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Abstract: We prove that any one-dimensional (1D) quantum state with small quantum
conditional mutual information in all certain tripartite splits of the system, which we call
a quantum approximate Markov chain, can be well-approximated by a Gibbs state of
a short-range quantum Hamiltonian. Conversely, we also derive an upper bound on the
(quantum) conditional mutual information of Gibbs states of 1D short-range quantum
Hamiltonians. We show that the conditional mutual information between two regions
A and C conditioned on the middle region B decays exponentially with the square
root of the length of B. These two results constitute a variant of the Hammersley–
Clifford theorem (which characterizes Markov networks, i.e. probability distributions
which have vanishing conditional mutual information, as Gibbs states of classical short-
rangeHamiltonians) for 1Dquantumsystems.The result canbe seen as a strengthening—
for 1D systems—of themutual information area law for thermal states. It directly implies
an efficient preparation of any 1D Gibbs state at finite temperature by a constant-depth
quantum circuit.

1. Introduction

A sequence of discrete random variables X1, . . . , Xn forms a Markov chain if Xi+1 is
uncorrelated from X1, . . . , Xi−1 conditioned on the value of Xi . Markov chains are a
central concept in probability theory, statistics and beyond. In this paper we consider a
combination of two natural generalizations of the concept of a Markov chain.

In the first we only require approximate independence from previous random vari-
ables, i.e. Xi+1 should only be almost independent from X1, . . . , Xi−1 conditioned on
Xi . One way to make this notion quantitative is to use the conditional mutual infor-
mation, defined for every three random variables X, Y, Z drawn from the distribution
p(X, Y, Z) as

I (X : Z |Y )p := H(XY )p + H(Y Z)p − H(XY Z)p − H(Y )p,
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where H(X)p := −∑
xi ∈X pX (xi ) log pX (xi ) is the Shannon entropy of the marginal

distribution on X .1 In terms of the conditional mutual information, X1, . . . , Xn is a
Markov chain if

I (X1 . . . Xi−1 : Xi+1 . . . Xn|Xi )p = 0 ∀i ∈ [1, n].
The conditional mutual information can also be written as

I (X : Z |Y )p = EY∼p(Y ) I (X : Z)py , (1)

where I (X : Z)py is the mutual information:

I (X : Z)py := H(X)py + H(Z)py − H(X Z)py , (2)

with py(X, Z) which is the conditional distribution of X and Z for given Y = y. Thus
if I (X : Z |Y )p is small, X and Z are almost uncorrelated conditioned on Y . For ε > 0,
we say X1, . . . , Xn is a ε-approximate Markov chain if

I (X1 . . . Xi−1 : Xi+1 . . . Xn|Xi )p ≤ ε ∀i ∈ [1, n].
In the second, instead of considering random variables, we consider a n-partite quan-

tum state given by a density matrix ρA1...An ∈ D(HA1 ⊗ · · · ⊗ HAn ).
2 The quantum

conditional mutual information of a tripartite state ρABC is defined as

I (A : C |B)ρ := S(AB)ρ + S(BC)ρ − S(ABC)ρ − S(B)ρ,

where S(X)ρ := −Tr(ρX log ρX ) is the von Neumann entropy of the reduced state on
subsystem X . Quantum states satisfying I (A : C |B)ρ = 0 are analogues of Markov
chains of three random variables. As in the classical case (I), a multipartite quantum
state ρA1,...,An is a quantum Markov chain if

I (A1 . . . Ai−1 : Ai+1 . . . An|Ai )ρ = 0 ∀i ∈ [1, n].
In this paper,we are interested inquantum approximate Markov chains, a combination

of both generalizations. Such concept is already non-trivial for tripartite quantum states
ρABC . We can say ρABC forms a quantum ε-approximate Markov chain if

I (A : C |B)ρ ≤ ε.

However there is no quantum analogue of Eq. (1) (see Ref. [1]) and therefore it is
unclear if the definition in the above has a nontrivial meaning. A recent result in quantum
information theory reveals its meaning [2]. It shows that

I (A : C |B)ρ ≥ min
�:B→BC

−2 log F(ρABC ,�B→BC (ρAB)), (3)

where the minimum is over all completely-positive and trace-preserving (CPTP) map
�B→BC mapping D(HB) to D(HB ⊗HC ), and F(ρ, σ ) := Tr((σ 1/2ρσ 1/2)1/2) is the
fidelity. Thus if the conditional mutual information is small, A is only correlated to C
through B up to a small error, in the sense that C can be approximately recovered given
the information contained in B only (see Refs. [3–5]). More generally, we say ρA1,...,An

is a quantum ε-approximate Markov chain if

I (A1, . . . , Ai−1 : Ai+1, . . . , An|Ai )ρ ≤ ε ∀i ∈ [1, n].
1 In the following we always use 2 as the base of log.
2 D(HA1 ⊗ · · · ⊗ HAn ) is the set of density matrices over the finite-dimensional Hilbert space HA1 ⊗

· · · ⊗ HAn .
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1.1. The Hammersley–Clifford theorem. In this paper we will be interested in finding a
structural characterization of quantum approximate Markov chains. Our motivation is a
powerful result in statistics called the Hammersley–Clifford Theorem [6]. It states that
Markov chains (and more generally Markov networks3), in which all elements of the
distribution are non-zero, are equivalent to the set of Gibbs (thermal) states of nearest-
neighbor Hamiltonians on a 1D open spin chain4:

p(X1 = x1, . . . , Xn = xn) = 1

Z
exp

(

−
∑

i

hi (xi , xi+1)

)

,

for functions hi : R2 → R, where

Z :=
∑

x1,...,xn

exp

(

−
∑

i

hi (xi , xi+1)

)

is the partition function. Here, the “temperature” is included in the interaction terms.
InRefs. [7,8], theHammersley–Clifford theoremwasgeneralized toquantumMarkov

chains (and Markov networks): A full-rank quantum state ρA1...An is a quantumMarkov
chain if, and only if, it can be written as

ρA1...An = 1

Z
exp

(

−
∑

i

hi,i+1

)

,

where Z = Tr(exp(−∑
i hi,i+1)) and each hi,i+1 only acts on subsystems Ai Ai+1,

such that [hi,i+1, h j, j+1] = 0 for all i, j . Therefore we have a characterization of full-
rank quantum Markov chains as Gibbs states of 1D commuting short-range quantum
Hamiltonians.5 Conversely, this result also clarifies that correlations in Gibbs states
of 1D commuting short-range Hamiltonians are always mediated through interactions
between neighboring regions.

The characterization above only involves exact quantumMarkov chains and a special
set of short-range Hamiltonians. A natural question is whether there is a similar relation
between quantum approximate Markov chains and more general quantum Gibbs states.
The main result of this paper answers the question in the affirmative: we prove that
quantum approximate Markov chains are equivalent to Gibbs states of 1D short-range
quantum Hamiltonians, which we also call local Gibbs states in short.

Notation: In the following, we consider a quantum spin system � on a graph G =
(V, E), where V = {1, . . . , n} and E = {(i, i +1)}n−1

i=1 for n ∈ Z>0, i.e., a 1D open spin
chain. Sometimes we also consider a closed chain by adding additional edge (n, 1). The
Hilbert space of a local subsystemHi corresponding to spin i is associated to each i ∈ V ,
which has finite dimension d < ∞. For a subsystem specified by subregion X ⊂ V
(we abuse the notation by using same X to denote both a subsystem and a subregion),

3 A Markov network is a generalization of a Markov chain given by random variables X1, . . . , Xn defined
on the vertices 1, . . . , n ∈ V of a graph G = (V, E), such that Xi is uncorrelated from all other random
variables conditioned on the random variables {X j }(i, j)∈E associated to neighboring vertices.

4 For Markov networks, in turn, the Hamiltonian is a sum of local functions of variables on all cliques of
the graph.

5 In Ref. [8] a more general result was shown for quantum Markov networks. In contrast to the classical
case, positive (i.e. full-rank) quantum Markov networks are only equivalent to Gibbs states of commuting
Hamiltonians with terms on the cliques of the graph if the graph is triangle free.
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we denote HX := ⊗
i∈X Hi . The logarithm of dimHX is simply denoted by |X |. We

denote the operator norm of an operator O by ‖O‖, and the trace norm of O by ‖O‖1.
We say that the support of O is X if an operator O on � can be written as

O = OX ⊗ 1IXc ,

i.e., the tensor product of some operator OX on region X and the identity operator 1IXc

acting on the complement of X (which we denoted by Xc). We will denote the support
of an operator O by supp(O), unless explicitly mentioned.

A short-range Hamiltonian H is a bounded Hermitian operator onH� which can be
decomposed into

H =
∑

i

hi ,

where each ‖hi‖ is bounded by a constant and supp(hi ) only contains spins within graph
distance r < ∞ from the spin i . We also consider a restricted Hamiltonian HX on a
region X , defined as

HX =
∑

supp(hi )⊂X

hi ,

i.e., the sum of interactions acting on spins sitting inside of X . The Gibbs state ρHX of
the Hamiltonian HX at (inverse) temperature β > 0 is defined as

ρHX = e−βHX

Z X
, (4)

where Z X = Tr[e−βHX ]. Note that we will omit β in the notations and simply denote
ρHX and Z X , while they depend on β. The reduced state of the Gibbs state on a subregion
Y ⊂ X is denoted by ρ

HX
Y .

Throughout the paper, we often consider a disjoint tripartition ABC of �. We say B
shields A from C if A and C are indirectly connected through B. We denote by d(A, C)

the graph distance between A and C . d(A, C) = |B| if B shields A from C and is
connected.

2. Results

In this section we present the main results of this paper. For two quantum states ρ, σ ,
we denote their (quantum) relative entropy as

S(ρ‖σ) := Tr(ρ(log ρ − log σ))

if supp(ρ) ⊂ supp(σ ), and S(ρ‖σ) := +∞ otherwise (Here “supp(ρ)” means the
subspace spanned by eigenvectors of ρ with nonzero eigenvalues).

2.1. Approximation of quantum approximate Markov states by local Gibbs states. Let
us divide 1D spin chain� into m connected regions A1A2 . . . Am . We denote the coarse-
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grained 1D spin chain A1A2 . . . Am by A. Our first result is the following theorem (see
Sect. 3 for the proof):

Theorem 1. Let ρA1...Am be a quantum ε-approximate Markov chain on a 1D open
chain for ε > 0. Then there exists a short-range Hamiltonian H = ∑m−1

i=1 h Ai ,Ai+1 with
supp(h Ai ,Ai+1) = Ai Ai+1, such that

S

(

ρ

∥
∥
∥
∥

e−H

Z

)

≤ εm, (5)

where Z = Tre−H .

From the relation
S(ρ‖σ) ≥ −2 log F(ρ, σ ),

we find that the state ρ is also close in fidelity to a local Gibbs state. Note that Theorem
1 is not restricted to full-rank states.

It is natural to expect that there exists a similar bound for 1D closed chains. In this
paper, we say a state ρA1...Am is a quantum ε-approximate Markov chain on a 1D closed
chain if

I (Ai : A\Ai−1Ai Ai+1|Ai−1Ai+1)ρ ≤ ε, ∀i ∈ [1, m] (6)

in analogy with a quantum Markov network.6 Here, we imposed the periodic boundary
condition on labels, e.g., m + 1 ≡ 1. In this situation, the proof of Theorem 1 does not
work straightforwardly. To solve this difficulty, we consider two sufficient conditions as
assumptions which show the closeness to local Gibbs states respectively.

The first assumption is that the existence of the finite correlation length in terms of
the quantum mutual information, which is obtained by replacing the Shannon entropy
by the von Neumann entropy in Eq. (2). The second assumption is called the uniform
Markov property [9] requiring that the reduced states of the state are also approximately
Markov chains. Note that the second assumption may be derived from the definition of
the quantum approximate Markov chains while we have not had any result on it.

Theorem 2. Let ρA1...Am be a quantum ε-approximate Markov chain on a 1D closed
chain for ε > 0.

(i) Assume that ρA1...Am also satisfies

I (Ai : A\Ai−1Ai Ai+1)ρ ≤ ε ∀i ∈ [1, m].
Then there exists a short-range Hamiltonian H = ∑

i h Ai−1,Ai ,Ai+1 , with supp
(h Ai−1,Ai ,Ai+1) = Ai−1Ai Ai+1, such that

S

(

ρ

∥
∥
∥
∥

e−H

Z

)

≤ εm.

(ii) Assume that for any i ∈ [1, m], TrAi (ρA1...Am ) is a quantum ε-approximate Markov
chain for the 1D open chain Ai+1Ai+2 . . . Ai−1 (we used m + 1 ≡ 1). Then there
exists a short-range Hamiltonian H = ∑

i h Ai−1,Ai ,Ai+1 , with supp(h Ai−1,Ai ,Ai+1) =
Ai−1Ai Ai+1, such that

S

(

ρ

∥
∥
∥
∥

e−H

Z

)

≤ εm.

6 Any quantum ε-approximateMarkov chain ρA1...Am satisfies I (Ai : A\Ai−1Ai Ai+1|Ai−1Ai+1)ρ ≤ 2ε
for all i ∈ [3, m − 2].



122 K. Kato, F. G. S. L. Brandão

The approximate Markov property appears in analysis of gapped ground states of
many-body systems (see e.g., Refs. [10,11]). In these cases, the additional assumptions
seem to be satisfied for certain choice of subsystems. Interestingly, there exists a class of
states which are locally quantum approximate Markov chains but globally not. A simple
example is the n-qubit GHZ state

|G H Zn〉 = 1√
2

(|0000 . . . 0〉 + |1111 . . . 1〉)

on a spin chain (either open or closed). When we trace out one qubit from the chain,
the reduced state exactly become a quantum Markov chain. However, this state has
I (A : C |B) = 1 for any tripartition ABC of the whole system where B shields A from
C . Therefore, it is not a quantumMarkov chain globally. A similar situation arises when
considering a ring-like regions in systems with topological order [12]. We show that
for these cases, the value of the conditional mutual information for the whole system
approximately represents the distance from the set of local Gibbs states. We will discuss
an application of this result for analysis of entanglement spectrum in 2D topologically
ordered phases in a complementary work [13].

Theorem 3. Consider a 1D spin chain X = X1X2 . . . Xm with the size N = |X1 . . . Xm |.
Let ρX1...Xm be a state such that the reduced state obtained by tracing out Xi is a quantum
ε-approximate Markov chain for all i ∈ [1, m]. Define the set of Gibbs states of short-
range Hamiltonians with interaction strength K as

E K
nn :=

{

e−H

∣
∣
∣
∣
∣

H =
∑

i

h Xi Xi+1 Tr(e
−H ) = 1, ‖h Xi Xi+1‖ ≤ K

}

.

Note that here we include the normalization factor in the Hamiltonians. Then, for K =
�(N ) and sufficiently small ε > 0, there exists a constant c > 0 such that for any
tripartition ABC of the whole system such that B shields A from C, it holds that

min
μ∈E K

S (ρX ‖μ) = I (A : C |B)ρ + ε(N , δ) (7)

and
|ε(N , δ)| ≤ cN

5
2 δ

1
16 ,

where δ = 8
√

ε + 2−N .

Here we used Xi to label subsystems instead of Ai to avoid confusion with A ⊂ X .

2.2. Quantum approximate Markov property of 1D Gibbs states. Our secondmain result
is a kind of converse to Theorems 1 and 2. (see Sect. 4 for the proof):

Theorem 4. Let H = ∑
i hi be a short-range 1D Hamiltonian with ‖hi‖ ≤ 1 and

l0, c, c′ > 0 be universal constants. For an inverse temperature β > 0 and any partition
ABC with d(A, C) ≥ l0, there exists a CPTP-map �B→BC : D(HB) → D(HB ⊗HC )

such that ∥
∥
∥ρHABC − �B→BC (ρ

HABC
AB )

∥
∥
∥
1

≤ e−q(β)
√

d(A,C), (8)

where q(β) = ce−c′β if the correlation length of ρHABC is ξ = eO(β).
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The theorem above states that if we choose the region B sufficiently large, the Gibbs
state can be approximately recovered from the partial trace over C by performing a
recovery map on B. In turn, the statement implies the corresponding conditional mutual
information decays similarly:

Corollary 5. Under the setting of Theorem 4,

I (A : C |B)ρHABC ≤ 6

(

d(A, C) +
8(1 + q(β)

2

√
d(A, C))

q(β)2

)

e− q(β)
2

√
d(A,C).

Therefore, I (A : C |B)ρ ≤ O(e−�(
√

d(A,C))) and thus any 1D local Gibbs state
is a quantum approximate Markov chain with small ε after certain coarse-graining.
Conversely, Theorem 1 shows that any quantum approximate Markov chain can be
well-approximated by some 1D local Gibbs state. Therefore the combination of the two
results can be regarded as a variant of the Hammersley–Clifford theorem for quantum
approximate Markov chains. Below we discuss two implications of our results:

2.3. Saturation rate of area law for 1D Gibbs states. A Gibbs state of a short-range
Hamiltonian obeys an area law in terms of the mutual information. For instance, for any
Gibbs state ρH of a short-range Hamiltonian on a lattice, it holds that [14]

I (A : Ac)ρH ≤ β J |∂ A|, (9)

where J > 0 is a constant only depending on the locality of H and the norm of the local
interactions. The upper bound is a constant when the system is 1D.

The area law represented by Eq. (9) implies a decay of the conditional mutual infor-
mation. Consider a 1D spin chain system and let A be a simply connected region. We
divide Ac into {bi }i so that b1 shields b2 from A, b2 shields b3 from Ab1 and so on. We
set Bl = b1b2 . . . bl . By the monotonicity of the mutual information under the partial
trace, we have

I (A : Bl)ρH ≤ I (A : Bl+1)ρH ≤ I (A : Ac)ρH ≤ β J |∂ A|.
Since the upper bound is independent of l, I (A : bl+1|Bl)ρH = I (A : Bl+1)ρH − I (A :
Bl)ρH eventually vanishes when l grows. Corollary 5 goes one step further and quantifies
the rate at which I (A : Bl)ρH saturates when l grows. Indeed if each size of bi and l are
sufficiently large, we have

I (A : Bl+1)ρH − I (A : Bl)ρH = I (A : bl+1|Bl)ρH ≤ Ce−c
√

l ,

for some constants C, c > 0. Therefore, the mutual information of a 1D local Gibbs
state saturates the upper bound of the area law at least subexponentially fast in l.

2.4. A short depth representation of 1D Gibbs states. Theorem 4 ensures that there
exist local CPTP-maps which approximately recover a 1D Gibbs state from tracing out
operations on local regions. In other words, the Gibbs state can be prepared by local
operations on reduced states on separated subregions (Fig. 1).
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Δ ,

Δ ,

Fig. 1. A schematic picture of the preparation algorithm for 1D Gibbs states. At the first step (upside), we
perform CPTP-map

⊗
i �1,i on a product state (black dots). Each �1,i acts on a small set of spins (dotted

circle) and produces the reduced state of the target Gibbs state on the set (connected dots). At the second step
(downside), we perform another CPTP-map to concatenate these reduced states locally. Due to the approximate
Markov property of the Gibbs state, the output state is close to the Gibbs state

Corollary 6. A Gibbs state of any 1D short-range Hamiltonian at constant (inverse)
temperature β > 0 can be well-approximated by a depth-two (mixed) circuit with each
gate acting on O(log2(n)) qubits.

In more detail, there is a CPTP-map (corresponding to the circuit) of the form

� =
(
⊗

i

�2,i

)(
⊗

i

�1,i

)

,

with each local CPTP-map �k,i acting on O(eO(β) log2(n/ε)) sites, with �k,i and �k, j
acting on non-overlapping sites for i �= j , such that

∥
∥
∥
∥�(τ) − e−βH

Z

∥
∥
∥
∥
1

≤ ε,

with τ the maximally mixed state.

The proof is given in Sect. 4.4. An earlier result [15] proved that 1D Gibbs states
of local Hamiltonians at finite constant temperature can be approximated by a matrix
product operator of polynomial bond dimension, which implies they can be constructed
efficiently on a quantum computer. However this result does not give that the state can
be constructed by a short depth quantum circuit, as Corollary 6 shows. A similar con-
struction methods appear in Refs. [16,17] under certain assumptions on the approximate
Markov property.

3. Gibbs State Representations of 1D States with the Approximate Markov
Property

In this section, we prove Theorems 1 and 2 which states that quantum approximate
Markov chains can be approximated by 1D local Gibbs states.We also prove Theorem 3.
In these proofs, a relationship between Gibbs states and the maximum entropy principle
plays an important role. We first review the relationship and then turn to the proofs.
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3.1. The maximum entropy state and Gibbs states. The maximum entropy principle, in-
troduced by E.T. Jaynes in classical statistical mechanics [18,19], is a method to choose
an inference under partial information represented by some linear constraints. According
to the maximum entropy principle, the most “unbiased” inference is given by the prob-
ability distribution with maximum entropy among all distributions satisfying the linear
constraints. The solution of this optimization problem is given by a Gibbs distribution,
as can be shown by the method of Lagrange multipliers.

This framework has been generalized to quantum systems (see, e.g., Refs. [20,21]).
Especially we are interested in the case where the linear constraints are given by reduced
density matrices. Let ρ be a quantum state in D(H1 ⊗ · · · ⊗ Hn). Consider sets of
subsystems labeled by X1, . . . , Xm with Xi ⊂ {1, . . . , n} and let X = {X1, . . . , Xm}.
We define the set Rρ(X) by

Rρ(X) := {
σ ∈ D(H1 ⊗ · · · ⊗ Hn)|σXi = ρXi , (1 ≤ ∀i ≤ m)

}
. (10)

Rρ(X) is the set of all states with the same reduced states as ρ for all Xi . Since Rρ(X)

is a closed convex set, there exists a unique state such that

σmax := arg max
σ∈Rρ(X)

S(σ ).

We call σmax the maximum entropy state in Rρ(X). Similar to the classical setting, σmax
is given by a Gibbs state of a Hamiltonian with a specific structure. Let us consider the
set of Gibbs states E(X) defined as

E(X) :=
{

e−H

Z
∈ D(H1 ⊗ · · · ⊗ Hn)

∣
∣
∣
∣ H =

m∑

i=1

HXi

}

, (11)

where supp(HXi ) = Xi . For any ω ∈ E(X), it is proven that the Pythagorean theorem

S(ρ‖ω) = S(ρ‖σmax) + S(σmax‖ω) (12)

holds (Corollary 3.7 & Theorem 6.16, [20]). The maximum entropy state σmax is the
unique element of the intersection of Rρ(X) and E(X): the closure of E(X) in the
reverse-information topology [20] defined as

E(X) :=
{

σ ∈ D(H1 ⊗ · · · ⊗ Hn)

∣
∣
∣
∣ inf
ω∈E(X)

S(σ‖ω) = 0

}

.

Therefore, the Pythagorean theorem (12) implies that

inf
ω∈E(X)

S(ρ‖ω) = S(ρ‖σmax), (13)

since infω∈E(X) S(σmax‖ω) = 0. By choosing ω in Eq. (12) as the completely mixed
state, which is always contained in E(X), we have

S(ρ‖σmax) = S(σmax) − S(ρ) (14)

and therefore

inf
ω∈E(X)

S(ρ‖ω) = S(σmax) − S(ρ). (15)

We will use these formulas in the proof of theorems.
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3.2. Proof of Theorem 1. We now prove:

Theorem 1. Let ρA1...Am be a quantum ε-approximate Markov chain on a 1D open
chain for ε > 0. Then there exists a short-range Hamiltonian H = ∑m−1

i=1 h Ai ,Ai+1 with
supp(h Ai ,Ai+1) = Ai Ai+1, such that

S

(

ρ

∥
∥
∥
∥

e−H

Z

)

≤ εm.

Proof. Let σA1...Am be the maximum entropy state such that

σAi Ai+1 = ρAi Ai+1 (16)

for all i ∈ [1, m − 1]. We will show

S(σ ) ≤ S(ρ) + εm.

The result then follows from Eq. (15), since σA1...Am is an element of E(X) for X =
{Ai Ai+1}m−1

i=1 which is a (closure of) set of local Gibbs states.
By strong subadditivity, we find

S(A1 . . . Am)σ ≤ S(A1A2)σ − S(A2)σ + S(A2 . . . Am)σ

≤ S(A1A2)σ − S(A2)σ + S(A2A3)σ − S(A3)σ + S(A3 . . . Am)σ

...

≤
m−2∑

i=1

[S(Ai Ai+1)σ − S(Ai+1)σ ] + S(Am−1An)σ

=
m−2∑

i=1

[
S(Ai Ai+1)ρ − S(Ai+1)ρ

]
+ S(Am−1Am)ρ. (17)

The last equality follows from Eq. (16). Since ρA1...Am is a quantum ε-approximate
Markov chain,

I (Ai : Ai+2 . . . Am |Ai+1)ρ ≤ ε ∀i ∈ [1, m − 2],
which can be rewritten as

S(Ai Ai+1)ρ − S(Ai+1)ρ + S(Ai+1 . . . Am)ρ ≤ S(Ai Ai+1 . . . Am)ρ + ε,

i.e., the strong subadditivity is saturated up to error ε. Therefore we obtain

m−2∑

i=1

[
S(Ai Ai+1)ρ − S(Ai+1)ρ

]
+ S(Am−1Am)ρ

≤
m−2∑

i=1

S(Ai |Ai+1)ρ + S(Am−2Am−1Am) + ε

≤
m−3∑

i=1

S(Ai |Ai+1)ρ + S(Am−3 . . . Am) + 2ε

...

≤ S(A1|A2)ρ + S(A2 . . . Am)ρ + (m − 2)ε

≤ S(A1 . . . Am)ρ + (m − 1)ε, (18)
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where S(A|B)ρ := S(AB)ρ − S(B)ρ is the conditional entropy. Combining Eqs. (17)
and (18) we have

S(ρA‖σA) = S(σA) − S(ρA) ≤ (m − 1)ε.

Since σA ∈ E(X), there exists a Gibbs state

ωA = 1

Z
exp

(

−
m−1∑

i=1

h Ai Ai+1

)

∈ E(X)

which satisfies

S(σA‖ωA) ≤ ε.

Using the Pythagorean theorem, we obtain

S(ρA‖ωA) = S(ρA‖σA) + S(σA‖ωA) ≤ mε,

which completes the proof. ��

3.3. Proof of Theorem 2. Let us first restate the theorem:

Theorem 2. Let ρA1...Am be a quantum ε-approximate Markov chain on a 1D closed
chain for ε > 0.

(i) Assume that ρA1...Am also satisfies

I (Ai : A\Ai−1Ai Ai+1)ρ ≤ ε ∀i ∈ [1, m].

Then there exists a short-range Hamiltonian H = ∑
i h Ai−1,Ai ,Ai+1 , with supp

(h Ai−1,Ai ,Ai+1) = Ai−1Ai Ai+1, such that

S

(

ρ

∥
∥
∥
∥

e−H

Z

)

≤ εm.

(ii) Assume that for any i ∈ [1, m], TrAi (ρA1...Am ) is a quantum ε-approximate Markov
chain for the 1D open chain Ai+1Ai+2 . . . Ai−1 (we used m + 1 ≡ 1). Then there
exists a short-range Hamiltonian H = ∑

i h Ai−1,Ai ,Ai+1 , with supp(h Ai−1,Ai ,Ai+1) =
Ai−1Ai Ai+1, such that

S

(

ρ

∥
∥
∥
∥

e−H

Z

)

≤ εm.

Proof. Theorem 2(i) can be shown in the following way. Let σA1...Am be the maximum
entropy state such that

σAi−1 Ai Ai+1 = ρAi−1 Ai Ai+1
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for all i ∈ [1, m] (with the periodic boundary condition). As in the previous section, we
recursively use the strong subadditivity and obtain

S(A1 . . . Am)σ ≤ S(A1A2A3)σ − S(A1A3)σ + S(A1A3A4 . . . Am)σ

≤ S(A2|A1A3)σ + S(A3A4A5)σ − S(A3A5)σ + S(A1A3A5 . . . Am)σ

...

≤
� m
2 �∑

i=1

S(A2i |A2i−1A2i+1)σ + S(A1A3A5 . . . A2� m
2 �−1)σ

≤
� m
2 �∑

i=1

S(A2i |A2i−1A2i+1)σ +

� m
2 �∑

i=1

S(A2i−1)σ

=
� m
2 �∑

i=1

S(A2i |A2i−1A2i+1)ρ +

� m
2 �∑

i=1

S(A2i−1)ρ,

where we used subadditivity S(Ai A j ) ≤ S(Ai ) + S(A j ) in the second inequality. From
the additional assumption on the mutual information,

0 ≤ S(A1)σ + S(A3)σ − S(A1A3)σ ≤ I (A1 : A3A4 . . . Am−1)σ ≤ ε.

By using this type of inequalities, we obtain that

� m
2 �∑

i=1

S(A2i−1)ρ ≤ S(A1A3)ρ +

� m
2 �∑

i=3

S(A2i−1)ρ + ε

...

≤ S(A1A3A5 . . . A2� m
2 �−1)ρ +

(⌈m

2

⌉
− 1

)
ε.

Since ρA1...An is a quantum ε-approximate Markov chain on a closed chain, one can
further show that

S(A1 . . . Am)σ ≤
� m
2 �∑

i=1

S(A2i |A2i−1A2i+1)ρ + S(A1A3A5 . . . A2� m
2 �−1)ρ +

(⌈m

2

⌉
− 1

)
ε

≤ S(A1A2 . . . Am)ρ + (m − 1)ε.

The rest part of the proof is the same as the proof of Theorem 1.
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To prove Theorem 2(ii), we use the strong subadditivity to the maximum entropy
state σA1...Am to obtain:

S(A1 . . . Am)σ ≤ S(Am A1A2)σ − S(Am A2)σ + S(A2A3 . . . Am)σ

≤ S(A1|Am A2)σ + S(A2A3)σ − S(A3)σ + S(A3 . . . Am)σ

...

≤ S(A1|Am A2)σ +
m−2∑

i=2

S(Ai |Ai+1)σ + S(Am−1Am)σ

≤ S(A1|Am A2)ρ +
m−2∑

i=2

S(Ai |Ai+1)ρ + S(Am−1Am)ρ.

Recall thatρA2...Am is a quantum ε-approximateMarkov chain by assumption. Therefore,
we have

S(A1|Am A2)ρ +
m−2∑

i=2

S(Ai |Ai+1)ρ + S(Am−1Am)ρ

≤ S(A1|Am A2)ρ + S(A2 . . . Am)ρ + (m − 2)ε

≤ S(A1 . . . Am)ρ + (m − 1)ε,

from which we complete the proof in the same way as in the proof of Theorem 1. ��

3.4. Proof of Theorem 3. Finally, we prove Theorem 3:

Theorem 3. Consider a 1D spin chain X = X1X2 . . . Xm with the size N = |X1 . . . Xm |.
Let ρX1...Xm be a state such that the reduced state obtained by tracing out Xi is a quan-
tum ε-approximate Markov chain for all i ∈ [1, m]. Define the set of Gibbs states of
short-range Hamiltonians with interaction strength K as

E K
nn :=

{
1

Z
e−H

∣
∣
∣
∣
∣

H =
∑

i

h Xi Xi+1, ‖h Xi Xi+1‖ ≤ K

}

.

Then, for K = �(N ) and sufficiently small ε > 0, there exists a constant c > 0 such
that for any tripartition ABC of the whole system such that B shields A from C, it holds
that

min
μ∈E K

S (ρX ‖μ) = I (A : C |B)ρ + ε(N , δ)

and
|ε(N , δ)| ≤ cN

5
2 δ

1
16 ,

where δ = 8
√

ε + 2−N .

The strategy of the proof is as follows. We first construct a global state ρ̃′
ABC on

ABC from a reduced state of ρABC by using recovery maps. We then introduce ρ̃ABC , a
modification of ρ̃′

ABC and define a Gibbs state of a nearest-neighbor Hamiltonian π̃ABC
from its reduced states. Finally we show that this Gibbs state is almost the closest state
in the set of Gibbs states of bounded nearest-neighbor Hamilntonians.
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Proof. Without loss of generality, we consider a system defined on a 1D closed spin
chain, e.g., X1 ≡ Xm+1, and assume that |X1| = maxi |Xi |. Let A ≡ X1, B1 ≡ Xm X2,
B2 ≡ Xm−1X3 and C ≡ X4X5 . . . Xm−2. In the following, we use both notations
X1 . . . Xm and ABC interchangeably. Note that if we choose another tripartition A′ B ′C ′
satisfying the condition instead of ABC , the chain rule of the conditional mutual infor-
mation:

I (A : C D|B)ρ = I (A : C |B)ρ + I (A : D|BC)ρ (19)

and the assumption imply that
∣
∣I (A : C |B)ρ − I (A′ : C ′|B ′)ρ

∣
∣ ≤ ε.

From the results in Ref. [2], there exist CPTP maps called (approximate) recovery
maps such that

∥
∥ρAB1B2 − �B1→AB1(ρB)

∥
∥
1 ≤ 2

√
ε, (20)

∥
∥ρB1B2C − �B2→B2C (ρB)

∥
∥
1 ≤ 2

√
ε, (21)

where we omitted the identity maps for simplicity. By using these maps, we define a
global state

ρ̃′
ABC := �B2→B2C ◦ �B1→AB1(ρB).

Since the CPTP-maps recover reduced states with good accuracy, ρ′
ABC has almost same

bipartite marginals on, e.g., AB.

‖ρAB − ρ̃′
AB‖1 ≤ ∥

∥ρAB − �B1→AB1(ρB)
∥
∥
1 +

∥
∥�B1→AB1(ρB) − ρ̃′

AB

∥
∥
1

≤ ∥
∥ρAB − �B1→AB1(ρB)

∥
∥
1 +

∥
∥�B1→AB1(ρBC ) − ρ̃′

ABC

∥
∥
1

≤ 2
√

ε +
∥
∥�B1→AB1(ρBC ) − �B1→AB1 ◦ �B2→B2C (ρB)

∥
∥
1

≤ 4
√

ε. (22)

The first inequality follows from the triangle inequality of the trace norm, and the sec-
ond inequality follows from the monotonicity of the trace-norm under TrC . The same
bound holds for marginals on BC as well. Equations (20) and (22) imply that ρ̃′

ABC is
approximately recoverable state:
∥
∥ρ̃′

ABC − �B2→B2C (ρ̃′
AB)

∥
∥
1 ≤ ∥

∥ρ̃′
ABC − �B2→B2C (ρAB)

∥
∥
1 +

∥
∥ρAB − ρ̃′

AB

∥
∥
1 ≤ 6

√
ε.

(23)
For twoquantum statesρAB , σAB satisfying ‖ρAB−σAB‖1 < δ ≤ 1, the (Alicki-)Fannes
inequality [22]

∣
∣S(A|B)ρ − S(A|B)σ

∣
∣ ≤ 4δ|A| + 2h2(δ)

≤ 6
√

δ|A|
holds with the binary entropy h2(δ) = H(p = {δ, 1− δ}). This inequality and Eq. (23)
yields

I (A : C |B)ρ̃′ = S(A|B)ρ̃′ − S(A|BC)ρ̃′

≤ S(A|BC)ρ̃′′ − S(A|BC)ρ̃′

≤ 24
√

ε|A| + 2h2
(
6
√

ε
)

≤ 6
√
6|A|ε 1

4 ,
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where we denote ρ̃′′
ABC := �B2→B2C (ρ̃′

AB) in the second line which follows from the
data processing inequality for �B2→B2C . Therefore, ρ̃′

ABC is a quantum approximate
Markov chain for small ε > 0.

Next, define a full-rank modification of ρ̃′
ABC , that is,

ρ̃ABC :=
(

1 − 1

2N−1

)

ρ̃′
ABC +

1

2N−1 τABC , (24)

where τABC is the completelymixed state on ABC (recall that N represents the logarithm
of the total dimension). Since by definition

‖ρ̃ABC − ρ̃′
ABC‖1 ≤ 2−N , (25)

the Fannes inequality implies that

I (A : C |B)ρ̃ ≤ I (A : C |B)ρ̃′ +
12|A|√
2N

(26)

≤ 6
√
6|A|ε 1

4 +
12|A|√
2N

. (27)

Therefore ρ̃ABC is still an approximate Markov chain for large N .
Then, we construct a Gibbs state π̃X

π̃X := 1

Z
e−H ρ̃

X (28)

from the reduced states of ρ̃ABC , where Z is the normalizer and

H ρ̃
X := −

m∑

i=1

(
ln ρ̃Xi Xi+1 − ln ρ̃Xi

)
.

π̃X is an element of E K
nn with K = �(N ). In the following, we show that π̃ is close to

ρ̃.
By definition of H ρ̃

X , it holds that

S(ρ̃X‖e−H ρ̃
X ) =

m∑

i=1

S(Xi |Xi+1)ρ̃ − S(X1 . . . Xm)ρ̃ . (29)

Note that
∑m

i=1 S(Xi |Xi+1)ρ̃ = ∑m
i=1 S(Xi+1|Xi )ρ̃ by Xm+1 = X1. By an iterative

calculation, we have

m∑

i=1

S(Xi |Xi+1)ρ̃ = S(X1|X2)ρ̃ + S(X2|X3)ρ̃ + S(X3|X4)ρ̃ +
m∑

i=4

S(Xi |Xi+1)ρ̃

= S(X1|X2)ρ̃ + I (X2 : X4|X3)ρ̃ + S(X2X3|X4)ρ̃ +
m∑

i=4

S(Xi |Xi+1)ρ̃

...

= S(X1|X2)ρ̃ + S(X2 . . . Xm−1|Xm)ρ̃ + S(Xm |X1)ρ̃
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+
m−1∑

i=3

I (X2 . . . Xi−1 : Xi+1|Xi )ρ̃

= S(X2 . . . Xm−1|Xm)ρ̃ − S(X2)ρ̃ + S(Xm X1X2)ρ̃

+ I (Xm : X2|X1)ρ̃ +
m−1∑

i=3

I (X2 . . . Xi−1 : Xi+1|Xi )ρ̃ .

By using the subadditivity S(X2Xm) ≤ S(X2) + S(Xm), we obtain that

(29) ≤ I (X1 : X3 . . . Xm−1|X2Xm)ρ̃ + I (Xm : X2|X1)ρ̃

+
m−1∑

i=3

I (X2 . . . Xi−1 : Xi+1|Xi )ρ̃ .

Therefore, we have

S
(
ρ̃X

∥
∥
∥e−H ρ̃

X

)
≤ I (Xm : X2|X1)ρ̃ +

m−2∑

i=2

I (X2 . . . Xi : Xi+2|Xi+1)ρ̃

+ I (A : B2|B1)ρ̃ + I (A : C |B1B2)ρ̃ , (30)

where we used the chain rule (19). The first three terms only depend on marginals of
ρ̃ABC on AB or BC . Since ρ̃ABC is close to ρ̃′

ABC (25), ρ̃ABC also has marginals close
to ρABC on these regions:

‖ρ̃AB − ρAB‖1 , ‖ρ̃BC − ρBC‖1 ≤ 8
√

ε + 2−N ≡ δ.

Thus, as in Eq. (26), the Fannes inequality implies that

I (Xm : X2|X1)ρ̃ +
m−2∑

i=2

I (X2 . . . Xi : Xi+2|Xi+1)ρ̃

≤ I (Xm : X2|X1)ρ +
m−2∑

i=2

I (X2 . . . Xi : Xi+2|Xi+1)ρ

+ 12

(

|X2| +
m−2∑

i=2

|Xi+2|
)√

δ

≤ (m − 1)ε + 12(m − 2)|X1|
√

δ.

Combining with Eq. (27), we obtain

S
(
ρ̃X

∥
∥
∥e−H ρ̃

X

)
≤ (m − 1)ε + 12(m − 2)|X1|

√
δ + 6

√
6|X1|ε 1

4 +
12|X1|√

2N

≤ O
(

N
√

δ
)

,

where we used m|X1| = �(N ) and the asymptotic notation O( f (N , ε)) as N → ∞
and ε → 0 (and therefore δ → 0).
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Let us estimate the partition function Z = Tre−H ρ̃
X . By Pinsker inequality, the above

bound implies
∣
∣
∣Tr

(
e−H ρ̃

X

)
− 1

∣
∣
∣ ≤

∥
∥
∥ρ̃X − e−H ρ̃

X

∥
∥
∥
1

≤
√

2S
(
ρ̃X

∥
∥
∥e−H ρ̃

X

)

≤ O
(

N
1
2 δ

1
4

)
(31)

where we used the inequality |‖A‖1 − ‖B‖1| ≤ ‖A − B‖1. For given N , we assume δ

is sufficiently small so that Eq. (31) is smaller than 1. We then obtain

| log Z | ≤ O
(

N
1
2 δ

1
4

)
.

Thus, the difference between ρ̃X and π̃X is bounded as

‖ρ̃X − π̃X‖1 ≤ √
2S(ρ̃X‖π̃X )

=
√

2
(

S(ρ̃X‖e−H ρ̃
X ) − log Z

)

≤ O
(

N
1
2 δ

1
8

)
. (32)

Again, by the Fannes inequality, the conditional mutual information of π̃X is bounded
as

I (A : C |B)π̃ ≤ O
(
|X1|N 1

4 δ
1
16

)
.

The marginal of π̃ on AB satisfy

‖ρAB − π̃AB‖1 ≤ ‖ρAB − ρ̃′
AB‖1 + ‖ρ̃′

AB − ρ̃AB‖1 + ‖ρ̃AB − π̃AB‖1
≤ O

(
N

1
2 δ

1
8

)
. (33)

Here, we used Eqs. (22), (25) and (32) in the second inequality. In the same way, we
also obtain

‖ρBC − π̃BC‖1 ≤ O(N
1
2 δ

1
8 ). (34)

Finally, we show that I (A : C |B)ρ approximates the distance between ρ and the set
of Gibbs states E K

nn in terms of the relative entropy. By combining Eqs. (33) and (34)
with the Fannes inequality, we have that

∣
∣I (A : C |B)ρ − (

S(ABC)π̃ − S(ABC)ρ
)∣
∣

≤ ∣
∣S(A|B)ρ + S(BC)ρ − S(ABC)π̃

∣
∣

≤ ∣
∣S(A|B)ρ − S(A|B)π̃

∣
∣ +

∣
∣S(BC)ρ − S(BC)π̃

∣
∣ + I (A : C |B)π̃

≤ O
(

N
5
4 δ

1
16

)
. (35)

By definition, it holds that

min
μ∈E K

nn

S(ρABC‖μABC ) = S(ABC)ρ − min
μ∈E K

nn

Tr(ρ logμ).
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Here, logμ ∝ HAB + HBC for some bounded Hermitian operators HAB and HBC
satisfying ‖HAB‖ + ‖HBC‖ ≤ O(mK ). Equations (33) and (34) yield that

|Tr(ρY OY ) − Tr(π̃Y OY )| ≤ ‖O‖‖ρY − π̃Y ‖
≤ O

(
‖O‖N

1
2 δ

1
8

)
(36)

for Y = AB, BC . Therefore, we can approximate Tr(ρ logμ) by Tr(π̃ logμ), and we
have

min
μ∈E K

nn

S(ρABC‖μABC ) = S(ABC)ρ − min
μ∈E K

nn

Tr(π̃ logμ) +O
(

mK N
1
2 δ

1
8

)

= S(ABC)π̃ − min
μ∈E K

nn

Tr(π̃ logμ) + I (A : C |B)ρ

+O
(

N
5
4 δ

1
16

)
+O

(
N

5
2 δ

1
8

)

= min
μ∈EK

nn

S (π̃ABC ‖μABC ) + I (A : C |B)ρ +O
(

N
5
2 δ

1
16

)

= I (A : C |B)ρ +O
(

N
5
2 δ

1
16

)
,

where we used mK = �(N 2) and Eq. (35) in the secondline. The third inequality
follows from Eq. (35) and the last line follows from π̃ ∈ E K

nn . ��

4. 1D Quantum Gibbs states are Quantum Approximate Markov Chain

In this section, we provide a proof of Theorem 4, Corollaries 5 and 6. A key point
of the proof is that if a short-range Hamiltonian changes locally, the corresponding
Gibbs state also changes quasi-locally. To obtain operators representing changes of the
Gibbs state, we employ quantum belief propagation equations which have been studied
in Refs. [23,24]. We first introduce these technical tools, and then show the proofs.
We discuss another approach to prove Theorem 4 based on the results of Ref. [25] in
Appendix A.

4.1. Perturbative analysis of Gibbs states. Let us consider an one-parameter family of
a Hamiltonian H on a spin lattice with a perturbation operator V

H(s) = H + sV, (37)

where s ∈ [0, 1]. The change of the corresponding Gibbs state due to a small change of
s can be computed through a quantum belief propagation equation [23,24]:

d

ds
e−βH(s) = −β

2

{
e−βH(s), �

H(s)
β (V )

}
, (38)

where the operator �
H(s)
β (V ) is given by [24]

�
H(s)
β (V )i j := Vi j f̃β(Ei (s) − E j (s)) (39)
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in the energy eigenbasis of H(s) = ∑
i Ei (s)|i〉〈i |,7 with f̃β(ω) = tanh(βω/2)

βω/2 . Using the

Fourier transform fβ(t) = 1
2π

∫
dω f̃β(ω)eiωt , �H(s)

β (V ) can be written as the integral
form:

�
H(s)
β (V ) =

∫ ∞

−∞
dt fβ(t)e−i H(s)t V ei H(s)t . (40)

Taking the formal integration of Eq. (38), we obtain

e−βH(1) = Oe−βH(0)O†, (41)

where the operator O is defined as

O = T exp

[

−β

2

∫ 1

0
ds′�H(s′)

β (V )

]

=
∞∑

n=0

(

−β

2

)n ∫ 1

0
ds′

1

∫ s′
1

0
ds′

2 . . .

∫ s′
n−1

0
ds′

n�
H(s′

n)
β (V ) . . . �

H(s′
1)

β (V ),

with T the time-ordering operation. Since we have dt fβ(t) = dt
β

f1(
t
β
), it holds that

∥
∥
∥�

H(s)
β (V )

∥
∥
∥ =

∥
∥
∥
∥

∫ ∞

−∞
dt ′ f1(t

′)e−iβH(s)t ′ V eiβH(s)t ′
∥
∥
∥
∥

≤ ‖V ‖
∣
∣
∣
∣

∫ ∞

−∞
dt ′ f1(t

′)
∣
∣
∣
∣

= ‖V ‖. (42)

The integral in the last equality can be calculated through the series expansion:

tanh(x)

x
=

∞∑

k=0

2

x2 +
(
k + 1

2

)2
π2

. (43)

The upper bound of ‖�H(s)
β (V )‖ implies the upper bound of ‖O‖ that is given by

‖O‖ ≤ e
β
2 ‖V ‖. (44)

When theHamiltoniandefinedonamany-body system is short-ranged, time-evolutions
of a local operator is restricted by using the Lieb-Robinson bound [26]. Suppose that
H is a Hamiltonian obeying the Lieb-Robinson bound, and OA and OB are observables
supported on local regions A and B, respectively. Then, the Lieb-Robinson bound for
these operators is formulated as

∥
∥
∥
[

OA, e−i Ht OBei Ht
]∥
∥
∥ ≤ c‖OA‖‖OB‖min(|A|, |B|)ec′(vt−d(A,B)), (45)

where c, v ≥ 0, c′ > 0 are constants. Assume that H(0) is a short-range Hamiltonian
and supp(V ) is a simply-connected local region. Then H(s) obeys the Lieb-Robinson
bound for all s ∈ [0, 1]. Since fβ(t) decays fast in |t |, the Lieb-Robinson bound implies

that the effective support of �
H(s)
β (V ) can be restricted to a local region Vl , which

7 Each |i〉 depends on s as well as the eigenvalues Ei (s).
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contains all sites within distance l from supp(V ). More precisely, there exist positive
constants c′ and v, which is determined by H(s), such that [24]

∥
∥
∥
∥
∥
�

H(s)
β (V ) − TrVc

l

[
�

H(s)
β (V )

]
⊗ 1

dVc
l

1IVc
l

∥
∥
∥
∥
∥

≤ c′‖V ‖e
− c′l

1+c′vβ/π , (46)

where dVc
l

:= dimHVc
l
. We also define the integral of the restricted operator in Eq. (46)

as

OVl := T exp

(

−β

2

∫ 1

0
ds′TrVc

l

[
�

H(s′)
β (V )

]
⊗ 1

dVc
l

1IVc
l

)

. (47)

This operator is also localized on Vl and approximates O with good accuracy. Let us
choose c′ and v so that Eq. (46) holds for all s ∈ [0, 1]. Then, we obtain that

‖O − OVl ‖ ≤ c′β‖V ‖
2

e
(1+c′)β‖V ‖

2 e
− c′l

1+c′vβ/π . (48)

To see this, consider some parametrized operators Q(s) and Q̃(s) satisfying ‖Q(s)‖,
‖Q̃(s)‖ ≤ C and ‖Q(s) − Q̃(s)‖ ≤ � for all s ∈ [0, 1]. From the simple calculation,
we obtain

Q(sn)Q(sn−1) · · · Q(s1) = Q̃(sn)Q̃(sn−1) · · · Q̃(s1)

+
n∑

j=1

Q(sn) · · · Q(s j+1)� j Q̃(s j−1) · · · Q̃(s1)

where � j = Q(s j ) − Q̃(s j ) and ‖� j‖ ≤ �. Therefore, we obtain that

‖Q(sn)Q(sn−1) · · · Q(s1) − Q̃(sn)Q̃(sn−1) · · · Q̃(s1)‖ ≤ nCn−1�. (49)

In our case, Q(s) = �
H(s)
β (V ) and Q̃(s) = TrVc

l

[
�

H(s)
β (V )

]
⊗ 1

dVc
l

1IVc
l
. We can choose

� = c′e− c′l
1+c′vβ/π ‖V ‖. From Eqs. (42) and (46), their norms can be bounded as

‖Q(s)‖, ‖Q̃(s)‖ ≤ ‖Q(s)‖ + ‖Q̃(s) − Q(s)‖
≤
(

1 + c′e− c′l
1+c′vβ/π

)

‖V ‖
≤ (1 + c′)‖V ‖.

Therefore, Eq. (49) holds for C = (1 + c′)‖V ‖. By inserting Eq. (49) to the definition
of O , we obtain Eq. (48).
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Fig. 2. A schematic picture of the definition of HB M . We divide B into two halves BL and B R . In the case of

a nearest-neighbor Hamiltonian, HB M is the interaction term acting on both BL and B R (the dotted circle)

4.2. Proof of Theorem 4. For the convenience of the reader, we restate Theorem 4 below.

Theorem 4. Let H = ∑
i hi be a short-range 1D Hamiltonian with ‖hi‖ ≤ 1 and

l0, C, c > 0 be universal constants. For an inverse temperature β > 0 and any partition
ABC with d(A, C) ≥ l0, there exists a CPTP-map �B→BC : D(HB) → D(HB ⊗HC )

such that ∥
∥
∥ρHABC − �B→BC (ρ

HABC
AB )

∥
∥
∥
1

≤ e−q(β)
√

d(A,C),

where q(β) = ce−c′β if the correlation length of ρHABC is ξ = e(O(β).

The proof of Theorem 4 consists of three steps. In the first step, we show that there
exists a CP-mapwhich recovers theGibbs state from the reduced statewith exponentially
good accuracy (Lemma 7). In the second, we normalize the CP-map to make it trace
non-increasing i.e. we show the existence of a quantum operation which succeed to
recover the Gibbs state with some probability (Lemma 9). We also show that the success
probability is a constant of system size. Finally, we construct a CPTP-map from the
probabilistic operation by employing a repeat-until-success strategy in the third step.

Let us begin with the following lemma.

Lemma 7. For any 1D Gibbs state ρHABC of a short-range Hamiltonian on a system
with a partition ABC such that l := d(A, C)/2 > r , there exists a CP map κB→BC ,
non-negative constants c′ and v such that

‖ρHABC − κB→BC (ρ
HABC
AB )‖1 ≤ C1(β)e−q1(β)l , (50)

where C1(β) is a non-negative constant and q1(β) = c′
1+c′vβ/π

, as defined in Eq. (46).

Proof. Let us consider a short-range Hamiltonian H = ∑
i hi with the range r . Without

loss of generality, we introduce a tripartition ABC of a 1D system so that each subsystem
is simply connected and d(A, C) is chosen to be 2l for some integer l > r . We then split
region B into the left half BL , which touches A, and the right half B R which touches
C (Fig. 2). We denote the sum of the all interactions hi acting on both BL and B R by
HB M = ∑

j :i∈supp(h j )
h j . By assumption, ‖HB M ‖ ≤ J for some constant J ≥ 0.

Remark 8. When B consists of a fixed number of simply connected regions, each con-
nected component neighboring both A and C is divided into two halves as in the same
way. Then, HB M is the sum of all interaction terms acting on both such divided regions.

We apply the technical tools discussed in the previous section to a parametrized
Hamiltonian HABC (s) = HABL + HB RC + s HB M . Here, HB M corresponds to the pertur-
bation operator V in the previous section. Then, we introduce an operator OABC defined
as
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OABC := T Exp

[

−β

2

∫ 1

0
ds′�HABC (s′)

β

(
HB M

)
]

.

Equations (41) implies that

e−βHABC = OABC e−β(HABL +HB R C )O†
ABC .

We also introduce the inverse operator ÕABC , that is given by

ÕABC := T̄ Exp

[
β

2

∫ 1

0
ds′�HABC (s′)

β

(
HB M

)
]

,

where T̄ denotes the inverse time-ordering operator. OABC and ÕABC satisfies the
following relation (see e.g., [27])

OABC ÕABC = ÕABC OABC = 1IABC .

From Eq. (44), the operator norms of OABC and ÕABC can be bounded as

‖OABC‖, ‖ÕABC‖ ≤ e
β
2 ‖HB M ‖ = e

β
2 J .

Importantly, the upper bound is independent of size of A, B and C . From the definitions
of OABC and its inverse, it is not difficult to see that

ρHABC = OABC

[
TrB RC

(
ÕABCρHABC Õ†

ABC

)
⊗ ρ

HB R C
B RC

]
O†

ABC . (51)

From Eq. (48), we know that there exist operators OB and ÕB whose supports are
restricted on B. For simplicity, let us denote

K (β) = c′β J

2
e

(1+c′)β J
2 .

Then, OB and ÕB satisfy

‖OABC − OB‖, ‖ÕABC − ÕB‖ ≤ K (β)e−q1(β)l , (52)

where q1(β) = c′
1+c′vβ/π

for non-negative constants c′ and v which are chosen as in

Eq. (48). Then, the operator norm of the local operators OB and ÕB can be bounded by

‖OB‖, ‖ÕB‖ ≤ ‖OABC‖ + ‖OABC − OB‖ ≤ e
β
2 J + K (β), (53)

which is independent of the size of B. Let ÕB|B be the non-trivial part of ÕB acting on
B, i.e.,

ÕB = ÕB|B ⊗ 1IAC .

By using this notation, we define a CP-map κB→BC by replacing OABC (ÕABC ) by local
operators OB(ÕB) and removing partial trace over C in Eq. (51), i.e.,

κB→BC (σB) ≡ OB

[
TrB R

(
ÕB|BσB Õ†

B|B
)

⊗ ρ
HB R C
B RC

]
O†

B . (54)
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Let us denote

X1 = TrB RC

(
ÕABCρHABC Õ†

ABC

)
⊗ ρ

HB R C
B RC

,

and
X2 = TrB R

(
ÕB|Bρ

HABC
AB Õ†

B|B
)

⊗ ρ
HB R C
B RC

.

We have

‖X1 − X2‖1 =
∥
∥
∥TrB RC

(
ÕABCρHABC Õ†

ABC

)
⊗ ρ

HB R C
B RC

−TrB R

(
ÕB|Bρ

HABC
AB Õ†

B|B
)

⊗ ρ
HB R C
B RC

∥
∥
∥
1

=
∥
∥
∥TrB RC

(
ÕABCρHABC Õ†

ABC

)
− TrB R

(
ÕB|Bρ

HABC
AB Õ†

B|B
)∥
∥
∥
1

=
∥
∥
∥TrB RC

(
ÕABCρHABC Õ†

ABC

)
− TrB RC

(
ÕBρHABC Õ†

B

)∥
∥
∥
1

≤
∥
∥
∥ÕABCρHABC Õ†

ABC − ÕBρHABC Õ†
B

∥
∥
∥
1

≤
∥
∥
∥(ÕABC − ÕB)ρHABC Õ†

ABC

∥
∥
∥
1
+
∥
∥
∥ÕBρHABC (Õ†

ABC − Õ†
B)

∥
∥
∥
1
. (55)

We used the monotonicity of the trace-norm in the last inequality. To address the calcu-
lation, we use the following spacial case of the Hölder’s inequality:

‖AB‖1 ≤ ‖A‖1‖B‖. (56)

It implies that

(55) ≤
∥
∥
∥(ÕABC − ÕB)

∥
∥
∥
∥
∥
∥ρHABC Õ†

ABC

∥
∥
∥
1
+
∥
∥
∥ÕBρHABC

∥
∥
∥
1

∥
∥
∥(Õ†

ABC − Õ†
B)

∥
∥
∥

≤
∥
∥
∥(ÕABC − ÕB)

∥
∥
∥
∥
∥
∥Õ†

ABC

∥
∥
∥ +

∥
∥
∥ÕB

∥
∥
∥
∥
∥
∥(Õ†

ABC − Õ†
B)

∥
∥
∥

≤ 2K (β)
(

e
β J
2 + K (β)

)
e−q1(β)l .

The first and second lines follow from Eq. (56) and ‖ρHABC ‖1 = 1. In the last line, we
used Eqs. (52) and (53).

By using the above bound, we bound the difference between the original Gibbs state
ρHABC and κB→BC (ρ

HABC
AB ) as

∥
∥
∥ρHABC − κB→BC (ρ

HABC
AB )

∥
∥
∥
1

=
∥
∥
∥OABC X1O†

ABC − OB X2O†
B

∥
∥
∥
1

≤
∥
∥
∥OABC X1O†

ABC − OB X1O†
B

∥
∥
∥
1
+
∥
∥
∥OB(X1 − X2)O†

B

∥
∥
∥
1

≤
∥
∥
∥(OABC − OB)X1O†

ABC

∥
∥
∥
1
+
∥
∥
∥OB X1(O†

ABC − O†
B)

∥
∥
∥
1
+ ‖(X1 − X2)‖1

∥
∥
∥O†

B

∥
∥
∥
2

≤ ‖OABC − OB‖‖ÕABC‖2‖OABC‖ + ‖O†
ABC − O†

B‖‖ÕABC‖2‖OB‖
+ ‖(X1 − X2)‖1

∥
∥
∥O†

B

∥
∥
∥
2
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≤ K (β)

(

e
3β J
2 + eβ J

(
e

β J
2 + K (β)

)
+ 2

(
e

β J
2 + K (β)

)3
)

e−q1(β)l

≤ 4K (β)
(

e
β J
2 + K (β)

)3
e−q1(β)l .

Here we used the fact that ‖X1‖1 ≤ ‖ρHABC ‖1‖ÕABC‖2 = ‖ÕABC‖2 in the fourth line.
Choosing C1(β) = 4K (β)

(
e

β J
2 + K (β)

)3
completes the proof. ��

Unfortunately, the map κB→BC is not a trace non-increasing map in general. Thus,
we normalize κB→BC to obtain a CP and trace non-increasing map, which corresponds
to a probabilistic process.

Lemma 9. Under the setting of Lemma 7, there exists a CP and trace non-increasing

map �̃B→BC for any l ≥ l0(β) ≡
⌈
logC1(β)+1

q1(β)

⌉
= O(β2) such that

∥
∥
∥
∥
∥
ρHABC − �̃B→BC (ρ

HABC
AB )

Tr[�̃B→BC (ρ
HABC
AB )]

∥
∥
∥
∥
∥
1

≤ C2(β)e−q1(β)l , (57)

where C2(β) = 2C1(β)

(1−e−1)
. Moreover, p = Tr[�̃B→BC (ρ

HABC
AB )] is a strictly positive

constant which is independent of the size of subsystems A, B and C.

Proof. We denote the maximum eigenvalue of O†
B OB (Õ†

B ÕB) by λ
OB
max (λÕB

max). From
Eq. (53)and inequality ‖A†A‖ ≤ ‖A‖2, these eigenvalues are bounded as

λOB
max, λ

ÕB
max ≤

(
e

β J
2 + K (β)

)2
. (58)

Define λmax := λ
OB
maxλ

ÕB
max. Then, we define the normalized map �̃B→BC as

�̃B→BC (σB) := 1

λmax
κB→BC (σB).

By definition, �̃B→BC is CP and trace non-increasing. After the normalization, the
output state for the input ρHABC

AB is

�̃B→BC (ρ
HABC
AB )

Tr[�̃B→BC (ρ
HABC
AB )] .

Let us introduce l0(β) = lnC1(β)+1
q1(β)

. For any l ≥ l0(β), C1(β)e−q1(β)l ≤ e−1 < 1.

For such l, the probability p for the input ρHABC
AB is then estimated as

p = Tr[�̃B→BC (ρ
HABC
AB )]

= 1

λmax

∥
∥
∥κB→BC (ρ

HABC
AB )

∥
∥
∥
1

≥ 1

λmax

∣
∣
∣‖ρHABC ‖1 −

∥
∥
∥ρHABC − κB→BC (ρ

HABC
AB )

∥
∥
∥
1

∣
∣
∣

≥ 1

λmax

(
1 − C1(β)e−q1(β)l

)
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≥ 1

λmax

(

1 − 1

e

)

≥ 1 − e−1

(
e

β J
2 + K (β)

)4 (59)

> 0,

where we used Eq. (58) in the line before the last.
The approximation error of the output is then estimated as

∥
∥
∥
∥
∥
ρHABC − �̃B→BC (ρ

HABC
AB )

Tr[�̃B→BC (ρ
HABC
AB )]

∥
∥
∥
∥
∥
1

=
∥
∥
∥
∥
∥
ρHABC − κB→BC (ρ

HABC
AB )

‖κB→BC (ρ
HABC
AB )‖1

∥
∥
∥
∥
∥
1

≤
∣
∣
∣
∣
∣
1 − 1

‖κB→BC (ρ
HABC
AB )‖1

∣
∣
∣
∣
∣
‖ρHABC ‖1

+
1

‖κB→BC (ρ
HABC
AB )‖1

∥
∥
∥ρHABC − κB→BC (ρ

HABC
AB )

∥
∥
∥
1

≤ C1(β)e−q1(β)l

1 − e−1 +
1

1 − e−1 C1(β)e−q1(β)l

≤ 2C1(β)

1 − e−1 e−q1(β)l .

In the third line, we used the fact
∣
∣
∣‖κB→BC (ρ

HABC
AB )‖1 − 1

∣
∣
∣ ≤ C1(β)e−q1(β)l ,

which follows from

1 − C1(β)e−q1(β)l ≤ ‖κB→BC (ρ
HABC
AB )‖1 ≤ 1 + C1(β)e−q1(β)l .

Thus, we conclude that Lemma 9 holds by choosing C2(β) = 2C1(β)

1−e−1 . ��
We are now in position to prove Theorem 1. Without loss of generality, let us assume

that d(A, C) = |B| = 3l2 − l for l ∈ N. We divide B into B = Bl B̄l−1Bl−1 . . . B̄1B1 as
shown in Fig. 3, where for each i , |Bi | = 2l and |B̄i | = l. From Lemma 9, there exists
a CP and trace non-increasing map �̃Bi →Bi B̄i−1...B1C for each i which approximately

recovers ρHABC from the reduced state on ABl . . . B̄i Bi (here, we choose Bi as “B” and
Bi−1 . . . B1C as “C” in the lemma).We then introduce aCPand trace non-increasingmap
ẼBi →Bi B̄i−1...B1C for each �̃Bi →Bi B̄i−1...B1C so that {�̃Bi →Bi B̄i−1...B1C , ẼBi →Bi B̄i−1...B1C }
forms a quantum instrument.8 We simply denote �̃Bi →Bi B̄i−1...B1C by �̃i and its com-

plementary map ẼBi →Bi B̄i−1...B1C by Ẽi . We also denote the tracing operation over

8 For instance, ẼB→BC can be chosen to be ẼB→BC (σB ) = √
1I − MBσB

√
1I − MB ⊗ |0〉〈0|C , where

MB := ∑
i K †

i Ki ≤ 1IB with {Ki } the Kraus operators of �̃B→BC .
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Apply Λ

Success

Obtain a state ≈

Fail Trace out 
& apply Λ

Success

Fail Trace out 
. . & 

apply Λ

Success

⋯
Fail Fail

⋯

⋯

Fig. 3. A schematic picture of the repeat-until-success method.We introduced buffer systems {B̄i } to suppress
the effect of failure. The “failure” output at the end corresponds to the CP-map Ẽl ◦ Trl−1 Ẽl−1 · · · ◦ Tr1 Ẽ1

B̄i Bi . . . B1C by Tri . We define a CPTP-map �B→BC as

�B→BC (σB)

= �̃1(σB) +
(
�̃2 + · · ·

(
�̃l−1 +

(
�̃l + Ẽl

)
Trl−1 Ẽl−1

)
· · ·Tr2 Ẽ2

)
Tr1 Ẽ1(σB)

(60)

based on the repeat-until-success method (Fig. 3).
When we input ρ

HABC
AB to �B→BC , the output of each map �̃i corresponds to the

success of the recovery process at the i th step (with probability pi ) and Ẽi corresponds
to the failure of the recovery process (with probability 1 − pi ). If it fails, we trace out
both the recovered system and the “buffer” system B̄i , and then, the effect of the failure
can be almost neglected. Thus, we can repeat the probabilistic process to obtain the
success outcome. The effect of the failure is estimated by the following lemma, which
utilizes the exponential decay of correlation of 1D Gibbs states [25].

Lemma 10. Under the setting of Lemma 7, there exists a constant ξ ≥ 0 such that

(1 − pi )

∥
∥
∥
∥
∥
∥
Tri

(
ρHABC

)
−

Tri Ẽi

(
ρ

HABC
ABl ...Bi

)

1 − pi

∥
∥
∥
∥
∥
∥
1

≤ e− l
ξ .

Proof. Define a correlation function Cor(X : Y )ρ of regions X and Y by

Cor(X : Y )ρ = max‖M‖,‖N‖≤1
|Tr [(M ⊗ N )(ρXY − ρX ⊗ ρY )]| .

Consider some CP and trace-decreasing map (1IX ⊗ EY→Z )(ρXY ) = ∑
i EiρXY E†

i . By
lemma 9 of Ref. [28], it holds that

Cor(X : Y )ρ ≥ Tr[MY ρXY ]‖ρX − σX‖1,
where MY = ∑

i E†
i Ei and

σX = 1

Tr[MY ρXY ]TrY [MY ρXY ] = TrY
(idX ⊗ EY→Z )(ρXY )

Tr(idX ⊗ EY→Z )(ρXY )
.
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It has been shown that any 1D Gibbs states with a short-range Hamiltonian have ex-
ponentially decaying Cor(X : Y )ρ [25], i.e., there exist constants c, ξ ≥ 0 such that

Cor(X : Y )ρ ≤ ce−d(X :Y )/ξ . (61)

Choosing X = ABl . . . Bi+1, Y = Bi , Z = Bi . . . B1C and EY→Z = Ẽi prove
Lemma 10. ��

Without loss of generality, let us assume

pi = Tr[�̃i (ρ
HABC
ABl ...Bi

)] = p > 0

for all i .9 Lemma 10 allows an iterative calculation. First we have
∥
∥
∥�B→BC (ρ

HABC
AB ) − �̃1(ρ

HABC
AB ) + (1 − p)�̃2(ρ

HABC
ABl ...B2

)

+(1 − p)
(
�̃3 +

(
· · ·

(
�̃l + Ẽl

)
Trl−1 Ẽl−1

)
· · ·

)
Tr2 Ẽ2(ρ

HABC
ABl ...B2

)

∥
∥
∥
1

≤ e−l/ξ .

Here, we used Lemma 10 for Tr1 Ẽ1(ρ
HABC
AB ) and ρ

HABC
ABl ...B2

. Then we can obtain

∥
∥
∥�B→BC (ρ

HABC
AB ) − �̃1(ρ

HABC
AB ) + (1 − p)�̃2(ρ

HABC
ABl ...B2

)

+(1 − p)2�̃3(ρ
HABC
ABl ...B3

) + (1 − p)2
(
�̃4 + · · ·Tr4 Ẽ4

)
Tr3 Ẽ3(ρ

HABC
ABl ...B3

)

∥
∥
∥
1

≤ 2e−l/ξ .

We can proceed in a similar way, where at each i th step, we replace Tri Ẽi (ρ
HABC
AB ) by

Tri (ρHABC ) by using the triangle inequality. After iterating l − 1 steps, we obtain
∥
∥
∥
∥
∥
�B→BC (ρ

HABC
AB ) −

l∑

i=1

(1 − p)i−1�̃i (ρ
HABC
AB ) + (1 − p)l−1 Ẽl(ρ

HABC
ABl

)

∥
∥
∥
∥
∥
1

≤ (l − 1)e−l/ξ . (62)

Since
(∑l

i=1 p(1 − p)i−1
)
+ (1 − p)l = 1, it follows

ρHABC =
l∑

i=1

p(1 − p)i−1ρHABC + (1 − p)lρHABC

and thus
∥
∥
∥
∥
∥
ρHABC −

l∑

i=1

(1 − p)i−1�̃i (ρ
HABC
AB ) + (1 − p)l−1 Ẽl(ρ

HABC
ABl

)

∥
∥
∥
∥
∥
1

≤
l∑

i=1

p(1 − p)i−1
∥
∥
∥
∥ρ

HABC − 1

p
�̃i (ρ

HABC
ABl ...Bi

)

∥
∥
∥
∥
1

9 Otherwise, we just pick the smallest p among pi , i = 1, . . . , l and redefine �̃i to be
p
pi

�̃i and Ẽi to be

Ẽi + (1 − p
pi

)�̃i .
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+ (1 − p)l
∥
∥
∥
∥ρ

HABC − 1

1 − p
Ẽl(ρ

HABC
ABl

)

∥
∥
∥
∥
1

≤ {1 − (1 − p)l}C2(β)e−q1(β)l + 2(1 − p)l . (63)

Therefore, by combining Eqs. (62) and (63), we conclude

‖ρHABC − �B→BC (ρ
HABC
AB )‖1 ≤ {1 − (1 − p)l}C2(β)e−q1(β)l

+ 2e−| ln(1−p)|l + (l − 1)e−l/ξ

≤ C2(β)e−q1(β)l + 2e−| ln(1−p)|l + le−l/ξ . (64)

Here, the probability p can be bounded as in Eq. (59), and thus we have

| ln(1 − p)| ≥

∣
∣
∣
∣
∣
∣
∣

ln

⎛

⎜
⎝1 − (1 − e−1)e−2β J

(
1 + e− β J

2 K (β)
)4

⎞

⎟
⎠

∣
∣
∣
∣
∣
∣
∣

≥ (1 − e−1)e−2β J

(
1 + e− β J

2 K (β)
)4 = e−�(β),

where the last inequality follows from log(1− x) ≤ −x for any x ∈ [0, 1]. If ξ = eO(β),
Eq. (64) can be bounded by

2C2(β)le−q ′(β)l = e−q ′(β)l+ln(2C2(β)l), (65)

where q ′(β) = �(e−�(β)). Since d(A, C) = 3l2 − l, Eq. (65) is �(e−�(
√

d(A,C))).
Therefore, for sufficiently large l, there exists a constant q(β) = �(e−�(β)) such that
e−q ′(β)l+ln(2C2(β)l) ≤ e−q(β)

√
d(A,C).

4.3. Proof of Corollary 5.

Proof. Let us first consider a 1D open spin chain with a tripartition ABC so that a simply
connected region B shields A from C . Then, d(A, C) = |B|. Without loss of generality,
we assume |A| ≤ |B| ≤ |C |. Divide C into C = C1 ∪ C2 ∪ . . . ∪ Cm , where m is the
maximum number such that |Ci | = |B| for 1 ≤ i < m and each Ci shields Ci−1 from
Ci+1 (here, C0 ≡ B).

Theorem 4 and the Fannes inequality imply

I (A : Ci |BC1 . . . Ci−1)ρHABC = S(A|BC1 . . . Ci−1)ρHABC − S(A|BC1 . . . Ci )ρHABC

≤ S(A|BC1 . . . Ci )
�B...Ci−1→BC (ρ

HABC
AB...Ci−1

)

− S(A|BC1 . . . Ci )ρHABC

≤ 6|B|e− q(β)
2

√
i |B|

with a constant q(β) ≥ 0 for any i ∈ [1, m] and sufficiently large |B|. By the chain rule
I (A : C |B) = I (A : C1|B) + I (A : C2|BC1) + · · · + I (A : Cm |BC1 . . . Cm−1),

we have

I (A : C |B)ρHABC ≤ 6
m∑

i=1

|B|e− q(β)
2

√
i |B|



Quantum Approximate Markov Chains are Thermal 145

≤ 6

(

|B|e− q(β)
2

√|B| + |B|
m−1∑

i=1

e− q(β)
2

√
(i+1)|B|

)

≤ 6

(

|B|e− q(β)
2

√|B| +
∫ ∞

1
e− q(β)

2
√

x |B|dx

)

= 6

(

|B| + 8(1 + q(β)
2

√|B|)
q(β)2

)

e− q(β)
2

√|B|.

Again, the upper bound is e−�(
√

d(A,C)). The same strategyworks for amore complicated
tripartition ABC of both 1D open chains and closed chains. ��

4.4. Proof of Corollary 6.

Proof. Let us consider 1D open spin chain without loss of generality. We first divide
the whole chain into consecutive regions A1B1C1A2B2C2. . .Ak BkCk , where we choose
|Ai | = |B j | = l ≥ l0 and |Ci | = 5ξ(ln d)l for all i , where l0 is the constant given in
Theorem 4, the correlation length ξ is given in Eq. (61) and d is a constant bounding
the dimension of the Hilbert space of one spin from above. Let us consider region
(A1B1C1 . . . Ci−1Ai Bi+1)(Bi Ai+1)Ci , where Bi Ai+1 shields A1B1 . . . Bi+1 from Ci .
From Theorem 4, there exists a CPTP-map δi : D(HBi Ai+1) → D(HBi Ci Ai+1) such that

∥
∥
∥�i

(
ρH

A1B1...Ai Bi Ai+1Bi+1Ci+1

)
− ρH

A1B1...Ai Bi Ci Ai+1Bi+1Ci+1

∥
∥
∥
1

≤ Ce−q(β)
√

l . (66)

Since the Gibbs state has exponentially decaying correlations, after tracing out Ci ,
the two remained connected components are almost uncorrelated. By using Lemma 20
of Ref. [28], it follows that

∥
∥ρA1B1C1...Bi−1 Ai Bi − ρA1B1C1...Bi−1 ⊗ ρAi Bi

∥
∥
1

≤ (
dimHAi Bi

)2
Cor(A1B1C1 . . . Bi−1 : Ai Bi )ρH

≤ d4l e−5ξ(ln d)l/ξ

= e−(ln d)l . (67)

Each �i acts on different sets of spins and therefore does not overlap. Then we have
∥
∥�1 ⊗ · · · ⊗ �k(ρA1B1 ⊗ · · · ⊗ ρAk Bk ) − ρA1B1C1···Ak BkCk

∥
∥
1

≤ ∥
∥�1 ⊗ · · · ⊗ �k(ρA1B1 ⊗ · · · ⊗ ρAk Bk ) − �2

⊗ · · · ⊗ �k(ρA1B1C1 A2B2 ⊗ ρA3B3 ⊗ · · · ⊗ ρAk Bk )
∥
∥
1

+
∥
∥�2 ⊗ · · · ⊗ �k(ρA1B1C1 A2B2 ⊗ ρA3B3 ⊗ · · · ⊗ ρAk Bk ) − ρA1B1C1...Ak BkCk

∥
∥
1

≤ ∥
∥�1(ρA1B1 ⊗ ρA2B2) − ρA1B1C1 A2B2

∥
∥
1

+
∥
∥�2 ⊗ · · · ⊗ �k(ρA1B1C1 A2B2 ⊗ ρA3B3 ⊗ · · · ⊗ ρAk Bk ) − ρA1B1C1···Ak BkCk

∥
∥
1

≤ ‖�1(ρA1B1 A2B2) − ρA1B1C1 A2B2‖1 + e−(ln d)l

+ ‖�2 ⊗ · · · ⊗ �k(ρA1B1C1 A2B2 ⊗ ρA3B3 ⊗ · · · ⊗ ρAk Bk ) − ρA1B1C1···Ak BkCk ‖1
≤ 2e−q(β)

√
l + ‖�2 ⊗ · · · ⊗ �k(ρA1B1C1 A2B2 ⊗ · · · ⊗ ρAk Bk ) − ρA1B1C1···Ak BkCk ‖1.
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Fig. 4. An example of the region with a partition ABC for a tree graph. Here, B is the set of all spins in
outside of the circles. In the coarse-grain procedure, the descendants of i (the spins in the dashed region) can
be regarded as one large system

Thefirst inequality follows from the triangle inequality, the second from themonotonicity
of the trace norm under quantum operations, the third from Eq. (67), and the fourth from
Eq. (66) and e−(ln d)l ≤ e−q(β)

√
l for large l.

Iterating the argument above, we find

∥
∥�1 ⊗ · · · ⊗ �k(ρA1B1 ⊗ · · · ⊗ ρAk Bk ) − ρA1B1C1...Ak BkCk

∥
∥
1 ≤ 2ke−q(β)

√
l .

Since k ≤ n, choosing l = O(log2(n/ε)) gives an error bounded by ε. We denote
a CPTP-map which construct ρAi Bi by �1,i and relabel �i in the above by �2,i . The
CPTP-map

⊗
i �1,i creates product state of the form of ρA1B1 ⊗ ρA2B2 ⊗ · · · ⊗ ρAk Bk ,

and then
⊗

i �2,i approximately creates the target state from this product state. ��

5. Extension to More General Graphs and a Conjecture for Higher Dimension

Our proof for 1D spin chains can be generalized to more general graphs with appropriate
partitions. For instance, let us consider a tree graph G = (E, V ) with a partition ABC
as depicted in Fig. 4. Since G is a tree, there is a unique path connecting A and C . Then,
all spins in B are classified as (i) spins belonging to the path (ii) descendants of spins
on the path (iii) the rest spins which are separated from the path. We can obtain a coarse
grained 1D chain by regarding each spin on the path and its descendants as one system,
and removing all spins in (iii). Therefore, we can apply the proof in the previous section
to this situation as well. Note that the norm of an interaction term connecting spins on
the path is irrelevant to the size of the coarse grained spins.

An important point of the above argument is that the success probability of the
recovery map in lemma 9 is bounded by a constant of d(A, C). In general cases, we can
consider a partition ABC which cannot be reduced to 1D systems, such as depicted in
Fig. 5. Remember that the success probability p is in the order�(eβ‖HB M ‖). In the case of
Fig. 5, HB M is the sumof all interactions along the perimeter of BL , which is proportional
to l. When considering the repeat-until-success method, the success probability decays
too rapidly, and therefore our strategy does not work.

The quantum Hammersley–Clifford theorem holds for more general class of Markov
networks such as regular D-dimensional lattices. In this case, a partition ABC of the
system is chosen so that B shields A from C (Fig. 5). Due to this observation, we expect
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Fig. 5. An example of a 2D lattice with a partition ABC . We expect that the conditional mutual information
I (A : C |B)ρ for any Gibbs state decays fast with respect to d(A, C)

that Gibbs states of short-ranged Hamiltonians obey fast decay of the conditional mutual
information in D-dimensional systems as well. We have the following conjecture:

Conjecture 1. Let ρ be a Gibbs state of a short-ranged Hamiltonian defined on a D-
dimensional spin lattice. Then, there exist constants C, c > 0 such that for every three
regions A, B, C with B shielding A from C,

I (A : C |B)ρ ≤ Ce−cd(A,C).

Note that when D = 1, this conjecture gives an improved bound. It turns out that the
area law for mutual information implies a weak version of the conjecture, as discussed
in Sect. 2.3. Consider a Gibbs state in the infinite volume limit (as a KMS state). Let A
be a region of the lattice and Bl be a ring around A of width l. Then, because of the area
law [14], for every ε > 0 there is an integer l s.t.

I (A : Bl+1) − I (A : Bl) ≤ ε,

which can be written as

I (A : C |Bl) ≤ ε,

with C := Bl+1\Bl .
We can also ask whether Theorem 1 can be extended to higher dimensions, i.e. is

any state on a D-dim lattice with small I (A : C |B) for B shielding A from C close
to thermal? As displayed in Theorem 2, we may need additional conditions for general
graphs. Although we do not know any counter-example, we also could not find any
partial result whether the additional conditions in those theorems are necessary.
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Appendix A: Another approach to prove Theorem 4

In Sect. 4, we employ a perturbative method to obtain a local operator O determined by
the Hamiltonian and a local operator V such that

e−β(H+V ) ≈ Oe−βH O†.

The existence of such operator plays a central role in the proof of Theorem 4. In this
appendix, we introduce another approach to obtain similar operators, which is based
on the previous work by Araki [25]. The main difference between these approaches
is the origins of locality of the operator O . In the perturbative approach, the locality
is originated in Lieb-Robinson bounds, which restrict real time evolutions of operators.
Instead, inAraki’s approach, locality of O is originated in a restriction on imaginary-time
evolutions of V .

Let us consider a 1D spin chain � = [−n, n], a short-range Hamiltonian H on �,
and a local operator V . We denote the maximum strength of H by J . A simple algebra
show the following relation holds.

e−β(H+V ) = e− β
2 (H+V )e

β
2 H e−βH e

β
2 H e− β

2 (H+V )

≡ Er (V ; H)e−βH Er (V ; H)†,

where we denote e− β
2 (H+V )e

β
2 H by Er (V ; H). By denoting V (β) = e−βH V eβH ,

Er (V ; H) has another form written as [25]

Er (V ; H) =
∞∑

n=0

(−1)n
∫ β

2

0
dβ1

∫ β1

0
dβ2 · · ·

∫ βn−1

0
dβn V (βn) · · · V (β1).

Actually, Er (V ; H) can be approximated by a local operator.

Lemma 11. [25] The following statements hold for any region X ⊂ [−n, n] and any
bounded operator V with supp(V ) = [a, b] ⊂ [−n, n].
(i) There exists a constant C ≥ 0 depending on β, J and ‖V ‖such that

‖Er (V ; HX )‖ ≤ C

(ii) There exist constants C, q ≥ 0 depending on β, J and ‖V ‖ such that

∥
∥Er (V ; HX ) − Er (V ; HX∩[a−l,b+l])

∥
∥ ≤ C

q1+� l
2 �

(1 + � l
2�)!

.

Since log x ! ≈ x log x − x , the denominator grows faster than the numerator with re-
spect to l, and thus, the accuracy of the above approximation is exponentially good
with respect to l. Note that similar properties hold for the inverse of Er (V ; HX ),

El(V ; HX ) ≡ e− β
2 HX e

β
2 (HX+V ). Therefore, by choosing V = HB M , Er (V ; H) and

its local approximation play the same role as OABC and OB in Sect. 4.2.
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