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Abstract: We consider a family of growth models defined using conformal maps in
which the local growth rate is determined by |�′

n|−η, where �n is the aggregate map for
n particles. We establish a scaling limit result in which strong feedback in the growth
rule leads to one-dimensional limits in the form of straight slits. More precisely, we
exhibit a phase transition in the ancestral structure of the growing clusters: for η > 1,
aggregating particles attach to their immediate predecessors with high probability, while
for η < 1 almost surely this does not happen.
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1. Introduction

1.1. Conformal aggregation processes. Laplacian growth models describe processes
where the local growth rate of a piece of the boundary of a growing compact cluster is
determined by the Green’s function of the exterior of the cluster. Such growth processes
can be used tomodel a range of physical phenomena, including ones involving aggregates
of diffusing particles. Discrete versions can be formulated on a lattice in all dimensions:
some famous examples of this type of growth process include diffusion-limited aggre-
gation (DLA) [28], the Eden model [4], or the more general dielectric breakdown model
(DBM) [22]. Despite considerable numerical evidence suggesting that the clusters that
arise in these processes exhibit fractal features, very few rigorous results are known (for
DLA, see [14]) and it remains a formidable challenge to rigorously analyze long-term
behavior such as sharp growth rates of the clusters.

One objection that can be leveled at lattice-based models is that the underlying dis-
crete spatial structure could potentially introduce anisotropies in the growing clusters
that are not present in the physical setting of the plane or three-dimensional space.
Indeed, large-scale simulations in two dimensions demonstrate anisotropy along the
coordinate axes [6]. This fact provides one motivation for the study of off-lattice ver-
sions of aggregation processes. In the plane, such off-lattice models can be formulated in
terms of iterated conformal mappings, providing access to complex analytic machinery.
Clusters produced by these conformal growth processes are initially isotropic by con-
struction, but simulations suggest that in many instances, anisotropic structures appear
on timescales where the number of aggregated particles becomes large compared to the
size of the individual constituent particles. Nevertheless, proving the existence of such
small-particle limits, whether anisotropic or not, has proved elusive, similarly to the case
of lattice-based models.

A fascinating feature of Laplacian growth models is competition between concen-
tration and dispersion of particle arrivals on the cluster boundary. Protruding structures
(“branches”) and their endpoints (“tips”) tend to attract relatively many arrivals, but they
compete with each other as well as the remainder of the boundary. (Kesten’s discrete
Beurling estimate gives an upper bound on the tip concentration in the case of DLA.)
The degree to which tips are favored is determined by the exact choice of growth rule,
and several models contain one or more parameters that affect concentration, dispersion,
and competition [2,8,16,22].

Previous and recent work on small-particle limits of conformal aggregation mod-
els [13,23,24,27] has yielded growing disks, that is, smooth and isotropic shapes; the
dispersion effect “wins” in the limit. In this paper, we study a particular instance of a con-
formal growth model, focusing instead on the concentration aspect of Laplacian growth
and showing that anisotropic scaling limits arise in the presence of strong feedback in
the growth rule. The scaling limits we exhibit are highly degenerate in the sense that
growth, which is initially spread out, favors tips very strongly, and eventually collapses
onto a single growing slit.

To state our results, we first describe the general class of processes our object of study
fits into. Let c > 0, and let fc denote the unique conformal map

fc : � = {z ∈ C : |z| > 1} ∪ {∞} → D1 = �\(1, 1 + d]
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having fc(z) = ecz+O(1) at infinity, and sending the exterior disk� to the complement
of the closed unit disk with a slit of length d = d(c) attached to the unit circle T at the
point 1. The logarithmic capacity c and the length d of the slit satisfy

ec = 1 +
d2

4(1 + d)
; (1)

in particular, d � c1/2 as c → 0. In terms of aggregation, the closed unit disk can be
viewed as a seed, while the slit represents an attached particle. Typically, we think of
the particle as being small compared to the seed.

A general two-parameter framework to model random or deterministic aggregation,
based on conformalmaps, is given by the following construction. Pick a sequence {θk }∞k=1
in [−π, π), and let {dk}∞k=1, or, equivalently, {ck}∞k=1, be a sequence of non-negative
numbers connected via (1). From the two numerical sequences {θk} and {ck}, we obtain
a sequence { fk}∞k=1 of rotated and rescaled conformal maps, referred to as building
blocks, via

fk(z) = eiθk fck (e
−iθk z).

On its own, each individual fk grows a slit in the exterior disk, attached at eiθk and
having logarithmic capacity ck . Finally, we set

�n(z) = f1 ◦ · · · ◦ fn(z), n = 1, 2, . . . . (2)

Each �n is itself a conformal map sending the exterior disk onto the complement of a
compact set Kn ⊂ C, that is,

�n : � → C\Kn .

The sets {Kn}∞n=1 are called clusters. They satisfy Kn−1 ⊂ Kn , and model a growing
two-dimensional aggregate formed of n particles. At infinity, we have

�n(z) = eCn z +O(1),

where

cap(Kn) = eCn = e
∑n

k=1 ck (3)

is the total capacity of the nth cluster.
When modeling random aggregates formed via diffusion, one chooses the angles

{θk} to be i.i.d., and uniform in [−π, π). Due to the conformal invariance of harmonic
measure, this has the effect of attaching the nth particle at a point chosen according to
harmonic measure (seen from infinity) on the boundary of Kn−1. This type of setup has
been considered in a number of papers, see for instance [1,8,10,12,13,17,19,23,26,27];
we shall only briefly mention models that are particularly pertinent to our study.
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1.2. Aggregate Loewner evolution (ALE). The main object of study in the present paper
is a model we refer to as aggregate Loewner evolution, abbreviated ALE(α, η), with
parameters α ∈ R and η ∈ R. In ALE(α, η), conformal maps �n are defined as in (2)
as follows.

Initialize by setting �0(z) = z and letting F0 be the trivial σ -algebra.

• For k = 1, 2, 3, . . .,we let θk havedistribution conditional onFk−1 = F(θ1, . . . θk−1;
c1, . . . , ck−1) given by

hk(θ) = |�′
k−1(e

σ+iθ )|−ηdθ
∫
T

|�′
k−1(e

σ+iθ )|−ηdθ
. (4)

Here, σ > 0 is a regularization parameter, which ensures that the angle distributions
are well defined even though�′

k−1(e
iθ ) has zeros and singularities on T. The param-

eter σ is allowed to depend on the basic logarithmic capacity parameter c. Typically,
we shall take

σ = σ (c) = cγ

for some appropriate γ > 0.
• Next, we define a sequence of logarithmic capacities for k = 1, 2, 3, . . . by taking

ck = c|�′
k−1(e

σ+iθk )|−α. (5)

We note that ALE(α, 0) is the samemodel as theHastings–LevitovHL(α)model studied
in [3,8,13,26], and in particular ALE(0, 0) coincides with the HL(0) model studied in
depth in [23,27]. The Hastings–Levitov model was introduced as a conformal mapping
model of dielectric breakdown (DBM) [22], a discrete model in which vertices are
added to a growing cluster by drawing bonds from among the neighboring lattice points.
At stage n of DBM(η), a point is added to the cluster Kn by including a neighbor of
( j, k) ∈ Kn with probability

pn
(
( j, k) → ( j ′, k′)

) = φn( j ′, k′)η
∑

(l,m) φn(l,m)η
.

Here, summation is over lattice neighbors of Kn and the functionφn is discrete harmonic,
and has φn = 0 on Kn and φn = 1 on some large external circle.

Off-lattice versions of DBM involving non-uniform angle choices determined by the
derivative of a conformal map have been considered by several authors. Hastings [7],
and subsequently Mathiesen and Jensen [19], study a model that essentially corresponds
to ALE(2, η) modulo a slightly different parametrization in η. (In fact, an alternative
name for the growth model in this paper could have been DBM(α, η) or HL(α, η), but
we have opted for a different terminology to avoid confusion with lattice models, and
also to emphasize connections with the Loewner equation, see below.) Hastings argues
that for large enough exponents, more precisely, for η � 3 in our parametrization, the
corresponding clusters become one-dimensional; he also points out that the behavior of
the models depends strongly on the choice of regularization.

Another model that fits into this general framework is the Quantum Loewner Evolu-
tion model (QLE(γ, η)) of Miller and Sheffield [20,21] which is proposed as a scaling
limit of DBM(η) on a γ -Liouville quantum gravity surface. In the QLE construction,
particles are attached according to a distribution which depends on the power of the
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derivative of the cluster map, as in (4), but with an additional term involving the Gaus-
sian Free Field due to the presence of Liouville quantum gravity. In the construction of
QLE, capacity increments are kept constant, as for ALE(0, η). However, each particle
in QLE is constructed as an SLE curve, rather than the straight slits used in ALE.

Common to all conformal mapping models of Laplacian growth is the difficulty that
derivatives of conformal mappings do not remain bounded away from 0 or ∞ as they
approach the boundary and therefore the map θ 
→ |�′

n(e
iθ )|−1 can be very badly

behaved. For instance, even when n = 1, |�′
n(e

iθ )|−η is not integrable overT for certain
values of η and hence the ALE(α, η) model would not be well defined if we were to use
|�′

n(e
iθ )|−η as angle density. As mentioned above, for this reason we define the model

via the regularization parameter σ as in (4), and then let σ → 0 together with the (pre-
image) particle size, controlled by the parameter c. A similar difficulty arises from the
dependence of the particle sizes on the derivatives of the conformal mappings. Although
in this case the model is well-defined without the need for a regularization parameter in
(5), it is no longer possible to guarantee that the resulting clusters have total capacity
bounded above and below. Indeed, even with the presence of a regularization parameter,
it is not clear that the total capacity remains bounded as σ → 0. The exception is the
ALE(0, η) model: in light of (3), taking n � c−1 is a natural choice of time-scaling in
ALE(0, η) as with this choice the resulting clusters have total capacity bounded above
and below. This in turn means that the total diameter of the clusters Kn remains bounded
as a consequence of Koebe’s 1/4-theorem, see [25]. The fact that we have some a
priori control over the global size of clusters is our main motivation for moving from
studying HL(α) with α large to ALE(0, η) with η large. Simulations suggest that one-
dimensional limits are present also in HL(α) for large α but showing that this is the case
seems technically more difficult.

In this paper, we mainly focus on ALE(0, η) for η > 1, and show that the conformal
maps �n converge to a randomly oriented single-slit map in the regime where n � c−1.
This can be viewed as a rigorous version of Hastings’ investigation [7] of ALE(2, η) for
the ALE(0, η) model. To obtain our convergence results, we exploit what is in a way the
most extreme mechanism that could lead to a single-slit limit, namely that of aggregated
particles becoming attached to their immediate predecessors. The main difficulties in
the proof are that the angle densities induced by slit maps exhibit bad behavior even
in the presence of regularization and have maxima and minima of different orders in
the regularization parameter σ , making it hard to show convergence to a point mass.
Furthermore, the feedback mechanism in (4) is sensitive so that a single “bad” angle can
destroy the genealogical structure of the growing slit by leading to the creation of a new,
competing tip further down the slit, which could lead to a splitting of growth into two
branches.

2. Overview of Results

Clusters that are formed by successively composing slit maps comewith a natural notion
of ancestry for their constituent particles.We say that a particle j has parent 0 if it attaches
directly to the unit disk and that the particle j has parent k if the j th particle is directly
attached to the kth particle for j > k. More precisely, suppose that βc ∈ (0, π) is defined
by

f −1
c ((1, 1 + d(c)]) = {eiθ : |θ | < βc}
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so e±iβc is mapped by the basic slit map to the base point of the slit i.e. fc(e±iβc) = 1.
Therefore particle j has parent 0 if |� j (ei(θ j±βc))| = 1 and particle j has parent k � 1
if

e−iθk�k, j (e
i(θ j±βc)) ∈ (1, 1 + d(c)],

where �k, j (z) = fk ◦ fk+1 ◦ · · · ◦ f j (z).
In the ALE(0, η) model, each successive particle chooses its attachment point on

the cluster according to the relative density of harmonic measure (as seen from infinity)
raised to the power η. As the highest concentration of harmonic measure occurs at the
tips of slits, intuitively one would expect that for sufficiently large values of η each
particle is likely to attach near the tip of the previous particle. In this paper we show that
this indeed happens, and we identify the values of η for which the above event occurs
with high probability in the small-particle limit, that is, we show that the probability
tends to 1 as c → 0. Figure 1 displays ALE(0, η) clusters for different values of η.

The limiting behavior of the model is quite sensitive to the rate at which σ → 0
as c → 0. Figure 2 shows how the angle sequences {θk} in ALE(0, 4) are affected
by the choice of exponent γ when regularizing by σ = cγ . This phenomenon is also
observed by Hastings in [7] for a related model. In [13], which deals with slow-decaying
σ scaling limits in a strongly regularized version of HL(α), it is shown that the scaling
limits of the clusters are disks for all values of α � 0, provided σ � (log c−1)−1/2.
By using similar techniques, combined with those developed in the paper [24], it is
possible to prove that the corresponding scaling limits in ALE(0, η) are again disks for
all η ∈ R, provided σ � (log c−1)−1. (In [24], which focusses on the case η � 1, the
stronger result is obtained that ALE(0, η) clusters converge to disks for all σ � cγ

where γ = 1/3 if η < 1 or 1/5 if η = 1, and a phase-transition is observed at η = 1
at the level of fluctuations). Together with the result in Theorem 1 stated below, this
shows the existence of a transition in the macroscopic shape of the ALE(0, η) clusters
when η > 1, from slits to disks as the regularization parameter σ increases. Simulations
suggest that there might be an intermediate regime where a suitable spatial rescaling,
as in Fig. 2c, reveals stochastic features in the angle sequence {θn}. As we seek results
in this paper which do not strongly depend on the choice of regularisation parameter,
part of our objective is to identify the minimal value of η for which there exists some σ0
(dependent on c and η) such that, provided σ < σ0, with high probability each particle
lands on the tip of the previous particle.

The following is the main result of the paper and shows that the ALE(0, η) model
exhibits a phase transition at η = 1 in the genealogy of the growing cluster in the small-
particle limit. See Theorem 9 for a complete statement and proof; in particular we give
sufficient conditions on γ .

Theorem 1 (ALE(0, η) model). For ALE(0, η) with logarithmic capacity parameter c
and regularization parameter σ , let �N = �

η,c,σ
N be the event defined by

�N = {Particle j has parent j − 1 for all j = 1, . . . , N }.

For each η > 1, there exists some γ = γ (η) such that if σ0 = cγ and if N = n(T ) :=
�T c−1 for some fixed T > 0, then

lim
c→0

inf
0<σ<σ0

P(�N ) = 1,
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Fig. 1. ALE(0, η) clusters with c = 10−4, σ = c2, and n = 10,000
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Fig. 2. ALE(0, 4) angle sequences with c = 10−4 and n = 5000, with varying regularization σ (note that
images c, d are on a different spatial scale to a, b but the same spatial scale as each other)

whereas if η < 1, then for any N > 1,

lim
c→0

sup
σ>0

P(�N ) = 0.

In the case when η > 1 and σ < σ0, it follows that, for any r > 1 and T < ∞,

sup
t�T

sup
{|z|>r}

|�n(t)(z) − eiθ1 ft (e
−iθ1 z)| → 0 in probability as c → 0,

and the cluster Kn(t) converges in theHausdorff topology to a diskwith slit of logarithmic
capacity t attached at position z = eiθ1 .

2.1. A related Markovian model. Observe that, for each k, we are free to specify the
interval of length 2π inwhich to sample θk , and this choice does not have any effect on the
maps �n . It is convenient to choose to sample θk from the interval [θk−1 −π, θk−1 +π).
In this case, we can express the event as

�N =
{

sup
2� j�N

|θ j − θ j−1| < βc

}

.

(Recall that, by definition, βc ∈ (0, π) and e±iβc is mapped by the basic slit map to the
base point of the slit i.e. fc(e±iβc) = 1.) One of the main difficulties in analysing this
event is that the distribution of θk conditional on Fk−1 [as defined in (4)], depends non-
trivially on the entire sequence θ1, . . . , θk−1. In this subsection,we introduce an auxiliary
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model for random growth in the exterior unit disk in which the sequence of attachment
angles is Markovian. The Markov model is relatively straightforward to analyze and
exhibits an analogous phase transition to that described above. The remainder of the
paper is concerned with examining how ALE(0, η) and the Markov model relate to each
other.

Set �∗
0(z) = z and let {�∗

n} be conformal maps obtained through composing

�∗
n = f ∗

1 ◦ · · · ◦ f ∗
n ,

where each f ∗
k is a building block with ck = c, and rotation angle θ∗

k having conditional
distribution with density

h∗
k(θ |θ∗

k−1) = 1

Z∗
k−1

| f ′
c(k−1)(e

σ+i(θ−θ∗
k−1))|−η, k = 1, 2, 3, . . . . (6)

Here, we have set

Z∗
k =

∫

T

| f ′
ck(e

σ+iθ )|−ηdθ

and suppressed the dependence on c, σ and η to ease notation.
In order for the measure above to be well-defined when η � 1, we require σ > 0.

In words, the density of the kth angle distribution in this model is obtained by replacing
the complicated (k − 1)th cluster map of ALE by a simple slit map “centered” at θ∗

k−1,
and with deterministic logarithmic capacity c(k − 1).

For this model we obtain the following theorem: we again set n(t) = �t/c, let K ∗
n(t)

denote the cluster associated with �∗
n(t), and define the event

�∗
N = {Particle j in the ∗ -model has parent j − 1 for all j = 1, . . . , N }.

Theorem 2 (Markov model). Set σ0 = cγ ∗
where

γ ∗ >
η + 1

2(η − 1)
.

Then

lim
c→0

inf
0<σ<σ0

P(�∗
N ) = 1 if η > 1

lim
c→0

sup
σ>0

P(�∗
N ) = 0 if η < 1.

Furthermore, when η > 1 and σ < σ0, for any r > 1 and T < ∞,

sup
t�T

sup
{|z|>r}

|�∗
n(t)(z) − eiθ

∗
1 ft (e

−iθ∗
1 z)| → 0 in probability as c → 0,

and the cluster K ∗
n(t) converges in theHausdorff topology to a diskwith slit of logarithmic

capacity t attached at position z = eiθ
∗
1 .

Remark. It can also be shown that limc→0 inf0<σ<σ0 P(�∗
N ) = 1 when η = 1, provided

σ0 → 0 exponentially fast as c → 0, but we omit the details here.

We give the relatively straight-forward proof of Theorem 2 in Sect. 5.1. Because
of the Markovian nature of the auxiliary model, all that is needed are estimates on the
derivative of the explicit slit map to control the densities (6), together with standard
martingale arguments.
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Fig. 3. Diagram illustrating the presence of zeros and singularities in the derivative at each successive particle
tip and base in �n(z) (left). These zeros and singularities are absent in fnc(z) except at the tip of the final
particle and base of the first particle (right)

2.2. Overview of the proof of Theorem 1 and organization of the paper. The main idea
for the proof of Theorem 1 is to show that theMarkovianmodel of the previous section is
a good approximation of the ALE(0, η) process. In order to do this one approach would
be to try to argue that |�′

n(e
σ+iθ )| can be globally well approximated by |( f θn

nc )′(eσ+iθ )|,
where we use the notation

f θ
c (z) = eiθ fc(e

−iθ z)

for the rotated slitmaps.However, this seemsdifficult tomakework to sufficient precision
when evaluating the maps close to the boundary. Specifically, the map �′

n(z) has zeros
(respectively singularities) at each of the points on the boundary of the unit disk which
are mapped to the tip (respectively to the base) of one of the slits corresponding to
an individual particle. In contrast, for the map ( f θn

nc )′(z), the points corresponding to
tips and bases of successive particles coincide and therefore the singularities and zeros
corresponding to intermediate particles cancel each other out, leaving only a zero at the
point mapped to the tip of the last particle and singularities at the two points which are
mapped the base of the first particle (see Fig. 3).

Interactions between nearby tips can be subtle and are in general hard to analyze [2].
Our strategy is instead to establish two properties of the distribution function hn(θ).

• The first is to show that near the tip of the last particle to arrive the derivatives of
�n and f θn

nc are in fact very close and so for very small values of θ − θn , hn+1(θ) can
be well approximated by h∗

n+1(θ |θn).
• The second property is to show that hn+1(θ) concentrates the measure so close to θn
that even though the probability of attaching to earlier particles is higher than for the
Markovian model, �N still occurs with high probability, provided we now require

γ >

⎧
⎪⎨

⎪⎩

(η2 + 2η − 1)/[2(η − 1)2] if 1 < η < 3;
(2η + 1)/[2(η − 1)] if 3 � η < 7;
5/4 if η � 7

when regularizing by σ < σ0 = cγ ; see Fig. 4 for plots of the lower bounds on γ

and γ ∗.
We now give a brief overview of the structure of the paper. In Sect. 3 we provide

some background information on the Loewner differential equation, which allows us to
represent the aggregatemaps�n as solutions corresponding to a [−π, π)-valued driving
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Fig. 4. Lower bounds on regularization exponents for ALE (solid) and the Markov model (dashed)

process with equally spaced jump times and positions given by the random angles (4).
In particular, we explain how convergence of an angle sequence {θk} allows us to deduce
convergence of the corresponding conformal maps �n .

In Sect. 4 we obtain estimates on the derivative of the slit map used to construct the
Markovian model. These estimates lead to moment bounds for [−π, π)-valued random
variables constructed from slit map derivatives. The arguments used are elementary in
nature, and heavily use the explicit form of the slit map.

In Sect. 5, we first apply our slit map estimates to give a straight-forward proof of
Theorem 2. Then we state the detailed estimates on Loewner derivatives at the tip and
away from the approximate slit needed to show that hn(θ), the density function for the
nth angle θn , has the required behaviour (deferring the proofs until the next Section).
Similar arguments to those in the proof of Theorem 2 are used to establish Theorem 1,
but since {θk} does not have aMarkovian structure, there are further terms to control. We
also discuss some extensions of our results, valid for certain instances of the ALE(α, η)

model as well as related models.
Finally, Sect. 6 contains most of the technical machinery needed for the proof of

Theorem 1. In this section, we obtain estimates on the distance between two solutions to
the Loewner equation in terms of the distance between their respective driving functions,
in the case where we know what one of the solutions is (in our application it is a slit
map). These estimates, which we believe may be of independent interest, enable us to
obtain much more precise estimates than exist for generic solutions. In particular, our
estimates give very good approximations when the conformal mappings are quite close
to the boundary, whereas generic estimates blow up in this region. We perform this
analysis by using the reverse-time Loewner flow (12) to write the distance between the
two solutions as the solution to an ordinary differential equation which we are able to
linearize.

Notation Many of the estimates presented in this paper, especially in Sect. 6, are more
precise than what is strictly needed for the proof of our main theorem, in that we fre-
quently keep track of the dependence of constants on parameters, and similar. We have
opted to record detailed versions to enable potential further applications where such
dependencies may be important. Generic constants, which may change from line to line,
will mainly be denoted by the capital letters A and B.
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Throughout, we use integer subscripts, or the letters j , k, and n, to denote building
block maps, that is, rotated copies of a slit map aggregated to form the cluster maps
�n and �∗

n . When we need to keep track of scaling, we use fck (boldface subscript)
to denote a slit map adding a single slit of logarithmic capacity ck (k = 1, 2, . . .) at
the point 1. Finally, a generic single-slit map centered at 1 adding a slit of logarithmic
capacity t > 0 will be denoted ft .

3. Loewner Flows

We shall make extensive use of Loewner techniques in this paper. Loewner equations
describe the flowof families {t }t�0 of conformalmaps of a reference domain inC∪{∞}
onto evolving domains in the plane in terms of measures on the boundary. We only give
a very brief overview here, and refer the reader to [15] and the references therein for a
discussion of Loewner theory.

3.1. Loewner’s equation. Let {μt }t>0 be a family of probability measures on the unit
circle T, in this context referred to as driving measures, such that t 
→ ‖μt‖ is locally
integrable. Then the Loewner partial differential equation for the exterior disk,

∂tt (z) = z ′
t (z)

∫

T

z + ζ

z − ζ
dμt (ζ ), (7)

with initial condition

0(z) = z,

admits a unique solution {t }t�0 called a Loewner chain [1,15]. Each t (z) is a con-
formal map of the exterior disk onto a simply connected domain,

t : � → Dt = C ∪ {∞}\Kt

and at∞we have the power series expansiont (z) = et z+O(1). The growing compact
sets {Kt }t�0 are called hulls, satisfy Ks � Kt for s < t , and have cap(Kt ) = et for
t � 0, where cap(K ) denotes the capacity of a compact set K ⊂ C.

The limit functions appearing in Theorem 1 can be realized in terms of Loewner
chains, and in fact have a very simple Loewner representation.

Example 1 (Growing a slit). Let μt = δ1, a point mass at ζ = 1. Then (7) reads

∂t ft (z) = z f ′
t (z)

z + 1

z − 1
.

With initial condition f0(z) = z, the solution has the explicit representation (viz. [18, p.
772])

ft (z) = et

2z

(
z2 + 2(1 − e−t )z + 1 + (z + 1)

√
z2 + 2(1 − 2e−t )z + 1

)
. (8)

The solution precisely consists of the slit maps ft : � → �\(1, 1 + d(t)], where
d(t) = 2et (1 +

√
1 − e−t ) − 2, t > 0. (9)
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This means that the growing hulls are Kt = D ∪ (1, 1 + d(t)], the closed unit disk plus
a radial slit emanating from ζ = 1. We note that the somewhat complicated expression
in (8) can be obtained by conjugating the simple formula for a slit map in the upper
half-plane H = {z ∈ C : Im(z) > 0}, namely

Ft (z) =
√
z2 − 4t,

with suitable Möbius transformations.

In this paper, we are mainly concerned with the case μt = δeiξt for some function
ξt : (0, T ] → R and in that setting, we refer to ξt as a driving term.

The conformal maps arising in ALE(α, η) have the following simple Loewner repre-
sentation. We first solve the Loewner equation with driving measure μt = δeiξt , where

ξt =
N∑

k=1

θk1(Ck−1,Ck ](t), (10)

with Ck = ∑k
j=1 ck , and the angles {θk} and logarithmic capacities {ck} given by (4)

and (5), respectively. Explicitly then, the Loewner problem associated with ALE(α, η)

reads

∂tt (z) = z ′
t (z)

z + eiξt

z − eiξt
where 0(z) = z. (11)

To obtain the composite ALE(α, η)-maps �n described in Sect. 1, we evaluate the
solution to (11) at t = cn; thus

�n = cn, n = 1, 2, . . . .

The randomdriving function ξt can be viewed as a càdlàg jump process exhibiting a com-
plicated dependence structure encoded through angles and capacity increments. When
α = 0, the dependence structure is only present in the distribution of the increments, as
the jump times are deterministic, and equal to ck for k = 1, 2, . . .. We emphasize that
this is the main technical reason why the ALE(0, η) model is easier to analyze then the
general ALE(α, η) model or the Hastings–Levitov model HL(α).

3.2. Reverse-timeLoewner flow. TheLoewnerEq. (11) is a first-order partial differential
equation, and in the ALE(α, η) model, it gives rise to a non-linear PDE problem since
the driving measures depend on the maps ft via their derivatives. As is common in
Loewner theory, we shall analyze solutions by passing to the backwards flow associated
with (11): this essentially entails employing the method of characteristics to obtain an
ordinary differential equation that describes the evolution at hand. See [1,15] for detailed
derivations and discussions.

Let T > 0 be fixed. The equation for the backward or reverse-time flow in the exterior
disk is

∂t ut (z) = ut (z)
ut (z) + ei�t

ut (z) − ei�t
, (12)

where we define

�t = ξT−t , 0 � t � T .
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Then, setting u0(z) = z, we obtain (see [15, Chapter 4])

uT (z) = T (z)

wheret denotes the solution to the forward Eq. (11) with driving function ξt . Note that
this holds in general only at the special time T .

The main advantage of the backward flow is the fact that, for each z, (12) is now
formally an ODE, simplifying the problem of analyzing and estimating the solution to
the corresponding flow problem. Such analysis is carried out in Sect. 6 andwill be crucial
in the proof of Theorem 1.

3.3. Convergence of Loewner chains. Our strategy will be to argue that the driving
function (10) arising in the ALE process is close, in the regime where n � c−1, to
the constant driving function ξt = θ1. We would then like to argue that the resulting
conformal maps are close. These kinds of continuity results have been established in
several settings, see for instance [10, Proposition 3.1] and [12, Proposition 1], and [9]
for a more systematic discussion.

Since the ALE driving processes exhibit synchronous jumps, it is natural to measure
distances between them in the uniform norm ‖·‖∞. For T > 0, we denote the space
of piecewise continuous functions ξ : [0, T ) → R endowed with this norm by DT . We
consider the space � consisting of conformal maps f (z) = Cz +O(1) as z → ∞, with
C > 0 uniformly bounded, and we endow � with the topology of uniform convergence
on compact subsets of�. We then view the conformal mapst , and hence the aggregate
maps �n , as random elements of �.

The following result is well-known, but we give a proof for completeness. (With
additional work, one could obtain estimates on rates of convergence. We do not pursue
this direction here, however see Remark 3 after Lemma 11.)

Proposition 3. Let T > 0 be given. For j = 1, 2 let( j)
t , 0 � t � T, be the solution to

the Loewner Eq. (7)with driving term ξ
( j)
t . For every ε > 0 there exists δ = δ(ε, T ) > 0

such that if ‖eiξ (1) − eiξ
(2)‖∞ < δ, then

sup
0�t�T

sup
{|z|�1+ε}

∣
∣
∣

(1)
t (z) − 

(2)
t (z)

∣
∣
∣ < ε.

Proof. Fix s ∈ [0, T ] and consider the reverse-time Loewner Eq. (12). We let u( j)
t be the

reverse flow driven by ξ
( j)
s−t for 0 � t � s. Write W ( j)

t = eiξ
( j)
s−t . Taking the difference

and differentiating H = u(1) − u(2) with respect to t gives

Ḣ − Hv = (W (1) − W (2))w,

where

v = v(t) = u(1)u(2) − W (1)W (2) − (1/2)(u(1) + u(2))(W (1) +W (2))

(u(1) − W (1))(u(2) − W (2))

and

w = w(t) = (u(1) + u(2))2

2(u(1) − W (1))(u(2) − W (2))
.
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Since the flows move away from the unit circle, these expressions show that there is a
constant A depending only on T such that if |z| � 1 + ε then for all 0 � t � s � T ,

Re v(t) � A/ε2, |w(t)| � A/ε2.

Since H(0) = 0,

H(t) =
∫ t

0

[
e
∫ t
s v(r)dr (W (1)(s) − W (2)(s))w(s)

]
ds

and consequently, for a different T -dependent A,

sup
{|z|�1+ε}

|(1)
t (z) − 

(2)
t (z)| = sup

{|z|�1+ε}
|H(t)| � ‖W (2) − W (1)‖∞eA/ε2 A/ε2.

Hence we can take δ < e−A/ε2ε3/A and this is clearly uniform in 0 � t � T . ��
Thus, we obtain convergence in law of conformal maps provided we can show con-

vergence in law of driving processes. Note that in our main result we have convergence
to a degenerate deterministic limit (modulo rotation). As is explained in [10, Section
4.2], we can strengthen the convergence that follows from Proposition 3 in this instance,
and obtain convergence of Kn with respect to the Hausdorff metric in �.

4. Analysis of the Slit Map

In our arguments, we shall need effective bounds on the derivative f ′
t (z) of the slit

map, in order to estimate moments of angle sequences, among other things. An explicit
formula for the slit map ft : � → �\(1, 1 + d(t)] was given in (8), while the length
d(t) of the growing slit is given by (9). We note that ft (1) = 1 + d(t), and that one can
compute that ft (eiβt ) = ft (e−iβt ) = 1 for

βt = 2 arctan

(
d(t)

2
√
d(t) + 1

)

. (13)

We shall refer to exp(iβt ) and exp(− iβt ) as the base points of the slit. In our scaling
limit results, we will make use of the facts that

βt

d(t)
→ 1 and

d(t)

2t1/2
→ 1, as t → 0. (14)

4.1. Pointwise estimates. We begin by obtaining bounds on the (spatial) derivative of
the slit map ft (z). To get a feeling for the overall behavior of these derivatives, it is
instructive to first compute the derivative of the half-plane slit map,

F ′
t (z) = z

(z2 − 4t)1/2
.

From this formula, it is apparent that F ′
t (z) has a zero at the point that is mapped to the

tip of the slit, and square-root type singularities at points mapping to the base of the slit.
We show that the slit map in the exterior disk exhibits the same type of local behavior.
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Lemma 4. For all t > 0 and |z| > 1, we have

f ′
t (z) = Ht (z)

z − 1
(
z − eiβt

)1/2 (
z − e−iβt

)1/2 (15)

where Ht (z) is holomorphic in z, has limz→∞ Ht (z) = et , and satisfies

1 � |Ht (z)| � 4et .

Proof. Since the slit map ft (z) solves the Loewner equation

∂t ft (z) = z f ′
t (z)

z + 1

z − 1

we have

f ′
t (z) = z − 1

z(z + 1)
∂t ft (z). (16)

Differentiating the explicit expression (8) with respect to t , we find that

∂t ft (z) = et

2z

z + 1
√

(z + 1)2 − 4e−t z

(
(z + 1)

√
(z + 1)2 − 4e−t z + (z + 1)2 − 2e−t z

)
.

Inserting this into (16), we obtain

f ′
t (z) = Ht (z)

z − 1
√

(z + 1)2 − 4e−t z

with

Ht (z) = et

2z2

[
(z + 1)

(
z + 1 +

√
(z + 1)2 − 4e−t z

)
− 2e−t z

]
.

It remains to show that Ht (z) is bounded above and below. But this follows immediately
upon writing Ht (z) = z−1 ft (z), where ft (z) is the slit map itself, and observing that
1 � | ft (z)|/|z| � (1+d(t))∨et � 4et . Finally, we verify that zt = eiβt solves (z+1)2−
4e−t z = 0, and this leads to the factorization (z + 1)2 − 4e−t z = (z − eiβt )(z − e−iβt ).

��
Our analysis of the ALE model will require local estimates on the derivative of the

slit map. Representative graphs of how θ 
→ | f ′
t (e

σ+iθ )| varies with t and σ are shown
in Fig. 5.

Lemma 5. Fix T > 0, let 0 < t � T and suppose |z| − 1 � d(t). Then the derivative
of the slit map admits the following estimates, where A1 and A2 are non-zero constants
depending only on T :

1. (Near the tip) For | arg z| < 1
2βt ,

A1
|z − 1|
d(t)

� | f ′
t (z)| � A2

|z − 1|
d(t)

.

2. (Near the base) For | arg z ± βt | � 1
2βt ,

A1 � | f ′
t (z)| � A2

d(t)

|z| − 1
.
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Fig. 5. Plots of θ 
→ | f ′
t (e

σ+iθ )|. Left: σ = 0.0001 fixed, t = 0.01 (blue) and t = 0.1 (dashed). Right:
t = 0.01 fixed, σ = 0.0001 (blue) and σ = 0.02 (dashed). Plot with t = 0.01 and σ = 0.2 (black) shown in
both pictures for comparison

3. (Away from tip and base) For 3
2βt < | arg z| � π ,

A1 � | f ′
t (z)| � A2.

Proof. We treat the case | arg z| < 1
2βt first. In light of the global bounds on the function

Ht (z) from Lemma 4, it suffices to estimate the square root expressions appearing in the
denominator in (15). We have

|z − eiβt | = |elog |z|+i(arg z−βt ) − 1| �
(
(log |z|)2 + (arg(z) − βt )

2
)1/2 � log |z| ∨ d(t).

(17)
If 0 < |z| − 1 � d(t) this yields

|z − eiβt |1/2|z − e−iβt |1/2 � d(t),

as claimed.
Near the base, the same reasoning as before shows that |z − 1| � d(t). On the other

hand,

|z| − 1 � |z − eiβt | � |elog |z|+i(βt+ 1
2βt ) − eiβt | � Ad(t),

where the lower bound is attained when arg(z) = βt . Combining these bounds leads to
the claimed estimates for | arg z ± βt | � βt

2 .

On each fixed radius, the function v : arg(z) 
→
∣
∣
∣ z−1
(z−eiβt )1/2(z−e−iβt )1/2

∣
∣
∣ is decreasing

on [ 32βt , π ], with v(π) = (elog |z| + 1)/((elog |z| + cosβt )
2 + sin2 βt )

1/2 � 1. So in order
to obtain the last set of estimates, it suffices to note that v remains bounded above and
below as arg(z) → 3

2βt , by the same arguments as before. ��

4.2. Moment computations. We now return to random growth models and present the
moment bounds that will be needed in Sect. 5. As before, σ > 0 is our regularization
parameter, while η > 0 is a model parameter.

Define the normalization factor

Z∗
t = Z∗

t (η, σ ) =
∫

T

| f ′
t (e

σ+is)|−ηds. (18)
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Lemma 6. Fix T > 0 and η � 0. There exist constants A1 and A2 depending only on
T and η such that, for all 0 < t � T , the total mass Z∗

t satisfies the following.

• (η < 1) For all σ > 0,
A1 � Z∗

t � A2. (19)

In particular, Z∗
t remains finite as σ → 0.

• (η > 1) For all 0 < σ � t
η

2(η−1) ,

A1d(t)ησ−(η−1) � Z∗
t � A2d(t)ησ−(η−1). (20)

In particular, Z∗
t diverges as σ → 0 with σ � t

η
2(η−1) .

Moreover, for η > 1 and 0 < σ � t
η

2(η−1) we have the following estimates:

1. (Near the tip) For |θ | <
βt
2 ,

A1
1

σ

(

1 +

(
θ

σ

)2
)−η/2

� 1

Z∗
t
| f ′

t (e
σ+iθ )|−η � A2

1

σ

(

1 +

(
θ

σ

)2
)−η/2

.

2. (Near the base) For |θ − βt | � 1
2βt ,

A1σ
2η−1d(t)−2η � 1

Z∗
t
| f ′

t (e
σ+iθ )|−η � A2σ

η−1d(t)−η.

3. (Away from the tip and base) For 3
2βt < |θ | � π ,

A1σ
η−1d(t)−η � 1

Z∗
t
| f ′

t (e
σ+iθ )|−η � A2σ

η−1d(t)−η.

Proof. We begin by treating the case η < 1. In light of Lemma 5, non-trivial global
bounds on Z∗

t from above and below follow immediately from the bounds on | f ′
t (e

σ+is)|
for |s| > 3

2βt provided the contribution from (−βt
2 ,

βt
2 ) is finite. Hence it suffices to

estimate the integral
∫ βt

2

− βt
2

| f ′
t (e

σ+is)|−ηds � Ad(t)
∫ βt

2

0

1

(σ 2 + s2)η/2 ds,

where we have used that A1 < |eσ+is − 1|/(σ 2 + s2)1/2 < A2 for s, σ small. Next, we
note that

∫ βt
2

0

1

(σ 2 + s2)η/2 ds �
∫ βt

2

0

1

sη
ds,

and the latter integral is bounded for 0 < t < T since η < 1.
We turn to the case η > 1. Since the integral

∫ | f ′
t (e

σ+is)|−ηds now diverges as
σ → 0 due to the singularity at s = 0, it again suffices to estimate the contribution
coming from |s| < βt/2 in order to establish (20). We have

∫ βt
2

0
| ft (eσ+is)|−ηds � Ad(t)η

∫ βt
2

0
(σ 2 + s2)−η/2ds

� Ad(t)ησ−η

∫ βt
2σ

0
σ (1 + u2)−η/2du
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after a change of variables. Since
∫ ∞
0 (1 + u2)−η/2du is now finite, the upper bound

follows. Similar reasoning together with the assumption that σ � t1/2 yields the lower
bound on the integral. The estimates on the normalized derivative follow upon dividing
through by Z∗

t in Lemma 5. ��
We now turn to moment bounds for η > 1.

Lemma 7. For all η and σ > 0,
∫ π

−π

θ
1

Z∗
t
| f ′

t (e
σ+iθ )|−ηdθ = 0.

Now suppose η > 1 and σ satisfies the hypotheses of Lemma 6. Let x ∈ (σ ,
βt
2 ).

Then, for 1 < η < 3, we have

A1x
3−ησ η−1 �

∫ x

−x
θ2

1

Z∗
t
| f ′

t (e
σ+iθ )|−ηdθ � A2x

3−ησ η−1,

and for η = 3, we have

A1σ
2 log(xσ−1) �

∫ x

−x
θ2

1

Z∗
t
| f ′

t (e
σ+iθ )|−ηdθ � A2σ

2 log(xσ−1).

For η > 3, we have

A1σ
2 �

∫ x

−x
θ2

1

Z∗
t
| f ′

t (e
σ+iθ )|−ηdθ � A2σ

2.

Under the same assumptions as above, for 1 < η < 2, we have

A1x
2−ησ η−1 �

∫ x

−x
|θ | 1

Z∗
t
| f ′

t (e
σ+iθ )|−ηdθ � A2x

2−ησ η−1,

and for η = 2,

A1σ log(xσ−1) �
∫ x

−x
|θ | 1

Z∗
t
| f ′

t (e
σ+iθ )|−ηdθ � A2σ log(xσ−1).

Finally, for η > 2,

A1σ �
∫ x

−x
|θ | 1

Z∗
t
| f ′

t (e
σ+iθ )|−ηdθ � A2σ .

Proof. The statement that
∫

θ | f ′
t (e

σ+iθ )|−ηdθ = 0 follows immediately from symmetry
of the function θ 
→ | f ′

t (e
σ+iθ )| for each σ and t .

We turn to second moments, and deal with the parameter range 1 < η � 3 first. By
Lemma 6,

∫ x

−x
θ2

1

Z∗
t
| f ′

t (e
σ+iθ )|−ηdθ

= 2
∫ x

0
θ2

1

Z∗
t
| f ′

t (e
σ+iθ )|−ηdθ � σ 2

∫ x

0

(
θ
σ

)2

(
1 + ( θ

σ )2
)η/2

dθ

σ
.
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Performing a change of variables, and assuming η < 3, we obtain the integral

σ 2
∫ x

σ

0
u2(1 + u2)−η/2du = σ 2

∫ 1

0
u2(1 + u2)−η/2du + σ 2

∫ x
σ

1
u2(1 + u2)−η/2du

� A1σ
2 + A2σ

2
∫ x

σ

1
u2−ηdu

= A1σ
2 + A2

1

3 − η
σ 2x3−ησ η−3

= A1σ
2 + A2x

3−ησ η−1,

as claimed. An obvious modification of the argument leads to bounds for η = 3.
Finally, we treat the case η > 3 and show that the second moment decays like σ 2

independently of η. It now suffices to examine

∫

|θ |<x
θ2

1

Zt
| f ′

t (e
σ+iθ )|−ηdθ � 2σ 2

∫ x
σ

0
u2(1 + u2)−η/2du.

The integral on the right now converges since η > 3, and in fact

∫ ∞

0
u2(1 + u2)−η/2du =

√
π

4

�(
η−3
2 )

�(
η
2 )

.

To get the lower bound, we use the assumption 1 < x/σ to bound the integral from
below. The second assertion of the Lemma follows.

Analogous calculations lead to the quoted bounds on the first moments. ��

5. Ancestral Lines and Convergence for ALE

We now present a proof of our main convergence theorem, conditional on technical
results proved in the final section of the paper, and discuss possible extensions of our
results.

5.1. Convergence in the Markovian model. We first prove Theorem 2, which we restate
for the reader’s convenience. Recall that K ∗

n(t) is the cluster associated with �∗
n(t), and

the event

�∗
N = {Particle j in the ∗ -model has parent j − 1 for all j = 1, . . . , N }.

Theorem 2. Set σ0 = cγ ∗
where

γ ∗ >
η + 1

2(η − 1)
.

Then

lim
c→0

inf
0<σ<σ0

P(�∗
N ) = 1 if η > 1

lim
c→0

sup
σ>0

P(�∗
N ) = 0 if η < 1.
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Furthermore, when η > 1 and σ < σ0, for any r > 1 and T < ∞,

sup
t�T

sup
{|z|>r}

|�∗
n(t)(z) − eiθ

∗
1 ft (e

−iθ∗
1 z)| → 0 in probability as c → 0,

and the cluster K ∗
n(t) converges in theHausdorff topology to a diskwith slit of logarithmic

capacity t attached at position z = eiθ
∗
1 .

Proof. Since we can always rotate the clusters K ∗
n by a fixed angle, without loss of

generality, we assume that the initial angle θ∗
1 = 0. As explained in Sect. 2, we choose

to sample θ∗
k from the interval [θ∗

k−1 − π, θ∗
k−1 + π). This means that we can write

θ∗
n = u2 + · · · + un where the uk are independent [−π, π)-valued random variables and
uk = θ∗

k − θ∗
k−1 has symmetric distribution h∗

k(θ |0).
First suppose η > 1. Then by (14) and Lemma 6 there exists some constant A (which

may change from line to line), depending only on T and η, such that for all k � N ,

A−1(kc)1/2 < βkc < A(kc)1/2,

A−1

σ

(

1 +
θ2

σ 2

)−η/2

� h∗
k(θ |0) � A

σ

(

1 +
θ2

σ 2

)−η/2

for |θ | <
βkc

2
,

and

h∗
k(θ |0) � Aσ η−1(ck)−η/2 for |θ | >

βkc

2
.

Therefore

P

(

|uk | � βc

2

)

= 2
∫ βkc

2

βc
2

h∗
k(θ |0)dθ + 2

∫ π

βkc
2

h∗
k(θ |0)dθ

� A(σ η−1c
1
2 (1−η) + σ η−1(ck)−η/2).

Hence, for η > 1,

P((�∗
N )c) � P

(

sup
2�k�N

|θ∗
k − θ∗

k−1| � βc

2

)

�
N∑

k=2

P

(

|uk | � βc

2

)

� Aσ η−1c− 1
2 (η−1)c−1 −→ 0

as c → 0.
Now suppose that η < 1 and σ → 0 as c → 0. Using Lemma 5 and setting |z| = eσ

in (17), and then letting c → 0, we get

P(�∗
N ) � P

(|θ∗
2 | < βc

)
� A

(∫ βc
2

0

cη/2 ∨ σ η

(σ 2 + θ2)η/2 dθ +
∫ βc

βc
2

dθ

)

� Ac1/2 ∨ σ η −→ 0.

If σ is bounded below, then h∗
k is uniformly bounded above and below, and P(|uk | �

βc) = 2
∫ βc
0 h∗

k(θ |0)dθ → 0 since βc → 0 with c.
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To show convergence of �∗
n(t)(z) to ft (z) for t < T when η > 1 and σ < σ0, by

Proposition 3 it is enough to show that supn�N |θ∗
n | → 0 with high probability as c → 0.

To do this, we write

θ∗
n =

n∑

k=2

uk1{|uk |<βc/2} +
n∑

k=2

uk1{|uk |�βc/2}

and note that M∗
n = ∑n

k=2 uk1{|uk |<βc/2} is a martingale. By the same argument as used
to show P((�∗

N )c) → 0,

P
(
θ∗
n = M∗

n for all n � N
)

� 1 − Aσ η−1c− 1
2 (η−1)c−1 → 1.

Convergence of supn�N |θ∗
n | to 0 follows from moment bounds in Lemma 7 together

with standard martingale arguments (viz. the proof of Theorem 9). ��

5.2. The ancestral lines and convergence theorem. We now return to the ALE(0, η)

process and show how the bounds obtained above, together with certain comparison
results thatwill be proved in the next section, allowus to prove the analogue of Theorem2
for the �n maps that generate ALE(0, η) clusters.

Without loss of generality we may set θ1 = 0. Let

hk(θ) = 1

Zk
|�′

k−1(e
σ+iθ )|−η, k = 2, 3, . . . (21)

denote the density functions conditional on Fk−1 associated with the angle sequence
{θk} of the ALE(0, η)-model with model parameter η ∈ R, particle capacity parameter
c ∈ (0, 1) and regularization parameter σ ∈ (0, 1). As usual, let Fk be the σ -algebra
generated by θ1, . . . , θk .

We first state a precise estimate for how well |�′
n(e

σ+iθ )| can be approximated by
|( f θn

nc )′(eσ+iθ )|. In Sect. 2, we discussed how the intermediate particles are visible in the
derivative of �n(z) in a way they are not in f θn

nc (z) (see Fig. 3). The estimates below
capture this discrepancy.

Lemma 8. Fix T > 0, let n � �T/c and set εn = (eσ − 1) ∨ supk�n |θk |.
(i) There exists some absolute constant A > 1, such that if |θ − θn| < c1/2 and εn <

A−1c1/2, then ∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

�′
n(e

σ+iθ )

( f θn
nc )′(eσ+iθ )

∣
∣
∣
∣
∣
− 1

∣
∣
∣
∣
∣
< Aε2nc

−1. (22)

(ii) There exist absolute constants A and B only dependent on T , such that if εn �
A−1c1/2, then

∣
∣
∣�′

n(e
σ+iθ )

∣
∣
∣ � B−1ε−1

n σ (1 − cos(θ − θn))
1/2.

The proof of Lemma8 relies on a refined analysis of solutions to theLoewner equation
in the case where driving functions are uniformly close, and will be presented in Sect. 6
to avoid interrupting the flow of the proof of the main theorem below.

We now prove our main result. For fixed T > 0, set N = �T/c. Recall the definition
of �N from Sect. 2.
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Theorem 9. Set σ0 = cγ for

γ >
5

4
∨ (2λ + 1)η + 1

2(η − 1)
,

where

λ = λ(η) =
{ 1

η−1 if 1 < η < 3;
1
2 if η � 3.

Then, for all T < ∞,

lim
c→0

inf
0<σ<σ0

P(�N ) = 1 if η > 1

lim
c→0

sup
σ>0

P(�N ) = 0 if η < 1.

Furthermore, when η > 1 and σ < σ0, for any r > 1 and T < ∞,

sup
t�T

sup
|z|>r

|�n(t)(z) − ft (z)| → 0 in probability as c → 0,

and hence the cluster Kn(t) converges in the Hausdorff topology to a disk with slit of
logarithmic capacity t attached at position 1.

Proof. Fix η > 1 and let

NT = inf
{
k � 1 : |θk | > σkλ(log c−1)6λ

}
∧ N . (23)

Observe that, since σ < σ0, we have

σnλ(log c−1)6λ �
(
T λcγ−(λ+1/2)(log c−1)6λ

)
c1/2.

Hence, using the fact that γ > λ + 1/2, and that A−1c1/2 � βc � Ac1/2, there exists
some c0 > 0, dependent only on T and η, such that if c < c0, then {NT = N } ⊆ �N .
From now on assume that c < c0. We shall prove that P(NT = N ) → 1 as c → 0. Once
this has been done, it follows that if η > 1,

lim
c→0

inf
0<σ<σ0

P(�N ) = 1.

Exactly the same argument as Theorem 2 can then be used to show that

lim
c→0

sup
σ>0

P(�N ) = 0

if η < 1, and that when η > 1 and σ < σ0, for any r > 1 and T < ∞,

sup
t�T

sup
|z|>r

|�n(t)(z) − ft (z)| → 0 in probability as c → 0,

and hence the cluster Kn(t) converges in the Hausdorff topology to a disk with slit of
logarithmic capacity t attached at 1.
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We turn to the proof. Suppose that n < NT . As before, using the fact that σ < σ0,
we have

εn � σnλ(log c−1)6λ �
(
T λcγ−(λ+1/2)(log c−1)6λ

)
c1/2,

where εn = (eσ −1)∨supk�n |θk | as in Lemma 8. Hence there exists some 0 < c1 < c0,
dependent only on T and η, such that if c < c1, then εn satisfies the conditions of
Lemma 8. From now on assume that c < c1. Then, by Lemma 8, there exists An such
that, if |θ − θn| � c1/2

(1 − An)| f ′
nc(e

σ+i(θ−θn))|−η < |�′
n(e

σ+iθ )|−η < (1 + An)| f ′
nc(e

σ+i(θ−θn))|−η,

and furthermore An = Aησ
2c−1n2λ(log c−1)12λ for Aη that depends only on η and T .

We begin by getting estimates on

Zn =
∫

T

|�′
n(e

σ+iθ )|−ηdθ.

We have
∫

T

|�′
n(e

σ+iθ )|−η1{c1/2<|θ−θn |<π}dθ � 2Bηnλη(log c−1)6λη

∫ π

c1/2
(1 − cos u)−η/2du

� B ′nληc−(η−1)/2(log c−1)6λη

for some B ′ that depends only on η and T . Using the notation of Sect. 2, recall from
Lemma 6 that there exist A′, A′′ depending only on η and T such that

A′(nc)η/2σ−(η−1) � Z∗
nc � A′′(nc)η/2σ−(η−1).

Hence,

(Z∗
nc)

−1
∫

T

|�′
n(e

σ+iθ )|−η1{c1/2<|θ−θn |<π}dθ

� Bησ
η−1n(λ−1/2)ηc−(2η−1)/2(log c−1)6λη

for some Bη that depends only on η and T . Set Bn = Bησ
η−1n(λ−1/2)ηc−(2η−1)/2

(log c−1)6λη.
Observe that the choice of γ ensures that, provided σ < σ0, we have N (1−λ)∨0AN →

0 and N BN → 0. We shall see that these conditions are sufficient to prove our result.
Now

Zn =
∫

T

|�′
n(e

σ+iθ )|−η
(
1{|θ−θn |�c1/2} + 1{c1/2<|θ−θn |<π}

)
dθ

� 2(1 + An)

∫ c1/2

0
| f ′

nc(e
σ+iθ )|−ηdθ + Bn Z

∗
nc

� (1 + An + Bn)Z
∗
nc.

Similarly, we can show that

Zn � (1 − An − Bn)Z
∗
nc.
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Since An + Bn → 0 as c → 0 there exists 0 < c2 � c1, depending only on T and η,
such that An + Bn < 1/2 provided c < c2. Assume from now on that c < c2. Hence, if
|θ − θn| < c1/2 then,

(1 − αn)h
∗
n+1(θ |θn) < hn+1(θ) < (1 + αn)h

∗
n+1(θ |θn)

where αn = 7(An + Bn). Equivalently

(1 − αn)h
∗
n+1(θ |0) < hn+1(θ + θn) < (1 + αn)h

∗
n+1(θ |0).

As in the proof of Theorem 2, we choose to sample θk from the interval [θk−1 −
π, θk−1 + π) and so we can write θn = u2 + · · · + un where the uk are [−π, π)-valued
random variables and, conditional on Fk−1, uk = θk − θk−1 has distribution function
hk(θ + θk−1). We write

θn = Mn +
n∑

k=1

E
(
uk1{|uk |�kλσ (log c−1)2λ}

∣
∣Fk−1

)
+

n∑

k=1

uk1{|uk |>kλσ (log c−1)2λ}, (24)

where

Mn =
n∑

k=1

(
uk1{|uk |�kλσ (log c−1)2λ} − E

(
uk1{|uk |�kλσ (log c−1)2λ}

∣
∣Fk−1

))

is a martingale.
We first show Mn is small with high probability. By Lemma 7,

E

(
|uk |21{|uk |�kλσ (log c−1)2λ}

∣
∣
∣Fk−1

)
� (1 + αk−1)

∫

|θ |�kλσ (log c−1)2λ
|θ |2h∗

k(θ |0)dθ

�
{
Aσ 2k(3−η)λ(log c−1)2λ(3−η) if 1 < η < 3
Aσ 2(log c−1)2 if η � 3,

for some constant A depending only on T and η. HenceMn is amartingalewith quadratic
variation

〈Mn∧NT 〉 � An2λσ 2(log c−1)4λ.

By Freedman’s version of Bernstein’s inequality, see [5, Proposition 1], we obtain that

P

(
|Mn| > σnλ(log c−1)6λ/2 for some n � NT

)

� 2 exp

(

− (log c−1)4λ

8(A + 1)

)

→ 0 as c → 0

as desired.
We next turn to the second term in (24). We use that

E
(
uk1{|uk |�kλσ (log c−1)2λ}

∣
∣Fk−1

)

=
∫

|θ |�kλσ (log c−1)2λ
θhk(θ + θk−1)dθ

=
∫

|θ |�kλσ (log c−1)2λ
θh∗

k(θ |0)dθ +
∫

|θ |�kλσ (log c−1)2λ
θ(hk(θ + θk−1) − h∗

k(θ |0))dθ

=
∫

|θ |�kλσ (log c−1)2λ
θ(hk(θ + θk−1) − h∗

k(θ |0))dθ,
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by the symmetry of h∗
k(θ |0). Hence, again by Lemma 7,

∣
∣E

(
uk1{|uk |�kλσ (log c−1)2λ}

∣
∣Fk−1

)∣
∣ �

∫

|θ |�kλσ (log c−1)2λ
|θ ||hk(θ + θk−1) − h∗

k(θ |0)|dθ

� αk−1

∫

|θ |�kλσ (log c−1)2λ
|θ |h∗

k(θ |0)dθ

�
{
Aαk−1σk(2−η)λ(log c−1)2λ(2−η) if 1 < η < 2
Aαk−1σ (log c−1)2 if η � 2,

for some constant A depending only on T and η. Therefore, if 1 < η < 2,
∣
∣
∣
∣
∣

n∑

k=1

E
(
uk1{|uk |�kλσ (log c−1)2λ}

∣
∣Fk−1

)
∣
∣
∣
∣
∣

� Aσ (log c−1)2λ(2−η)
n∑

k=1

αk−1k
(2−η)λ

� σnλ(log c−1)6λ
(
An−(η−1)λ+1αn(log c−1)−2λ(1+η)

)
,

and if η � 2,
∣
∣
∣
∣
∣

n∑

k=1

E
(
uk1{|uk |�kλσ (log c−1)2λ}

∣
∣Fk−1

)
∣
∣
∣
∣
∣

� Aσ (log c−1)2
n∑

k=1

αk−1

� σnλ(log c−1)6λ
(
An1−λαn(log c−1)−2(3λ−1)

)
.

By our choice of γ , there exists 0 < c3 � c2, depending only on T and η, such that
∣
∣
∣
∣
∣

n∑

k=1

E
(
uk1{|uk |�kλσ (log c−1)2λ}

∣
∣Fk−1

)
∣
∣
∣
∣
∣
< σnλ(log c−1)6λ/2

provided c < c3. From now on assume that c < c3.
Finally, we deal with the last term in (24). The same computation as was used to

bound Zn can be used to show that

P(|uk | � c1/2; k � NT ) � Bk .

We also have

P(kλσ (log c−1)2λ < |uk | � c1/2)

� A(1 + αk−1)

∫ c1/2

kλσ (log c−1)2λ

1

σ

(

1 +

(
θ

σ

)2
)−η/2

dθ

� A
∫ ∞

kλ(log c−1)2λ

(
1 + θ2

)−η/2
dθ

� Ak−λ(η−1)(log c−1)−2λ(η−1).
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Hence, putting these two bounds together,

P

(
n∑

k=1

uk1{|uk |>kλσ (log c−1)2λ} �= 0 for some n � NT

)

� P(|uk | > kλσ (log c−1)2λ for some k � NT )

� A
N∑

k=1

(
k−λ(η−1)(log c−1)−2λ(η−1) + Bk

)

� A
(
(log c−1)−1 + N BN

)
→ 0

since σ < σ0.
But on the high probability event

{
|Mn| < σnλ(log c−1)6λ/2 for all n � NT

}

∩
{∣

∣
∣
∣
∣

n∑

k=1

E
(
uk1{|uk |�kλσ (log c−1)2λ}

∣
∣Fk−1

)
∣
∣
∣
∣
∣
< σnλ(log c−1)6λ/2

}

∩
{

n∑

k=1

uk1{|uk |>kλσ (log c−1)2λ} = 0 for all n � NT

}

we have

sup
n�NT

|θn| < σnλ(log c−1)6λ

and hence NT = N . ��

5.3. Modifications of the model. One criticism that can be levelled at the ALE(0, η)

model, from the point of view of modelling physical phenomena, is that the conformal
mappings distort the sizes of particles as they are added to the growing cluster. Using the
result proved above that the scaling limit of the ALE(0, η) cluster is a growing slit, it can
be shown that the size of the nth particle is approximately equal to d(cn)− d(c(n− 1)).
Using the expression for d(t) in (9), we obtain

d(cn) − d(c(n − 1)) �
{

2c1/2

n1/2+(n−1)1/2
if cn � 1;

2cecn if cn � 1.

In particular, the first particle is of size approximately 2c1/2, whereas all subsequent
particles are strictly smaller.

A number of modifications to the model are possible which result in clusters where
all of the particles are roughly the same size. The simplest modification (cf. [13]) is to
recursively choose a deterministic sequence of capacities with c1 = c and cn satisfying

d(Cn) − d(Cn−1) = d(c) where Cn =
n∑

j=1

c j .
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Another modification (see [7,19]) is to take the logarithmic capacity of the nth particle
to be

cn = c|�′
n−1(e

σ̃+iθn )|−2

for some regularization parameter σ̃ > 0, not necessarily equal to the angular regular-
ization parameter σ . Closely related (see [1,26]), is to choose logarithmic capacity cn
corresponding to slit length

dn = inf{d > 0 : d|�′
n−1((1 + d)eiθn )| = d(c)}.

In each of these modified models, the total capacity of the cluster no longer grows
linearly in the number of particles and is potentially random. It is therefore necessary
to modify the timescale in which to obtain scaling results. More precisely, given some
fixed T > 0, let

n(t) = sup{n : Cn < t} for t � T,

and set N = n(T ). The event �N can then be defined as before.
It is relatively straightforward to verify that the proof and conclusion of Theorem 9

still hold for these modified models (and further generalisations). We only state the
modified result for η > 1, as the case η < 1 is identical to that for the Markov model,
for any choice of logarithmic capacity sequence.

Corollary 10. For η > 1 and c > 0, define σ0 as in Theorem 9 and take σ < σ0.
Consider a sequence of conformal mappings, constructed as in (2) from sequences
{θk}∞k=1 and {ck}∞k=1, where (without loss of generality) θ1 = 0 and, conditional on
Fn−1 = σ(θk, ck : 1 � k � n − 1), θn are given by (4).

Provided there exists some constant A > 0, depending only on T and η, such that

P(ck � Ac for all k = 1, . . . N ) → 1

as c → 0, it holds that P(�N ) → 1 as c → 0. Furthermore, such a constant A exists
for the three modifications defined above as well as for ALE(α, η) for any α > 0.

In this case, for any r > 1 and T < ∞,

sup
t�T

sup
|z|>r

|t (z) − ft (z)| → 0 in probability as c → 0,

where t is the solution to (11) corresponding to the modified model, and hence the
cluster Kt converges in the Hausdorff topology to a disk with slit of logarithmic capacity
t attached at position 1.

Note that, as we do not impose an upper bound on each logarithmic capacity ck , it
is no longer necessarily the case that n(t) → t as c → 0. For his reason, we need to
compare ft with t , rather than �n(t) as in the previous result.

Proof. The proof consists of checking step by step that each inequality in the proofs of
Lemma 8 and Theorem 9 still holds (possibly with new constants). The only changes
are that we compare �n to

f θn
Cn

= f θn
c1 ◦ · · · ◦ f θn

cn
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instead of f θn
cn and we need to define

NT = inf
{
k � 1 : |θk | > σkλ(log c−1)6λ or ck < Ac

}
∧ N

and then use the additional assumption in the statement of the corollary to show that
NT = N with high probability.

To show that the additional assumption holds for the modified models defined above,
it is enough to show that, so long as n � NT , there exists some constant A (depending
only on T and η), such that

|�′
n−1(e

σ̃+iθn )|−1 > A.

But this follows by using the (analogous) estimates in Lemma 8 for the modified model
and observing that there exists some constant A′ (depending only on T ) such that

| f ′
t (z)| < A′

whenever | arg(z)| � βt/2 and t � T . ��

6. Estimates on Conformal Maps via Loewner’s Equation

We now obtain refined estimates on the distance between solutions to the Loewner
equation in terms of the distance between their driving functions, in the special case
when the driving functions are close to constant. These will enable us to prove Lemma 8.
Generic estimates between conformalmaps tend to blowupclose to the boundary (as seen
in, for example, Proposition 3). As we wish to compare |�′

n(e
σ+iθ )| to |( f θn

nc )′(eσ+iθ )|
when σ is typically much smaller than the difference between the respective driving
functions, we need bespoke estimates which behave well close to the boundary.

Suppose 
j
t (z) is the solution to the Loewner Eq. (11) with driving function ξ j ,

for j = 0, 1. For fixed T > 0, let u j
t (z) be the corresponding reverse-time Loewner

flows defined in (12), so that 
j
T (z) = u j

T (z) and (
j
T )′(z) = (u j

T )′(z). In Sect. 6.1,
we compare 1

T (z) to 0
T (z0) under the assumption that 0

T (z0) (or, more precisely,
u0t (z0), for 0 � t � T ) is “known”. Specifically, we find conditions on ‖ξ1 − ξ0‖T =
supt�T |eiξ1t − eiξ

0
t | and |z − z0|, which depend on u0t (z0) and (u0t )

′(z0), under which
|u1t (z) − u0t (z0)| can be shown to be small.

In Sect. 6.2 we interpret this result when ξ0 ≡ 0. This enables us to compare ′
T (z) to

f ′
T (z) when ξ , the driving function of , is close to zero. Specifically, we obtain refined

estimates in the case when arg z is close to 0 and in the case when |z| is close to 1. We
also obtain cruder estimates which apply in the intermediate regime between these two
cases which are used in the proof of Lemma 8 to “glue” the two results together.

6.1. Analysis of the reverse-time Loewner flow. Define h : � × T → C by

h(u, v) = u
uv + 1

uv − 1

so, by (12),

∂t u
j
t (z) = h(u j

t (z), e
−iξ j

T−t ), j = 0, 1.
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Observe that

∂h

∂u
(u, v) = 1 − 2

(uv − 1)2
,

(25)
∂h

∂v
(u, v) = − 2u2

(uv − 1)2
.

Since

∂t (u
j
t )

′(z) = ∂h

∂u
(u j

t (z), e
−iξ j

T−t )(u j
t )

′(z),

using (u j
0)

′(z) = 1, we therefore obtain

(u j
t )

′(z) = exp

(

t −
∫ t

0

2ds

(u j
s (z)e

−iξ j
T−s − 1)2

)

. (26)

It is also convenient to write u j
t (z) = r j

t (z)eiϑ
j
t (z) where r j

t (z) � 1 and ϑ
j
t (z) ∈ R

with ϑ
j
0 (z) ∈ (−π, π ]. Substituting this into (12) and separating Re[(u j

t (z)e
−iξ j

T−t +

1)/(u j
t (z)e

−iξ j
T−t − 1)] and Im[(u j

t (z)e
−iξ j

T−t + 1)/(u j
t (z)e

−iξ j
T−t − 1)] we obtain the

two differential equations

∂t r
j
t = r j

t
(r j

t )2 − 1

(r j
t )2 − 2r j

t cos(ϑ
j
t − ξ

j
T−t ) + 1

(27)

and

∂tϑ
j
t = −2

r j
t sin(ϑ

j
t − ξ

j
T−t )

(r j
t )2 − 2r j

t cos(ϑ
j
t − ξ

j
T−t ) + 1

(28)

where we have suppressed the dependence on z to ease notation.
We observe that the right hand side of (27) is non-negative and maximised when

ϑ
j
t − ξ

j
T−t = 0. In this case, the differential equation

∂t r
j
t = r j

t
r j
t + 1

r j
t − 1

can be solved explicitly,

r j
t (z) = 1

2|z|
(
et |z|2 + 2et |z| + et − et/2(|z| + 1)

√
et (|z| + 1)2 − 4|z| − 2|z|

)
.

Noting that

r j
t (z) � et

(|z| + 1)2

|z| � 4et |z|, |z| > 1,

we obtain the crude estimate

|z| � |u j
t (z)| � 4|z|et . (29)
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Lemma 11. Suppose z0 ∈ �, T > 0 and ξ0 : (0, T ] → R are given and let

�t =
∫ t

0

2|u0s (z0)|2ds
|(u0s )′(z0)||u0s (z0)eiξ

0
T−s − 1|2

.

There exists some absolute constant A such that, for all |z| > 1 satisfying

|z − z0| � A−1 inf
0�t�T

⎛

⎝ |u0t (z0)e−iξ0T−t − 1|
|(u0t )′(z0)|

∧
(∫ t

0

|(u0s )′(z0)|
|u0s (z0)e−iξ0T−s − 1|3

ds

)−1
⎞

⎠ ,

(30)

we have, for all 0 � t � T ,
∣
∣
∣
∣log

u0t (z) − u0t (z0)

(z − z0)(u0t )′(z0)

∣
∣
∣
∣ � A|z − z0|

∫ t

0

|(u0s )′(z0)|ds
|u0s (z0)e−iξ0T−s − 1|3

(where we interpret the left hand side as being equal to 0 if z = z0) and
∣
∣
∣
∣log

(u0t )
′(z)

(u0t )′(z0)

∣
∣
∣
∣ � A|z − z0|

∫ t

0

|(u0s )′(z0)|ds
|u0s (z0)e−iξ0T−s − 1|3

.

Furthermore, A can be chosen so that if, in addition, ξ1 : (0, T ] → R satisfies

‖ξ1 − ξ0‖T � A−1 inf
0�t�T

⎛

⎝ |u0t (z0)e−iξ0T−t − 1|
|(u0t )′(z0)|�t + |u0t (z0)|

∧
(∫ t

0

�s |(u0s )′(z0)| + |u0s (z0)|
|u0s (z0)e−iξ0T−s − 1|3

ds

)−1
⎞

⎠ ,

(31)

then, for all 0 � t � T ,
∣
∣
∣u1t (z) − u0t (z)

∣
∣
∣ � A|(u0t )′(z0)|‖ξ1 − ξ0‖T�t (32)

and
∣
∣
∣
∣log

(u1t )
′(z)

(u0t )′(z)

∣
∣
∣
∣ � A‖ξ1 − ξ0‖T

∫ t

0

�s |(u0s )′(z0)| + |u0s (z0)|
|u0s (z0)e−iξ0T−s − 1|3

ds.

Lemma 11 can be interpreted as telling us that, provided u0t (z0) stays away from

eiξ
0
T−t , u1t (z) will be close to u

0
t (z0) for sufficiently small |z − z0| and ‖ξ1 − ξ0‖T . The

conditions in (30) and (31) quantify precisely what is meant by ‘sufficiently small’.

Remark. 1. At first glance, Lemma 11may not appear to be very illuminating. However,
the key point is that all of the bounds have been expressed purely in terms of u0t (z0)
for 0 � t � T , which enables us to obtain good estimates in situations where we have
good control over u0t (z0). The benefit of this approach is demonstrated in Sect. 6.2.
There, u0t (z0) is taken to be the solution corresponding to a constant driver and so
the relevant terms may be computed explicitly to yield simple expressions.
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2. The conditions (30) and (31) can be simplified by observing that by (27), for any
g : [0, T ] → [0,∞),

∫ t

0

g(s)ds

|u0s (z0)e−iξ0T−s − 1|2
� sup

0�s�t
g(s)

∫ t

0

∂sr0s
r0s ((r0s )2 − 1)

ds

= 1

2
sup

0�s�t
g(s) log

(|u0t (z0)|2 − 1)|z0|2
|u0t (z0)|2(|z0|2 − 1)

.

Therefore

inf
0�t�T

⎛

⎝g(t)−1 ∧
(∫ t

0

g(s)

|u0s (z0)e−iξ0T−s − 1|2
ds

)−1
⎞

⎠

can be replaced by

inf
0�t�T

g(t)−1
(
1

2
log

|z0|
|z0| − 1

)−1

.

However, in the cases we are interested in, it is possible to eliminate the log term by
computing the integral explicitly.

3. Although this result is most powerful when applied to specific choices of z0 and ξ0,
it can be used to provide generic estimates too.
Observe that, by (26) and the crude estimates on |u0t (z0)| in (29),

�t �
∫ t

0
exp

(

−s +
∫ s

0

2|u0s (z0)|dr
|u0r (z0)e−iξ0T−r − 1|2

)
8|z0|es |u0s (z0)|

|u0s (z0)e−iξ0T−s − 1|2
ds

= 4|z0|
(

exp

(∫ t

0

2|u0s (z0)|ds
|u0s (z0)e−iξ0T−s − 1|2

)

− 1

)

and, by (27),
∫ t

0

2|u0s (z0)|dt
|u0s (z0)e−iξ0T−s − 1|2

=
∫ t

0

2∂sr0s ds

(r0s )2 − 1
= log

(|u0t (z0)| − 1)(|z0| + 1)

(|u0t (z0)| + 1)(|z0| − 1)
.

Hence it follows from (32) (taking z = z0) that there exists some absolute constant
A such that

|1
T (z) − 0

T (z)| � A‖ξ1 − ξ0‖T |(0
T )′(z)||z| (|

0
T (z)| − 1)(|z| + 1)

(|0
T (z)| + 1)(|z| − 1)

.

By using standard distortion estimates to bound |(0
T )′(z)|, there exists some (pos-

sibly different) absolute constant A such that

|1
T (z) − 0

T (z)| � AeT |z|‖ξ1 − ξ0‖T
(|z| − 1)2

(cf Proposition 3).
Here we have used only generic information about the two flows. We note that this
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last estimate is not optimal, however, as we have takenworst-case bounds for both�T
and |(0

T )′(z)|, whereas typically these two quantities are bad in different regions.
Indeed, one expects the exponent 1 in the denominator as has been proved in the
chordal setting. In fact, one can start from the setting of Proposition 3 to obtain an
exponent 1 + δ for δ > 0 arbitrarily small (see [9]). Alternatively, one can localise
and use the half-plane case (see [11]). By following the latter approach near the tip
of a slit map, one can obtain an estimate that also exploits information about the
derivative but with a sub-power correction that we do not get here.

We emphasize that the case in which we apply this result is not the generic one. We
have much information about |(u0t )′(z0)| and the form of the estimates here allows
us to use this information efficiently.

Proof. Set δ j
t = u j

t (z) − u0t (z0) for j = 0, 1. Then δ
j
t satisfies the ODE

dδ j
t

dt
= h(u j

t (z), e
−iξ j

T−t ) − h(u0t (z0), e
−iξ0T−t ).

We shall obtain the desired estimates by linearising this ODE and showing that, under
assumptions (30) and (31), the higher order terms can be controlled.

Write

dδ j
t

dt
= δ

j
t
∂h

∂u
(u0t (z0), e

−iξ0T−t )

+(e−iξ j
T−t − e−iξ0T−t )

∂h

∂v
(u0t (z0), e

−iξ0T−t ) + H j (t)

where, by direct computation,

H j (t) = −
2

(
(δ

j
t )

2e−iξ j
T−t + 2δ j

t (e
−iξ j

T−t − e−iξ0T−t )u0t (z0) + (e−iξ j
T−t − e−iξ0T−t )2(u0t (z0))

2u j
t (z)

)

(u0t (z0)e
−iξ0T−t − 1)2(u j

t (z)e
−iξ j

T−t − 1)
.

Taking j = 0, we have

d

dt
log δ0t = ∂h

∂u
(u0t (z0), e

−iξ0T−t ) + (δ0t )
−1H0(t)

and hence, using (26) and that (u00)
′(z0) = 1,

log
δ0t

(z − z0)(u0t )′(z0)
=

∫ t

0
(δ0s )

−1H0(s)ds. (33)

Taking j = 1, we have

d

dt

(
δ1t

(u0t )′(z0)

)

= 1

(u0t )′(z0)
dδ1t
dt

− δ1t

(u0t )′(z0)2
d

dt

(
(u0t )

′(z0)
)

= 1

(u0t )′(z0)

(

(e−iξ1T−t − e−iξ0T−t )
dh

dv
(u0t (z0), e

−iξ0T−t ) + H1(t)

)

and hence, using (25),

δ1t

(u0t )′(z0)
− (z − z0) = −

∫ t

0

2(e−iξ1T−s − e−iξ0T−s )u0s (z0)
2

(u0s )
′(z0)(u0s (z0)eiξ

0
T−s − 1)2

ds +
∫ t

0

H1(s)

(u0s )
′(z0)

ds. (34)
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Since
∣
∣
∣
∣
∣

∫ t

0

2(e−iξ1T−s − e−iξ0T−s )u0s (z0)
2

(u0s )
′(z0)(u0s (z0)eiξ

0
T−s − 1)2

ds

∣
∣
∣
∣
∣
� ‖ξ1 − ξ0‖T�t

it follows immediately that

|δ1t − (z − z0)(u
0
t )

′(z0)| � |(u0t )′(z0)|
(

‖ξ1 − ξ0‖T�t +
∫ t

0

|H1(s)|
|(u0s )′(z0)|

ds

)

.

We next obtain bounds on H j (t), under the assumption that t � T j , where

T j = inf
{
t > 0 : |δ j

t | > 2|(u0t )′(z0)|
(
‖ξ j − ξ0‖T�t + |z − z0|

)}
∧ T .

In what follows, we shall show that if we take A = 25 in assumption (30) then T 0 = T
and if we take it in (30) and (31) then T 1 = T . (Note that we have made no attempt to
optimise the value of A.)

Using (31) and (26),

‖ξ1 − ξ0‖T � |u0t (z0)e−iξ0T−t − 1|
25|u0t (z0)|

and

|δ j
t | � 4|u0t (z0)e−iξ0T−t − 1|

25

for all t � T j . Hence,
∣
∣
∣|u j

t (z)e
−iξ j

T−t − 1| − |u0t (z0)e−iξ0T−t − 1|
∣
∣
∣

� |u j
t (z)e

−iξ j
T−t − u0t (z0)e

−iξ0T−t |
� |u j

t (z) − u0t (z0)||e−iξ j
T−t | + |e−iξ j

T−t − e−iξ0T−t ||u0t (z0)|
� |δ j

t | + ‖ξ j − ξ0‖T |u0t (z0)|
� 1

5
|u0t (z0)e−iξ0T−t − 1|

and so

|u j
t (z)e

−iξ j
T−t − 1| � 4

5
|u0t (z0)e−iξ0T−t − 1|.

Also

|u j
t (z)| � |u0t (z0)| + |δ j

t | � 33

25
|u0t (z0)|.

Hence, using the bounds above,

∣
∣
∣(δ0t )

−1H0(t)
∣
∣
∣ � 5|δ0t |

2|u0t (z0)e−iξ0T−t − 1|3
� 5

|z − z0||(u0t )′(z0)|
|u0t (z0)e−iξ0T−t − 1|3
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and so, by (33), T 0 = T and the first statement in the lemma follows. Similarly

|H1(t)| � 5

2|u0t (z0)e−iξ0T−t − 1|3

×
(

(δ1t )
2 + 2|u0t (z0)||δ1t |‖ξ1 − ξ0‖T +

33

25
|u0t (z0)|3‖ξ1 − ξ0‖2T

)

�
20

(‖ξ1 − ξ0‖2T�2
t + |z − z0|2

) |(u0t )′(z0)|2
|u0t (z0)e−iξ0T−t − 1|3

+
233|u0t (z0)|2‖ξ1 − ξ0‖T
250|u0t (z0)e−iξ0T−t − 1|2

.

By (31), we have
∫ t

0

|H1(s)|
|(u0s )′(z0)|

ds � ‖ξ1 − ξ0‖T�t + 20|z − z0|2
∫ t

0

|(u0s )′(z0)|
|u0s (z0)e−iξ0T−s − 1|3

ds.

It follows that T 1 = T and hence

|δ1t − (z − z0)(u
0
t )

′(z0)|

� |(u0t )′(z0)|
(

2‖ξ1 − ξ0‖T�t + 20|z − z0|2
∫ t

0

|(u0s )′(z0)|
|u0s (z0)e−iξ0T−s − 1|3

ds

)

.

To obtain estimates on the derivative, we use that

log(u j
t )

′(z) =
∫ t

0

∂h

∂u
(u j

s (z), e
−iξ j

T−s )ds

=
∫ t

0

(
∂h

∂u
(u0s (z0), e

−iξ0T−s ) + H j
1 (s)

)

ds

= log(u0t )
′(z0) +

∫ t

0
H j
1 (s)ds

where

H j
1 (t) =

−2
(
δ
j
t e

−iξ j
T−t + (e−iξ j

T−t − e−iξ0T−t )u0t (z0)
)

(u0t (z0)e
−iξ0T−t − 1)(u j

t (z)e
−iξ j

T−t − 1)

×
(

1

u0t (z0)e
−iξ0T−t − 1

+
1

u j
t (z)e

−iξ j
T−t − 1

)

.

As above,

|H j
1 (t)| � 25

2

(

‖ξ j − ξ0‖T |(u0t )′(z0)|�t + |u0t (z0)|
|u0t (z0)e−iξ0T−t − 1|3

+ |z − z0| |(u0t )′(z0)|
|u0t (z0)e−iξ0T−t − 1|3

)

and hence
∣
∣
∣
∣
∣
log

(u j
t )

′(z)
(u0t )′(z0)

∣
∣
∣
∣
∣
� 25

2

(

‖ξ j − ξ0‖T
∫ t

0

|(u0s )′(z0)|�s + |u0s (z0)|
|u0s (z0)e−iξ0T−s − 1|3

ds

+|z − z0|
∫ t

0

|(u0s )′(z0)|
|u0s (z0)e−iξ0T−s − 1|3

ds

)

.
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Finally, we observe that, by the same arguments as above, under assumption (30) with

A = 25, |u0t (z)|/|u0t (z0)|, |u0t (z)e−iξ0T−t−1|/|u0t (z0)e−iξ0T−t−1| and |(u0t )′(z)|/|(u0t )′(z0)|
can be bounded above and below by strictly positive absolute constants and hence there
exists some absolute constant A1 � 1 such that

|(u0t )′(z)|�̃t + |u0t (z)| � A1

(
|(u0t )′(z0)|�t + |u0t (z0)|

)

for all 0 � t � T , where

�̃t =
∫ t

0

2|u0s (z)|2ds
|(u0s )′(z)||u0s (z)eiξ

0
T−s − 1|2

.

Hence, if assumption (31) holds with A = 25(5/4)3A1, then

‖ξ1 − ξ0‖T � 25−1 inf
0�t�T

(
|u0t (z)e−iξ0T−t − 1|

|(u0t )′(z)|�̃t + |u0t (z)|

∧
(∫ t

0

�̃s |(u0s )′(z)| + |u0s (z)|
|u0s (z)e−iξ0T−s − 1|3

ds

)−1
⎞

⎠ ,

and so we may set z = z0 in the computation above to get that

|u1t (z) − u0t (z)| � 2|(u0t )′(z)|‖ξ1 − ξ0‖T �̃T � A|(u0t )′(z0)|‖ξ1 − ξ0‖T�T

and
∣
∣
∣
∣log

(u1t )
′(z)

(u0t )′(z)

∣
∣
∣
∣ � A‖ξ1 − ξ0‖T

∫ t

0

�s |(u0s )′(z0)| + |u0s (z0)|
|u0s (z0)e−iξ0T−s − 1|3

ds,

as required. ��

6.2. Small driving functions. In this section, we explicitly evaluate u0t (z0) and (u0t )
′(z0)

when ξ0 ≡ 0 and either arg z0 = 0 or |z0| = 1. This enables us to compare T (z) to the
slit map fT (z) when ξ , the driving function of , is close to zero. Since ξ0T−t does not
depend on T , u0t (z0) = ft (z0) and (u0t )

′(z0) = f ′
t (z0) for all t � 0. We could therefore,

in principle, just substitute the estimates from Sect. 4 into Lemma 11. However, instead
we observe that in these two cases solving the pair of differential equations (27) and
(28) reduces to solving a single ordinary differential equation, and we are able to obtain
explicit solutions directly.

First suppose that z0 = r > 1. Set u0t (z0) = r0t e
iϑ0

t . From (28) it is immediate that
ϑ0
t = 0 for all t > 0. Substituting this into (27) we get

∂t r
0
t = r0t

r0t + 1

r0t − 1
. (35)

Solving this gives

log

(
(r0t + 1)2r

r0t (r + 1)2

)

= t
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or

u0t (z0) = r0t = (r + 1)2et

2r

⎛

⎝1 +

√

1 − 4re−t

(r + 1)2

⎞

⎠ − 1. (36)

Observe that if r = 1, then r0t = d(t) + 1.
Now suppose z0 = eiθ where |θ | ∈ (0, π). Although u0t (z0) is not explicitly defined

when |z0| = 1, u0t (z) for |z| > 1 can be continuously extended to the boundary of the
unit disk in a well-defined way, so this is the interpretation we put on u0t (e

iθ ).
From (27) it is immediate that r0t = 1 for all t � inf{t > 0 : u0t (e

iθ ) = 1}.
Substituting this into (28) we get

∂tϑ
0
t = − sin ϑ0

t

1 − cosϑ0
t

= − cot
ϑ0
t

2
.

Solving this gives
ϑ0
t = ϑ0

t (eiθ ) = cos−1 (
(1 + cos θ)et − 1

)
(37)

and hence

inf{t > 0 : u0t (eiθ ) = 1} = log
2

1 + cos θ
.

Corollary 12. Suppose t (z) is the solution to the Loewner Eq. (11).

(i) (Near the tip). There exists some absolute constant A such that, for all |z| > 1 and
T > 0 satisfying ‖ξ‖T + | arg z| � A−1(|z| − 1)/|z|, we have

∣
∣
∣
∣log

| ′
T (z)|

| f ′
T (z)|

∣
∣
∣
∣ �

(
A|z|(‖ξ‖T + | arg z|)

|z| − 1

)2

.

(ii) (Away from the tip). There exists some absolute constant A such that, for all |z| > 1
and T > 0 satisfying

T � log
2

1 + cos(arg z)

and

‖ξ‖T + |z| − 1 � A−1e−T/2 cot
arg z

2
tan

ϑ0
T

2

√
1 − cosϑ0

T ,

where ϑ0
t is defined as in (37) with θ = arg z, we have

∣
∣
∣
∣
∣
∣
log

| ′
T (z)|

tan arg z
2 cot

ϑ0
T
2

∣
∣
∣
∣
∣
∣
� A

√
eT (eT − 1)(‖ξ‖T + |z| − 1)

1 − cosϑ0
T

� 1,

1 − cos(argT (z)) � A(1 − cosϑ0
T ),

and

|T (z)| − 1 � A−1(|z| − 1) tan
arg z

2
cot

ϑ0
T

2
.
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Proof. (i) Set z0 = |z| and define r0t as in (36), with r = |z|. Using (35), we compute
|(u0t )′(z0)| and �t from Lemma 11. By (26),

|(u0t )′(z0)| = et exp

(

−
∫ t

0

2ds

(r0s − 1)2

)

= et exp

(

−
∫ t

0

2∂sr0s
r0s ((r0s )2 − 1)

ds

)

= et
(r2 − 1)(r0t )2

((r0t )2 − 1)r2

= (r − 1)r0t (r0t + 1)

(r0t − 1)r(r + 1)

� et .

Therefore, again using (35),

�t =
∫ t

0

(r0s − 1)r(r + 1)

(r − 1)r0s (r0s + 1)

2(r0s )2

(r0s − 1)2
ds = 2r(r0t − r)

(r − 1)(r0t + 1)

and so

|(u0t )′(z0)|�t = 2r0t (r0t − r)

(r0t − 1)(r + 1)
� r0t .

Hence

|(u0t )′(z0)|�t + |u0t (z0)|
|u0t (z0) − 1| � 2r0t

r0t − 1
� 2|z|

|z| − 1

and
∫ t

0

|(u0s )′(z0)|�s + |u0s (z0)|
|u0s (z0) − 1|3 ds �

∫ t

0

2r0s
(r0s − 1)3

ds � 1

|z| − 1
.

Here we have used that r0t � |z| for all 0 � t � T in each of the final inequalities in
the preceding two displays. Similarly

|(u0t )′(z0)|
|u0t (z0) − 1| � 1

|z| − 1

and
∫ t

0

|(u0s )′(z0)|
|u0s (z0) − 1|3 ds � 1

2|z|(|z|2 − 1)
.

By Lemma 11, using that r0t � 4|z|et , we get
∣
∣
∣
∣log

 ′
T (z)

f ′
T (z)

∣
∣
∣
∣ � A‖ξ‖T

|z| − 1
.
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By using that u0t (z0) and hence (u0t )
′(z0) are purely real, that

∣
∣
∣Re (eiξt ) − 1

∣
∣
∣ � ‖ξ‖2T

and that

|Re z − |z|| � |z|(arg z)2,
it is possible to repeat the computations in the proof of Lemma 11 for the real parts
of u1t (z) and log(u1t )

′(z) to obtain the stronger bound

∣
∣
∣
∣log

| ′
T (z)|

| f ′
T (z)|

∣
∣
∣
∣ =

∣
∣
∣
∣Re log

 ′
T (z)

f ′
T (z)

∣
∣
∣
∣ �

(
A|z|(‖ξ‖T + | arg z|)

|z| − 1

)2

.

We omit the details as the argument is almost identical to that used in the proof of
Lemma 11.

(ii) Set z0 = ei arg z . If 0 � t � T < log 2
1+cos(arg z) , then defining ϑ0

t as in (37), with
θ = arg z,

|u0t (z0) − 1|2 = 2(1 − cosϑ0
t ),

|(u0t )′(z0)| = exp

(∫ t

0

ds

1 − cosϑ0
s

)

= exp

(

−
∫ t

0

∂sϑ
0
s

sin ϑ0
s
ds

)

= tan
θ

2
cot

ϑ0
t

2
,

and

�t = cot
θ

2

∫ t

0

tan ϑ0
t
2

1 − cosϑ0
s
ds = 1 − cot

θ

2
tan

ϑ0
t

2
.

By standard trigonometric identities, and using the explicit value of ϑ0
t from (37),

tan
θ

2
cot

ϑ0
t

2
=

√
(1 − cos θ)(1 + cosϑ0

t )

(1 + cos θ)(1 − cosϑ0
t )

=
√

(1 − cos θ)et

1 − cosϑ0
t

=
√

1 +
2(et − 1)

1 − cosϑ0
t
.

(38)
Hence

|(u0t )′(z0)|�t = tan
θ

2
cot

ϑ0
t

2
− 1,

|(u0t )′(z0)|�t + |u0t (z0)|
|u0t (z0) − 1| = |(u0t )′(z0)|

|u0t (z0) − 1| = tan θ
2 cot

ϑ0
t
2√

2(1 − cosϑ0
t )
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and

∫ t

0

|(u0s )′(z0)|
|u0s (z0) − 1|3 ds = 2−3/2 tan

θ

2

∫ t

0

cot ϑ0
s
2

(1 − cosϑ0
s )3/2

ds

�
tan θ

2

23/2
√
1 + cos θ

∫ t

0

cot ϑ0
s
2 sin ϑ0

s

(1 − cosϑ0
s )2

ds

= tan θ
2

23/2
√
1 + cos θ

cosϑ0
t − cos θ

(1 − cosϑ0
t )(1 − cos θ)

= et/2(1 − e−t ) tan θ
2 cot

ϑ0
t
2

23/2(1 − cos θ)

√
1 − cosϑ0

t

�
et/2 tan θ

2 cot
ϑ0
t
2

4
√
1 − cosϑ0

t

,

where we used the upper bound on T in the final line. The first result follows directly
from Lemma 11. For the second, as in the proof of Lemma 11,

2 (1 − cos(arg |T (z)| − ξ0)) � |u1T (z)e−iξ0 − 1|2
� 4|u0T (z0) − 1|2 = 8(1 − cosϑ0

T ),

and the result follows by using the assumption on ‖ξ‖T . For the final result, observe
that, by (27) and Lemma 11 there exist absolute constants Ai such that

log
|T (z)| − 1

|z| − 1

=
∫ T

0

|u1t (z)|(|u1t (z)| + 1)

|u1t (z)e−iξT−t − 1|2 dt

�
∫ T

0

2

|u0t (z0) − 1|2 dt −
∫ T

0

∣
∣
∣
∣

2

||u1t (z)e−iξT−t − 1|2 − 2

|u0t (z0) − 1|2
∣
∣
∣
∣ dt

�
∫ T

0

dt

1 − cosϑ0
t

− A1

∫ T

0

|u1t (z) − u0t (z0)| + ‖ξ‖T
|u0t (z0) − 1|3 dt

� log tan
θ

2
cot

ϑ0
T

2

− A2

(

‖ξ‖T
∫ T

0

�t |(u0t )′(z0)| + |u0t (z0)|
|u0t (z0)e−iξ0T−t − 1|3

dt + (|z| − 1)
∫ T

0

|(u0t )′(z0)|dt
|u0t (z0)e−iξ0T−t − 1|3

)

� log tan
θ

2
cot

ϑ0
T

2
− A3.

Taking A > eA3 gives the required result. ��
Next, we extend Corollary 12 (ii) to give a lower bound on the derivative that holds

for all values of T .
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Lemma 13. Suppose t (z) is the solution to the Loewner Eq. (11). There exists some
absolute constant B such that, for all T > 0 and |z| > 1 satisfying

‖ξ‖T + |z| − 1 � A−1
√
1 − cos(arg z),

where A is the absolute constant from Corollary 12 (ii), we have

| ′
T (z)| � (|z| − 1)

√
1 − cos(arg z)

BeT (‖ξ‖T + |z| − 1)
.

Proof. We first obtain a generic lower bound on | ′
T (z)|, without making any assump-

tions on the driving function ξ or initial value z. By (26)

log | ′
T (z)| � T −

∫ T

0

2

|u1t (z)e−iξT−t − 1|2 ds

= T −
∫ T

0

2∂t r1t
r1t

(
(r1t )2 − 1

)dt = log
eT |T (z)|2(|z|2 − 1)

|z|2(|T (z)|2 − 1)
.

Therefore, using the fact that |T (z)| � |z|,

| ′
T (z)| � eT (|z| − 1)

|T (z)| − 1
.

Now suppose T satisfies the conditions of Corollary 12 (ii). Then

| ′
T (z)| � e−1 tan(arg(z)/2) cot(ϑ0

T /2) � 1

3

and hence the required result holds provided B � 3
√
2.

If T does not satisfy the conditions from Corollary 12 (ii), then there exists some
0 < S1 < T such that

‖ξ‖T + |z| − 1 = A−1e−S1/2 cot
arg z

2
tan

ϑ0
S1

2

√
1 − cosϑ0

S1
.

By (38), this is equivalent to

1 − cosϑ0
S1 = AeS1(‖ξ‖T + |z| − 1)

√
1 − cos(arg z).

WecanwriteT (z) = T−S1(ψS1(z))whereψS1 is the solution to theLoewner equation
for some driving function which is bounded by ‖ξ‖T . Using the generic estimate above,
the results of Corollary 12 (ii) applied to ψS1(z), the identity in (38), and that |T (z)|−
1 � 4|z|eT ,

| ′
T (z)| � eT−S1 |ψS1(z)| − 1

|T (z)| − 1
|ψ ′

S1(z)|

�
eT−S1(|z| − 1) tan2(arg(z)/2) cot2(ϑ0

S1
/2)

12A|z|eT
= (|z| − 1)(1 − cos(arg z))

12A(1 − cosϑ0
S1

)

� (|z| − 1)
√
1 − cos(arg z)

12A2eT (‖ξ‖T + |z| − 1)
.

Taking the absolute constant B = 12A2, gives the required result. ��
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Finally, we describe the radial and angular effect of the slit map ft (z) near the tip for
small values of t .

Lemma 14. There exists some absolute constant B such that, for all 0 < t < 1 and
|z| > 1 with | arg z| � t1/2, we have

| ft (z)| − 1 � B−1t1/2 and | arg ft (z)| � B(|z| − 1).

Proof. By (27) and (28), | ft (z)| is increasing in t and | arg ft (z)| is decreasing in t .
Therefore, without loss, wemay assume that |z|−1 � A−1t1/2 and (1−cos(arg z))1/2 �
A(|z| − 1) where A is the absolute constant from Corollary 12 (ii). (Here we have used
that | arg z| � (1− cos(arg z))1/2). It follows that |z| − 1 � A−1(1− cos(arg z))1/2 and
so there exists some s � log(2/(1 + cos(arg z))) such that

|z| − 1 = A−1e−s/2 cot
arg z

2
tan

ϑ0
s

2

√
1 − cosϑ0

s ,

where ϑ0
s is defined as in (37) with θ = arg z. Observe that, by Corollary 12 (ii),

1 − cos(arg fs(z)) � A(1 − cosϑ0
s )

= A3es
(

(|z| − 1) tan
arg z

2
cot

ϑ0
s

2

)2

� 3A5(| fs(z)| − 1)2.

Hence, again using (27) and that | arg fr (z)| is decreasing and | fr (z)| increasing in r ,
we have for all s � r � t that

∂r | fr (z)| � | fr (z)| | fr (z)|2 − 1

(| fr (z)| − 1)2 + 2| fr (z)|(1 − cos(arg fs(z)))

� A−1
1 | fr (z)| | fr (z)|2 − 1

(| fr (z)| − 1)2

for some absolute constant A1. It follows that

log

(
(| ft (z)| + 1)2

4| ft (z)|
)

� log

(
(| ft (z)| + 1)2| fs(z)|
| ft (z)|(| fs(z)| + 1)2

)

� t − s

A1
= log

(
(d((t − s)/A1) + 2)2

4(d((t − s)/A1) + 1)

)

and hence | ft (z)| � 1 + d((t − s)/A1). Since 0 < t < 1, it is straightforward to verify
that

log
2

1 + cos(t1/2)
� t

2

and so s � t/2, Therefore | ft (z)| − 1 � d(t/(2A1)) � B−1
1 t1/2 for some absolute

constant B1.
By (27) and (28),

∂r (arg fr (z))

sin(arg fr (z))
= −2∂r (| fr (z)|)

| fr (z)|2 − 1
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and hence, integrating both sides,

tan

(
arg ft (z)

2

)

= tan
(arg z

2

) (| ft (z)| + 1)(|z| − 1)

(| ft (z)| − 1)(|z| + 1)

� B1 tan

(
t1/2

2

)
(2 + d(t))(|z| − 1)

2t1/2
.

It follows that there exists some absolute constant B � B1 such that | arg ft (z)| �
B(|z| − 1). ��

We are now in a position to return to the ALE(0, η) model and apply our results to
prove Lemma 8, which we restate for convenience.

Lemma 8. Fix T > 0, let n � �T/c and set εn = (eσ − 1) ∨ supk�n |θk |.
(i) There exists some absolute constant A > 1, such that if |θ − θn| < c1/2 and εn <

A−1c1/2, then
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

�′
n(e

σ+iθ )

( f θn
nc )′(eσ+iθ )

∣
∣
∣
∣
∣
− 1

∣
∣
∣
∣
∣
< Aε2nc

−1.

(ii) There exist absolute constants A and B only dependent on T , such that if εn �
A−1c1/2, then

∣
∣
∣�′

n(e
σ+iθ )

∣
∣
∣ � B−1ε−1

n σ (1 − cos(θ − θn))
1/2.

Proof. (i) By the chain rule,

�′
n(e

σ+iθ )

( f θn
nc )′(eσ+iθ )

= �′
n−1( f

θn
c (eσ+iθ ))( f θn

c )′(eσ+iθ )

( f θn
(n−1)c)

′( f θn
c (eσ+iθ ))( f θn

c )′(eσ+iθ )
= �′

n−1( f
θn
c (eσ+iθ ))

( f θn
(n−1)c)

′( f θn
c (eσ+iθ ))

.

Set

w = f θn
c (eσ+iθ ) = eiθn fc(e

σ+i(θ−θn)).

Then if |θ−θn | � c1/2, by Lemma 14,we have |w|−1 > B−1c1/2 and | argw−θn| <

B(eσ − 1) for some absolute constant B, and so

2εn + | argw − θn| � (2B + B2)εnc−1/2(|w| − 1).

Since the conformalmap eiθn�n−1(ze−iθn )has driving functionboundedby supk�n |θk−
θn| � 2εn , by Corollary 12 (i), there exists some constant A (different to that in the
corollary), such that if εn < A−1c1/2, then

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

�′
n−1(w)

( f θn
c(n−1))

′(w)

∣
∣
∣
∣
∣
− 1

∣
∣
∣
∣
∣
� Aε2nc

−1.

Observe that it is not possible to apply Corollary 12 (i) directly to�n in the argument
above, as this result requires (|z| − 1)/| arg z − θn| to be bounded away from zero
which is not the case here. This is where we use that �n evolves in discrete steps.
Specifically, we invoke Lemma 14 to show that the single slit map f θn

c maps z into
a region in which the condition needed for Corollary 12 (i) holds.
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(ii) The result follows directly from Lemma 13. ��
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