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Abstract: We consider a one-dimensional infinite chain of coupled charged harmonic
oscillators in a magnetic field with a small stochastic perturbation of order ε. We prove
that for a space–time scale of order ε−1 the density of energy distribution (Wigner
distribution) evolves according to a linear phonon Boltzmann equation. We also prove
that an appropriately scaled limit of solutions of the linear phonon Boltzmann equation
is a solution of the fractional diffusion equation with exponent 5/6.

1. Introduction

There has been much progress during the past decades in the understanding of superdif-
fusion in one-dimensional systems with several conservation laws. Chains of coupled
oscillators are typical models showing superdiffusive transport of energy. They are the
one-dimensional Hamiltonian systems{

d
dt qx (t) = ∂vxH(vx (t), qx (t))
d
dt vx (t) = −∂qxH(vx (t), qx (t)),

with Hamiltonian

H =
∑
x∈Z

( |vx |2
2

+ V (qx − qx+1)

)
.

Here vx (t) is the velocity of the oscillator x at time t and qx (t) is the displacement from
its equilibrium position of the oscillator x at time t . In the case where the potential V
is quadratic, the dynamics is linear and the chain is said to be harmonic and otherwise
anharmonic. TheFermi–Pasta–Ulamchain (FPUchain) has possibly cubic and/or quartic
terms in the potential. Super diffusion of energy and the divergence of the corresponding
thermal conductivity have been observed numerically in the dynamics of FPU chains
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[5,13,14]. Strong efforts are made to identify the exponent of the divergence and the
nature of superdiffusion in FPU chains numerically and theoretically in recent years.

In an innovative article [17], Spohn discussed an asymptotic behavior of time-
dependent correlation functions of heat mode applying the method of fluctuating hydro-
dynamics. His argument suggests that for general anharmonic chains the macroscopic
diffusion of energy is governed by the fractional diffusion equation

∂te(y, t) = −(−�y)
s
2 e(y, t). (1.1)

Moreover, Spohn’s theory suggests that there are only two universality classes, s = 3
2

or 5
3 . These exponents were also derived in a series of Kepler ratios in general diffusive

dynamics with several conservation laws [15].
However, a rigorous mathematical analysis of the energy transport in the anharmonic

chains is too hard to justify Spohn’s theory. Recently as an analytically tractable model,
the harmonic chains of oscillators with a stochastic exchange of momentum between
neighboring sites, which we call the momentum exchange model, was introduced [1].
In [1] the authors prove the divergence of the thermal conductivity for this model and
obtain an explicit exponent of the divergence of Green–Kubo formula. To understand
the nature of superdiffusion for this model, a weak noise limit is studied in [2]. They
show that in the weak noise limit the time evolution of the local density of the energy is
governed by the Boltzmann equation

∂t u(y, k, t) +
1

2π
ω′(k)∂yu(y, k, t) = (Lu)(y, k, t),

(Lu)(y, k, t) =
∫
T

dk′ R(k, k′)(u(y, k′, t) − u(y, k, t)). (1.2)

Here, the local density of energy u(y, k, t) depends on the position y ∈ R along the
chain, the wave number k ∈ T = [− 1

2 ,
1
2 ) and time t ≥ 0.ω(k) is the dispersion relation.

Later in [10], it is shown that a properly rescaled solution of the Boltzmann equation
(1.2) converges to the solution of the fractional diffusion equation (1.1) with s = 3

2 . The
main idea of the proof of this convergence is the following: Since the scattering kernel
R(k, k′) is positive and symmetric R(k, k′) = R(k′, k), (1.2) can be interpreted as the
forward equation for the probability density of a Markov process (z(t), k(t)) on R×T,
especially, k(t) is a reversible continuous time Markov chain. Applying a limit theorem
for additive functionals of reversibleMarkov chains, they showed that the scaled process

N− 2
3 z(Nt) converges to a Lévy process generated by −(−�)

3
4 (up to a constant). Their

limit theorems are based on martingale approximation of additive functionals and limit
theorems of dependent variables discussed in [6]. By this two-step scaling limit, the 3/4-
fractional diffusion equation is derived from the momentum exchange model rigorously.
Recently the 3/4-fractional diffusion equation is derived by a direct limit (namely one-
step scaling limit) in [11]. For a variant of the momentum exchange model, a skew
3/4-fractional diffusion equation is derived by a direct space–time scaling limit in [3].

Most recently in [16,18] two of the authors introduced another variant of the mo-
mentum exchange model which also shows the superdiffusive behavior of the energy
but the exponent of the divergence of Green–Kubo formula is different from the original
one. The model is a chain of coupled charged harmonic oscillators in a magnetic field
with a stochastic exchange of velocity between neighboring sites.

The goal of the present paper is to understand the nature of the superdiffusion for
this coupled charged harmonic chain of oscillators in a magnetic field with noise. We
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apply the two-step scaling limits. Following the idea of [2], we first show as Theorem 1
that in the weak noise limit the local density of energy is governed by the phonon linear
Boltzmann equation

∂t u(y, k, i, t) +
1

2π
ω′(k)∂yu(y, k, i, t) = Lu(y, k, i, t),

Lu(y, k, i, t) =
∑
j=1,2

∫
T
dk′ R(k, i, k′, j)(u(y, k′, j, t) − u(y, k, i, t)). (1.3)

Here, the local density of energy u(y, k, i, t) depends on position y ∈ R along the chain,
the wave number k ∈ T, the type of phonon i = 1, 2 and time t ≥ 0. Then, we consider
a properly rescaled solution of the Boltzmann equation (1.3) and show that it converges
to the solution of the fractional diffusion equation (1.1) with s = 5

3 as Theorem 2.
This provides a first rigorous example of the 5/6-superdiffusion of energy in a chain of
oscillators.

A key ingredient of the proof of Theorem 2 is the scaling limit of an additive
functional of a Markov process as the prior work. Actually, since the scattering ker-
nel R(k, i, k′, j) is positive and symmetric under the exchange of (k, i) and (k′, j),
(1.3) can be interpreted as the time evolution of the density for a Markov process
(Z(t), K (t), I (t)) on R × T × {1, 2}, especially, (K (t), I (t)) is a reversible Markov
process. By using this process, we have a stochastic representation of the solution of
(4.2), u(y, k, i, t) = E(y,k,i)[u0(Z(t), K (t), I (t))]. Applying a general limit theorem in

[10], we show that the scaled process N− 3
5 Z(Nt) converges to a Lévy process generated

by −(−�)
5
6 (up to a constant) as Theorem 3. On the other hand, by the ergodicity of

(K (t), I (t)), the limit of rescaled solution uN (y, k, i, Nt)will homogenize inT×{1, 2}
as N → ∞. Thus the limit of the rescaled solution satisfies the fractional diffusion equa-
tion.

The difference of the exponents between 3
4 (obtained in [10,11] for the original

momentum exchange model) and 5
6 is explained by the asymptotic behavior of the

derivative of the dispersion relation ω′(k) and the mean value of the scattering kernel
R(k) = ∫

T
R(k, k′)dk′ as k → 0. (We abbreviate the term i, j .) Roughly speaking, if

ω′(k) ∼ ka, R(k) ∼ kb as k → 0

for some a, b ∈ N≥0, by applying the argument in [10] formally, one will obtain a Lévy

process generated by −(−�)
b+1

2(b−a) as a proper scaling limit if 0 < b+1
2(b−a)

< 1 and by

� if b+1
2(b−a)

≥ 1. For the original momentum exchange model presented in [2,11]

ω′(k) ∼ 1, R(k) ∼ k2 as k → 0,

while in our model

ω′(k) ∼ k, R(k) ∼ k4 as k → 0.

In particular, our model has the vanishing sound speed since limk→0 ω′(k) = 0. To be
more precise, in our model R(k, i) = ∑2

j=1

∫
T
R(k, i, k′, j)dk′ satisfies R(k, 1) ∼ k2

and R(k, 2) ∼ k4 (or R(k, 2) ∼ k2 and R(k, 1) ∼ k4 depending on the sign of the
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magnetic field) and the latter dominates the macroscopic evolution. Note that for a class
of non-acoustic chains introduced in [12],

ω′(k) ∼ k, R(k) ∼ k2 as k → 0

and so its macroscopic evolution is diffusive.
A technically crucial idea of our proof of Theorem 1 is that we consider the mi-

croscopic local density of energy, called the Wigner distribution in physics, associated
to the eigenvectors of the deterministic dynamics including the effect of the magnetic
field. If we employ the classical wave functions which are the eigenvectors of the har-
monic Hamiltonian dynamics (without a magnetic field) and study its associatedWigner
distribution, then we obtain a system of Boltzmann equations as the weak noise limit.
However, so far we do not know how to rescale the solutions of the system and derive
the fractional diffusion equation from it. By employing the modified wave functions,
instead of the classical wave functions, we obtain a single limiting Boltzmann equation
which is much easier to analyze. This strategy can be applied to derive the limiting
equation from other Hamiltonian systems with some energy-conservative external field.
The exponents that we found here are identical to those given by the fluctuating hy-
drodynamics in [15,17]. However, underlying mechanisms between them are not very
clear, and hence it is still an open problem.

Our paper is organized as follows: In Sect. 2 we prepare some notations. In Sect. 3
we introduce our model, wave functions and its associated Wigner distribution. Note
that since we consider the infinite system, we need to define our model in terms of wave
functions to make the argument rigorous. In Sect. 4 we state our main results, Theorems
1 and 2.We study aMarkov process associated to our Boltzmann equation and its scaling
limit in Sect. 5. Proofs of Theorems 1 and 2 are given in Sects. 6 and 7 respectively.

2. Notations

LetT ∼= [− 1
2 ,

1
2 ) be the one-dimensional torus. For f ∈ �2(Z), we introduce the discrete

Laplacian � f : Z → R defined by

� f (x) = f (x + 1) + f (x − 1) − 2 f (x)

and its Fourier transform f̂ ∈ L2(T) defined by

f̂ (k) =
∑
x∈Z

e−2π
√−1kx f (x).

For functions f, g ∈ �2(Z), the discrete convolution f ∗ g : Z → R is defined by

f ∗ g(x) =
∑
z∈Z

f (x − z)g(z).

Let S be the space of rapidly decreasing functions on R × T defined by

S = {J ∈ C∞(R × T,C) ; |J |m,n < ∞ ∀m, n ∈ Z≥0}
where

|J |m,n = sup
r,s≤m

sup
y∈R,k∈T

(1 + y2)n|∂ry∂sk J (y, k)|.
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For J : R × T → C such that J (y, k) is rapidly decreasing in y ∈ R, we define
Ĵ : R × T → C as

Ĵ (p, k) =
∫
R

dy e−2π
√−1py J (y, k).

We introduce a norm || · || on S2 = S × S defined by

||J || =
∑
i=1,2

∫
R

dp sup
k

| Ĵi (p, k)|

for J = (J1, J2) ∈ S2 and define a topology on S2 induce by the norm || · ||.
By (S2)′ we denote the dual space of S2 equipped with the weak-∗ topology.
For two functions f (k) and g(k) defined on T or T\{0}, we denote by f (k) ∼ g(k)

as k → 0 if there exists a constant C > 0 such that for all k whose absolute value is
small enough, 1

C |g(k)| ≤ | f (k)| ≤ C |g(k)|.

3. The Dynamics

We consider the one-dimensional infinite chain of coupled charged harmonic oscillators
in two-dimensional space with weak continuous noise. Since we study the system with
finite total energy, it is appropriate for us to define the dynamics through the wave
functions , see Sect. 3.4. However, it may be difficult to understand the meaning of the
feature values such as α̂(k), R(k) from the definition of the dynamics (3.7). Hence, we
first give a formal description of the deterministic dynamics in Sect. 3.1 in terms of
{(vx (t),qx (t)) ∈ R

2 × R
2}, construct the associated wave functions in Sect. 3.2 and

add the stochastic perturbation to the dynamics in Sect. 3.3. As we do not specify the
initial condition {(vx (0),qx (0))} there, the above construction is just formal. The first
three sections are devoted to show classical way to define the dynamics and make the
physical meaning of our model clear. In Sect. 3.5 we introduce the Wigner distribution
associated to our wave functions.

3.1. Deterministic Dynamics. We consider a one-dimensional chain of oscillators in a
magnetic field. Our deterministic dynamics (vx (t),qx (t)) ∈ R

2 ×R
2 is formally given

as follows: { d
dt q

i
x = vix

d
dt v

i
x = [�qi ]x + δi,1Bv2x − δi,2Bv1x

(3.1)

for x ∈ Z, i = 1, 2 where B ∈ R\{0} is the strength of the magnetic field.
The total energy E of the system is formally given by

E =
∑
i=1,2

∑
x∈Z

(
|vix |2
2

+
|qix − qix+1|2

2

)
.

We introduce operators A and G as follows:

A =
∑
i=1,2

∑
x∈Z

(vix∂qix
+ [�qi ]x∂vix

),
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G =
∑
x∈Z

(
v2x∂v1x

− v1x∂v2x

)
.

Then our deterministic dynamics formally satisfies d
dt f (v,q) = (A + BG) f (v,q) for

any smooth cylinder function f , that is, f depends on the configuration (v,q) only
through a finite set of coordinates.

Let α : Z → R be a function that α(0) = 2, α(1) = α(−1) = −1 and α(x) =
0, |x | ≥ 2. Using this function, the total energy E and the operator A are also written as
follows:

E =
∑
i=1,2

⎛
⎝∑

x∈Z

|vix |2
2

+
∑

x,x ′∈Z

α(x − x ′)
2

qixq
i
x ′

⎞
⎠ ,

A =
∑
i=1,2

⎛
⎝∑

x∈Z
vix∂qix

−
∑

x,x ′∈Z
α(x − x ′)qix ′∂vix

⎞
⎠ .

Remark 3.1. Suppose that α∗ : Z → R is a function satisfying the following conditions
(a.1)–(a.4).

(a.1) α∗(x) �= 0 for some x ∈ Z.

(a.2) α∗(x) = α∗(−x) for all x ∈ Z.

(a.3) There exist some positive constants C1,C2 such that |α∗(x)| ≤ C1e−C2|x | for
all x ∈ Z.
(a.4) α̂∗(k) > 0 for all k �= 0 , α̂∗(0) = 0, α̂′′∗(0) > 0.

We can consider the dynamics associated to α∗, or precisely that given by A∗ + BG
where

A∗ =
∑
i=1,2

⎛
⎝∑

x∈Z
vix∂qix

−
∑

x,x ′∈Z
α∗(x − x ′)qix ′∂vix

⎞
⎠ .

Then, Theorems 1, 2, and 3 are generalized to this dynamics (with stochastic perturba-
tion) by replacing α with α∗. The generalization from α to α∗ is straightforward, so we
omit the proof.

3.2. Wave Functions. To define our dynamics rigorously and then introduce theWigner
distribution, we consider the Fourier transform of the configuration (v,q). From the
formal description of the dynamics (3.1), the time evolution of the deterministic process
(̂v(k, t), q̂(k, t)) should be given by

∂t

⎛
⎜⎜⎝
q̂1(k, t)
q̂2(k, t)
v̂1(k, t)
v̂2(k, t)

⎞
⎟⎟⎠ = M(k)

⎛
⎜⎜⎝
q̂1(k, t)
q̂2(k, t)
v̂1(k, t)
v̂2(k, t)

⎞
⎟⎟⎠ ,

M(k) =
⎛
⎜⎝

0 0 1 0
0 0 0 1

−α̂(k) 0 0 0
0 −α̂(k) 0 0

⎞
⎟⎠ + B

⎛
⎜⎝
0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

⎞
⎟⎠, (3.2)
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for each k ∈ Twhere α̂(k) = 2−2 cos 2πk. Note that the dynamics (3.2) is well-defined
for any initial condition (̂v(k, 0), q̂(k, 0)) for each k ∈ T.

We denote the eigenvalues of the matrix M(k) by {±√−1ωi (k), i = 1, 2}, which
are explicitly given as

ω1(k) =
√

α̂(k) +
B2

4
+
B

2
,

ω2(k) =
√

α̂(k) +
B2

4
− B

2
.

Note thatωi (k), ω′
i (k), i = 1, 2 are bounded in k ∈ T andω′

1 = ω′
2. Denote byω′(k) the

common value of ω′
i (k). We introduce the corresponding wave functions {ψ̂i (k, t); i =

1, 2} given by

ψ̂1(k, t) = θ1(k)(v̂
1(k, t) − √−1ω2(k)q̂

1(k, t) +
√−1v̂2(k, t) + ω2(k)q̂

2(k, t)),

ψ̂2(k, t) = θ2(k)(v̂
1(k, t) − √−1ω1(k)q̂

1(k, t) − √−1v̂2(k, t) − ω1(k)q̂
2(k, t))

(3.3)

with

θi (k) =
√

ωi (k)

ω1(k) + ω2(k)
, i = 1, 2.

ψ̂i (k) is an eigenfunction associated to the eigenvalue −√−1ωi (k) :

∂t ψ̂i (k) = −√−1ωi (k)ψ̂i (k), i = 1, 2.

Note that even though ωi (k) = ωi (−k) and θi (k) = θi (−k) for i = 1, 2 and k ∈ T,
ψ̂i (k) �= ψ̂i (−k) in general. We normalize ψ̂ by multiplying θi so that the total energy
E is given by the integral of the L2 norm of the wave functions as

E = 1

2

∫
T

dk
(
|v̂1(k)|2 + |v̂2(k)|2 + α̂(k)(|q̂1(k)|2 + |q̂2(k)|2)

)

= 1

2

∫
T

dk
(
|ψ̂1(k)|2 + |ψ̂2(k)|2

)
.

By a direct computation we have

v̂1(k) = θ1(k)

2
(ψ̂1(k) + ψ̂1(−k)∗) + θ2(k)

2
(ψ̂2(k) + ψ̂2(−k)∗),

v̂2(k) = −
√−1θ1(k)

2
(ψ̂1(k) − ψ̂1(−k)∗) +

√−1θ2(k)

2
(ψ̂2(k) − ψ̂2(−k)∗),

q̂1(k) =
√−1θ1(k)

2ω1(k)
(ψ̂1(k) − ψ̂1(−k)∗) +

√−1θ2(k)

2ω2(k)
(ψ̂2(k) − ψ̂2(−k)∗),

q̂2(k) = θ1(k)

2ω1(k)
(ψ̂1(k) + ψ̂1(−k)∗) − θ2(k)

2ω2(k)
(ψ̂2(k) + ψ̂2(−k)∗). (3.4)



158 K. Saito, M. Sasada, H. Suda

3.3. Stochastic Perturbation. We consider a local stochastic perturbation of the dynam-
ics (3.1) which conserves the total energy. We introduce an operator S as follows:

S = 1

2

∑
x∈Z

(Yx,x+1)
2 = 1

4

∑
x∈Z

∑
z∈Z;|x−z|=1

(Yx,z)
2,

Yx,z = (v2z − v2x )(∂v1z
− ∂v1x

) − (v1z − v1x )(∂v2z
− ∂v2x

).

We consider a Markov process (vx (t),qx (t)) generated by L := A + BG + εγ S. γ > 0
is the strength of the stochastic noise and 0 < ε < 1 is a scale parameter. The dynamics
can be also given by the stochastic differential equation⎧⎪⎨

⎪⎩
dqix = vix dt
dvix = (−[α ∗ qi ]x + δi,1Bv2x − δi,2Bv1x + εγ [�vi ]x )dt

+
√

εγ
∑

z;|z−x |=1(Yx,zv
i
x )dwx,z,

(3.5)

for x ∈ Z, i = 1, 2 where {wx,z(t) = wz,x (t); x, z ∈ Z, |z − x | = 1} are independent
standard Wiener processes on R. Note that L formally conserves the total energy and
the total pseudomomentum

∑
x v1x − Bq2x ,

∑
x v2x + Bq1x . For more details about the

conserved quantities, see [16].

Remark 3.2. This specific choice of noise is not important. Our proof is also applicable
for the velocity exchange noise used in [16] and yields the same scaling limits. For the
construction of this jump-type process, we can follow the argument in Chapter 5 of [7].

3.4. Rigorous Definition of the Dynamics. In this subsection, we define the dynamics
rigorously. First, we calculate the time evolution of the wave functions ψ̂i (k, t) obtained
from the formal description (3.5):

dq̂i (k, t) = v̂i (k, t)dt , i = 1, 2,

d v̂1(k, t) = (−α̂(k)q̂1(k, t) + Bv̂2(k, t) − εγ R(k)

2
v̂1(k, t))dt

− √
εγ

∫
T

r(k, k′)v̂2(k − k′, t)W (dk′, dt),

d v̂2(k, t) = (−α̂(k)q̂2(k, t) − Bv̂1(k, t) − εγ R(k)

2
v̂2(k, t))dt

+
√

εγ

∫
T

r(k, k′)v̂1(k − k′, t)W (dk′, dt), (3.6)

where

R(k) = 4 − 4 cos 2πk,

r(k, k′) = (e−2π
√−1k′ − e−2π

√−1k)(e2π
√−1k − 1),

W (k, t) =
∑
x∈Z

wx,x+1(t)e
−2π

√−1kx .

The term with R(k) comes from the stochastic perturbation. In our case 2α̂(k) = R(k),
but in general (cf. Remark 3.1) there is no such relation between α̂ and R, and so we
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keep α̂ and R for the generalization.W is called a cylindrical Wiener process on L2(T).
A precise derivation of (3.6) from (3.5) is given in “Appendix A”. Combining (3.3) and
(3.6) we have

dψ̂1(k, t) = (−√−1ω1(k)ψ̂1(k, t)

− εγ θ1(k)R(k)

2
(θ1(k)ψ̂1(k, t) + θ2(k)ψ̂2(−k, t)∗))dt

+
√−1θ1(k)

√
εγ

∫
T

r(k, k′)(θ1(k − k′)ψ̂1(k − k′, t)

+ θ2(k − k′)ψ̂2(k
′ − k, t)∗)W (dk′, dt),

dψ̂2(k, t) = (−√−1ω2(k)ψ̂2(k, t)

− εγ θ2(k)R(k)

2
(θ1(k)ψ̂1(−k, t)∗ + θ2(k)ψ̂2(k, t)))dt

− √−1θ2(k)
√

εγ

∫
T

r(k, k′)(θ1(k − k′)ψ̂1(k
′ − k, t)∗

+ θ2(k − k′)ψ̂2(k − k′, t))W (dk′, dt). (3.7)

Nowwedefine a stochastic process {ψ̂(·, t) ∈ (L2(T))2; t ≥ 0} as the unique solution
of (3.7). We can show the existence of the solution by using a classical technique, called
a fixed-point theorem. For the sketch of the proof, see “Appendix B”. Once we define the
dynamics ψ̂(·, t) ∈ (L2(T))2, then we can also define v̂(k, t) by (3.4) and then define a
stochastic process {vx (t),ψ(x, t); x ∈ Z, t ≥ 0} by

vix (t) =
∫
T

dk e2π
√−1kx v̂i (k, t),

ψi (x, t) =
∫
T

dk e2π
√−1kx ψ̂i (k, t)

for x ∈ Z, i = 1, 2. On the other hand, q̂(·, t) is not necessarily well-defined as an
element of (L2(T))2 because ω2(k) ∼ k2 as k → 0 if B > 0 and ω1(k) ∼ k2 as k → 0
if B < 0. A trivial example is ψ̂i (k, 0) = C,C > 0, and in this case one can easily
see that q̂2(0) �= L

2(T). Hence, qx (t) are also not necessarily well-defined. Actually, to
assume q(0) ∈ (�2(Z))2 is too strong condition for the finite total energy. Hereafter we
do not use the variables qx .

3.5. Wigner Distribution. Let Qε be a probability measure on (L2(T))2 which satisfies
the following condition:

K0 = sup
0<ε<1

∑
i=1,2

ε

∫
T

dk EQε [|ψ̂1(k)|2 + |ψ̂2(k)|2] < ∞. (3.8)

Denote byEε the expectation with respect to the distribution of {ψ̂i (·, t)}t≥0 which starts
from Qε . In “Appendix C”, we show that∑

i=1,2

||ψ̂i (·, t)||2L2
=

∑
i=1,2

||ψ̂i (·, 0)||2L2
a.s.
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for any t ≥ 0. In particular, under the condition (3.8)

sup
0<ε<1

∑
i=1,2

ε

∫
T

dk Eε[|ψ̂1(k, t)|2 + |ψ̂2(k, t)|2] = K0 < ∞ (3.9)

for any time t ≥ 0.
For the wave function ψ , we introduce the averaged Wigner function as in Section

3 of [2]. We denote the Wigner distribution on the time scale ε−1t by ε(t) with ε the
small semiclassical parameter. Namely, we define ε(t) ∈ (S2)′ by

〈ε(t), J〉 =
∑
i=1,2

〈ε
i (t), Ji 〉

for J = (J1, J2) ∈ S2 with

〈ε
i (t), J 〉
= ε

2

∑
x,x ′∈Z

Eε[ψi (x
′, t

ε
)∗ψi (x,

t

ε
)]

∫
T

dk e2π
√−1(x ′−x)k J (

ε

2
(x + x ′), k)∗

= ε

2

∫
R

dp
∫
T

dk Eε[ψ̂i (k − εp

2
,
t

ε
)∗ ψ̂i (k +

εp

2
,
t

ε
)] Ĵ (p, k)∗ (3.10)

for J ∈ S. By the Cauchy–Schwarz inequality and (3.9),

sup
0<ε<1

sup
t≥0

|〈ε(t), J〉| ≤ 1

2
K0||J || (3.11)

under the condition (3.8).

Remark 3.3. As discussed in [2], ε(·) is well-defined on a wider class of test functions
than S2. In particular we can take J(y, k) = (J (k), J (k)) with a bounded function J (k)
on T, and then we have

〈ε(t), J〉 = ε

2

∫
T

dk
∑
i=1,2

Eε[|ψ̂i (k,
t

ε
)|2]J (k).

From this representation one can see that ε(·) is the distribution of the spectral density
of the energy. Also if we take J(y, k) = (J (y), J (y))with a rapidly decreasing function
J (y) on R as a test function, then we have

〈ε(t), J〉 = ε

2

∑
x∈Z

∑
i=1,2

Eε[|ψi (x,
t

ε
)|2]J (εx).

This is the integral of J with respect to the averaged empirical measure of 1
2

∑
i=1,2 |ψi

(x, t
ε
)|2. Namely, ε(t) is a rescaled microscopic local spectral density.
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4. Main Results

Asmentioned in the Introduction, the main purpose of the present paper is to understand
the nature of the superdiffusion for the coupled charged harmonic chain of oscillators
in a magnetic field with noise defined in the last section, and we apply the two-step
scaling limits. In Sect. 4.1, following the idea of [2], we claim that in the weak noise
limit the local density of energy is governed by a phonon linear Boltzmann equation. In
Sect. 4.2, we consider a properly scaled solution of the Boltzmann equation and state
that it converges to the solution of the fractional diffusion equation (1.1) with s = 5

3 ,
which is our main result.

4.1. BoltzmannEquation. In this subsectionwe state the limiting behavior of theWigner
distribution.

Theorem 1. Suppose the condition (3.8) holds. If ε(0) converges to 0 in (S2)′ as
ε → 0, then for all t ≥ 0, ε(t) converges to a vector-valued finite positive measure
μ(t) = (μ1(t), μ2(t)) in (S2)′ as ε → 0, which is the unique solution of the following
Boltzmann equation{

∂t
∫
dμ(t) · J = 1

2π

∫
dμ(t) · ω′∂y J + γ

∫
dμ(t) · C J∫

dμ(0) · J = 〈0, J〉, (4.1)

where ∫
dμ · J =

∑
i=1,2

∫
R×T

μi (dy, dk) Ji (y, k)
∗ for μ = (μ1, μ2),

(C J)i (x, k) =
∑
j=1,2

∫
T

dk′θi (k)2R(k, k′)θ j (k
′)2(J j (x, k′) − Ji (x, k))

for J = (J1, J2) ∈ S2 with R(k, k′) = 16 sin2 πk sin2 πk′.

Remark 4.1. In the case B = 0, if we assume an additional assumption

lim
ρ→0

lim sup
ε→0

ε

2

2∑
i=1

∫
|k|<ρ

dk EQε [|ψ̂i (k)|2] = 0

on the initial measure Qε , the same statement of Theorem 1 holds. For this case, the
proof is essentially given in [2].

Remark 4.2. Suppose that the solution of (4.1) has the density u(y, k, i, t) for all t ∈
[0, T ] , that is,

μi (t)(dy, dk) = u(y, k, i, t)dydk, i = 1, 2,

μi (0)(dy, dk) = u0(y, k, i)dydk, i = 1, 2.

Then u(y, k, i, t) is a weak solution of the linear Boltzmann equation{
∂t u(y, k, i, t) + 1

2π ω′(k)∂yu(y, k, i, t) = γLu(y, k, i, t)
u(y, k, i, 0) = u0(y, k, i),

(4.2)
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where

Lu(y, k, i, t) =
∑
j=1,2

∫
T
dk′θi (k)2R(k, k′)θ j (k

′)2(u(y, k′, j, t) − u(y, k, i, t)).

We prove Theorem 1 in Sect. 6. The strategy of our proof is as follows: First we
derive a microscopic evolution equation of ε , which is not closed in terms of ε .
Then, with this expression of the time evolution, we show that for any fixed T > 0,
{ε(t), 0 ≤ t ≤ T }0<ε<1 is sequentially compact in C([0, T ]; (S2)′) in a certain weak-
∗ sense. See its precise meaning in Sect. 6. We verify that any limit of a convergent
subsequence is extended to a vector-valued finite positive measure in “Appendix D”. The
uniqueness of the bounded solution of (4.1) in the class of vector-valued finite positive
measures is shown in “Appendix E”. Finally we show that any limit of a convergent
subsequence satisfies (4.1), which is a closed equation in terms of μ. Summarizing the
above we can show that (ε(·))ε is convergent and the limit satisfies (4.1).

4.2. Derivation of the 5
6 Fractional Diffusion Equation. In this subsection we study

a macroscopic behavior of a solution of properly scaled Boltzmann equation (4.2).
Consider a spatially scaled linear Boltzmann equation with a scaling parameter N as{

∂t u(y, k, i, t) + 1
N3/5

1
2π ω′(k)∂yu(y, k, i, t) = γLu(y, k, i, t)

u(y, k, i, 0) = u0(y, k, i),
(4.3)

and denote its solution by uN .

Remark 4.3. For any given u0(y, k, i) ∈ C∞
0 (R × T), i = 1, 2, a solution of (4.2) is

constructed explicitly using a Markov process associated to the Boltzmann equation in
the next section. The uniqueness of solutions in a certain class follows from that of (4.1).
The argument also applies to (4.3) and so the existence and uniqueness of uN follows.

Theorem 2. Suppose u0(y, k, i) ∈ C∞
0 (R×T), i = 1, 2. Define the initial local density

of energy at y ∈ Ras ū0(y) = ∑
i=1,2

∫
T×{1,2} dk u0(y, k, i). Then, for all y ∈ R, t ≥ 0,

lim
N→∞

∑
i=1,2

∫
T

dk |uN (y, k, i, Nt) − 1

2
ū(y, t)|2 = 0,

where ū is a solution of {
∂t ū(y, t) = −D(−�y)

5
6 ū(y, t)

ū(y, 0) = ū0(y)
(4.4)

and D = D(B, γ, α) is a positive constant such that

D = C |B|− 1
3 γ − 2

3 α̂′′(0)

with a universal constant C. In particular,

lim
N→∞ |

∑
i=1,2

∫
T

dk uN (y, k, i, Nt) − ū(y, t)|2 = 0.
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Remark 4.4. In the case B = 0, if we denote by uN (y, k, i, t) the solution of a scaled
linear Boltzmann equation{

∂t u(y, k, i, t) + 1
N2/3

1
2π ω′(k)∂yu(y, k, i, t) = γLu(y, k, i, t)

u(y, k, i, 0) = u0(y, k, i),

then for all y ∈ R, t ≥ 0,

lim
N→∞

∑
i=1,2

∫
T

dk |uN (y, k, i, Nt) − 1

2
ū(y, t)|2 = 0

where ū is the solution of{
∂t ū(y, t) = −D′(−�y)

3
4 ū(y, t)

ū(y, 0) = ū0(y)

and D′ = D′(γ, α) is a positive constant such that

D′ = C ′γ − 1
2 (̂α′′(0))

3
4

with a universal constant C ′. The result is essentially proved in [10].

Theorem 2 means that the limit of the rescaled solution uN homogenizes in k ∈
T, i = 1, 2 due to the scattering effectL on T×{1, 2} and satisfies a fractional diffusion
equation with the exponent 5

3 . For the proof, we follow the strategy of [10]. Namely,
we consider a long-time asymptotic behavior of a Markov process {(Z(t), K (t), I (t)) ∈
R × T × {1, 2}; t ≥ 0} associated to the Boltzmann equation (4.2). By using this
process, we have a stochastic representation of the solution of (4.2), u(y, k, i, t) =
E(y,k,i)[u0(Z(t), K (t), I (t))]. Since {(K (t), I (t)); t ≥ 0} is ergodic, the homogeniza-
tion onT×{1, 2} occurs as t → ∞. At the same time, the finite-dimensional distributions
of {N− 3

5 Z(Nt); t ≥ 0} converges weakly to those of a stable process with the exponent
5
3 . To apply a general theorem in [10], we need to check several conditions. The above
is the main subject of the next section, where we conclude all the required conditions
are satisfied and then Theorem 3 on the asymptotic behavior of a Markov process is
obtained. We apply it to the study of the limit of uN and prove Theorem 2 in Sect. 7.

5. Markov Process Associated to the Boltzmann Equation

In this section we construct a solution of (4.2) probabilistically. We will see that there
exists a Markov process associated to (4.2) and study its long-time asymptotic behavior.

Let {(Kn, In); n ∈ Z≥0} be aMarkov chain onT×{1, 2}whose transition probability
is given by

P(k, i, dk′, j) = t (k, i)γ θi (k)
2R(k, k′)θ j (k

′)2dk′,

where

t (k, i) = [γ θi (k)
2R(k)]−1, R(k) =

∫
T

dk′R(k, k′).
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Since R(k, k′) is a product of functions of k and k′, we have

P(k, i, dk′, j) = π(dk′, j)

where π(dk, di) is a reversible measure for this Markov chain given as

π(dk, di) =
∑
j=1,2

t (k, j)−1

γ R
dkδ{ j}(di), R =

∫
T

dk R(k).

In particular, {(Kn, In); n ≥ 1} is an i.i.d. sequence of random variables on T × {1, 2}
with distribution π .

Now we construct a continuous time random walk generated by L. Let {τn, n ≥
1} be an i.i.d. sequence of random variables such that τ1 is exponentially distributed
with intensity 1 and {(Kn, In); n ∈ Z≥0} and {τn, n ≥ 1} are independent. Set tn :=∑n

m=1 t (Km−1, Im−1)τm, n ≥ 1, t0 = 0 and define a stochastic process (K (t), I (t))
as K (t) = Kn, I (t) = In if t ∈ [tn, tn+1). Then, by the construction {(K (t), I (t))}t≥0
is a continuous time random walk generated by L. Note that the uniform measure on
T×{1, 2} is the reversible probability measure of L. With this process we can construct
an explicit solution of the Eq. (4.2) by

u(y, k, i, t) = E(k,i)[u0(Z(t), K (t), I (t))],

where

Z(t) = y +
1

2π

∫ t

0
ds ω′(K (s)),

and K (0) = k, I (0) = i . For this process, we have the following result.

Theorem 3. Suppose (K (0), I (0)) = (k, i) for some k �= 0 and i = 1 or 2. Then as

N → ∞, the finite-dimensional distributions of rescaled processes {N− 3
5 Z(Nt)}t≥0

converge weakly to the finite-dimensional distributions of a Lévy process generated by

−D(−�y)
5
6 , where D = D(B, γ, α) is a positive constant such that

D = C |B|− 1
3 γ − 2

3 α̂′′(0),

and C is a positive constant which does not depend on B, γ , α.

Remark 5.1. In the case of B = 0,the finite-dimensional distributions of rescaled pro-

cesses {N− 2
3 Z(Nt); t ≥ 0} converge weakly to the finite-dimensional distributions of

a Lévy process generated by −D′(−�y)
3
4 , where D′ = D′(γ, α) is a positive constant

such that

D′ = C ′γ − 1
2 (̂α′′(0))

3
4 ,

and C ′ is a positive constant which does not depend on γ , α. It is essentially shown in
[10].
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5.1. Proof of Theorem 3.. We apply [10, Theorem 2.8 (i)] to our process with α = 5
3 .

For this, it is enough to show that Conditions 2.1, 2.2, 2.3 and (2.12) of [10] are satisfied.
First we verify that Condition 2.1 is satisfied. Define

�(k, i) = ω′(k)t (k, i).

The tail of � under π is

π({(k, i);�(k, i) ≥ λ}) =
∑
i=1,2

∫
{k;�(k,i)≥λ}

dk
θi (k)2R(k)

R

= C |B|− 1
3 γ − 5

3 α̂′′(0)λ− 5
3 (1 + O(λ− 4

3 )),

as λ → ∞ because

θ1(k)
2 ∼ 1, and θ2(k)

2 ∼ α̂′′(0)k2

|B|2 as k → 0 if B > 0

θ1(k)
2 ∼ α̂′′(0)k2

|B|2 and θ2(k)
2 ∼ 1as k → 0 if B < 0

and

ω′(k) ∼ α̂(0)′′k
|B| , R(k) ∼ k2 as k → 0.

C is a positive constant which does not depend on B, γ, α.� is odd for k and the density
of π(·, i) with respect to the Lebesgue measure is even for k, so

π({(k, i);�(k, i) ≥ λ}) = π({(k, i);�(k, i) ≤ −λ})
and

∫
�dπ = 0.

Next we check Condition 2.2. It is obvious that

sup{||P f ||L2(π);
∫

dπ f = 0, || f ||L2(π) = 1} = 0

because P f = ∫
dπ f .

Finally we show that Condition 2.3 and (2.12) hold. Condition 2.3 is obviously
satisfied with Q ≡ 0 and p ≡ 1. Also, we have

||P�||2
L2(π)

=
∑
i=1,2

∫
T

dk

⎛
⎝ ∑

j=1,2

∫
T

dk′�(k′, j) t (k
′, j)−1

γ R

⎞
⎠

2
t (k, i)−1

γ R

=
∑
i=1,2

∫
T

dk

⎛
⎝ ∑

j=1,2

∫
T

dk′ ω′(k′)
γ R

⎞
⎠

2
t (k, i)−1

γ R
< ∞.

Therefore, by [10, Theorem 2.8 (i)], the finite-dimensional distributions of the scaled

process {N− 3
5 Z(Nt)}t≥0 under Pπ converge to a stable process with exponent 5

3 whose
characteristic function at time 1, denoted by φ(x) is

φ(x) = exp (

∫
R

dλ (e
√−1λx − 1 − √−1λx)c∗(λ)|λ|− 8

3 ),
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where

c∗(λ) =
5C |B|− 1

3 γ − 5
3 α̂′′(0)A 5

3

t̄

for all λ �= 0, C is a positive constant appeared in the tail estimate of � and

A 5
3

=
∫ ∞

0
dy e−y y

5
3 ,

t̄ =
∫

dπ t (k, i) = 1

2γ
.

Finally we show that the finite-dimensional distributions of {N− 3
5 Z(Nt); t ≥ 0}

under P(k,i) also converge to the same stable process for k ∈ T\{0}, i = 1, 2. For t ≥ 0
define n(t) as the nonnegative integer such that

tn(t) ≤ t < tn(t)+1.

Then we have

N− 3
5 Z(Nt) = N− 3

5

n(Nt)∑
n=0

�(Kn, In)τn+1.

If k �= 0 then N− 3
5 �(k, i)τ1 → 0 as N → ∞ P(k,i)—almost surely. Moreover,

under P(k,i), the distribution of {(Kn, In)}n≥1 is an i.i.d. sequence with distribution
π . By Theorem 6.1 and Lemma 6.2 of [10], the finite-dimensional distributions of

{N− 3
5
∑n(Nt)

n=1 �(Kn, In)τn+1; t ≥ 0} under P(k,i) converge to the stable process, so the

finite-dimensional distributions of {N− 3
5 Z(Nt); t ≥ 0} under P(k,i) also converge to the

same stable process if k �= 0.

6. Proof of the Theorem 1.

To simplify the notation, we define functions ̂ε
i+(t)(p, k), �̂

ε
i+(t)(p, k) on R × T by

̂ε
i+(t)(p, k) = ε

2
Eε[ψ̂i (k − εp

2
,
t

ε
)∗ ψ̂i (k +

εp

2
,
t

ε
)],

�̂ε
i+(t)(p, k) = ε

2
Eε[ψ̂i (−k +

εp

2
,
t

ε
) ψ̂i∗(k +

εp

2
,
t

ε
)]

for i = 1, 2 where i∗ = 3 − i . We use the notation i∗ throughout the rest of the paper.
We also define ̂ε

i−(t)(p, k), �̂ε
i−(t)(p, k) as

̂ε
i−(t)(p, k) = ̂ε

i+(t)(p,−k),

�̂ε
i−(t)(p, k) = �̂ε

i+(t)
∗(−p, k).

Note that for all p ∈ R these functions satisfy

||̂ε
i ι (t)(p, ·)||L1(T) ≤ 1

2
K0, ||�̂ε

i ι (t)(p, ·)||L1(T) ≤ 1

2
K0
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for i = 1, 2, ι = +,− under the condition (3.8). With this notation, Wigner distribution
is rewritten as

〈ε(t), J〉 =
∑
i=1,2

∫
R

dp
∫
T

dk ̂ε
i+(t)(p, k) Ĵi (p, k)

∗. (6.1)

From now on we will show that the time evolution of ε(·) satisfies the following
equation

∂t 〈ε(t), J〉
= 1

2π
〈ε(t), ω′(k)∂y J〉 + γ 〈ε(t),C J〉

+ γ (〈�ε(t),C ′ J〉 + 〈(�ε)∗(t),C ′ J〉) + OJ (ε) (6.2)

for J ∈ S2 where

〈�ε(t), J〉 =
∑
i=1,2

∫
R

dp
∫
T

dk �̂ε
i+(t)(p, k) Ĵi (p, k)

∗,

〈(�ε)∗(t), J〉 =
∑
i=1,2

∫
R

dp
∫
T

dk �̂ε
i−(t)(p, k) Ĵi (p, k)

∗ (6.3)

and

(C ′ J)i (p, k) =
∫
T

dk′ θ1(k)θ2(k)R(k, k′)θ2i∗(k′)Ji∗(p, k′) − R(k)

2
θ1(k)θ2(k)Ji (p, k).

Here, OJ (ε) is a term which satisfies

OJ (ε)

ε
≤ C J

for all 0 < ε < 1 with a positive constant C J which depends on J .
By (3.7) the time evolution of ̂ε

i+(t)(p, k) is

∂t ̂
ε
i+(t)(p, k)

= −
√−1

ε
(ωi (k +

εp

2
) − ωi (k − εp

2
))̂ε

i+(t)(p, k)

− γ

2
(R(k +

εp

2
)θ2i (k +

εp

2
) + R(k − εp

2
)θ2i (k − εp

2
))̂ε

i+(t)(p, k)

− γ

2
R(k +

εp

2
)θi (k +

εp

2
)θi∗(k +

εp

2
)�̂ε

i∗−(t)(p, k)

− γ

2
R(k − εp

2
)θi (k − εp

2
)θi∗(k − εp

2
)�̂ε

i∗+(t)(p, k)

+ γ θi (k − εp

2
)θi (k +

εp

2
)

∫
T

dk′Rεp(k, k
′)

× [θi (k′ − εp

2
)θi (k

′ + εp

2
)̂ε

i+(t)(p, k
′)

+ θi∗(k
′ − εp

2
)θi∗(k

′ + εp

2
)̂ε

i∗+(t)(p, k
′))
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+ θi (k
′ − εp

2
)θi∗(k

′ + εp

2
)�̂ε

i∗−(t)(p, k′)

+ θi (k
′ + εp

2
)θi∗(k

′ − εp

2
)�̂ε

i∗+(t)(p, k
′)], (6.4)

where

Rεp(k, k
′) = 16 sin (k +

εp

2
) sin (k − εp

2
) sin (k′ + εp

2
) sin (k′ − εp

2
).

For the derivation of (6.4), see “Appendix F”.
Since R, θi and ωi are smooth on T, the term (6.4) is rewritten as

∂t ̂
ε
i+(t)(p, k)

= −√−1pω′
i (k)̂

ε
i+(t)(p, k) − γ R(k)θ2i (k)̂ε

i+(t)(p, k)

− γ

2
R(k)θi (k)θi∗(k)(�̂

ε
i∗−(t)(p, k) + �̂ε

i∗+(t)(p, k))

+ γ θ2i (k)
∫
T

dk′R(k, k′)[θ2i (k′)̂ε
i+(t)(p, k

′) + θ2i∗(k
′)̂ε

i∗+(t)(p, k
′)

+ θi (k
′)θi∗(k′)�̂ε

i∗−(t)(p, k′) + θi (k
′)θi∗(k′)�̂ε

i∗+(t)(p, k
′)] +Ri (p, k), (6.5)

where Ri , i = 1, 2 are the remainder terms and these satisfy

||Ri (p, ·)||L1(T) ≤ C(T, B, γ, α, K0)|p|ε
for all p ∈ R. Then for any J ∈ S2,∫

R

dp
∫
T

dk Ri (p, k) Ĵi (p, k)
∗ = OJ (ε). (6.6)

Combining (6.1), (6.3), (6.5) and (6.6) with the relation
∫
T
dk′R(k, k′) = R(k), we

conclude that (6.2) holds.
From (3.11) and (6.2), for any fixed T > 0 and J ∈ S2, {〈ε(·), J〉}0<ε<1 ⊂

C([0, T ],C) is uniformly bounded and equicontinuous. Hence, for each J ∈ S2,
there exists a subsequence εN ↓ 0 such that 〈εN (·), J〉 converges to a function in
C([0, T ],C) uniformly as N → ∞. Since S2 is separable, there is a dense countable
subset {J (m);m ∈ N} of S2 and by the diagonal argument we can find a sequence εN ↓ 0
such that 〈εN (·), J (m)〉 converges for all m ∈ N. Now, we show that for all J ∈ S2,
〈εN (·), J〉 converges uniformly to a continuous function as N → ∞. Fix J ∈ S2 and
δ > 0. Since {J (m);m ∈ N} is dense we can take some J (l) so that ||J − J (l)|| < δ.
Then for any n,m ∈ N we have

sup
t∈[0,T ]

|〈εn (t), J〉 − 〈εm (t), J〉|

≤ sup
t∈[0,T ]

|〈εn (t), J〉 − 〈εn (t), J (l)〉|

+ sup
t∈[0,T ]

|〈εn (t), J (l)〉 − 〈εm (t), J (l)〉|

+ sup
t∈[0,T ]

|〈εm )(t), J (l)〉 − 〈εm (t), J〉|

≤ K0δ + sup
t∈[0,T ]

|〈εn (t), J (l)〉 − 〈εm (t), J (l)〉|
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by (3.11). Hence, for sufficiently large n,m,

sup
t∈[0,T ]

|〈εn (t), J〉 − 〈εm (t), J〉| ≤ (1 + K0)δ

and so 〈εN (·), J〉 converges uniformly.
In “Appendix D”, we prove that for any t ≥ 0, any limit of a weak-* convergent

subsequence of {ε(t)}ε can be extended to a vector-valued finite positive measures on
R × T. The uniqueness of solutions of the Eq. (4.1) is shown in “Appendix E”.

Hence, noting that ω′(k)∂y J,C J,C ′ J ∈ S2 for any J ∈ S2, by (6.2) and the
following lemma we conclude the proof of Theorem 1.

Lemma 6.1. For any T > 0 and J ∈ S2,

lim
ε→0

|
∫ T

0
dt 〈�ε(t), J〉| = 0,

lim
ε→0

|
∫ T

0
dt 〈(�ε)∗(t), J〉| = 0.

Proof. By (3.7) the time evolution of �̂ε
i+(t)(p, k), i = 1, 2 is

∂t �̂
ε
i+(t)(p, k)

= −
√−1

ε
(ωi (k − εp

2
) + ωi∗(k +

εp

2
))�̂ε

i+(t)(p, k)

− γ

2
(R(k − εp

2
)θ2i (k − εp

2
) + R(k +

εp

2
)θ2i∗(k +

εp

2
))�̂ε

i+(t)(p, k)

− γ

2
R(k +

εp

2
)θi (k +

εp

2
)θi∗(k +

εp

2
)̂ε

i−(t)(p, k)

− γ

2
R(k − εp

2
)θi (k − εp

2
)θi∗(k − εp

2
)̂ε

i∗+(t)(p, k)

+ γ θi (k − εp

2
)θi∗(k +

εp

2
)

∫
T

dk′Rεp(k, k
′)

× [θi (k′ − εp

2
)θi (k

′ + εp

2
)̂ε

i+(t)(p, k
′)

+ θi∗(k
′ − εp

2
)θi∗(k

′ + εp

2
)̂ε

i∗+(t)(p, k
′))

+ θi (k
′ − εp

2
)θi∗(k

′ + εp

2
)�̂ε

i+(t)(p, k
′)

+ θi (k
′ + εp

2
)θi∗(k

′ − εp

2
)�̂ε

i−(t)(p, k′)].

Since R, θi and ωi are smooth on T, the above term is rewritten as

∂t �̂
ε
i+(t)(p, k)

= −
√−1

ε
(ωi (k) + ωi∗(k))�̂

ε
i+(t)(p, k)

− γ

2
(R(k)θ2i (k) + R(k)θ2i∗(k))�̂

ε
i+(t)(p, k)

− γ

2
R(k)θi (k)θi∗(k)̂

ε
i−(t)(p, k) − γ

2
R(k)θi (k)θi∗(k)̂

ε
i∗+(t)(p, k)



170 K. Saito, M. Sasada, H. Suda

+ γ θi (k)θi∗(k)
∫
T

dk′R(k, k′)[θ2i (k′)̂ε
i+(t)(p, k

′) + θ2i∗(k
′)̂ε

i∗+(t)(p, k
′))

+ θi (k
′)θi∗(k′)�̂ε

i+(t)(p, k
′) + θi (k

′)θi∗(k′)�̂ε
i−(t)(p, k′)] +Ri+2(p, k) (6.7)

for i = 1, 2 where Ri , i = 3, 4 are the remainder terms which satisfy

||Ri (p, ·)||L1(T) ≤ C(T, B, γ, α, K0)|p|(1 + ε) (6.8)

for all p ∈ R. Hence, for any J ∈ S2 and i = 1, 2,∫
R

dp
∫
T

dk Ri+2(p, k) Ĵi (p, k)
∗ = OJ (1).

Combining (6.1), (6.7) and (6.8) we have

∂t 〈�ε(t), J〉

= −
√−1

ε
〈�ε, (ω1 + ω2)J〉 + 〈ε, R′ J〉 + 〈ε, R′ J t 〉

+ 〈�ε, R′′ J〉
+ 〈(�ε)∗, R′′ J〉 + 〈ε, β ′ J t 〉 + 〈(ε)∗, β ′ J〉
+ 〈�ε, β J〉 + OJ (1),

where J t = (J2, J1) and

〈(ε)∗(t), J〉 =
∑
i=1,2

∫
R

dp
∫
T

dk ̂ε
i−(t)(p, k) Ĵi (p, k)

∗,

β(k) = −γ

2
R(k), β ′(k) = −γ

2
θ1(k)θ2(k)R(k),

(R′ J)i (p, k) = γ

∫
T

dk′θi (k)2R(k, k′)θ1(k′)θ2(k′)Ji (p, k′),

(R′′ J)i (p, k) = γ

∫
T

dk′θ1(k)θ2(k)R(k, k′)θ1(k′)θ2(k′)Ji (p, k′).

Therefore, we have

lim
ε→0

|
∫ T

0
dt 〈�ε(t), (ω1 + ω2)J〉| = 0

for all J ∈ S2. Since ω1(k) + ω2(k) is uniformly bounded by positive constants from
above and below, (ω1 + ω2)

−1 J ∈ S2 for all J ∈ S2. Hence we conclude that

lim
ε→0

|
∫ T

0
dt 〈�ε(t), J〉| = 0

for all J ∈ S2.
For (�ε)∗ we can apply the same proof. ��
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7. Proof of Theorem 2.

We use the Markov chain (K (t), I (t)) introduced in Sect. 5. First note that for any
u0 ∈ C∞

0 (R × T × {1, 2}),
uN (y, k, i, t) = E(k,i)[u0(ZN (t), K (t), I (t))].

where

ZN (t) = y +
1

2πN
3
5

∫ t

0
ds ω′(K (s)).

Then, by using the Fourier transform we can write

uN (y, k, i, Nt) = E(k,i)[u0(ZN (Nt), K (Nt), I (Nt))]
=

∑
x∈Z

∫
R

dp
∑
j=1,2

ũ0(p, x, j)E(k,i)[e
√−1pZN (Nt)e

√−1xK (Nt)1{I (Nt)= j}],

where ũ(p, x, i) is the Fourier transformof u(y, k, i). Denote by di the countingmeasure
on {1, 2}. Let Pt , t ≥ 0 be the semigroup generated by L. Since 1

2dkdi is a reversible
probability measure of the process {(K (t), I (t))}t≥0 and 0 is a simple eigenvalue for
the generator L, we have

lim
t→∞ ||Pt f ||L2(T×{1,2}) = 0

for any f ∈ L
2(T × {1, 2}) satisfying ∫

T×{1,2} dkdi f (k, i) = 0 by the ergodicity and
the reversibility (cf. Theorem 1.6.1, 1.6.3 and Exercise 4.7.2 of [8]). Let {mN }N∈N be
an increasing sequence of positive numbers such that

lim
N→∞mN = ∞,

lim
N→∞mN N

− 3
5 = 0.

Then for any t ≥ 0, p ∈ R, x ∈ Z and j = 1, 2∣∣∣E(k,i)[e
√−1pZN (Nt)e

√−1xK (Nt)1{I (Nt)= j}]
−E(k,i)[e

√−1pZN (Nt−mN t)e
√−1xK (Nt)1{I (Nt)= j}]

∣∣∣
≤ E(k,i)[|1 − e

√−1p(ZN (Nt)−ZN (Nt−mN t))|]
≤ E(k,i)[|p(ZN (Nt) − ZN (Nt − mN t))|]

since |1 − e
√−1a | ≤ |a| for any a ∈ R. The last expression converges to 0 as N → ∞

since

E(k,i)[|p(ZN (Nt) − ZN (Nt − mN t))|] = E(k,i)[|p 1

2πN
3
5

∫ Nt

Nt−mN t
ds ω′(K (s))|]

≤ ‖ω′‖∞t |p|mN N
− 3

5 → 0
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where ‖ω′‖∞ = supk |ω′(k)|. By the Markov property

E(k,i)[e
√−1pZN (Nt−mN t)e

√−1xK (Nt)1{I (Nt)= j}]
= E(k,i)[e

√−1pZN (Nt−mN t)E(K (Nt−mN t),I (Nt−mN t))[e
√−1xK (mN t)1{I (mN t)= j}]].

By the Schwarz’s inequality,∣∣E(k,i)[e
√−1pZN (Nt−mN t)E(K (Nt−mN t),I (Nt−mN t))[e

√−1xK (mN t)1{I (mN t)= j}]]
− E(k,i)[e

√−1pZN (Nt−mN t)E(K (Nt−mN t),I (Nt−mN t))[
1

2

∫
T

dk′e
√−1xk′ ]]∣∣

≤ E(k,i)[|E(K (Nt−mN t),I (Nt−mN t))[e
√−1xK (mN t)1{I (mN t)= j} − 1

2

∫
T

dk′e
√−1xk′ ]|2] 12 .

(7.1)

Let g(k, i) = e
√−1xk1{ j}(i)− 1

2

∫
T
dk′e

√−1xk′
. Since 1

2dkdi is the reversible probability
measure we have∫

T×{1,2}
dkdi E(k,i)[|E(K (Nt−mN t),I (Nt−mN t))[e

√−1xK (mN t)1{I (mN t)= j}

− 1

2

∫
T

dk′e
√−1xk′ ]|2]

= ||PmN t g||2
L2(T×{1,2}).

Hence we conclude that (7.1) converges to 0 in L
2(T × {1, 2}) as N → ∞ since∫

T×{1,2} dkdi g(k, i) = 0.
Summarizing the above and applying the dominated convergence theorem, we have

lim
N→∞

∫
T×{1,2}

dkdi
∑
x∈Z

∫
R

dp
∑
j=1,2

|̃u0(p, x, j)|

× |E(k,i)[e
√−1pZN (Nt)e

√−1xK (Nt)1{I (Nt)= j}]
− E(k,i)[e

√−1pZN (Nt−mN t) 1

2

∫
T

dk′e
√−1xk′ ]|2

= 0.

Note that∑
x∈Z

∫
R

dp
∑
j=1,2

ũ0(p, x, j)E(k,i)[e
√−1pZN (Nt−mN t) 1

2

∫
T

dk′e
√−1xk′ ]

= E(k,i)[12
∫
T×{1,2}

dk′d j u0(ZN (Nt − mN t), k
′, j)],

= 1

2
E(k,i)[ū0(ZN (Nt − mN t))].

ByTheorem3, ZN (Nt−mN t) converges to a Lévy process starting from y and generated

by D(−�y)
5
6 and so the last term converges to ū(y, t) given in (4.4) for k �= 0, i = 1, 2.

Therefore,

1

2
E(k,i)[ū0(ZN (Nt − mN t))] → 1

2
ū(y, t) a.e.
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and by the dominated convergence theorem,

lim sup
N→∞

∫
T×{1,2}

dkdi |uN (y, k, i, Nt) − 1

2
ū(y, t)|2

≤ lim sup
N→∞

∫
T×{1,2}

dkdi |uN (y, k, i, Nt) − 1

2
E(k,i)[ū0(ZN (Nt − mN t))]|2.

Applying the Fourier transform, the last term is bounded from above by

lim sup
N→∞

⎛
⎝∑

x∈Z

∫
R

dp
∑
j=1,2

|̃u0(p, x, j)|
⎞
⎠

×
∫
T×{1,2}

dkdi
∑
x∈Z

∫
R

dp
∑
j=1,2

|̃u0(p, x, j)|

× |E(k,i)[e
√−1pZN (Nt)e

√−1xK (Nt)1{I (Nt)= j}]
− E(k,i)[e

√−1pZN (Nt−mN t) 1

2

∫
T

dk′e
√−1xk′ ]|2

and so we complete the proof.
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Appendix A. Derivation of (3.6)

We only consider the time evolution of v̂1(k, t). By the same calculation one can get the
time evolution of v̂2(k, t). From (3.5) we have

d v̂1(k, t) =
∑
x∈Z

e−2π
√−1kxdv1(x, t)

= (−α̂(k)q̂1(k, t) + Bv̂2(k, t) − εγ R(k)

2
v̂1(k, t))dt

+
√

εγ
∑
x∈Z

∑
z;|z−x |=1

e−2π
√−1kx (Yx,zv

1(x, t))dwx,z .

Now we compute the last term. By summation by parts we have

−
∑
x∈Z

∑
z;|z−x |=1

e−2π
√−1kx (Yx,zv

1(x, t))dwx,z

=
∑
x∈Z

∑
z∈Z

h(z)v2(x + z)e−2π
√−1k(x+z)dwx,x+1,
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where h : Z → Z is defined as

h(z) =

⎧⎪⎨
⎪⎩
e2π

√−1k − 1, z = 1

e−2π
√−1k − 1, z = 0

0, z �= 0, 1.

By the change of variables, the last term is rewritten as∑
x∈Z

∑
z∈Z

h(z)v2(x + z)e−2π
√−1k(x+z)dwx,x+1

=
∑
x∈Z

∑
x ′∈Z

h(x ′ − x)v2(x ′)e−2π
√−1kx ′

dwx,x+1

=
∑

x,x ′∈Z
(

∫
T

dk′e2π
√−1k′(x ′−x)

∑
y∈Z

e−2π
√−1k′yh(y))v2(x ′)e−2π

√−1kx ′
dwx,x+1,

and ∑
y∈Z

e−2π
√−1k′yh(y) = e−2π

√−1k − 1 + e−2π
√−1k′

(e2π
√−1k − 1)

= (e−2π
√−1k′ − e−2π

√−1k)(e2π
√−1k − 1)

= r(k, k′).

Therefore we have (3.6).

Appendix B. Existence and Uniqueness of the Solution of (3.7)

We follow the strategy of [4] to show the existence by classical fixed point theorem.
First we prepare some notations. We introduce a norm on (L2(T))2 defined as

||f ||2
(L2(T))2

= || f1||2L2(T)
+ || f2||2L2(T)

for f = ( f1, f2) ∈ (L2(T))2. Let (E,F ,P) be a probability space andW be a cylindrical
Wiener process on (E,F ,P). Fix T > 0. Denote by (H, || · ||H) the Banach space of
(L2(T))2-valued measurable processes f(k, t), k ∈ T, t ∈ [0, T ] such that

||f ||H = ( sup
t∈[0,T ]

E[||f(·, t)||2
(L2(T))2

]) 1
2 < ∞,

where two processes are identified if they are P × dt almost surely equal.
Next we rewrite (3.7) as

d

(
ψ̂1(k, t)
ψ̂2(k, t)

)
= A1(ψ̂(·, t))(k)dt + A2(k

′)(ψ̂(·, t))(k)W (dk′, dt),

where A1 and A2(k′), k′ ∈ T are bounded linear operators on (L2(T))2 defined as

A1(f)(k) =
( {−√−1ω1(k) − εγ

2 R(k)θ1(k)2} f1(k) − εγ
2 R(k)θ1(k)θ2(k) f ∗

2 (k)
− εγ

2 R(k)θ1(k)θ2(k) f ∗
1 (k) + {−√−1ω2(k) − εγ

2 R(k)θ2(k)2} f2(k)
)

,
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A2(k
′)(f)(k) =

(
r(k, k′)(θ1(k − k′) f1(k − k′) + θ2(k − k′) f ∗

2 (k′ − k))
r(k, k′)(θ1(k − k′) f ∗

1 (k′ − k) + θ2(k − k′) f2(k − k′))

)

for f = ( f1, f2) ∈ (L2(T))2. Fix ψ̂0 ∈ (L2(T))2. We define a functional I : H → H as

I (f)t = ψ̂0 +
∫

[0,t]
A1(f(·, s))ds +

∫
[0,t]

A2(k
′)(f(·, s))W (dk′, ds).

For sufficiently small T > 0, I is contractive and so there exists the unique fixed point
ψ̂ ∈ H such that I (ψ̂) = ψ̂ . In this way we can construct a solution on the time interval
[0, T ], and then we can construct a solution on the time interval [T, 2T ] by the same
argument and so on.
Finally we check the uniqueness of the solution in the sense of the distribution. Suppose
that f (1) and f (2) ∈ H are two solutions of (3.7) with a same initial condition. By the
Cauchy–Schwarz inequality and the boundedness of A1 and A2, we have

E[||f (1)(·, t) − f (2)(·, t)||2
(L2(T))2

]
≤ C(T )

∫
[0,t]

ds E[||f (1)(·, s) − f (2)(·, s)||2
(L2(T))2

]

for all t ≥ 0.By theGronwall’s inequalitywehaveE[||f (1)(·, t)−f (2)(·, t)||2
(L2(T))2

] = 0.

Appendix C. Conservation of the Total Energy

From (3.7) and Itô’s formula, we have

∑
i=1,2

|ψ̂i (k, t)|2 − |ψ̂i (k, 0)|2 = εγ

∫ t

0
ds I1(k, s)

+
√−1

√
εγ

∫
T

∫ t

0
W (dk′, ds) I2(k, k′, s),

where

I1(k, t) =
∫
T

dk′R(k, k′)
∑
i=1,2

θ2i (k′)|ψ̂i (k
′, t)|2

+ θ1(k
′)θ2(k′)�(ψ̂i (k, t)ψ̂i∗(−k, t))

− R(k)
∑
i=1,2

θ2i (k)|ψ̂i (k, t)|2

+ θ1(k)θ2(k)�(ψ̂i (k, t)ψ̂i∗(−k, t)),

I2(k, k
′, t) = −θ1(k)ψ̂1(k, t)[r∗(k,−k′)(θ1(k + k′)ψ̂∗

1 (k + k′, t)
+ θ2(k + k′)ψ̂2(−k′ − k, t))]
+ θ1(k)ψ̂

∗
1 (k, t)[r(k, k′)(θ1(k − k′)ψ̂1(k − k′, t)

+ θ2(k − k′)ψ̂∗
2 (k′ − k, t))]

+ θ2(k)ψ̂2(k, t)[r∗(k,−k′)(θ1(k + k′)ψ̂1(k
′ + k, t)

+ θ2(k + k′)ψ̂∗
2 (k′ + k, t))]
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− θ2(k)ψ̂
∗
2 (k, t)[r(k, k′)(θ1(k − k′)ψ̂∗

1 (k′ − k, t)

+ θ2(k − k′)ψ̂2(k
′ − k, t))].

Then for any k ∈ T, t ≥ 0, we define an operator I ∗
2 (k, t) : L2(T) → L

2(T) as

I ∗
2 (k, t)( f ) =

∫
T

dk′ f (k′)I2(k, k′, t).

Since ∫
T

∫ t

0
W (dk′, ds) I2(k, k′, s) =

∫ t

0
ds〈I ∗

2 (k, s), dW (s)〉,

and ∑
x∈Z

∫
T

dk |
∫
T

dk′e−2π
√−1k′x I2(k, k

′, t)|2

≤ C1

∑
x∈Z

∑
i=1,2

∫
T

dk
∣∣e2π√−1kx (1 − e2π

√−1k)θi (k)ψ̂i (k, t)

×
∫
T

dk′ e−2π
√−1k′x (1 − e−2π

√−1k′
)θi (k)ψ̂

∗
i (k′, t)

∣∣2
+

∫
T

dk
∣∣e2π√−1kx (1 − e2π

√−1k)θi (k)ψ̂i (k, t)

×
∫
T

dk′ e−2π
√−1k′x (1 − e−2π

√−1k′
)θi∗(k)ψ̂i∗(−k′, t)

∣∣2
≤ C2

( ∑
i=1,2

‖ψ̂i (·, t)‖2L2(T)

)∑
x∈Z

×
∑
i=1,2

∣∣∫
T

dk′ e−2π
√−1k′x (1 − e−2π

√−1k′
)θi (k)ψ̂i (k

′, t)
∣∣2

≤ C3
( ∑
i=1,2

‖ψ̂i (·, t)‖2L2(T)

)2
for some positive constants Ci , i = 1, 2, 3, we can use the stochastic Fubini theorem
and obtain∫

T

dk
(∫

T

∫ t

0
W (dk′, ds) I2(k, k′, s)

) =
∫
T

∫ t

0
W (dk′, ds)

(∫
T

dk I2(k, k
′, s)

)
.

In addition, by using the change of variable we have∫
T

dk I1(k, t) = 0,
∫
T

dk I2(k, k
′, t) = 0,

and thus get the conservation of the total energy almost surely:∫
T

dk
∑
i=1,2

|ψ̂i (k, t)|2 −
∫
T

dk
∑
i=1,2

|ψ̂i (k, 0)|2 = 0, a.s.
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Appendix D. Extension to a Finite Positive Measure

Lemma D.1. Let {εN (t)}N∈N be a convergent subsequence with its limit (t). Then
there exists a vector-valued finite positive measure μ(t) = (μ1(t), μ2(t)) such that∫

R×T

μi (t)(dy, dk)Ji (y, k)
∗ = 〈(t), Ji 〉, i = 1, 2

for all J ∈ S2.

Proof. Let 1(t) ∈ S′ as 〈1(t), J 〉 := 〈(t), J〉 for J = (J, 0), J ∈ S. First we show
that 1(·) is multiplicatively positive, that is,

〈1(t), |J |2〉 ≥ 0

for all t ≥ 0 and J ∈ S. Fix t ≥ 0 and J ∈ S. Since J is smooth,

J (
ε

2
(x + x ′), k) − J (εx, k) = ε

2

∫ 1

0
dr (x ′ − x)∂y J (εx + r

ε

2
(x ′ − x), k)

for all x, x ′ ∈ Z and so∣∣∣∣
∫
T

dke2π
√−1(x ′−x)k

(
J (

ε

2
(x + x ′), k)J (

ε

2
(x + x ′), k)∗ − J (εx, k)J (

ε

2
(x + x ′), k)∗

)∣∣∣∣
=

∣∣∣∣ε2 (x ′ − x)
∫
T

dke2π
√−1(x ′−x)k J (

ε

2
(x + x ′), k)∗

∫ 1

0
dr∂y J (εx + r

ε

2
(x ′ − x), k)

∣∣∣∣ .
By repeating the integration by parts we have∣∣∣∣

∫
T

dke2π
√−1(x ′−x)k J (

ε

2
(x + x ′), k)∗

∫ 1

0
dr∂y J (εx + r

ε

2
(x ′ − x), k)

∣∣∣∣
=

∣∣∣∣∣
∫
T

dk

(
1

2π
√−1(x ′ − x)

)3

e2π
√−1(x ′−x)k∂3k [J (

ε

2
(x + x ′), k)∗

×
∫ 1

0
dr∂y J (εx + r

ε

2
(x ′ − x), k)]

∣∣∣∣
≤ 1

8π3|x − x ′|3
∫
T

dk |∂3k [J (
ε

2
(x + x ′), k)∗

∫ 1

0
dr∂y J (εx + r

ε

2
(x ′ − x), k)]|.

Hence, we have∣∣∣∣
∫
T

dke2π
√−1(x ′−x)k

(
J (

ε

2
(x + x ′), k)J (

ε

2
(x + x ′), k)∗ − J (εx, k)J (

ε

2
(x + x ′), k)∗

)∣∣∣∣
≤ ε

16π3|x − x ′|2
∫
T

dk |∂3k [J (
ε

2
(x + x ′), k)∗

∫ 1

0
dr∂y J (εx + r

ε

2
(x ′ − x), k)]|

≤ 1

|x − x ′|2 OJ (ε)

for all x �= x ′ ∈ Z. In the same way, we can show that∣∣∣∣
∫
T

dke2π
√−1(x ′−x)k

(
J (εx, k)J (

ε

2
(x + x ′), k)∗ − J (εx, k)J (εx ′, k)∗

)∣∣∣∣
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≤ 1

|x − x ′|2 OJ (ε).

On the other hand we have

ε

2

∑
x,x ′∈Z

〈ψ1(x
′, t

ε
)∗ψ1(x,

t

ε
)〉ε

∫
T

dk e2π
√−1(x ′−x)k J (εx, k)J (εx ′, k)∗

= ε

2

∫
T

dk 〈|
∑
x∈Z

e−2π
√−1xkψ(x,

t

ε
)J (εx, k)|2〉ε ≥ 0.

Since∣∣∣∣
∫
T

dke2π
√−1(x ′−x)k |J (

ε

2
(x + x ′), k)|2 − J (εx, k)J (εx ′, k)∗

∣∣∣∣
≤

∣∣∣∣
∫
T

dke2π
√−1(x ′−x)k

(
J (

ε

2
(x + x ′), k)J (

ε

2
(x + x ′), k)∗

−J (εx, k)J (
ε

2
(x + x ′), k)∗

)∣∣∣
+

∣∣∣∣
∫
T

dke2π
√−1(x ′−x)k

(
J (εx, k)J (

ε

2
(x + x ′), k)∗ − J (εx, k)J (εx ′, k)∗

)∣∣∣∣ ,
combining the above calculations we have

〈ε
1(t), |J |2〉 = ε

2

∫
T

dk 〈|
∑
x∈Z

e−2π
√−1xkψ1(x,

t

ε
)J (εx, k)|2〉ε + OJ (ε).

Therefore 1(·) is multiplicatively positive.
Next we show that 1(·) is positive, that is,

〈1(t), J 〉 ≥ 0

for all t ≥ 0 and J ∈ S, J ≥ 0. Since {J ∈ S; J ∈ C∞
0 (R × T), J ≥ 0} is a dense

subset of {J ∈ S; J ≥ 0}, it is sufficient to show the positivity on C∞
0 (R×T). Fix t ≥ 0

and a positive function J ∈ C∞
0 (R × T). There exists a positive constant M > 0 such

that the support of J is a subset of [−M, M]×T. Let a(y) ∈ C∞
0 (R) be a function such

that a(y) = 1, y ∈ [−M, M]. Define J (m)(y, k) ∈ C∞
0 (R × T), m ∈ N as

J (m)(y, k) = a(y)

√
J (y, k) +

1

m
.

Then the sequence {|J (m)|2, m ∈ N} converges to J (y, k) in the topology of C∞
0 (R ×

T). Since the embedding of the space C∞
0 (R × T) into the space S is continuous,

{|J (m)|2, m ∈ N} also converges to J (y, k) in the topology of S. By the continuity of
1(t), we have

〈1(t), J 〉 = lim
m→∞〈1(t), |J (m)|2〉 ≥ 0.

Therefore 1(·) is positive.
In the same way we can show that 2(·) is also positive.
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By the usual method, for example see Lemma 1 in Chapter 2 of [9], we can extend the
domain of i (·), i = 1, 2 to the space C0(R×T). By the Riesz representation theorem
there exists a finite positive measure μi (·), i = 1, 2 such that

〈i (t), J 〉 =
∫
R×T

μi (t)(dy, dk) J (y, k), i = 1, 2

for all t ≥ 0 and J ∈ C0(R × T). By the linearity and the definition of ε
i (·),

〈i (t), J 〉 =
∫
R×T

μi (t)(dy, dk) J (y, k)∗, i = 1, 2

for all J ∈ S. ��

Appendix E. Uniqueness of the Solution of the Boltzmann Equation

Suppose that a vector-valued finite positive measure μ(t) is a solution of the Boltzmann
equation (4.2). Then μ̃(t)(dy, dk) := μ(t)(dy + 1

2π ω′(k)t, dk) is a solution of the
following space-homogeneous Boltzmann equation

∂t

∫
dμ̃(t) · J =

∫
dμ̃(t) · (C J)

where ∫
dμ̃(t) · J =

∫
μ(t)(dy +

1

2π
ω′(k)t, dk) · J

:=
∫

μ(t)(dy, dk) · J(y − 1

2π
ω′(k)t, k).

Conversely, if μ̃(t) is a solution of the space-homogeneous Boltzmann equation, then
μ(t)(dy, dk) := μ̃(t)(dy − 1

2π ω′(k)t, dk) is a solution of the Boltzmann equation
(4.2). Therefore, it is sufficient to show the uniqueness of the solution for the space-
homogeneous Boltzmann equation.
Suppose that J 1(y, k) = f λ,y∗,r (y)G(k), J 2(y, k) = 0, where

f λ,y∗,r (y) = exp

(
− λ

r2 − |y − y∗|2
)
1B(y∗,r)(y),

B(y∗, r) = {y ∈ R ; |y − y∗| < r},
y∗ ∈ R , r > 0 and G(·) ∈ C∞(T). Note that f λ,y∗,r ∈ C∞

0 (R), ‖ f λ,y∗,r‖∞ ≤ 1 and

lim
λ→0

f λ,y∗,r (y) = 1B(y∗,r)(y).

Let μ(t), ν(t) be solutions of the space-homogeneous Boltzmann equation with a same
initial condition. Then

|
∫

dμ(t) · J −
∫

dν(t) · J |

= |
∫

dμ(t) · f λ,y∗,r (y)G −
∫

dν(t) · f λ,y∗,r (y)G|
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≤
∫ t

0
ds

∣∣∣∣
∫

d(μ(s) − ν(s)) · ( f λ,y∗,r (y)CG(k))

∣∣∣∣
where G = (G(k), 0). By taking the limit λ → 0, we have

|
∫
T

G(k)d(μ1(t)(B(y∗, r), dk) − ν1(t)(B(y∗, r), dk))|

≤
∫ t

0
ds|

∫
T

d(μ(s)(B(y∗, r), dk) − ν(s)(B(y∗, r), dk)) · (CG)|

≤
∫ t

0
ds

∑
i=1,2

|
∫
T

d(μi (s)(B(y∗, r), dk) − νi (s)(B(y∗, r), dk))(CG)i |

≤ 32 sup
k

|G(k)|
∫ t

0
ds

∑
i=1,2

||μi (s)(B(y∗, r), dk) − νi (s)(B(y∗, r), dk)||

where || · || is the total variation for a bounded signed measure on T. Hence,

||μ1(t)(B(y∗, r), dk) − ν1(t)(B(y∗, r), dk)||
≤ 32

∫ t

0
ds

∑
i=1,2

||μi (s)(B(y∗, r), dk) − νi (s)(B(y∗, r), dk)||.

By the same proof, we have

||μ2(t)(B(y∗, r), dk) − ν2(t)(B(y∗, r), dk)||
≤ 32

∫ t

0
ds

∑
i=1,2

||μi (s)(B(y∗, r), dk) − νi (s)(B(y∗, r), dk)||.

∴
∑
i=1,2

||μi (t)(B(y∗, r), dk) − νi (t)(B(y∗, r), dk)||

≤ 64
∫ t

0
ds

∑
i=1,2

||μi (s)(B(y∗, r), dk) − νi (s)(B(y∗, r), dk)||.

Therefore μi (t)(B(y∗, r), dk) = νi (t)(B(y∗, r), dk) on T for any ball B(y∗, r) ⊂ R,
which concludes μ(t) = ν(t) for any t ≥ 0.

Appendix F. Derivation of (6.4)

We only consider the time evolution of ̂ε
1+(t)(p, k). By the same calculation we can

obtain the time evolution of ̂ε
2+(t)(p, k). From (3.7) we have

∂t ̂
ε
1+(t)(p, k)

= −
√−1

ε

(
ω1(k +

εp

2
) − ω1(k − εp

2
)
)

̂ε
1+(t)(p, k)

− γ

2

(
R(k +

εp

2
)θ1(k +

εp

2
)2 + R(k − εp

2
)θ1(k − εp

2
)2

)
̂ε

1+(t)(p, k)
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− γ

2
R(k +

εp

2
)θ1(k +

εp

2
)θ2(k +

εp

2
)�̂ε

2−(t)(p, k)

− γ

2
R(k − εp

2
)θ1(k − εp

2
)θ2(k − εp

2
)�̂ε

2+(t)(p, k)

+ γ θ1(k − εp

2
)θ1(k +

εp

2
)

∫
T

dk′r(k − εp

2
, k′)∗r(k + εp

2
, k′)

× [θ1(k − k′ − εp

2
)θ1(k − k′ + εp

2
)̂ε

1+(t)(p, k − k′)

+ θ2(k − k′ − εp

2
)θ2(k − k′ + εp

2
)̂ε

2+(t)(p, k − k′))

+ θ1(k − k′ − εp

2
)θ2(k − k′ + εp

2
)�̂ε

2−(t)(p, k − k′)

+ θ1(k − k′ + εp

2
)θ2(k − k′ − εp

2
)�̂ε

2+(t)(p, k − k′)].

By the change of variables k − k′ → k′, the last integral is rewritten as

∫
T

dk′r(k − εp

2
, k − k′)∗r(k + εp

2
, k − k′)

× [θ1(k′ − εp

2
)θ1(k

′ + εp

2
)̂ε

1+(t)(p, k
′) + θ2(k

′ − εp

2
)θ2(k

′ + εp

2
)̂ε

2+(t)(p, k
′))

+ θ1(k
′ − εp

2
)θ2(k

′ + εp

2
)�̂ε

2−(t)(p, k′) + θ1(k
′ + εp

2
)θ2(k

′ − εp

2
)�̂ε

2+(t)(p, k
′)].

Hence, it is sufficient to show that r(k − εp
2 , k − k′)∗r(k + εp

2 , k − k′) = Rεp(k, k′). By
the following direct calculations

r(k − εp

2
, k − k′)∗r(k + εp

2
, k − k′)

= (e2π
√−1(k−k′) − e2π

√−1(k− εp
2 ))(e−2π

√−1(k− εp
2 ) − 1)

× (e−2π
√−1(k−k′) − e−2π

√−1(k+ εp
2 ))(e2π

√−1(k+ εp
2 ) − 1)

= (1 − e−π
√−1εp(e2π

√−1k′
+ e−2π

√−1k′
) + e−2π

√−1εp)

× (1 − eπ
√−1εp(e2π

√−1k + e−2π
√−1k) + e2π

√−1εp)

= (eπ
√−1εp − (e2π

√−1k′
+ e−2π

√−1k′
) + e−π

√−1εp)

× (e−π
√−1εp − (e2π

√−1k + e−2π
√−1k) + eπ

√−1εp)

and

e−π
√−1εp − (e2π

√−1k + e−2π
√−1k) + eπ

√−1εp

= 2 cosπεp − 2 cos 2πk

= 4 sin (k +
εp

2
) sin (k − εp

2
),

we can verify the equation r(k − εp
2 , k − k′)∗r(k + εp

2 , k − k′) = Rεp(k, k′).
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