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Abstract: Based on an identity of Jacobi, we prove a simple formula that computes
the pushforward of analytic functions of the exceptional divisor of a blowup of a pro-
jective variety along a smooth complete intersection with normal crossing. We use this
pushforward formula to derive generating functions for Euler characteristics of crepant
resolutions of singular Weierstrass models given by Tate’s algorithm. Since the Euler
characteristic depends only on the sequence of blowups and not on the Kodaira fiber
itself, several distinct Tate models have the same Euler characteristic. In the case of
elliptic Calabi–Yau threefolds, using the Shioda–Tate–Wazir theorem, we also compute
the Hodge numbers. For elliptically fibered Calabi–Yau fourfolds, our results also prove
a conjecture of Blumenhagen, Grimm, Jurke, and Weigand based on F-theory/heterotic
string duality.
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1. Introduction

The study of crepant resolutions of Weierstrass models, their fibral structure, and their
flop transitions is an area of common interest to algebraic geometers, number theorists,
and string theorists [31–34,36,40,71]. The theory of elliptic surfaces has its beginnings
in the 1960s, and was advanced largely by the contributions of mathematicians such
as Kodaira [47,48]; Néron [64]; Mumford and Suominen [61], Deligne [16], and Tate
[72]. Miranda studied the desingularization of elliptic threefolds and the phenomenon of
collisions of singularities in [58], and Szydlo subsequently generalized Miranda’s work
to elliptic n-folds [71]; the Picard number (i.e., the rank of the Néron-Severi group) of an
elliptic fibration can be obtained using the Shioda–Tate–Wazir theorem [75]; the study
of elliptic fibrations having the same Jacobian was developed by Dolgachev and Gross
[21]; and Nakayama studied local and global properties of Weierstrass models over
bases of arbitrary dimension in [62,63]. Furthermore, more recent developments have
been inspired by string theory (in particular, M-theory and F-theory) constructions that
ascribe an interesting physical meaning to various topological and geometric properties
of elliptically-fibered Calabi–Yau varieties [8,17,43,59,60,73].

A Weierstrass model provides a convenient framework for computing the discrim-
inant, the j-invariant, and the Mordell–Weil group of an elliptic fibration. Weierstrass
models are also the setting in which Tate’s algorithm is defined [72]. Any elliptic fibra-
tion over a smooth base is birational to a (potentially singular) Weierstrass model [16].
Since a Weierstrass model is a hypersurface, it is Gorenstein [22, Corollary 21.19], and
hence its canonical class is well-defined as a Cartier divisor.

In practice, it is often necessary to regularize the singularities of Weierstrass models
when computing, for example, their topological invariants. Among the possible reg-
ularizations of a singular variety, crepant resolutions are particularly desirable as, by
definition, they preserve the canonical class and the smooth locus of the variety. In a
sense, crepant resolutions modify the variety as mildly as possible while regularizing
its singularities. Surfaces with canonical singularities always have a crepant resolution,
which is unique up to isomorphism. However, for varieties of dimension three or higher,
crepant resolutions do not necessarily exist, and when they do, they may not be unique.
Distinct crepant resolutions of the same Weierstrass model are connected by a network
of flops.

Example 1.1. The quadric cone over a conic surface V (x1x2 − x3x4) ⊂ C
4 has two

crepant resolutions related by an Atiyah flop. By contrast, the quadric cone V (x21 + x22 +
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x23 + x24 + x25 ) ⊂ C
5 does not have a crepant resolution since it has Q-factorial terminal

singularities. The binomial variety V (x1x2 − u1u2u3) ⊂ C
5 has six crepant resolutions

whose network of flops forms a hexagon [34]. For additional examples of flops involving
Weierstrass models, see [27,28,32,33].

There is an important subset of singular Weierstrass models that have crepant resolu-
tions and play a central role in string geometry, as they are instrumental in the geometric
engineering of gauge theories in F-theory and M-theory. We refer to them as G-models,
they are defined in Sect. 1.2 and are typically obtained by the Weierstrass models that
appear as outputs of Tate’s algorithm [8,46,72]. The networks of crepant resolutions of
these Weierstrass models are conjectured to be isomorphic to the incidence graph of the
chambers of a hyperplane arrangement [25,26,40,43].

The number of distinct resolutions associated to a G-model can be rather large
[25,26,40]. It is interesting to study topological invariants that do not depend on the
choice of a crepant resolution. An example of such a topological invariant is the Euler
characteristic—using p-adic integration and Weil conjecture, Batyrev proved that the
Betti numbers of smooth varieties connected by a crepant birational map are the same
[6], and it therefore follows that the Euler characteristics of any two crepant resolutions
are the same.

The purpose of this paper is to compute theEuler characteristics ofG-models obtained
by crepant resolutions ofWeierstrassmodels,whereG is a simple group. Following [2,3],
we allow the base to be of arbitrary dimension and we do not impose the Calabi–Yau
condition. We work relative to a base that we leave arbitrary. In this sense, our paper is
a direct generalization of the work of Fullwood and van Hoeij on stringy invariants of
Weierstrass models [36].

The Euler characteristic of an elliptic fibration plays a central role in many physical
problems such as the computation of gravitational anomalies of six dimensional super-
gravity theories [38,65] and the cancellation of tadpoles in four dimensional theories
[2,3,9,13,24,29,68]. Unfortunately, the Euler characteristics of crepant resolutions of
Weierstrass models are generally not known, although they have been computed in some
special cases forCalabi–Yau threefolds and fourfolds [4,5,36,55]. For instance, theEuler
characteristics of G-models for Calabi–Yau threefolds were studied in [38], and there
are conjectures for the Euler characteristics ofG-models for Calabi–Yau fourfolds based
on heterotic string theory/F-theory duality [9].

As a byproduct of our results, we prove a conjecture by Blumenhagen, Grimm, Jurke,
and Weigand [9] on the Euler characteristics of Calabi–Yau fourfolds which are G-
models for G = SU(2), SU(3), SU(4), SU(5), E6, E7 or E8. These groups correspond to
the exceptional series Ek defined on page 9 with the exception of D5. In [9], the authors
conjecture the value of the Euler characteristic using a method inspired by heterotic
string theory/F-theory duality. The results of our computation match their prediction
precisely, except for the limiting case of the group E8. We also retrieve known results
for the case of G-models that are Calabi–Yau threefolds [38], while removing most of
the assumptions of [38].

A crucial ingredient of our results is Theorem 1.8, which is a pushforward formula for
any analytic function of the class of the exceptional divisor of a blowup of a nonsingular
variety along a smooth complete intersection of hypersurfaces meeting transversally.
Theorem 1.8 is a generalization to arbitrary analytic functions of a result of Fullwood and
vanHoeij [36, Lemma2.2], which relies on a theoremofAluffi [1] simplifying the classic
formula of Porteous onChern classes of the tangent bundle of a blowup [66]. Theorem1.8
profoundly simplifies the algebraic manipulations necessary to compute pushforwards,
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and therefore has a large range of applications independently of the specific applications
discussed in this paper.

For the reader’s convenience, we provide tables specializing our results to the cases
of elliptic threefolds and fourfolds, and further to the cases of Calabi–Yau threefolds and
fourfolds, including an explicit computation of the Hodge numbers in the Calabi–Yau
threefold case. We emphasize that our results are insensitive to the particular choice of
a crepant resolution due to Batyrev’s theorem on the Betti numbers of crepant birational
equivalent varieties [6] and Kontsevich’s theorem on the Hodge numbers of birational
equivalent Calabi–Yau varieties [49].

1.1. Conventions. Throughout this paper, wework over the field of complex numbers. A
variety is a reduced and irreducible algebraic scheme. We denote the vanishing locus of
the sections f1, . . . , fn by V ( f1, . . . , fn). The tangent bundle of a variety X is denoted
by T X and the normal bundle of a subvariety Z of a variety X is denoted by NZ X . Let
V → B be a vector bundle over a variety B. We denote the by P(V ) the projective
bundle of lines in V . We use Weierstrass models defined with respect to the projective
bundle π : X0 = P[OB ⊕L ⊗2⊕L ⊗3] → B whereL is a line bundle of B. We denote
the pullback of L with respect to π by π∗L . We denote by OX0(1) the canonical line
bundle on X0, i.e., the dual of the tautological line bundle of X0 (see [37, Appendix
B.5]). The first Chern class of OX0(1) is denoted H and the first Chern class of L is
denoted L . TheWeierstrass model ϕ : Y0 → B is defined as the zero-scheme of a section
of OX0(3) ⊗ π∗L ⊗6—Weierstrass models are studied in more detail in Sect.C.3. The
Chow group A∗(X) of a nonsingular variety X is the group of divisors modulo rational
equivalence [37, Chap. 1,§1.3]. We use [V ] to refer to the class of a subvariety V in
A∗(X). Given a class α ∈ A∗(X), the degree of α is denoted

∫
X α (or simply

∫
α if

X is clear from the context.) Only the zero component of α is relevant in computing∫
X α—see [37, Definition 1.4, p. 13]. We use c(X) = c(T X) ∩ [X ] to refer to the total

homological Chern class of a nonsingular variety X , and likewise we use ci (T X) to
denote the i th Chern class of the tangent bundle T X . Given two varieties X,Y and a
proper morphism f : X → Y , the proper pushforward associated to f is denoted f∗.
If g : X → Y is a flat morphism, the pullback of g is denoted g∗ and by definition
g∗[V ] = [g−1(V )], see [37, Chap 1, §1.7]. Given a formal series Q(t) = ∑∞

i=0 Qi ti ,
we define [tn]Q(t) = Qn .

Our conventions for affine Dynkin diagrams are as follows. A projective Dynkin
diagram is denoted Mk where M is A, B, C , D, E , F , or G, and k is the number of
nodes. An affine Dynkin diagram that becomes a projective Dynkin diagram g after
removing a node of multiplicity one is denoted g̃. We denote by g̃t the (the possibly
twisted) affine Dynkin diagram whose Cartan matrix is the transpose of the Cartan
matrix of g̃. The graph of g̃t is obtained by exchanging the directions of all the arrows
of g̃. When the extra node is removed, the dual graph of g̃t reduces to the dual graph of
the Langlands dual of g. The affine Dynkin diagrams g̃t and g̃ are distinct only when g
is not simply laced (i.e., when g is G2, F4, Bk , or Ck). The notation g̃t follows Carter1

[12, Appendix, p. 540–609] and is equivalent to the notation g̃∨ used by MacDonald in
§5 of [54]. The multiplicities define a zero vector of the extended Cartan matrix. In the
notation of Kac [45], B̃

t
� (� ≥ 3), C̃

t
� (� ≥ 2), G̃

t
2, and F̃

t
4 are respectively denoted A

(2)
2�−1,

D(2)
�+1, D

(3)
4 , and E(2)

6 ; while B̃� (� ≥ 3), C̃� (� ≥ 2), G̃2, and F̃4 are respectively denoted

1 There is a typo on page 570 of [12] in the first Dynkin diagram of B̃� on the top of the page, where the
arrow is in the wrong direction but correctly oriented in the rest of the page.
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Fig. 1. Twisted affine Lie algebras vs affine Lie algebras for non-simply laced cases. Only those on the left
appears in the theory of elliptic fibrations as dual graphs of the fiber over the generic point of an irreducible
component of the discriminant locus

B(1)
� , C(1)

� , G(1)
2 , and F(1)

4 . When g is non-simply laced, the affine Dynkin diagrams g̃t

and g̃ differ from each by the directions of their arrows and also by the multiplicities of
their nodes (see Fig. 1).

Given a complete intersection Z of hypersurfaces Zi = V (zi ) in a variety X , we
denote the blowup X̃ = BlZ X of X along Z with exceptional divisor E = V (e) as

X X̃ .
(z1, . . . , zn|e)

1.2. G-models. In this section, we recall how a Lie group is naturally associated with
an elliptic fibration and introduce the notion of a G-model. Our notation for dual graphs
and Kodaira fibers is spelled out in Sect. 1.1, and Tables 2 and 3. See also “Appendix
C” for the definitions of a fiber type, a generic fiber, and a geometric generic fiber.

Definition 1.2 (K-model). Let K be the type of a generic fiber. Let S ⊂ B be a smooth
divisor of a projective variety B. An elliptic fibration ϕ : Y −→ B over B is said to be
a K-model if

1. The discriminant locus�(ϕ) contains as an irreducible component the divisor S ⊂ B.
2. The generic fiber over S is of type K.
3. Any other fiber away from S is irreducible.

If the dual graph of K corresponds to an affine Dynkin diagram of type g̃t , where g is a
Lie algebra, then the K-model is also called a g-model.

In F-theory, a Lie group G(ϕ) attached to a given elliptic fibration ϕ : Y −→ B
depends on the type of generic singular fibers and the Mordell–Weil group MW(ϕ) of
the elliptic fibration [15]. The Lie algebra g associated to the elliptic fibration is then
the Langlands dual g∨ =⊕i g

∨
i of g =⊕i gi . If we denote by exp(g

∨) the unique (up
to isomorphism) simply connected compact simple group whose Lie algebra is g∨, then
the group associated to the elliptic fibration ϕ : Y −→ B is:

G(ϕ) := exp(g∨)

MWtor(ϕ)
×U (1)rk MW(ϕ),
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where rk MW(ϕ) is the rank of theMordell–Weil group of ϕ andMWtor(ϕ) is the torsion
subgroup of the Mordell–Weil group of ϕ. Defining properly the quotient of exp(g∨) by
the Mordell–Weil group requires a choice of embedding of the Mordell–Weil group in
the center of exp(g∨) [57].

Definition 1.3 (G-model). An elliptic fibration ϕ : Y −→ B with an associated Lie
group G = G(ϕ) is called a G-model.

If the reduced discriminant locus has a unique irreducible component S over which
the generic fiber is not irreducible, the group G(ϕ) is simple. The relevant fiber g̃t can
be realized by resolving the singularities of a Weierstrass model derived from Tate’s
algorithm. The relation between the fiber type and the group G(ϕ) is not one-to-one.
For example, an SU(2)-model can be given by a divisor S with a fiber of type Is2, I

ns
2 ,

III, IVns, or Ins3 . For that reason, a given decorated Kodaira fiber provides a more refined
characterization of a G-model.

Example 1.4. For n ≥ 4, an SU(n)-model is a Isn-model with a trivial Mordell–Weil
group. For n ≥ 0, a Spin(8+2n)-model is an I∗sn -model with trivial Mordell–Weil group.
For n ≥ 1, a Spin(7+2n)-model is an I∗nsn -model with trivial Mordell–Weil group. A
G2-model is an I∗ns0 -model with a trivial Mordell–Weil group. A Spin(7)-model is an
I∗ss0 -model with a trivial Mordell–Weil group.

Example 1.5. (See [28]) The SO(3), SO(5), SO(6), and SO(7)-models are respectively
Ins2 , Ins4 , Is4, and I∗ss0 -models with MW=Z/2Z. For n ≥ 0, an SO(8 + 2n)-model is an
I∗sn -model with a Mordell–Weil group MW=Z/2Z. For n ≥ 1, an SO(7 + 2n)-model is
an I∗nsn -model with Mordell–Weil group MW=Z/2Z.

Example 1.6. If the Mordell–Weil group is trivial, K-models with K = Is2, I
ns
2 , III, IVns,

or Ins3 , are all SU(2)-models. An A2-model can be given by a IVs-model or a I3-model. If
the Mordell–Weil group is trivial, both a IVs-model or a Is3-model give a SU(3)-model.
A C�-model can be given by an Ins2�+2-model or an Ins2�+3-model, and if the Mordell–Weil
group is trivial, these both give a USp(2�)-model.

Remark 1.7. Not all singular Weierstrass models are G-models as the reducible singular
fibers might not appear in codimension one. See, for example, the Jacobians of the
elliptic fibrations discussed in [2,3,24,29].

1.3. The pushforward theorem and Jacobi’s identity. As explained earlier, one of our
key results is a pushforward theorem that streamlines all the computations of this paper.
We present the pushforward theorem in this subsection.

Theorem 1.8. Let the nonsingular variety Z ⊂ X be a complete intersection of d non-
singular hypersurfaces Z1, …, Zd meeting transversally in X. Let E be the class of the
exceptional divisor of the blowup f : X̃ −→ X centered at Z. Let Q̃(t) =∑a f ∗Qata

be a formal power series with Qa ∈ A∗(X). We define the associated formal power
series Q(t) = ∑a Qata whose coefficients pullback to the coefficients of Q̃(t). Then
the pushforward f∗ Q̃(E) is:

f∗ Q̃(E) =
d∑

�=1

Q(Z�)M�, where M� =
d∏

m=1
m �=�

Zm

Zm − Z�

.



Euler Characteristics of Crepant Resolutions 105

We call the coefficient M� the �-moment of the blowup f .

Remark 1.9. Given a blowup f : X̃ −→ X , any element α of the Chow ring A∗(X̃) can
be expressed as α =∑∞

n=0 f ∗αi Ei where αi are elements of the Chow ring A∗(X). So
Theorem 1.8 can be used to pushforward any element of A∗(X̃).

Theorem 1.8 is proven in Sect. 3. By the projection formula and the linearity of the
pushforward, the proof of Theorem 1.8 is almost trivial once it is established in the
special case of a monic monomial Q(t) = tk . This special case is Lemma 3.7 on page
18. The proof of the Lemma 3.7 relies on an identity due to Carl Gustave Jacobi that
gives a partial fraction formula for homogeneous complete symmetric polynomials:

Lemma 1.10 (Jacobi). Let hr (x1, . . . , xd) be the homogeneous complete symmetric
polynomial of degree r in d variables of an integral domain. Then:

hr (x1, . . . , xd) =
d∑

�=1

xr+d−1
�

d∏

m=1
m �=�

1

x� − xm
.

Jacobi first proved this identity in 1825 in a slightly different form in his doctoral
thesis2 as a partial fraction reformulation of the generating function of complete homo-
geneous polynomials. Lemma 1.10 was rediscovered in many different mathematical
and physical problems, as discussed elegantly in [39]. For example, a proof using Schur
polynomials was proposed as the solution to Exercise 7.4 of [70]. For a proof using
integrals and residues see “Appendix A” of [53]; for a proof using matrices, see [14].
We give a short and simple proof of this identity in “Appendix A”.

We alsomake use of a second pushforward theorem that concerns the projection from
the ambient projective bundle to the base B over which theWeierstrass model is defined.
Let V be a vector bundle of rank r over a nonsingular variety B. The Chow ring of a
projective bundle π : P(V ) −→ B is isomorphic to the module A∗(B)[ζ ] modded out
by the relation [37, Remark 3.2.4, p. 55]

ζ r + c1(π
∗V )ζ r−1 + · · · + ci (π

∗V )ζ r−i + · · · + cr (π
∗V ) = 0, ζ = c1

(
OP(V )(1)

)
.

Theorem 1.11 (See [2,3,35]). Let L be a line bundle over a variety B and π : X0 =
P[OB ⊕ L ⊗2 ⊕ L ⊗3] −→ B a projective bundle over B. Let Q̃(t) = ∑a π∗Qata

be a formal power series in t such that Qa ∈ A∗(B). Define the auxiliary power series
Q(t) =∑a Qata. Then

π∗ Q̃(H) = −2
Q(H)

H2

∣
∣
∣
∣
H=−2L

+ 3
Q(H)

H2

∣
∣
∣
∣
H=−3L

+
Q(0)

6L2 ,

where L = c1(L ) and H = c1(OX0(1)) is the first Chern class of the dual of the
tautological line bundle of X0.

2 [44, Section III.17, pp. 29–30], Jacobi asserts:

∏

i

1

x − ai
=
∑

i

1

x − ai

∏

��=i

1

a� − ai
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Proof. Using the functoriality of Segre classses, we can write

π∗
(

1

1 − H

)

= 1

(1 + 2L)(1 + 3L)
= −2

1 + 2L
+

3

1 + 3L
,

which can be expanded on the both sides. This gives the following expressions for the
pushforward of each power of H :

π∗1 = 0 , π∗H = 0 , π∗Hi+2 =
[
−2(−2)i + 3(−3)i

]
Li

where i is nonnegative. Then, expanding Q(H) as a power series with coefficients in
A∗(B),

Q̃(H) =
∞∑

i=0

π∗αi H
i = π∗α0 + (π∗α1)H + H2

∞∑

k=0

(π∗αk)H
k,

the pushforward of Q(H) can hence be computed as

π∗ Q̃(H) = −2
∞∑

k=0

αk(−2L)k + 3
∞∑

k=0

αk(−3L)k

= −2
Q(H) − α1H − α0

H2

∣
∣
∣
H=−2L

+ 3
Q(H) − α1H − α0

H2

∣
∣
∣
H=−3L

= −2
Q(H)

H2

∣
∣
∣
H=−2L

+ 3
Q(H)

H2

∣
∣
∣
H=−3L

+
Q(0)

6L2 .

�

1.4. Strategy. We take an intersection theory point of view inspired by Fulton [37] and
Aluffi [1], and use explicit crepant resolutions of Tate models to compute their Euler
characteristics. UsingChern classes,we evaluate theEuler characteristicwithout dealing
with the combinatorics of the fiber structure. Instead, we compute the pushforward of
the homological Chern class of the variety to the base of the fibration. Since the Euler
characteristics of two crepant resolutions of the same Weierstrass model are the same
[6], we do not need to explore the network of all flops to arrive at our conclusions.

Our method for computing the Euler characteristics ofG-models is as follows. Given
a choice of Lie groupG, we first use Tate’s algorithm to determine a singularWeierstrass
model Y0 −→ B such that G is the Lie group attached to the elliptic fibration following
the F-theory algorithm discussed in Sect. 1.2. We then determine a crepant resolution
f : Y −→ Y0 of the singular Weierstrass model to obtain an explicit realization of the
G-model as a smooth projective variety. By doing so, we retrieve the data necessary to
compute the total homological Chern class of the crepant resolution f : Y −→ Y0. We
apply Theorem 1.8 repeatedly to push this class forward to the projective bundle X0 in
which the Weierstrass model is defined. Finally, we use Theorem 1.11 to push the total
Chern class forward to B. In doing so, we obtain a generating function of the form

χ(Y ) =
∫

B
Q(L , S)c(B), c(B) := c(T B) ∩ [B],

where
∫
B indicates the degree, Q(L , S) is a rational function in L and S such that

Q(L , 0) = 12L

1 + 6L
c(B).
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Table 1. Models studied in this paper

Q(L , 0) is the generating function for the Euler characteristic of a smooth Weierstrass
model [2]. The rational expression Q(L , S)c(B) is defined in the Chow ring A∗(B) of
the base. The expression χ(Y ) is a generating function in the following sense. If the
base has dimension d, the Euler characteristic is then given by the coefficient of td in a
power series expansion in the parameter t :

χ(Y ) = [td ]
(
Q(t L , t S)ct (T B)

)
, where d := dim B,

where [tn]g(t) = gn for a formal series g(t) =∑∞
i=0 gi t

i , and

ct (T B) = 1 + c1(T B)t + · · · + cd(T B)td ,

is the Chern polynomial of the tangent bundle of B.
It follows from the adjunction formula that one can further impose the Calabi–Yau

condition by setting L = c1(T B); see Tables 8 and 9 for the Euler characteristics of
elliptic threefold and fourfold G-models.

In Table 1, we organize the Lie algebras associated to our choices of Tate models into
a network, where an arrow indicates inclusion as a subalgebra. As is evident from Table
1, the results of this paper cover all instances of Kodaira fibers with the exception of the
general cases of Ik and I∗k that will be discussed in a follow up paper. In particular, our
list contains:

• G-models corresponding to Deligne exceptional series:

{e} ⊂ A1 ⊂ A2 ⊂ G2 ⊂ D4 ⊂ F4 ⊂ E6 ⊂ E7 ⊂ E8.

• G-models for the extended exceptional series:3

{e} ⊂ A1 ⊂ A2 ⊂ A3 ⊂ E4 ⊂ E5 ⊂ E6 ⊂ E7 ⊂ E8.

• G-models for simple orthogonal groups of small rank:4

{e} ⊂ SO(3) ⊂ SO(5) ⊂ SO(6).

• G-models of the I∗0 series [27]:

{e} ⊂ G2 ⊂ Spin(7) ⊂ Spin(8).

3 We recall that the Dynkin diagram of En is the same as An but with the nth node connected with the third
node. In particular, E4 ∼= A4, E5 ∼= D5, E3 = A2× A1, E2 = A2, and E1 = A1.

4 These models require a Mordell–Weil group Z/2Z; see [28].



108 M. Esole, P. Jefferson, M. J. Kang

1.5. Organization of the paper. The remainder of the paper is organized as follows.
In Sect. 2 we discuss some general properties of the Euler characteristic of an elliptic
fibration. In Sect. 3 we discuss the pushforward theorem and explain the details of our
computation of the Euler characteristic. Section 4 then describes how these results can
be used to calculate the Hodge numbers of Calabi–Yau threefold G-models. In Sect. 5,
we describe the simplest model, the SU(2)-model, as an example of our computation.We
present the results of our computation in a series of tables in Sect. 6. Finally, in Sect. 7 we
conclude with a discussion of the computation and comment on possible future research
directions. A proof of Jacobi’s partial fraction identity is given in “Appendix A”, an
explanation of the Euler characteristic as the degree of the top Chern class is given in
“Appendix B”, and some basic facts about Kodaira fibers, elliptic fibrations, Weierstrass
models and Tate’s algorithm are collected in “Appendix C” (Tables2, 3, 4).

2. Euler Characteristic of Elliptic Fibrations

The Euler characteristic of a smooth Weierstrass model ϕ : Y −→ B over a base B is
given by the following formula [2,3]

χ(Y ) =
∫

12L

1 + 6L
c(B),

where c(B) = c(T B) ∩ [B] is the total homological Chern class and L = c1(L ) is the
first Chern class of the fundamental line bundleL = (R1ϕ∗OY )−1 of the elliptic fibra-
tion. This expression is the generating function for the Euler characteristic. Assigning
weight n to the nth Chern class, the Euler characteristic of Y is the component of weight
d = dimB. A direct expansion gives

χ(Y ) = −2
d∑

i=1

(−6L)i cd−i (T B) ∩ [B].

The Euler characteristic of an elliptic surface is given by Kodaira’s formula [47,48, III,
Theorem 12.2, p. 14]:

χ(Y ) =
∑

i

v(�i ),

where the discriminant� =∑i �i is a sumof points�i and v(�i ) denotes the valuation
of�i . In particular, the Euler characteristic of the resolution of aWeierstrass model over
a curve is always 12

∫
L:

χ(Y ) =
∫

12L .

There are several different ways to compute the Euler characteristic of an elliptic
fibration. The Euler characteristic (with compact support) is multiplicative on local
trivial fibrations and satisfies the excision property (χ(X/Z) = χ(X) − χ(Z) for any
closed Z ⊂ X ); moreover, if φ : M → N is a smooth proper morphism, then χ(M) =
χ(N )χ(Nη) where χ(Nη) is the Euler characteristic of the generic fiber. It follows
from these properties that the Euler characteristic of an elliptic fibrations gets all its
contribution from its discriminant locus since the Euler characteristic of a smooth elliptic
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Table 2. Affine Dynkin diagrams appearing as dual graphs of decorated Kodaira fibers

Fiber type Dynkin diagram Kodaira type

Ã0
1

I1, II

Ã1
1 1

Is2, I
ns
2 , Ins3 , III, IVns

Ã�−1 (� ≥ 3)

1

1

1 1

1
Is
�

D̃4+� (� ≥ 0)

1

1

2 2 2

1

1

I∗s
�

Ẽ6

1 2 3 2 1

2

1

IV∗s

Ẽ7

1 2 3 4 3 2 1

2

III∗

Ẽ8

1 2 3 4 5 6 4

3

2

II∗

B̃t
3+� (� ≥ 0)

1

1

2 2 2 1
{
I∗ss0 for � = 0
I∗ns
�

for � ≥ 1

C̃t
2+� (� ≥ 0)

1 1 1 1 1 1
Ins4+2�, Ins5+2�

F̃t4
1 2 3 2 1

IV∗ns

G̃t
2

1 2 1
I∗ns0
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Table 3. Dual graphs for elliptic fibrations

Fiber type Dual graph Dual graph of geometric fiber

Ã1
1 1

1

1

1

I∗ns
�−3

B̃t
�

(� ≥ 3)

1

1

2 2 2 1

1

1

2 2 2

1

1

Ins2�+2

C̃t
�+1

(� ≥ 1)

1 1 1 1 1 1 1

1 1 1 1

1 1 1 1

1

Ins2�+3

C̃t
�+1

(� ≥ 1)

1 1 1 1 1 1 1

1 1 1 1

1 1 1 1

1

1

IV∗ns
F̃t4

1 2 3 2 1

1 2 3 2 1

2

1

I∗ss0
B̃t
3

1

2 1

1

2

1 1

1

1

I∗ns0
G̃t
2

1 2 1 21
1

1

1
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Ta
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K
od
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ér
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)

v
(�
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0

0
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∞
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≥

1
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(
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0

II
I

1
≥

2
3

17
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(
0

1
−1

0)

Ã
1

IV
≥

2
2

4
0

(
0

1
−1

−1
)

Ã
2

I n
0

0
n

>
1

∞
(
1
n

0
1)

1

1
1

1
1

Ã
n−

1
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curve is zero. One can identify a partition of the discriminant locus by subvarieties Vi
over which the generic fiber is constant. The Euler characteristic is then

χ(Y ) =
∑

i

χ(Vi )χ(Yηi ),

where Yηi is the fiber over the generic point ηi of Vi . This method increases quickly in
complexity when the fiber structure becomes more involved [38].

A more effective way to compute the Euler characteristic is to use the Poincaré–Hopf
theorem, which asserts that the Euler characteristic of X equals the degree of the top
Chern class of the tangent bundle T X evaluated on the homological class of the variety.
In other words, the Euler characteristic is the degree of the total homological Chern
class:

χ(X) =
∫

c(X), c(X) := c(T X) ∩ (X).

This method is explained in Sect. 2.2 and can also be thought of as an algebraic version
of the Chern–Gauss–Bonnet theorem. We give three different proofs in “Appendix B”.

2.1. Crepant resolutions and flops. Let X be a projective variety with at worst canonical
Gorenstein singularities. We denote the canonical class by KX .

Definition 2.1. A birational projective morphism ρ : Y −→ X is called a crepant
desingularization of X if Y is smooth and KY = ρ∗KX .

Definition 2.2. Aresolution of singularities of a varietyY is a proper surjective birational
morphism ϕ : Ỹ −→ Y such that Ỹ is nonsingular and ϕ is an isomorphism away from
the singular locus of Y . In other words, Ỹ is nonsingular and ifU is the singular locus of
Y , ϕ maps ϕ−1(Y \U ) isomorphically onto Y \U . A crepant resolution of singularities
is a resolution of singularities such that KY = f ∗KX .

Remark 2.3. In dimension two, there is one and only one crepant resolution of a variety
with canonical singularities. In dimension three, crepant resolutions of Gorenstein sin-
gularities always exist but are usually not unique. In dimension four or greater, crepant
resolutions are not always possible. However, one can always find a crepant birational
morphism from a Q-factorial variety with terminal singularities.

Definition 2.4 (D-flop See [56, pp. 156–157]). Let f1 : X1 −→ X a small contraction.
Let D be aQ-Cartier divisor in X1. A D-flop is a birational morphism f : X1−− → X2
fitting into a triangular diagram where f1 and f2 are birational morphisms

X1 X2

X

f

f1 f2

such that

1. Xi are normal varieties with at worst terminal singularities.
2. fi are small contractions (i.e. their exceptional loci are in codimension two or higher).
3. KXi is numerically trivial along the fibers of fi (i.e. KXi · � = 0 for any curve �

contracted by fi ).
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4. The Q-divisor −D is f1-ample.
5. The strict f -transform D+ of D is f2-ample.

Definition 2.5 (Flop). The morphism f2 : X2 −→ X is said to be a flop of f1 : X1 −→
X if there exists a divisor D ⊂ X1 such that f2 is a D-flop of f1.

2.2. Batyrev’s theorem and theChern class of a crepant resolution. Wedenote the Chow
ring of a nonsingular variety X by A∗(X). The free group of generated by subvarieties
of dimension r modulo rational equivalence is denoted by Ar (X). The degree of a class
α of A∗(X) is denoted by

∫
X α (or simply

∫
α if there is no ambiguity in the choice of

X ), and is defined to be the degree of its component in A0(X). The total homological
Chern class c(X) of any nonsingular variety X of dimension d is defined by:

c(X) = c(T X) ∩ [X ],
where T X is the tangent bundle of X and [X ] is the class of X in the Chow ring. The
degree of c(X) is the topological Euler characteristic of X :

χ(X) =
∫

X
c(X).

Motivated by string geometry, Batyrev and Dais proposed in [7, Conjecture 1.3] the
following conjecture.

Conjecture 2.6 (Batyrev and Dais, see [7]). Hodge numbers of smooth crepant resolu-
tions of an algebraic variety defined over the complex numbers with at worse Gorenstein
canonical singularities do not depend on the choice of such a resolution.

Using p-adic integration and the Weil conjecture, Batyrev proved the following
slightly weaker proposition:

Theorem 2.7 (Batyrev [6]). Let X andY be irreducible birational smooth n-dimensional
projective algebraic varieties overC. Assume that there exists a birational rational map
ϕ : X − − → Y which does not change the canonical class. Then X and Y have the
same Betti numbers.

Batyrev’s result was strongly inspired by string dualities, in particular by the work of
Dixon et al. [18]. Kontsevitch proved the Batyrev–Dais conjecture for the special case of
Calabi–Yau varieties as a corollary of his newly invented theory of motivic integration;
the proof relies on Hodge theory and geometrizes Batyrev’s use of p-adic integration.

Theorem 2.8 (Kontsevitch [49]). Let X and Y be birationally-equivalent smooth
Calabi–Yau varieties. Then X and Y have the same Hodge numbers.

As a direct consequence of Batyrev’s theorem, the Euler characteristic of a crepant
resolution of a variety with Gorenstein canonical singularities is independent on the
choice of resolution. We identify the Euler characteristic as the degree (see Definition
C.2) of the total (homological) Chern class of a crepant resolution f : Ỹ −→ Y of a
Weierstrass model Y −→ B:

χ(Ỹ ) =
∫

c(Ỹ ).
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We then use the birational invariance of the degree under the pushfoward to express
the Euler characteristic as a class in the Chow ring of the projective bundle X0. We
subsequently push this class forward to the base to obtain a rational function depending
upon only the total Chern class of the base c(B), the first Chern class c1(L ), and the
class S of the divisor in B:

χ(Ỹ ) =
∫

B
π∗ f∗c(Ỹ ).

In view of Theorem 2.7, this Euler characteristic is independent of the choice of a
crepant resolution. We discuss pushforwards and their role in the computation of the
Euler characteristic in more detail in Sect. 3.

3. Pushforwards and Computing the Euler Characteristic

Definition 3.1 (Pushforward [37, Chap. 1, p. 11]). Let f : X −→ Y be a proper
morphism. Let V be a subvariety of X , the image W = f (V ) a subvariety of Y , and
the function field R(V ) an extension of the function field R(W ). The pushforward
f∗ : A∗(X) → A∗(Y ) is defined as follows

f∗[V ] =
{
0 if dim V �= dimW,

[R(V ) : R(W )] [W ] if dim V = dimW,

where [R(V ) : R(W )] is the degree of the field extension R(V )/R(W ).

Lemma 3.2 ([37, Chap. 1, p. 13]). Let f : X −→ Y be a proper map between varieties.
For any class α in the Chow ring A∗(X) of X:

∫

X
α =
∫

Y
f∗α.

Lemma 3.2 means that an intersection number in X can be computed in Y through
a pushforward. This simple fact has far-reaching consequences and characterizes the
point of view taken in this paper, as it allows us to express the topological invariants of
an elliptic fibration in terms of those of the base.

3.1. The pushforward theorem. A formula for the Chern classes of blowups of a smooth
variety along a smooth center was conjectured by Todd and Segre and proven in the gen-
eral case by Porteous [66] using the Riemann-Roch theorem. A proof using Riemann-
Roch “without denominators” is presented in §15.4 of [37]. A proof without Riemann-
Roch was derived by Lascu and Scott [50,51]. A generalization of the formula to poten-
tially singular varieties was obtained by Aluffi [1].

The blowup formula simplifies dramatically when the center of the blowup is a
nonsingular complete intersection of nonsingular hypersurfaces meeting transversally.
Aluffi gives an elegant short proof using functorial properties of Chern classes and Chern
classes of bundles of tangent fields with logarithmic zeros:

Theorem 3.3 (Aluffi [1, Lemma 1.3]). Let Z ⊂ X be the complete intersection of d
nonsingular hypersurfaces Z1, …, Zd meeting transversally in X. Let f : X̃ −→ X be
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the blowup of X centered at Z. We denote the exceptional divisor of f by E. The total
Chern class of X̃ is then:

c(T X̃) = (1 + E)

(
d∏

i=1

1 + f ∗Zi − E

1 + f ∗Zi

)

f ∗c(T X). (3.1)

Lemma 3.4. Let f : X̃ −→ X be the blowup of X centered at Z. We denote the
exceptional divisor of f by E. Then

f∗En = (−1)d+1hn−d(Z1, . . . , Zd)Z1 . . . Zd ,

where hi (x1, . . . , xk) is the complete homogeneous symmetric polynomial of degree i in
(x1, . . . , xk) with the convention that hi is identically zero for i < 0 and h0 = 1.

Proof. The exceptional locus of the blowup of X centered at Z is the projective bundle
P(NZ X). Let E = c1(OP(NZ X)(1)). By the functoriality properties of Segre classes, we
have:

f∗
1

1 + E
∩ [E] = 1

c(NZ X)
∩ [Z ] =

d∏

i=1

Zi

1 + Zi
, (3.2)

where NZ X is the normal bundle of Z in X . The generating function of complete
homogeneous symmetric polynomials in (x1, . . . , xd) is

∏d
�=1(1 − x�t)−1:

∞∑

n=1

hn(x1, . . . , xd)t
n =

d∏

�=1

1

1 − x�t
.

By matching terms of the same dimensions in Eq. (3.2), we can compute f∗En in terms
of complete homogeneous symmetric polynomials hi (Z1, . . . , Zd) in the classes Zi :

f∗En = (−1)n−1[tn]
(

d∏

i=1

t Zi

1 + t Zi

)

= (−1)d+1hn−d(Z1, . . . , Zd)Z1 . . . Zd ,

where [tn]g(t) = gn for a formal series g(t) =∑∞
i=0 gi t

i and hi is identically zero for
i < 0 and h0 = 1. �
Example 3.5. If d = 2, we have

f∗E = 0, f∗E2 = −Z1Z2, f∗E3 = −(Z1 + Z2)Z1Z2,

f∗E4 = −(Z2
1 + Z2

2 + Z1Z2)Z1Z2.

Example 3.6. If d = 3, we have

f∗E = 0, f∗E2 = 0, f∗E3 = Z1Z2Z3, f∗E4 = (Z1 + Z2)Z1Z2Z3.

A direct consequence of Theorem A.2 (Jacobi’s identity) and Lemma 3.4 is the
following pushforward formula (see [36]):
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Lemma 3.7. Let Z ⊂ X be the complete intersection of d nonsingular hypersurfaces
Z1, …, Zd meeting transversally in X. Let f : X̃ −→ X be the blowup of X centered
at Z with exceptional divisor E. Then for any integer n ≥ 0:

f∗En =
d∑

�=1

Zn
� M�, M� =

d∏

m=1
m �=�

Zm

Zm − Z�

.

The coefficient M� is the �-moment of the blowup f defined after Theorem 1.8.

Proof.

f∗En = (−1)d+1hn−d(Z1, . . . , Zd)Z1 . . . Zd (by Lemma 3.4)

= (−1)d+1
d∑

�=1

Zn−1
�

( d∏

m=1
m �=�

1

Z� − Zm

)
Z1 . . . Zd (by Lemma 1.10)

= (−1)d+1
d∑

�=1

Zn
�

( d∏

m=1
m �=�

Zm

Z� − Zm

)
(by the identity Z1 . . . Zd = Z�

d∏

m=1
m �=�

Zm)

=
d∑

�=1

Zn
�

( d∏

m=1
m �=�

Zm

Zm − Z�

)
(since

d∏

m=1
m �=�

Zm

Z� − Zm
= (−1)d−1

d∏

m=1
m �=�

Zm

Zm − Z�

).

�
To compute topological invariants of a blowup, we often have to pushforward analytic

expressions of E . Let Q̃(t) =∑a f ∗Qata be a formal power series with Qa ∈ A∗(X).
The formal series Q(E) is a well-defined element of A∗(X̃). We recall Theorem 1.8:

Theorem 1.8. Let the nonsingular variety Z ⊂ X be a complete intersection of d non-
singular hypersurfaces Z1, …, Zd meeting transversally in X. Let E be the class of the
exceptional divisor of the blowup f : X̃ −→ X centered at Z. Let Q̃(t) =∑a f ∗Qata

be a formal power series with Qa ∈ A∗(X). We define the associated formal power
series Q(t) = ∑a Qata whose coefficients pullback to the coefficients of Q̃(t). Then
the pushforward f∗ Q̃(E) is:

f∗ Q̃(E) =
d∑

�=1

Q(Z�)M�, where M� =
d∏

m=1
m �=�

Zm

Zm − Z�

.

Proof.

f∗ Q̃(E) = f∗
∑

a

( f ∗Qa)E
a =
∑

a

Qa f∗Ea =
∑

a

Qa

d∑

�=1

Za
� M�

=
∑

a

d∑

�=1

QaZ
a
� M� =

d∑

�=1

Q(Z�)M�. (3.3)

�
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3.2. Classes of the blowup centers of crepant resolutions. We denote the projective
bundle of the Weierstrass model to be X0 = P[OB ⊕ L ⊗2 ⊕ L ⊗3] and the elliptic
fibration ϕ : Y0 → B to be the zero-scheme of a section of O(3) ⊗ π∗L ⊗6. We denote
by O(1) the dual of the tautological line bundle of X0. We denote by H the first Chern
class of O(1), and by L the first Chern class of L . The elliptic fibration ϕ : Y0 −→ B
is of class [Y0] = 3H + 6π∗L . The classes of the generators of the blowup centers are
Z (n)
i , where n is the number of the blowup map and i is the number of the center. For

example, consider the following blowup:

X0 X1 X2
(x, y, s|e1) (y, e1|e2) (3.4)

where each arrow above denotes a blowup, V (s) is a smooth divisor in X , and where
En = V (en) is the exceptional divisor of the nth blowup. The first exceptional divisor
is a projective bundle whose fibers have projective coordinates [x ′ : y′ : s′], where

x = x ′e1 , y = y′e1 , s = s′e1.

For notational convenience, we drop the prime superscripts (′) appearing after each
blowup.

The classes associated to the center of the first blowup in (3.4) are:

Z (1)
1 = [x] = H + 2π∗L , Z (1)

2 = [y] = H + 3π∗L , Z (1)
3 = [s] = π∗S.

Likewise, the classes associated to the center of the second blowup are

Z (2)
1 = [y] = f ∗

1 (H + 3π∗L) − E1, Z (2)
2 = [e1] = E1.

Let us adapt the above data into a matrix-inspired notation, such that i denote columns
and n denotes rows. This notation allows us to read the classes of the blowup center by
each row. In this notation, the above results can be expressed as follows:

Z =
(
Z (1)
1 Z (1)

2 Z (1)
3

Z (2)
1 Z (2)

2

)

=
(

H + 2π∗L H + 3π∗L π∗S
f ∗
1 (H + 3π∗L) − E1 E1

)

.

See Table 6 for an exhaustive list of the generator classes associated to the blowup centers
of the crepant resolutions in Table 5. Note that we streamline our notation by omitting
the explicit pullback maps from the expressions for the classes appearing in these tables.

4. Hodge Numbers of Elliptically Fibered Calabi–Yau Threefolds

Using motivitic integration, Kontsevich shows in his famous “String Cohomology” Lec-
ture at Orsay that birational equivalent Calabi–Yau varieties have the same class in the
completed Grothendieck ring [49]. Hence, birational equivalent Calabi–Yau varieties
have the same Hodge-Deligne polynomial, Hodge numbers, and Euler characteristic.
In this section, we compute the Hodge numbers of crepant resolutions of Weierstrass
models in the case of Calabi–Yau threefolds.

Theorem 4.1 (Kontsevich, see [49]). Let X and Y be birational equivalent Calabi–Yau
varieties over the complex numbers. Then X and Y have the same Hodge numbers.
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Remark 4.2. In Kontsevich’s theorem, a Calabi–Yau variety is a nonsingular complete
projective variety of dimension d with a trivial canonical divisor. To compute Hodge
numbers in this section, we use the following stronger definition of a Calabi–Yau variety.

Definition 4.3. ACalabi–Yau variety is a smooth compact projective varietyY of dimen-
sion n with a trivial canonical class and such that Hi (Y,OX ) = 0 for 1 ≤ i ≤ n − 1.

We first recall some basic definitions and relevant classical theorems.

Definition 4.4. The Néron-Severi group NS(X) of a variety X is the group of divisors
of X modulo algebraic equivalence. The rank of the Néron-Severi group of X is called
the Picard number and is denoted ρ(X).

Theorem 4.5 (Lefschetz (1,1)-theorem, see [74, Theorem 7.2, p. 157]). If X is compact
Kähler manifold, then the map c1 : Pic(X) → H1,1(X,Z) = H1,1(X,C) ∩ H2(X,Z)

is well-defined and surjective. In addition, the Picard number ρ(X) is equal to the Hodge
number h1,1(X) := dim H1,1(X,Z).

Theorem 4.6 (Noether’s formula). If B is a smooth compact, connected, complex surface
with canonical class K and Euler number c2:

χ(OB) = 1 − h0,1(B) + h0,2(B), χ(OB) = 1

12
(K 2 + c2).

When B is a smooth compact rational surface, we have a simple expression of h1,1(B)

as a function of K 2 using the following lemma.

Lemma 4.7. Let B be a smooth compact rational surface with canonical class K . Then

h1,1(B) = 10 − K 2. (4.1)

Proof. Since B is a rational surface, h0,1(B) = h0,2(B) = 0. Hence c2 = 2 + h1,1(B)

and the lemma follows from Noether’s formula. �
We now compute h1,1(Y ) using the Shioda-Tate-Wazir theorem.

Theorem 4.8 (Shioda–Tate–Wazir; see [75, Corollary 4.1]). Let ϕ : Y → B be a smooth
elliptic fibration, then

ρ(Y ) = ρ(B) + f + rank(MW(ϕ)) + 1

where f is the number of geometrically irreducible fibral divisors not touching the zero
section.

Theorem 4.9. Let Y be a smooth Calabi–Yau threefold elliptically fibered over a smooth
variety B with Mordell–Weil group of rank zero. Then,

h1,1(Y ) = h1,1(B) + f + 1, h2,1(Y ) = h1,1(Y ) − 1

2
χ(Y ),

where f is the number of geometrically irreducible fibral divisors not touching the zero
section. In particular, if Y is a G-model with G a simple group, f is the rank of G.

Proof. In the statement of the Shioda–Tate–Wazir theorem, we can replace the Picard
numbers ρ(Y ) and ρ(B) by the Hodge numbers h1,1(Y ) and h1,1(B) using Lefschetz’s
(1,1)-theorem. That gives h1,1(Y ) = h1,1(B) + f + 1. Since the Euler characteristic of
a Calabi–Yau threefold is χ(Y ) = 2(h1,1 − h2,1), and assuming that both χ(Y ) and
h1,1(Y ) are known, it follows that h2,1(Y ) = h1,1(Y ) − 1

2χ(Y ). �
Remark 4.10. For G-models with G a simple group, f will be the rank of G [60, §4].
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5. An Illustrative Example: SU(2)-Models

In this section, we discuss in detail the computation of the Euler characteristic of SU(2)-
models. Note that the results presented in this section are equivalent for each of the four
possible Kodaira fibers (namely, types Is2, I

s
2, I

s
3, III, IV

ns) realizing an SU(2)-model; see
Sect. 6 for a list of theWeierstrass equations defining the various SU(2)-models. We find

c(X0) = (1 + H)(1 + H + 3π∗L)(1 + H + 2π∗L)c(B)

c(Y0) = (3H + 6π∗L)
c(X0)

1 + 3H + 6π∗L
.

The singular elliptic fibration is resolved by a unique blowup with center (x, y, s) [32].
We denote the blowup by f : X1 −→ X0 and the exceptional divisor by E1. The center
is a complete intersection of hypersurfaces V (x), V (y), and V (s), whose classes are
respectively

Z1 = 2π∗L + H, Z2 = 3π∗L + H, Z3 = π∗S.

The proper transform of the elliptic fibration Y0 is denoted Y , and is obtained from the
total transform of Y by removing 2E1. It follows that the class of Y in X1 is

[Y ] = [ f ∗(3H + 6π∗L) − 2E1] ∩ [X1].
Moreover, we have the following Chern classes:

c(T X1) = (1 + E1)
(1 + f ∗Z1 − E1)(1 + f ∗Z2 − E1)(1 + f ∗Z3 − E1)

(1 + f ∗Z1)(1 + f ∗Z2)(1 + f ∗Z3)
f ∗c(T X0)

c(TY ) = (1 + E1)(1 + f ∗Z1 − E1)(1 + f ∗Z2 − E1)(1 + f ∗Z3 − E1)

(1 + 3H + 6L − 2E1)(1 + f ∗Z1)(1 + f ∗Z2)(1 + f ∗Z3)
f ∗c(T X0).

By an expansion of c(TY ) in first order, we can easily check that the resolution is
crepant:

c(TY ) = f ∗c(TY0).

After the blowup, the homological total Chern class is c(Y ) = c(TY ) ∩ [Y ]:
c(Y ) = (3 f ∗H + 6 f ∗π∗L − 2E1)(1 + E1)

× (1 + f ∗Z1 − E1)(1 + f ∗Z2 − E1)(1 + f ∗Z3 − E1)

(1 + 3H + 6L − 2E1)(1 + f ∗Z1)(1 + f ∗Z2)(1 + f ∗Z3)
f ∗c(X0).

To compute the Euler characteristic, we have to evaluate

χ(Y ) =
∫

Y
c(Y ).

The first pushforward requires the following data:

M1 = Z2Z3

(Z2 − Z1)(Z3 − Z1)
, M2 = Z1Z3

(Z1 − Z2)(Z3 − Z2)
,

M3 = Z1Z2

(Z1 − Z3)(Z2 − Z3)
.

Applying the pushforward theorem is now a purely algebraic routine that can be easily
implemented in one’s favorite algebraic software. Using Theorem 1.8, we pushforward
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c(Y ) from the Chow ring A∗(X1) to the Chow ring A∗(X0). Using Theorem 1.11, we
then pushforward f∗c(Y ) to the Chow ring of the base. When the dust settles, we find
an expression of χ(Y ) in the Chow ring of the base:

χ(Y ) =
∫

Y
c(TY ) =

∫

X0

f∗c(TY ) =
∫

B
π∗ f∗c(TY )

=
∫

B
6

2L + 3LS − S2

(1 + S)(1 + 6L − 2S)
c(T B).

Concretely, we replace c(T B) by the Chern polynomial ct (T B) = 1+c1t +c2t2 +c3t3 +
· · · , L by Lt , and S by St ; if d is the dimension of B, the Euler characteristic of Y is
given by the coefficient of td in the Taylor expansion centered at t = 0 of the generating
function:

χ(Y ) = 6
2Lt + 3LSt2 − S2t2

(1 + St)(1 + 6Lt − 2St)
ct (T B)

= 12Lt + 6t2(2c1L − 12L2 + 5LS − S2)

+ 6t3(−12c1L
2 + 5c1LS − c1S

2 + 2c2L + 72L3 − 54L2S + 15LS2 − S3) + · · ·

Theorem 5.1. If B is a curve, the Euler characteristic of an SU(2) model is 12L. If B is
a surface, the Euler characteristic is 6(2c1L−12L2 +5LS− S2). If B is a threefold, the
Euler characteristic is 6(−12c1L2+5c1LS−c1S2+2c2L+72L3−54L2S+15LS2−S3).

In order to consider the Calabi–Yau case, we set L = c1(T B) in the above expression,
which gives

χ(Y ) = 12c1t − 6t2(10c21 − 5c1S + S2)

+6t3(60c31 − 49c21S + 2c1c2 + 14c1S
2 − S3) + · · ·

Note that we retrieve the result for a smooth Weierstrass model if we further impose
S = 0.

Remark 5.2. As a byproduct of the computation of the Euler characteristic of the reso-
lution, we can also easily evaluate the contribution from the singularities to be

6
2L + 3LS − S2

(1 + S)(1 + 6L − 2S)
c(T B) − 12L

1 + 6L
c(T B)

= 6
(5L + 6L2 − 2LS − S)S

(1 + 6L)(1 + 6L − 2S)(1 + S)
c(T B),

which can be rewritten as

χ(Y ) − χ(Y0) = 6
6L2 − 2LS + 5L − S

(1 + 6L)(1 + 6L − 2S)
c(S), c(S) = S

1 + S
c(T B) ∩ [B].

In the Calabi–Yau case L = c1(T B), the above quantity usually has a physical meaning.
For example, if Y is a Calabi–Yau fourfold, this expression reduces to −6S(7c1 − S)2 ∩
[B], which is the contribution of branes to the Euler characteristic. In another limit, the
above expression can be understood as the contribution of the G4-flux in M-theory to
the M2-brane flux or brane flux in type IIB string theory:

1

2

∫

Y0
G4 ∧ G4 = 1

2

∫

S
F ∧ F = −6

∫

S
(7c1 − S)2.



122 M. Esole, P. Jefferson, M. J. Kang

6. Tables of Results

The G-models studied in this paper are all realized as crepant resolutions of the singular
Weierstrass model

y2z + a1xyz + a3yz
2 − (x3 + a2x

2z + a4xz
2 + a6z

3) = 0,

where the desired singularity structures corresponding to the decoratedKodairafibers can
be specified by the valuation of the coefficients of the Weierstrass equation with respect
to the divisor S = V (s). Following Tate’s algorithm, we use the notation ai,p = ai/s p,
where the valuations p are the minimal values dictated by Tate’s algorithm and we
assume that the coefficients ai,p are generic.

We present the results of our computation of the Euler characteristic generating
functions for various G-models. The generating functions are the pushforwards of the
homological total Chern class of the resolved Weierstrass model to the base B, and are
expressed as rational functions of the classes S and L (where L = c1(L ) is the class of
the fundamental line bundle and S is the class of the divisor in the base B), multiplied
by the total Chern class of the base, c(B)—see Table 7. Tables 8, 9 and 10 specialize the
results to (respectively) elliptic threefolds, fourfolds, and elliptic Calabi–Yau fourfolds,
while Table 11 summarizes the Hodge numbers for Calabi–Yau threefold G-models.

When computing Hodge numbers of a G model which is a Calabi–Yau threefold, we
recall that we assume that the base is a rational surface. This is a direct consequence
of Definition 4.3. Moreover, for a G-model with G a simple group, the integer f that
enters in Theorem 4.9 is the rank of G.

For the SO(3), SO(5), and SO(6)-models, the class S is given by [28]:
⎧
⎪⎨

⎪⎩

S = 4L for SO(3),
S = 2L for SO(5),
S = 2L for SO(6).

Below we list the various Weierstrass equations we use to compute the G-models,
labeled by their Kodaira fiber type and associated Lie group G. It is necessary to specify
a crepant resolution in order to actually compute the total Chern class and Euler charac-
teristic of a G-model. There could be several distinct crepant resolutions for a G-model.
However, Theorem 2.8 assures that the Euler characteristic is insensitive to the choice
of crepant resolution and therefore we only need one crepant resolution to compute the
Euler characteristic of a G-model defined by the crepant resolution of a Weierstrass
model. The models associated to the groups SU(n) and USp(2n) are [46]:

Is2 SU(2) : y2z + a1xyz + a3,1syz = x3 + a2,1 (6.1)

sx2z + a4,1sxz
2 + a6,2s

2z3,

Ins2n USp(2n) : y2z = x3 + a2x
2z + a4,ns

nxz2 + a6,2ns
2nz3, (6.2)

Ins2n+1 USp(2n) : y2z = x3 + a2x
2z + a4,n+1s

n+1xz2 + a6,2n+1s
2n+1z3, (6.3)

Is2n SU(2n) : y2z + a1xyz = x3 + a2,1sx
2z + a4,ns

nxz2 + a6,2ns
2nz3, (6.4)

Is2n+1 SU(2n + 1) : y2z + a1xyz + a3,ns
n yz2 = x3 (6.5)

+ a2,1sx
2z + a4,n+1s

n+1xz2 + a6,2n+1s
2n+1z3.

TheWeierstrassmodels for SO(3), SO(5), and SO(6) are discussed in [28]; thesemodels
require a Mordell–Weil group Z/2Z. The crepant resolutions of the Weierstrass models
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for G2, Spin(7), and Spin(8) models are studied in [27] and require a careful analysis of
the Galois group of an associated polynomial. The Weierstrass equations defining these
models along with the remaining G-models, with G one of the exceptional groups are
given below [27,28,30,46]:

Ins2 SO(3) : y2z = x(x2 + a2xz + a4z
2), (6.6)

Ins4 SO(5) : y2z = (x3 + a2x
2z + s2xz2), (6.7)

Is4 SO(6) : y2z + a1xyz=x3 + msx2z + s2xz2, m∈C, m �= −2, 0, 2,
(6.8)

I∗ss0 Spin(7) : y2z = x3 + a2,1sx
2z + a4,2s

2xz2 + a6,4s
4z3, (6.9)

I∗s0 Spin(8) : y2z = (x − x1sz)(x − x2sz)(x − x3sz) (6.10)

+ s2r x2z + s3qxz2 + s4t z3,

III SU(2) : y2z = x3 + sa4,1xz
2 + s2a6,2z

3, (6.11)

IVns SU(2) : y2z = x3 + s2a4,2xz
2 + s2a6,2z

3, (6.12)

IVs SU(3) : y2z + a3,1syz
2 = x3 + s2a4,2xz

2 + s3a6,3z
3, (6.13)

I∗ns0 G2 : y2z = x3 + s2a4,2xz
2 + s3a6,3z

3, (6.14)

IV∗ns F4 : y2z = x3 + s3a4,3xz
2 + s4a6,4z

3, (6.15)

IV∗s E6 : y2z + a3,2s
2yz2 = x3 + s3a4,3xz

2 + s5a6,5z
3, (6.16)

III∗ E7 : y2z = x3 + s3a4,3xz + s5a6,5z
3, (6.17)

II∗ E8 : y2z = x3 + s4a4,4xz
2 + s5a6,5z

3. (6.18)

Theorem 6.1. Let Y0 → B be a singularWeierstrassmodel of aG-model. If f : Y → Y0
is a crepant resolution of Y0 given by one of the sequence of blowups given in Table
5, the generating function of the Euler characteristic of any crepant resolution of Y0 is
given by the corresponding entry in Table 7.

Remark 6.2. The theorem does not address if the sequence of blowups define a crepant
resolution. One usually has to assume some conditions on the coefficients of the Weier-
strass equations. See for example [27]. In some cases, the dimension of the base plays
a role too [27] (Tables5, 6, 7, 8, 9, 10, 11).

7. Discussion

In this paper, we have computed the generating functions for the Euler characteristics of
G-models obtained by crepant resolutions of Weierstrass models with bases of arbitrary
dimension. The case ofG-models that are also Calabi–Yau varieties is important in string
theory and is treated here as a special case. In particular, we list the Euler characteristic
of G-models that are elliptic threefolds and fourfolds. For Calabi–Yau threefolds, we
also compute the Hodge numbers. These results are insensitive to the particular choice
of resolution due to Batyrev’s theorem on the Betti numbers of crepant birational equiv-
alent varieties and Kontsevich’s theorem on the Hodge numbers of birational equivalent
Calabi–Yau varieties [6,49]. We have considered all possible G-models with G a simple
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Table 6. The classes of the centers of the blowups for all G-models

Algebra Group Generator classes of the blowup centers (Z (n)
i )

A1 SU(2)
(
H + 2L H + 3L S

)

A2
G2

SU(3)

G2

(
H + 2L H + 3L S

H + 3L − E1 E1

)

A3
SU(4)
Spin(7)

⎛

⎝
H + 2L H + 3L S

H + 3L − E1 E1
H + 2L − E1 E2

⎞

⎠

D4 Spin(8)

⎛

⎜
⎝

H + 2L H + 3L S
H + 3L − E1 E1
H + 2L − E1 E2
H + 2L − E1 E2 − E3

⎞

⎟
⎠

F4 F4

⎛

⎜
⎝

H + 2L H + 3L S
H + 3L − E1 E1
H + 2L − E1 E2
E2 − E3 E3

⎞

⎟
⎠

A4 SU(5)

⎛

⎜
⎝

H + 2L H + 3L S
H + 2L − E1 H + 3L − E1 E1

H + 3L − E1 − E2 E1 − E2
H + 3L − E1 − E2 − E3 E2

⎞

⎟
⎠

D5 Spin(10)

⎛

⎜
⎜
⎜
⎝

H + 2L H + 3L S
H + 3L − E1 E1
H + 2L − E1 E2

H + 3L − E1 − E2 E3
E2 − E3 E3 − E4

⎞

⎟
⎟
⎟
⎠

E6 E6

⎛

⎜
⎜
⎜
⎜
⎜
⎝

H + 2L H + 3L S
H + 3L − E1 E1
H + 2L − E1 E2
E2 − E3 E3

H + 3L − E1 − E2 E3 − E4
H + 3L − E1 − E2 − E5 E4

⎞

⎟
⎟
⎟
⎟
⎟
⎠

E7 E7

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

H + 2L H + 3L S
H + 3L − E1 E1
H + 2L − E1 E2

H + 3L − E1 − E2 E3
E2 − E3 E3 − E4

E2 − E3 − E5 E4
E4 − E6 E5

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

E8 E8

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

H + 2L H + 3L S
H + 3L − E1 E1
H + 2L − E1 E2

H + 3L − E1 − E2 E3
E2 − E3 E3 − E4

E4 E5
E2 − E3 − E5 E4 − E6 E6
E4 − E6 − E7 E7

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

A1 SO(3)
(
H + 2L H + 3L

)

B2 SO(5)

(
H + 2L H + 3L 2L

H + 2L − E1 H + 3L − E1 E1

)

A3 SO(6) same as SU(4), but with S = 2L
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Table 7. Generating functions of Euler characteristic of crepant resolutions of Tate’s models with trivial
Mordell–Weil groups. S is the divisor over which the generic fiber is of type given by the Kodaira fiber and
L = c1(L ) whereL is the fundamental line bundle of the Weierstrass model

Algebra Group Kodaira fiber χ(Y ) = π∗
(
f∗c(TY ) ∩ [Y ]

)

− {e} I1
12L

1 + 6L
c(B)

A1 SU(2)
Is2, I

ns
2

Ins3 , III
IVns

6
2L + 3LS − S2

(1 + S)(1 + 6L − 2S)
c(B)

A2
G2

SU(2)
G2

Is3, IVs

I∗ns0
12

L + 2SL − S2

(1 + S)(1 + 6L − 3S)
c(B)

C2 USp(4) Ins4 4
3L(1 + 2L) + 6L(1 + 2L)S − (5 + 8L)S2

(1 + 2L)(1 + 6L − 4S)(1 + S)
c(B)

A3
B3

SU(4)
Spin(7)

Is4
I∗ss0

4
3L + 12L2 + LS − 5S2 + 30L2S − 35LS2 + 10S3

(1 + S)(1 + 6L − 4S)(1 + 4L − 2S)
c(B)

D4
F4

Spin(8)
F4

I∗s0
IV∗ns 12

L + 3SL − 2S2

(1 + S)(1 + 6L − 4S)
c(B)

A4 SU(5) Is5
12L + 42L2S + 12L2 − 35LS2 + 32LS − 30S2

(1 + L)(1 + S)(1 + 6L − 5S)
c(B)

D5 Spin(10) I∗s1
4
(
−8(4L + 1)S2 + 6(4L + 1)LS + 3(2L + 1)L + 10S3

)

(S + 1)(−2L + S − 1)(−6L + 5S − 1)
c(B)

E6 E6 IV∗s 3
4L + 12L2 − 12S2 + 6SL − 81S2L + 54SL2 + 30S3

(1 + S)(1 + 6L − 5S)(1 + 3L − 2S)
c(B)

E7 E7 III∗ 2
6L + 24L2 + 7LS − 21S2 + 120L2S − 190LS2 + 75S3

(1 + S)(1 + 6L − 5S)(1 + 4L − 3S)
c(B)

E8 E8 II∗ 12
L + 6LS − 5S2

(1 + S)(1 + 6L − 5S)
c(B)

A1 SO(3) Ins2
12L

1 + 4L
c(B)

B2 SO(5) Ins4
4L(3 + 4L)

(1 + 2L)2
c(B)

A3 SO(6) Is4
12L

1 + 2L
c(B)

Lie group, except for the case of Kodaira fibers In>5 and I∗n>1 that we will treat in a
follow-up paper.

We start with a G-model given by a singular Weierstrass model ϕ : Y0 −→ B with a
fundamental line bundleL (in the Calabi–Yau case, c1(L ) = c1(T B)). Given a crepant
resolution f : Y −→ Y0 determined by a sequence of blowups with smooth centers that
are complete intersections with normal crossings, we compute the Euler characteristic
of Y as the degree of its total Chern class defined in homology

χ(Y ) =
∫

Y
c(Y ).
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Table 8. Euler characteristic for elliptic threefolds

Models χ(Y3), Euler characteristic
Smooth Weierstrass 12L(c1 − 6L)

SU(2) 6(2c1L − 12L2 + 5LS − S2)
SU(3) or G2 12(c1L − 6L2 + 4LS − S2)
SU(4) or Spin(7) 4(3c1L − 18L2 + 16LS − 5S2)
Spin(8) or F4 12(c1L − 6L2 + 6LS − 2S2)
SU(5) 2(6c1L − 36L2 + 40LS − 15S2)
Spin(10) 4(3c1L − 18L2 + 21LS − 8S2)
E6 6(2c1L − 12L2 + 15LS − 6S2)
E7 2(6c1L − 36L2 + 49LS − 21S2)
E8 12(c1L − 6L2 + 10LS − 5S2)
SO(3) 12L(c1 − 4L)

SO(5) 4L(3c1 − 8L)

SO(6) 12L(c1 − 2L)

Table 9. Euler characteristic for elliptic fourfolds

Models χ(Y4), Euler characteristic
Smooth Weierstrass 12L(−6c1L + c2 + 36L2)
SU(2) 6(−12c1L2 + 5c1LS − c1S

2 + 2c2L + 72L3 − 54L2S + 15LS2 − S3)
SU(3) or G2 12(−6c1L2 + 4c1LS − c1S

2 + c2L + 36L3 − 42L2S + 17LS2 − 2S3)
SU(4) or Spin(7) 4(−18c1L2 + 16c1LS − 5c1S2 + 3c2L + 108L3 − 166L2S + 89LS2 − 15S3)
SU(5) −72c1L2 + 80c1LS − 30c1S2 + 12c2L + 432L3 − 830L2S + 555LS2 − 120S3

Spin(10) 4(−18c1L2 + 21c1LS − 8c1S2 + 3c2L + 108L3 − 210L2S + 140LS2 − 30S3)
Spin(8) or F4 12(−6c1L2 + c2L + 36L3 + 6c1LS − 2c1S2 − 60L2S + 34LS2 − 6S3)
E6 3(−24c1L2 + 30c1LS − 12c1S2 + 4c2L + 144L3 − 288L2S + 195LS2 − 42S3)
E7 2(−36c1L2 + 49c1LS − 21c1S2 + 6c2L + 216L3 − 454L2S + 321LS2 − 72S3)
E8 12(−6c1L2 + 10c1LS − 5c1S2 + c2L + 36L3 − 90L2S + 75LS2 − 20S3)
SO(3) 12L(16L2 − 4c1L + c2)
SO(5) 4L(20L2 − 8c1L + 3c2)
SO(6) 12L(4L2 − 2Lc1 + c2)

We work relative to a smooth base B of arbitrary dimension. Using the functorial prop-
erties of the degree, we pushforward first to the Chow ring of the projective bundle and
then to the Chow ring of the base:

χ(Y ) =
∫

B
π∗ f∗c(Y ).

The final result is a generating function for the Euler characteristic.
A key result of this work is Theorem 1.8, which has numerous applications in inter-

section theory. We also provide a simple proof of an identity (Lemma 1.10) that can be
traced back to Jacobi’s thesis and appears in numerous situations in mathematics and
physics, which is instrumental in the proof of Theorem 1.8.

We also retrieve in a unifying way known results on the Euler characteristics and
Hodge numbers of Calabi–Yau threefolds. Furthermore, we have proven en passant a
conjecture of Blumenhagen et al. [9] on the Euler characteristics of Calabi–Yau fourfolds
that are G-models with G belonging to the exceptional series. One interesting point that
is almost trivial from the perspective taken in this paper is that certain G-models with
different G will have the same Euler characteristic just because they are resolved by the
same sequence of blowups.
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Table 10. Euler characteristic for Calabi–Yau elliptic fourfolds where c1 = L

Models χ(Y4), Euler characteristic
Smooth Weierstrass 12c1c2 + 360c31
SU(2) 6(2c1c2 + 60c31 − 49c21S + 14c1S2 − S3)
SU(3) or G2 12(c1c2 + 30c31 − 38c21S + 16c1S2 − 2S3)
SU(4) or Spin(7) 12(3c1c2 + 30c31 − 50c21S + 28c1S2 − 5S3))
Spin(8) or F4 12(c1c2 + 30c31 − 54c21S + 32c1S2 − 6S3)
SU(5) 3(4c1c2 + 120c31 − 250c21S + 175c1S2 − 40S3)
Spin(10) 12(c1c2 + 30c31 − 63c21S + 44c1S2 − 10S3)
E6 3(4c1c2 + 120c31 − 258c21S + 183c1S2 − 42S3)
E7 6(2c1c2 + 60c31 − 135c21S + 100c1S2 − 24S3)
E8 12(c1c2 + 30c31 − 80c21S + 70c1S2 − 20S3)
SO(3) 12c1(12c

2
1 + c2)

SO(5) 12c1(4c
2
1 + c2)

SO(6) 12c1(2c
2
1 + c2)

Table 11. Hodge numbers and Euler characteristic of Calabi–Yau threefolds obtained from crepant resolutions
of Tate’s models

Algebra Group Kodaira fiber h1,1(Y3) h2,1(Y3) χ(Y3)
– {e} I1 11 − K 2 11 + 29K 2 −60K 2

A1 SU (2)
Is2, I

ns
2

Ins3 , III
IVns

12 − K 2 12 + 29K 2 + 15K S + 3S2 −60K 2 − 30K S − 6S2

A2 SU(3) Is3, IVs 13 − K 2 13 + 29K 2 + 24K S + 6S2 −60K 2 − 48K S − 12S2

G2 G2 I∗ns0

A3 SU(4) Is4 14 − K 2 14 + 29K 2 + 32K S + 10S2 −60K 2 − 64K S − 20S2

B3 Spin(7) I∗ss0

D4 Spin(8) I∗s0 15 − K 2 15 + 29K 2 + 36K S + 12S2 −60K 2 − 72K S − 24S2

F4 F4 IV∗ns

A4 SU(5) Is5 15 − K 2 15 + 29K 2 + 40K S + 15S2 −60K 2 − 80K S − 30S2

D5 Spin(10) I∗s1 16 − K 2 16 + 29K 2 + 42K S + 16S2 −60K 2 − 84K S − 32S2

E6 E6 IV∗s 17 − K 2 17 + 29K 2 + 45K S + 18S2 −60K 2 − 90K S − 36S2

E7 E7 III∗ 18 − K 2 18 + 29K 2 + 49K S + 21S2 −60K 2 − 98K S − 42S2

E8 E8 II∗ 19 − K 2 19 + 29K 2 + 60K S + 30S2 −60K 2 − 120K S − 60S2

A1 SO(3) Ins2 12 − K 2 12 + 17K 2 −36K 2

B2 SO(5) Ins4 14 − K 2 14 + 9K 2 −20K 2

A3 SO(6) Is4 14 − K 2 14 + 5K 2 −12K 2
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A. Jacobi’s Partial Fraction Identity

In this section, we prove a formula of Jacobi and exploit the theorem to give a simple
proof of a formula of Louck andBiedenharn [53, AppendixA, p. 2400] by demonstrating
its equivalence with the following theorem of Jacobi.

Theorem A.1 (Jacobi, [44, Section III.17, pp. 29–30]). Let ai (i = 1, . . . , d) be d
distinct elements of an integral domain. Then

d∏

i=1

1

x − ai
=

d∑

i=1

1

x − ai

d∏

j=1
j �=i

1

ai − a j
. (A.1)

Proof. Let

F(x) =
d∏

i=1

1

x − ai
, (A.2)

where ai �= a j for i �= j . We would like to find the partial fraction expansion of F(x).
That is, we would like to find coefficients Ai (i = 1, . . . , d) such that

F(x) =
d∑

i=1

Ai

x − ai
. (A.3)

We determine Ai by the method of residues. Multiplying (A.3) by (x − ai ), sim-
plifying, and evaluating at x = ai gives

(x − a j )F(x)
∣
∣
x=a j

= A j .

Applying the above formula to (A.2), we get A j = ∏i �= j
1

ai−a j
, which is the

identity of Jacobi:
d∏

i=1

1

x − ai
=

d∑

i=1

1

x − ai

d∏

j=1
j �=i

1

ai − a j
. (A.4)

�
Theorem A.2 (Jacobi, Louck–Biedenharn, Cornelius). Let hr (x1, . . . , xd) be the homo-
geneous complete symmetric polynomial of degree r in d variables of an integral domain.
Then,

hr (x1, . . . , xd) =
d∑

�=1

xr+d−1
�

d∏

m=1
m �=�

1

x� − xm
.
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This theorem was proven by Louck-Biedenharn [53, Appendix A, p. 2400] and
Cornelius [14]. We present a new and much simpler proof below by showing that the
theorem is simply a reformulation of Jacobi’s identity (Theorem A.1).

Proof. Substituting x → 1/t in Eq. (A.1) gives:

d∏

i=1

t

1 − ai t
=

d∑

i=1

t

1 − ai t

d∏

j=1
j �=i

1

ai − a j
.

Expanding 1/(1 − ai t) in both side of the equation gives

td
∞∑

r=0

hr (a1, . . . , ad)t
r = t

d∑

i=1

∞∑

k=0

aki t
k

d∏

j=1
j �=i

1

ai − a j

∞∑

r=0

hr (a1, . . . , ad)t
r+d−1 =

∞∑

k=0

( d∑

i=1

aki

d∏

j=1
j �=i

1

ai − a j

)
tk .

Comparing terms of the same degree in t , we get the final expression of Lemma 1.10:

hr (a1, . . . , ad) =
d∑

i=1

ar+d−1
i

d∏

j=1
j �=i

1

ai − a j
.

�

B. The Euler Characteristic as the Degree of the Top Chern Class

The purpose of this section is to explain from different points of view why the Euler
characteristic is the degree of the top Chern class. Traditionally, this statement is seen
as a generalization of the Poincaré–Hopf theorem that asserts that the total degree of
a vector field defined on a smooth manifold M is the Euler characteristic of M . This
statement can also be seen as a generalization of the Gauss–Bonnet–Chern Theorem
(which is itself is a consequence of Poincaré–Hopf theorem). Here we will review three
different approaches. The first one relies on Leftschetz fixed point theorem. The second
one uses he Poincaré–Hopf theorem using the interpretation of Chern classes as related
to the class of some degenerated loci as discussed in Chapter 3 of Fulton. The third one is
an application of theHirzebruch–Riemann–Roch theorem and theHodge decomposition
theorem.

Let M be a smooth compact manifold. The kth Betti number of M is by definition
the dimension of the cohomology group Hk(M,Q). The Euler characteristic of M is
denoted by χ(X) and is defined as the following alternative sum of Betti numbers of
M :

χ(M) :=
dim M∑

k=0

(−1)kbk, bk := dim Hi (M,Q).
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B.1. Lefschetz fixed point theorem and the Euler characteristic as an intersection num-
ber.

Theorem B.1 (Lefschetz fixed point theorem). Let M be a compact smooth manifold of
dimension m and f : M −→ M a continuous map. We define the Lefschetz number of
f as

L( f ) :=
m∑

k=0

(−1)k tr
(
f ∗|Hk(M,Q)

)
, f ∗ : Hk(M,Q) −→ Hk(M,Q).

Then L( f ) is equal to the intersection number of the graph � f of f and the diagonal
� in M × M

L( f ) =
∫

M×M
� f · �.

Thus, the Leftschetz number L( f ) is the number of fixed points of f counted with
multiplicities.

Corollary. Let M be a compact smooth manifold and � be the diagonal of M × M,
then the Euler characteristic of M, χ(M) = ∑i (−1)k dim Hi (M,Q), is equal to the
self-intersection of � in M × M:

χ(M) =
∫

M×M
� · �.

Proof. Consider the special case of Lefschetz theorem for which f is the identify map
on M . Then, the Leftschetz number reduces to the Euler characteristic χ(M) as the trace

tr
(
f ∗|Hk(M,Q)

)
becomes the kth Betti number bk of M and the intersection number

∫
M×M � f · � becomes the self-intersection of the diagonal � in M × M . �

Theorem B.2 (Self-intersection formula, see [37, Corollary 6.3, pp. 102–103]). Let i :
Z → X be a regular imbedding of codimension d and normal bundle N. Then for any
α ∈ A∗(Z) we have the self-intersection formula

i∗i∗(α) = cd(N ) ∩ α.

Theorem B.3. If X is a nonsingular complete algebraic variety, then the Euler charac-
teristic of X is equal to the degree of the total homological Chern class of X:

χ(X) =
∫

c(X), c(X) := c(T X) ∩ [X ].

Proof. The theorem follows from the previous corollary expressing the Euler charac-
teristic χ(X) as the self-intersection of the diagonal � in X × X , followed by the
self-intersection formula expressing � · � as the class cdim X (N�X × X) ∩ [�]. Since
the normal bundle of � in X × X is isomorphic to the tangent bundle of X (see for
example [11, Lemma 11.23, p. 127]), it follows that [37, Example 8.1.12, p. 136], the
self-intersection of the diagonal � in X × X is

∫
cdim X (T X) ∩ [X ] = ∫ c(T X) ∩ [X ]:

χ(X) =
∫

X×X
� · � =

∫
c(N�X × X) ∩ [�] =

∫
c(T X) ∩ [X ].

�
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B.2. Poincaré-Hopf theorem and the Euler characteristic.

Theorem B.4 (Poincaré-Hopf). Let M be a smooth compact manifold without boundary
and v be a vector field with isolated zeros. Then the sum of the local indices at the zeros
of v is equal to the Euler characteristic of M.

Remark B.5. This theorem can be generalized to manifolds with boundaries by requiring
v to point outward. Poincaré proved a two dimensional version of this theorem in 1885.
The general version was proven by Hopf in 1926.

Theorem B.6 ([37, Example 3.2.16, p. 61]). Let E be a vector bundle of rank r on a
smooth variety X, let s be a section of E, and Z the zero-scheme of s. If X is purely
n-dimensional and s is a regular section, then Z is purely (n − r)-dimensional, and

[Z ] = cr (E) ∩ [X ].
In particular, if E is the tangent bundle T X of X , then r (i.e. the rank of E) is

the dimension of X , and the section s of E is just a vector field. The zero-scheme Z is
a 0-cycle that is the sum of the isolated singularities of s counted with multiplicities.
Hence, the degree of the top Chern class of T X gives the index of the vector field s,
which is the Euler characteristic of M by the Poincaré–Hopf theorem. Since the degree
of c(X) is exactly the degree of cr (T X) ∩ [X ], we retrieve Theorem B.3:

χ(X) =
∫

c(X).

B.3. Hirzebruch–Riemann–Roch theorem and the Euler characteristic. In this sub-
section, using the Hirzebruch–Riemann–Roch theorem and the Hodge decomposition
theorem, we prove that the Euler characteristic of a nonsingular projective variety is the
degree of its homological total Chern class. We follow Fulton ([37, Example 18.3.7, p.
362] and [37, Example 3.2.5, p. 57]) as presented by Rössler [67]. We denote the Todd
class, the Chern character, and the dual of a vector bundle E by td(E) and ch(E), and
E∨ respectively.

Let X be a projective variety of dimension d and V a coherent sheaf defined over
X . We denote by Hq(X, V ) the q-th cohomology group of X with coefficients in the
sheaf of germs of local sections of V . The cohomology groups Hq(X, V ) vanish for
q > d and are all finite dimensional for 0 ≤ q ≤ d. The Euler characteristic of V in X
is by definition the finite number

χ(X, V ) :=
d∑

q=0

(−1)q dim Hq(X, V ).

The Hirzebruch–Riemann–Roch theorem provides an expression for χ(X, V ) in terms
of characteristic classes of T X and V realizing a conjecture of Serre in a letter to Kodaira
and Spencer.

Theorem B.7 (Hirzebruch–Riemann–Roch). Let V be a coherent sheaf over a nonsin-
gular variety X. Then

χ(X, V ) =
∫

X
ch(V )td(T X).
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We will also need the following lemma relating the Todd class and the Chern
character. This lemma is instrumental in the proof of the Hirzebruch–Riemann–Roch
theorem of Borel and Serre [10, Lemma 18, p. 128], and is also discussed by Fulton in
[37, Example 3.2.5, p. 57].

Lemma B.8 (Hirzebruch [41, Theorem 10.1.1, p. 92])). Let E be a vector bundle of rank
r . Then

ch
( r∑

q=0

(−1)q
∧q

E∨)td(E) = cr (E).

Proof. By the splitting principal, we can always formally factorize the total Chern class
of E as c(E) =∏i (1 + ai ), where ai are the Chern roots of E . Then by definition

ch(E) :=
r∑

i=1

eai , td(E) :=
∏

i

ai
(1 − e−ai )

.

We have the classical relations (see [41, Theorem 4.4.3, p. 64] or [37, Remark 3.2.3, pp.
54–56])

c(E∨) =
∏

i

(1 − ai ), c(
∧q

E) =
∏

1≤i1<···<iq≤r

(
1 + ai1 + · · · + aiq

)
.

Hence

ch
(∧q

E∨) =
∑

1≤i1<···<iq≤r

e−(ai1+···+aiq )
.

Thus by the additive properties of the Chern character and the definition of the Todd
class:

ch
( r∑

q=0

(−1)q
∧q

E∨) =
r∑

q=0

(−1)qch
(∧q

E∨) =
r∏

i=1

(1 − e−ai )

= (a1 . . . ar )
r∏

i=1

(1 − e−ai )

ai
= cr (E)td−1(E).

�
Theorem B.9. Let X be a nonsingular complete projective variety defined over the
complex numbers. Then the Euler characteristic

χ(X) =
∫

c(X).

Proof. For X a nonsingular variety of dimension d, we apply Lemma B.8 to the tangent
bundle E = T X and we note that E∨ = T X∨ := X , where X is the sheaf of
differentials of X , and by definition, the sheaf of differential p-forms is

∧q
X := 

q
X .

Hence, we get

ch
( d∑

q=0

(−1)qq
X

)
td(T X) = cr (T X).
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We rewrite the left hand side of the previous equation as follows

∫

X
ch
( d∑

q=0

(−1)qq
X

)
td(T X) =

d∑

q=0

(−1)q
∫

X
ch(q

X )td(T X)

=
d∑

q=0

(−1)q
∫

X
χ(X,

q
X )

=
d∑

q=0

d∑

p=0

(−1)p+qdim H p(X,
q
X )

=
d∑

k=0

(−1)k
∑

p+q=k

dim H p(X,
q
X )

=
d∑

k=0

(−1)kbk

= χ(X).

The first equality is a direct consequence of the additive property of the Chern character,
the second equality is due to the Hirzebruch–Riemann-Roch theorem applied to 

q
X ,

the third equality follows from the definition of the Euler characteristic of a sheaf, and
the fifth equality is a direct application of the Hodge decomposition theorem k =⊕

p+q=k p,q and Dolbeault’s theorem, which asserts that the Dolbeault cohomology
is isomorphic to the sheaf cohomology of the sheaf of differential forms: H p,q(X) ∼=
H p(X,

q
X ). In particular, h p,q(X) = dim H p(X,

q
X ) are the Hodge numbers of X .

The last equality is by the definition of the Euler characteristic. Hence, since
∫
c(X) =∫

c(T X) ∩ [X ] = ∫X cr (T X), we get
∫

c(X) = χ(X).

�

C. Basic Notions

The local ring of a subvariety S of X is denotedOX,S , its maximal ideal isMX,S and the
quotient field is the residue field κ(S) = OX,S/MX,S . The local ring OX,S is the stalk
of the structure sheaf of X at the generic point ηS of S and κ(S) is the function field of
S. If S is a divisor, OX,S is a one dimensional local domain. In case X is nonsingular
along S,OX,S is a discrete valuation ring and the order of vanishing is given by the usual
valuation.

C.1. Fiber types, dual graphs, Kodaira symbols.

Definition C.1 (Algebraic cycle). An algebraic cycle of a Noetherian scheme X is a
finite formal sum

∑
i Ni Vi of subvarieties Vi with integer coefficients Ni . If all the

subvarieties Vi have the same dimension d, the cycle is called a d-cycle. The free group
generated by subvarieties of dimension d is denoted Zd(X). The group of all cycles,
denoted Z(X) =⊕d Zd(X), is the free group generated by subvarieties of X .
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Definition C.2 (Degree of a zero-cycle [37, Chapter 1, Definition 1.4, p. 13]). Let X be
a complete scheme. The degree of a zero-cycle

∑
Ni pi of X is

deg(
∑

i

Ni pi ) =
∑

i

Ni [κ(pi ) : k],

where [κ(pi ) : k] is the degree of the field extension κ(pi ) → k.

Let � be an algebraic one-cycle with irreducible decomposition � =∑i mi�i . We
denote by �i · � j the zero-cycle defined by the intersection of �i and � j for i �= j .

Definition C.3 (n-points, tree). A n-point of an algebraic one-cycle � is a point in⋃
i �i , which belongs to exactly n distinct irreducible components �i . An algebraic

one-cycle � is said to be a tree if it does not have n-points for n > 2. Two curves
intersect transversally if their intersection consists of isolated reduced closed points.

**Following Kodaira [47,48], we introduce the following definition:

Definition C.4 (Fiber type). By the type of an algebraic one-cycle � ∈ Z1(X) with
irreducible decomposition � = ∑i mi�i , we mean the isomorphism class of each
irreducible curve �i , together with the topological structure of the reduced polyhedron∑

�i (that is the collection of zero-cycles �i · � j (i �= j)), and the homology class of
� =∑i mi�i in the Chow group A1(X).

Example C.5. For instance, �1 · �2 = 2p1 + 3p2 indicates that the two curves �1 and
�2 meet at two points p1 and p2 with respective intersection multiplicity 2 and 3.

Definition C.6 (Dual graph). To an algebraic one-cycle � with irreducible decomposi-
tion � = ∑i mi�i , we associate a weighted graph (called the dual graph of �) such
that:

• The vertices are the irreducible components of the fiber.
• The weight of a vertex corresponding to the irreducible component �i is its multi-
plicity mi . When the multiplicity is one, it can be omitted.
• The vertices corresponding to the irreducible components �i and � j (i �= j) are
connected by �̂i, j = deg(�i · � j ) edges.

Definition C.7 (Kodaira symbols, See [47,48, Theorem 6.3]). Kodaira has introduced
the following symbols characterizing the type of one-cycles appearing in the study of
minimal elliptic surfaces. See Table 4 for a visualization of these fibers.

1. Type I0: a smooth curve of genus 1.
2. Type I1: an irreducible nodal rational curve.
3. Type II: an irreducible cuspidal rational curve.
4. Type I2:� = �1+�2 and�1 ·�2 = p1+ p2: two smooth rational curves intersecting

transversally at two distinct points p1 and p2. The dual graph of I2 is Ã1.
5. Type III: � = �1 + �2 and �1 · �2 = 2p: two smooth rational curves intersecting

at a double point. Its dual graph is Ã1.
6. Type IV: � = �1 + �2 + �3 and �1 · �2 = �1 · �3 = �2 · �3 = p: a 3-star

composed of smooth rational curves. Its dual graph is Ã2.
7. Type In (n ≥ 3): � = �0 + · · · �n with �i · �i+1 = pi i = 0, . . . , n − 1 and

�n · �0 = pn . Its dual graph is the affine Dynkin diagram Ãn−1.
8. Type I∗n (n ≥ 0):� = �0+�1+2�2+· · ·+2�n+2+�n+3+�n+4, with�i ·�i+1 = pi

(i = 1, . . . , n + 2), �0 · �2 = p0, �n+4 · �n+2 = pn+4. The dual graph the affine
Dynkin diagram D̃4+n .



Euler Characteristics of Crepant Resolutions 137

9. Type IV∗: � = �0 + �1 + 2�2 + 2�3 + 3�4 + 2�5 + �6 with �i · �i+1 = pi
(i = 3, . . . , 6), �1 · �3 = p1, �0 · �2 = p0, �2 · �4 = p2. The dual graph is the
affine Dynkin diagram Ẽ6.

10. Type III∗: � = �0 + 2�1 + 2�2 + 3�3 + 4�4 + 3�5 + 2�6 +�7 with �i ·�i+1 = pi
(i = 3, . . . , 6), �1 · �3 = p1, �0 · �1 = p0, �2 · �4 = p2. The dual graph is the
affine Dynkin diagram Ẽ7.

11. Type II∗: � = 2�1 + 3�2 + 4�3 + 6�4 + 5�5 + 4�6 + 3�7 + 2�8 + �0, with
�i · �i+1 = pi (i = 3, . . . , 7), �1 · �3 = p1, �8 · �0 = p8, and �2 · �4 = p2. The
dual graph the affine Dynkin diagram Ẽ8.

C.2. Elliptic fibrations, generic versus geometric fibers.

Definition C.8 (Elliptic fibrations).A surjective propermorphismϕ : Y −→ B between
two algebraic varieties Y and B is called an elliptic fibration if the generic fiber of ϕ is
a smooth projective curve of genus one and ϕ has a rational section. When B is a curve,
Y is called an elliptic surface. When B is a surface, Y is said to be an elliptic threefold.
In general, if B has dimension n − 1, Y is called an elliptic n-fold.

The locus of singular fibers of ϕ is called the discriminant locus of ϕ and is
denoted �(ϕ) or simply � when the context is clear. If the base B is smooth, the
discriminant locus is a divisor [20]. The singular fibers of a minimal elliptic surface
have been classified by Kodaira and Néron. The dual graphs of these geometric fibers
are affine Dynkin diagrams. We denote these singular fibers by their Kodaira symbols
as described in Definition C.7 and presented in Table 4.

The language of schemes streamlines many notions in the study of fibrations. We
review some basic definitions.

Definition C.9 (Fiber over a point). Let ϕ : Y −→ B be a morphism of schemes. For
any p ∈ B, the fiber over p is denoted Yp and defined using a fibral product5 as

Yp = Y ×B Spec κ(p).

The first projection Yp −→ Y induces an homeomorphism from Yp onto f −1(p)
[52, §3.1 Proposition 1.16] . The second projection gives Yp the structure of a scheme
over the residue field κ(p).

If p is not a closed point,6 the residue field κ(p) is not necessarily algebraically
closed. Certain components of Yp could be κ(p)-irreducible (i.e. irreducible when
defined over κ(p)) while they become reducible after an appropriate field extension.
An irreducible scheme over a field k is said to be geometrically irreducible when it
stays irreducible after any field extension. The most refined description of the fiber Yp

is always the one corresponding to the algebraic closure κ(p) of κ(p). This motivates
the following definition.

Definition C.10. The geometric fiber over p is the fiber Yp ×κ(p) κ(p), the fiber Yp after
the base change induced by the field extension κ(p) → κ(p) to the algebraic closure of
κ(p).

5 Given three sets (A1, A2, and S) and two maps ϕ1 : A1 → B and ϕ2 : A2 → B, we define the fibral
product A1 ×S A2 as the subset of A1 × A2 composed of couples (a1, a2) such that ϕ1(a1) = ϕ2(a2).

6 For example, if p is the generic point of a subvariety of B.
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Byconstruction, a geometric fiber is always composedof geometrically irreducible
components.

Definition C.11. We say that the type of a fiber Yp is geometric if it does not change
after a field extension.

Remark C.12. To emphasize the difference between the fiber Yp and its geometric fiber,
we will refer to the fiber Yp (defined with respect to the residue field κ(p)) as the
arithmetic fiber.

For an elliptic n-fold, the Kodaira fibers are also the geometric generic fibers of
the irreducible components of the reduced discriminant locus. While the dual graph of
a Kodaira fiber is an affine Dynkin diagram of type Ãk , D̃4+k , Ẽ6, Ẽ7, or Ẽ8, the dual
graph of the generic (arithmetic) fiber itself can also be a twisted Dynkin diagram of
type B̃t

3+k , C̃
t
2+k , G̃

t
2, or F̃

t
4. This is reviewed in Tables 2 and 3. These dual graphs are not

geometric in the sense that after an appropriate base change they become D̃4+n , Ã2+2k or
Ã1+2k , and Ẽ6 respectively. The Kodaira fibers of the following type never need a field
extension:

I1, II, III, III
∗, and II∗.

The remaining Kodaira fibers (IV, In>1, I∗n , and IV∗) can come from fibers Yp
whose types are not geometric and require at least a field extension of degree 2 to
describe a fiber with a geometric type. When the fiber Yp has a geometric type, the type
of the fiber is said to be split. Otherwise, the type of Yp is said to be non-split. When
that is the case we mark the fiber with an “ns” superscript: IVns, Insn , I∗nsn , (n ≥ 2) and
IV∗ns.When a field extension is not needed, the fibers are marked with an “s” superscript
(“split”): IVs, Isn , I

∗s
n , (n ≥ 2) and IV∗s. The fiber of type I∗0 can be split, semi-split, or

non-split if the Kodaira types require no field extension, a quadratic extension, or a cubic
extension. The corresponding dual graphs are respectively D̃4, B̃t

3, and G̃t
2.

C.3. Weierstrass models and Deligne’s formulaire. We follow the notation of Deligne
[16]. LetL be a line bundle over a quasi-projective variety B. We define the following
projective bundle (of lines):

π : X0 = PB[OB ⊕ L ⊗2 ⊕ L ⊗3] −→ B. (C.1)

The relative projective coordinates of X0 over B are denoted [z : x : y], where z,
x , and y are defined respectively by the natural injection of OB , L ⊗2, and L ⊗3 into
OB ⊕L ⊗2 ⊕L ⊗3. Hence, z is a section ofOX0(1), x is a section ofOX0(1)⊗π∗L ⊗2,
and y is a section of OX0(1) ⊗ π∗L ⊗3.

Definition C.13. A Weierstrass model is an elliptic fibration ϕ : Y → B cut out by the
zero locus of a section of the line bundle O(3) ⊗ π∗L ⊗6 in X0.

The most general Weierstrass equation is written in the notation of Tate as [16] F = 0
with

F = y2z + a1xyz + a3yz
2 − (x3 + a2x

2z + a4xz
2 + a6z

3), (C.2)

where ai is a section of π∗L ⊗i . The line bundle L is called the fundamental line
bundle of theWeierstrass model ϕ : Y → B and can be defined directly from the elliptic
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fibration Y as L = R1ϕ∗OY . Following Tate and Deligne, we introduce the following
quantities [16]

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b2 = a21 + 4a2
b4 = a1a3 + 2a4
b6 = a23 + 4a6
b8 = a21a6 − a1a3a4 + 4a2a6 + a2a23 − a24
c4 = b22 − 24b4
c6 = −b32 + 36b2b4 − 216b6
� = −b22b8 − 8b34 − 27b26 + 9b2b4b6
j = c34/�

. (C.3)

These quantities satisfy the following two relations

1728� = c34 − c26, 4b8 = b2b6 − b24. (C.4)

The bi (i = 2, 3, 4, 6) and ci (i = 4, 6) are sections of π∗L ⊗i . The discriminant � is a
section of π∗L ⊗12. Geometrically, the discriminant � is the locus of points over which
the elliptic fiber is singular. The j-invariant characterizes a smooth elliptic curve up to
isomorphism. If we complete the square in y in the Weierstrass equation, the equation
becomes

zy2 = x3 + 1
4b2x

2z + 1
2b4xz

2 + 1
4b6z

3. (C.5)

In addition, if we complete the cube in x gives the short form of theWeierstrass equation,
the equation becomes

zy2 = x3 − 1
48c4xz

2 − 1
864c6z

3. (C.6)

C.4. Tate’s algorithm. Let R be a complete discrete valuation ring with valuation v,
uniformizing parameter s, and perfect residue field κ = R/(s). We are interested in
the case where κ has characteristic zero. We recall that a discrete valuation ring has
only three ideals, the zero ideal, the ring itself, and the principal ideal sR. We take
the convention in which the ring itself is not a prime ideal. It follows that the scheme
Spec(R) has only two points: the generic point (defined by the zero ideal) and the closed
point (defined by the principal ideal sR).

Let E/R be an elliptic curve over R with Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6, ai ∈ R.

The generic fiber is a regular elliptic curve. After a resolution of singularities, we have a
regular model E over R and the special fiber is the fiber over the closed point Spec R/(s).
Tate’s algorithm determines the type of the geometric fiber over the closed point of
Spec(R) by manipulating the valuations of the coefficients and the discriminant, and
the arithmetic properties of some auxiliary polynomials. The type of the geometric fiber
is denoted by its Kodaira’s symbol (see Definition C.7). The special fiber becomes
geometric after a quadratic or a cubic field extension κ ′/κ . Keeping track of the field
extension used gives a classification of the special fiber as a κ-scheme—this is what we
call the arithmetic fiber. The information on the required field extension needed to have
geometrically irreducible components is already carefully encoded in Tate’s original
algorithm, as it is needed to compute the local index (denoted by c in Tate’s notation).
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In the language of Néron’s model, the local index c is the order of the component group;
geometrically, the local index is the number of reduced components of the special fiber
defined over κ . . Following Tate, we use the convenient notation

ai, j = ai s
− j .

Tate’s algorithm consists of the following eleven steps (see [72], [69, §IV.9],
[19,23,42]). For Step 7, we use the more refined description of Papadopoulos [42, Part
III, p. 134] who also gives in [42, §1, p. 122] an exhaustive list of errata of Tate’s original
paper [72]. Tate’s algorithm is discussed in F-theory in [8,46]. Subtleties in Step 6 and
the distinction between two G2-models depending on [κ ′ : κ] are explained in [27]. We
follow the presentation of [23]:

Step 1 v(�) = 0 �⇒ I0.
Step 2. If v(�) ≥ 1, change coordinates so that v(a3) ≥ 1, v(a4) ≥ 1, and v(a6) ≥ 1.

If v(b2) = 0, the type is Iv(�). To have a fiber with geometric irreducible
components, it is enough to work in the splitting field κ ′ of the following
polynomial of κ[T ]:

T 2 + a1T − a2.

The discriminant of this quadric is b2. If b2 is a square in κ , then κ ′ = κ ,
otherwise κ ′ �= κ:

(a) κ ′ = κ �⇒ Isn (b) κ ′ �= κ �⇒ Insn
Step 3. v(b2) ≥ 1, v(a3) ≥ 1, v(a4) ≥ 1, and v(a6) = 1 �⇒ II.
Step 4. v(b2) ≥ 1, v(a3) ≥ 1, v(a4) = 1, and v(a6) ≥ 2 �⇒ III.
Step 5. v(b2) ≥ 1, v(a3) ≥ 1, v(a4) ≥ 2, v(a6) ≥ 2, and v(b6) = 2 �⇒ IV.

The fiber has geometric irreducible components over the splitting field κ ′ of
the polynomial

T 2 + a3,1T − a6,2.

Its discriminant is b6,2. If b6,2 is a square in κ , then κ ′ = κ otherwise κ ′ �= κ .
(a) κ ′ = κ �⇒ IVs (b) κ ′ �= κ �⇒ IVns

Step 6. v(b2) ≥ 1, v(a3) ≥ 1, v(a4) ≥ 2, v(a6) ≥ 3, v(b6) ≥ 3, v(b8) ≥ 3. Then
make a change of coordinates such that v(a1) ≥ 1, v(a2) ≥ 1, v(a3) ≥ 2,
v(a4) ≥ 2, and v(a6) ≥ 3. Let

P(T ) = T 3 + a2,1T
2 + a4,2T + a6,3.

If P(T ) is a separable polynomial in κ , that is if P(T ) has three distinct roots
in a field extension of κ , then the type is I∗0. The geometric fiber is defined over
the splitting field κ ′ of P(T ) in κ . The type of the special fiber before to go to
the splitting field depends on the degree of the field extension κ ′ → κ:
• [κ ′ : κ] = 6 or 3 �⇒ I∗ns0 with dual graph G̃

t
2.

• [κ ′ : κ] = 2 �⇒ I∗ss0 with dual graph B̃
t
3.

• [κ ′ : κ] = 1 �⇒ I∗s0 with dual graph D̃4
where “ns”, “ss”, and “s” stand respectively for “non-split”, “semi-split”, and
“split”. In the notation of Liu, these fibers are respectively I∗0,3, I∗0,2, and I∗0.
The Galois group is the symmetric group S3, the cyclic group Z/3Z, the cyclic
group Z/2Z or the identity when the degree is respectively 6, 3, 2, and 1.
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Step 7. If P(T ) has a double root, then the type is I∗n with n ≥ 1. Make a change
of coordinates such that the double root is at the origin. Then v(a1) ≥ 1,
v(a2) = 1, v(a3) ≥ 2, v(a4) ≥ 3, , v(a6) ≥ 4, and v(�) = n + 6 (n ≥ 1).
We now assume that, except for their valuations, the Weierstrass coefficients
are generic. We then distinguish between even and odd values of n.
(a) Ifn = 2�−3 (� ≥ 2), then v(a1) ≥ 1, v(a2) = 1, v(a3) ≥ �, v(a4) ≥ �+1,

v(a6) ≥ 2�, v(b6) = 2�, v(b8) = 2� + 1, and

T 2 + a3,�T − a6,2�

has two distinct roots in its splitting field κ ′. If the two roots are rational
([κ ′ : κ] = 1) then we have I∗s2�−3 with dual graph D̃2�+1, otherwise ([κ ′ :
κ] = 2) we have the fiber type I∗ns2�−3 with dual graph B̃

t
2�.

(b) If n = 2� − 2 (� ≥ 2) then, v(a1) ≥ 1, v(a2) = 1, v(a3) ≥ � + 1,
v(a4) ≥ � + 1, v(a6) ≥ 2� + 1, and v(b8) = 2� + 2. The polynomial

a2,1T
2 + a4,�+1T − a6,2�+1

has two distinct roots in its splitting field. If the two roots are rational then
we have I∗s2�−2 with dual graph D̃2�+2, otherwise I∗ns2�−2 with dual graph

B̃
t
2�+1.

Step 8. If P(T ) has a triple root, change coordinates such that the triple root is zero.
Then v(a1) ≥ 1, v(a2) ≥ 2, v(a3) ≥ 2, v(a4) ≥ 3, v(a6) ≥ 4.
Let

Q(T ) = T 2 + a3,2T − a6,4.

If Q has two distinct roots (v(b6) = 4 or equivalently v(�) = 8) the type is
IV∗.
The split type depends on the rationality of the roots. If b6,4 is a perfect square
modulo s, the fiber is IV∗s with dual graph Ẽ6, otherwise the fiber is IV∗ns with
dual graph F̃

t
4. The split form can be enforced with v(a6) ≥ 5 and v(a3) = 2.

Step 9. If Q has a double root, we change coordinates so that the double root is at the
origin. Then:
v(a1) ≥ 1, v(a2) ≥ 2, v(a3) ≥ 3, v(a4) = 3, v(a6) ≥ 5 �⇒ type III∗.

Step 10. v(a1) ≥ 1, v(a2) ≥ 2, v(a3) ≥ 3, v(a4) ≥ 4, v(a6) = 5 �⇒ type II∗.
Step 11. Else v(ai ) ≥ i and the equation is not minimal. Divide all the ai by si and

start again with the new equation.
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