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Abstract: We develop the notions of multiplicative Lie conformal and Poisson ver-
tex algebras, local and non-local, and their connections to the theory of integrable
differential-difference Hamiltonian equations. We establish relations of these notions to
q-deformed W -algebras and lattice Poisson algebras. We introduce the notion of Adler
type pseudodifference operators and apply them to integrability of differential-difference
Hamiltonian equations.
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1. Introduction

It has been demonstrated in a series of papers, [BDSK09,DSK13,DSKV14,DSKV15,
DSKV16,DSKV18] to quote some of them, that Poisson vertex algebras play as a fun-
damental role in the theory of Hamiltonian integrable PDE, as the Poisson algebras do
in the theory of integrable Hamiltonian ODE.
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Recall that a Poisson vertex algebra (PVA) is a unital commutative associative algebra
V with a derivation ∂ , endowed with a Lie conformal algebra (LCA) λ-bracket

V ⊗ V → V[λ], a ⊗ b �→ {aλb},
such that one has

L (left Leibniz rule) {aλbc} = {aλb}c + b{aλc}.
Recall also the axioms of an LCA:

A1 (sesquilinearity) {∂aλb} = −λ{aλb}, {aλ∂b} = (∂ + λ){aλb};
A2 (skewsymmetry) {bλa} = −←{a−∂−λb};
A3 (Jacobi identity) {aλ{bμc}} − {bμ{aλc}} = {{aλb}λ+μc}.

Note that PVA appears naturally as a quasiclassical limit of a vertex algebra, hence
the name.

For a non-local PVA the λ-brackets are allowed to take values in V((λ−1)), the
space of Laurent series in λ−1, and they are not quasiclassical limits of vertex algebras.
However they are indispensable for the theory of integrable Hamiltonian PDE [DSK13].
Note that one of the main sources of non-locality is the Dirac reduction, which makes
non-local even a local PVA [DSKV14].

Now, according to Kupershmidt’s philosophy [Kup85], many ideas of the theory of
integrable PDE should be extended to the theory of integrable differential-difference
equations. In our recent paper [DSKVW18] we observed that, in order to extend the
ideas of the PVA theory to the theory of integrable Hamiltonian differential-difference
equations, one is led to a “multiplicative” version of LCA and PVA. This notion was
derived in [DSKVW18] from the notion of a �-conformal algebra [GKK98] for the
group � = Z.

Note that, while the vertex algebras encode the operator product expansion of local
fields along the diagonal, and the Lie conformal algebras encode its singular part, the
�-conformal algebras encode the singular part of the operator product expansion off the
diagonal when only simple poles are allowed.

Recall [DSKVW18] that a multiplicative PVA is a unital commutative associative
algebra V with an automorphism S, endowed with a multiplicative LCA λ-bracket

V ⊗ V → V[λ, λ−1], a ⊗ b �→ {aλb},
such that the same left Leibniz rule L holds as in the “additive” case. The axioms of a
multiplicative LCA are multiplicative analogues of A1–A3:

M1 (sesquilinearity) {S(a)λb} = λ−1{aλb}, {aλS(b)} = λS{aλb};
M2 (skewsymmetry) {bλa} = −←{aλ−1S−1b};
M3 (Jacobi identity) {aλ{bμc}} − {bμ{aλc}} = {{aλb}λμc}.
Note that axioms L and M2 imply

rL (right Leibniz rule) {abλc} = {aλSc}→b + {bλSc}→a.

(As usual, the arrow indicates where S should be moved.)
The non-local multiplicative PVA are indispensable for the theory of integrable

Hamiltonian differential-difference equations as well. But, while in the “additive” PVA
case the λ-brackets could be allowed to take values only in the Laurent series, the “mul-
tiplicative” λ-brackets can be any bilateral series in λ. However, for the “multiplicative”
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Dirac reduction one needs theλ-brackets to be rational, i.e. symbols of rational difference
operators (see Theorem 5.12).

In [GKK98] a correspondence between multiplicative LCAs and multiplicative q-
local formal distribution Lie algebras was established (see also Theorem 2.14 of the
present paper), which is similar to that in the “additive” case [Kac96]. However, in the
“multiplicative” case this is just one side of a medal. The other side is a correspondence
between multiplicative LCAs and local lattice Lie algebras (see [GKK98] and Propo-
sition 2.19 of the present paper). The latter is a Lie algebra g with an automorphism S
such that [Sn(a), b] = 0 for all but finitely many n ∈ Z (a, b ∈ g).

In the same spirit, the non-local q-deformations of W -algebras attached to slN of
Frenkel and Reshetikhin [FR96] can be encoded by the non-local multiplicative PVA
WN (see Example 5.13 for N = 2 and 9.14, 9.13 for general N ), and what is called
the “lattice analogue” [FR96,HI97] is encoded by the same multiplicative PVA (see
Example 4.6 for N = 2) as the corresponding non-local lattice Poisson algebra.

Note that, as in the additive case [Kac96], an important ingredient of the theory is
the multiplicative calculus of formal distributions, in particular the multiplicative formal
Fourier transform, which we naturally call the formal Mellin transform (see Sect. 2.3).

In our paper [DSKVW18] we classified all (local) multiplicative PVA in one variable
u up to order 5, which provides a rather large list of examples. In particular, applying
the Lenard–Magri scheme to the simplest compatible pair from this classification, we
proved the integrability of the Volterra lattice:

du

dt
= u(S−1 − S)u.

The simplest example of a non-local multiplicative PVA in u isW2, given by

{uλu} = u
λS − 1

λS + 1
u.

This λ-bracket is compatible with {uλu} = λ−λ−1. Applying the Lenard–Magri scheme
to this pair, we prove integrability of the modified Volterra lattice (see Sect. 4.2)

dv

dt
= v2(S−1 − S)v.

More generally, in Sect. 4.3, using the non-local multiplicative PVA WN with N > 2
we construct a bi-Hamiltonian equation (4.12) in n = N − 1 variables, and conjecture
that it is integrable.

After developing the foundations of the theory in Sects. 2–5, we turn to the notion
of an Adler type pseudodifference operator, which is a “multiplicative” version of that
introduced in [DSKV15,DSKV16,DSKV18]. Given a unital commutative associative
algebra V with an automorphism S, the algebra of pseudodifference operators V((S−1))

is defined by the relation

Sn ◦ f = Sn( f )Sn, n ∈ Z, f ∈ V.

An operator L(S) ∈ V((S−1)) is called of Adler type if the following identity holds with
respect to a multiplicative λ-bracket on V (i.e. satisfying axioms M1, L and rL):

{L(z)λL(w)}L2 = L(wλS)δ+
(wλS

z

)
L∗(λ

z

) − L(z)δ+
(wλS

z

)
L(w)

− 1

2

(
L(wλS) + L(w)

)(
L∗(λ

z

) − L(z)
)
. (1.1)
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Here δ+(z) = ∑
n≥0 z

n , L(z) is the symbol of L(S), and L∗(S) stands for the adjoint
operator, defined by ( f Sn)∗ = S−n ◦ f .

We show that, as in the additive case, identity (1.1) implies that the subalgebra of
V generated by the coefficients of L(S) is a multiplicative PVA (Corollary 6.3) and,
moreover, the hierarchy of difference equations of Lax type

dL(S)

dtn
= [(L(S)n)+, L(S)], n = 1, 2, . . . , (1.2)

is compatible, and has conserved densities

h p = − 1

p
mRes L(S)p, p = 1, 2, . . . , h0 = 0. (1.3)

Hereafter mRes stands for the coefficient of S0.
In fact, following ideas from Oevel–Ragnisco [OR89] we introduce the notions of a

3-Adler type pseudodifference operator (see Definition 7.1), from which identity (1.1)
is obtained by a degeneration. We show that we again obtain a multiplicative PVA for
which (1.2) is a hierarchy of compatible difference equations and (1.3) are integrals
of motion. As a result, we obtain in Sect. 8 a tri-Hamiltonian hierarchy of difference
equations

dL(z)

dtn
=

{∫
hn−1, L(z)

}L

3
=

{∫
hn, L(z)

}L

2
=

{∫
hn+1, L(z)

}L

1
, n ∈ Z.

One of the most important operators of Adler type is the “generic” pseudodifference
operator of order N :

L̃ N (S) =
∑

j≤N

u j S
j ,

where uN , uN−1, . . . is the (infinite) set of generators of the difference polynomial
algebra Ṽ∞,N . Identity (1.1) endows Ṽ∞,N with a structure of a (local) multiplicative
PVA, and an integrable hierarchy of Hamiltonian differential-difference equations (1.2)
on L(S) = L̃ N (S). Applying the Dirac reduction (provided by Theorem 5.12) by the
constraint uN = 1 to the multiplicative PVA Ṽ∞,N , we obtain the algebra V∞,N of
difference polynomials in the variables uN−1, uN−2, . . . , so that

LN (S) = SN + uN−1S
N−1 + · · · + u0 + . . . ,

satisfies the Dirac reduced identity (9.4) of (1.1). As a result, we obtain the following
rational multiplicative PVA structure on V∞,N :

{uiλu j } =
N−i∑

n=0

(
u j−n(λS) j−i−nui+n − ui+n(λS)nu j−n

)

+ u j

(
(λS)N − (λS) j

) (
(λS)N − 1

)−1 (
1 − (λS)−i

)
ui , (1.4)

subject to
uN = 1, u j = 0 for j > N . (1.5)
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Note that for N = 1 the λ-bracket (1.4) is local, hence we obtain an integrable hierarchy
(1.2) on L(S) = LN (S). This is the discrete KP hierarchy, studied in detail by Adler
and van Moerbeke in [AvM99].

Next, assuming that N ≥ 2, consider the difference subalgebraVN ofV∞,N generated
by uN−1, . . . , u1, u0. It is clear from (1.4) that the element u0 is central, hence we can
further reduce by the difference ideal generated by u0 − c, where c is a constant. As
a result, we get the multiplicative W -algebra WN , which is the algebra of difference
polynomials in u1, . . . , uN−1, with a family ofmultiplicative rational Poisson λ-brackets
{uiλu j } = c{ui λu j }1 + {uiλu j }2, where

{uiλu j }1 = (
(λS)−i − λ j )ui+ j ,

and

{uiλu j }2 =
( j∑

n=1

−
i+ j−1∑

n=i

)
un(λS)n−i ui+ j−n + u j

(
(λS)N − (λS) j

)(
1 − (λS)−i

)

(λS)N − 1
ui ,

subject to (1.5) (see Sect. 9.4). This Poisson structure (for c = 1) corresponds to the
q-deformed W -algebras of [FR96] mentioned above.

Wefind it remarkable that, though themultiplicative PVAWN is non-local, it contains
a beautiful local multiplicative PVA, which we denote by AN , in the same number
of difference variables (see Example 5.10 and Theorem 9.8). The corresponding local
lattice Poisson algebras for N = 2 and 3 are thewell-known Faddeev–Takhtajan–Volkov
[FT86] and Belov–Chaltikian [BC93] algebras, and for N > 3 they are themore recently
discovered Mari–Beffa–Wang algebras [MBW13].

As we have mentioned above, the pair of compatible multiplicative Poisson struc-
tures for W2 leads to integrability of the modified Volterra lattice via the Lenard–
Magri scheme, while the pair for A2 leads to the integrability of the Volterra lattice
[DSKVW18]. Likewise, for any N > 2 we get a bi-Hamiltonian differential-difference
equation on N − 1 functions, which is a multicomponent generalization of the modi-
fied Volterra and Volterra lattices, see (4.12) and (9.16) respectively. These equations
have been discovered byMari–Beffa andWang in [MBW13]. We conjecture that in both
cases the Lenard–Magri scheme can be infinitely extended, proving thereby integrability
of these lattices. Note that in both cases certain master symmetries are constructed in
[MBW13].

We are planning to develop in the subsequent publications a theory of multiplicative
W -algebras, attached to any simple Lie algebra, which will include these examples.

In the last Sect. 10 we discuss various reductions of the discrete KP hierarchy, reprov-
ing thereby integrability of various Hamiltonian differential-difference equations, like
the Volterra lattice, 1-dimensional Toda lattice, Bogoyavlensky lattice. In conclusion,
we present the 2-dimensional Toda lattice by Ueno and Takasaki [UT84] and the corre-
sponding two compatible multiplicative PVA structures. The corresponding local lattice
Poisson algebra structures have been computed by Carlet [Car05].

We are grateful to Sylvain Carpentier, who pointed out to us that the pair of Pois-
son structures from Example 4.6 can be used to prove integrability of the modified
Volterra lattice via the Lenard–Magri scheme. The research was partially conducted
during the authors’ visits to MIT and the University of Rome La Sapienza. We are
grateful to these institutions for their kind hospitality. The first author was partially
supported by the national PRIN fund n. 2015ZWST2C_001 and the University funds
n. RM116154CB35DFD3 and RM11715C7FB74D63, the second author was partially
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supported by the Bert and Ann Kostant fund, and the third author was supported by
a Tshinghua University startup research grant when working in the Yau Mathematical
Sciences Center.

Throughout the paper the base field F is a field of characteristic zero.

2. Multiplicative Lie Conformal Algebras and Multiplicative Poisson Vertex
Algebras

2.1. Multiplicative Lie conformal algebras (mLCA).

Definition 2.1. A multiplicative Lie conformal algebra (mLCA) is a vector space R
endowed with an invertible endomorphism S : R → R and a linear (over F) multiplica-
tive λ-bracket

{· λ ·} : R ⊗ R → R[λ, λ−1], a ⊗ b �→ {aλb},
satisfying the following axioms (a, b, c ∈ R):

(i) sesquilinearity: {Saλb} = λ−1{aλb}, {aλSb} = λS{aλb},
(ii) skewsymmetry: {aλb} = −{bλ−1S−1a},
(iii) Jacobi identity: {aλ{bμc}} − {bμ{aλc}} = {{aλb}λμc}.
In the RHS of skew-symmetry S is moved to the left to act on coefficients. Namely, if
{bλa} = ∑

n cnλ
n , then {bλ−1S−1a} = ∑

n S
−n(cn)λ−n .

Note that, as a consequence of the sesquilinearity axioms, S is an automorphism of
the λ-bracket. The reader should not fail to notice that a multiplicative Lie conformal
algebra is a multiplicative analogue of a Lie conformal algebra [Kac96]. This notion was
derived in [DSKVW18] from the notion of a �-conformal algebra [GKK98] for � = Z.

Example 2.2. Let g be a Lie algebra. The current mLCA is defined as

Cur g = F[S, S−1] ⊗ g,

with S acting by left multiplication on the first factor, and with the multiplicative λ-
bracket given by

{Sm ⊗ aλS
n ⊗ b} = λn−mSn ⊗ [a, b], a, b ∈ g, m, n ∈ Z.

In other words we extend by the sesquilinearity axioms the Lie bracket of g.

Example 2.3. The general mLCA mgc1 is defined as the free module over the algebra
F[S, S−1] with generators um , m ∈ Z, and the λ-bracket on generators defined by

{umλun} = (λ−mS−m − λn)um+n, m, n ∈ Z,

and extended to mgc1 by the sesquilinearity axioms. It is shown in [GKK98] that repre-
sentations of an mLCA R in the free F[S, S−1]-module of rank 1 correspond to homo-
morphisms R → mgc1.

Example 2.4. LetV be avector space.ThegeneralmLCAoverV is defined asmgc(V ) =
mgc1 ⊗End V . For A ∈ End(V ) and n ∈ Z denote An = un ⊗ A. The multiplicative
λ-bracket on mgc(V ) is given by (A, B ∈ End V )

{AmλBn} = λ−mS−m(AB)m+n − λn(BA)m+n, m, n ∈ Z.

For N ∈ Z≥0, we denote mgcN = mgc(V ), where V is an N -dimensional vector space.
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The following is the “multiplicative analogue” of the Key Lemma in [Kac96].

Lemma 2.5. Let R be an mLCA, and let
∫ : R → R̄ := R/(S − 1)R be the quotient

map. Then we have a well-defined Lie algebra bracket {·, ·} on R̄ given by

{∫ a,
∫
b} = ∫ {aλb}

∣∣
λ=1. (2.1)

We also have a well-defined representation of this Lie algebra on R, with the action

{·, ·} : R̄ × R → R, {∫ a, b} = {aλb}
∣
∣
λ=1, (2.2)

by derivations of the λ-bracket, commuting with the action of S on R.

Proof. Obvious. �

2.2. Affinization of an mLCA. Let R be an mLCA and let A be a unital commutative
associative algebra with an automorphism SA. Then, in analogy with the LCA case
[Kac96], we can construct a new mLCA, called the affinization of R, as

R̃ = R ⊗ A,

with the automorphism S̃ = S ⊗ SA and the following multiplicative λ-bracket:

{a ⊗ f λ b ⊗ g}∼ = {aλS 1
A
b} ⊗ f · g, (2.3)

where S 1
A denotes SA acting on the first factor. Explicitly, if {aλb} = ∑

n cnλ
n , then the

RHS of (2.3) is
∑

n

cn ⊗ SnA( f )g λn .

Proposition 2.6. The triple (R̃, S̃, {· λ ·}∼) defined above is an mLCA.

Proof. Straightforward. �

2.3. Multiplicative calculus of formal distributions. Recall that a formal distribution in
the variable z with values in the vector space g is a formal bilateral series

a(z) =
∑

n∈Z
anz

−n ∈ g[[z, z−1]], an ∈ g. (2.4)

Similarly, a g-valued formal distribution in two variables z and w is an element of
g[[z, z−1, w,w−1]]. An example of an F-valued formal distribution is themultiplicative
δ-function

δ(z) =
∑

n∈Z
zn . (2.5)

It has the following property:

a(z)δ(z/w) = a(w)δ(z/w) ∈ g[[z, z−1, w,w−1]], (2.6)

for every formal distribution a(z) ∈ g[[z, z−1]].
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The multiplicative residue of the formal distribution (2.4) is defined as

mResz(a(z)) = a0 ∈ g. (2.7)

Hence, the Fourier modes an , n ∈ Z, of the formal distribution (2.4) can be obtained as

an = mRes(a(z)zn).

Likewise, for a pseudodifference operator a(S) = ∑
n anS

n ∈ V((S±1)), we define its
multiplicative residue by

mResS a(S)
(
= mResz a(z)

)
= a0. (2.8)

It immediately follows from (2.6) that

mResz a(z)δ(z/w) = a(w) for every a(z) ∈ g[[z, z−1]]. (2.9)

By taking non-negative (resp. negative) powers of w in both sides of Eq. (2.9) we also
have

mResz a(z)

(
1 − w

z

)−1

= a(w)+

(
resp. mResz a(z)

z

w

(
1 − z

w

)−1 = a(w)−
)
.

(2.10)
The multiplicative δ-function splits as sum of its positive and negative parts:

δ(z) = δ+(z) + δ−(z), (2.11)

where

δ+(z) =
∑

n≥0

zn and δ−(z) =
∑

n≤−1

zn = δ+(
1

z
) − 1. (2.12)

Later we will use the following properties of the positive and negative δ-functions.

Lemma 2.7. The following identities hold:

δ+(x1x2) = δ+(x1)δ+(x1x2) + δ+(x1x2)δ+(x2) − δ+(x1)δ+(x2), (2.13)

in F[[x1, x2]], and

δ(x1)δ+(x1x2) = δ+(x1)δ+(x2) − δ+(x1x2)δ+(x2) + δ+(
1

x1
)δ+(x1x2), (2.14)

in (F[[x1, x−1
1 ]])[[x2]].

Proof. Equation (2.13) turns into an obvious identity of rational functions, by substitut-
ing δ+(x) = 1

1−x . Equation (2.14) is obtained from Eq. (2.13) using (2.11) and (2.12).
�
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Keeping in mind the mLCA, we fix a non-zero element q ∈ F which is not a root of
unity. We say that a formal distribution in two variables a(z, w) is q-local if

∏

n∈T
(z − qnw)a(z, w) = 0 for some finite subset T ⊂ Z. (2.15)

A formal distribution in three (ormore) variablesa(z, w, x) is calledq-local if it isq-local
for each pair of variables. Examples of q-local formal distributions in two variables are
the q-shifted δ-functions: δ(z/qnw), n ∈ Z, where δ(·) is as in (2.5). Indeed, it follows
from (2.6) that

(z − qnw)δ(z/qnw) = 0.

If g is a Lie algebra, we say that a pair (a(z), b(z)) of g-valued formal distributions in
one variable is q-local if the Lie bracket [a(z), b(w)] is a q-local formal distribution in
two variables.

Lemma 2.8 (Multiplicative Decomposition Theorem, [GKK98, Prop.1.1]). A formal
distribution in two variables a(z, w) is q-local if and only if it admits a decomposition
into a finite sum

a(z, w) =
∑

n∈Z
cn(w)δ(z/qnw), (2.16)

for some cn(w) ∈ g[[w,w−1]]. In this case, the decomposition (2.16) is unique and

cn(w) = mResz
( ∏

i∈T \{n}

z − qiw

qnw − qiw
· a(z, w)

)
, (2.17)

where T ⊂ Z is a finite subset for which (2.15) holds.

Note that formula (2.17) follows by the following obvious identity:

mResz
( ∏

i∈T \{n}

z − qiw

qnw − qiw
· δ(z/qmw)

)
= δm,n for every m ∈ T, n ∈ Z.

Definition 2.9. The formal Mellin transform is the linear map

Mn
z,w : g[[z, z−1, w,w−1]] → g[[w,w−1]], n ∈ Z,

defined by the following formula:

Mn
z,w(a(z, w)) = mResz

( z
w

)n
a(z, w). (2.18)

Proposition 2.10. The formal Mellin transform satisfies the following properties:

(i) Mn
z,w(δ(z/q jw)) = qnj ;

(ii) Mn
z,wSz = q−nMn

z,w, and Mn
z,wSw = qnSnwMn

z,w, where the operators Sz and
Sw are given by Sz(a(z, w)) = a(qz, w) and Sw(a(z, w)) = a(z, qw);

(iii) if a(z, w) = ∑
j c j (w)δ(z/q jw) is a q-local formal distribution, then

Mn
z,w(a(z, w)) =

∑

j

c j (w)qnj and Mn
z,w(a(w, z)) =

∑

j

c j (q
− jw)q−nj ;
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(iv) for every formal distribution in three variables a(z, w, x), we have

Mm
z,xMn

w,x (a(z, w, x)) = Mn
w,xMm

z,x (a(z, w, x)) = Mm+n
w,x Mm

z,w(a(z, w, x)).

Proof. Straightforward verification. �

By Lemma 2.8 and Proposition 2.10 (i), we can define the λ-Mellin transform of a
local formal distribution in two variables a(z, w) as

Mλ
z,w(a(z, w)) = Mn

z,w(a(z, w))
∣
∣
qn=λ

∈ g[[w,w−1]][λ, λ−1]. (2.19)

Corollary 2.11. For local formal distributions a(z, w) and a(z, w, x), we have

(i) if a(z, w) = ∑
j c j (w)δ(z/q jw), then

Mλ
z,w(a(z, w)) =

∑

j

c j (w)λ j ;

(ii) Mλ
z,w(Sza(z, w)) = λ−1Mλ

z,w(a(z, w)), and Mλ
z,w(Swa(z, w)) = λSwMλ

z,w
(a(z, w)), where Sz and Sw are as in Proposition 2.10 (ii);

(iii) Mλ
z,w(a(w, z)) = Mλ−1S−1

w
z,w (a(w, z)), (where Sw is moved to the left);

(iv) Mλ
z,xMμ

w,x (a(z, w, x)) = Mμ
w,xMλ

z,x (a(z, w, x)) = Mλμ
w,xMλ

z,w(a(z, w, x)).

2.4. Multiplicative formal distribution Lie algebras and correspondence to mLCA. The
following notion is the “multiplicative analogue” of a regular formal distribution Lie
algebra [Kac96].

Definition 2.12. Amultiplicative q-local formal distribution Lie algebra is a pair (g,R),
where g is a Lie algebra, R ⊂ g[[z, z−1]] is a subspace such that:

(i) g is the space of the Fourier modes of the formal distributions inR;
(ii) for a(z) ∈ R and n ∈ Z, we have a(qnz) ∈ R;
(iii) the formal distributions inR are pairwise q-local and, in the decomposition of the

commutator of a(w), b(w) ∈ R in the finite sum (cf. (2.16))

[a(z), b(w)] =
∑

n∈Z
cn(w)δ(z/qnw), (2.20)

all the coefficients cn(w) lie inR.

An ideal J ⊂ g is called irregular if R ∩ J [[z, z−1]] = 0.

Remark 2.13. The “multiplicative analogue” of Dong’s Lemma does not seem to hold in
general. In fact, it is not hard to prove, by arguments similar to the “additive” case, that
if a(w), b(w), c(w) are pairwise local and (2.20) holds, then [cn(w), c(x)] decomposes
as a finite combination of q-shifted δ-functions and their derivatives.
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Theorem 2.14. (a) If (g,R) is a multiplicative q-local formal distribution Lie algebra,
then R has the structure of an mLCA, with S : R → R given by

S(a(z)) = a(qz),

and multiplicative λ-bracket

{a(w)λb(w)} =
∑

n∈Z
cn(w)λn,

for a(w), b(w) ∈ R, where the elements cn(w) are given by the decomposition
(2.20).

(b) Conversely, let R be an mLCA, with automorphism S and multiplicative λ-bracket
{· λ ·}. We obtain a multiplicative q-local formal distribution Lie algebra (gR,RR)

as follows:

gR = R[t, t−1]/〈μq S − 1〉, RR = {
a(z) =

∑

n∈Z
atnz−n−1

∣∣ a ∈ R
}
,

where, the automorphism S is extended to R[t, t−1] by commuting with the multi-
plication by t, and μq : R[t, t−1] → R[t, t−1] is defined by μq(atn) = qnatn,
for every a ∈ R, n ∈ Z. The Lie algebra structure of g is constructed, using the
multiplicative λ-bracket of R, as follows:

[a f (t), bg(t)] = {aμ1
q
b} f (t) · g(t), (2.21)

for every a, b ∈ R and f, g ∈ F[t, t−1]. In (2.21) μ1
q is the map μq acting only on

the first factor f (t). In other words, if {aλb} = ∑
n cnλ

n, then the RHS of (2.21) is
∑

n

cn f (q
nt)g(t).

(c) Let R be an mLCA. Consider the corresponding multiplicative q-local formal distri-
bution Lie algebra (gR,RR) from part (b), and the corresponding mLCA structure
on RR given by (a). We have a canonical mLCA isomorphismRR � R.

(d) Conversely, let (g,R) be a multiplicative q-local formal distribution Lie algebra.
Consider the corresponding mLCA structure on R given by (a), and then the cor-
responding multiplicative formal distribution Lie algebra (gR,RR) given by (b).
There is a canonical surjective Lie algebra homomorphism gR � g, whose kernel
is an irregular ideal.

Proof of Theorem 2.14. The proof of (a) follows by usingCorollary 2.11 on theλ-Mellin
transform. For (b), the Lie algebra gR is obtained, via Lemma 2.5, from the affinization
for A = F[t, t−1] and SA = μq . The proof of (c) and (d) is the same as in [Kac96]. �
Example 2.15. Consider the current mLCACur(g) defined in Example 2.2. It is not hard
to check that the corresponding multiplicative q-local formal distribution Lie algebra
given by Theorem 2.14(b) is the loop algebra g[t, t−1], with the Lie bracket

[atm, btn] = [a, b]tm+n, m, n ∈ Z,

and the collection of pairwise q-local formal distributions

R = Span

{

a(qi z) =
∑

n∈Z
q−ni atnz−n

∣
∣ a ∈ g, i ∈ Z

}

.
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Example 2.16. Consider the general mLCA mgc1 from Example 2.3. It is not hard to
check that the correspondingmultiplicative q-local formal distribution Lie algebra given
by Theorem 2.14(b) is the space

g =
⊕

n∈Z
F[t, t−1]un,

with the Lie algebra bracket

[ui tm, u j t
n] = (qin − q jm)ui+ j t

m+n, i, j,m, n ∈ Z,

and the collection of pairwise q-local formal distributions

R = Span

{

ui (q
sz) =

∑

n∈Z
q−snui t

nz−n
∣∣ i, s ∈ Z

}

.

Note that the Lie algebra g constructed above is isomorphic to the Lie algebra associated
to the associative algebra of q-difference operators on the circle:

F[x, x−1][μq , μ
−1
q ],

with the associative product defined by the relation μn
q x

i = qinxiμn
q , i, n ∈ Z. The

isomorphism is obtained by identifying ui tn �→ xiμn
q , i, n ∈ Z.

Example 2.17. Consider the general mLCA mgc(V ) from Example 2.4. It is not hard to
generalize the results in Example 2.16 and check that the corresponding multiplicative
q-local formal distribution Lie algebra given by Theorem 2.14(b) is the space

g = ( ⊕

n∈Z
F[t, t−1]un

) ⊗ End(V ).

with the Lie algebra bracket (A, B ∈ g)

[Ai t
m, Bj t

n] = qin(AB)i+ j t
m+n − q jm(BA)i+ j t

m+n, i, j,m, n ∈ Z,

and the collection of pairwise q-local formal distributions is

R = Span

{

Ai (q
sz) =

∑

n∈Z
q−sn Ai t

nz−n
∣∣ A ∈ End(V ), i, s ∈ Z

}

.

Note that the Lie algebra g constructed above is isomorphic to the Lie algebra associ-
ated to the associative algebra of End(V )-valued q-difference operators on the circle
(End V )[x, x−1][μq , μ

−1
q ].
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2.5. Local lattice Lie algebras and correspondence to mLCA. We introduce here the
notion of a local lattice Lie algebra, which is equivalent to that of an mLCA.

Definition 2.18. A lattice Lie algebra is a Lie algebra g with an automorphism S ∈
Aut(g). It is called local if, for every a, b ∈ g, we have

{Sn(a), b} = 0 for all but finitely many values of n ∈ Z. (2.22)

Proposition 2.19 [GKK98]. If (R, S, {· λ ·}) is an mLCA, then R is a local lattice Lie
algebra with the automorphism S and Lie bracket

{a, b} = mResλ{aλb}, a, b ∈ R, (2.23)

where the multiplicative residue is defined by (2.7)Conversely, if (R, S) is a local lattice
Lie algebra, then we can endow it with a structure of an mLCA with the multiplicative
λ-bracket

{aλb} =
∑

n∈Z
{Sn(a), b}λn, a, b ∈ R. (2.24)

Proof. Straightforward. �
Example 2.20. Consider the current mLCA Cur(g) defined in Example 2.2. The corre-
sponding local lattice Lie algebra is the space Cur g = F[S, S−1] ⊗ g, with the auto-
morphism S and the Lie bracket

{Sm ⊗ a, Sn ⊗ b} = δm,n S
n ⊗ [a, b], a, b ∈ g, m, n ∈ Z.

In other words, it is isomorphic to the direct sum of infinitely many copies of the Lie
algebra g, and the automorphism S is the “shift” operator.

Example 2.21. Consider the general mLCAmgc1 from Example 2.3. The corresponding
local lattice Lie algebra is the space mgc1 = ⊕

n∈Z F[S, S−1]un with the automorphism
S and the Lie bracket

{Sium, S jun} = δ j,i+mS
ium+n − δi, j+n S

j um+n, i, j,m, n ∈ Z.

This lattice Lie algebra is isomorphic to the Lie algebra gl∞ with the automorphism
S(Ei, j ) = Ei+1, j+1, via the isomorphism Siun �→ −En+i,i .

Example 2.22. Consider the general mLCAmgc(V ) fromExample 2.4. The correspond-
ing local lattice Lie algebra is the spacemgcV = mgc1 ⊗End(V )with the automorphism
S and the Lie bracket (A, B ∈ End(V ))

{Si Am, S j Bn} = δ j,i+mS
i (AB)m+n − δi, j+n S

j (BA)m+n, i, j,m, n ∈ Z.

Remark 2.23. If S is an automorphism of order e ≥ 1, it seems natural to introduce the
notion of anmLCA R with λ-bracket {· λ ·} : R⊗R → R[λ]/〈λe−1〉, satisfying axioms
(i)–(iii) of Definition 2.1. Then we still have Examples 2.2 and 2.3, where F[S, S−1]
should be replaced by F[S]/〈Se−1〉. Furthermore, all results of this and the next section
extend to this framework with little changes. For example, q in Sect. 2.4 should be a
primitive e-th root of 1. These “periodic”mLCA should be useful in the study of periodic
lattice equations.
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3. Multiplicative Poisson Vertex Algebras and Hamiltonian
Differential-Difference Equations

3.1. Multiplicative Poisson vertex algebras (mPVA).

Definition 3.1. LetV be a unital commutative associative algebra with an automorphism
S : V → V . Amultiplicative λ-bracket onV is a linear map {· λ ·} : V⊗V → V[λ, λ−1]
satisfying the sesquilinearity axioms (i) of Definition 2.1 and the left and right Leibniz
rules (a, b, c ∈ V):

{aλbc} = {aλb}c + {aλc}b , (3.1)

{abλc} = {aλx c}
(∣∣
x=Sb

)
+ {bλx c}

(∣∣
x=Sa

)
. (3.2)

Here and further we use the following notation: for a polynomial (or a bilateral series)
a(z) = ∑

n anz
n and b, c ∈ V , we let

a(zx)
(∣∣
x=Sb

)
c =

∑

n

anS
n(b)czn . (3.3)

For example, theRHSof the skewsymmetry axiom inDefinition 2.1 can bewritten, using
this notation, as −(∣∣

x=S{bλ−1x−1a}). A multiplicative Poisson vertex algera (mPVA) is
a unital commutative associative algebra with an automorphism S : V → V and a
multiplicative λ-bracket satisfying also the skewsymmetry and Jacobi identity axioms
from Definition 2.1 of an mLCA.

Note that the left and right Leibniz rules (3.1)–(3.2) are equivalent, provided that the
skewsymmetry axiom (ii) of Definition 2.1 holds.

A lattice Poisson algebra is defined as a Poisson algebra with an automorphism S,
and it is called local if condition (2.22) holds. In the same way as in the mLCA case,
there is a canonical bijective correspondence between mPVA and local lattice Poisson
algebras (cf. Proposition 2.19).

3.2. Algebras of difference functions and multiplicative Poisson structures. In order
to construct examples of mPVA, consider the algebra of difference polynomials in �

variables
V� = F[ui,n | i ∈ I, n ∈ Z], (3.4)

where I = {1, . . . , �}, with the automorphism S defined by S(ui,n) = ui,n+1. Note that
on V� we have

S ◦ ∂

∂ui,n
= ∂

∂ui,n+1
◦ S. (3.5)

A multiplicative λ-bracket on V� is introduced by letting (denote ui = ui,0)

{uiλu j } = Hji (λ) =
∑

k

h ji;kλk ∈ V�[λ, λ−1], i, j ∈ I, (3.6)

and extending (uniquely) to the whole space V� by the sesquilinearity and Leibniz rules.
Then we have, for arbitrary a, b ∈ V�, the following Master Formula (cf. [BDSK09]):

{aλb} =
∑

i, j∈I
m,n,k∈Z

∂b

∂u j,n
Sn

(
h ji;k Sk−m

(
∂a

∂ui,m

))
λn−m+k . (3.7)
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Definition 3.2. An algebra of difference functions in the variables ui , i ∈ I , is a com-
mutative associative algebra extension of V�, with an automorphism extending S and
commuting derivations extending ∂

∂ui,n
, such that, for every f ∈ V ,

∂ f

∂ui,n
= 0 for all but finitely many i, n ∈ Z, (3.8)

and satisfying the commutation relation (3.5). An element c ∈ V is called a constant
if it is fixed by S, and it is called a quasiconstant if it is annihilated by all partial
derivatives ∂

∂ui,n
, i, n ∈ Z. Note that, as a consequence of (3.5) and (3.8), the algebra of

quasiconstants is S-invariant and it contains the algebra of constants.

One can construct an algebra of difference functions by adding to V� any smooth
function f = f (ui,n | i ∈ I, n ∈ Z) in finitely many of the variables ui,n , the shifted
functions Sk( f ) = f (ui,n+k | i ∈ I, n ∈ Z) and all their partial derivatives of arbitrary
order.

Example 3.3. An algebra of difference functions in one variable u cannot contain a
solution f to the difference equation

(S − a)( f ) = p(u), (3.9)

where a is a non-zero quasiconstant and p(u) is a function of u such that p′(u) �= 0.
Indeed, obviously f cannot be a quasiconstant. Let then N and M be respectively the
largest and smallest integers such that ∂ f

∂uN
�= 0 and ∂ f

∂uM
�= 0, where ui stands for Si (u).

Then, applying ∂
∂uN+1

to both sides of (3.9), we get that N + 1 = 0, while applying ∂
∂uM

to both sides of (3.9), we get that M = 0, a contradiction since N ≥ M .

In the same way as in [BDSK09] for the case of PVA, one proves the following:

Proposition 3.4. Given an algebra of difference functionsV and an �×�matrix H(λ) =(
Hi j (λ)

)�

i, j=1 ∈ Mat�×� V[λ, λ−1], where Hi j (λ) = ∑
k hi j;kλk , the multiplicative λ-

bracket (3.7) defines a structure of an mPVA on V if and only if skew-symmetry and the
Jacobi identity hold on the generators ui :

(i) {uiλu j } = −{u jλ−1S−1ui },
(ii) {uiλ{u jμuk}} − {u jμ{uiλuk}} = {{uiλu j }λμuk}.
In this case we call the matrix H a multiplicative Poisson structure on V .
Example 3.5. Let p(λ) ∈ F[λ, λ−1] be a Laurent polynomial satisfying

p(λ−1) = −p(λ). (3.10)

Then, we have an mPVA structure on any algebra of difference functions V in one
variable u, defined by

{uλu} = p(λ). (3.11)

Indeed, skewsymmetry of the λ-bracket follows from the assumption (3.10), while the
Jacobi identity holds trivially, since {uλu} is central.
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Example 3.6. As an application of Proposition 3.4, if R is an mLCA, the symmetric
algebra over R has a canonical structure of an mPVA.

Example 3.7. Let (P, {·, ·}) be a Poisson algebra and let V = ⊗n∈ZP be the tensor
product of Z copies of P , where it is understood that a monomial in V has only finitely
many factors different from 1. For u ∈ P we denote un the monomial which has the
factor u in n-th place and 1 everywhere else. Clearly, V is a Poisson algebra, being
tensor product of Poisson algebras, i.e. the commutative associative product is defined
componentwise, and the Poisson bracket is such that (u, v ∈ P, m, n ∈ Z)

{um, vn} = δm,n{u, v}n,
which defines a local lattice Poisson algebra, with the automorphism S : V → V given
by S(un) = un+1. It is clearly local in the sense of Definition 2.18. Hence, we have the
corresponding multiplicative Poisson λ-bracket on V , defined by (u, v ∈ P, m, n ∈ Z):

{umλvn} = {u, v}nλn−m .

Example 3.8. Let V be an algebra of difference functions in one variable u, and fix
f (u) ∈ V (i.e. an element f ∈ V such that ∂ f

∂un
= 0 for n �= 0). Then the formula

{uλu} =
N∑

j=1

c j f (u)( f (u j )λ
j − f (u− j )λ

− j ), where c j are constants , (3.12)

defines a structure of an mPVA on V , called in [DSKVW18] the multiplicative λ-bracket
of general type. Hereafter un = u1,n in the case � = 1.

Example 3.9. Let V be the field of fractions of difference polynomials in one variable u.
Consider the following mPVA on V

{uλu} = λn − λ−n,

where n = 2m + 1 is an odd positive integer. Let v = (uS(u))−1. By a straightforward
λ-bracket computation we get

{vλv} = v
(
1 + λS

)
vw

(
1 + (λS)−1)(λS)nv

− v
(
1 + λS

)
(λS)−nvw

(
1 + (λS)−1)v, (3.13)

where

w =
m∏

k=1

S2k(v)

S2k−1(v)
.

Note that the RHS of (3.13) is equal to the multiplicative λ-bracket denoted in
[DSKVW18, Eqs. (1.11)–(1.12)] by {vλv}n+1,v,−1, which is a special case of the com-
plementary type λ-bracket for ε = −1.
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3.3. Integrable hierarchies of Hamiltonian differential-difference equations. Let V be
an mPVA. We call V̄ := V/(S − 1)V the space of Hamiltonian functionals, and we
denote by

∫ : V → V̄ the canonical quotient map. Recall from Lemma 2.5 that we have
a Lie algebra bracket on V̄ given by (2.1), and a representation of V̄ on V with the action
given by (2.2). This action is by derivations of both the λ-bracket and the commutative
associative product, and it commutes with the action of S.

Definition 3.10. TheHamiltonian equation associated to aHamiltonian functional
∫
h ∈

V̄ is, by definition,
du

dt
= {∫ h, u}, u ∈ V. (3.14)

An integral of motion for the Hamiltonian equation (3.14) is a Hamiltonian functional∫
g ∈ V̄ such that

{∫ h,
∫
g} = 0.

Equation (3.14) is called integrable if there are infinitely many linearly independent
integrals of motion

∫
hn, n ∈ Z≥0, with h0 = h, which are in involution, i.e. such that

{∫ hm,
∫
hn} = 0, for all m, n.

In this case, we have an integrable hierarchy of Hamiltonian equations

du

dtn
= {∫ hn, u}, u ∈ V, n ∈ Z≥0.

In the particular case of a multiplicative Poisson structure H on an algebra of differ-
ence functions V , Eq. (3.14) becomes

du

dt
= H(S)

δh

δu
, (3.15)

where u = (ui )i∈I , and δh
δu = ( δh

δui
)i∈I ∈ V⊕� is the vector of variational derivatives

δh

δui
=

∑

n∈Z
S−n

( ∂h

∂ui,n

)
, i = 1, . . . , �.

Consequently, since the map, associating to
∫
h ∈ V̄ the derivation {∫ h, .} of V , is

a Lie algebra homomorphism, if the operator H(S) has finite-dimensional kernel and
equation (3.15) is integrable, then it has infinitely many linearly independent commuting
symmetries.

4. Non-local Multiplicative Poisson Vertex Algebras

4.1. Non-local mLCA and non-local mPVA.

Definition 4.1. A non-local mLCA is a vector space V with an invertible endomorphism
S : V → V endowed with a non-local multiplicative λ-bracket, {· λ ·} : V ⊗ V →
V[[λ, λ−1]] satisfying axioms (i)-(iii) of Definition 2.1. A non-local mPVA is a unital
commutative associative algebra V endowed with an automorphism S : V → V and a
non-local mLCA λ-bracket, {· λ ·} : V ⊗ V → V[[λ, λ−1]] satisfying the left Leibniz
rule (3.1) (or, equivalently, the right Leibniz rule (3.2)).
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Recall thatV[[λ, λ−1]]denotes the space of bilateral series∑n∈Z anλn , wherean ∈ V
for all n ∈ Z. Thus, non-local mLCA or mPVA differ from local ones just in replacing
V[λ, λ−1] by V[[λ, λ−1]]. Note that in the non-local case all axioms still make perfect
sense.

Remark 4.2. Recall that in the “additive” case of non-local PVA’s, the λ-bracket cannot
be a bilateral series in λ, λ−1, otherwise the skewsymmetry and Jacobi identity axioms
would give divergent series. As we have seen, this issue does not arise in the “multi-
plicative” case, which, in this respect, seems to be much easier to deal with.

Let V be an algebra of difference equations in the variables ui , i ∈ I , and let H(λ) =
(Hi j (λ))i, j∈I ∈ Mat�×� V[[λ, λ−1]] be a matrix valued bilateral series in λ and λ−1.
As in Sect. 3.2, we can define a structure of a non-local multiplicative λ-bracket on
V by letting the λ-bracket of a, b ∈ V be given by the Master Formula (3.7), which
makes sense also for bilateral series. One can check that Proposition 3.4 still holds in
the non-local case:

Proposition 4.3. Given an algebra of difference functions V in � variables ui , i ∈ I ,
and an � × � matrix H(λ) = (

Hi j (λ)
)�

i, j=1 ∈ Mat�×� V[[λ, λ−1]], the multiplicative
λ-bracket (3.7) defines a structure of an mPVA on V if and only if skew-symmetry and the
Jacobi identity hold on the generators ui . In this case we call the matrix H a non-local
multiplicative Poisson structure on V .
Example 4.4. If we replace in Example 3.5 the Laurent polynomial p(λ) by an arbitrary
element of F[[λ, λ−1]] satisfying condition (3.10), formula (3.11) gives a non-local
mPVA structure on any algebra of difference functions in one variable u.

Example 4.5. We can generalize Example 3.8 to the non-local setting as follows. Let V
be an algebra of difference functions in one variable u. Let f (u) ∈ V be a function of
the variable u only (i.e. ∂ f

∂un
= 0 for all n �= 0). Let r(λ) ∈ F[[λ, λ−1]] be a bilateral

series satisfying the condition:
r(λ−1) = −r(λ). (4.1)

For example, r(λ) = ∑
n≥1(λ

n −λ−n). Define a multiplicative λ-bracket on V by letting

{uλu} = f (u) r(λS) f (u), (4.2)

and extending to V by the Master Formula (3.7). The RHS of (4.2) has the obvious
meaning: if r(λ) = ∑

n cnλ
n , then (cf. (3.12))

f (u)r(λS) f (u) =
∑

n

cn f (u) f (un)λ
n .

We claim that this defines a structure of non-local multiplicative PVA on V .
First, it is immediate to check that the assumption (4.1) implies the skewsymmetry

condition {uλu} = −{uλ−1S−1u}. Let us check the Jacobi identity. We have, by the
sesquilinearity axioms and the left Leibniz rule
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{uλ{uμu}} = {
uλ f (u) r(μS) f (u)

}

= {uλ f (u)} r(μS) f (u) + f (u) r(λμS){uλ f (u)}

= ∂ f

∂u
f (u)

(
r(λS) f (u)

)(
r(μS) f (u)

)
+ f (u) r(λμS)

(∂ f

∂u
f (u) r(λS) f (u)

)
.

Hence,

{uλ{uμu}} − {uμ{uλu}} = f (u) r(λμS)
(∂ f

∂u
f (u) r(λS) f (u) − ∂ f

∂u
f (u) r(μS) f (u)

)
.

On the other hand, by the sesquilinearity axioms and the right Leibniz rule, we have,
using the notation (3.3),

{{uλu}λμu} = {
f (u) r(λS) f (u)λμu

}

= { f (u)λμxu}(∣∣x=Sr(λS) f (u) + r(μ−1S−1) f (u)
)

= f (u)r(λμS)
(∂ f

∂u
f (u) r(λS) f (u) +

∂ f

∂u
f (u) r(μ−1S−1) f (u)

)
.

Hence, by (4.1), the Jacobi identity holds, and (4.2) defines a structure of non-local
mPVA on V .

Note that the bilateral series r(λ) satisfying (4.1) form a vector subspace of
F[[λ, λ−1]]. Hence, for a fixed function f (u), all the multiplicative λ-brackets (4.2)
are compatible mPVA λ-brackets.

Example 4.6. Let V be an algebra of difference functions in one variable u and consider
the following two non-local mPVA λ-brackets on V , special cases of Examples 4.4 and
4.5 respectively:

{uλu}1 = p(λ) and {uλu}2 = ur(λS)u, (4.3)

where p(λ) = λ − λ−1 and r(λ) ∈ F[[λ, λ−1]] satisfies the condition (4.1). We can ask
when these two structure are compatible, in the sense that their sum is still a non-local
mPVA λ-bracket on V . The compatibility condition reads, in this case,

{uλ{uμu}2}1 − {uμ{uλu}2}1 = {{uλu}2λμu}1.
Expanding all three terms via the sesquilinearity axioms and the Leibniz rules, we get
the following equation on the bilateral series r(λ):

p(λ)r(μS) − p(μ)r(λS) + (p(λ) − p(μ))r(λμ) = p(λμS)(r(λS) − r(μS)). (4.4)

It is not hard to prove that, for p(λ) = λ−λ−1, there is a unique (up to a constant factor)
solution of Eq. (4.4):

r(λ) =
∑

n≥1

(−1)n(λn − λ−n). (4.5)

ThismPVA, denoted byW2, corresponds to the classical lattice W-algebra of sl2 [HI97]
via (2.23) (the classical lattice W -algebras for glN and slN , N ≥ 2, will be considered
in Sect. 9).



1038 A. De Sole, V. G. Kac, D. Valeri, M. Wakimoto

4.2. The Lenard–Magri scheme for the modified Volterra equation (cf. [KMW13]).
Recall that, given twodifference operators K (S) and H(S) inV[S, S−1], a Lenard–Magri
sequence of length n is a sequence of elements ξ j ∈ V , where j = 0, 1, 2, . . . , n − 1,
such that

K (S)ξ j = H(S)ξ j−1, j = 1, 2, . . . , n − 1. (4.6)

Proposition 4.7. Let K̃ (S) = S−S−1 and let H̃(S) be a skewadjoint difference operator
of the form H̃(S) = (S+1)◦D(S), for some difference operator D(S). Then any Lenard–
Magri sequence of length n ≥ 1, with ξ0 = 1

2 can be extended to a Lenard–Magri
sequence of length n + 1.

Proof. By induction on n. First, we claim that H̃(S)(ξn−1) ∈ (S−1)V . Indeed, we have
1

2

∫
H̃(S)(ξn−1) =

∫
ξ0 H̃(S)(ξn−1) =

∫
ξ0 H̃(S)(ξn−1)

+
∫

ξ1 H̃(S)(ξn−2) + · · · +
∫

ξn−1 H̃(S)(ξ0)

−
∫

ξ1 K̃ (S)(ξn−1) − · · · −
∫

ξn−1 K̃ (S)(ξ1)

=
n−1∑

i=0

∫
ξi H̃(S)(ξn−i ) −

n−1∑

i=1

∫
ξi K̃ (S)(ξn−i ) = 0 − 0 = 0,

since H̃(S) and K̃ (S) are skewadjoint. Hence, by the assumption on H̃(S), there exist
a, b ∈ V such that

H̃(S)(ξn−1) = (S − 1)(a) = (S + 1)(b).

A solution for the Lenard–Magri recurrence relation (4.6) is then

ξn = 1

2
S(a − b).

�
Remark 4.8. Proposition 4.7 can be generalized as follows (proof is the same). Let
K (S) = g(u)(S − S−1) ◦ g(u) and let H(S) = g(u)(S + 1) ◦ D(S) be a skewadjoint
operator for some difference operator D(S). Then there exists an infinite Lenard–Magri
sequence with ξ0 = 1

2g(u)
. Proposition 7.3 from [DSKVW18] is a special case of this.

Now consider the compatible pair of Poisson structures from Example 4.6:

K (S) = u
S − 1

S + 1
◦ u, H(S) = S − S−1.

Proposition 4.9. There exists an infinite Lenard–Magri sequence ξ0 = 1
u , ξ1, ξ2, . . . for

the operators K (S) and H(S).
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Proof. Relation (4.6) can be rewritten as

(S − 1)uξ j = (S + 1)
1

u
(S − S−1)ξ j−1. (4.7)

Letting uξ j = (1 + S−1)ω j , Eq. (4.7) can be written as

K̃ (S)ω j = H̃(S)ω j−1, ω0 = 1

2
, (4.8)

where K̃ (S) = S − S−1 and

H̃(S) = (S + 1) ◦ 1

u
(S − S−1) ◦ 1

u
(1 + S−1).

The claim follows from Proposition 4.7. �
Obviously ξ0 = 1

u . Next, it is easy to see that

ξ1 = 1

u2

(
1

u1
+

1

u−1

)
= − δ

δu

1

uu1
.

Due to the general theorem (see e.g. [DSK13, Thm.6.20], [DSKVW18, Thm.5.5]), all the
ξi are variational derivatives: ξi = δ

δu

∫
hi . It is easy to see that the first three conserved

densities are

h0 = log u, h1 = − 1

uu1
, h2 = − 1

2u2u21
− 1

uu21u2
. (4.9)

So we get an integrable hierarchy of Hamiltonian equations du
dt j

= H(S)(ξ j ), j =
0, 1, 2, . . . . (It is easy to show that they are linearly independent.) The first two equations
of this hierarchy are:

du

dt0
= 1

u1
− 1

u−1
,

du

dt1
= 1

u21

(
1

u
+

1

u2

)
− 1

u2−1

(
1

u
+

1

u−2

)
. (4.10)

Note that, after the substitution u = 1
v
, the first of these equations turns into the modified

Volterra lattice

dv

dt0
= v2(v−1 − v1).

Introduce the following Lax operator: L = S + 1
u − 1

u1
− 1

u2
S−1. Then the first

equation in (4.10) can be written in the Lax form dL
dt0

= [(L2)+, L] and the integrals of

motion from (4.9) can be written as
∫
h1 = 1

2

∫
mRes(L2),

∫
h2 = − 1

4

∫
mRes(L4). We

conjecture that the whole hierarchy has the Lax form

dL

dt j
= [(L2 j+2)+, L], j = 0, 1, 2, . . . ,

and the integrals of motion are

∫
h j = (−1) j+1

2 j

∫
mRes(L2 j ), j = 1, 2, . . . .
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4.3. A bi-Hamiltonian equation in n ≥ 2 difference variables u1, . . . , un. Here we
generalize Sect. 4.2, using a compatible pair of Poisson λ-brackets for the multiplicative
W -algebra WN with N = n + 1 ≥ 3, constructed in Sect. 9.4 below. We obtain a bi-
Hamiltonian differential-difference equation on n-variables as follows. Let K (S) and
H(S) be the n × n matrix difference operators, corresponding to the Poisson λ-brackets
(9.14) and (9.13). Let

h0 = log u1, h1 = u2
u1S(u1)

, ξi = δhi
δu

, i = 0, 1.

Then we have
K (S)ξ0 = 0, K (S)ξ1 = H(S)ξ0, (4.11)

hence we obtain the bi-Hamiltonian differential-difference equation du
dt0

= H(S)ξ0.
Explicitly:

du j

dt0
= S−1(u j+1)

S−1(u1)
− u j+1

S j (u1)
, j = 1, . . . , n, (4.12)

where un+1 = 1. Its first two conserved densities are h0 and h1.
We conjecture that the Lenard–Magri sequence (4.11) can be infinitely extended,

hence, by a general theorem as above, the Eq. (4.12) is integrable. This equation have
appeared earlier in [MBW13].

5. Rational Multiplicative Poisson Vertex Algebras

5.1. Pseudodifference operators. LetV be a unital commutative associative algebrawith
an automorphism S. The algebra of scalar difference operators over V is the space of
Laurent polynomials V[S, S−1], with the associative product ◦ defined by the relation

S ◦ f = S( f )S, f ∈ V.

Hence, for a(S) = ∑
m amSm and b(S) = ∑

n bnS
n in V[S, S−1], their product is

a(S) ◦ b(S) =
∑

m,n

amS
m(bn)S

m+n .

The algebra V[S, S−1] naturally acts on V: the action of a(S) = ∑
n anS

n ∈
V[S, S−1] (finite sum) on f ∈ V is

a(S) f =
∑

n

anS
n( f ) ∈ V. (5.1)

(It should not be confused with the associative product a(S) ◦ f = ∑
n anS

n( f )Sn ∈
V[S, S−1].)

The algebra V[S, S−1] is Z-graded by the powers of S, and it can be completed
either in the positive or in the negative directions, giving rise to two algebras of pseu-

dodifference operators: V((S)) = V[[S]][S−1] and V((S−1)) = V[[S−1]][S]. Given a
pseudodifference operator a(S) = ∑

n anS
n ∈ V((S±1)), we define its formal adjoint

as

a∗(S) =
∑

n

S−n ◦ an ∈ V((S∓1)),



Local and Non-local Multiplicative Poisson Vertex Algebras 1041

its positive part as

a(S)+ =
∑

n≥0

anS
n,

its negative part as

a(S)− =
∑

n≤−1

anS
n,

and its symbol as

a(z) =
∑

n

anz
n ∈ V((z±1)).

(Note: here and further V((S±1)) stands for V((S)) or V((S−1)) respectively, NOT for
V((S, S−1)).)

The action (5.1) of V[S, S−1] on V does not extend to an action of V((S±1)) on V .
On the other hand, we have a z-action

V((S±1)) × V → V((z±1)),

mapping a(S) ∈ V((S±1)) and f ∈ V to

a(zS) f =
∑

n

anS
n( f )zn ∈ V((z±1)). (5.2)

For example, the symbol of a(S) ∈ V((S±1)) is given, in terms of this action, by

a(z) = a(zS)1 ∈ V((z±1)). (5.3)

Given pseudodifference operators a(S), b(S) ∈ V((S±1)), it is not difficult to write
a formula for the symbol of the product a(S) ◦ b(S), and its formal adjoint (a ◦ b)∗(S).
We have (cf. [DSKV18, Lem.2.1]):

(a ◦ b)(z) = a(zS)b(z), (5.4)

and
(a ◦ b)∗(z) = b∗(zS)a∗(z). (5.5)

5.2. Rational difference operators. Let V be a field with an automorphism S, and con-
sider the algebra of rational difference operators: V(S)

( = V(S−1)
)
, defined as the

skewfield of fractions of the algebra of polynomial difference operators V[S] (or, equiv-
alently, V[S−1]). Since V[S] is a Euclidean (non-commutative) domain, it satisfies the
Ore condition, and therefore

V(S) = {
a(S) ◦ b(S)−1

∣∣ a(S), b(S) ∈ V[S], b(S) �= 0
}
.

It can be embedded in both algebras of pseudodifference operatorsV((S)) andV((S−1)).
Indeed, if b(S) = ∑N

n=M bnSn ∈ V[S] (M ≤ N ), is such that bMbN �= 0, we can factor
it as

b(S) = bM SM ◦
(

1 +
∑

n>M

S−M
(
bn
bM

)
Sn−M

)

,
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and expand b(S)−1, via geometric series expansion, as an element of V((S)), or we can
factor b(S) as

b(S) = bN S
N ◦

(

1 +
∑

n<N

S−N
(
bn
bN

)
S−(N−n)

)

,

and expand b(S)−1, via geometric series expansion, as an element of V((S−1)). We
denote by ι± the resulting embeddings of the algebra of rational difference operators

ι± : V(S) ↪→ V((S±1)). (5.6)

If V is not a field, but only a domain, the above construction applies over the field of
fractions of V .

5.3. The symbol of a rational difference operator as a bilateral series. By composing the
embeddings V(S) ↪→ V((S±1)) defined in (5.6) with the symbol maps V((S±1))

∼−→
V((z±1)) defined in (5.3), we get the positive and negative symbol maps

V(S) ↪→ V((z±1)), r(S) �→ r±(z)
( := (ι±r)(z)

)
. (5.7)

Definition 5.1. The symbol r(z) of a rational difference operator r(S) ∈ V(S) is defined
as the bilateral series

r(z) = 1

2
r+(z) +

1

2
r−(z) ∈ V[[z, z−1]]. (5.8)

Note that, for a difference operator a(S) ∈ V[S, S−1], the symbol coincides with the
positive and negative ones.

Proposition 5.2. The symbol map V(S) → V[[z, z−1]] is an injective linear map. Let
the bilateral series R(z) ∈ V[[z, z−1]] be the symbol of a rational difference operator
r(S) ∈ V(S). We can reconstruct the rational difference operator r(S) as follows.
Decompose (uniquely) the bilateral series R(z) as

R(z) = R(z)+ + R(z)−, where R(z)+ ∈ V[[z]] and R(z)− ∈ V[[z−1]]z−1. (5.9)

Then R(z)+ and R(z)− are the positive and negative symbols, respectively, of two
(uniquely defined) rational difference operators:

R(z)+ = (r+)
+(z), R(z)− = (r−)−(z) for some r±(S) ∈ V(S), (5.10)

and we have
r(S) = r+(S) + r−(S). (5.11)

Proof. Obviously the symbol map r(S) �→ r(z) ∈ V[[z, z−1]] defined by (5.8) is a
linear map, since it is a linear combination of compositions of linear maps. If r ∈ V(S)

is such that r(z) = 0, then we have

r+(z) = −r−(z) ∈ V((z)) ∩ V((z−1)) = V[z, z−1]. (5.12)

On the other hand, the positive and negative symbol maps V(S) → V((z±1)) are injec-
tive, and they both restrict to the “symbol map” bijection V[S, S−1] ∼−→ V[z, z−1].
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Since, by (5.12), r+(z) ∈ V[z, z−1], it then follows that r(S) ∈ V[S, S−1], and since,
again by (5.12), r+(z) = −r−(z), we get r = 0. This proves that the symbol map (5.8)
is injective.

Let us prove the reconstruction claim. By assumption, we have

R(z) = 1

2
r+(z) +

1

2
r−(z) for some r(S) ∈ V(S). (5.13)

Combining (5.9) and (5.13), we get

q(z) := R(z)+ − 1

2
r+(z) = 1

2
r−(z) − R(z)− ∈ V((z)) ∩ V((z−1)) = V[z, z−1].

Hence, q(z) is the symbol of a difference operator q(S) ∈ V[S, S−1]. In particular,
q+(z) = q−(z) = q(z). we thus get

R(z)+ = 1

2
r+(z)+q(z) =

(
1

2
r + q

)+

(z), R(z)− = 1

2
r−(z)−q(z) =

(
1

2
r − q

)−
(z).

(5.14)
Since the positive and negative symbol maps (5.7) are injective, we get from (5.10) and
(5.14) that r±(S) = 1

2r(S) ± q(S). Equation (5.11) follows. �
Example 5.3. The bilateral series r(λ) = ∑

n≥1(−1)n(λn − λ−n) (cf. Eq. (4.5)) is the

symbol of the rational function 1−S
1+S .

One has to be careful when using the notation (5.8). Indeed, for a(S), b(S) ∈
V((S±1)) we have

(a ◦ b)(zS)1 = a(zS)b(zS)1.

This formula for rational difference operators a(S), b(S) ∈ V(S) makes no sense, since
the RHS, being product of bilateral series, may have divergent series. Instead, the correct
version for rational difference operators is given by the following:

Lemma 5.4. The symbol of the composition of two rational difference operators f (S),

g(S) ∈ V(S) is given by

( f ◦ g)(z) = 1

2
f +(zS)g+(z) +

1

2
f −(zS)g−(z). (5.15)

Proof. Obvious. �

5.4. Rules for computing λ-brackets with rational operators. Note that the embeddings
ι± in (5.6) are algebra homomorphisms, while their halfsum 1

2 (ι
+ + ι−) is not (and it

has values in V[[S, S−1]], which is not an algebra). The following proposition provides
useful rules for computing λ-brackets of symbols of rational difference operators.

Proposition 5.5. Let V be a domain with an automorphism S, endowed with a (possibly
non-local) multiplicative λ-bracket {· λ ·}. Let u ∈ V and f (S), g(S) ∈ V(S). We have,
recalling the notation (3.3),
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{uλ( f ◦ g)±(z)} = {uλ f
±(zx)}(∣∣x=Sg

±(z)
)
+ f ±(zλx)

(∣∣
x=S{uλg

±(z)}) (5.16)

{( f ◦ g)±(z)λu} = { f ±(zx)λxu}(∣∣x=Sg
±(z)

)
+ {g±(z)λxu}(∣∣x=S f

±(zλ−1x−1)
)

(5.17)

{uλ( f
−1)±(z)} = −( f −1)±(zλS)→{uλ f

±(zx)}(∣∣x=S( f
−1)±(z)

)
(5.18)

{( f −1)±(z)λu} = −{ f ±(zx)λxyu}(∣∣x=S( f
−1)±(z)

)(∣∣
y=S( f

−1)±(zλ−1y−1)
)
.

(5.19)

Proof. The proof is straightforward. It uses formula (5.4), the Leibniz rules and the
sesquilinearity conditions. For example:

{uλ( f ◦ g)+(z)} = {uλ f
+(zS)g+(z)}

= {uλ f
±(zx)}(∣∣x=Sg

±(z)
)
+ f ±(zλx)

(∣∣
x=S{uλg

±(z)}),
proving (5.16) with +. �
Remark 5.6. Note that Eqs. (5.16)–(5.19) fail if in place of the positive and negative
symbols we have the symbols. However, we can compute the analogous λ-brackets with
the symbols ( f ◦ g)(z) or ( f −1)(z) using (5.16)–(5.19) and the definition (5.8) of the
symbol: ( f ◦ g)(z) = 1

2 ( f ◦ g)+(z) + 1
2 ( f ◦ g)−(z), and ( f −1)(z) = 1

2 ( f
−1)+(z) +

1
2 ( f

−1)−(z).

5.5. Rational mPVA.

Definition 5.7. A non-local mPVA V is called rational if, for every a, b ∈ V , the mul-
tiplicative λ-bracket {aλb} ∈ V[[λ, λ−1]] is the symbol (5.8) of a rational difference
operator. For a, b ∈ V , if {aλb} = fa,b(λ) is the symbol of the rational operator
fa,b(S) ∈ V(S), we denote by {aλb}± the corresponding positive and negative sym-
bols:

{aλb}± = fa,b
±(λ) ∈ V((λ±1)), (5.20)

so that {aλb} = 1
2 {aλb}+ + 1

2 {aλb}−.
Remark 5.8. An alternative definition of a rational mPVA V is obtained by letting the
λ-bracket {· λ ·} have values in V((λ)), and requiring that, for a, b ∈ V , the λ-bracket
{aλb} is the expansion in V((λ)) of the symbol of a rational pseudodifference operator.
The skew-symmetry axiom (ii) and the Jacobi identity (iii) then would require some
explanation. First, by assumption {bλa} is the symbol of a rational difference operator
r(S) = f (S) ◦ g(S)−1. Then, the RHS of the skewsymmetry axiom,

(∣∣
x=S{bλ−1x−1a}),

is the symbol of r∗(S) = g∗(S)−1 ◦ f ∗(S), which is also a rational difference operator.
Hence, the skewsymmetry axiomcanbe rewritten as the skewadjointness r∗(S) = −r(S)

in the space V(S). As for the Jacobi identity, it is not hard to check that all three terms
of the identity are linear combinations of expressions of the form

r(λμS)
(
p(λ)q(μ)

)
,

for rational pseudodifference operators p(S), q(S), r(S) ∈ V(S). Hence, the Jacobi
identity should be interpreted as an identity between expressions of this form (i.e., can
be rewritten as an identity in V(S)⊗3).
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Example 5.9. Let V be an algebra of difference functions in one variable u. The non-
local mPVA structure on V defined in Example 4.5 is rational provided that the bilateral
series r(λ) ∈ F[[λ, λ−1]] is the symbol of a constant coefficients rational difference
operator r(S) ∈ F(S) satisfying r(S−1) = −r(S). (The same is true for the non-local
mPVA structure of Example 4.4).

Example 5.10. LetV be as inExample 5.9. Consider the two compatible non-localmPVA
structures on V constructed in Example 4.6. Note that the first mPVA λ-bracket {· λ ·}1 in
(4.3) is local, while the secondmPVAλ-bracket {· λ ·}2, with r(λ) as in (4.5), is non-local,
though rational by Example 5.3. In order to construct a local mPVA subalgebra with
respect to both λ-brackets, assume that u is an invertible element of V , and consider
the Miura transformation v = (uS(u))−1 (cf. [HI97]). A straightforward λ-bracket
computation using Eqs. (5.18)–(5.19) yields

{vλv}1 = v
(
1 + λS

)
v
(
1 + λS

)
v − v

(
1 + (λS)−1)v

(
1 + (λS)−1)v,

{vλv}2 = v
(
λS − (λS)−1)v. (5.21)

LetA2 ⊂ V be the subalgebra of V of difference polynomials in v. Thus we get a pair of
compatible local mPVA λ-brackets on A2. It is proved in [DSKVW18] that any mPVA
λ-bracket of order less than or equal to 2 on A2 is either a linear combination of those
from (5.21) or is a λ-bracket (3.12) of order≤ 2.We show in [DSKVW18] that, applying
the Lenard–Magri scheme to the compatible λ-brackets from (5.21), gives integrability
of the Volterra lattice. Also, we point out there that the local lattice Poisson algebra
corresponding to the difference of the structures (5.21) is the Faddeev-Takhtajan-Volkov
algebra [FT86].

In Sect. 9.4 we will consider a generalization of this example for arbitrary WN ,
N ≥ 3. In the next example we construct W3.

Example 5.11. LetV be an algebra of difference functions in two variables u, v. Consider

the constant coefficients rational difference operator r(S) = (S−1)2

S3−1
∈ F(S). Define the

following two multiplicative λ-brackets on V:

{uλu}1 = 0, {uλv}1 = λ−2 − λ, {vλv}1 = ((λS)−1 − λ)u

and

{uλu}2 = (λ−1 − λS)v + ur(λS)(λS + 1)u,

{uλv}2 = vr(λS)u,

{vλv}2 = vr(λS)(λS + 1)v.

One can check that they are compatible rational mPVA λ-brackets. The corresponding
commutators of formal distributions define the q-deformed W -algebra of sl3 [FR96],
see also [HI97]. In Sect. 9.4 we shall construct a local mPVA subalgebra A3 as well.
The local lattice Poisson algebra corresponding to the mPVAA3 is the Belov-Chaltikian
algebra [BC93].
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5.6. Dirac reduction. Let V be a rational mPVA with multiplicative λ-bracket {·λ·}.
Given elements θ1, . . . , θm ∈ V , we consider the matrix

C(λ) = ({θβλθα})m
α,β=1 ∈ Matm×m V[[λ, λ−1]]. (5.22)

By the rationality assumption on V , this is anm×m-matrix, symbol of a rational matrix
difference operator:

C = C(S) ∈ Matm×m V(S),

whichwe assume to be invertible. TheDiracmodified λ-bracket {·λ·}D by the constraints
θ1, . . . , θm is defined as follows

{aλb}D = {aλb} − 1

2

∑

±

m∑

α,β=1

{θαλxb}±
(∣∣
x=S(C

−1)±αβ(λS){aλθβ}±)
, a, b ∈ V.

(5.23)
In the RHS of (5.23) we are using the notation (5.20).

The following result is the “multiplicative analogue” of [DSKV14, Thm.2.2]

Theorem 5.12. Let V be a rational mPVA with automorphism S and λ-bracket {· λ ·}.
Let θ1, . . . , θm ∈ V be elements such that the rational matrix pseudodifference operator
C(S) ∈ Matm×m V(S) with symbol (5.22) is invertible.

(a) The Dirac modification {· λ ·}D defined by (5.23) is a rational multiplicative Poisson
λ-bracket on V .

(b) All elements θ1, . . . , θm are central with respect to the Dirac modified λ-bracket:
{aλθi }D = {θiλa}D = 0 for all i = 1, . . . ,m and a ∈ V .

(c) The associative algebra ideal I = 〈Sn(θi ) | i = 1, . . . ,m; n ∈ Z〉 is an mPVA ideal
of V with respect to the Dirac modified λ-bracket {· λ ·}D.

Hence, the quotient space V/I is a rational mPVA with respect to the multiplicative λ-
bracket induced by the Dirac modified λ-bracket {· λ ·}D on V , provided that it is defined.
We call this mPVA the Dirac reduction of V by the constraints θ1, . . . , θm.

Proof. Straightforward. �
As a special case, assume that V is an algebra of difference functions in u1, ..., u�,

and that the multiplicative Poisson λ-bracket on V is given by the Poisson structure
H(S) = (

Hi j (S)
)�

i, j=1 ∈ Mat�×� V(S), with symbols of the entries given by

Hi j (λ) = {u jλui } ∈ V(λ).

Then, by theMaster Formula (3.7), thematrixC(S) ∈ Matm×m V(S)with symbol (5.22)
is given by

C(S) = D�(S) ◦ H(S) ◦ D∗
�(S), (5.24)

where

D�(S) =
(

∑

n∈Z

∂θα

∂ui,n
Sn

)

α=1,...,m, i=1,...,�

∈ Matm×� V[S, S−1],
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is the Frechet derivative of� = (θα)α=1,...,n , and D∗
�(S) is the transposed adjointmatrix:

D∗
�(S) =

(
∑

n∈Z
S−n ◦ ∂θβ

∂u j,n

)

j=1,...,�, β=1,...,m

∈ Mat�×m V[S, S−1].

Moreover, it is not hard to check that the Dirac modified Poisson structure HD(S),
corresponding to the Dirac modified multiplicative λ-bracket (5.23), is as follows:

HD(S) = H(S) + B(S) ◦ C(S)−1 ◦ B∗(S) ∈ Mat�×� V(S), (5.25)

where

B(S) := H(S) ◦ D∗
�(S) ∈ Mat�×m V(S),

B∗(S) = −D�(S) ◦ H(S) ∈ Matm×� V(S),

and C(S) is as in (5.24).
As a further special case, assume that the constraints have the form

θi = ui + ci , i = 1, . . . ,m,

where ci , i = 1, . . . ,m, are constants. In this case, let us write themultiplicative Poisson
structure H(S) in block form

H(S) =
(
H1(S) H2(S)

H3(S) H4(S)

)
,

where the blocks are of sizes H1(S) ∈ Matm×m V(S), H2(S) ∈ Matm×(�−m) V(S),
H3(S) ∈ Mat(�−m)×m V(S) and H4(S) ∈ Mat(�−m)×(�−m) V(S). Then, the above
matrices D�(S) ∈ Matm×� V(S), D�(S)∗ ∈ Mat�×m V(S), C(S) ∈ Matm×m V(S),
B(S) ∈ Mat�×m V(S), and B(S)∗ ∈ Matm×� V(S), are as follows:

D�(S) = (
1m×m 0m×(�−m)

)
, D∗

�(S) =
(
1m×m
0(�−m)×m

)
,

B(S) =
(
H1(S)

H3(S)

)
, B∗(S) = − (

H1(S) H2(S)
)
, C(S) = H1(S).

Hence,

HD(S) =
(
0 0
0 H4(S) − H3(S) ◦ H1(S)−1 ◦ H2(S)

)
.

In other words, the multiplicative Poisson structure for the Dirac reduced mPVA V/I is
the quasideterminant of the matrix H(S) with respect to the block H4(S) (cf. formula
(5.25) and [OR89]):

H4(S) − H3(S) ◦ H1(S)−1 ◦ H2(S).
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5.7. Relation with q-deformations of Poisson algebras. Let V be a vector space over the
field F(q) of rational functions in the variable q. Consider the space V[[z, z−1, w,w−1]]
of V-valued formal distributions in two variables. An element a(z, w) ∈ V[[z, z−1,

w,w−1]] is called quasi-local if it has an expansion of the following form:

a(z, w) =
∑

j∈Z
c j (w)δ

(
z

q jw

)
for some c j (w) ∈ V[[w,w−1]]. (5.26)

Due to Lemma 2.8 this is a generalization of the notion of a q-local formal distribution
in two variables.

Example 5.13. Examples of quasi-local formal distributions are provided by the q-
deformed W -algebras WN of Frenkel and Reshetikhin [FR96]. Let us consider the
simplest example when N = 2. Then V is a completed algebra of polynomials in
the indeterminates tn , n ∈ Z, with the following two compatible q-deformed Poisson
brackets

{t (z), t (w)}1=δ

(
wq

z

)
−δ

(
w

zq

)
and {t (z), t (w)}2=

∑

m∈Z

1 − qm

1 + qm

(
w

z

)m

t (z)t (w),

where t (z) = ∑
n∈Z tnzn . The first bracket is obviously local, while the second can

be written using property (2.6) in the form (5.26), where c j (w) = a j t (q jw)t (w), and
a j are coefficients of the expansion of the function 1−q

1+q . Replacing, as in Sect. 2.4,

δ(z/q jw) by λ j , letting S(t (w)) = t (qw) and identifying t (w) with u, these brackets
correspond to the compatible multiplicative λ-brackets of Example 4.6.

6. The Multiplicative Adler Identity and Poisson Vertex Algebras

6.1. Themultiplicative Adler identity. LetV be a unital commutative associative algebra
endowed with an automorphism S and a multiplicative λ-bracket {· λ ·}. By analyzing
the notion of an Adler type pseudodifferential operator from [DSKV15,DSKV16], we
arrive at the following multiplicative analogue of it.

Definition 6.1. The multiplicative Adler identity (or, simply, Adler identity) on a pseu-
dodifference operator L(S) ∈ V((S±1)) with respect to a multiplicative λ-bracket {· λ ·}
reads

{L(z)λL(w)} = L(wλS)δ+

(
wλS

z

)
L∗

(
λ

z

)
− L(z)δ+

(
wλS

z

)
L(w)

− 1

2

(
L(wλS) + L(w)

) (
L∗

(
λ

z

)
− L(z)

)
, (6.1)

where δ+(z) is the positive part of the δ-function, defined in (2.12).

Recalling (2.6), we have

L(wλS)δ

(
wλS

z

)
L∗

(
λ

z

)
= L(z)δ

(
wλS

z

)
L(w).
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Hence, using (2.11), we can rewrite the Adler identity (6.1) in the equivalent form
involving the negative δ-function δ−(z):

{L(z)λL(w)} = −L(wλS)δ−
(

wλS

z

)
L∗

(
λ

z

)
+ L(z)δ−

(
wλS

z

)
L(w)

− 1

2
(L(wλS) + L(w))

(
L∗

(
λ

z

)
− L(z)

)
. (6.2)

Next, we observe that theAdler identity can be rewritten equivalently in terms of local
(i.e. polynomial) λ-brackets among the coefficients of the pseudodifference operator
L(S). Indeed, let L(z) = ∑

i≤N ui zi ∈ V((z−1)) (the same argument works for L(z) ∈
V((z))). Clearly, the RHS of (6.1) is a Laurent series in z−1 with powers of z bounded
above by the positive integer N , while the RHS of the equivalent equation (6.2) is a
Laurent series in w−1 with powers of w bounded above by N . Hence, the Adler identity
(6.1) is consistent in the degrees of z and w, and, comparing the coefficient of ziw j

(i, j ≤ N ) in both sides of (6.2), we get the following λ-bracket relations:

{uiλu j } =
N−i∑

n=0

(
u j−n(λS) j−i−nui+n − ui+n(λS)nu j−n

)

− 1

2
u j ((λS) j + 1)((λS)−i − 1)ui . (6.3)

Likewise, for L(z) = ∑
i≥N ui zi ∈ V((z)), the RHS of (6.2) is clearly a Laurent series

in z with powers of z bounded below by N , while the RHS of (6.1) is a Laurent series in
w with powers ofw bounded below by N . Hence, again (6.1) is consistent in the degrees
of z and w, and (6.1) is equivalent to the following λ-brackets relations for all i, j ≥ N .

{uiλu j } =
j−N∑

n=0

(
u j−n(λS) j−i−nui+n − ui+n(λS)nu j−n

)

− 1

2
u j ((λS) j + 1)((λS)−i − 1)ui . (6.4)

Proposition 6.2. Suppose the pseudodifference operator L(z) ∈ V((z±1)) satisfies the
Adler identity (6.1). Then, we have the multiplicative skew-symmetry relation

{L(z)λL(w)} = −(∣∣
x=S{L(w)λ−1x−1L(z)}), (6.5)

and the multiplicative Jacobi identity:

{L(z)λ{L(w)μL(v)}} − {L(w)μ{L(z)λL(v)}} = {{L(z)λL(w)}λμL(v)}. (6.6)

Proof. From (6.1) we have

(∣∣
x=S{L(w)λ−1x−1L(z)})

=
(∣
∣∣
x=S

L

(
zS

λx

)
δ+

(
zS

wλx

)
L∗

(
1

wλx

)
− L(w)δ+

(
zS

wλx

)
L(z)

−1

2

(
L

(
zS

λx

)
+ L(z)

)(
L∗

(
1

wλx

)
− L(w)

))
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= L(wλS)δ+

( z

wλS

)
L∗

(
λ

z

)
− L(z)δ+

( z

wλS

)
L(w)

− 1

2

(
L(wλS) − L(w)

) (
L∗

(
λ

z

)
+ L(z)

)

= L(wλS)δ−
(

wλS

z

)
L∗

(
λ

z

)
− L(z)δ−

(
wλS

z

)
L(w)

+
1

2
(L(wλS) + L(w))

(
L∗

(
λ

z

)
− L(z)

)
= −{L(z)λL(w)}. (6.7)

For the second equality of (6.7) we used the definition of formal adjoint, for the third
equality we used (2.12), and for the fourth equality we used (6.2). This proves Eq. (6.5).
Next, let us prove Eq. (6.6). By a straightforward computation (see [DSKV15] for the
same computation in the additive case), using the Adler type identity (6.1) and the
Leibniz rules, the Jacobi identity (6.6) can be rewritten as the vanishing of the following
expression

L(vλμS)δ+

(
vλμS

z

)(
L∗

(
λ

z

)
δ+

(
vμS

w

)
L∗ ( μ

w

)
− L∗ ( μ

w

)
δ+

( z

wλS

)
L∗

(
λ

z

))
(6.8)

− L(vλμS)

(
δ+

(
wλS

z

)
L∗

(
λ

z

)) (
δ+

(
vμS

w

)
L∗ ( μ

w

))
(6.9)

+
1

2
L(vλμS)L∗ ( μ

w

)(
δ+

(
wλS

z

)
+ δ+

( z

wλS

)
− 1

)
L∗

(
λ

z

)
(6.10)

+ L(vλμS)δ+

(
vλμS

w

) (
L∗

(
λ

z

)
δ+

(
w

zμS

)
L∗ ( μ

w

)
− L∗ ( μ

w

)
δ+

(
vλS

z

)
L∗

(
λ

z

))
(6.11)

− L(vλμS)

(
δ+

(
vλS

z

)
L∗

(
λ

z

)) (
δ+

(
w

zμS

)
L∗ ( μ

w

))
+ L(vλμS)L∗ ( μ

w

)
δ+

(
vλS

z

)
L∗

(
λ

z

)

(6.12)

+
1

2
L(v)L∗ ( μ

w

) (
δ+

(
wλS

z

)
+ δ+

( z

wλS

)
− 1

)
L∗

(
λ

z

)
(6.13)

+ L(w)δ+

(
vλμS

w

) (
L(z)δ+

(
vλS

z

)
L(v) − L(v)δ+

(
w

zμS

)
L(z)

)
(6.14)

− L(w)

(
δ+

(
zμS

w

)
L(z)

)(
δ+

(
vλS

z

)
L(v)

)
(6.15)

+
1

2
L(w)L(v)

(
δ+

(
zμS

w

)
+ δ+

(
w

zμS

)
− 1

)
L(z) (6.16)

− L(z)δ+

(
vλμS

z

) (
L(w)δ+

(
vμS

w

)
L(v) + L(v)δ+

(
wλS

z

)
L(w)

)
(6.17)

+ L(z)

(
δ+

(
wλS

z

)
L(w)

)(
δ+

(
vμS

w

)
L(v)

)
+ L(z)δ+

(
vλμS

z

)
L(w)L(v) (6.18)

+
1

2
L(vλμS)L(w)

(
δ+

(
zμS

w

)
+ δ+

(
w

zμS

)
− 1

)
L(z) (6.19)

+ L(vλμS)δ+

(
vλμS

z

)
L∗

(
λμS

z

) (
δ+

(
wλS

z

)
+ δ+

( z

wλS

)
− 1

)
L(w) (6.20)

− 1

2
L(vλμS)L∗

(
λμS

z

)(
δ+

(
wλS

z

)
+ δ+

( z

wλS

)
− 1

)
L(w) (6.21)

+

(
δ+

(
vλS

z

)
L(v)

)
L(zμS)

(
δ+

(
zμS

w

)
+ δ+

(
w

zμS

)
− 1

)
L∗ ( μ

w

)
(6.22)
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− 1

2
L(v)L(zμS)

(
δ+

(
zμS

w

)
+ δ+

(
w

zμS

)
− 1

)
L∗ ( μ

w

)
(6.23)

− 1

2
L(vλμS)L(zμS)

(
δ+

(
zμS

w

)
+ δ+

(
w

zμS

)
− 1

)
L∗ ( μ

w

)
(6.24)

− 1

2
L(v)L∗

(
λμS

z

)(
δ+

(
wλS

z

)
+ δ+

( z

wλS

)
− 1

)
L(w). (6.25)

Using notation (3.3) we can rewrite

(6.11) + (6.12) = L(vλμxy)

(
δ+

(
vλμxy

w

)
δ+

(
w

zμy

)
− δ+

(
vλμxy

w

)
δ+

(
vλx

z

)

−δ+

(
vλx

z

)
δ+

(
w

zμy

)
+ δ+

(
vλx

z

))(
|x=S L

∗
(

λ

z

)) (
|y=S L

∗ ( μ

w

))
= 0.

In the last identity we used (2.13), with x1 = vλμxy
w

and x2 = w
zμy . Similarly, we rewrite

(6.17) + (6.18) = L(z)

(
δ+

(
wλy

z

)
δ+

(
vμt

w

)
− δ+

(
vλμyt

z

)
δ+

(
vμt

w

)

−δ+

(
vλμyt

z

)
δ+

(
wλy

z

)
+ δ+

(
vλμyt

z

)) (|y=T L(w)
)(|t=S L(z)

) = 0.

In the last identity we applied again the relation (2.13) with x1 = wλy
z and x2 = vμt

w
.

Furthermore, note that

(6.8) + (6.9) = L(vλμxy)

(
δ+

(
vλμxy

z

)
δ+

(vμy

w

)
− δ+

(
vλμxy

z

)
δ+

(
z

wλy

)

−δ+

(
wλx

z

)
δ+

(vμy

w

))(
|x=S L

∗
(

λ

z

))(
|y=SL

∗ (μ

w

))

= −L(wλS)δ+

(
wλμS

z

)
L∗ (μ

w

)
δ

(
wλS

z

)
L∗

(
λ

z

)
. (6.26)

In the last equality we used (2.14) with x1 = wλx
z and x2 = vμy

w
. Using Eqs. (2.11) and

(2.12), we can rewrite

(6.20) = L(vλμS)δ+

(
vλμS

z

)
L∗

(
λμS

z

)
δ

(
wλS

z

)
L(w)

= L(vλμS)δ+

(
vλμS

z

)
L∗ (μ

w

)
δ

(
wλS

z

)
L∗

(
λ

z

)
, (6.27)

where in the last equality we used the property (2.6) of the multiplicative delta function.
Combining Eqs. (6.26) and (6.27) we get

(6.8) + (6.9) + (6.20) = 0.

Similarly, one shows that

(6.14) + (6.15) = −L(w)δ+

(
vλμS

w

)
L(v)δ

(
zμS

w

)
L(z)

= −
(

δ+

(
vλS

z

)
L(v)

)
L(zμS)δ

(
zμS

w

)
L(z). (6.28)
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In the last identity we used the property (2.6) of the multiplicative delta function. Using
Eqs. (2.11), (2.12) and (6.28) we get

(6.14) + (6.15) + (6.22) = 0.

Finally, using Eqs. (2.11), (2.12) and the property (2.6) of the multiplicative delta-
function, one shows that

(6.10) + (6.21) = 0, (6.13) + (6.25) = 0, (6.16) + (6.23) = 0, (6.19) + (6.24) = 0.

This completes the proof. �
As an immediate consequence of Proposition 6.2, we have

Corollary 6.3. Assume that V is a unital commutative associative algebra with an auto-
morphism S, and assume that the pseudodifference operator L(S) ∈ V((S±1)) satisfies
the Adler identity (6.1) with respect to a multiplicative λ-bracket {· λ ·} of V . Let U ⊂ V
be the smallest subalgebra of V containing all the coefficients of L(z) and preserved by
the automorphism S. Then,U is a subalgebra with respect to the multiplicative λ-bracket
{· λ ·}, i.e. {Uλ U} ⊂ U[λ, λ−1], and, moreover, the restriction of {· λ ·} to U defines a
structure of an mPVA on U . If, in particular, V is generated by the coefficients of L(z)
and the action of S, then V is an mPVA.

Proof. Due toProposition 3.4, if skewsymmetry and Jacobi identity for themultiplicative
λ-bracket hold on a set of difference generators of U , then they hold on the whole U . �

7. The Multiplicative 3-Adler Identity

By analyzing the work of Oevel and Ragnisco [OR89] (see [DSKV19]) we arrive at the
following definition.

Definition 7.1. The multiplicative 3-Adler identity on a pseudodifference operator
L(S) ∈ V((S±1)) reads

{L(z)λL(w)} = L(wλS)L(z)δ+

(
wλS

z

) (
L∗

(
λ

z

)
− wλS

z
L(w)

)

−
(
L(z) − L(wλS)

wλS

z

)
δ+

(
wλS

z

)
L(w)L∗

(
λ

z

)
. (7.1)

Using Eqs. (2.6) and (2.11) we can rewrite Eq. (7.1) as

{L(z)λL(w)} =
(
L(z) − L(wλS)

wλS

z

)
δ−

(
wλS

z

)
L(w)L∗

(
λ

z

)

− L(wλS)L(z)δ−
(

wλS

z

) (
L∗

(
λ

z

)
− wλS

z
L(w)

)
. (7.2)

Proposition 7.2. Suppose the pseudodifference operator L(z) ∈ V((z±1)) satisfies the
3-Adler identity (7.1). Then, multiplicative skew-symmetry relation (6.5) and the multi-
plicative Jacobi identity (6.6) hold.
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Proof. By Eq. (7.1) we have

(∣∣
x=S{L(w)λ−1x−1L(z)}) =

(
L(wλS) − L(z)

z

wλS

)
δ+

( z

wλS

)
L(z)L∗

(
λ

z

)

− L(wλS)L(z)δ+
( z

wλS

) (
L(w) − z

wλS
L∗

(
λ

z

))
.

(7.3)

Using Eqs. (7.1), (7.3) and the definition of the multiplicative δ-function, we thus get

{L(z)λL(w)} + (∣∣
x=S{L(w)λ−1x−1L(z)})

= L(wλS)L(z)δ

(
wλS

z

) (
L∗

(
λ

z

)
− L(w)

)

+
(
L(wλS) − L(z)

)
δ

(
wλS

z

)
L∗

(
λ

z

)
L(w) = 0.

In the last identity we used Eq. (2.6). This proves the skewsymmetry relation (6.5). The
Jacobi identity (6.6) follows from a straightforward but long computation, similar but
much longer than the analogous proof of (6.6) in Proposition 6.2. We omit it. �

To distinguish between different Adler identities we add subscripts to the λ-brackets
as follows: we shall denote by {· λ ·}(L)

2 or {· λ ·}(L)
3 , a λ-bracket on V for which the

pseudodifference operator L(S) ∈ V((S±1)) satisfies the 2-Adler identity (6.1) or the
3-Adler identity (7.1) respectively. One can easily check that, for ε ∈ C,

{· λ ·}(L+ε)
3 = {· λ ·}(L)

3 + 2ε{· λ ·}(L)
2 + ε2{· λ ·}(L)

1 , (7.4)

and
{· λ ·}(L+ε)

2 = {· λ ·}(L)
2 + 2ε{· λ ·}(L)

1 , (7.5)

where the 1-Adler identity reads:

{L(z)λL(w)}(L)
1 = δ+

(wλS

z

)(wλS

z
L∗(λ

z
) − L(w)

)

− (
L(z)

wλ

z
− L(wλ)

)
δ+

(wλ

z

)
. (7.6)

In particular, Proposition 6.2 can be obtained as a consequence of Proposition 7.2 and
Eq. (7.4). And an analogous Proposition can be stated for the 1-Adler identity (7.6).
From Proposition 7.2 and the analogous result for the 1-Adler type identity, we get that
Corollary 6.3 holds also for the λ-brackets {· λ ·}(L)

3 and {· λ ·}(L)
1 .

Let L(z) = ∑
i≤N ui zi ∈ V((z−1)) (respectively, L(z) = ∑

i≥N ui zi ∈ V((z))).
By comparing the coefficients of ziw j , i, j ≤ N (respectively, i, j ≥ N ), in both sides
of the 1-Adler identity (7.6) we get the following local λ-bracket relations among the
coefficients of the pseudodifference operator L(S):

{uiλu j }(L)
1 = εi j

(
(λS)−i − λ j )ui+ j , (7.7)

where εi j = 1 if i, j ≥ 1, εi j = −1 if i, j ≤ 0, and εi j = 0 otherwise. These
multiplicative λ-brackets should be compared with Example 2.3.
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8. Integrable Hierarchies Associated to Adler Type Pseudodifference Operators

8.1. Integrable hierarchies associated to a 3-Adler type pseudodifference operator.

Theorem 8.1. Let L(S) ∈ V((S±1)) be a pseudodifference operator over the multi-
plicative Poisson vertex algebra V . Assume that L(S) satisfies the multiplicative 3-Adler
identity (7.1). Define the elements hn ∈ V , n ∈ Z≥0, by

hn = −1

n
mResz L

n(z) for n �= 0, h0 = 0. (8.1)

Then:

(a) All the elements
∫
hn are Hamiltonian functionals in involution:

{∫ hm,
∫
hn}(L)

3 = 0 for all m, n ∈ Z≥0. (8.2)

(b) The corresponding hierarchy of compatible Hamiltonian equations satisfies

dL(w)

dtn
= {∫ hn, L(w)}(L)

3 = [(Ln+1)+, L](w), n ∈ Z≥0 (8.3)

(in the RHS we are taking the symbol of the commutator of difference operators),
and the Hamiltonian functionals

∫
hn, n ∈ Z≥0, are integrals of motion of all these

equations.

In the remainder of the section we will give a proof of Theorem 8.1. The proof is
based on Lemma 8.2 and Lemma 8.3 below, which are the multiplicative analogues of
Lemmas 2.1 and 5.6 in [DSKV16]. The proof of these lemmas is similar. For example
the proof of Lemma 8.3 uses Proposition 5.5.

Lemma 8.2. Given two pseudodifference operators A(S), B(S) ∈ V((S±1)), we have

(a) mResz A(z)B∗( λ
z ) = mResz A(zλS)B(z);

(b)
∫
mResz A(zS)B(z) = ∫

mResz B(zS)A(z).

Lemma 8.3. Let V be an mPVA with multiplicative λ-bracket {· λ ·}. Let L(S) ∈
V((S±1)). Let hn ∈ V be given by (8.1). Then, for a ∈ V , n ∈ Z≥1, we have

{hnλa}|λ=1 = −mResz{L(zx)xa}(|x=S L
n−1(z)

)

∫ {aλhn}|λ=1 = −
∫

mResz{aλL(wx)}|λ=1
(|x=S L

n−1(w)
)
. (8.4)

Proof of Theorem 8.1. Applying the second equation in (8.4) first, and then the first
equation in (8.4), we get

{∫ hm,
∫
hn}(L)

3 =
∫

mResz mResw{L(zx)x L(wy)}(∣∣x=∂
Lm−1(z)

)(∣∣
y=∂

Ln−1(w)
)
.

(8.5)
We can now use the 3-Adler identity (7.1), and the fact that L(zs)Lm−1(z) = Lm(z)
and L(wS)Ln−1(w) = Ln(w), to rewrite the RHS of (8.5) as
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∫
mResz mResw

(
L(wS)Lm(z)δ+(

wS

z
)L∗(1

z
)Ln−1(w)

− L(wS)Lm(z)δ+(
wS

z
)
wS

z
Ln(w) − Lm(z)δ+(

wS

z
)L∗(1

z
)Ln(w)

+ L(wS)Lm−1(z)δ+(
wS

z
)
wS

z
L∗(1

z
)Ln(w)

)
. (8.6)

We use Lemma 8.2(b) to rewrite the first term in the RHS of (8.6) as
∫

mResz mResw Lm(z)δ+(
wS

z
)L∗(1

z
)Ln(w). (8.7)

Hence, the first and third term in (8.6) sum to zero. On the other hand, using Lemma
8.2(a) (with λ = 1), we rewrite the last term in (8.6) as

∫
mResz mResw L(wS)Lm(z)δ+(

wS

z
)
wS

z
Ln(w). (8.8)

Hence, the second and last term in (8.6) sum to zero, thus showing that the RHS of (8.5)
vanishes and proving part (a).

We are left to prove part (b). We have

{∫ hn, L(w)}(L)
3 = {hnλL(w)}(L)

3

∣∣
λ=1 = −mResz{L(zx)x L(w)}(∣∣x=S L

n−1(z)
)

= −mResz
(
L(wS)Ln(z)δ+(

wS

z
)L∗(1

z
) − L(wS)Ln(z)δ+(

wS

z
)
wS

z
L(w)

−Ln(z)δ+(
wS

z
)L∗(1

z
)L(w) + L(wS)Ln−1(z)δ+(

wS

z
)
wS

z
L∗(1

z
)L(w)

)

= −mResz
(
L(wS)Ln+1(z)δ+(

w

z
) − L(wS)Ln(z)δ+(

wS

z
)
wS

z
L(w)

− Ln+1(z)δ+(
wS

z
)L(w) + L(wS)Ln(z)δ+(

wS

z
)
wS

z
L(w)

)

= Ln+K (wS)+L(w) − L(wS)Ln+K (w)+. (8.9)

In the second equality we used the first equation in (8.4), in the third equality we used
the 3-Adler identity (7.1) and some algebraic manipulations, in the third equality we
used Lemma 8.2(a) (with λ = 1), in the fourth equality we used Eq. (2.10). This proves
(8.3) and completes the proof of the theorem. �

8.2. Integrable hierarchies associated to 2-Adler and 1-Adler type pseudodifference
operators. The analogue of Theorem 8.1 for 2-Adler and 1-Adler pseudodifference
operators can be proved by similar computations (see also [DSKV16] for the same
computations in the additive case):

Theorem 8.4. Let L(S) ∈ V((S±1)) be a pseudodifference operator over an mPVA V .
Assume that L(S) satisfies the multiplicative 2-Adler identity (6.1) (respectively, the
1-Adler identity (7.6)). Define the elements hn ∈ V , n ∈ Z≥0, by (8.1). Then:

(a) All the elements
∫
hn are Hamiltonian functionals in involution:

{∫ hm,
∫
hn}(L)

1,2 = 0 for all m, n ∈ Z≥0. (8.10)
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(b) The corresponding hierarchy of compatible Hamiltonian equations satisfies

dL(w)

dtn
= {∫ hn, L(w)}(L)

2 = [(Ln)+, L](w), n ∈ Z≥0, (8.11)

(
respectively,

dL(w)

dtn
= {∫ hn, L(w)}(L)

1 = [(Ln−1)+, L](w), n ∈ Z≥1,
)

(8.12)

and the Hamiltonian functionals
∫
hn, n ∈ Z≥0, are integrals of motion of all these

equations.

8.3. Tri-Adler type pseudodifference operators and tri-Hamiltonian hierarchies. Let V
be a unital commutative associative algebra endowed with an automorphism S, and let
L(S) ∈ V((S±1)) be a pseudodifference operator.We say that L(S) is of tri-Adler type if
there exist mPVA λ-brackets {· λ ·}(L)

i , i = 1, 2, 3, on V for which the pesudodifference
operator L(S) ∈ V((S±1)) is of i-Adler type, i = 1, 2, 3. We say that V is a tri-mPVA if
any linear combination of theλ-brackets {· λ ·}(L)

i , i = 1, 2, 3, is anmPVA.The following
result follows from Theorems 8.1 and 8.4.

Corollary 8.5. Let V be a unital commutative associative algebra endowed with an
automorphism S. Let L(S) ∈ V((S±1)) be an invertible tri-Adler type pseudodifference
operator with respect tomultiplicativeλ-brackets {· λ ·}(L)

i , i = 1, 2, 3, onV , and assume
that V is a tri-mPVA. The elements hn ∈ V , n ∈ Z≥1, given by (8.1) satisfy the following
generalized Lenard–Magri recurrence relation:

{∫ hn−1, L(z)}(L)
3 = {∫ hn, L(z)}(L)

2 = {∫ hn+1, L(z)}(L)
1 , n ∈ Z≥1. (8.13)

Hence, (8.3) is a hierarchy of compatible tri-Hamiltonian equations on the tri-mPVA V .
Moreover, all the Hamiltonian functionals

∫
hn, n ∈ Z≥0, are integrals of motion of all

the equations of this hierarchy.

9. Pseudodifference Operators of Generic Type

Let N ≥ 1. In this section we denote by V̄ the algebra of difference polynomials in
infinitely many variables ui , i ∈ Z≤N . Let also I be the difference ideal (i.e. the minimal
S-invariant ideal) generated by the elements uN − 1, and let V = V̄/I. Note that V is
isomorphic to the algebra of difference polynomials in the ui , i ∈ Z≤N−1. Furthermore,
let

L̄(S) := L̄ N (S) =
∑

i≤N

ui S
i ∈ V̄((S−1)), (9.1)

and

L(S) := LN (S) = SN +
∑

i≤N−1

ui S
i ∈ V((S−1)). (9.2)

We call L(S) the pseudodifference operator of generic type of order N .
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9.1. Pseudodifference operators of generic type and 1-Adler type identity. By the dis-
cussion in Sect. 7, we have that (see Eq. (7.7)) the assignment (i, j ≤ N )

{uiλu j }(L̄)
1 = εi j

(
(λS)−i − λ j )ui+ j ,

where εi j = 1 if i, j ≥ 1, εi j = −1 if i, j ≤ 0, and εi j = 0 otherwise, defines an mPVA

structure on V̄ . Note that {uN λu j }(L̄)
1 = 0, for every j ≤ N . Hence, I is a central ideal

and we have an induced mPVA structure on V given by (i, j ≤ N − 1)

{uiλu j }(L)
1 = εi j

(
(λS)−i − λ j )ui+ j , (9.3)

where in the RHS uN = 1 and uk = 0 for k > N .
The linear independence of the integrals of motion

∫
hn , n ∈ Zn≥1, is proved in the

same way as in [DSKV15]. Thus, from Theorem 8.4 and the above discussion we get
the following result.

Theorem 9.1. Let L(S) be the pseudodifference operator of generic type for the algebra
of difference polynomials V , and endow V with the mPVA structure given by (9.3). Then
we have an integrable hierarchy of Hamiltonian equations in V given by (8.12).

9.2. Pseudodifference operator of generic type and 2-Adler type identity. By Corollary

6.3 we have an mPVA structure on V̄ whose λ-brackets {uiλu j }(L̄)
2 , i, j ≤ N , are given

by the RHS of Eq. (6.3). The next result can be proved easily using the Adler type
identity (6.1)

Lemma 9.2. The following identities hold:

a) {uN λ L̄(w)}(L̄)
2 = 1

2

(
L̄(wλS) − L̄(w)

)(
1 + (λS)−N

)
uN .

b) {L̄(z)λuN }(L̄)
2 = 1

2uN
(
1 + (λS)N

)(
L̄(z) − L̄∗( λ

z )
)
.

c) {uN λuN }(L̄)
2 = 1

2uN
(
(λS)N − (λS)−N

)
)uN .

We can apply the Dirac reduction procedure of Sect. 5.6, by the constraint θ = uN ,
to get the following result.

Proposition 9.3. Let L(S) be the pseudodifference operator of generic type of order N
defined in Eq. (9.2). Then, it defines an mPVA structure on V via the following Dirac
reduced 2-Adler type identity:

{L(z)λL(w)}(L)D
2 = L(wλS)δ+(

wλS

z
)L∗(z−1λ) − L(z)δ+(

wλS

z
)L(w)

+
(
L(w)(λS)N − L(wλS)

)(
(λS)N − 1

)−1(
L(z) − L∗(z−1λ)

)
. (9.4)

Proof. Equation (9.4) follows from the 2-Adler identity (6.1), Eq. (5.23) defining the
Dirac reduced λ-bracket and Lemma 9.2. By Theorem 5.12, Eq. (9.4) defines an mPVA
structure on V . �
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By comparing the coefficients of ziw j , i, j ≤ N − 1, in both sides of (9.4), we get
the following λ-brackets relations in V

{uiλu j }(L)D
2 =

N−i∑

n=0

(
u j−n(λS) j−i−nui+n − ui+n(λS)nu j−n

)

+ u j

(
(λS)N − (λS) j

) (
(λS)N − 1

)−1 (
1 − (λS)−i

)
ui , (9.5)

where uN = 1 and uk = 0 for k > N . The local Poisson brackets on V corresponding
to (9.5) (up to a constant factor) have already appeared in [Car06].

Note that the RHS of (9.5) is local only for N = 1. The following result follows by
a straightforward computation.

Lemma 9.4. Let N = 1 and hn be defined as in (8.1). Then, we have

{hnλ L̄(w)}(L̄)
2 |λ=1 = {hnλ L̄(w)}(L̄)D

2 |λ=1.

From Theorem 8.4 and Lemma 9.4 we get the following result.

Theorem 9.5. Let N = 1. Let L(S) be the pseudodifference operator of generic type for
the algebra of difference polynomials V , and endow V with the mPVA structure given
by (9.5). Then we have an integrable hierarchy of Hamiltonian equations in V given by
(8.11).

9.3. Pseudodifference operator of generic type and 3-Adler type identity. The 3-Adler
type identity (7.1) is not consistent for the pseudodifference operator L̄(S) ∈ V̄((S−1)).
Indeed, the LHS of (7.1) has powers of z bounded above by N , while the RHS of (7.1)
contains powers of z of order greater than N . Hence, we can not use the operator L̄(S)

to define an mPVA structure on V̄ using the 3-Adler type identity. However, similarly
to what was done in Sect. 9.2, we can perform a Dirac modification to get an mPVA
structure on V given by the pseudodifference operator of generic type L .

We illustrate this procedure in the case of N = 1. Let V be the algebra of difference
polynomials in the ui , i ∈ Z≤0, and let L(S) = S +

∑
i∈Z≥0

u−i S−i ∈ V((S−1)) be

the generic pseudodifference operator of order 1. Denote by H (L)
3 (λ)(w, z) the RHS

of (7.1). Note that, H (L)
3 (λ)(w, z) = ∑

i, j≤2(H
(L)
3 ) j i (λ)ziw j . On the other hand,

{L(z)λL(w)} = ∑
i, j≤0{uiλu j }ziw j . Hence, the 3-Adler identity (7.1) is not consistent.

Let H (L)
3 (S) = (

(H (L)
3 )i j (S)

)
i, j≤2 and write it as a matrix in blocks form as follows

H (L)
3 (S) =

(
A(S) B(S)

C(S) D(S)

)
,

where

A(S) = (
(H (L)

3 (S))i, j
)
i=1,2; j=1,2, B(S) = (

(H (L)
3 (S))i, j

)
i=1,2; j≤0,

C(S) = (
(H (L)

3 (S))i, j
)
i≤0; j=1,2, D(S) = (

(H (L)
3 (S))i, j

)
i≤0; j≤0.
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We are interested in computing the generating series for the entries of the matrix pseu-
dodifference operator obtained by taking the quasideterminant of H (L)

3 (S) with respect
to the block D(S) (see end of Sect. 5.6)

(H (L)
3 )D(S) =

(
0 0
0 D(S) − C(S) ◦ A(S)−1 ◦ B(S)

)
. (9.6)

From Eq. (7.1) we get, by a straightforward computation,
∑

i≤2

(H (L)
3 (λ))i2z

i = (
L(zλ) − L(z)

)
λ−1,

∑

j≤2

(H (L)
3 (λ))2 jw

j = λS
(
L(w) − L∗(w−1λ)

)
,

∑

i≤2

(H (L)
3 (λ))i1z

i = L(zλS)
(
z + u0(1 + λ−1)

) − (
zS + u0(1 + λ−1)

)
L(z) ,

∑

i≤2

(H (L)
3 (λ))1 jw

j = (
wS + (1 + λS)u0)L(w) − (

w + (1 + λS)u0
)
L∗(w−1λ).

(9.7)

From Eq. (9.7) we immediately get

A(S) =
(

0 S − 1
1 − S−1 S ◦ u0 − u0S−1

)
,

whose inverse is

A(S)−1 =
(−(1 − S−1)−1 ◦ (S ◦ u0 − u0S−1) ◦ (S − 1)−1 (1 − S−1)−1

(S − 1)−1 0

)
. (9.8)

Let (H (L)
3 )D(λ)(w, z) = ∑

i, j≤2

(
(H (L)

3 )D
)
j i (λ)ziw j be the generating series for the

symbol of entries of the matrix pseudodifference operator (H (L)
3 )D . Since, by Eq. (9.6),

(H (L)
3 )D(λ)(w, z) = ∑

i, j≤0

(
(H (L)

3 )D
)
j i (λ)ziw j , we get a consistent Dirac modified

3-Adler identity. Explicitly, using Eqs. (7.1), (9.6), (9.7) and (9.8):

{L(z)λL(w)}(L)D
3 = (H (L)

3 )D(λ)(w, z)

= L(wλS)L(z)
(
1 − wλS

z

)−1(
L∗(z−1λ) − wλS

z
L(w)

)

− (
L(z) − L(wλS)

wλS

z

)(
1 − wλS

z

)−1
L(w)L∗(z−1λ)

− (
L(wλS)wλS − wλSL(w)

)(
λS − 1

)−1(
L(z) − L∗(z−1λ)

)

+
(
L(wλS) − L(w)

)(
(λS)−1 − 1

)−1(
L(z)zλ−1 − z(λS)−1L∗(z−1λ)

)

− (
L(wλS) − L(w)

)(
λS − 1

)−1
u0

(
L(z) − L∗(z−1λ)

)

+
(
L(wλS) − L(w)

)
u0

(
(λS)−1 − 1

)−1(
L(z) − L∗(z−1λ)

)
. (9.9)

Skewsymmetry (6.5) and Jacobi identity (6.6) for the multiplicative λ-bracket (9.9)
follow by a straightforward (but long) computation that we omit (note that L(S) is not
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an operator of 3-Adler type, sowe cannot applyTheorem5.12).Hence,wehave anmPVA
structure on V given by the Dirac modified 3-Adler type identity (9.9). By comparing
powers of ziw j , i, j ≤ 0 in both sides of (9.9) we get the following λ-brackets relations
in V

{uiλu j }(L)D
3

=
∑

a≤i
b≤1

(
ua(λS)aub(λS)b− j ui+ j−a−b − ub(λS)i−aua(λS)a+b−i− j ui+ j−a−b

)

−
∑

j+1≤a≤1
b≤1

(
ui+ j−a−b(λS)i+ j−a−bua(λS)a− j ub − ui+ j−a−b(λS)i−bub(λS)−aua

)
.

− (
u j−1(λS) j−1 − λSu j−1

)(
λS − 1

)−1(1 − (λS)−i )ui

+ u j
(
(λS) j − 1

)(
(λS)−1 − 1

)−1(
λ−1 − (λS)−i )ui−1

− u j
(
(λS) j − 1

)((
λS − 1

)−1
u0 − u0

(
(λS)−1 − 1

)−1
)(
1 − (λS)−i )ui , (9.10)

where u1 = 1 and uk = 0 for k > 1. This agrees, up to a constant factor, with formulas
in [Car05].

Similarly to the arguments provided in the previous section, from Theorem 8.1 and
Corollary 8.5 we get the following result.

Theorem 9.6. Let N = 1. Let L(S) be the generic pseudodifference operator for the
algebra of difference polynomials V , and endow V with mPVA structure given by (9.10).
Then we have an integrable hierarchy of Hamiltonian equations in V given by (8.3).
Moreover, the threemPVA structures onV given by (9.3), (9.5) and (9.10) are compatible
and the Lenard–Magri recursion relations (8.13) hold. Hence, (8.3) is a compatible
hierarchy of tri-Hamiltonian equations on the tri-mPVA V .
Remark 9.7. We can similarly define a generic pseudodifference operator in V((S)).
Similar results as the ones proved in this section still hold. Moreover, for M, N ≥ 1,
all the results of this section can be proved starting from a difference operator of the
form

L̄(S) = L̄M,N (S) =
N∑

i=−M

ui S
i ∈ V̄[S, S−1],

where V̄ is the algebra of difference polynomials in the variablesui , where−M ≤ i ≤ N ,
see [Car06]. In particular Eqs. (6.3), (7.7), (9.5) for −M ≤ i, j ≤ N , subject to the con-
dition uk = 0 for k < −M , still define mPVAs which were previously studied, in
terms of Poisson algebras, in [BM94,MS96,Car06]. The same is true for N = 1 for
Eq. (9.10).

9.4. The multiplicative W-algebraWN and its local subalgebra. Let VN be the algebra
of difference polynomials inu0, u1, . . . , uN−1,where N ≥ 2. Then formula (9.5) defines
on it the following rational multiplicative Poisson λ-bracket:
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{uiλu j } = u0(λS)−i ui+ j − ui+ j (λS) j u0

+
( j∑

n=1

−
i+ j−1∑

n=i

)
un(λS)n−i ui+ j−n

+ u j

(
(λS)N − (λS) j

) (
(λS)N − 1

)−1 (
1 − (λS)−i

)
ui , (9.11)

where
uN = 1 and uk = 0 for k > N . (9.12)

It is clear from this formula that u0 is a central element. Hence we can further reduce
by the difference ideal generated by u0 − c, where c is a constant. As a result we get
the multiplicative W -algebra WN , which is the algebra of difference polynomials in
u1, . . . , uN−1, with the following family of multiplicative rational Poisson λ-brackets:

{uiλu j } = c{uiλu j }1 + {uiλu j }2,
where

{uiλu j }1 = (
(λS)−i − λ j )ui+ j , (9.13)

and

{uiλu j }2 =
( j∑

n=1

−
i+ j−1∑

n=i

)
un(λS)n−i ui+ j−n + u j

(
(λS)N − (λS) j

)(
1 − (λS)−i

)

(λS)N − 1
ui ,

(9.14)
subject to (9.12). The first Poisson structure has already appeared in Example 2.3, while
the second Poisson structure corresponds to the q-deformed W -algebras of Frenkel and
Reshetikhin [FR96] (as discussed in Example 5.13 for N = 2).

These two compatible multiplicative Poisson structures for N = 2 and 3 have been
discussed in Examples 5.10 and 5.11 respectively. In the first case we constructed a
local mPVA subalgebra corresponding to the local lattice Poisson algebra of Faddeev-
Takhtajan-Volkov. The main result of the present section is the generalization of this
construction to arbitrary N ≥ 3. It is proved by a direct computation.

Theorem 9.8. Let N ≥ 3. Consider the difference subalgebra AN of the algebra WN
localized by u1, generated by the following elements:

v1 = 1

u1(Su1) . . . (SN−1u1)
,

vi = ui
u1(Su1) . . . (Si−1u1)

, 2 ≤ i ≤ N − 1. (9.15)

Then both multiplicative Poisson λ-brackets (9.13) and (9.14), restricted to the subal-
gebra AN , are local.

Formula (9.15) is the generalized Miura transformation, introduced in [MBW13].
We can write explicit formulas for both multiplicative λ-brackets {viλv j }1 and {viλv j }2
of any two generators vi and v j (1 ≤ i, j ≤ N − 1). In all these formulas we assume
that vN = v1 and vi = 0 for i > N . For the first λ-bracket, we have:
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(i)

{v1λv1}1 = v1
1 − (λS)N

1 − λS

(
(λS)−1v2 − v2λS

)1 − (λS)−N

1 − (λS)−1 v1 ;

(ii) for 2 ≤ j ≤ N − 1:

{v j λv1}1 = v1
1 − (λS)N

1 − λS

(
(λS)−1v2 − v2λS

)1 − (λS)− j

1 − (λS)−1 v j

+ v1
1 − (λS)N

1 − λS

(
λ − (λS)− j )v j+1 ;

(iii) for 2 ≤ i, j ≤ N − 1:

{v jλvi }1 = vi
1 − (λS)i

1 − λS

(
(λS)−1v2 − v2λS

)1 − (λS)− j

1 − (λS)−1 v j

+ vi
1 − (λS)i

1 − λS

(
λ − (λS)− j )v j+1

+
(
vi+1(λS)i − (λS)−1vi+1

)1 − (λS)− j

1 − (λS)−1 v j +
(
(λS)− j − λi

)
vi+ j .

For the second λ-bracket, we have

(i)

{v1λv1}2 = v1

(
1 − (λS)1−N

)(
1 − (λS)N

)

1 − λS
v1 ;

(ii) for 2 ≤ j ≤ N − 1:

{v jλv1}2 = v1

(
1 − (λS)1− j

)(
1 − (λS)N

)

1 − λS
v j ;

(iii) for 2 ≤ i, j ≤ N − 1 such that i + j ≤ N + 1:

{v jλvi }2 = vi
λS

(
1 − (λS)i−1

)(
1 − (λS)− j

)

1 − λS
v j

− ( j∑

p=2

−
i+ j−2∑

p=i

)
vi+ j−p(λS)i−pvp +

(
(λS)1− j − λi−1)vi+ j−1 ;

(iv) for 2 ≤ i, j ≤ N − 1 such that i + j ≥ N + 2:

{v j λvi }2 = vi
λS

(
1 − (λS)i−1

)(
1 − (λS)− j

)

1 − λS
v j

− ( j∑

p=i+ j−N

−
N∑

p=i

)
vi+ j−p(λS)i−pvp.
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Let H(S) and K (S) be the multiplicative Poisson structures corresponding to the
λ-brackets from Theorem 9.8:

H(S) = ({v j Svi }1→
)N−1
i, j=1 and K (S) = ({v j Svi }2→

)N−1
i, j=1.

Let

ξ0 = (
1

Nv1
, 0, . . . , 0)T and ξ1 = (0,−1, 0, . . . , 0)T .

Then,

K (S)ξ0 = 0, K (S)ξ1 = H(S)ξ0,

and we have the bi-Hamiltonian equation dv
dt0

= H(S)ξ0. Explicitly,

dv1

dt0
= v1

(
S−1(v2) − SN−1(v2)

)
,

dvi

dt0
= vi

(
S−1(v2) − Si−1(v2)

)
+ vi+1 − S−1(vi+1), 2 ≤ i ≤ N − 1. (9.16)

For N > 3 this is the Mari Beffa-Wang lattice. For N = 3 this is the Belov-Chaltikian
lattice [BC93]. It is unclear how to prove that the Lenard–Magri sequence extends to
infinity, which would prove integrability of this equation.

10. Further Examples of Integrable Hamiltonian Systems of
Differential-Difference Equations

10.1. The Toda lattice. Let V be the algebra of difference polynomials in two variables
u and v. Let

L(S) = S + v + uS−1 ∈ V[S, S−1]. (10.1)

By Remark 9.7, Eqs. (9.9), (9.4), (7.6), Propositions 6.2 and 7.2, and Theorem 5.12, we
have the following three compatible mPVA structures on V:

{vλv}3 = (λ−1 − λS)uv − vλSu + u(λS)−1v,

{uλv}3 = v2(1 − λS)u + (1 − λS)u2 + u(λS)−1u − λSuλSu,

{uλu}3 = 2u(λS)−1uv − 2uvλSu; (10.2)

{vλv}2 = (λ−1 − λS)u, {uλv}2 = v(1 − λS)u,

{uλu}2 = u
(
(λS)−1 − λS

)
u; (10.3)

{vλv}1 = 0 = {uλu}1, {uλv}1 = (1 − λS)u. (10.4)

The mPVA structures defined by Eqs. (10.2), (10.3) and (10.4) are known as the three
compatible Poisson structures of the Toda lattice, see [Kup85]. By an explicit computa-
tion we have

L(S)2 = S2 + (v + v1)S + u + u1 + v2 + (uv + uv−1)S
−1 + uu−1S

−2. (10.5)
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Then, by Eqs. (8.1), (10.1) and (10.5) the first two non-trivial integrals of motion (8.1)
are

∫
h1 = −∫

v and
∫
h2 = −1

2

∫
2u + v2.

By a straightforward computation, using Eqs. (10.4) and (10.3) we have

{∫ h1, u}2 = u(v − v−1) = {∫ h2, u}1, {∫ h1, v}2 = u1 − u = {∫ h2, v}1. (10.6)

Furthermore, using Eqs. (10.3) and (10.2) we have

{∫ h1, u}3 = u(u1 − u−1 + v2 − v2−1) = {∫ h2, u}2,
{∫ h1, v}3 = u1(v + v1) − u(v + v−1) = {∫ h2, v}2. (10.7)

From Eqs. (10.6) and (10.7) the first two non-trivial equations of the hierarchy (8.3) are

du

dt1
= u(v − v−1),

dv

dt1
= u1 − u

and

du

dt2
= u(u1 − u−1 − v2−1 + v2),

dv

dt2
= u1(v + v1) − u(v + v−1).

Note that, letting v = dq
dt1

and u = eq−q−1 , the first equation becomes the Toda lattice
(see [CDZ04,KMW13])

d2qn
dt21

= eqn+1−qn − eqn−qn−1 , n ∈ Z.

10.2. The Volterra lattice. Let V be the algebra of difference polynomials in two vari-
ables u and v with the second mPVA structure {· λ ·} := {· λ ·}2 given by Eq. (10.3). Let
I ⊂ V be the difference algebra ideal generated by the variable v. Let Ṽ = V/I and let
π : V � Ṽ be the quotient map.

Let θ = v, and let us apply the Dirac reduction procedure explained in Sect. 5.6.
Using Eqs. (5.23) and (10.3) we get that the Dirac reduced mPVA structure on Ṽ is given
by

{uλu}D = u((λS)−1 − λS)u. (10.8)

Note that {uλu}D = π{uλu}. Hence, we have {π(a)λπ(b)}D = π{aλb}, for every
a, b ∈ V . In particular, {∫ π(hn),

∫
π(hm)}D = 0, for every n,m ≥ 0, where the

integrals of motion
∫
hn are defined by (8.1). Since L̃(z) := π(L̃(z)) = z + uz−1 is an

odd Laurent polynomial, we have that
∫
π(hn) = 0 for every odd integer n ≥ 1. The

corresponding Dirac reduced integrable hierarchy for Ṽ has the form

d L̃(z)

dtn
= [L̃2n

+ , L̃](z), n ≥ 1,

the first equation being the Volterra lattice:

du

dt1
= u(u1 − u−1).
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In the case of the first mPVA structure, given by Eq. (10.4), it is impossible to define
the Dirac modified λ-bracket with θ = v. In the case of the third mPVA structure, given
by (10.2), it is possible, but the Dirac reduced λ-bracket is not defined. However the
Volterra lattice is a bi-Hamiltonian equation (see, e.g., [KMW13] and [DSKVW18]),
but we do not know how to obtain the other Poisson structure along the above lines, and
how to prove the corresponding Conjecture 7.4 from [DSKVW18].

10.3. The Bogoyavlensky lattice. Let p ≥ 1, and consider the algebra of difference
polynomials V in the p + 1 variables ui , i = 0, . . . , p. Let

L(S) = S +
p∑

i=0

ui S
−i ∈ V[S, S−1] (10.9)

and endow V with the mPVA structure {· λ ·} := {· λ ·}2 given by Eq. (9.4). (As in the
Volterra case, it is impossible to Dirac reduce the first and the third λ-brackets.) Let
I ⊂ V be the difference algebra ideal generated by the variables ui , i = 0, . . . , p − 1.
Let Ṽ = V/I, let π : V � Ṽ be the projection map, and let u = π(u p). Then Ṽ is
the algebra of difference polynomials in u. It is clear from Eqs. (5.23) and (9.5) that the
induced Dirac reduced mPVA structure on Ṽ is given by

{uλu}D = π{uλu} = u
((

(λS)p+1 − 1
)(
1 − (λS)p

)

(λS)p
(
λS − 1

)
)
u. (10.10)

Hence, we have {π(a)λπ(b)}D = π{aλb}, for every a, b ∈ V . In particular, we get
{∫ π(hn),

∫
π(hm)}D = 0, for every n,m ≥ 0, where the integrals of motion

∫
hn are

defined by (8.1). Since L̃(z) := π(L(z)) = z+uz−p, it is easy to check that
∫
π(hn) = 0

if n is not a multiple of p + 1. The corresponding Dirac reduced integrable hierarchy for
V̄ has the form

d L̃(z)

dtn
= [L̃n(p+1)

+ , L̃](z), n ≥ 1.

The first equation is known as the Bogoyavlensky lattice:

du

dt1
=

p∑

i=0

u(ui − u−i ).

This is easily computed using (10.10) and the fact that
∫
π(h p+1) = −∫

u.

10.4. The discrete KP. LetV be the algebra of difference polynomials in infinitelymany
variables ui , i ∈ Z≤0. Let

L(S) = S +
∑

i≤0

ui S
i ∈ V((S−1)) (10.11)

be the generic pseudodifference operator of order 1. Equations (9.9), (9.4) and (7.6)
(equivalently, Eqs. (9.10), (9.5) and (7.7) for N = 1) define three compatible mPVA
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structures on V . Explicit formulas for the first and the second λ-brackets can be found
in the next Section. The corresponding tri-integrable hierarchy (cf. (8.3))

dL(z)

dtn
= [(Ln)+, L](z), n ≥ 1, (10.12)

is the discrete KP hierarchy, see [AvM99]. Note that L(z)+ = z + u0. Hence, the first
equation of the hierarchy is

dL(z)

dt1
= z(S − 1)L(z) + (L(z) − L(zS))u0,

namely

dui
dt1

= (S − 1)ui−1 + ui (1 − Si )u0, i ≤ 0.

Furthermore, L2(z)+ = z2 + (S + 1)u0z + (S + 1)u−1 + u20. Hence, the second equation
of the hierarchy is

dL(z)

dt2
= z2(S2 − 1)L(z) + z(Su0 + u0S)L(z) − zL(zS)(S + 1)u0

+ (L(z) − L(zS))((S + 1)u−1 + u20).

Explicitly, the latter equation is (i ≤ 0)

dui
dt2

= (S2 − 1)ui−2 + (Su0 + u0S)ui−1 − ui−1(S + 1)Si−1u0 + ui (1 − Si )((S + 1)u−1 + u20).

10.5. Multiplicative Poisson λ-bracket for the two-dimensional Toda hierarchy. Recall
that the two-dimensional Toda hierarchy [UT84] is the hierarchy of Lax equations on
the pseudodifference operators

L(S) = S + u0 + u−1S
−1 + . . . ∈ V((S−1)),

and

L̄(S) = ū1S
−1 + ū0 + ū−1S + . . . ∈ V((S)).

The equations extend the discrete KP hierarchy (10.12) as follows:

dL(z)

dtn
= [(Ln)+, L](z), d L̄(z)

dtn
= [(Ln)+, L̄](z),

dL(z)

dt̄n
= [(L̄n)−, L](z), d L̄(z)

dt̄n
= [(L̄n)−, L̄](z). (10.13)

Carlet computed the three compatible Poisson brackets of [OR89] for this hierarchy
[Car05]. Here we present them in the equivalent language of λ-brackets.
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The first mPVA λ-bracket is

{uiλu j }1 = (1 − εi − ε j )
(
(λS)−i − λ j )ui+ j ,

{uiλū j }1 = (
λ− j − (λS)−i )(ε j+1ui− j − εi ū j−i

)
,

{ūiλū j }1 = (1 − ε−i − ε− j )
(
λ− j − (λS)i )ūi+ j , (10.14)

where εi = 1 if i ≤ 0 and εi = 0 if i ≥ 1, and in the RHS we assume that

u1 = 1 and uk = ūk = 0 if k > 1. (10.15)

. The second λ-bracket is

{uiλu j }2 =
1−i∑

n=0

(
u j−n(λS) j−i−nui+n − ui+n(λS)nu j−n

)

− u j
(
(λS)1 − (λS) j

)(
λS − 1

)−1(
(λS)−i − 1

)
ui ,

{uiλū j }2 =
min{1−i,1− j}∑

n=0

(
ū j+n(λS)− j−nui+nλ

n − (λS)nū j+n(λS)−i−nui+n
)

+ ū j
(
(λS)− j+1 − 1

)(
λS − 1

)−1(
(λS)−i − 1

)
ui ,

{ūiλū j }2 =
1− j∑

n=0

(
ūi−n(λS)nū j+n − ū j+n(λS)i− j−nūi−n

)

+ ū j
(
(λS)− j+1 − 1

)(
λS − 1

)−1(
(λS)i − 1

)
ūi , (10.16)

subject to (10.15). We do not give here the third λ-bracket since it is non-local. These
λ-brackets can be derived by using the theory of Adler type operators, discussed in the
previous sections.

Define the Hamiltonian functionals

h p = − 1

p + 1

∫
mRes L p−1, h̄ p = − 1

p + 1

∫
mRes L̄ p−1 for p ≥ 1, h0 = h̄0 = 0.

According to the Oevel–Ragnisco theory [OR89], these Hamiltonian functionals are
integrals ofmotion in involutionwith respect to bothλ-brackets and the hierarchy (10.13)
has the following bi-Hamiltonian representation (cf. Theorem 8.1):

d f

dtn
= {hnλ f }1

∣∣
λ=1 = {hn−1λ f }2

∣∣
λ=1,

d f

dt̄n
= {h̄n λ f }1

∣∣
λ=1 = {h̄n−1 λ f }2

∣∣
λ=1, n ≥ 1. (10.17)
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