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Abstract: We show that there exist factorizable quantum channels in each dimension
≥ 11 which do not admit a factorization through any finite dimensional von Neumann
algebra, and do require ancillas of type II1, thus witnessing new infinite-dimensional
phenomena in quantum information theory. We show that the set of n × n matrices of
correlations arising as second-order moments of projections in finite dimensional von
Neumann algebras with a distinguished trace is non-closed, for all n ≥ 5, and we use this
to give a simplified proof of the recent result of Dykema, Paulsen and Prakash that the set
of synchronous quantum correlationsCs

q(5, 2) is non-closed. Using a trick originating in
work of Regev, Slofstra and Vidick, we further show that the set of correlation matrices
arising from second-order moments of unitaries in finite dimensional von Neumann
algebras with a distinguished trace is non-closed in each dimension ≥ 11, from which
we derive the first result above.

1. Introduction

C. Anantharaman-Delaroche introduced in [1] the class of factorizable completely pos-
itive maps between von Neumann algebras equipped with a normal faithful state, while
studying non-commutative analogues of classical ergodic theory results, including, e.g.,
G.-C. Rota’s “Alternierende Verfahren” theorem.

It was shown in [5] that not all unital completely positive, trace-preserving maps on
Mn(C) (also referred to as unital quantum channels in dimension n) are factorizable
when n ≥ 3, which also led to a negative answer to the so-called asymptotic quantum
Birkoff conjecture, [15]. The tool was the characterization established in [5] that a unital,
completely positive, trace-preserving map T : Mn(C) → Mn(C) is factorizable if and

M. Musat and M. Rørdam: This research was supported by a travel grant from the Carlsberg Foundation,
and by a research grant from the Danish Council for Independent Research, Natural Sciences. This work was
carried out in Spring 2018, while the authors were visiting the Institute for Pure and Applied Mathematics
(IPAM), which is supported by the National Science Foundation

http://crossmark.crossref.org/dialog/?doi=10.1007/s00220-019-03449-w&domain=pdf
http://orcid.org/0000-0001-8250-8585


1762 M. Musat, M. Rørdam

only if there exist a finite von Neumann algebra N equipped with a (faithful, normal)
tracial state τ and a unitary u in Mn(C)⊗ N such that T (x) = (idn ⊗ τ)(u(x ⊗ 1N )u∗),
for all x ∈ Mn(C). Following the terminology introduced in [6], we say in this case that
T admits an exact factorization through Mn(C) ⊗ N , and N is called the ancilla. In all
previously studied cases of factorizable maps (see [5,6], and the recent paper [11] for the
case n = 2), the ancilla could be taken to be finite dimensional, and even a full matrix
algebra. It was, however, first remarked in [12] that one cannot always take the ancilla to
be a full matrix algebra. In this paper we show that for each n ≥ 11, there are factorizable
maps onMn(C) that do not admit a finite dimensional ancilla, nor an ancilla of type I, and
we give concrete examples of such maps, see Example 3.5 and Theorem 4.1. Therefore,
one needs to employ ancillas of type II1 to describe a general factorizable channel in
dimension n ≥ 11. Observe that all factorizable quantum channels do admit an exact
factorization through a type II1 von Neumann algebra (even a type II1 factor), by the
well-known fact that each finite von Neumann algebra equipped with a fixed faithful
normal tracial state embeds in a trace-preserving way into a type II1 factor.

The proof of our result uses very recent developments of analysis in quantum infor-
mation theory concerning the non-closure of certain sets of correlation matrices. The
first such result was due to Slofstra, who proved the failure of what is referred to as the
strong Tsirelson conjecture. This was recently refined by Dykema, Paulsen and Prakash,
[3], to show that the set of synchronous correlation matrices Cs

q(n, k) is non-closed,
when n ≥ 5 and k ≥ 2.

We consider the set D(n) of n × n matrices arising from second-order moments of
n-tuples of projections in finite von Neumann algebras with a (normal, faithful) tracial
state, and the subsetDfin(n) consisting of thosematrices that arise likewise from n-tuples
of projections in finite-dimensional von Neumann algebras (or C∗-algebras). We show
that the set Dfin(n) is not closed, when n ≥ 5. Our proof uses a theorem of Kruglyak,
Rabanovich and Samoilenko, [10], also employed in [3], which describes which scalar
multiples of the identity operator on a (finite dimensional) Hilbert space can arise as
the sum of n projections. We use this to give a shorter and more direct proof of the
main result from [3] that the set of synchronous quantum correlation matrices Cs

q(n, 2)
is non-closed, when n ≥ 5.

Kirchberg, [9], reformulated the Connes Embedding Problem in terms of the set G(n)

of n × n matrices of correlations arising from unitaries in finite von Neumann algebras
with a (normal, faithful) tracial state. This result was further refined by Dykema and
Juschenko, [2], and in their formulation, the Connes Embedding Problem is equivalent
to the statement that F(n) = G(n), for all n ≥ 3, where F(n) is the closure of the set
of n × n matrices of correlations arising from unitaries in full matrix algebras. A trick
originating in (as of yet unpublished) work of Regev, Slofstra andVidick (communicated
to us byW.Slofstra inMay2018),whichwe carry out in the setting of finite vonNeumann
algebras in Sect. 3, allows us to conclude further that the set Ffin(2n + 1) of matrices
of correlations arising from unitaries in finite dimensional von Neumann algebras is
non-closed, whenever Dfin(n) is non-closed, i.e., for all n ≥ 5.

A connection between the set G(n) and the set of factorizable Schur multipliers on
Mn(C)was established in [6]. This connection gives thefinal link between the established
non-closure of the sets Ffin(2n + 1), for n ≥ 5, and existence of factorizable Schur
multipliers with no finite dimensional ancilla (or, even stronger, non type I), in each
dimension ≥ 11.

In the Appendix, written by N. Ozawa, it is shown that the construction by Kruglyak,
Rabanovich and Samoilenko in [10] of an n-tuple of projections with sum equal to a
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multiple α of the identity can be realized in the hyperfinite II1 factorR, for all admissible
values of α, except, possibly, for two extremal ones. This, in turn, implies that the
factorizable Schur multipliers with no finite dimensional ancilla found in this article
do admit R as an ancilla (except, possibly, for the cases corresponding to the above
mentioned extremal values of α).

Different sets of matrices of correlations arising from the generators of L. Brown’s
universal C∗-algebra were shown to be non-closed by Harris and Paulsen [7]. This was
used byGao, Harris and Junge [4] to obtain further non-closure results in amatrix-valued
setting.

2. Non-closure of Sets of Matrices of Quantum Correlations

For n ≥ 2, let D(n) and Dfin(n) be the set of n × n matrices
[
τ(p j pi )

]n
i, j=1, where

p1, . . . , pn are projections in some arbitrary finite von Neumann algebra, respectively,
in some finite dimensional von Neumann algebra, equipped with a (normal) faithful
tracial state τ . We show in this section that Dfin(n) is non-closed, when n ≥ 5, and we
use this to give a more direct proof, avoiding graph correlation functions, of the very
recent result of Dykema, Paulsen and Prakash, [3], that the set of synchronous quantum
correlations Cs

q(5, 2) is non-closed.
Standard arguments involving ultralimits, as in the proof of Proposition 2.4 (v) below,

respectively, direct sums of finite von Neumann algebras, show that the set D(n) is
compact and convex. One can likewise show that the set Dfin(n) is convex. The subset
Dmatrix(n) of Dfin(n) consisting of n × n matrices

[
trk(p j pi )

]n
i, j=1, where p1, . . . , pn

are projections in a matrix algebra Mk(C), for k ≥ 1, is not convex (and not closed),
for any n ≥ 1, since each diagonal entry of such a matrix is the (normalized) trace of
a projection in a matrix algebra, which is a rational number. It is not hard to see that
Dmatrix(n) is a dense subset of Dfin(n).

Note that the closure of Dmatrix(n) is equal to D(n), for all n ≥ 3, if and only if the
Connes Embedding Problem has an affirmative answer (see Sect. 3 for a sketch of a
proof of this fact). Let us also observe that Dfin(2) = D(2) is closed.

Proposition 2.1. We have

D(2) =
{ (

s u
u t

)
: 0 ≤ s, t ≤ 1, max{0, s + t − 1} ≤ u ≤ min{s, t}

}
. (2.1)

Moreover, each matrix in D(2) arises from a pair of projections in the commutative
finite-dimensional C∗-algebra C ⊕ C ⊕ C ⊕ C (with respect to a suitable trace).

In particular, it follows that Dfin(2) = D(2) and Dfin(2) is closed.

Proof. Let (M, τ ) be a finite von Neumann algebra equipped with a tracial state, and let
p, q ∈ M be projections. The associated matrix in D(2) is

(
τ(p) τ (pq)

τ (qp) τ (q)

)
=

(
s u
u t

)
,

where s = τ(p), t = τ(q) and u = τ(pq) = τ(qp) = τ(pqp) = τ(qpq). It is clear
that 0 ≤ s, t ≤ 1. Since 0 ≤ pqp ≤ p and 0 ≤ qpq ≤ q, we further conclude that
0 ≤ u ≤ min{s, t}.
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By Kaplansky’s formula (see, e.g., [8]), we get τ(p∧q) = τ(p)+τ(q)−τ(p∨q) ≥
τ(p)+τ(q)−1. As p∧q = q(p∧q)q ≤ qpq, we infer that u = τ(qpq) ≥ τ(p∧q) ≥
s + t − 1.

To complete the proof, we show that each matrix in the right-hand side of (2.1)
arises from projections p and q in C ⊕ C ⊕ C ⊕ C, with respect to the trace with
weight (α1, α2, α3, α4), satisfying α j ≥ 0 and

∑4
j=1 α j = 1. Set p = (1, 1, 0, 0) and

q = (1, 0, 1, 0). Then pq = (1, 0, 0, 0) and

(
τ(p) τ (pq)

τ (qp) τ (q)

)
=

(
α1 + α2 α1

α1 α1 + α3

)
.

We must therefore choose α1 = u ≥ 0, α2 = s − u ≥ 0, α3 = t − u ≥ 0, and
α4 = 1 − α1 − α2 − α3. The inequality u ≥ s + t − 1 ensures that α1 + α2 + α3 ≤ 1,
whence α4 ≥ 0. ��

We do not know if the sets Dfin(n) are closed for n = 3, 4.
We proceed to prove that the sets Dfin(n) are non-closed, for n ≥ 5, following the

idea of Dykema, Paulsen and Prakash to use Theorem 2.2 below from [10]. As in [10],
let �n be the set of all α ≥ 0 for which there exist projections p1, . . . , pn on a Hilbert
space H such that

∑n
j=1 p j = α · IH . The sets �n are completely described in [10] and

have the following properties: They are symmetric, i.e., if α ∈ �n , then n − α ∈ �n .
Moreover, �2 = {0, 1, 2} and �3 = {0, 1, 3

2 , 2, 3}. The set �4 is a countably infinite
subset of the rational numbers, Q, with one accumulation point, namely 2. For n ≥ 5,
�n is the union of the interval

[ 1
2 (n − √

n2 − 4n), 1
2 (n +

√
n2 − 4n)

]
and a countably

infinite discrete subset of rational numbers, containing {0, 1, n
n−1 , n − n

n−1 , n − 1, n}.
Observe that n

n−1 < 1
2 (n − √

n2 − 4n). Set

�n = [ 1
2 (1 − √

1 − 4/n), 1
2 (1 +

√
1 − 4/n)

] ⊂
(

2n−1
n(n−1) , 1 − 2n−1

n(n−1)

)
. (2.2)

Then �n is an interval with non-empty interior, and n−1�n\�n is contained in Q.

Theorem 2.2 (Kruglyak, Rabanovich and Samoilenko, [10, Theorem 6]). Let n ≥ 2 be
an integer. Then there exist projections p1, . . . , pn on some finite dimensional Hilbert
space H such that

∑n
j=1 p j = α · IH if and only if α ∈ �n ∩ Q.

Note that the “only if” part of the theorem above is trivial: Apply the standard trace
on B(H) to both sides of the equation

∑n
j=1 p j = α · IH , to obtain

∑n
j=1 dim(p j ) =

α dim(H). This argument also gives the following quantitative result for rational values
of α: If α = a/b is irreducible, with a, b positive integers, and if there exist projections
p1, . . . , pn on a Hilbert space H such that

∑n
j=1 p j = α · IH , then dim(H) ≥ b.

For each n ≥ 2 and each t ∈ [1/n, 1], define the n×nmatrix A(n)
t = [

A(n)
t (i, j)

]n
i, j=1

by

A(n)
t (i, j) =

⎧
⎨

⎩

t, i = j,
t (nt − 1)

n − 1
, i �= j.

(2.3)
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Proposition 2.3. Let n ≥ 2 be an integer, let 1/n ≤ t ≤ 1, and let α = nt.

(i) Let A be a unital C∗-algebra with a faithful tracial state τ and let p1, . . . , pn
be projections in A satisfying τ(p j pi ) = A(n)

t (i, j), for all 1 ≤ i, j ≤ n. Then∑n
j=1 p j = α · 1A. Furthermore, if t is irrational, then A is necessarily infinite

dimensional. Respectively, if α = a/b is rational with a, b positive integers and a/b
is irreducible, then A has no representation on a Hilbert space of dimension less
than b.

(ii) Conversely, letA be a unital C∗-algebra with a tracial state τ , and let p1, . . . , pn be
projections inA satisfying

∑n
j=1 p j = α·1A. Then there exist projections p̃1, . . . , p̃n

in some matrix algebra Mm(A) over A satisfying

n∑

j=1

p̃ j = α · 1Mm (A), τ̃ ( p̃ j p̃i ) = A(n)
t (i, j), 1 ≤ i, j ≤ n,

where τ̃ is the normalized trace on Mm(A) induced by τ .

Proof. (i). Set q = (nt)−1 ∑n
j=1 p j . To show that q = 1A, it suffices to check that

1 = τ(q) = τ(q2), since this will entail that τ((1 − q)∗(1 − q)) = τ((1 − q)2) = 0.
These are straightforward calculations: Indeed, τ(q) = (nt)−1 ∑n

j=1 τ(p j ) = 1, and

τ(q2) = (nt)−2
( n∑

j=1

τ(p j ) +
∑

i �= j

τ(pi p j )
)

= (nt)−2
(
nt + n(n − 1) · t (nt − 1)

n − 1

)
= 1.

If t is irrational, then it follows from (the easy part of) Theorem 2.2 that A does not
have any finite dimensional representation on a Hilbert space, so A must be infinite
dimensional. Respectively, if α = a/b is rational with a, b positive integers and a/b
irreducible, then A has no representation on a Hilbert space of dimension less than b,
by the (explicit) comment after the statement of Theorem 2.2.

(ii). We follow the same strategy as in the proof of [3, Theorem 4.2]. Let m = n! and
let Sn denote the collection of all permutations of the set {1, 2, . . . , n}. For 1 ≤ j ≤ n,
set

p̃ j =
⊕

σ∈Sn
pσ( j) ∈

⊕

σ∈Sn
A ⊂ Mm(A),

where the inclusion above is given by identifying the diagonal of Mm(A) with the
direct sum

⊕
σ∈Sn A (for some enumeration of Sn). It is easy to check that

∑n
j=1 p̃ j =

α · 1Mm (A). Moreover, for 1 ≤ i ≤ n,

τ̃ ( p̃i ) = 1

n!
∑

σ∈Sn
τ(pσ(i)) = 1

n

n∑

k=1

τ(pk) : = t0,

and for 1 ≤ i �= j ≤ n,

τ̃ ( p̃i p̃ j ) = 1

n!
∑

σ∈Sn
τ(pσ(i) pσ( j)) = 1

n(n − 1)

∑

k �=�

τ (pk p�) : = s0.
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Since
∑n

j=1 p j = α · 1A, we deduce that t0 = α/n = t , and that

n2t2 = αnt =
n∑

k=1

τ(α · pk) =
n∑

k=1

τ
(
pk

n∑

�=1

p�

) =
n∑

k,�=1

τ(pk p�) = nt + n(n − 1)s0,

from which we conclude that s0 = (n − 1)−1t (nt − 1), as desired. ��
Combining Theorem 2.2 and Proposition 2.3, we obtain the following:

Proposition 2.4. For n ≥ 2 and 1/n ≤ t ≤ 1 we have:

(i) A(n)
t ∈ D(n) if and only if A(n)

t ∈ Dfin(n) if and only if t ∈ n−1�n,
(ii) A(n)

t ∈ Dfin(n) if and only if A(n)
t ∈ Dmatrix(n) if and only if t ∈ n−1�n ∩ Q.

Moreover, for n ≥ 5,

(iii) A(n)
t belongs to Dfin(n)\Dfin(n), for t ∈ n−1�n\Q = �n\Q.

(iv) If t ∈ n−1�n\Q and p1, . . . , pn are projections in a von Neumann algebra (N , τ )

with faithful tracial state satisfying A(n)
t (i, j) = τ(p j pi ), for all 1 ≤ i, j ≤ n, then

N must be of type II1.
(v) For each A ∈ Dfin(n), there exist projections p1, . . . , pn in the ultrapowerRω of the

hyperfinite type II1 factor R such that A(i, j) = τRω(p j pi ), for all 1 ≤ i, j ≤ n.

Proof. Suppose that n ≥ 2 and 1/n ≤ t ≤ 1. From the first part of Proposition 2.3 (i) we
see that A(n)

t ∈ D(n) implies t ∈ n−1�n , while its second part shows that A
(n)
t ∈ Dfin(n)

implies t ∈ n−1�n ∩ Q. Proposition 2.3 (ii) gives that t ∈ n−1�n implies A(n)
t ∈ D(n).

Let t ∈ n−1�n ∩ Q. Then by Theorem 2.2, there exist projections p1, . . . , pn on
a finite dimensional Hilbert space H satisfying

∑n
j=1 p j = α · IH , where α = nt .

Identifying the bounded operators on H with a full matrix algebra, we may assume that
the projections p j belong to Mk(C), for some k ≥ 2. By Proposition 2.3, we can find
projections p̃1, . . . , p̃n in some larger matrix algebra Mm(C) with normalized trace tr,
satisfying A(n)

t (i, j) = tr( p̃i p̃ j ), for all 1 ≤ i, j ≤ n. This shows that A(n)
t belongs to

Dmatrix(n). As Dmatrix(n) ⊂ Dfin(n), this completes the proof of (ii).
To complete the proof of (i) wemust show that A(n)

t ∈ Dfin(n)when t ∈ n−1�n . This
follows directly from (ii) when t is rational. Suppose that t is irrational. As remarked
below (2.2), n−1�n\�n ⊂ Q, for all n ≥ 2. Hence t ∈ �n\Q. We can therefore
find a sequence {tk}∞k=1 of rational numbers in the interval �n converging to t . Then

A(n)
tk → A(n)

t , as k → ∞, and A(n)
tk belongs toDfin(n), for each k ≥ 1, by (i). This shows

that A(n)
t belongs to the closure of Dfin(n).

(iii) follows from (i) and (ii).
(iv). The finite von Neumann algebra N can have no representation on a finite di-

mensional Hilbert space, by the second part of Proposition 2.3 (i), whence N must be
of type II1.

(v). Suppose that A is the limit of a sequence {Ak}∞k=1 of matrices in Dfin(n). Since
each finite dimensional C∗-algebra with a distinguished trace can be embedded in a
trace preserving way into the hyperfinite type II1 factor R, we can find projections
p(k)
1 , . . . , p(k)

n in R satisfying τR(p(k)
j p(k)

i ) = Ak(i, j), for all 1 ≤ i, j ≤ n. Let pi be

the image in Rω of the sequence {p(k)
i }∞k=1 ∈ �∞(R). Then
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τRω(p j pi ) = lim
ω

τR(p(k)
j p(k)

i ) = lim
ω

Ak(i, j) = A(i, j),

for all 1 ≤ i, j ≤ n, as wanted. ��
By Proposition 2.4 (iii) and the fact that �n is an interval with non-empty interior, when
n ≥ 5, cf. (2.2), we obtain the following theorem:

Theorem 2.5. The set Dfin(n) is non-compact, when n ≥ 5.

Remark 2.6. It is shown in Proposition 2.4 above that one can realize the n × n matrix
A(n)
t using projections inRω, for all n ≥ 2 and all t ∈ n−1�n . If moreover t is rational,

then A(n)
t can be realized using projections in some matrix algebra, by Proposition 2.3

(ii).
Using Proposition 2.3, this also shows that for each n ≥ 2 and for each α in �n ,

one can find an n-tuple of projections summing up to α · 1N in some type II1 factor N ,
e.g., N = Rω. One can also reach this conclusion directly from Theorem 2.2, using an
ultraproduct argument as in the proof of Proposition 2.4 (v).

In Theorem A.1 in the Appendix by N. Ozawa it is shown that for each n ≥ 5 and
each α ∈ ( 1

2 (n − √
n2 − 4n), 1

2 (n +
√
n2 − 4n)

)
, one can find an n-tuple of projections

in R summing up to α · 1R. It follows that the matrix A(n)
t can be realized using

projections in R for all t in n−1�n , except, possibly, for the endpoints of the interval[ 1
2 (1 − √

1 − 4/n), 1
2 (1 +

√
1 − 4/n)

]
.

Recall, e.g., from [3, Section 2], that for n, k ≥ 2, the set Cqc(n, k) consists of nk × nk
quantum correlation matrices

[
(p(i, j |v,w)

]
i, j,v,w

with entries given by

p(i, j |v,w) = 〈
Pv,i Qw, jψ,ψ

〉
, 1 ≤ i, j ≤ k, 1 ≤ v,w ≤ n,

where, for each v and w, {Pv,i }ki=1 and {Qw, j }kj=1 are projection-valued measures on
some Hilbert space H , satisfying Pv,i Qw, j = Qw, j Pv,i , for all i, j, v, w, and where
ψ is a unit vector in H . Let Cq(n, k) be the same set of quantum correlation matri-
ces, with the additional assumption that H = HA ⊗ HB , for some finite dimensional
Hilbert spaces HA and HB , and Pv,i belongs to B(HA) ⊗ IHB , while Qw, j belongs to
IHA ⊗ B(HB). The closure of the set Cq(n, k) is denoted by Cqa(n, k). We have the
following inclusions: Cq(n, k) ⊆ Cqa(n, k) ⊆ Cqc(n, k). Furthemore, the sets of syn-
chronous correlation matrices, denoted by Cs

q(n, k), Cs
qa(n, k), and Cs

qc(n, k), respec-
tively, consist of those quantum correlation matrices

[
(p(i, j |v,w)

]
i, j,v,w

in Cq(n, k),
Cqs(n, k), and Cqc(n, k), respectively, where p(i, j |v, v) = 0, whenever i �= j .

We use Theorem 2.5 and Proposition 2.7 below from [13] to give a shorter proof of
[3, Theorem 4.2] of Dykema, Paulsen and Prakash, which, again, was refining Slofstra’s
result (in the general, non-synchronous case) from [14]. For this, using the notation from
[13], for n, k ≥ 2 let Ds

q(n, k) be the set of matrices
[
τ(ev,i ew, j )

]
i, j,v,w

, where ev,i are
projections in a finite dimensional von Neumann algebra with a (faithful) tracial state τ ,
satisfying

∑k
i=1 ev,i = 1, for all 1 ≤ v ≤ n. Note that Ds

q(n, k) is a subset of D(nk).

Proposition 2.7 (Paulsen, Severini, Stahlke, Todorov andWinter, [13]). For all n, k ≥ 2,
one has Cs

q(n, k) = Ds
q(n, k).

Theorem 2.8 (Dykema, Paulsen and Prakash, [3]). The set Cs
q(n, 2) of synchronous

quantum correlation matrices is non-compact, for all n ≥ 5.
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Proof. Use Theorem 2.5 to find a matrix A in D(n)\Dfin(n) and a sequence {Ak}∞k=1
of matrices in Dfin(n) converging to A. Let p1, . . . , pn be projections in Rω such that
τRω(p j pi ) = A(i, j), for all i, j , cf. Proposition 2.4 (v), and let further p(k)

1 , . . . , p(k)
n

be projections in some matrix algebra Mmk (C) with normalized trace trmk such that

trmk (p
(k)
j p(k)

i ) = Ak(i, j), 1 ≤ i, j ≤ n.

Set e0,v = pv and e1,v = 1 − pv in Rω, and set e(k)
0,v = p(k)

v and e(k)
1,v = 1 − p(k)

v in
Mmk (C), for all k ≥ 1 and 1 ≤ v ≤ n. It then follows that

lim
k→∞

[
trmk (e

(k)
v,i e

(k)
w, j )

]
i, j,v,w

= [
τRω(ev,i ew, j )

]
i, j,v,w

,

and each of the matrices
[
trmk (e

(k)
v,i e

(k)
w, j )

]
i, j,v,w

belongs to Ds
q(n, 2) = Cs

q(n, 2), cf.

Proposition2.7.However, thematrix
[
τ(ev,i ew, j )

]
i, j,v,w

itself does not belong toCs
q(n, 2),

since the matrix A = [
τ(ev,0ew,0)

]
v,w

does not belong to Dfin(n). ��
Note that the set Cq(n, 2) of (non-synchronous) quantum correlation matrices contains
Cs
q(n, 2) as a relatively closed subset, which shows that Cq(n, 2) also is non-closed,

when n ≥ 5.
We end this section with a remark on the matrices A(n)

t defined in (2.3).

Remark 2.9. For each integer n ≥ 2 and for all s, t ∈ [0, 1], consider the n × n matrix
A(n)
t,s , whose diagonal entries all are equal to t and whose off-diagonal entries are all

equal to s. Note that A(n)
t = A(n)

t,s , with s := t (nt − 1)/(n − 1), when t ∈ [1/n, 1]. The
purpose of this remark is to describe the set of “admissible pairs” (t, s), for which A(n)

t,s
belongs to D(n), and to show that s = t (nt − 1)/(n − 1) is the smallest number for
which (t, s) is such an admissible pair, for each fixed t ∈ n−1�n ,

Note first that for each fixed t ∈ [0, 1], the set I (n)
t of those s ∈ [0, 1], for which

(t, s) is admissible, is a closed interval. This follows by convexity and compactness of
the set D(n).

Fix t ∈ [0, 1], take a projection p of trace t in some finite von Neumann algebra, and
let p1 = · · · = pn = p. The matrix A(n)

t,t is then equal to
[
τ(p j pi )

]n
i, j=1, and therefore

belongs to D(n). Moreover, since τ(pq) ≤ τ(p), whenever p, q are projections in a
von Neumann algebra with tracial state τ , we conclude that t = max I (n)

t .
For 0 ≤ t ≤ 1/n we can find pairwise orthogonal projections p1, . . . , pn in any type

II1 factorM with τM (p j ) = t , for all j . The corresponding n×nmatrix
[
τ(p j pi )

]n
i, j=1 is

equal to A(n)
t,0 . Hence 0 belongs to I (n)

t . This shows that I (n)
t = [0, t], when 0 ≤ t ≤ 1/n.

Let s, t ∈ [0, 1], and suppose that (t, s) is an admissible pair. Let p1, . . . , pn be pro-
jections in a finite von Neumann algebra with tracial state τ such that

[
τ(p j pi )

]n
i, j=1 =

A(n)
t,s . Put q j = 1 − p j , 1 ≤ j ≤ n. Then

[
τ(q jqi )

]n
i, j=1 = A(n)

1−t,1−2t+s , which shows
that (1−t, 1−2t+s) is an admissible pair. Themap given by (t, s) �−→ (1−t, 1−2t+s)
is involutive, and therefore it maps the set of admissible pairs in [0, 1]2 onto itself. In
particular, this involutionmaps {t}× I (n)

t onto {1−t}× I (n)
1−t . Combining this fact with the

result of the previous paragraph, we obtain that I (n)
t = [2t−1, t], when 1−1/n ≤ t ≤ 1.

Consider finally the case where t ∈ [1/n, 1 − 1/n]. Suppose that s ∈ It , and let
p1, . . . , pn be projections in some finite von Neumann algebra with tracial state τ such
that

[
τ(p j pi )

]n
i, j=1 = A(n)

t,s . Then
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nt + n(n − 1)s = τ
(
(

n∑

i=1

pi )
2
)

≥
(
τ(

n∑

i=1

pi )
)2 = n2t2,

which implies that s ≥ t (nt − 1)/(n− 1). In other words, I (n)
t ⊆ [t (nt − 1)/(n− 1), t].

It was noted in Remark 2.6 that A(n)
t = A(n)

t,t (nt−1)/(n−1) belongs to D(n) if and only

if t belongs to n−1�n . For those values of t , we therefore obtain that s = t (nt −
1)/(n−1) is the smallest number for which (t, s) is an admissible pair, which shows that
I (n)
t = [t (nt − 1)/(n − 1), t].
It remains a curious open problem to detemine the interval I (n)

t , for t belonging
to the (non-empty) set [1/n, 1 − 1/n]\n−1 �n . In this case, necessarily, min I (n)

t >

t (nt − 1)/(n − 1).

3. Correlation Matrices of Unitary Elements

Recall that a correlation matrix is a positive definite matrix whose diagonal entries are
equal to 1. For each integer n ≥ 2, let G(n), Fmatrix(n), and Ffin(n) be the set of n × n
correlationmatrices

[
τ(u∗

j ui )
]n
i, j=1,whereu1, u2, . . . , un are unitaries in somefinite von

Neumann algebra equippedwith a faithful tracial state τ , respectively, in some fullmatrix
algebra with its canonical tracial state, respectively, in some finite dimensional C∗-
algebra with a faithful tracial state. Then the convex hull conv(Fmatrix(n)) of Fmatrix(n)

is equal toFfin(n), and the two setsFmatrix(n) and Ffin(n) have the same closure, which
is denoted byF(n). The sets G(n) andF(n) are compact and convex, see [2, Proposition
1.4].

As shown by Kirchberg, [9] (cf. Dykema–Juschenko, [2]), the Connes Embedding
Problem has an affirmative answer if and only if G(n) = F(n), for all n ≥ 3. We
can use this to show that Dmatrix(n) is dense in D(n), for all n ≥ 3, if and only if the
Connes Embedding Problem has an affirmative answer. Indeed, the proof of the “if”
part follows the same strategy as the proof of the “if” part of Kirchberg’s result, where a
given finite subset ofRω is approximated in trace-norm with a finite subset of a matrix
subalgebra of Rω. To see the “only if” part, assume that Dmatrix(n) is dense in D(n),
for all n ≥ 3. We show that this implies G(n) = F(n), for all n ≥ 3. Take an n-tuple
u1, . . . , un of unitaries in some tracial von Neumann algebra (N , τ ). Fix an integer
m ≥ 1. Each u j can be approximated in norm within 2π/m by unitaries v1, . . . , vn

in N of the form v j = ∑m
k=1 ωk pk, j , where ω = exp(2π i/m) and p1, j , . . . , pm, j

are pairwise orthogonal projections in N summing up to 1, for each j . Approximate
the second-order moments of the collections of projections {pk, j }k, j by second-order
moments of projections {qk, j }k, j in somematrix algebra (Mr (C), trr ). Then trr (qk, j q�, j )

are small when k �= �, and trr
( ∑m

k=1 qk, j
)
is close to 1, for all j . A standard lifting

argument allows us to replace the projections {qk, j }k, j with new projections, close to the
old ones in trace-norm, satisfying

∑m
j=1 qk, j = 1, for all j . Setw j = ∑m

k=1 ωkqk, j . The
second-order moments of the unitariesw1, . . . , wn are then close to those of u1, . . . , un .

Remark 3.1. In the case where n = 2, the set Fmatrix(2) is closed and convex, and
Fmatrix(2) = F(2) = G(2), which further is equal to the set of 2 × 2 matrices of the
form

(
1 z̄
z 1

)
,
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for z ∈ C with |z| ≤ 1. To see that each of these 2 × 2 matrices belongs to Fmatrix(2),
take z ∈ C with |z| ≤ 1 and find λ1 and λ2 on the complex unit circle T, with z =
(λ1 + λ2)/2. The correlation matrix arising from the unitary 2 × 2 matrices u1 = 1 and
u2 = diag(λ1, λ2) is then as desired.

We show in this section that the set Ffin(n) is not closed (hence, not compact), for
all n ≥ 11. This result originates in a remark made by T. Vidick during his talk at one of
the workshops in the Quantitative Linear Algebra program at IPAM, Spring 2018, that
led to subsequent discussions with W. Slofstra, who, in particular, communicated to us
a version of the following result (to appear, in an approximate case, in a forthcoming
paper by O. Regev, W. Slofstra and T. Vidick):

Proposition 3.2. Let M be a finite von Neumann algebra with a faithful tracial state
τM, and let p1, . . . , pn be projections in M. Further, let u0, u1, . . . , un, un+1, . . . , u2n
be the unitaries in M given by

u0 = 1, u j = 2p j − 1, (1 ≤ j ≤ n), u j = (u j−n + i · 1)/√2, (n + 1 ≤ j ≤ 2n).

Let N be another finite von Neumann algebra with a faithful tracial state τN . Then there
exist 2n + 1 unitaries v0, v1, . . . , v2n in N satisfying

τN (v∗
j vi ) = τM (u∗

j ui ), 0 ≤ i, j ≤ 2n, (3.1)

if and only if there exist n projections q1, . . . , qn in N satisfying

τN (q jqi ) = τM (p j pi ), 1 ≤ i, j ≤ n. (3.2)

Proof. Assume that q1, . . . , qn are projections in N satisfying (3.2). Equip the vector
spaces span{p1, p2, . . . , pn} and span{q1, q2, . . . , qn}with the Euclidean structure aris-
ing from the traces τM and τN , respectively. Using (3.2), we see that the map p j �−→ q j ,
1 ≤ j ≤ n, extends to a well-defined linear isometry ϕ from span{p1, . . . , pm} to
span{q1, . . . , qm}. Set v0 = 1, v j = 2q j −1, for 1 ≤ j ≤ n, and v j = (v j−n + i ·1)/

√
2,

for n + 1 ≤ j ≤ n, and use the isometric property of ϕ to check that (3.1) holds.
Conversely, assume that we are given unitaries v0, v1, . . . , v2n in N satisfying (3.1).

Upon replacing v j by v∗
0v j , for all 0 ≤ j ≤ 2n, we may assume that v0 = 1. As

above, equip the vector spaces span{u0, u1, . . . , u2n} and span{v0, v1, . . . , v2n}with the
Euclidean structure arising from the traces τM and τN , respectively. Then, by (3.1), we
have awell-defined linear isometryψ : span{u0, u1, . . . , u2n} → span{v0, v1, . . . , v2n},
mapping u j to v j , for 0 ≤ j ≤ 2n. In particular, for 1 ≤ j ≤ n,

∥∥v j+n − (v j + i · v0)/
√
2
∥∥
2 = ∥∥u j+n − (u j + i · u0)/

√
2
∥∥
2 = 0,

so v j+n = (v j + i · 1)/√2.
Note that if u and (u + i · 1)/√2 are unitaries in some unital C∗-algebra, then u is

necessarily a symmetry. Indeed, if λ is a complex number such that |λ| = |(λ+ i)/√2| =
1, then λ ∈ R. Hence, if u is as stated, then its spectrum is contained in R, which entails
that it is a symmetry.

We conclude that v1, . . . , vn are symmetries. For 1 ≤ j ≤ n, set q j = (v j + 1)/2.
Then q j is a projection and v j = 2q j − 1. Use the isometric property of ψ to check
(3.2). ��
Corollary 3.3. The set Fmatrix(m) is not compact and not convex, whenever m ≥ 3.
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Proof. Let 0 < α < 1 be irrational. Equip M := C ⊕ C with the trace τ given by
τ(x, y) = αx + (1 − α)y, for x, y ∈ C.

Consider first the case where m = 3. Let n = 1 and let p = p1 = (1, 0) ∈ M .
Then τ(p) = α is irrational. Let u0, u1, u2 be the unitaries in M arising from this
projection as in the proposition above (with n = 1). The matrix

[
τ(u∗

j ui )
]2
i, j=0 belongs

to conv(Fmatrix(3)), and hence to F(3). However, by Proposition 3.2, it does not belong
to Fmatrix(3) itself, because no full matrix algebra contains a projection of irrational
trace, and therefore contains no projection q = q1 satisfying (3.2) (with n = 1).

Assume now thatm > 3, let u0, u1, u2 be as above, and let unitaries u3, u4, . . . , um−1
in M be arbitrary. If v0, v1, . . . , vm−1 are unitaries in some tracial von Neumann algebra
(N , τN ) satisfying (3.1), then v0, v1, v2 satisfy (3.1) with respect to the set {u0, u1, u2},
so v0, v1, v2, and hence v0, v1, . . . , vm−1 cannot be found in a full matrix algebra. These
arguments also yield the non-convexity of the set Fmatrix(m) in all cases. ��
Example 3.4. For m = 3, the correlation matrix B = [

τ(u∗
j ui )

]2
i, j=0 from the proof

above, with unitaries given by

u0 = (1, 1), u1 = (1,−1), u2 =
(
1 + i√

2
,
−1 + i√

2

)
,

has the following explicit form in terms of the parameter α ∈ (0, 1):

B =

⎛

⎜⎜
⎜
⎝

1 γ
γ−i√

2

γ 1 1−γ i√
2

γ+i√
2

1+γ i√
2

1

⎞

⎟⎟
⎟
⎠

,

where γ = 2α − 1 ∈ (−1, 1). Note that the matrix B belongs to Ffin(3), for all
γ ∈ (−1, 1), while it does not belong to Fmatrix(3), whenever γ is irrational.

Example 3.5. For each n ≥ 2 and each t ∈ [1/n, 1], consider the self-adjoint (1 + 2n)×
(1 + 2n) complex matrix

B(n)
t =

⎛

⎝
1 X∗ Y ∗
X D1 C∗
Y C D2

⎞

⎠ ,

where X,Y and C, D1, D2 are the n×1, respectively, n×n complex matrices given by

X = s

⎛

⎜⎜
⎝

1
1
...

1

⎞

⎟⎟
⎠ , Y = s + i√

2

⎛

⎜⎜
⎝

1
1
...

1

⎞

⎟⎟
⎠ , C = 1 + is√

2
In +

4(r − t) + 1 + is√
2

E,

D1 = In + (4(r − t) + 1) E, D2 = In + (2(r − t) + 1) E,

where s = 2t − 1 and r = (n − 1)−1t (nt − 1), and

E =

⎛

⎜
⎜
⎝

0 1 · · · 1
1 0 · · · 1
...

...
. . .

...

1 1 · · · 0

⎞

⎟
⎟
⎠ ∈ Mn(C).
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With this definition, Proposition 3.2 yields that the (2n +1)× (2n +1) matrix B(n)
t is the

correlationmatrix of an (2n+1)-tuple of unitaries in some finite vonNeumann algebraM
if and only if the n×nmatrix A(n)

t is the correlationmatrix of an n-tuple of projections in
the same von Neumann algebra M . Indeed, if p1, . . . , pn are projections in M such that[
τM (p j pi )

]n
i, j=1 = A(n)

t , and if u0, u1, . . . , u2n are the 2n+1 unitaries in M constructed

from these projections as in Proposition 3.2, then B(n)
t = [

τM (u∗
j ui )

]2n
i, j=0. Conversely,

if v0, v1, . . . , v2n are unitaries in M such that B(n)
t = [

τM (v∗
j vi )

]2n
i, j=0, then there are

projections q1, . . . , qn ∈ M such that A(n)
t = [

τM (q jqi )
]n
i, j=1.

In particular, B(n)
t belongs to G(2n + 1), respectively, to Ffin(2n + 1), if and only if

A(n)
t belongs to D(n), respectively, to Dfin(n).

Theorem 3.6. Let n ≥ 5 and let t ∈ �n.

(i) If t is rational, then B(n)
t belongs to Ffin(2n + 1), and if t is irrational, then B(n)

t
belongs F(2n + 1)\Ffin(2n + 1).

(ii) If t is irrational and if v0, v1, . . . , v2n are unitaries in some finite von Neumann
algebra N with a faithful tracial state τN such that τN (v∗

j vi ) = B(n)
t (i, j), for

0 ≤ i, j ≤ 2n, then N is necessarily of type II1.
(iii) If t ∈ ( 1

2 (1−√
1 − 4/n), 1

2 (1+
√
1 − 4/n)

)
, then there are unitaries v0, v1, . . . , v2n

in the hyperfinite II1 factor R such that τN (v∗
j vi ) = B(n)

t (i, j), for 0 ≤ i, j ≤ 2n.
(iv) The convex sets Ffin(k) are non-compact, for all k ≥ 11.

Proof. (i). The map t �→ B(n)
t , t ∈ �n , is clearly continuous. It follows from Proposi-

tion 2.3 and Example 3.5 that B(n)
t ∈ G(2n+1), whenever A(n)

t ∈ D(n), and in particular
whenever t ∈ �n . Moreover, if t ∈ �n , then B(n)

t ∈ Ffin(2n + 1), when t is rational,
and B(n)

t /∈ Ffin(2n + 1), when t is irrational. This implies that B(n)
t ∈ F(2n + 1), for all

t ∈ �n , and that Ffin(2n + 1) is non-compact, for each n ≥ 5.
(ii). Let v0, v1, . . . , v2n be unitaries in some finite von Neumann algebra N with

faithful tracial state τN , satisfying τN (v∗
j vi ) = B(n)

t (i, j), for 0 ≤ i, j ≤ 2n. Then, by

Example 3.5, there exist projections q1, . . . , qn in N such that A(n)
t (i, j) = τN (q jqi ).

This entails that N has no finite dimensional representations, by Proposition 2.3, so N
must be of type II1.

(iii). Let t ∈ ( 1
2 (1− √

1 − 4/n), 1
2 (1 +

√
1 − 4/n)

)
. It follows from Theorem A.1 in

the Appendix by Ozawa that A(n)
t can be realized using projections inR, cf. Remark 2.6.

The claim now follows from Example 3.5.
(iv). We show that if Ffin(k) is non-compact, for some positive integer k, then so is

Ffin(k + 1). To this end, define a map ρ : F(k) → F(k + 1) by

ρ
([

τM (u∗
j ui )

]k
i, j=1

)
= [

τM (u∗
j ui )

]k+1
i, j=1,

whenever u1, . . . , uk are unitaries in some von Neumann algebra M with a faithful
tracial state τ , and where uk+1 is chosen to be equal to u1. Then the last row and the
last column of

[
τM (u∗

j ui )
]k+1
i, j=1 is equal to the first row and the first column of the

matrix
[
τM (u∗

j ui )
]k
i, j=1, which shows that ρ is well-defined and continuous. Moreover,

ρ−1(Ffin(k + 1)) = Ffin(k). Hence, if Ffin(k + 1) is compact, and thus closed, then
Ffin(k) is closed, and thus compact. ��
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4. Factorizable Maps that Require Infinite Dimensional Ancilla

We prove here our claimed result about existence of factorizable quantum channels in
all dimensions ≥ 11, requiring infinite dimensional ancilla. We first recall necessary
prerequisites.

Let UCPT(n) denote the convex and compact set of all unital completely positive
trace preserving linear maps T : Mn(C) → Mn(C), n ≥ 2. Maps in UCPT(n) are also
called unital quantum channels in dimension n. Anantharaman-Delaroche defined in [1]
a channel to be factorizable if it admits a factorization (in a suitable way) through a finite
von Neumann algebra with a faithful tracial state. This notion was studied extensively
in [5], and the following characterization (which we will take to be our definition of
factorizable maps) was established therein (cf., [5, Theorem 2.2]): A unital quantum
channel T in dimension n is factorizable if and only if there exist a finite von Neumann
algebra N , equippedwith a normal faithful tracial state τN , and a unitary u ∈ Mn(C)⊗N
such that

T (x) = (idn ⊗ τN )(u(x ⊗ 1N )u∗), x ∈ Mn(C). (4.1)

The von Neumann algebra N above is also called the ancilla, and, following Definition
3.1 in [6], we say that T has an exact factorization through Mn(C) ⊗ N . The set of all
factorizable unital channels in dimension n is denoted by FM(n). This set is convex
and compact, as shown by standard arguments.

Further, let FMmatrix(n) and FMfin(n) denote the set of factorizable maps in
UCPT(n) that exactly factor through a full matrix algebra, respectively, through a fi-
nite dimensional C∗-algebra, equipped with a faithful tracial state. It was shown in [6,
Theorem 3.7] that a positive answer to the Connes Embedding Problem is equivalent
to FMmatrix(n) being dense in FM(n), for all n ≥ 3. Moreover, if a unital quantum
channel T : Mn(C) → Mn(C) belongs to the closure of FMmatrix(n), then T admits
an exact factorization through an ultrapower Rω of the hyperfinite type II1 factor R.

It is shown in the upcoming manuscript [12] that FMfin(n) = conv(FMmatrix(n)),
and that FMmatrix(n) is non-compact and non-convex, when n ≥ 3.

Let S(n) be the set of all Schur multipliers TB : Mn(C) → Mn(C), where B ∈
Mn(C), i.e., TB(x) is the Schur product of B and x , for x ∈ Mn(C). Let FMS(n) =
FM(n)∩S(n) be the set of all factorizable Schur multipliers, and writeFMSfin(n) =
FMfin(n) ∩ S(n).

For the theorem below, recall the definition (2.2) of the set �n , and the (2n + 1) ×
(2n + 1) matrix B(n)

t constructed in Example 3.5.

Theorem 4.1. The set FMfin(k) is not compact, for all k ≥ 11. Moreover, for each
n ≥ 5 and each irrational number t ∈ �n, the Schur multiplier TB, where B = B(n)

t , is
a factorizable map belonging to the closure ofFMfin(2n+1), but not toFMfin(2n+1),
and it requires an ancilla of type II1. This ancilla can be taken to be the hyperfinite II1
factor R, when 1

2 (1 − √
1 − 4/n) < t < 1

2 (1 +
√
1 − 4/n).

Proof. Itwas shown in [5, Proposition 2.8] that if B ∈ Mk(C) is a correlationmatrix, then
the associated Schur multiplier TB admits an exact factorization through Mk(C) ⊗ N ,
where N is a finite vonNeumann algebra with normal faithful tracial state τN , if and only
if B = [

τN (u∗
j ui )

]k
i, j=1, for some unitaries u1, . . . , uk ∈ N . In particular, TB belongs

to FMS(k), FMSfin(k), and the closure of FMSfin(k), respectively, if and only if B
belongs to G(k), Ffin(k), and F(k), respectively.
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Since the map from G(k) toFM(k) given by B �→ TB is continuous, it follows from
Theorem 3.6 that FMSfin(k) is non-closed in FM(k). As the set S(k) is closed, we
conclude that FMfin(k) is non-compact.

To prove the second part of the theorem, let n ≥ 5, let t ∈ �n be irrational, and let
B = B(n)

t . Then B belongs toF(2n+1)\Ffin(2n+1) by Theorem 3.6. By the argument in
the first paragraph,we conclude that TB belongs to the closure ofFMSfin(2n+1), but not
toFMSfin(2n +1). Moreover, if TB admits an exact factorization through Mn(C)⊗ N ,
with ancilla (N , τN ) as in the first paragraph, then B is the matrix of correlations of
unitaries u0, u1, . . . , u2n in N , which by Theorem 3.6 implies that N must be of type
II1.

The remaining part of the theorem follows from Theorem 3.6 (iii) and the argument
in the first paragraph. ��

We also obtain the following quantitative version of the theorem above, in the case
where t ∈ �n is rational andn ≥ 5:Let B = B(n)

t . Ifnt = a/b,witha, b positive integers
and a/b irreducible, then the Schur channel TB admits an exact factorization through a
finite dimensional von Neumann algebra M = Mn(C) ⊗ N , where the von Neumann
algebra N can have no representation on a Hilbert space of dimension smaller than b.
This follows as in the proof of the theorem above and by appealing to Proposition 2.3 (i).

We conclude that for every fixed integer n ≥ 11, there is a sequence of factorizable
unital quantum channels in dimension n, each admitting finite-dimensional ancillas, but
where the size of any such ancillas must tend to infinity.
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Appendix (by Narutaka Ozawa1)

Realizing the Kruglyak–Rabanovich–Samoilenko Projections in the Hyperfinite
II1 Factor

Kruglyak, Rabanovich, and Samoilenko proved in [10, Theorem 6], cf. Theorem 2.2,
that for any n ≥ 5 and any α ∈ [ 12 (n − √

n2 − 4n), 1
2 (n +

√
n2 − 4n)], there are

orthogonal projections p1, . . . , pn such that
∑

i pi = α. In this appendix, we observe
that the Kruglyak–Rabanovich–Samoilenko construction shows that these projections
are realized in the hyperfinite II1 factor R, possibly except for the extremities.

Theorem A.1. For any n ≥ 5 and any α ∈ ( 12 (n−√
n2 − 4n), 1

2 (n +
√
n2 − 4n)), there

are projections p1, . . . , pn ∈ R which satisfy
∑

i pi = α.

Let (M, τ ) be a finite von Neumann algebra. By amatricial approximation (or matri-
cialmicrostates) of ad-tuple (a1, . . . , ad) inMsa,wemeana sequence (x1(n), . . . , xd(n))

in (Mk(n)(C)sa)d such that limn tr(p(x1(n), . . . , xd(n))) = τ(p(a1, . . . , ad)) for every
polynomial p in d non-commuting variables. A matricial approximation of a generating
d-tuple (a1, . . . , ad) ofM gives rise to an embedding of (M, τ ) into the tracial ultraprod-
uct of (Mk(n)(C), trk(n)). Recall that M satisfies the Connes Embedding Conjecture, i.e.,

1 Narutaka Ozawa, RIMS, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan. Email:
narutaka@kurims.kyoto-u.ac.jp
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(M, τ ) ↪→ (Rω, τω), if and only if every (or some) generating d-tuple (ai )di=1 in Msa

admits a matricial approximation. We will give a sufficient condition for hyperfiniteness
of M in terms of a matricial approximation. For x = (xi j ) ∈ Mk(C), we define its
propagation to be max{|i − j | : xi j �= 0}.
Lemma A.2. Let (M, τ ) be a finite von Neumann algebra generated by a1, . . . , ad ∈
Msa. Assume that (a1, . . . , ad) admits a matricial approximation (x1(n), . . . , xd(n))

with uniformly bounded propagations. Then M is hyperfinite.

Proof. Let k be a positive integer and consider the shift unitarymatrix zk ∈ Mk(C) given
by (zk)i, j = δi+1, j (modulo k). It normalizes the diagonal maximal abelian subalgebra
Dk ⊂ Mk(C). Observe that any y ∈ Mk(C) that has propagation at most l can be written
as y = ∑l

m=−l fmz
m
k for some fm ∈ Dk with ‖ fm‖ ≤ ‖y‖.

Now, let a matricial approximation (x1(n), . . . , xd(n)) be given as in the statement.
We denote by Mω the tracial ultraproduct of (Mk(n)(C), trk(n)) and by Dω the subal-
gebra arising from the diagonal maximal abelian subalgebras Dk(n). From the above
discussion, one sees that the element xi ∈ Mω that corresponds to (xi (n))n belongs to
the von Neumann subalgebra generated by Dω and z, where z is the unitary element
corresponding to (zk(n))n . The von Neumann subalgebra generated by x1, . . . , xd is iso-
morphic to M and the von Neumann subalgebra generated by Dω and z is hyperfinite
(as it is isomorphic to Dω � Z, assuming k(n) → ∞). ��
Proof of Theorem A.1. Firstly, note that every separable finite von Neumann algebra
(N , τ ) with a faithful normal tracial state is embeddable in a trace-preserving way into
a separable II1 factor M , which can be taken to be the hyperfinite II1 factor R if M is
hyperfinite. Indeed, as observed by U. Haagerup, wemay take M to be (

⊗∞
n=1 N )� S∞,

where the infinite tensor product is with respect to the standard representation of N on
L2(N , τ ), and where S∞ is the (locally finite) group of permutations on the natural
numbers with finite support. It therefore suffices to find the projections p1, . . . , pn in
any hyperfinite finite von Neumann algebra N .

For each α ∈ Q∩[3/2, 2], the projections P1(α), . . . , P5(α) in Mk(α)(C) that satisfy∑
i Pi (α) = α are constructed in [10, Theorem 6] as Ri . The proof of Theorem 6

(and Lemma 7) in [10] reveals that the projections Ri are obtained by sewing (see
[10, Definition 1]) the projections P(k)

i ∈ Mki+2(C), ki ∈ {1, 2, 3}. Since P(k)
i ’s have

propagation at most 4, the projections Ri have propagation at most 8, regardless of α.
Let α ∈ (3/2, 2) be given and take a rational sequence (αn)n which converges to

α. Then after passing to a convergent subsequence, (P1(αn), . . . , P5(αn)) is a matricial
approximation of (P1, . . . , P5) in the tracial ultraproduct Mω of (Mk(n)(C), trk(n)) and
(P1, . . . , P5) satisfies

∑
i Pi = α. By Lemma A.2, the projections P1, . . . , P5 generate

a hyperfinite von Neumann subalgebra. This proves Theorem A.1 for n = 5 and α ∈
[3/2, 2]. By [10, Lemma 5], this implies TheoremA.1 for every n ≥ 5 andα ∈ [2, n−2].

Finally, note that all values in ( 12 (n − √
n2 − 4n), 1

2 (n +
√
n2 − 4n)) are obtained

by iterating the numerical mappings �+ and �− (see [10, Section 1.2]) starting at
α ∈ [2, n − 2] (see [10, Lemma 6]). Thus it suffices to show the functors S and T
constructed in Section 1.2 in [10] preserve hyperfiniteness. This is clear for the linear
reflection T . For the reader’s convenience, we replicate here the construction of the
hyperbolic reflection S, adapted to our setting. Let P1, . . . , Pn ∈ N be projections such
that

∑n
i=1 Pi = α.Wewill construct projections Q1, . . . , Qn such that

∑n
i=1 Qi = α

α−1 .
Put

Vi := (α2 − α)−1/2 Pi
[−P1 · · · α − Pi · · · −Pn

] ∈ M1,n(N ).
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Then, ViV ∗
i = (α2−α)−1Pi (α2−2αPi +

∑n
k=1 Pk)Pi = Pi and Vi is a partial isometry.

Hence Qi := V ∗
i Vi ∈ Mn(N ) is a projection. A calculation shows

∑

k

Qk = (α2 − α)−1(α2 diag(P1, . . . , Pn) − α [Pi Pj ]i. j ) ∈ Mn(N ).

Note that Q := diag(P1, . . . , Pn) − α−1[Pi Pj ]i. j is a projection and one has ∑
k Qk =

α
α−1Q. Thus, viewing Qk as projections in QMn(N )Q, we are done. When N is hyper-
finite, so is the amplification QMn(N )Q. ��
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