The covariance kernel in (1.37) coincideswith the one in [BC98, eq. (3.14)],
provided we identify the parameter β in [BC98] with eϑ−γ . If we plug β = eϑ−γ into
[BC98, eq. (2.6)], with ϑ given by (1.38), we obtain precisely (1.35).

Our renewal framework leads to analogues of Theorems 1.4 and 1.5 for the SHE.
For simplicity, we content ourselves with showing that the third moment is bounded,
but the same techniques would allow to compute its sharp asymptotic behavior, as in
(1.24)–(1.26).

Theorem 1.9. Follow the same assumptions and notation as in Theorem 1.7. Then

sup
ε>0

E
[(

uε(t, φ) − ∫
R2φ(x) dx

)3
]

< ∞.

If uϑ(t, ·) is any subsequential weak limit in M(R2) of uε(t, ·) as ε → 0+, then
uϑ(t, ·) satisfies the analogues of (1.29)–(1.31), with Kt,ϑ (z − z′) in (1.30) replaced
by 2Kt,ϑ

( z−z′√
2

)
.

1.3. Outline of the proof strategy. We present the key ideas of our approach. First we
compute the second moment of the partition function, sketching the proof of (1.32). Then
we describe the combinatorial structure of the third moment, which leads to Theorem1.4.
This illustrates how renewal theory emerges in our problem.

Second moment. We start from a polynomial chaos expansion of the partition function
Zβ

N , which arises from a binomial expansion of the exponential in (1.3) (see Sect. 2.1):

Zβ
N = 1 +

∑

k�1

∑

0<n1<···<nk�N
x1,...,xk∈Z2

qn1(x1) ξn1,x1 · qn2−n1(x2 − x1) ξn2,x2 ·

· . . . · qnk−nk−1(xk − xk−1) ξnk ,xk ,

(1.39)

where we set ξn,x = eβN ωn,x−λ(βN ) − 1 for n ∈ N, x ∈ Z
2. Note that ξn,x are i.i.d. with

mean zero and variance σ 2 = eλ(2β)−2λ(β) − 1, see (1.14). Then

Var[Zβ
N ] =

∑

k�1

(σ 2)k
∑

0<n1<···<nk�N
x1,...,xk∈Z2

qn1(x1)
2 · qn2−n1(x2 − x1)

2 · · · qnk−nk−1 (xk − xk−1)
2

=
∑

k�1

(σ 2)k
∑

0<n1<···<nk�N

u2
n1 · u2

n2−n1 · · · u2
nk−nk−1

, (1.40)

where we de-fine

u2
n :=

∑

x∈Z2

qn(x)2 = q2n(0) = 1

πn
+ O

(
1

n2

)

. (1.41)
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Incidentally, (1.40) coincides with the variance of the partition function of the one-
dimensional disordered pinning model based on the simple random walk on Z [CSZ18].

The key idea is to view the series of convolutions (1.40) through the lenses of renewal
theory. The sequence u2

n is not summable, but we can normalize it to a probability on

{1, . . . , N }.We thus define a triangular array of independent randomvariables (T (N )
i )i∈N

by

P
(
T (N )

i = n
) = 1

RN
u2

n 1{1≤n≤N }, where RN :=
N∑

n=1

u2
n . (1.42)

We stress that RN = 1
π
log N + O(1) is the same as in (1.10). If we fix βN satisfying

(1.14), and define the renewal process

τ
(N )
k = T (N )

1 + · · · + T (N )
k , (1.43)

we can rewrite (1.40) for β = βN as follows:

Var
[
ZβN

N

] =
∑

k�1

(
σ 2

N RN
)k P

(
τ

(N )
k � N

) =
∑

k�1

e
ϑ k

log N +O
(

k
(log N )2

)

P
(
τ

(N )
k � N

)
.

(1.44)

This shows that Var
[
ZβN

N

]
can be interpreted as a (weighted) renewal function for τ

(N )
k .

The renewal process τ
(N )
k is investigated in [CSZ18], where we proved that

(τ
(N )
�s log N	/N )s�0 converges in law as N → ∞ to a special Lévy process Y = (Ys)s�0,

called the Dickman subordinator, which admits an explicit density:

fs(t) := P(Ys ∈ dt)

dt
= e−γ s s ts−1

�(s + 1)
for t ∈ (0, 1). (1.45)

Then P(τ
(N )
�s log N	 � N ) → P(Ys � 1) = ∫ 1

0 fs(t) dt , and by Riemann sum approxima-
tion

lim
N→∞

Var
[
ZβN

N

]

log N
=

∫ 1

0
dt

(∫ ∞

0
ds eϑs fs(t)

)

=
∫ 1

0
dt Gϑ(t),

where Gϑ(·) is the same as in (1.18), which can now be interpreted as a renewal function
for the Lévy process Y . This completes the derivation of (1.32).

Similar arguments can be applied to the partition function ZβN
N (φ) averaged over the

starting point, to prove Theorem 1.2 using renewal theory.

Third moment. The proof of Theorem 1.4 is more challenging. In the second moment
computation, the spatial variables x1, . . . , xk have been summed over to get (1.40),
reducing the analysis to a one-dimensional renewal process. Such a reduction is not
possible for Theorem 1.4. In addition to the “point-to-plane” partition functions (1.3)–
(1.4), it will be important to consider point-to-point partition functions, where we also
fix the endpoint SN :

Zβ
N (0, y) := E0

[
e
∑N−1

n=1 (βωn,Sn −λ(β)) 1{SN =y}
]
.
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We need to extend our renewal theory framework, enriching the process τ
(N )
k with a

spatial component S(N )
k (see (2.13)–(2.14) below). Thiswill yield the following analogue

of (1.44):

σ 2
N E

[
ZβN

M (0, y)2
] =

∑

k�1

(
σ 2

N RN
)k P

(
τ

(N )
k = M, S(N )

k = y
)
, (1.46)

which is now a local (weighted) renewal function for the random walk (τ
(N )
k , S(N )

k )k�0.
Its asymptotic behavior as N → ∞ was determined in [CSZ18]:

σ 2
N E

[
ZβN

M (0, y)2
] ∼ log N

N 2 Gϑ

( M
N ,

y√
N

)
, (1.47)

where Gϑ(t, z), defined in (1.23), is a continuum local renewal function.
We now explain how the second moment of the point-to-point partition function

(1.46) enters in the third moment computation. We consider the partition function Zβ
N

started at the origin, see (1.3), but everything extends to the averaged partition function
Zβ

N (φ).

We compute E[(Zβ
N −1)3] using the expansion (1.39). This leads to a sum over three

sets of coordinates (na
i , xa

i ), (nb
j , xb

j ), (nc
l , xc

l ), with associated random variables ξn,x ,
say

E[(Zβ
N − 1)3] =

∑

ka�1
kb�1
kc�1

∑

(na
i ,xa

i )i=1,...,ka

(nb
j ,x

b
j ) j=1,...,kb

(nc
l ,x

c
l )l=1,...,kc

cN ,{(na
i ,xa

i ),(nb
j ,x

b
j ),(n

c
l ,x

c
l )} E

[∏

i, j,l

ξna
i ,xa

i
ξnb

j ,x
b
j
ξnc

l ,x
c
l

]

,

(1.48)

for suitable (explicit) coefficients cN ,{...}. The basic observation is that if a coordinate,
say (na

i , xa
i ), is distinct from all other coordinates, then it gives no contribution to (1.48),

because the randomvariable ξni ,xi is independent of the other ξn,x ’s and it hasE[ξni ,xi ] =
0. This means that the coordinates in (1.48) have to match, necessarily in pairs or in
triples.1 We will show that triple matchings can be neglected, so we restrict to pairwise
matchings.

Let D ⊆ {1, . . . , N }×Z
2 be the subset of space-time points given by the union of all

coordinates (na
i , xa

i ), (nb
j , xb

j ), (n
c
l , xc

l ) in (1.48). By the pairwise matching constraint,
any index (n, x) ∈ D must appear exactly twice among the three sets of coordinates
with labels a, b, c. So we can label each index in D as either ab, bc or ac, and we say
that consecutive indexes with the same label form a stretch. This decomposition into
stretches will lead to the integral representation (1.26) for the third moment, as we now
explain.

Let us write D = {(ni , xi ) : i = 1, . . . , r} and consider the casewhen the first stretch
has, say, label ab and length k � r (this means that (ni , xi ) = (na

i , xa
i ) = (nb

i , xb
i ) for

i = 1, . . . , k). The key observation is that, if we fix the last index (nk, xk) = (M, y) and
sum over the number k and the locations (ni , xi ) of previous indexes inside the stretch,
then we obtain an expression similar to (1.40), except that the last index is not summed

1 Note that coordinates (nα
i , xα

i ) with the same label α ∈ {a, b, c} are distinct, by nα
i < nα

i+1, see (1.39),
hence more than triple matchings cannot occur.
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but rather fixed to (nk, xk) = (M, y) (see Sect. 5 for the details). But this turns out to be
precisely the second moment (1.46) of the point-to-point partition function Zβ

M (0, y).
In summary, when computing the third moment from (1.48), the contribution of each

stretch of pairwise matchings is given asymptotically by (1.47). This is also the case
when we consider the partition function ZβN

N (φ) averaged over the starting point.
We can finally explain qualitatively the structure of the kernel (1.25)–(1.26) in The-

orem 1.4:

• the index m of the sum in (1.25) corresponds to the number of stretches;
• each stretch gives rise to a kernel Gϑ(bi − ai , yi − xi ) in (1.26), by (1.47);
• the switch from a stretch to the following consecutive stretch gives rise to the
remaining kernels g ai −bi−2

2
(xi − yi−2) g ai −bi−1

2
(xi − yi−1) in (1.26).

We stress that the knowledge of precise asymptotic estimates such as (1.47) is crucial to
compute the limiting expression (1.25)–(1.26) for the third moment.

We refer to Sect. 5 for a more detailed exposition of the combinatorial structure in
the third moment calculation, which lies at the heart of the present paper.

1.4. Discussion. To put our results in perspective, we explain here some background.
The key background notion is disorder relevance/irrelevance. The directed polymer is
an example of a disordered system that arises as a disorder perturbation of an underlying
pure model, the random walk S in this case. A fundamental question is whether the
disorder perturbation, however small β > 0 is, changes the qualitative behavior of
the pure model as N → ∞. If the answer is affirmative, then disorder is said to be
relevant; otherwise disorder is said to be irrelevant. For further background, see e.g. the
monograph [G10].

For the directed polymer on Z
d+1, the underlying random walk S is diffusive with

|SN | ≈ N 1/2, while under the polymer measure Pβ
N , it has been shown that for d ≥ 3,

there exists a critical value βc(d) > 0 such that for β < βc(d), |SN | ≈ N 1/2 (see e.g.
[CY06]); while for any β > 0 in d = 1, 2 and for β > βc(d) in d ≥ 3, it is believed that
|SN | � N 1/2. Thus the directed polymer model should be disorder irrelevant in d ≥ 3,
disorder relevant in d = 1, while d = 2 turns out to be the critical dimension separating
disorder relevance vs irrelevance, and disorder should be marginally relevant.

In [AKQ14], Alberts, Khanin and Quastel showed that on the intermediate disorder
scale βN = β̂/N 1/4, the rescaled partition functions of the directed polymer on Z

1+1

converges to the solution of the 1-dimensional SHE (1.6). We note that the idea of con-
sidering polymers with scaled temperature had already appeared in the physics literature
[BD00,CDR10].

Inspired in particular by [AKQ14], we developed in [CSZ17a] a new perspective on
disorder relevance vs irrelevance (see also [CSZ16]). The heuristic is that, if a model is
disorder relevant, then under coarse graining and renormalization of space-time, the ef-
fective disorder strength of the coarse-grainedmodel diverges. Therefore to compensate,
it should be possible to choose the disorder strength βN ↓ 0 (known as weak disorder
limit) as the lattice spacing δ := 1/N ↓ 0 (known as continuum limit) in such a way
that we obtain a continuum disordered model. In particular, the partition function Zω

N ,βN
should admit a non-trivial random limit for suitable choices of βN ↓ 0. In [CSZ17a],
we formulated general criteria for the partition functions of a disordered system to have
non-trivial continuum and weak disorder limits. These criteria were then verified for the
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disordered pinning model, a family of (possibly long-range) directed polymer on Z
1+1,

and the random field perturbation of the critical Ising model on Z
2. However, the gen-

eral framework developed in [CSZ17a] does not include models where disorder is only
marginally relevant, such as the directed polymer on Z

2+1, which led to our previous
work [CSZ17b] and to our current work.

Disorder relevance/irrlevance is also closely linked to the classification of singular
stochastic partial differential equations (SPDE), such as the SHE or the KPZ equation,
into sub-critical, critical, or super-critical ones, which correspond respectively to disor-
der relevance, marginality and disorder irrelevance. For sub-critical singular SPDEs, a
general solution theory called regularity structures has been developed in seminal work
by Hairer in [H13,H14], and alternative approaches have been developed by Gubinelli,
Imkeller, and Perkowski [GIP15], and also by Kupiainen [K14]. However, for critical
singular SPDEs such as the SHE in d = 2, the only known results so far are: our previous
work [CSZ17a], which established a phase transition in the intermediate disorder scale
βε = β̂(2π/ log 1

ε
)1/2 and identified the limit in distribution of the solution uε(t, x) in

the subcritical regime β̂ < 1; the work of Bertini and Cancrini [BC98], which computed
the limiting covariance of the random field uε(t, ·) at the critical point β̂ = 1; and our
current work, which establishes the non-triviality of subsequential weak limits of the
random field at the critical point β̂ = 1.

Let us mention some related work on the directed polymer model on the hierarchi-
cal lattice. In particular, for the marginally relevant case, Alberts, Clark and Kocić in
[ACK17] established the existence of a phase transition, similar to [CSZ17a]. And more
recently, Clark [Cla17] computed the moments of the partition function around a criti-
cal window for the case of bond disorder. The computations in the hierarchical lattice
case employ the independence structure inherent in hierarchical models, which is not
available on Z

d .
Note added in publication. More recently, Gu, Quastel and Tsai [GQT19] proved the
existence of all moments for the 2-dimensional SHE in the critical window. They use
different, functional analytic methods inspired by Dimock and Rajeev [DR04].

1.5. Organization of the paper. In Sect. 2, we recall the polynomial chaos expansion
for the partition functions and introduce the renewal framework, which are then used in
Sect. 3 to prove Theorem 1.2 on the limiting second moment of the partition function. In
Sect. 4, we derive a series expansion for the third moment of the averaged point-to-point
partition functions, whose terms are separated into two groups: ones with so-called triple
intersections, and ones with no triple intersection. Terms with no triple intersection is
shown in Sect. 5 to converge to the desired limit, while terms with triple intersections are
shown to be negligible in Sect. 7, using bounds developed in Sect. 6. Lastly, in Sect. 8,
we prove Theorems 1.7 and 1.9 for the stochastic heat equation.

2. Polynomial Chaos and Renewal Framework

In this section, we describe two key elements that form the basis of our analysis:

(1) polynomial chaos expansions, which represent the partition function as a multilinear
polynomial of modified disorder random varibles, see Sect. 2.1.

(2) a renewal theory framework, which allows to relate the secondmoment of the partition
function to suitable renewal functions, see Sect. 2.2.



398 F. Caravenna, R. Sun, N. Zygouras

We will use Pa,x and Ea,x to denote probability and expectation for the random
walk S starting at time a from position Sa = x ∈ Z

2, with the subscript omitted when
(a, x) = (0, 0). Recalling (1.7),we define the family of point-to-point partition functions
by

Zβ
a,b(x, y) := Ea,x

[
e
∑b−1

n=a+1(βωn,Sn −λ(β))1{Sb=y}
]
, (a, x), (b, y) ∈ Z

3
even, a < b.

(2.1)

The original point-to-plane partition function Zβ
N (x), see (1.4), can be recovered as

follows:

Zβ
N (x) =

∑

y∈Z2

Zβ
0,N (x, y). (2.2)

We note that the point-to-plane partition function has E[Zβ
a,b(x)] ≡ 1, while for the

point-to-point partition function we have

E
[
Zβ

a,b(x, y)
] = qa,b(x, y) := qb−a(y − x), (2.3)

the transition probability kernel defined in (1.8). We will need to average the partition
functions Zβ

a,b(x, y) over either x or y, or both, on the diffusive scale. More precisely,
we define for N ∈ N

Z N ,β
a,b (x, ψ) :=

∑

y∈Z2

Zβ
a,b(x, y) ψ

( y√
N

)
, ψ ∈ Cb(R

2), (2.4)

Z N ,β
a,b (φ, y) :=

∑

x∈Z2

φ
( x√

N

)
Zβ

a,b(x, y) , φ ∈ Cc(R
2), (2.5)

Z N ,β
a,b (φ,ψ) := 1

N

∑

x,y∈Z2

φ
( x√

N

)
Zβ

a,b(x, y) ψ
( y√

N

)
, φ ∈ Cc(R

2), ψ ∈ Cb(R
2).

(2.6)

The reason that the terminal function ψ is only required to be bounded and continuous,
while the initial function φ is compactly supported is that, we would like to include the
case ψ ≡ 1, which corresponds to the point-to-plane polymer partition function. On the
other hand, the initial function φ plays the role of a test function used to average the
partition function. (In general, the fact that at least one between φ and ψ is compactly
supported ensures finiteness of the average (2.6).) Note that Zβ

Nt (φ) in (1.12) coincides

with Z N ,β
0,Nt (φ,ψ) with ψ ≡ 1. From (2.3) we compute

E
[
Z N ,β

a,b (x, ψ)
] = q N

a,b(x, ψ) :=
∑

y∈Z2

qb−a(y − x) ψ
( y√

N

)
, (2.7)

E
[
Z N ,β

a,b (φ, y)
] = q N

a,b(φ, y) :=
∑

x∈Z2

φ
( x√

N

)
qb−a(y − x), (2.8)

E
[
Z N ,β

a,b (φ,ψ)
] = q N

a,b(φ,ψ) := 1

N

∑

x,y∈Z2

φ
( x√

N

)
qb−a(y − x) ψ

( y√
N

)
. (2.9)

Note that these expectations are of order 1 for a = 0 and b = N , because qN (y − x) ≈
1/N for x, y = O(

√
N ), see (1.8)–(1.9). This explains the normalizations in (2.4)–(2.6).
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2.1. Polynomial chaos expansion. Let us start by rewriting the point-to-point partition
function from (2.1) as

Zβ
a,b(x, y) = Ea,x

[
e
∑b−1

n=a+1(βωn,Sn −λ(β))1{Sb=y}
]

= Ea,x

[ ∏

a<n<b

∏

z∈Z2

e(βωn,z−λ(β))1{Sn=z} 1{Sb=y}
]
.

Using the fact that ex1{n∈τ } = 1 + (ex − 1)1{n∈τ } for x ∈ R, we can write

Zβ
a,b(x, y) = Ea,x

[ b−1∏

n=a+1

∏

z∈Z2

(
1 + ξn,z 1{Sn=z}

)
1Sb=y

]

,

where ξn,z := eβωn,z−λ(β) − 1.

(2.10)

The random variables ξn,z are i.i.d. with mean zero (thanks to the normalization by
λ(β)) and with variance Var[ξn,z] = eλ(2β)−2λ(β) − 1. Recalling (2.3) and expanding
the product, we obtain the following polynomial chaos expansion:

Zβ
a,b(x, y) = qa,b(x, y) +

∑

k�1

∑

a<n1<···<nk<b
x1,...,xk∈Z2

qa,n1(x, x1) ξn1,x1 ·

·
{ k∏

j=2

qn j−1,n j (x j−1, x j ) ξn j ,x j

}

qnk ,b(xk, y),

(2.11)

with the convention that the product equals 1 when k = 1. We have written Zβ
a,b(x, y)

as a multilinear polynomial of the random variables ξn,x .
Analogous expansions hold for the averaged point-to-point partition functions: by

(2.6)

Z N ,β
a,b (φ,ψ) = q N

a,b(φ,ψ) +
1

N

∑

k�1

∑

a<n1<···<nk<b
x1,...,xk∈Z2

q N
a,n1(φ, x1) ξn1,x1 ·

·
{ k∏

j=2

qn j−1,n j (x j−1, x j ) ξn j ,x j

}

q N
nk ,b(xk, ψ).

(2.12)

Similar expansions hold for Z N ,β
a,b (x, ψ) and Z N ,β

a,b (φ, y), without the factor 1
N .

2.2. Renewal theory framework. Given N ∈ N, we define a sequence of i.i.d. random
variables

(
(T (N )

i , X (N )
i )

)
i∈N taking values in N × Z

2, with marginal law

P
(
(T (N )

i , X (N )
i ) = (n, x)

) := qn(x)2

RN
1{1,...,N }(n), (2.13)
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where we recall that qn(x) is defined in (1.8) and RN = ∑N
n=1

∑
x∈Z2 qn(x)2 is the

replica overlap, see (1.10). We then define the corresponding random walk2 on N × Z
2

(
τ

(N )
k , S(N )

k

) :=
(

T (N )
1 + · · · + T (N )

k , X (N )
1 + · · · + X (N )

k

)
, k ∈ N. (2.14)

Note that the first component τ (N )
k is the renewal process that we introduced in Sect. 1.3,

see (1.42)–(1.43).
We now describe the link with our model. We note that σ 2

N , see (1.14), is the variance
of the random variables ξn,x = eβωn,x−λ(β) − 1 which appear in (2.11). Recalling (2.1)
and (2.3), we introduce a crucial quantity UN (n, x), that will appear repeatedly in our
analysis, which is a suitably rescaled second moment of the point-to-point partition
function:

UN (n, x) := σ 2
N E

[
ZβN
0,n(0, x)2

] = σ 2
N

{
qn(x)2 + Var

[
ZβN
0,n(0, x)

]}
, n � 1,

UN (0, x) := δx,0 = 1{x=0}.
(2.15)

By (2.11), we then have

UN (n, x) = σ 2
N q0,n(0, x)2 +

∑

k�1

(σ 2
N )k+1

∑

0<n1<···<nk<n
x1,...,xk∈Z2

q0,n1(0, x1)
2 ·

·
{ k∏

j=2

qn j−1,n j (x j−1, x j )
2
}

qnk ,n(xk, x)2. (2.16)

Looking at (2.13)–(2.14), we have the following key probabilistic representation:

UN (n, x) =
∑

r�1

(λN )r P
(
τ (N )

r = n, S(N )
r = x

)
, where λN := σ 2

N RN . (2.17)

It is also convenient to define

UN (n) :=
∑

x∈Z2

UN (n, x) =
∑

r�1

(λN )r P
(
τ (N )

r = n
)
. (2.18)

Thus UN (n, x) and UN (n) can be viewed as (exponentially weighted) local renewal
functions.

We investigated the asymptotic properties of the randomwalk (τ
(N )
k , S(N )

k ) in [CSZ18].
In particular, introducing the rescaled process

Y (N )
s := (Y (N )

s , V (N )
s ) :=

(
τ

(N )
�s log N	

N
,

S(N )
�s log N	√

N

)

, s ≥ 0, (2.19)

we proved in [CSZ18] that Y (N ) converges in distribution as N → ∞ to the Lévy
process Y on [0,∞) × R

2 with Lévy measure

ν(dt, dx) = 1(0,1)(t)

t
gt/4(x) dt dx,

2 S(N ) should not be confused with the random walk S in the definition of the directed polymer model.
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where gu(x) is the standard Gaussian density on R
2, see (1.9). Remarkably, the process

Y admits an explicit density:

fs(t, x) := P(Y s ∈ (dt, dx))

dt dx
= e−γ s s ts−1

�(s + 1)
gt/4(x) for t ∈ (0, 1), x ∈ R

2,

which leads to a corresponding explicit expression for the (weighted) local renewal
function

Gϑ(t, x) :=
∫ ∞

0
eϑs fs(t, x) ds =

(∫ ∞

0

e(ϑ−γ )s s ts−1

�(s + 1)
ds

)

gt/4(x)

= Gϑ(t) gt/4(x),

where the functions Gϑ(t) and Gϑ(t, x) match with (1.18) and (1.23).
We showed in [CSZ18] that the sharp asymptotic behavior of UN (n, x) and UN (n) is

captured by the functions Gϑ(n, x) and Gϑ(x). Note that for the weight λN in (2.17)–
(2.18) we can write λN = 1 + ϑ

log N (1 + o(1)) as N → ∞, by our assumption (1.14).
Then we can rephrase [CSZ18, Theorem 1.4 and Theorems 2.3-2.4] as follows.

Proposition 2.1. Fix βN such that (1.14) holds, for some ϑ ∈ R. Let UN (n) be defined
as in (2.18). For any fixed δ > 0, as N → ∞ we have

UN (n) = log N

N

(
Gϑ

( n
N

)
+ o(1)

)
, uniformly for δN � n � N , (2.20)

where Gϑ is defined in (1.18). Moreover, there exists C ∈ (0,∞) such that for all N ∈ N

UN (n) ≤ C
log N

N
Gϑ

( n
N

)
, ∀1 � n � N . (2.21)

Proposition 2.2. Fix βN such that (1.14) holds, for some ϑ ∈ R. Let UN (n, x) be defined
as in (2.16)–(2.17). For any fixed δ > 0, as N → ∞ we have

UN (n, x) = log N

N 2

(
Gϑ

( n
N , x√

N

)
+ o(1)

)
21{(n,x)∈Z3

even},

uniformly for δN � n � N , |x | � 1
δ

√
N ,

(2.22)

where Gϑ(t, x) is defined in (1.23). Moreover, there exists C ∈ (0,∞) such that for all
N ∈ N

∑

x∈Z2: |x |>M
√

n

UN (n, x)

UN (n)
� C

M2 , ∀1 � n � N , ∀M > 0. (2.23)

We will also need the following asymptotic behavior on Gϑ(t) from [CSZ18].

Proposition 2.3. For every fixed ϑ ∈ R, we have that

Gϑ(t) = 1

t (log 1
t )

2
+
2ϑ + o(1)

t (log 1
t )

3
as t → 0. (2.24)

It follows that there exists cϑ ∈ (0,∞) such that

Gϑ(t) � Ĝϑ(t) := cϑ

t (2 + log 1
t )

2
= cϑ

t (log e2
t )2

, ∀t ∈ (0, 1]. (2.25)

By direct computation d
dt Ĝ(t) < 0 for all t ∈ (0, 1), hence Ĝϑ(·) is strictly decreasing.
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3. Proof of Theorem 1.2

Recall the definition (1.9) of gt (x). Given a bounded function φ : R
2 → R, we define

�s(x) := (φ ∗ gs/2)(x) =
∫

R2
φ(x − y) gs/2(y) dy, s > 0, x ∈ R

2. (3.1)

The averaged partition function ZβN
Nt (φ) in Theorem 1.2, see (1.12), coincides with

Z N ,βN
0,Nt (φ,ψ) with ψ ≡ 1, see (2.6). By the expansion (2.12) with ψ ≡ 1, we obtain

Var[ZβN
Nt (φ)] = 1

N 2

∑

k�1

(σ 2
N )k

∑

0<n1<···<nk<Nt
x1,...,xk∈Z2

q N
0,n1(φ, x1)

2
k∏

j=2

qn j−1,n j (x j−1, x j )
2.

(3.2)

We isolate the term k = 1, because given (n1, x1) = (m, x) and (nk, xk) = (n, y),
the sum over k � 2 gives E[ZβN

m,n(x, y)2] = UN (n − m, y − x)/σ 2
N , by (2.15)–(2.16).

Therefore

Var[ZβN
Nt (φ)] = σ 2

N

N 2

∑

0<n<Nt
x∈Z2

q N
0,n(φ, x)2 +

σ 4
N

N 2

∑

0<m<n<Nt
x,y∈Z2

q N
0,m(φ, x)2 E[ZβN

m,n(x, y)2]

= σ 2
N

N 2

∑

0<n<Nt
x∈Z2

q N
0,n(φ, x)2 +

σ 2
N

N 2

∑

0<m<n<Nt
x∈Z2

q N
0,m(φ, x)2 UN (n − m),

(3.3)

where in the second equality we summed over y ∈ Z
2 – this is the reason that only

UN (n − m) appears instead of UN (n − m, y − x); recall (2.17) and (2.18).
We now let N → ∞. We first show that the first term in the RHS of (3.3) vanishes as

O(σ 2
N ) = O( 1

log N ), see (1.10) and (1.14). Note that for v ∈ (0, 1) and x ∈ R
2 we have

lim
N→∞ q N

0,Nv(φ,
√

N x) = �v(x), sup
m∈N, z∈Z2

q N
0,m(φ, z) � |φ|∞ < ∞, (3.4)

see (2.8), (1.8) and (3.1). Then, by Riemann sum approximation, we have

1

N 2

∑

0<n<Nt
x∈Z2

q N
0,n(φ, x)2 ∼

N→∞
1

N 2

∑

0<n<Nt
x∈Z2

� n
N

( x√
N

)2

−−−−→
N→∞

∫

(0,t)×R2
�v(x)2 dv dx ∈ (0,∞).

Indeed, the approximation is uniform for Nε < n < Nt , with fixed ε > 0, while the
contribution of n � Nε is small, for ε > 0 small, by the uniform bound in (3.4).

It remains to focus on the second term in the RHS of (3.3). By (2.20)–(2.21) and (3.4),
together with σ 2

N ∼ π
log N , see (1.14) and (1.10), another Riemann sum approximation

gives

Var[ZβN
Nt (φ)] −−−−→

N→∞ π

∫

0<u<v<t
x∈R2

�u(x)2 Gϑ(v − u) du dv dx, (3.5)
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Integrating out x , we obtain
∫

R2
�u(x)2 dx =

∫

R2

(∫

R2×R2
φ(z) φ(z′) gu/2(x − z) gu/2(x − z′) dz dz′

)

dx

=
∫

R2×R2
φ(z) φ(z′) gu(z − z′) dz dz′,

which plugged into (3.5) proves (1.19). ��

4. Expansion for the Third Moment

In this section, we give an expansion for the thirdmoment of the partition function, which
forms the basis of our proof of Theorem 1.4. We actually prove a more general version
for the averaged point-to-point partition functions, which is of independent interest.

Theorem 4.1 (Thirdmoment, averaged point-to-point). Let t > 0, ϑ ∈ R and βN satisfy
(1.14). Fix a compactly supported φ ∈ Cc(R

2) and a bounded ψ ∈ Cb(R
2). Then

lim
N→∞ E

[(
Z N ,βN
0,Nt (φ,ψ) − E

[
Z N ,βN
0,Nt (φ,ψ)

])3
]

= Mt (φ,ψ) := 3
∞∑

m=2

2m−1 πm I(m)
t (φ,ψ) < ∞, (4.1)

where we set �s := φ ∗ gs/2 and �s := ψ ∗ gs/2, see (3.1), and define

I(m)
t (φ,ψ) :=

∫

· · ·
∫

0<a1<b1<a2<b2<···<am<bm<t
x1,y1,x2,y2,...,xm ,ym∈R2

�2
a1(x1)�a2(x2) ·

· Gϑ(b1 − a1, y1 − x1) g a2−b1
2

(x2 − y1) Gϑ(b2 − a2, y2 − x2) ·

·
m∏

i=3

g ai −bi−2
2

(xi − yi−2) g ai −bi−1
2

(xi − yi−1) Gϑ(bi − ai , yi − xi ) ·

· �t−bm−1(ym−1)�
2
t−bm

(ym) d�a d�b d�x d�y.

(4.2)

We observe that Theorem 1.4 is a special case of Theorem 4.1: it suffices to take
ψ ≡ 1 so that Z N ,βN

0,Nt (φ,ψ) = ZβN
Nt (φ), see (2.6) and (1.12), and it is easy to check that

(4.1)–(4.2) match with (1.24)–(1.26), since �s ≡ 1.
It remains to prove Theorem 4.1. This will be reduced to Propositions 4.2 and 4.3

below. We exploit the multilinear expansion in (2.12) for the partition function, which
leads to the following representation for the centered third moment (recall (2.7)–(2.9)):

E
[(

Z N ,βN
s,t (φ, ψ) − E[Z N ,βN

s,t (φ, ψ)])3
]

=
∑

A, B,C⊆{s+1,...,t−1}×Z
2

|A�1, |B|�1, |C|�1

1

N 3 q N
s,a1(φ, x1) q N

s,b1(φ, y1) · q N
s,c1(φ, z1) ·
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· E

[

ξA1

|A|∏

i=2

ξAi q(Ai−1, Ai ) · ξB1

|B|∏

j=2

ξB j q(B j−1, B j ) · ξC1

|C|∏

k=2

ξCk q(Ck−1, Ck)

]

·

· q N
a|A|,t (x|A|, ψ) q N

b|B|,t (y|B|, ψ) q N
c|C|,t (z|C|, ψ), (4.3)

where we agree that A = (A1, . . . , A|A|) with Ai = (ai , xi ) ∈ Z
3
even, and B, C are

defined similarly, with B j = (b j , y j ), Ck = (ck, zk), and we set for short

q(Ai−1, Ai ) := qai −ai−1(xi − xi−1).

(When |A| = 1, the product
∏|A|

i=2 . . . equals 1, by definition, and similarly for B and
C.)

We now split the sum in (4.3) into two parts:

E
[(

Z N ,βN
s,t (φ,ψ) − E[Z N ,βN

s,t (φ,ψ)])3
]

= M N ,NT
s,t (φ,ψ) + M N ,T

s,t (φ,ψ), (4.4)

defined as follows:

• M N ,NT
s,t (φ,ψ) is the sum in (4.3) restricted to A, B,C such that A ∩ B ∩ C = ∅,

which we call the case with no triple intersections;
• M N ,T

s,t (φ,ψ) is the sum in (4.3) restricted to A, B,C such that A ∩ B ∩ C �= ∅,
which we call the case with triple intersections.

These parts are analyzed in the following propositions, which together imply Theo-
rem 4.1.

Proposition 4.2 (Convergence with no triple intersections). Let the assumptions of The-
orem 4.1 hold. Then

lim
N→∞ M N ,NT

0,Nt (φ,ψ) = Mt (φ,ψ) = 3
∞∑

m=2

2m−1 πm I(m)
t (φ,ψ) < ∞. (4.5)

Proposition 4.3 (Triple intersections are negligible).Let the assumptions of Theorem 4.1
hold. Then

lim
N→∞ M N ,T

0,Nt (φ,ψ) = 0. (4.6)

Proposition 4.2 is proved in the next section. The proof of Proposition 4.3 will be
given later, see Sect. 7.

5. Convergence Without Triple Intersections

In this section, we prove Proposition 4.2 and several related results.



Critical Directed Polymer and Stochastic Heat Equation on Z
2+1 405

5.1. Proof of Proposition 4.2. We first derive a representation for M N ,NT
s,t (φ,ψ), which

collects the terms in the expansion (4.3) with A ∩ B ∩ C = ∅.
Denote D := A ∪ B ∪ C ⊂ {s + 1, . . . , t − 1} × Z

2, with D = (D1, . . . , D|D|)
and Di = (di , wi ). Since E[ξz] = 0, the contributions to M N ,NT

s,t (φ,ψ) come only from
A, B,C where the points in A ∪ B ∪ C pair up. In particular,

k := |D| = 1

2
(|A| + |B| + |C|) ≥ 2,

and each point D j belongs to exactly two of the three sets A, B,C , and hence we
can associate a vector � = (�1, . . . , �k) of labels � j ∈ {AB, BC, AC}. Note that
there is a one to one correspondence between (A, B,C) and (D, �). We also recall that
ξn,z = eβN ω(n,z)−λ(βN ) −1, hence σ 2

N = E[ξ2z ], see (1.14). From (4.3) we can then write

M N ,NT
s,t (φ,ψ) = 1

N 3

∞∑

k=2

σ 2k
N

∑

D⊆{s+1,...,t−1}×Z
2

|D|=k≥2

∑

�∈{AB, BC, AC}k

q N
s,a1(φ, x1) q N

s,b1(φ, y1) q N
s,c1(φ, z1) ·

·
|A|∏

i=2

q(Ai−1, Ai )

|B|∏

j=2

q(B j−1, B j )

|C|∏

m=2

q(Cm−1, Cm) ·

· q N
a|A|,t (x|A|, ψ) q N

b|B|,t (y|B|, ψ) q N
c|C|,t (z|C|, ψ), (5.1)

where we agree that A, B,C are implicitly determined by (D, �).
We now make a combinatorial observation. The sequence � = (�1, . . . , �k) consists

of consecutive stretches (�1, . . . , �i ), (�i+1, . . . , � j ), etc., such that the labels are constant
in each stretch and change from one stretch to the next. Any stretch, say (�p, . . . , �q),
has a first point Dp = (a, x) and a last point Dq = (b, y). Let m denote the number of
stretches and let (ai , xi ) and (bi , yi ), with ai � bi , be the first and last points of the i-th
stretch.

We now rewrite (5.1) by summing over m ∈ N, (a1, b1, . . . , am, bm), and
(x1, y1, . . . , xm, ym). The sumover the labels of � leads to a combinatorial factor 3·2m−1,
because there are 3 choices for the label of the first stretch and two choices for the label
of the following stretches. Once we fix (a1, x1) and (b1, y1), summing over all possible
configurations inside the first stretch then gives the factor

∞∑

r=1

σ
2(r+1)
N

∑

a1=t0<t1<···<tr =b1
z0=x1, z1,z2,...,zr−1∈Z2, zr =y1

r∏

i=1

qti−1,ti (zi−1, zi )
2 = σ 2

N UN (b1 − a1, y1 − x1),

where we recall that UN is defined in (2.15)–(2.16). A similar factor arises from each
stretch, which leads to the following crucial identity (see Fig. 1):

M N ,NT
s,t (φ,ψ) =

∞∑

m=2

3 · 2m−1 I (N ,m)
s,t (φ,ψ), where

I (N ,m)
s,t (φ,ψ) := σ 2m

N

N 3

∑

s<a1�b1<a2�b2<···<am�bm<t
x1,y1,x2,y2,...,xm ,ym∈Z2

q N
s,a1(φ, x1)

2 q N
s,a2(φ, x2) ·
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Fig. 1. Diagramatic representation of the expansion (5.2) of the third moment. Curly lines between nodes
(ai , xi ) and (bi , yi ) have weight UN (bi − xi , yi − xi ), coming for pairwise matchings between a single
pair of copies AB, BC or C A, while solid, curved lines between nodes (ai , xi ) and (bi−1, yi−1) or between
(ai , xi ) and (bi−2, yi−2) indicate a weight qbi−1,ai (yi−1, xi ) and qbi−2,ai (yi−2, xi ), respectively

· UN (b1 − a1, y1 − x1) qb1,a2(y1, x2) UN (b2 − a2, y2 − x2) ·

·
m∏

i=3

{
qbi−2,ai (yi−2, xi ) qbi−1,ai (yi−1, xi ) UN (bi − ai , yi − xi )

}
·

· q N
bm−1,t (ym−1, ψ) q N

bm ,t (ym, ψ)2, (5.2)

with the convention that
∏m

i=3{. . .} = 1 for m = 2. Note that the sum starts with m = 2
because in (5.1), we have |A|, |B|, |C| ≥ 1.

If we compare (5.2) with (4.5) and (4.2), we see that Proposition 4.2 follows from
the following result and dominated convergence. ��

Lemma 5.1. For m ≥ 2, let I (N ,m)
Nt (φ,ψ) := I (N ,m)

0,Nt (φ,ψ) be defined as in (5.2), and

let I(m)
t (φ,ψ) be defined as in (4.2). Then

lim
N→∞ I (N ,m)

Nt (φ,ψ) = πm I(m)
t (φ,ψ) ∀ m ≥ 2. (5.3)

Furthermore, for any C > 0 we have

|I (N ,m)
Nt (φ,ψ)| ≤ e−Cm for all m, N sufficiently large. (5.4)

The proof of Lemma 5.1 is given later, see Sect. 5.3. We first prove the next result on
I(m)

t (φ,ψ), which will reveal a structure that will be used in the proof of Lemma 5.1.

Lemma 5.2. For φ ∈ Cc(R
2), ψ ∈ Cb(R

2), and I(m)
t (φ,ψ) defined as in (4.2), we

have:

∀ a ∈ (0,∞),

∞∑

m=2

am |I(m)
t (φ,ψ)| < ∞. (5.5)
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5.2. Proof of Lemma 5.2. In light of Remark 1.3, we may assume t = 1. Recall that

I(m)(φ, ψ) := I(m)
1 (φ,ψ) :=

∫

· · ·
∫

0<a1<b1<a2<b2<···<am<bm<1
x1,y1,x2,y2,...,xm ,ym∈R2

�2
a1(x1)�a2(x2) ·

· Gϑ(b1 − a1, y1 − x1) g a2−b1
2

(x2 − y1) Gϑ(b2 − a2, y2 − x2) ·

·
m∏

i=3

g ai −bi−2
2

(xi − yi−2) g ai −bi−1
2

(xi − yi−1) Gϑ(bi − ai , yi − xi ) ·

· �1−bm−1(ym−1)�
2
1−bm

(ym) d�a d�b d�x d�y, (5.6)

where Gϑ(t, x) := Gϑ(t)gt/4(x), with gt/4(x) being the heat kernel, see (1.9), and
Gϑ defined in (1.18). We also recall that �a(x) := (φ ∗ ga/2)(x),�1−b(y) = (� ∗
g(1−b)/2)(y).

Note that we obtain an upper bound if we replace φ by |φ|, so we may assume that
φ � 0. Similarly, we may replace ψ by the constant |ψ |∞, and we take |ψ |∞ � 1
for simplicity. We thus bound I(m)(φ, ψ) ≤ I(m)(φ, 1), with φ � 0, and we focus on
I(m)(φ, 1).

We first show that, by integrating out the space variables, we can bound

I(m)(φ, 1) ≤ Cφ J (m), where Cφ := |φ|2∞
∫

R2
φ(z) dz, and

J (m) :=
∫

· · ·
∫

0<a1<b1<···<am<bm<1

Gϑ(b1 − a1)Gϑ(b2 − a2)
m∏

i=3

Gϑ(bi − ai )
√

(ai − bi−1)(ai − bi−2)
d�a d�b.

(5.7)

Note that in (5.6) we have� ≡ 1 (byψ ≡ 1) and ym appears only in Gϑ(bm −am, ym −
xm). Then we can integrate out ym ∈ R

2 to obtain

∫

R2
Gϑ(bm − am, ym − xm) dym = Gϑ(bm − am).

We are then left with two factors containing xm , and the corresponding integral is

∫

R2
g am−bm−1

2
(xm − ym−1) g am−bm−2

2
(xm − ym−2)dxm = g 2am−bm−1−bm−2

2
(ym−1 − ym−2)

≤ g 2am−bm−1−bm−2
2

(0) = 1

π(2am − bm−1 − bm−2)
≤ 1

2π

1
√

(am − bm−1)(am − bm−2)
,

having used αβ � 1
2 (α

2 + β2) in the last inequality.
We now iterate. Integrating out each yi , for i � 2, replaces Gϑ(bi − ai , yi − xi )

by Gϑ(bi − ai ), while integrating out each xi , for i ≥ 3, replaces g ai −bi−2
2

(xi −
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yi−2) g ai −bi−1
2

(xi − yi−1) by (2π
√

(ai − bi−1)(ai − bi−2))
−1. This leads to

I(m)(φ, 1) ≤ 1

(2π)m−2

∫

· · ·
∫

0<a1<b1<a2<b2<···<am<bm<1
x1,y1,x2∈R2

d�a d�b dx1 dy1 dx2

�2
a1(x1)�a2(x2) g b1−a1

4
(y1 − x1) g a2−b1

2
(x2 − y1) ·

· Gϑ(b1 − a1) Gϑ(b2 − a2)
m∏

i=3

Gϑ(bi − ai )
√

(ai − bi−1)(ai − bi−2)
.

(5.8)

We finally bound �a2(x2) � |φ|∞, see (3.1), then perform the integrals over x2 and y1,
which both give 1, and note that

∫
R2 �a1(x1)2 dx1 � |φ|∞

∫
R2 φ(z) dz, which yields

(5.7).
We can now bound the quantity in Lemma 5.2 using (5.7), to get

∞∑

m=2

am |I(m)
t (φ,ψ)| ≤ (2π)2 Cφ

∞∑

m=2

( a

2π

)m
J (m). (5.9)

It remains to show that J (m) decay super-exponentially fast. For any λ > 0, we have

J (m) ≤ eλ

∫

· · ·
∫

0<a1<b1<···<am<bm<1

e−λb1Gϑ(b1 − a1)e
−λ(b2−b1)Gϑ(b2 − a2)

m∏

i=3

e−λ(bi −bi−1)Gϑ(bi − ai )
√

(ai − bi−1)(ai − bi−2)
d�a d�b.

Denote ui := ai − bi−1 and vi := bi − ai for 1 ≤ i ≤ m, where b0 := 0. Then observe
that ai − bi−2 = ui−1 + vi−1 + ui ≥ ui−1 + ui . Since bi − bi−1 � vi , we can bound
J (m) by

J (m) ≤ eλ

∫

· · ·
∫

ui ,vi ∈(0,1)
∑m

i=1(ui +vi )<1

{ m∏

i=1

e−λvi Gϑ(vi )

}{ m∏

i=3

1
√

(ui−1 + ui )ui

}

d�u d�v

≤ eλ

(∫ 1

0
e−λv Gϑ(v) dv

)m ∫

· · ·
∫

u2,...,um∈(0,1)

m∏

i=3

1
√

ui (ui + ui−1)
d�u

� eλ

(∫ 1

0
e−λv Ĝϑ(v) dv

)m ∫ 1

0
φ(m−2)(u2) du2,

(5.10)

where in the last inequality we have bounded Gϑ(·) � Ĝϑ(·), see (2.25), and we define

φ(0)(u) := 1, and φ(k)(u) :=
∫ 1

0

1√
s(s + u)

φ(k−1)(s) ds, ∀k ∈ N.

(5.11)

We will show the following results.
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Lemma 5.3. There is a constant cϑ < ∞ such that for every λ � 1

∫ 1

0
e−λv Ĝϑ(v) dv ≤ Cλ := cϑ

2 + log λ
. (5.12)

Lemma 5.4. For all k ∈ N, the function φ(k)(·) is decreasing on (0, 1) and satisfies

φ(k)(v) � 32k
k∑

i=0

1

i !
(
1

2
log

e2

v

)i

� 32k e√
v
, ∀v ∈ (0, 1). (5.13)

With Lemmas 5.3 and 5.4, it follows from (5.10) that

J (m) � eλ Cm
λ 32m−2

∫ 1

0

e√
v
dv � eλ Cm

λ 32m−2 2e � eλ (32Cλ)
m . (5.14)

If we choose λ = m, then by (5.9) and the definition (5.12) of Cλ we get

∞∑

m=2

am |I(m)
t (φ,ψ)| ≤ Cφ

∞∑

m=2

am J (m) ≤ Cφ

∞∑

m=2

(
32 a e cϑ

2 + logm

)m

< ∞, (5.15)

which concludes the proof of Lemma 5.2. ��
It remains to prove Lemmas 5.3 and 5.4.

Proof of Lemma 5.3. Recall that Ĝϑ(·) is defined in (2.25) and it is decreasing. Then

∫ 1

1
λ

e−λv Ĝϑ(v) dv � Ĝϑ( 1
λ
)

∫ ∞
1
λ

e−λv dv = Ĝϑ( 1
λ
)

e−1

λ
� e−1

∫ 1
λ

0
Ĝϑ(v) dv,

hence
∫ 1

0
e−λv Ĝϑ(v) dv � (1 + e−1)

∫ 1
λ

0
Ĝϑ(v) dv = (1 + e−1) cϑ

2 + log λ
� 2 cϑ

2 + log λ
. (5.16)

We have proved that (5.12) holds, provided we chose cϑ := 2 cϑ . ��
Proof of Lemma 5.4. The second inequality in (5.13) follows from

∑k
i=0

xi

i ! ≤ ex .
Let us prove the first inequality in (5.13). Recall the definition (5.11) of φ(k). Then

φ(1)(v) = ∫ 1
0

ds√
s(s+v)

= ∫ 1
v

0
dz√

z(z+1)
�

∫ 1
0

dz√
z +

∫ 1
v

1
dz
z = 2 + log 1

v
.

(5.17)

To iterate this argument and bound φ(k), we claim that

φ(k)(v) �
k∑

i=0

ck,i

2i i !
(

log
e2

v

)i

∀v ∈ (0, 1), (5.18)

for suitable choices of the coefficients ck,i . For k = 1, we see from (5.17) that

c1,0 = 0, c1,1 = 2. (5.19)
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Inductively, we assume that (5.18) holds for k − 1 and we will deduce it for k. Note that
plugging (5.18) for k − 1 into (5.11) gives

φ(k)(v) �
k−1∑

j=0

ck−1, j

2 j j !
∫ 1

0

(
log e2

s

) j

√
s(s + v)

ds. (5.20)

To identify ck,i for 0 ≤ i ≤ k, we need the following Lemma, proved later.

Lemma 5.5. For all k ∈ N0, we have

∫ 1

0

(
log e2

s

)k

√
s(s + v)

ds � 2k+1k!
k+1∑

i=0

(
log e2

v

)i

2i i ! ∀v ∈ (0, 1). (5.21)

If we plug (5.21) with k = j into (5.20) we get that, for all v ∈ (0, 1),

φ(k)(v) �
k−1∑

j=0

ck−1, j

2 j j !
{

2 j+1 j !
j+1∑

i=0

(
log e2

v

)i

2i i !
}

=
k∑

i=0

1

2i i !
(

2
k−1∑

j=(i−1)+
ck−1, j

)
(
log e2

v

)i
.

This shows that (5.18) indeed holds, with

ck,i = 2
k−1∑

j=(i−1)+
ck−1, j . (5.22)

We have the following combinatorial bound on the coefficients ck,i , which we prove
later by comparing with the number of paths for a suitable random walk.

Lemma 5.6. For every k ∈ N and i ∈ {0, . . . , k} we have ck,i � 32k .

Plugging this bound into (5.18) we obtain, for all k ∈ N and v ∈ (0, 1),

φ(k)(v) � 32k
k∑

i=0

1

i !
(
1

2
log

e2

v

)i

, (5.23)

which is the first inequality in (5.13). This concludes the proof of Lemma 5.4. ��
It remains to prove Lemmas 5.5 and 5.6.

Proof of Lemma 5.5. By a change of variable s = vz,

∫ 1

0

(
log e2

s

)k

√
s(s + v)

ds =
∫ 1

v

0

(
log e2

vz

)k

√
z(z + 1)

dz �
∫ 1

0

(
log e2

vz

)k

√
z

dz
︸ ︷︷ ︸

A

+
∫ 1

v

1

(
log e2

vz

)k

z
dz

︸ ︷︷ ︸
B

.

(5.24)

Let us look at B: the change of variable z = vα−1, with α ∈ (0, 1), gives

B =
∫ 1

0

(
log e2

vα

)k

vα−1 vα−1 log 1
v
dα = log 1

v

∫ 1

0

(
2 + α log 1

v

)k dα ≤ 1
k+1

(
log e2

v

)k+1
.
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We now look at A: the change of variable z = x e2/v, with x ∈ (0, v
e2

), followed by

x = e−2y , with y ∈ ( 12 log
e2
v

,∞), yields

A = e√
v

∫ v

e2

0

(
log 1

x

)k

√
x

dx = e√
v

∫ ∞
1
2 log

e2
v

(2y)k

e−y
2 e−2y dy = e 2k+1

√
v

∫ ∞
1
2 log e2

v

yk e−y dy.

Let (N t )t≥0 be a Poisson process with intensity one, and let (Xi )i≥1 denote its jump
sizes, which are i.i.d. exponential variables with parameter one. For all t � 0 we can
write

∫ ∞

t
yk e−y dy =�(k + 1)P

( k∑

i=1

Xi ≥ t

)

= �(k + 1) P
(
N t ≤ k

)=e−t
k∑

i=0

k!
i ! t i .

(5.25)

Choosing t = 1
2 log

e2
v
, it follows that

A = e 2k+1

√
v

e− 1
2 log

e2
v

k∑

i=0

k!
i !

( 1
2 log

e2
v

)i =
k∑

i=0

k!
i ! 2

k+1−i ( log e2
v

)i
. (5.26)

We have thus shown that

A + B =
k+1∑

i=0

k!
i ! 2

k+1−i ( log e2
v

)i
,

which coincides with the RHS of (5.21). ��
Proof of Lemma 5.6. We iterate the recursion relation (5.22), to get

ck,i = 2
k−1∑

jk−1=(i−1)+
ck−1, jk−1 = 4

k−1∑

jk−1=(i−1)+

k−2∑

jk−2=( jk−1−1)+
ck−2, jk−2 = · · ·

= 2k−1
k−1∑

jk−1=(i−1)+

k−2∑

jk−2=( jk−1−1)+
. . .

2∑

j2=( j3−1)+

1∑

j1=( j2−1)+
c1, j1 . (5.27)

Since c1,1 = 2 and c1,0 = 0, see (5.19), we can restrict to j1 = 1. Also observe that

ji � ( ji+1 − 1)+ if and only if ji � 0 and ji+1 � ji + 1,

hence we can reverse the order of the sums in (5.27) and write

ck,i = 2k
∣
∣Sk(i)

∣
∣, (5.28)

where |Sk(i)| denotes the cardinality of the set

Sk(i) := {
( j1, . . . , jk) ∈ N

k
0 : j1 = 1, jk = i, jn+1 � jn + 1 ∀ n = 1, . . . , k − 1

}
.

(5.29)

In words, Sk(i) is the set of non-negative integer-valued paths ( j1, . . . , jk) that start
from j1 = 1, arrive at jk = i , and can make upward jumps of size at most 1, while
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the downward jumps can be of arbitrary size (with the constraint that the path is non-
negative).

To complete the proof, it remains to show that

|Sk(i)| � 16k .

We define a correspondence which associates to any path j = ( j1, . . . , jk) ∈ Sk(i)
a nearest neighbor path � = (�1, . . . , �n), with length n = n( j) ∈ {k, . . . , 2k}, with
increments in {−1, 0, 0∗,+1}, where by 0∗ wemean an increment of size 0 with an extra
label “∗” (that will be useful to get an injective map). The correspondence is simple:
whenever the path j has a downward jump (which can be of arbitrary size), we transform
it into a sequence of downward jumps of size 1, followed by a jump of size 0∗.

Note that if m = m( j) denotes the number of downward jumps in the path j , then
the new path � = (�1, . . . , �n) has length

n = n( j) = k + (σ1 + · · · + σm),

where σi is the size of the i-th downward jump of j . The total size of downward jumps
is

(σ1 + · · · + σm) = �−( j) :=
k−1∑

i=1

( ji+1 − ji )
−.

Defining �+( j) := ∑k−1
i=1 ( ji+1 − ji )+, we have

�+( j) − �−( j) = jk − j1 = i − 1.

However �+( j) � k − 1, because the upward jumps are of size at most 1, hence

�−( j) � (k − 1) − (i − 1) � k,

which shows that n = n( j) � 2k, as we claimed.
Note that the correspondence j 
→ � is injective: the original path j can be recon-

structed from �, thanks to the labeled increments 0∗, which distinguishes consecutive
downward jumps from a single downward jump with the same total length. Since the
path � = (�1, . . . , �n) has n − 1 increments, each of which takes four possible values,
we get the desired estimate:

∣
∣Sk(i)

∣
∣ �

2k∑

n=k

4n−1 �
2k∑

n=1

4n−1 = 16k − 1

3
� 16k .

��
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5.3. Proof of Lemma 5.1. We follow the same strategy as in the proof of Lemma 5.2.
Wefirst prove the exponential bound (5.4).We recall that I (N ,m)

Nt (φ,ψ) := I (N ,m)
0,Nt (φ,ψ),

see (5.2). We may take t = 1, φ ≥ 0, and ψ ≡ 1, so that the last terms in (5.2) are
q N

bm−1,t
(ym−1, ψ) ≡ 1, q N

bm ,t (ym, ψ) ≡ 1. We can thus rewrite (5.2) as follows:

I (N ,m)
N (φ, 1) := σ 2m

N

N 3

∑

0<a1�b1<a2�b2<···<am�bm<N
x1,y1,x2,y2,...,xm ,ym∈Z2

q N
0,a1(φ, x1)

2 q N
0,a2(φ, x2) ·

· UN (b1 − a1, y1 − x1) qb1,a2(y1, x2) UN (b2 − a2, y2 − x2) ·

·
m∏

i=3

{
qbi−2,ai (yi−2, xi ) qbi−1,ai (yi−1, xi ) UN (bi − ai , yi − xi )

}
.

(5.30)

Similar to (5.7), we first prove the following bound:

I (N ,m)
N (φ, 1) ≤ Cφ J (N ,m), where

J (N ,m) := cm σ 2m
N

N 2

∑

0<a1�b1<...
...<am�bm<N

UN (b1 − a1) UN (b2 − a2)
m∏

i=3

UN (bi − ai )
√

(ai − bi−1)(ai − bi−2)
,

(5.31)

for suitable constants Cφ, c < ∞. We first note that ym appears in (5.30) only in the
term UN (bm − am, ym − xm) and hence we can sum it out as

∑

ym∈Z2

UN (bm − am, ym − xm) =: UN (bm − am). (5.32)

We next sum over xm : since qs,t (x, y) � supz qt−s(z) � c
t−s , see (2.3) and (1.8), we

have
∑

xm∈Z2

qbm−1,am (ym−1, xm) qbm−2,am (ym−2, xm) � sup
x,y∈Z2

qbm−2,am (y, x)

≤ c

(am − bm−2)
≤ c

√
(am − bm−1)(am − bm−2)

.

(5.33)

We can now iterate, integrating out yi for i � 2 and xi for i � 3, to obtain

I (N ,m)
N (φ, 1) ≤ cm−2σ 2m

N

N 3

∑

0<a1≤b1<a2···<am≤bm<N

∑

x1,x2,y1∈Z2

q N
0,a1(φ, x1)

2 q N
0,a2(φ, x2)

· UN (b1 − a1, y1 − x1) qb1,a2(y1, x2) UN (b2 − a2)
m∏

i=3

UN (bi − ai )
√

(ai − bi−1)(ai − bi−2)
. (5.34)

After bounding q N
0,a2

(φ, x2) � |φ|∞, see (2.8), the sum over x2 gives 1, because
qb1,a2(y1, ·) is a probability kernel. Then the sum over y1 gives UN (b1 − a1). Finally,
the sum over x1 gives

∑

x1∈Z2

q N
0,a1(φ, x1)

2 � |φ|∞
∑

x1∈Z2

q N
0,a1(φ, x1) = |φ|∞

∑

z∈Z2

φ
( z√

N

) ≤ cφ N (5.35)
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for a suitable cφ < ∞, because φ has compact support. This completes the proof of
(5.31).

Next we bound J (N ,m) in (5.31), similarly to the continuum analogue (5.10). Namely,
we denote ui = ai − bi−1 and vi := bi − ai for 1 ≤ i ≤ m, with b0 := 0, we insert the

factor eλ
∏m

i=1 e−λ(
vi
N ) > 1, and then we use ai − bi−2 � ui−1 + ui to obtain the bound

J (N ,m) ≤ eλ cm
(

σ 2
N

N∑

v=0

e−λ v
N UN (v)

)m {
1

N 2

∑

1≤u1,...,um≤N

m∏

i=3

1
√

ui (ui−1 + ui )

}

.

(5.36)

Note that σ 2
N � c1

log N , see (1.14), andUN (u) � c2 (1{u=0}+ log N
N Ĝϑ( u

N )), see (2.21)

and (2.25). Since Ĝϑ(·) is decreasing, we can bound the Riemann sum by the integral
and get

σ 2
N

N∑

v=0

e−λ v
N UN (v) ≤ c1c2

log N

(

1 +
log N

N

N∑

v=1

e−λ v
N Ĝϑ

(
v
N

)
)

� c1c2
log N

(

1 + log N
∫ 1

0
e−λv Ĝϑ(v) dv

)

� c1c2

(
1

log N
+ Cλ

)

,

(5.37)

where in the last inequality we have applied (5.12).
The multiple sum over the ui ’s in (5.36) is bounded by the iterated integral in (5.10),

by monotonicity (note that if we replace ui by Nui , with ui ∈ 1
N Z ∩ (0, 1), then we get

the correct prefactor 1/N m , thanks to the term 1/N 2 in (5.36)). Then

J (N ,m) � eλ cm ( 1
log N + Cλ

)m
∫ 1

0
φ(m−2)(u) du � eλ (32 c)m ( 1

log N + Cλ

)m
,

(5.38)

because the integral is at most 32m , by (5.13) (see also (5.14)). Since Cλ = cϑ

2+log λ
, see

(5.12), if we choose λ and N large enough, then it is clear by (5.38) that J (N ,m) decays
faster than any exponential in m. This proves (5.4).

We next prove (5.3), for simplicity with t = 1. This is easily guessed because
I (N ,m)
1 (φ,ψ) (see (5.2)) is close to a Riemann sum for πmI(m)

1 (φ,ψ) (see (4.2)), by the
asymptotic relations

σ 2
N ∼ π

log N
, q N

0,a(φ, x) ∼ � a
N

( x√
N

)
, q N

b,1(y, ψ) ∼ �1− b
N

( y√
N

)
, (5.39)

qb,a(y, x) ∼ 1

N
g a−b

N

( x−y√
N

)
, UN (b − a, y − x) ∼ log N

N 2 Gϑ

( b−a
N ,

y−x√
N

)
, (5.40)

see (1.10), (1.14), (3.4) and (1.8), (2.22).3 We stress that plugging (5.39)–(5.40) into
(5.2) we obtain the correct prefactor 1/N 2m , thanks to the extra term 1/N 3 in (5.2).

3 For simplicity, in relations (5.40) we have omitted the “periodicity correction” 21{(n,x)∈Z3even}, see (1.8)
and (2.22), because this disappears upon summation.
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To justify the replacements (5.39)–(5.40), we proceed by approximations. Henceforth
m ≥ 2 is fixed. We define I(m),(ε)

1 (φ,ψ) by restricting the integral in (4.2) to the set
{
ai − bi−1 � ε ∀1 � i � m + 1, bi − ai ≥ ε ∀1 ≤ i ≤ m

}
, (5.41)

where b0 := 0 and am+1 := 1. Note that I(m)
1 (φ,ψ) − I(m),(ε)

1 (φ,ψ) is small, if we

choose ε > 0 small, simply because the integrated integral I(m)
1 (φ,ψ) is finite.

We similarly define I (N ,m),(ε)
N (φ,ψ) by restricting the sum in (5.2) to the set

{
ai − bi−1 � εN ∀1 � i � m + 1, bi − ai ≥ εN ∀1 ≤ i ≤ m

}
, (5.42)

where b0 := 0 and am+1 := N . The difference I (N ,m)
N (φ,ψ) − I (N ,m),(ε)

N (φ,ψ) is
bounded by the sum in (5.31) restricted to the complementary set of (5.42). By the
uniform bound (2.21), this sum is bounded by the integral in (5.7) restricted to the
complementary set of (5.41). Then I (N ,m)

N (φ,ψ)− I (N ,m),(ε)
N (φ,ψ) is small, uniformly

in large N , for ε > 0 small.
As a consequence, to prove (5.3) it suffices to show that

lim
N→∞ I (N ,m),(ε)

N (φ,ψ) = πm I(m),(ε)
1 (φ,ψ) for each ε > 0.

We next make a second approximation. For large M > 0, we define I(m),(ε,M)
1 (φ,ψ)

by further restricting the integral in (4.2) to the bounded set
{|x1| � M, |yi − xi | � M

√
bi − ai ∀1 � i � m,

|xi − yi−1| � M
√

ai − bi−1 ∀ 2 � i � m
}
.

(5.43)

We similarly define I (N ,m),(ε,M)
N (φ,ψ), by further restricting the sum in (5.2) to the set

{|x1| � M
√

N , |yi − xi | � M
√

bi − ai ∀1 � i � m,

|xi − yi−1| � M
√

ai − bi−1 ∀ 2 � i � m
}
.

(5.44)

Clearly, limM→∞ I(m),(ε,M)
1 (φ,ψ) = I(m),(ε)

1 (φ,ψ). We claim that, analogously,

lim
M→∞ lim sup

N→∞
∣
∣I (N ,m),(ε,M)

N (φ,ψ) − I (N ,m),(ε)
N (φ,ψ)

∣
∣ = 0. (5.45)

Thenwe can complete the proof of Lemma 5.1: the asymptotic relations (5.39) and (5.40)
hold uniformly on the restricted sets (5.42) and (5.44), so by dominated convergence

for every ε > 0 , M < ∞ : lim
N→∞ I (N ,m),(ε,M)

N (φ,ψ) = πm I(m),(ε,M)
1 (φ,ψ).

It remains to prove (5.45). We can upper bound the difference in (5.45) as in (5.31)–
(5.34): we sum out the spatial variables recursively, starting from ym , then xm , then
ym−1, etc.

• When we sum out ym , if |ym − xm | > M
√

bm − am , then by (5.32) and (2.23) we
pick up at most a fraction δ(M) � C/M2 of the upper bound in (5.34). The same
applies when we sum out yi for 2 � i � m − 1, if |yi − xi | > M

√
bi − ai .
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• When we sum out xm , if |xm − ym−1| > M
√

am − bm−1, then we restrict the sum in
(5.33) accordingly, andwepick up again atmost a fraction δ(M) � 1/M2 of the upper
bound in (5.34), simply because

∑
|x |>M

√
n qn(x) = P(|Sn| > M

√
n) � 1/M2. The

same applies when we sum out xi for 3 � i � m − 1.
• The same argument applies to the sums over x2 and y1, see the lines following
(5.34).

• For the last sum over x1, if |x1| > M
√

N , by (2.8) and the fact that φ has compact
support, we pick up at most a fraction δ(M) = O(1/M2) of the sum (5.35).

Since for fixed m, there are only finitely many cases that violate (5.44), while δ(M) → 0
as M → ∞, then (5.45) follows readily. ��

6. Further Bounds Without Triple Intersections

We recall that the centered third moment E
[(

Z N ,βN
s,t (φ,ψ)−E[Z N ,βN

s,t (φ,ψ)])3] of the
partition function averaged over both endpoints admits the expansion (4.3). We then
denoted by M N ,NT

s,t (φ,ψ) the contribution to (4.3) coming from no triple intersecitons,
see (4.4).

We now consider the partition functions Z N ,βN
s,t (w,ψ), Z N ,βN

s,t (φ, z) averaged over

one endpoint, see (2.4), (2.5), and also the point-to-point partition function ZβN
s,t (w, z),

see (2.1) (we sometimeswrite Z N ,βN
s,t (w, z), even though it carries no explicit dependence

on N ).

The centered third moment E
[(

Z N ,βN
s,t (∗, †) − E[Z N ,βN

s,t (∗, †)])3] for ∗ ∈ {φ,w},
† ∈ {ψ, z} can be written as in (4.3), starting from the polynomial chaos expansions
(2.11)–(2.12). In analogy with (4.4), we decompose

E
[(

Z N ,βN
s,t (∗, †) − E[Z N ,βN

s,t (∗, †)])3] = M N ,NT
s,t (∗, †) + M N ,T

s,t (∗, †), (6.1)

where M N ,T
s,t (∗, †) and M N ,NT

s,t (∗, †) are the contributions with and without triple in-
tersections. In this section we prove the following bounds, which will be used to
prove Proposition 4.3.

Lemma 6.1 (Bounds without triple intersections). Let φ ∈ Cc(R
2), ψ ∈ Cb(R

2) and
w, z ∈ Z

2. For any ε > 0, as N → ∞, we have

M N ,NT
0,N (w,ψ) = O(N ε), (6.2)

∑

1≤a≤N

∑

z∈Z2

M N ,NT
0,a (w, z) = O(1), (6.3)

∑

1≤a≤N

∑

z∈Z2

M N ,NT
0,a (φ, z) = O(N

5
2 +ε). (6.4)

We prove relations (6.2)–(6.4) separately below. For the quantity M N ,NT
s,t (∗, †), when

both arguments ∗, † are functions, we derived the representation (5.2). Analogous rep-
resentations hold when one of the arguments ∗, † is a point. For instance, in the point-



Critical Directed Polymer and Stochastic Heat Equation on Z
2+1 417

to-point case:

M N ,NT
s,t (w, z) =

∞∑

m=2

3 · 2m−1 I (N ,m)
s,t (w, z), where

I (N ,m)
s,t (w, z) := σ 2m

N

∑

s<a1�b1<a2�b2<···<am�bm<t
x1,y1,x2,y2,...,xm ,ym∈Z2

qs,a1(w, x1)
2 qs,a2(w, x2) ·

· UN (b1 − a1, y1 − x1) qb1,a2(y1, x2) UN (b2 − a2, y2 − x2) ·

·
m∏

i=3

{
qbi−2,ai (yi−2, xi ) qbi−1,ai (yi−1, xi ) UN (bi − ai , yi − xi )

}
·

· qbm−1,t (ym−1, z) qbm ,t (ym, z)2.

(6.5)

Note that in contrast to (5.2) there is no factor N−3, because the definition of ZβN
s,t (w, z),

unlike Z N ,βN
s,t (φ,ψ), contains no such factor, cf. (2.1) and (2.6).

The identity (6.5) holds also for M N ,NT
s,t (φ, z) (replace qs,ai (w, xi ) by q N

s,ai
(φ, xi ),

i = 1, 2) and for M N ,NT
s,t (w,ψ) (replace qbi ,t (yi , z) by q N

bi ,t
(yi , ψ), i = m − 1, m).

Proof of (6.2). To estimate I (N ,m)
0,N (w,ψ), we replace ψ by the constant |ψ |∞, and we

take |ψ |∞ � 1. We then focus on I (N ,m)
0,N (w, 1), and we can set w = 0, by translation

invariance. By the analogue of (6.5) (note that q N
bi ,t

(yi , ψ) ≡ 1 for ψ ≡ 1), we get

I (N ,m)
0,N (w,ψ) � σ 2m

N

∑

0<a1�b1<a2�b2<···<am�bm<N
x1,y1,x2,y2,...,xm ,ym∈Z2

qa1(x1)
2UN (b1 − a1, y1 − x1) ·

·
m∏

i=2

{
qbi−2,ai (yi−2, xi ) qbi−1,ai (yi−1, xi ) UN (bi − ai , yi − xi )

}
,

(6.6)

where we stress that the product starts from i = 2 and we set b0 := 0 and y0 := 0. By
the definition of UN in (2.15)–(2.16), we have the following identity, for fixed b1 ∈ N,
y1 ∈ Z

2:

σ 2
N

∑

0<a1≤b1, x1∈Z2

qa1(x1)
2 UN (b1 − a1, y1 − x1) = UN (b1, y1). (6.7)

Therefore we can rewrite (6.6) as

I (N ,m)
0,N (w,ψ) � σ

2(m−1)
N

∑

0<b1<a2�b2<···<am�bm<N
y1,x2,y2,...,xm ,ym∈Z2

UN (b1, y1) ·

·
m∏

i=2

{
qbi−2,ai (yi−2, xi ) qbi−1,ai (yi−1, xi ) UN (bi − ai , yi − xi )

}
.

(6.8)
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We now sum out the spatial variables ym , xm , …, y2, x2, y1, arguing as in (5.32)–
(5.33), to get the following upper bound, analogous to (5.31), for a suitable c < ∞:

I (N ,m)
0,N (w,ψ) � cm σ

2(m−1)
N

∑

0<b1<a2�b2<...
···<am�bm<N

UN (b1)
m∏

i=2

UN (bi − ai )
√

(ai − bi−1)(ai − bi−2)
. (6.9)

Then we set ui := ai − bi−1, vi := bi − ai for 2 ≤ i ≤ m, and we rename u1 := b1.
This allows to bound ai − bi−2 � ui + ui−1 for all i � 2 (including i = 2, since

ai − bi−2 = a2 � u2 + b1). Then, for λ > 0, we insert the factor eλ
∏m

i=2 e−λ(
vi
N ) > 1

and we estimate, as in (5.36),

I (N ,m)
0,N (w,ψ) � eλ cm

(

σ 2
N

N∑

v=0

e−λ v
N UN (v)

)m−1

·

·
{ N∑

u1=1

UN (u1)
∑

0<u2,...,um<N

m∏

i=2

1
√

ui (ui + ui−1)

}

. (6.10)

The first parenthesis is � c
( 1
log N + Cλ

)
, see (5.37). Then we replace ui by Nui , with

ui ∈ 1
N Z, and bound Riemann sums by integrals, by monotonicity. This yields (for a

possibly larger c)

I (N ,m)
0,N (w,ψ) � eλ cm ( 1

log N + Cλ

)m−1 ·

·
{ ∑

u1∈ 1
N Z

1
N �u1�1

UN (Nu1)

∫

0<u2,...,um<1

m∏

i=2

1
√

ui (ui + ui−1)
d�u

}

. (6.11)

The integral equals φ(m−1)(u1), see (5.11). We bound UN (Nu1) � c2
log N

N Ĝϑ(u1) by
(2.21) and (2.25), since u1 > 0. Recalling that φ(m−1)(·) is decreasing, we get

I (N ,m)
0,N (w,ψ) � eλ cm ( 1

log N + Cλ

)m−1
{
log N

N

∑

u1∈ 1
N Z

0<u1<1

Ĝϑ(u1)

}

φ(m−1)( 1
N )

� eλ cm ( 1
log N + Cλ

)m−1
(log N ) Cλ φ(m−1)( 1

N ), (6.12)

where for the last inequality, recalling that Ĝϑ(·) is decreasing, we bounded the Riemann
sum in brackets by the integral

∫ 1
0 Ĝϑ(u1) du1 � Cλ, see (5.12).

Putting together (6.5) and (6.12), we can finally estimate

M N ,NT
0,N (w,ψ) � 3

∑

m�2

2m I (N ,m)
0,N (w,ψ)

� 3eλ (log N )
∑

m�2

[
2c

( 1
log N + Cλ

)]m
φ(m−1)( 1

N ),
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and using the first inequality in (5.13) we obtain

M N ,NT
0,N (w,ψ) � 3eλ (log N )

∑

m�2

[
64c

( 1
log N + Cλ

)]m
m∑

i=0

1

i !
( 1
2 log(e

2N )
)i

� 3eλ (log N )
∑

i�0

1

i !
( 1
2 log(e

2N )
)i ∑

m�i

[
64c

( 1
log N + Cλ

)]m

= 3eλ

1−[64c ( 1
log N +Cλ)] (log N )

∑

i�0

1

i !
(
32c

( 1
log N + Cλ

)
log(e2N )

)i

= 3eλ

1−[64c ( 1
log N +Cλ)] (log N )

(
e2N

)32c ( 1
log N +Cλ)

.

Since limλ→∞ Cλ = 0, see (5.12), given ε > 0 we can fix λ large so that 32c Cλ < ε
2 .

Then for large N the exponent of (e2N ) in the last term is < ε, which proves (6.2). ��
Proof of (6.3). From the first line of (6.5) we can write

∑

1�a�N

∑

z∈Z2

M N ,NT
0,a (w, z) =

∑

m�2

3 · 2m−1
∑

1�a�N

∑

z∈Z2

I (N ,m)
0,a (w, z). (6.13)

To estimate
∑

1�a�N
∑

z∈Z2 I (N ,m)
0,a (w, z), we use the representation (6.5)with s = 0

and t = a. We may also set w = 0 (by translation invariance). We first perform the sum
over a1 and bm , using (6.7) and the symmetric relation

σ 2
N

∑

am≤bm<a, ym∈Z2

UN (bm − am, ym − xm) qbm ,a(ym, z)2 = UN (a − am, z − xm).

(6.14)

We then obtain

∑

1≤a≤N
z∈Z2

I (N ,m)
0,a (w, z) = σ

2(m−2)
N

∑

0<b1<a2�b2<···<am<a≤N
y1,x2,...,ym−1,xm ,z∈Z2

UN (b1, y1) ·

·
m−1∏

i=2

{
qbi−2,ai (yi−2, xi ) qbi−1,ai (yi−1, xi ) UN (bi − ai , yi − xi )

}

·
{

qbm−2,am (ym−2, xm) qbm−1,am (ym−1, xm) UN (a − am, z − xm)
}

qbm−1,a(ym−1, z).

(6.15)

If we rename ym := z and bm := a, then we see that (6.15) differs from (6.8)
only for the factor σ

2(m−2)
N (instead of σ

2(m−1)
N ) and for the presence of the last kernel

qbm−1,a(ym−1, z) = qbm−1,bm (ym−1, ym). The latter can be estimated using (1.8):

qbm−1,a(ym−1, z) ≤ c

bm − bm−1
≤ c√

bm − bm−1
(6.16)
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for some suitable constant c. As in (6.9), we first sum out the spatial variables, getting
∑

1≤a≤N
z∈Z2

I (N ,m)
0,a (w, z) � cm σ

2(m−2)
N

∑

0<b1<a2�b2<...
···<am�bm<N

UN (b1)

m∏

i=2

UN (bi − ai )
√

(ai − bi−1)(ai − bi−2)

1√
bm − bm−1

.

Then we set u1 := b1 and ui := ai −bi−1, vi := bi −ai for 2 ≤ i ≤ m, which allows to
bound ai −bi−2 � ui +ui−1 for i � 2, as well as bm −bm−1 � um . Then, for λ > 0, we

insert the factor eλ
∏m

i=2 e−λ(
vi
N ) > 1 and, by (5.37), we obtain the following analogue

of (6.10):
∑

1≤a≤N
z∈Z2

I (N ,m)
0,a (w, z) � cm eλ (log N )

( 1
log N + Cλ

)m−1 ·

·
{ N∑

u1=1

UN (u1)
∑

0<u2,...,um<N

m∏

i=2

1
√

ui (ui + ui−1)

1√
um

}

,

(6.17)

where the extra log N comes from having σ
2(m−2)
N instead of σ

2(m−1)
N (by (1.14) and

(1.10)).
We now switch tomacroscopic variables, replacing ui by Nui , with ui ∈ 1

N Z∩(0, 1),

and bound UN (Nu1) � c1
log N

N Ĝϑ(u1) since u1 > 0, by (2.21) and (2.25). We then
replace the Riemann sum in brackets by the corresponding integrals, similar to (6.11),
with an important difference (for later purposes): since ui ∈ 1

N Z and ui > 0, we can
restrict the integration on ui � 1

N (possibly enlarging the value of c). This leads to
∑

1≤a≤N
z∈Z2

I (N ,m)
0,a (w, z) � (log N ) eλ cm ( 1

log N + Cλ

)m−1 ·

· log N√
N

{ ∫

1
N �u1,u2,...,um<1

Ĝϑ(u1)

( m∏

i=2

1
√

ui (ui + ui−1)

)
1√
um

d�u
}

, (6.18)

where the factor log N√
N

comes from the estimate on UN (Nu1) and from the last kernel

1/
√

um .
If we define φ̂(k)(·) as the following modification of (5.11):

φ̂(0)(u) := 1√
u
, and fork � 1 : φ̂(k)(u) := ∫ 1

1
N

1√
s(s+u)

φ̂(k−1)(s) ds,

(6.19)

then, recalling (5.12), we can rewrite (6.18) as follows:

∑

1≤a≤N
z∈Z2

I (N ,m)
0,a (w, z) � eλ cm (log N )2√

N
(Cλ,N )m−1

∫ 1

1
N

Ĝϑ(u) φ̂(m−1)(u) du ,

where we set Cλ,N := 1
log N + Cλ = 1

log N + cϑ

2+log λ
.

(6.20)
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Similar to Lemma 5.4, we have the following bound on φ̂(k), that we prove later.

Lemma 6.2. For all k ∈ N, the function φ̂(k)(v) is decreasing on (0, 1), and satisfies

φ̂(k)(u) � 32k
k∑

i=0

1

2i i !
(
log(e2Nu)

)i

√
u

� 32k e
√

N , ∀u ∈ ( 1
N , 1

)
. (6.21)

We need to estimate the integral in (6.20), when we plug in the bound (6.21). We
first consider the contribution from u < 1√

N
. In this case Ĝϑ(u) � 4cϑ

(log N )2
1
u , see (2.25),

hence

∫ 1√
N

1
N

Ĝϑ(u)

(
log(e2Nu)

)i

√
u

du ≤ 4cϑ

(log N )2

∫ 1√
N

1
N

(
log(e2Nu)

)i

u
3
2

du

≤ 4ecϑ

√
N

(log N )2

∫ ∞

1

(
logw

)i

w
3
2

dw = 8ecϑ

√
N

(log N )2

∫ ∞

0
2i si e−sds = C

√
N

(log N )2
2i i !,
(6.22)

where we first made the change of variables e2Nu = w, and then w = e2s , and denote
C = 8ecϑ for short. Then it follows by (6.21) that

∫ 1√
N

1
N

Ĝϑ(u) φ̂(m−1)(u) du � C 32m m

√
N

(log N )2
︸ ︷︷ ︸

Am,N

.

We then consider the contribution from u ≥ 1√
N
. Since Ĝϑ(u) � cϑ

u , we have

∫ 1

1√
N

Ĝϑ(u)

(
log(e2Nu)

)i

√
u

du � cϑ

(
log(e2N )

)i
∫ 1

1√
N

1

u3/2 du = 2cϑ N
1
4
(
log(e2N )

)i
,

hence by (6.21)

∫ 1

1√
N

Ĝϑ(u) φ̂(m−1)(u) du � C 32m N
1
4

m−2∑

i=0

1

2i i !
(
log(e2N )

)i

︸ ︷︷ ︸
Bm,N

.

By (6.13) and (6.20), we finally see that

∑

1�a�N

∑

z∈Z2

M N ,NT
0,a (w, z) � 3

∑

m�2

2m−1 eλ cm (log N )2√
N

(Cλ,N )m−1 C 32m{
Am,N + Bm,N

}

� C ′ eλ

{ ∑

m�2

(64 c Cλ,N )m−1 m +
∑

m�2

(64 c Cλ,N )m−1
(

(log N )2

N
1
4

m−2∑

i=0

1

2i i !
(
log(e2N )

)i
)}

,
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with C ′ := 3 · 32c. If we fix λ large enough, then for large N we have 64 c CN ,λ < 1
(recall (6.20)), then the first sum in the RHS is finite, in agreement with our goal (6.3).
Concerning the second sum, we can estimate it by

� (log N )2

N
1
4

∑

i�0

1

2i i !
(
log(e2N )

)i ∑

m�i+2

(64 c Cλ,N )m−1

� (log N )2

N
1
4

∑

i�0

1

2i i !
(
log(e2N )

)i (64 c Cλ,N )i

1 − 64 c Cλ,N
= (log N )2

N
1
4

(e2N )32 c Cλ,N

1 − 64 c Cλ,N
.

If we fix λ large enough, then for large N we have that the exponent is 32 c Cλ,N < 1
4 ,

hence the last term is o(1) as N → ∞. This completes the proof of (6.3). ��
In order to prove Lemma 6.2, we need the following analogue of Lemma 5.5.

Lemma 6.3. For all i ∈ N0 and v ∈ ( 1
N , 1

)
,

∫ 1

1
N

(
log(e2Ns))

)i

s
√

s + v
ds ≤ 2i+1

√
v

i !
i+1∑

j=0

(
log(e2Nv)

) j

2 j j ! . (6.23)

Proof. We can bound

∫ 1

1
N

(
log(e2Ns))

)i

s
√

s + v
ds ≤ 1√

v

∫ v

1
N

(
log(e2Ns))

)i

s
ds

︸ ︷︷ ︸
B

+
∫ 1

v

(
log(e2Ns))

)i

s
√

s
ds

︸ ︷︷ ︸
A

.

For B, we make the change of variable u = log(e2Ns) to obtain

B = 1√
v

∫ log e2Nv

2
uidu ≤ (log e2Nv)i+1

√
v(i + 1)

. (6.24)

For A, we make the change of variable y = 1
2 log e2Ns and apply (5.25) to obtain

A ≤ 2i+1e
√

N
∫ ∞

1
2 log e2Nv

yi e−ydy ≤ 2i+1e
√

Ne− 1
2 log e2Nv

i∑

j=0

i !
j !
(1

2
log e2Nv

) j
.

(6.25)

Combined with the bound for B, this gives precisely (6.23). ��
Proof of Lemma 6.2. We follow the proof of Lemma 5.4.Wefirst show that for all k ∈ N

φ̂(k)(v) � 2k

√
v

k∑

i=0

ĉk,i

2i i !
(
log(e2Nv)

)i ∀v ∈
( 1

N
, 1

)
, (6.26)

for suitable coefficients ĉk,i . For k = 1, note that by (6.19)

φ̂(1)(v) =
∫ 1

1
N

1√
s(s + v)

1√
s
ds �

∫ v

1
N

1√
v

1

s
ds +

∫ 1

v

1

s
√

s
ds ≤ log(e2Nv)√

v
.
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Therefore (6.26) holds for k = 1 with ĉ1,0 = 0 and ĉ1,1 = 1.
Assume that we have established (6.26) up to k − 1, then

φ̂(k)(v) =
∫ 1

1
N

1√
s(s + v)

φ̂(k−1)(s) ds ≤ 2k−1
k−1∑

i=0

ĉk−1,i

2i i !
∫ 1

1
N

(
log(e2Ns)

)i

s
√

s + v
ds.

(6.27)

Applying Lemma 6.3, we obtain

φ̂(k)(v) ≤ 2k−1
k−1∑

i=0

ĉk−1,i

2i i !
2i+1

√
v

i !
i+1∑

j=0

(
log(e2Nv)

) j

2 j j !

= 2k

√
v

k∑

j=0

( k−1∑

i=( j−1)+
ĉk−1,i

) (log e2Nv) j

2 j j ! .

This shows that (6.26) holds, provided the coefficients ĉk,i satisfy the recursion

ĉk, j =
k−1∑

i=( j−1)+
ĉk−1,i , (6.28)

which differs from the recursion (5.22) for ck,i by a missing factor of 2. Note that ĉ1,1
here is also only half of c1,1 in (5.19). Therefore we have the identity ĉk,i = 2−kck,i , and
Lemma 5.6 gives the bound ĉk,i ≤ 16k . Substituting this bound into (6.26) then proves
Lemma 6.2. ��
Proof of (6.4). We start from the analogue of (6.5), with qs,ai (w, x1), qs,ai (w, x1) re-
placed by q N

s,ai
(φ, x1), q N

s,ai
(φ, x2). Applying relation (6.14), we can write

∑

1≤a≤N
z∈Z2

I (N ,m)
0,a (φ, z) = σ

2(m−1)
N

∑

0<a1≤b1<a2<···<am<a≤N
x1,y1,x2,y2,...,xm ,z∈Z2

q N
0,a1(φ, x1)

2q N
0,a2(φ, x2) ·

· UN (b1 − a1, y1 − x1)qb1,a2(y1, x2)UN (b2 − a2, y2 − x2) ·

·
m∏

i=3

{
qbi−2,ai (yi−2, xi ) qbi−1,ai (yi−1, xi ) UN (bi − ai , yi − xi )

}
qbm−1,a(ym−1, z).

(6.29)

We rename ym := z, bm := a and bound qbm−1,a(ym−1, z) � (c
√

bm − bm−1)
−1,

as in (6.16). Next we sum over the space variables ym, xm, . . . until y3, x3, y2, as in
(5.32)–(5.33), which has the effect of replacingUN (bi −ai , yi − xi ) byUN (bi −ai ) and
qbi−2,ai (yi−2, xi ) qbi−1,ai (yi−1, xi ) by c (

√
(ai − bi−1)(ai − bi−2))

−1. Then we bound
q N
0,a2

(φ, x2) � |φ|∞, see (2.8), after which the sum over x2 gives 1, the sum over y1
gives UN (b1 − a1), and the sum over x1 is bounded by c N , as in (5.35). This leads to
estimate the RHS of (6.29) by

cm N σ
2(m−1)
N

∑

0<a1�b1<...
···<am�bm<N

UN (b1 − a1) UN (b2 − a2)
m∏

i=3

UN (bi − ai )
√

(ai − bi−1)(ai − bi−2)

1√
bm − bm−1

.
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We now set ui := ai − bi−1 and vi := bi − ai for 1 ≤ i ≤ m, with b0 := 0,
and bound ai − bi−2 � ui + ui−1, while bm − bm−1 � um . Then we insert the factor

eλ
∏m

i=1 e−λ(
vi
N ) > 1, for λ > 0, and by (5.37) we bound the last display by

cm eλ N (log N )
( 1
log N + Cλ

)m
{ ∑

0<u1,...,um<N

m∏

i=3

1
√

ui (ui + ui−1)

1√
um

}

, (6.30)

which is an analogue of (6.17). The exponent of ( 1
log N +Cλ) equals m, because we have

m factors UN (bi − ai ), and the extra log N comes from having m − 1 powers of σ 2
N .

We now switch tomacroscopic variables, replacing ui by Nui , with ui ∈ 1
N Z∩(0, 1),

and replace the Riemann sum in brackets by the corresponding integrals, where as in
(6.18) we restrict the integration on ui � 1

N (possibly enlarging the value of c). This
leads to

∑

1≤a≤N
z∈Z2

I (N ,m)
0,a (φ, z) � cm eλ N (log N )

( 1
log N + Cλ

)m ·

· N
3
2

{ ∫

1
N �u1,u2,...,um<1

( m∏

i=3

1
√

ui (ui + ui−1)

)
1√
um

d�u
}

, (6.31)

where the factor N
3
2 arises by matching the normalization factor N−m of the Riemann

sum and the term N−(m−2)− 1
2 generated by the square roots, when we set ui � Nui .

Note that the variable u1 does not appear in the function to be integrated in (6.31),
so the integral over u1 is at most 1. Recalling the definition (6.19) of φ̂(k), we have

∑

1≤a≤N
z∈Z2

I (N ,m)
0,a (φ, z) � cm eλ N

5
2 (log N )

( 1
log N + Cλ

)m
∫ 1

1
N

φ(m−2)(u2) du2.

By Lemma 6.2, we have

∫ 1

1
N

φ̂(m−2)(u)du ≤32m−2
m−2∑

i=0

1

2i i !
∫ 1

0

(log(e2Nu))i

√
u

du ≤32m−2
m−2∑

i=0

(log(e2N ))i

2i i ! 2.

Therefore, if we set Cλ,N := Cλ,N := 1
log N + Cλ as in (6.20), recalling (6.5) we get

∑

1≤a≤N
z∈Z2

M N ,NT
0,a (φ, z) � 3

∑

m�2

2m
∑

1≤a≤N
z∈Z2

I N ,m
0,a (φ, z)

� 3 eλ N
5
2 (log N )

∑

m�2

(64c Cλ,N )m
m∑

i=0

(log(e2N ))i

2i i !

� 3 eλ N
5
2 (log N )

∑

i�0

(log(e2N ))i

2i i !
∑

m�i

(64c Cλ,N )m
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� 3 eλ

1 − 64c Cλ,N
N

5
2 (log N )

∑

i�0

(
32c Cλ,N log(e2N )

)i

i !

= 3 eλ

1 − 64c Cλ,N
N

5
2 (log N ) (e2N )32c Cλ,N .

Given ε > 0 we can fix λ large so that 32c Cλ < ε
2 . Then we have Cλ,N = 1

log N +Cλ <

2
3ε for large N . This concludes the proof of (6.4). ��

7. Bounds on Triple Intersections

In this section,weproveProposition4.3. Firstwederive a representation for M N ,T
s,t (φ,ψ),

which denotes the sum in (4.3) restricted to A ∩ B ∩ C �= ∅ (recall (4.4)).
Wedenote by D = (D1, . . . , D|D|) := A∩B∩C ,with Di = (di , wi ), the locations of

the triple intersections. If we fix two consecutive triple intersections, say Di−1 = (a, w)

and Di = (b, z), the contribution to (4.3) is given by

E
[(

Z N ,βN
a,b (w, z)

)3] − M N ,T
a,b (w, z),

where M N ,T
a,b (w, z) is defined in (6.1), together with M N ,T

a,b (φ, z) and M N ,T
a,b (w,ψ). Then

we obtain from (4.3) the following representation for M N ,T
s,t (φ,ψ) (where E[ξ3] :=

E[ξ3n,z]):

M N ,T
s,t (φ,ψ) := 1

N 3

∑

D⊆{s+1,...,t−1}×Z
2

|D|�1

E[ξ3]|D| (
E
[(

Z N ,βN
s,d1

(φ,w1)
)3] − M N ,T

s,d1
(φ,w1)

)
·

·
|D|∏

i=2

(
E
[(

Z N ,βN
di−1,di

(wi−1, wi )
)3] − M N ,T

di−1,di
(wi−1, wi )

)
·

·
(
E
[(

Z N ,βN
d|D|,t (w|D|, ψ)

)3] − M N ,T
d|D|,t (w|D|, ψ)

)
. (7.1)

To prove Proposition 4.3 we may assume t = 1, by Remark 1.3, and also φ ≥ 0,
ψ ≥ 0 (otherwise just replace φ by |φ| and ψ by |ψ | to obtain upper bounds). If we
rename (d1, w1) = (a, x) and (d|D|, w|D|) = (b, y) in (7.1), we get the upper bound

|M N ,T
0,N (φ,ψ)| ≤ |E[ξ3]| · 1

N 3

∑

1≤a≤N
x∈Z2

(
E
[(

Z N ,βN
0,a (φ, x)

)3] − M N ,T
0,a (φ, x)

)

︸ ︷︷ ︸
AN

·
( ∞∑

n=0

�n
N

)
· sup

1≤b≤N
y∈Z2

(
E
[(

Z N ,βN
b,N (y, ψ)

)3] − M N ,T
b,N (y, ψ)

)

︸ ︷︷ ︸
BN

,

(7.2)

where we set

�N := |E[ξ3]|
∑

1≤a≤N
z∈Z2

(
E
[(

Z N ,βN
0,a (0, z)

)3] − M N ,T
0,a (0, z)

)
. (7.3)
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Note that E[ξ3] actually depends on N , and vanishes as N → ∞. Indeed, recalling
that ξn,z = eβN ωn,z−λ(βN ) − 1 and λ(β) = 1

2β
2 + O(β3) as β → 0, see (2.10) and (1.1),

we have

E[ξ3] = eλ(3βN )−3λ(βN ) − 3 eλ(2βN )−2λ(βN ) + 2 = O(β3
N ) = O

(
(log N )−

3
2
)
, (7.4)

where the last equality holds by (1.14) and (1.10).
Then, to prove Proposition 4.3, by the bound (7.2) it would suffice to show that

lim sup
N→∞

AN · BN < ∞ and lim sup
N→∞

�N < 1,

so that the series
∑∞

n=0 �n
N = (1 − �N )−1 is bounded. We are going to prove the

following stronger result, which implies the bound |M N ,T
0,N (φ,ψ)| = o(N−1/2+η), for

any fixed η > 0.

Lemma 7.1. The following relations hold as N → ∞, for any fixed ε > 0:

(a) AN = o(N ε−1/2);
(b) BN = o(N ε);
(c) �N = O((log N )−1/2).

Before the proof, we recall that E
[(

Z N ,βN
a,b (∗, †) − q N

a,b(∗, †)
)3] = M N ,T

a,b (∗, †) +

M N ,NT
a,b (∗, †), for any ∗ ∈ {w,φ}, † ∈ {z, ψ}, hence

E
[(

Z N ,βN
a,b (∗, †)

)3] − M N ,T
a,b (∗, †)

= q N
a,b(∗, †)3 + 3 q N

a,b(∗, †) Var
(
Z N ,βN

a,b (∗, †)
)
+ M N ,NT

a,b (∗, †).
(7.5)

Also note that M N ,NT
a,b (∗, †) ≥ 0, see (4.3) and (6.5).

Proof of Lemma 7.1. We first prove point (b). By definition, see (2.7),

q N
b,N (y, ψ) =

∑

z∈Z2

qN−b(z − y)ψ
( z√

N

) ≤ |ψ |∞.

If we replace ψ by the constant 1 in the averaged partition function Z N ,βN
b,N (y, ψ) we

obtain the point-to-plane partition function ZβN
N−b(y), see (2.4) and (1.4). Then, by (1.32),

Var
(
Z N ,βN

b,N (y, ψ)
) ≤ E

[
Z N ,βN

b,N (y, ψ)2
]

� |ψ |2∞ E
[
ZβN

N−b(y)2
] = O(log N ). (7.6)

Lastly, by (6.2), we have

M N ,NT
b,N (y, ψ) = O(N ε).

It suffices to plug these estimates into (7.5) with ∗ = y, † = ψ and point (b) follows.
Next we prove point (a). First note that

1

N 3

∑

1≤a≤N
x∈Z2

q N
0,a(φ, x)3 = 1

N 3

∑

1≤a≤N
x∈Z2

( ∑

y∈Z2

φ
( y√

N

)
qa(x − y)

)3
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� |φ|2∞
N 3

∑

1≤a≤N
x∈Z2

∑

y∈Z2

qa(x − y) φ
( y√

N

)= |φ|2∞
N 3

∑

1≤a≤N

∑

y∈Z2

φ
( y√

N

)

= |φ|2∞
N

∑

y∈Z2

1

N
φ
( y√

N

) = O
( 1

N

)
,

where the last sum converges to
∫

φ(x)dx by Riemann sum approximation. Next note

that we can bound Var
(
Z N ,βN
0,a (φ, x)

)
� |φ|2∞ E[ZβN

a (x)2] = O(log N ), arguing as in
(7.6), hence

1

N 3

∑

1≤a≤N
x∈Z2

q N
0,a(φ, x) Var

(
Z N ,βN
0,a (φ, x)

) ≤ 1

N 3

∑

1≤a≤N
x,y∈Z2

φ
( y√

N

)
qa(x − y) O(log N )

= 1

N
O(log N )

∑

y∈Z2

1

N
φ
( y√

N

) = O
( log N

N

)
.

Lastly, by (6.4), we have

1

N 3

∑

1≤a≤N
x∈Z2

M N ,NT
0,a (φ, x) = O(N ε− 1

2 ).

Plugging these estimates into (7.5) with ∗ = φ and † = x , point (a) follows.
We finally prove point (c). By the local limit theorem (1.8) we have qa(x) ≤ c

a for
some c < ∞, uniformly in a ∈ N and x ∈ Z

2. Therefore, recalling (7.4), we have

E[ξ3]
∑

1≤a≤N
z∈Z2

q N
0,a(0, z)3 ≤ E[ξ3]

∑

1≤a≤N
z∈Z2

c2

a2 qa(z) = E[ξ3]
∑

1≤a≤N

c2

a2 = O((log N )−3/2).

Next we bound Var
(
ZβN
0,a(0, z)

)
� σ−2

N UN (a, z), see (2.15), and note that

∑

z∈Z2

UN (a, z) = UN (a) � C cϑ

log N

a log(e2N/a)
,

by (2.18), (2.20) and (2.25). Bounding qa(x) ≤ c
a and σ−2

N = O(log N ), see (1.14) and
(1.10), we obtain

E[ξ3]
∑

1≤a≤N
z∈Z2

q N
0,a(0, z) Var

(
Z N ,βN
0,a (0, z)

) ≤ c′
E[ξ3]

∑

1≤a≤N

1

a2

(log N )2

log(e2N/a)
.

For a �
√

N we can bound log(e2N/a) � log(e2
√

N ) � 1
2 log N , while for

√
N <

a � N we can simply bound log(e2N/a) � log e2 = 2. This shows that the last sum is

uniformly bounded, since
∑

a�1
2 log N

a2
+
∑

a>
√

N
(log N )2

2 a2
= O(log N ) + O(

(log N )2√
N

).
We thus obtain

E[ξ3]
∑

1≤a≤N
z∈Z2

q N
0,a(0, z) Var

(
Z N ,βN
0,a (0, z)

) = O
(
E[ξ3] log N

) = O
(
(log N )−1/2).



428 F. Caravenna, R. Sun, N. Zygouras

Lastly, by (6.3), we also have

E[ξ3]
∑

1≤a≤N
z∈Z2

M N ,NT
0,a (0, z) = E[ξ3] O(1) = O

(
(log N )−3/2).

If we plug the previous bounds into (7.5) with ∗ = 0 and † = z, point (c) is proved. ��

8. Proof for the Stochastic Heat Equation

In this section we prove Theorems 1.7 and 1.9 on the variance and third moment of the
solution to the stochastic heat equation.

Wefirst give auseful representationofuε(t, φ) := ∫
R2 φ(x)uε(t, x) dx . By aFeynman–

Kac representation and the definition of theWick exponential (see [CSZ17b] for details),
it follows that uε(t, φ) is equal in distribution to the Wiener chaos expansion

uε(t, φ)
d=
∫

R2
φ(x) dx +

∑

r≥1

βr
ε

∫

0<t1<···<tr <ε−2t

∫

(R2)r

r∏

i=1

W (dti dxi ) ·

·
{∫

R2
dx ε2φ(εx)

∫

(R2)r

r∏

i=1

gti−ti−1(x̂i−1, x̂i ) j (x̂i − xi ) dx̂i

}

(8.1)

with the convention that t0 := 0 and x̂0 = x .
Expression (8.1) is the starting point to prove both Theorems 1.7 and 1.9. To analyze

this expression, we first need to extend the renewal theory framework, described in
Sects. 1.3 and 2.2 , to continuum distributions. The key results, described in the next
subsection, are analogous to those obtained in the discrete setting, see [CSZ18, Remark
1.7].

8.1. Renewal framework. Fix a continuous function r : [0,∞) → (0,∞) such that4

r(t) = 1

4π t

(
1 + o(1)

)
as t → ∞. (8.2)

For ε > 0, we consider i.i.d. random variables
(
T ε

i

)
i�1 with density

P(T ε
i ∈ dt) = r(t)

Rε

1[0,ε−2](t) dt, (8.3)

where Rε := ∫ ε−2

0 r(t) dt is the normalization constant. Note that T ε
1 + · · · + T ε

k is a

continuumanalogue of τ (N )
k in (1.43), see (1.41)–(1.42),with the identification N = ε−2.

Let us quote some relevant results from [CSZ18] that will be needed in the sequel.

• By [CSZ18, Proposition 1.3], we have the convergence in distribution
(
ε2

(
T ε
1 + · · · + T ε

�s log ε−2	
))

s�0

d−−−→
ε→0

(Ys)s�0, (8.4)

where (Ys)s�0 is the Dickman subordinator, whose marginal density is given by
(1.45).

4 The precise constant 4π in (8.2) is the one relevant for us, but any other positive constant would do.
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• By [CSZ18, Lemma 6.1], the following large deviations bound holds, with c ∈
(0, 1):

P
(
T ε
1 + · · · + T ε

�s log ε−2	 � ε−2) � es−cs log s, ∀ε ∈ (0, 1), ∀s ∈ [0,∞).

(8.5)

Let us now take λε such that

λε := 1 +
ϑ

log ε−2

(
1 + o(1)

)
, for some ϑ ∈ R. (8.6)

Then it follows byRiemann sumapproximation (set r = s log ε−2) that for all T ∈ [0, 1]
1

log ε−2

∑

r�1

λr
ε P

(
T ε
1 + · · · + T ε

r � ε−2T
) −−−→

ε→0

∫ ∞

0
eϑu P(Yu � T ) du. (8.7)

This relation will play a crucial role. We now list some approximations that we can
make in the left hand side of (8.7), without affecting the convergence.

(1) We can restrict the sum to r � K log ε−2, for large K > 0. Indeed, it is easily seen
by (8.5) and (8.6) that the contribution of r > K log ε−2 to the sum in (8.7) is small,
uniformly in ε, for K large.

(2) We can restrict the probability to the event “there are no consecutive short incre-
ments”, where we say that an increment T ε

i is short if and only if T ε
i � (log ε−2)2.

Indeed, the probability that an increment is short is, by (8.2)–(8.3),

pε := P
(
T ε

i � (log ε−2)2
) =

∫ (log ε−2)2

0 r(t) dt
∫ ε−2

0 r(t) dt
= O

(
log(log ε−2)

log ε−2

)

, (8.8)

hence the probability of having two consecutive short increments among T ε
1 , . . . , T ε

r
is

P

( r−1⋃

i=1

{
T ε

i � (log ε−2)2, T ε
i+1 � (log ε−2)2

}
)

� r p2ε � O

(
r
(
log(log ε−2)

)2

(log ε−2)2

)

,

which vanishes as ε → 0, when we restrict to r � K log ε−2.
(3) We can further restrict the probability to the event “the first increment T ε

1 is long,
i.e. not short”, simply because pε → 0 as ε → 0, see (8.8).

8.2. Proof of Theorem 1.7. It follows from the expansion (8.1) that E[uε(t, φ)] =∫
R2 φ(x) dx and that the variance of uε(t, φ) is given by

Var
(
uε(t, φ)

) = ε4
∫

R2×R2
φ(εx̂) φ(εx̃) K ε

t (x̂, x̃) dx̂ dx̃ (8.9)
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where, using the conventions x̂0 = x̂ , x̃0 = x̃ and �t = (t1, . . . , tr ), we define

K ε
t (x̂, x̃) :=

∑

r≥1

β2r
ε

∫

0<t1<···<tr <ε−2t
d�t

∫

(R2)r

r∏

i=1

dxi

∫

(R2)2r

r∏

i=1

dx̂i dx̃i

·
r∏

i=1

gti −ti−1(x̂i−1, x̂i ) gti −ti−1(x̃i−1, x̃i ) j (x̂i − xi ) j (x̃i − xi )

=
∑

r≥1

β2r
ε

∫

0<t1<···<tr <ε−2t
d�t

∫

(R2)2r

r∏

i=1

dx̂i dx̃i

·
r∏

i=1

gti −ti−1(x̂i−1, x̂i ) gti −ti−1(x̃i−1, x̃i ) J (x̂i − x̃i ),

(8.10)

where the second equality holds because j (−x) = j (x) and we recall that J = j ∗ j .
We now exploit the identity

gt (x) gt (y) = 4 g2t (x − y) g2t (x + y). (8.11)

If we set x̂i − x̃i =: zi and x̂i + x̃i = wi and take into account that the Jacobian of the
transformation (x, y) 
→ (x − y, x+ y) on (R2)2 equals 1/4, we obtain, with z0 = x̂ − x̃ ,

K ε
t (x̂, x̃) =

∑

r≥1

β2r
ε

∫

0<t1<···<tr <ε−2t
d�t

∫

(R2)2r
d�z d �w

r∏

i=1

g2(ti−ti−1)(wi − wi−1) g2(ti −ti−1)(zi − zi−1) J (zi )

=
∑

r≥1

β2r
ε

∫

0<t1<···<tr <ε−2t
d�t

∫

(R2)r
d�z

r∏

i=1

g2(ti−ti−1)(zi − zi−1) J (zi ).

(8.12)

Note that variables zi with i � 1 lie in supp(J ), which is a compact subset of R
2,

while z0 = x̂ − x̃ is of order ε−1, in view of (8.9). For this reason, it is convenient
to isolate the integrals over t1, z1 and change variable t1 → ε−2t1. Observing that
gε−2t (x) = ε2gt (εx), and renaming (t1, z1) as (s, z), we obtain

K ε
t (x̂, x̃) =

∫ t

0
ds

∫

R2
dz g2s

(
ε(z − (x̂ − x̃))

)
J (z) K ε

t−s(z), (8.13)

where we define the new kernel K ε
T (z) as follows:

K ε
T (z) :=

∑

r�0

β2(r+1)
ε

∫

0<t1<···<tr <ε−2T
d�t

∫

(R2)r
d�z

r∏

i=1

g2(ti−ti−1)(zi − zi−1) J (zi ),

(8.14)

where z0 := z and we agree that for r = 0 the integrals equal 1.
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This key expression will be analyzed using renewal theory. Note that by (1.9)

g2t (y − x) = 1

4π t
+ O

(
1

t2

)

as t → ∞, uniformly in x, y ∈ supp(J ),

(8.15)

so the dependence on the space variables zi in (8.14) should decouple. We can make this
precise using the approximations described in Sect. 8.1. We proceed in three steps.
Step 1: First approximation. Note that βε, see (1.35), may be rewritten as follows:

β2
ε = 4π

log ε−2 +
4� + o(1)

(log ε−2)2
. (8.16)

We first obtain a domination of K ε
T (z) by a renewal quantity. Let us define

r̄(t) := sup
z′∈supp(J )

∫

R2
g2t (z − z′) J (z) dz. (8.17)

Note that r̄(t) = 1
4π t + O( 1

t2
) as t → ∞, thanks to (8.15), hence

R̄ε =
∫ ε−2

0
r̄(t) dt = 1

4π
log ε−2 + O(1) as ε → 0. (8.18)

If we denote by (T̄ ε
i )i∈N i.i.d. random variables defined as in (8.3), more precisely

P(T̄ ε
i ∈ dt) = r̄(t)

R̄ε

1[0,ε−2](t) dt, (8.19)

we can bound K ε
T (z) from above for T � 1, uniformly in z ∈ supp(J ), as follows:

sup
z∈supp(J )

K ε
T (z) � β2

ε

∑

r�0

β2r
ε

∫

0<t1<···<tr <ε−2T

r∏

i=1

r̄(ti − ti−1) d�t

= β2
ε

∑

r�0

(β2
ε R̄ε)

r P(T̄ ε
1 + · · · + T̄ ε

r < ε−2T )

� c1
log ε−2

∑

r�0

(
1 + c2

log ε−2

)r P(T̄ ε
1 + · · · + T̄ ε

r < ε−2T ),

(8.20)

where the last inequality holds by (8.16) and (8.18), for suitable c1, c2 ∈ (0,∞).
The last line of (8.20) is comparable to the left hand side of (8.7), so we can apply

the approximations (1)–(3) described in Sect. 8.1. In terms of K ε
T (z), see (8.14), these

approximations correspond to restricting the sum to r � K log ε−2 for a large constant
K > 0, by (1), and to restricting the integral over �t to the following set, by (2)–(3):

Iε
T := {

0 < t1 < · · · < tr < ε−2 T : t1 > (log ε−1)2 and, for every 1 � i � r − 1,

either ti − ti−1 > (log ε−2)2 or ti+1 − ti > (log ε−2)2
}
. (8.21)

Summarizing, when we send ε → 0 followed by K → ∞, we can write

K ε
T (z) = K̃

ε

T,K (z) + o(1) uniformly for z ∈ supp(J ), (8.22)
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where we define, with t0 := 0 and z0 := z,

K̃
ε

T,K (z) :=
K log ε−2
∑

r=0

β2(r+1)
ε

∫

Iε
T

d�t
∫

(R2)r
d�z

r∏

i=1

g2(ti−ti−1)(zi − zi−1) J (zi ).

(8.23)

Step 2: Second approximation. Given r ∈ N, let us denote by Sε and Lε the subsets of
indexes i ∈ {1, . . . , r} corresponding to short and long increments:

Sε := {i ∈ {1, . . . , r} : ti − ti−1 � (log ε−2)2},
Lε := {i ∈ {1, . . . , r} : ti − ti−1 > (log ε−2)2}.

We can then decompose the last product in (8.23) as follows:

r∏

i=1

g2(ti−ti−1)(zi − zi−1) J (zi ) =
∏

i∈Sε

g2(ti−ti−1)(zi − zi−1)

∏

i∈Lε

g2(ti−ti−1)(zi − zi−1)

r∏

i=1

J (zi ).

We now make replacements and integrations, in order to simplify this expression.
For each i ∈ Lε we replace g2(ti−ti−1)(zi − zi−1) by r(ti − ti−1), where we set

r(t) := 〈J, g2t J 〉 :=
∫

R2

∫

R2
J (x)g2t (x − y)J (y) dx dy. (8.24)

The error from each such replacement is exp
{

O
(
(log ε−1)−2

)}
, since one easily sees

that g2(ti−ti−1)(zi − zi−1) = g2(ti−ti−1)(x − y) exp
{

O
(
(ti − ti−1)

−1
)}

and we have
ti − ti−1 > (log ε−2)2 (recall that x − y and zi+1 − zi are in the support of J , which is
compact). Sinceweare restricted to r ≤ K log ε−2, see (8.23),wehave |Lε| ≤ K log ε−2,
hence the total error from all these replacements is exp

{
O
(
(log ε−1)−1

)} = (1 + o(1)).
We have shown that

r∏

i=1

g2(ti−ti−1)(zi − zi−1) J (zi )

= (
1 + o(1)

) ∏

i∈Sε

g2(ti−ti−1)(zi − zi−1)
∏

i∈Lε

r(ti − ti−1)

r∏

i=1

J (zi ).

We now proceed by integrating successively dzi for i = r, r − 1, . . . , 1 as follows:

• for i ∈ Lε the integral over dzi amounts to
∫
R2 J (zi ) dzi = 1;

• for i ∈ Sε we integrate both dzi−1 and dzi which gives, see (8.24),

∫

(R2)2
J (zi ) g2(ti−ti−1)(zi − zi−1) J (zi ) dzi−1 dzi = 〈J, g2(ti −ti−1) J 〉 = r(ti − ti−1).
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This sequence of integrations is consistent, i.e. it does not result to integrating a variable
dzi twice, because on the set Iε

T , see (8.23) and (8.21), there are not two consecutive
indices i in Sε. Therefore, uniformly for r � K log ε−2, we have shown that

∫

(R2)r
d�z

r∏

i=1

g2(ti−ti−1)(zi − zi−1) J (zi ) = (
1 + o(1)

) r∏

i=1

r(ti − ti−1). (8.25)

Note that r(t) = 1
4π t + O( 1

t2
), by (8.24) and (8.15), so we can consider i.i.d. random

variables T ε
i with law (8.3).Whenwe plug (8.25) into (8.23), the approximations (1)–(3)

described in Sect. 8.1 show that we can remove the restrictions r � K log ε−2 on the
sum and �t ∈ Iε

T on the integral. Recalling (8.22), we have finally shown that as ε → 0

K ε
T (z) = (

1 + o(1)
)
K̂

ε

T + o(1) uniformly for z ∈ supp(J ), (8.26)

where, recalling (8.16), we define

K̂
ε

T := β2
ε

∑

r�0

β2r
ε

∫

0<t1<···<tr <ε−2T

r∏

i=1

r(ti − ti−1) d�t

= (
4π + o(1)

) 1

log ε−2

∑

r�0

(β2
ε Rε)

r P(T ε
1 + · · · + T ε

r < ε−2T ).

(8.27)

Step 3: Variance computation. We can finally complete the proof of Theorem 1.7, by
proving relation (1.37). Assume that we have shown that, for some ϑ ∈ R,

β2
ε Rε = 1 +

ϑ

log ε−2

(
1 + o(1)

)
. (8.28)

Then, by (8.7) and (8.27), we can write

lim
ε→0

K̂
ε

T = 4π
∫ ∞

0
eϑu P(Yu � T ) du, (8.29)

and the convergence is uniform in T ∈ [0, 1] (because both sides are increasing and the
right hand side is continuous in T ). Looking back at (8.9), (8.13) and (8.26), after the
change of variables x̂, x̃ → ε−1 x̂, ε−1 x̃ , we obtain

Var
(
uε(t, φ)

) = (
1 + o(1)

)
∫

R2×R2
dx̂ dx̃ φ(x̂) φ(x̃)

·
∫ t

0
ds

∫

R2
dz g2s

(
εz − (x̂ − x̃)

)
J (z) K̂

ε

t−s + o(1).

Recalling (8.29), since
∫
R2 J (z) dz = 1, we have shown that

lim
ε→0

Var
(
uε(t, φ)

) =
∫

R2×R2
dx̂ dx̃ φ(x̂) φ(x̃) Q(x̂ − x̃),

where

Q(x) := 4π
∫ t

0
ds g2s(x)

∫ ∞

0
eϑu P(Yu � t − s) du.
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Recalling that fs(·) denotes the density of Ys , see (1.45), and using the definition (1.18)
of Gϑ(·), we can rewrite Q(x) as follows:

Q(x) = 4π
∫ t

0
ds g2s(x)

∫ ∞

0
eϑu

(∫ t−s

0
fu(r) dr

)

du

= 4π
∫ t

0
ds g2s(x)

∫ t−s

0
Gϑ(r) dr = 4π

∫

0<s<v<t
g2s(x) Gϑ(v − s) ds dv

= 2π
∫

0<s<v<t
gs(x/

√
2) Gϑ(v − s) ds dv.

A look at (1.20) shows that Q(x) = 2Kt,ϑ (x/
√
2), hence relation (1.37) is proved.

It only remains to prove (8.28) and to identify ϑ . Note that by (1.9)

∫ ε−2

0
g2t (x − y) dt = 1

4π

∫ ε−2

0

e− |x−y|2
4t

t
dt = 1

4π

∫ ∞
ε2 |x−y|2

4

e−u

u
du.

Using the following representation of the Euler–Mascheroni constant:

∫ ∞

0

(
1

t (t + 1)
− e−t

t

)

dt = γ,

see [GR07, Entry 8.367 (9), page 906], and since

∫ ∞

a

1

t (t + 1)
dt =

∫ ∞

a

(
1

t
− 1

t + 1

)

dt = log(1 + a−1),

we see that as ε → 0,

∫ ε−2

0
g2t (x − y) dt = 1

4π

{

log

(

1 +
4

ε2|x − y|2
)

− γ + o(1)

}

.

Recalling the definition (8.24) of r(t), we have

Rε :=
∫ ε−2

0
r(t) dt =

∫

(R2)2
J (x)J (y)

∫ ε−2

0
g2t (x − y) dt dxdy

= 1

4π

{

log ε−2 + log 4 + 2
∫

R2

∫

R2
J (x) log

1

|x − y| J (y) dx dy − γ + o(1)

}

.

Finally, recalling (8.16), we obtain

β2
ε Rε = 1 +

log 4 + 2
∫
R2

∫
R2 J (x) log 1

|x−y| J (y) dx dy − γ + �/π

log ε−2

(
1 + o(1)

)
.

This shows that (8.28) holds, with the expression in (1.38) for ϑ . ��
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Fig. 2. Diagramatic representation of the expansion (8.39) of the third moment of the solution of SHE. Due
to the space-mollification of the noise, we have non trivial correlations between space-time points (ti , x̂i ) and
(ti , x̃i )—which intuitively belong to two copies of the continuum polymer path, i.e. Brownian motion—only
when x̂i − x̃i is in the support of J (·). This is slightly different from the lattice case, cf. the corresponding
expansion (5.2) for the directed polymer, where non trivial correlations occur only if x̂i = x̃i , i.e. two copies of
the polymer exactly meet. The disks represent the support of J (·) and should be understood as disks in space
R
2 (we drew them in space-time for graphical clarity). An array of consecutive disks represents the quantity

Uε(s, t; x, y) in (8.31), with (s, x) and (t, y) corresponding to space time location of the points inside the
first and the last disk in a sequence. They are the analogues of the wiggled lines in Fig. 1

8.3. Proof of Theorem 1.9. We use the expansion (8.1) to evaluate

E
[(

uε(t, φ) − ∫
R2 φ(x) dx

)3]
. (8.30)

We are going to expand the third power and compute the expectation, which amounts to
“pairwise matchings” of the instances of the noise W (dti dxi ) (note that “triple match-
ings” are automatically ruled out, becauseGaussians have vanishing thirdmoment). This
will lead to an expression, see (8.39) below, which is similar to the one we found for the
directed polymer, cf. (5.2), with some additional complications due to the continuous
setting.

Before entering the technical details, let us give the heuristic picture, which is rep-
resented in Fig. 2. When taking the third power of the expansion (8.1), we have three
sets of coordinates, that we may label a, b, c, that have to match in pairs. Each matching
can be of three types ab, bc, ac, and we say that consecutive matching of the same type
form a stretch. The contribution of each stretch is encoded by a quantity Uε(s, t; x, y).

The rest of the proof is divided in two steps.

• In the first step, we define the single-stretch quantity Uε(s, t; x, y) and we provide
some key estimates on it, based on local renewal theorems obtained in [CSZ18].

• In the second step, we express the centered third moment (8.30) as a sum over the
contributions of stretches, see (8.39). We then derive the asymptotic behavior of this
expression and show that it is bounded, completing the proof of Theorem 1.9.

Step 1: Single stretch. We introduce a quantity Uε(s, t; x, y) which is an analogue of
UN (t − s, y − x) in the discrete setting, see (2.15), linked to the point-to-point variance.
Due to the presence of the mollifier, the space variables are couples x = (x̂, x̃), y =
(ŷ, ỹ) ∈ (R2)2. Here is the definition:

Uε(s, t; x, y) := β2
ε gt−s(x̂, ŷ) gt−s(x̃, ỹ) J (ŷ − ỹ)

+ β2
ε

∑

r≥1

β2r
ε

∫

s<t1<···<tr <t

r∏

i=1

dti

∫

(R2)2r

r∏

i=1

dẑi dz̃i
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· gt1−s(x̂, ẑ1) gt1−s(x̃, z̃1) J (ẑ1 − z̃1) ·

·
r∏

i=2

gti−ti−1(ẑi−1, ẑi ) gti −ti−1(z̃i−1, z̃i ) J (ẑi − z̃i ) ·

· gt−tr (ẑr , ŷ) gt−tr (z̃r , ỹ) J (ŷ − ỹ), (8.31)

where we recall that J = j ∗ j and we agree that the product equals 1 for r = 1.
Let us now evaluate

∫
(R2)2

Uε(s, t; x, y) d y. We use the identity (8.11) and make
the change of variables wi := ẑi + z̃i , zi := ẑi − z̃i for i = 1, . . . , r , as well as
wr+1 := ŷ + ỹ, zr+1 := ŷ − ỹ. Integrating out all the wi ’s for i = r + 1, r, . . . , 1, as we
did in (8.10)–(8.12), we obtain

∫

(R2)2
Uε(s, t; x, y) d y = β2

ε

∑

r≥0

β2r
ε

∫

s<t1<···<tr <t

r∏

i=1

dti

∫

(R2)r+1

r+1∏

i=1

dzi

· g2(t1−s)
(
z1 − (x̂ − x̃)

)
J (z1) ·

·
r+1∏

i=2

g2(ti−ti−1)(zi − zi−1) J (zi ),

(8.32)

where we set tr+1 := t . We can rewrite this relation more compactly as follows:
∫

(R2)2
Uε(s, t; x, y) d y = Uε(t − s; x̂ − x̃), (8.33)

where we set, with t0 := 0 and z0 := z,

Uε(t; z) :=
∑

r≥0

β2(r+1)
ε

∫

0<t1<···<tr <t

d�t
∫

(R2)r+1

d�z
r+1∏

i=1

g2(ti−ti−1)(zi − zi−1) J (zi ).

(8.34)

Note that Uε(t; z) looks similar to K ε
t (z), see (8.14), with an important difference: the

product in (8.34) includes one more term i = r +1. This extra termmakesUε(t; z) close
to a local renewal function, as we now explain.

Since we content ourselves with an upper bound, recalling the definition (8.17) of
r̄(t), we can estimate

sup
z∈supp(J )

Uε(t; z) �
∑

r≥0

β2(r+1)
ε

∫

0<t1<···<tr <t

d�t
r+1∏

i=1

r̄(ti − ti−1). (8.35)

Let us introduce i.i.d. random variables (T̄ ε
i )i∈N as in (8.19), and denote by f̄ ε

k (t) the
density of the associated random walk:

f̄ ε
k (t) := P(T̄ ε

1 + . . . + T̄ ε
k ∈ dt)

dt
.

We can then rewrite (8.35) as follows:

sup
z∈supp(J )

Uε(t; z) �
∑

r≥0

λr+1
ε f̄ ε

r+1(t), where λε := β2
ε R̄ε. (8.36)
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The right hand side can be viewed as a (weighted) renewal function: it is the continuum
version of the quantity UN (n) in (2.18) (with the usual identification N = ε−2). We
already remarked that λε = 1 + O( 1

log ε−2 ), by (8.16) and (8.18). Proposition 2.1 holds
in this continuum setting [CSZ18, Remark 1.7], hence by the analogue of relation (2.21)
we get

sup
z∈supp(J )

Uε(t; z) � C
log ε−2

ε−2 Gϑ(ε2t). (8.37)

In conclusion, by (8.33), we have proved the crucial upper bound

sup
x∈(R2)2: x̂−x̃ ∈ supp(J )

∫

(R2)2
Uε(s, t; x, y) d y � C ε2 log ε−2 Gϑ(ε2(t − s)).

(8.38)

Step 2: Third moment computation.We expand the third power in (8.30) using theWiener
chaos representation (8.1). We then compute the expectation, which forces pairwise
matchings of the instances of the noise W (dti dxi ). Since

∫

R2
j (x̂i − xi ) j (x̃i − xi ) dxi = J (x̂i − x̃i ),

we obtain the following expression (analogous to the directed polymer case, see (5.2)),
whereUε(ai , bi ; xi , yi ) are the contributions of stretches of consecutive pairwisematch-
ings:

E
[(

uε(t, φ) − ∫
R2 φ(x) dx

)3] =
∑

m≥2

3 I(ε,m)
t with

I(ε,m)
t := β2m

ε

∫

· · ·
∫

0<a1<b1<a2<b2<···<am<bm<ε−2t
x1, y1,...,xm , ym ∈ (R2)2

d�a d�b d�x d�y
∫

(R2)3

dz1 dz2 dz3 ε6 φ(εz1)φ(εz2)φ(εz3) ·

· ga1(z1, x̃1) ga1(z2, x̂1) J (x̂1 − x̃1) Uε(a1, b1; x1, y1) ·
·

∑

Ŷ1∈{ŷ1,ỹ1}
ga2(z3, x̃2) ga2−b1(Ŷ1, x̂2) J (x̂2 − x̃2) Uε(a2, b2; x2, y2) ·

·
m∏

i=3

∑

Ŷi−1∈{ŷi−1,ỹi−1}
Ỹi−2∈{ŷi−2,ỹi−2}\{Ŷi−2}

gai−bi−1(Ŷi−1, x̂i ) gai−bi−2(Ỹi−2, x̃i ) ·

· J (x̂i − x̃i ) Uε(ai , bi ; xi , yi ). (8.39)

Remark 8.1. This formula looks actually slightly different than the corresponding ex-
pansion for the directed polymer (5.2), for the presence of the sums over Ŷi−1 and Ỹi−2.
The reason is that, each time that two copies of the continuum polymers “spilt” (i.e. at
the end of each stretch) we have to decide which one will meet the unmatched copy and
which one will wait until the next split. But since the two continuum polymers do not
match exactly but rather lie inside the support of J (·), the symmetry that was present
in the discrete case is broken. This gives rise to the sum over Ŷi−1 ∈ {ŷi−1, ỹi−1} and
Ỹi−2 ∈ {ŷi−2, ỹi−2} \ {Ŷi−2}.
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We estimate I(ε,m)
t as follows. We start by integrating ym using (8.38), to get

∫

(R2)2
Uε(am, bm; xm, ym) d ym � C ε2 log ε−2 Gϑ(ε2(bm − am)),

uniformly over the allowed xm . Next we integrate over x̂m and x̃m , to get:

∫

(R2)2
dx̂m dx̃m gam−bm−1(Ŷm−1, x̂m) gam−bm−2(Ỹm−2, x̃m)J (x̂m − x̃m)

= (
gam−bm−1 ∗ J ∗ gam−bm−2

)
(Ŷm−1 − Ỹm−2)

= (
g2am−bm−1−bm−2 ∗ J

)
(Ŷm−1 − Ŷm−2)

� ‖g2am−bm−1−bm−2 ∗ J‖∞ � ‖g2am−bm−1−bm−2‖∞

= 1

2π(2am − bm−1 − bm−2)
� 1

4π
√

(am − bm−1) (am − bm−2)
,

having used 2xy � x2 + y2 in the last equality.
We iterate this procedure for i = m−1, m−2, . . . until i = 3:we canfirst integrate out

yi and then x̂i and x̃i . This replaces Uε(ai , bi ; xi , yi ) by C ε2 log ε−2 Gϑ(ε2(bi − ai ))

and gai−bi−1(Ŷi−1, x̂i ) gai −bi−2(Ỹi−2, x̃i ) by (4π
√

(ai − bi−1) (ai − bi−2))
−1. We also

recall that β2
ε � C(log ε−2)−1, see (8.16). Looking back at (8.39), we obtain for some

C < ∞

I(ε,m)
t � (β2

ε )2 (C ε2)m−2
∫

· · ·
∫

0<a1<b1<a2<b2<···<am<bm<ε−2t
x1, y1,x2, y2 ∈ (R2)2

d�a d�b d�x d�y

∫

(R2)3

dz1 dz2 dz3 ε6 φ(εz1)φ(εz2)φ(εz3) ·

· ga1(z1, x̃1) ga1(z2, x̂1) J (x̂1 − x̃1) Uε(a1, b1; x1, y1) ·
·

∑

Ŷ1∈{ŷ1,ỹ1}
ga2(z3, x̃2) ga2−b1(Ŷ1, x̂2) J (x̂2 − x̃2) Uε(a2, b2; x2, y2) ·

·
m∏

i=3

Gϑ(ε2(bi − ai ))
√

(am − bm−1) (am − bm−2)
.

We can now conclude with the last bounds.

• We integrate out y2, replacing Uε(a2, b2; x2, y2) by C ε2 log ε−2 Gϑ(ε2(b2−a2)),
see (8.38). Then we bound φ(εz3) � ‖φ‖∞ and we integrate out z3 (which makes
ga2(z3, x̃2) disappear) followed by x̃2 and x̂2 (which make ga2−b1(Ŷ1, x̂2) J (x̂2 − x̃2)
disappear).

• We integrate out y1, replacing Uε(a1, b1; x1, y1) by C ε2 log ε−2 Gϑ(ε2(b1−a1)),
see (8.38). Then we bound φ(εz1) � ‖φ‖∞ and we integrate out z1 (which makes
ga1(z1, x̃1) disappear) followed by x̃1 and x̂1 (which make ga1(z2, x̂1) J (x̂1 − x̃1)
disappear). Lastly, we integrate out z1, which turns the factor ε6 into ε4.
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This leads to

I(ε,m)
t � (C ε2)m ε4

∫

· · ·
∫

0<a1<b1<a2<b2<···<am<bm<ε−2t

d�a d�b Gϑ(ε2(b1 − a1)) Gϑ(ε2(b2 − a2)) ·

·
m∏

i=3

Gϑ(ε2(bi − ai ))
√

(am − bm−1) (am − bm−2)
.

Finally, the change of variables ai → ε−2ai , bi → ε−2bi gives

I(ε,m)
t � Cm

∫

· · ·
∫

0<a1<b1<a2<b2<···<am<bm<t

d�a d�b Gϑ(b1 − a1) Gϑ(b2 − a2) ·

·
m∏

i=3

Gϑ(bi − ai )
√

(am − bm−1) (am − bm−2)
.

Note that the right hand side, which carries no dependence on ε, coincides for t = 1
with J (m) defined in (5.7). We already showed that J (m) decays super-exponentially fast
as m → ∞, see (5.14)–(5.15). Looking at the first line of (8.39), we see that the proof
is completed. ��
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