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Abstract: Stochastic growth processes in dimension (2 + 1) were conjectured by D.
Wolf, on the basis of renormalization-group arguments, to fall into two distinct uni-
versality classes, according to whether the Hessian Hρ of the speed of growth v(ρ)

as a function of the average slope ρ satisfies det Hρ > 0 (“isotropic KPZ class”) or
det Hρ ≤ 0 (“anisotropic KPZ (AKPZ)” class). The former is characterized by strictly
positive growth and roughness exponents, while in the AKPZ class fluctuations are log-
arithmic in time and space. It is natural to ask (a) if one can exhibit interesting growth
models with “smooth” stationary states, i.e., with O(1) fluctuations (instead of logarith-
mically or power-like growing, as in Wolf’s picture) and (b) what new phenomena arise
when v(·) is not differentiable, so that Hρ is not defined. The two questions are actually
related andhereweprovide an answer to both, in a specific framework.Wedefine a (2+1)-
dimensional interface growth process, based on the so-called shuffling algorithm for
domino tilings. The stationary, non-reversible measures are translation-invariant Gibbs
measures on perfect matchings of Z2, with 2-periodic weights. If ρ �= 0, fluctuations
are known to grow logarithmically in space and to behave like a two-dimensional GFF.
We prove that fluctuations grow at most logarithmically in time and that det Hρ < 0:
the model belongs to the AKPZ class. When ρ = 0, instead, the stationary state is
“smooth”, with correlations uniformly bounded in space and time; correspondingly,
v(·) is not differentiable at ρ = 0 and we extract the singularity of the eigenvalues of
Hρ for ρ ∼ 0.

1. Introduction

A statistical physicist’s view of stochastic interface growth models is that they describe
the diverse phenomena of interface growth and crystal deposition [1]. These models
are related mathematically to both interacting particle systems [24,30] and stochastic
partial differential equations, in particular, the celebrated Kardar–Parisi–Zhang (KPZ)
equation [21].
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A (2+1)-dimensional stochastic growth process describes the time evolution, in three-
dimensional space, of a two-dimensional interface, modeledmathematically as the graph
of a function h from Z

2 (or some other two-dimensional lattice) to R. The dynamics
form an irreversible Markov chain and the transition rates, by which the interface height
increases or decreases, are asymmetric and induce a non-trivial drift, that depends on
the average local slope. Among the most interesting and challenging questions are those
of describing the stationary states, of obtaining the deterministic PDE that describes on
large scales the typical evolution of the height function (hydrodynamic limit) and of
understanding the large-scale space-time structure of the height fluctuations.

In many natural cases, given a slope ρ ∈ R
2, there exists a unique stationary state μρ

with average slope ρ, i.e. μρ(h(x) − h(y)) = ρ · (x − y). What is stationary is actually
only the law of the height gradients {h(x)− h(y)}x,y∈Zd , while the average height itself
grows linearly in time, with a certain speed of growth v(ρ). The PDE describing the
hydrodynamic limit is then expected to be of the Hamilton–Jacobi type

∂tψ = v(∇ψ) (1.1)

with ψ = ψ(x, t), t ≥ 0, x ∈ R
d representing the suitably rescaled height profile, ∇

denoting gradient w.r.t. the space variable and the solution of the PDE being interpreted
in the vanishing viscosity sense.

As far as fluctuations are concerned, one usually introduces a roughness exponent α
and a growth exponent β, that measure how height fluctuations grow in space and time
in the stationary process, namely

Varμρ (h(x) − h(y))
|x−y|→∞∼ const. × (1 + |x − y|2α) (1.2)

and

Varμρ (h(x, t) − h(x, 0))
t→∞∼ const. × (1 + t2β), (1.3)

vanishing exponents usually meaning logarithmic growth. (The exponents can also be
negative, in which case the constant 1 dominates asymptotically; this is the case for the
stochastic heat equation with additive noise in dimension d ≥ 3, see below.)

Heuristically, one expects height fluctuations in the stationary process to be qualita-
tively described, on large space-time scales, by a stochastic PDE (KPZ equation) of the
type

∂tφ(x, t) = �φ(x, t) + λ〈∇φ(x, t), Hρ∇φ(x, t)〉 + ξ(x, t), (1.4)

where the diffusive Laplacian term tends to locally smooth out fluctuations, the 2 × 2
symmetric matrix Hρ in the non-linear term is the Hessian of the function v(·) computed
at ρ and ξ(x, t) is a space-time noise that contains the randomness of the process.
Equation (1.4) is singular if ξ is space-time white noise (Hairer’s theory of regularity
structures gives a meaning to it in space dimension d = 1 [18], where Hρ reduces to
the scalar quantity v′′(ρ)). On the other hand we are interested in properties on large
space-time scales and lattice models have a natural “ultraviolet” space cut-off (lattice
spacing), so we can as well assume that the noise is smooth in space and correlated over
distances of order 1.

Most of the known rigorous results on stochastic growth models have been proven in
dimension (1+1), often in cases where the stationary measures of the interface gradients
are of i.i.d. type. It is then expected (and mathematically proved in many examples, cf.
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e.g. [9,13,29] for recent reviews on the mathematical aspects of the KPZ equation and
universality class in one dimension) that when v′′(ρ) �= 0 the exponents α, β are given
by αd=1 = 1/2, βd=1 = 1/3, as already predicted in the original work [21]. These
exponents differ from those (αSHE = (2 − d)/2, βSHE = (2 − d)/4) of the linear
stochastic heat equation with additive noise, obtained by dropping the non-linear term
in (1.4).On the other hand, for (d+1)-dimensionalmodels,d ≥ 3, renormalization-group
computations [1,21] applied to the stochastic PDE (1.4) predict that, if the non-linear
term is sufficiently small, then it is irrelevant, meaning that the large-scale fluctuation
properties and exponents α, β are the same as those of the stochastic heat equation (cf.
[16,27] for recent mathematical progress in the λ 
 1 regime; let us also add that [21]
predicts a transition at a critical non-linearity λc �= 0 but nothing is known rigorously).

In the (2+1)-dimensional case we consider here, the picture is different. On the basis
of a renormalization-group analysis of (1.4) by Wolf [34], of numerical simulations
[19,20,31] and on a few mathematically treatable models (see references in point (ii)
below), the following conjectural picture has emerged (see also the introduction of [32]
for a more detailed discussion):

(i) If det Hρ is strictly positive, i.e. if v(·) is convex or concave with non-zero Gaussian
curvature, the growth model is said to belong to the “KPZ (or Isotropic KPZ) class”.
In this case, the exponents α, β are strictly positive and, in particular, different from
those of the two-dimensional stochastic heat equation,which are both zero. The actual
values of the exponents are known numerically to a high degree of precision [19,31],
but we are not aware of any rigorous or even convincing arguments to predict them.

(ii) If instead det Hρ ≤ 0 (“Anisotropic KPZ” or AKPZ class) one expects that α =
β = 0 and that moreover the growth of (1.2), (1.3) is logarithmic, exactly like
for the two-dimensional stochastic heat equation. This belief is supported by the
mathematical analysis of various (2 + 1)-dimensional growth models [2,5,7,33] that
share the following features: stationary states can be found explicitly and their height
fluctuations behave on large space scales as a massless Gaussian Field (GFF), with
α = 0 and logarithmic correlations; the speed of growth v(·) can be computed and
det Hρ turns out to be negative; the growth exponent β is zero and the height variance
grows at most logarithmically with time.

This state of affairs naturally leads to two questions. The first is to understand what
happens when the function v(·) is not differentiable, so that the Hessian matrix Hρ

in (1.4) is ill-defined. Can singularities of v(·) lead to qualitatively different dynamic
phenomena? Secondly, Wolf’s picture predicts rough stationary states, i.e. such that the
l.h.s. of (1.2) diverges at larges distances, either logarithmically (AKPZ class) or as a
power law (KPZ class). On the other hand, it is well known that certain equilibrium, two-
dimensional random interface models exhibit smooth phases, i.e., for some choices of
the slope the l.h.s. of (1.2) is bounded uniformly in x, y. Classical example are Solid-on-
Solid interfaces and +/− interfaces of the three-dimensional IsingmodelwithDobrushin
boundary conditions, for slope ρ = 0 and sufficiently low temperature [3,4,10]. Is it
possible to have non-trivial AKPZ growth models with a smooth phase and, if yes, how
does this fit inWolf’s conjectured picture? (See also [25, Sec. 7] for a related phenomenon
in a one-dimensional growthmodel and for the discussion of the corresponding “faceting
transition”).

In this work, through the analysis of an explicit model, we show that the two ques-
tions are closely related. The growth process we study is based on the so-called shuffling
algorithm [12,28], that was devised to perfectly sample domino tilings of the Aztec
diamond. Instead of working on the Aztec diamond, the dynamics are defined on the
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(toroidal) periodized lattice (Z/2LZ)2 and eventually on the infinite lattice Z2, a frame-
work that is more relevant for growth processes. The content of Theorem 3.4 is that the
Gibbs measures [23] for the dimer model on Z2, with 2-periodic weights are translation
invariant, stationary, non-reversible measures of the dynamics. The reason behind this
choice of weights is that this is the simplest and best-studied [6,11] situation that admits
a smooth phase: the Gibbs measure has O(1) fluctuations if the slope ρ is zero. (As a
side remark, what we call here “rough” and “smooth” phases correspond to “liquid” and
“gas” phases in the language of [23]). As far as growth of fluctuations in time, Theorem
3.8 yields that the l.h.s. of (1.3) grows at most logarithmically in t in the rough phase
ρ �= 0, as is typical for models in the AKPZ class, and is O(1) uniformly in time in the
smooth phase ρ = 0. Most of the technical work is devoted to actually computing the
speed of growth v(ρ). The “implicit” formula for the speed in terms of dimer occupation
probabilities is very simple, see Eq. (3.10). On the other hand, in order to analyze its
convexity properties and its singularity for ρ → 0, we need amore workable expression.
This is the content of Theorem 3.10. Note that, while the speed vanishes for ρ = 0, the
stationary measure is non-reversible also in this case.

Even with an explicit expression for v(·) like Eq. (3.17) at hand, formulas for its
second derivatives are too complicated to check directly whether the sign of det Hρ

is negative, as suggested by Wolf’s picture. To bypass these difficulties, we found an
equivalent but more complex-analytic type expression for v(·), see Theorem 3.12, that
allows to prove det Hρ < 0 for every ρ �= 0. Finally, for ρ → 0 we show that one
eigenvalue of Hρ tends to −∞ and the other tends to 0, while their product tends to a
negative constant.

It is natural to ask whether the latter behavior is common to other AKPZ growth
models, when the slope approaches that of a smooth phase. The shuffling algorithm on
Z
2, with weights of period larger than 2, may provide examples where such conjecture

could be tested, provided that the face weights evolve periodically with the shuffling
algorithm (this is not true in general, see discussion in the next paragraph). Let us remark
that if the space periodicity of the graph is high enough, there may exist several smooth
stationary phases for different integer values of the slope ρ ∈ Z

2 [23]. It is presently
unclear how to extend to this more general case the results of Theorems 3.10–3.13. The
main obstacle is that part of our approach relies on an explicit computation of the speed
of growth, a task which seems, at least to us, to increase in complexity as the periodicity
increases.

To conclude, let us mention an intriguing connection between the growth process we
study and a discrete dynamical system introduced by Goncharov and Kenyon [14]. Put
simply, one of the results of [14] is that the shuffling algorithm on the torus, seen as a
map on weighted periodic graphs, behaves similar to a classical Hamiltonian integrable
dynamical system. More precisely, some quantities are conserved, such as the spectral
curve of the associated dimer model, while (introducing a suitable algebraic structure)
others evolve quasi-periodically in time, such as the face weights. The toroidal square
gridwith two-periodicweights, that we consider here, belongs to a special class of graphs
where the evolution of the face weights is not just quasi-periodic but actually periodic
in time.

The rest of the paper is organized as follows: in Sect. 2 we give the necessary notation
for the paper while in Sect. 3, we describe the shuffling dynamics on the torus and give
our main results. Proof that the dynamics are stationary is given in Sect. 4 and the
proof of the formula for the speed (in terms of edge probabilities) and of the bound on
fluctuation growth is given in Sect. 5. The explicit formula for the speed of growth for
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Fig. 1. The left figure shows the two-periodic weights on T2: edges incident to the face labeled a take edge
weight a while edges incident to the face labeled 1 take edge weight 1. The right figure shows the coordinates
for the faces of T2. In both figures, the half edges wrap around the torus

the two-periodic weights is found in Sect. 6 and in Sect. 7 it is shown that the model is
in the AKPZ class when ρ �= 0.

2. Notations

We let TL be the square lattice Z
2 periodized, both horizontally and vertically, with

period 2L . The graph TL is bipartite and the (2L)2 vertices are alternately colored black
and white. Faces of TL with a white top-right vertex are called “even”, the others are
called “odd”. Denote �L to be the set of dimer coverings (perfect matchings) of TL .
Let C1 (resp. C2) be a horizontal (resp. vertical) nearest-neighbor, oriented closed path
of length 2L on faces, directed to the right (resp. upward). Given η ∈ �L , we let for
i = 1, 2

�i (η) =
∑

e∈Ci

σe1e∈η (2.1)

where the sum is over edges crossed by the path, σe is +1 if the edge e is crossed with the
white vertex on the right and−1 if it is crossed with the white vertex on the left and 1e∈η

is the indicator that e is occupied by a dimer. Correspondingly, given � = (�1,�2), let

�L(�) = {η ∈ �L : �i (η) = �i , i = 1, 2}. (2.2)

The “slope” (�1(η)/L ,�2(η)/L) belongs [22] to P , the closed square with vertices
(−1, 0), (0,−1), (1, 0), (0, 1).

Edges of TL are assigned a positive weight taking values either 1 or a > 0 (without
loss of generality, we let 0 < a ≤ 1). First, assign to each even face a label “1” or “a”
in an alternate way, as in Fig. 1. Then, we establish that the weight of an edge is given
by the label of the even face it belongs to. Note that weights are 2-periodic, i.e. they are
left invariant by a horizontal or vertical translation of even length.

For � := �(L) = (�1,�2) such that �/L in
◦
P (the interior of P), let π

(L)
� be

the Boltzmann-Gibbs measure on �L(�1,�2) with weight proportional to aNa(η), with
Na(η) the number of dimers on edges of type a. It is known [23] that, if
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lim
L→∞

�(L)

L
= ρ ∈ ◦

P,

then the measure π
(L)

�(L) has a limit πρ as L → ∞. The “infinite-volume Gibbs measure”

πρ is a probability measure on�Z2 , the set of perfect matchings of the infinite latticeZ2,
invariant and ergodic with respect to translations by vectors v ∈ (2Z)2, and convergence
holds for all local bounded functions f . As discussed in the next section, the average
“height function” underπρ is affinewith slopeρ. The limitmeasureπρ has determinantal
correlation functions, with an explicit kernel (that depends on ρ and a), see Sect. 6.
In the same section we will recall also the following fact: with the nomenclature of
[23], the Gibbs measure πρ corresponds to a “liquid phase” (with power-law decaying
correlations) if

ρ ∈ L :=
{ ◦
P \{0} if a < 1
◦
P if a = 1

(2.3)

and to a gaseous phase (with exponentially decaying correlations) if a < 1, ρ = 0. In the
following, we use the terms “rough” and “smooth” instead of “liquid” and “gaseous”.

3. Dynamics

3.1. Spider moves and shuffling algorithm. The dynamics we study is a version of the
shuffling algorithm for the Aztec diamond [8,12,28] but reworked for the torus. Its
definition is based on two well-known transformations on weighted graphs, that we
recall here in a general context; see also [14]. We will come back to the periodized
square lattice with 2-periodic weights in Sect. 3.2.

Here are the two transformations of a graph with weighted edges into a new graph
with new edge weights:

(1) (Spider move) Suppose that a graph contains a square face f with positive edge
weights a, b, c and d where the labeling is clockwise around the face starting from
the topmost horizontal edge. We replace the face f by a smaller square with edge
weights A, B,C and D (with the same convention as for f ), and add an edge, with
edge weight 1, between each vertex of the smaller square and its original vertex.
Call these added edges legs and see Fig. 2 for a diagram of this move. Then, set
A = c/(ac + bd), B = d/(ac + bd), C = a/(ac + bd) and D = b/(ac + bd). This
transformation is called the spider move at face f .

(2) (Edge contraction) Given a weighted graph, define a new weighted graph as fol-
lows: for any two-valent vertex with the incident edges having weight 1, contract
the two incident edges. See Fig. 3. This procedure is called edge contraction.

To introduce the dynamics, we first define a sequence of transformations of the edge
weights of the graph TL , built via spider moves and edge contractions. We label the
faces using Cartesian coordinates (i, j) (both modulo 2L) so that even faces correspond
to i + j mod 2 = 0 while odd faces correspond to i + j mod 2 = 1. For the face (i, j)
with i, j ∈ {0, 1, . . . , 2L − 1}, the face to its right has coordinates (i + 1 mod 2L , j)
while the face above it has coordinates (i, j + 1 mod 2L); see Fig. 1.

For (i, j) ∈ {0, 1, . . . , 2L − 1}2 and k ≥ 0, let wa
i, j;k, w

b
i, j;k, w

c
i, j;k and wd

i, j;k be
positive real numbers and

�i, j;k = wa
i, j;kw

c
i, j;k + wb

i, j;kw
d
i, j;k .
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Fig. 2. The spider move transformation

Fig. 3. The edge contraction transformation. Weights wi of the uncontracted edges stay the same

Let

wk = {(wa
i, j;k, w

b
i, j;k, w

c
i, j;k, w

d
i, j;k) : (i, j) ∈ {0, 1, . . . , 2L − 1}2}

where the 4-tuple (wa
i, j;k, w

b
i, j;k, w

c
i, j;k, w

d
i, j;k) denotes the edge weight around the face

(i, j) and at a time k, where we use the same convention a, b, c and d as given in Fig. 2.
Note that wk is completely determined by the edge weights around even (resp. odd)
faces; we keep track of the weights around both the even and odd faces for convenience.

The relation between wk and wk+1 is, by definition

(wa
i, j;k+1, w

b
i, j;k+1, w

c
i, j;k+1, w

d
i, j;k+1)

:=
(

wa
i,[ j+1]2L ;k

�i,[ j+1]2L ;k
,
wb

[i+1]2L , j;k
�[i+1]2L , j;k

,
wc
i,[ j−1]2L ;k

�i,[ j−1]2L ;k
,
wd

[i−1]2L , j;k
�[i−1]2L , j;k

)
(3.1)

for k ≥ 0, i + j mod 2 = (k + 1) mod 2 and where we have used [r ]2L = r mod 2L
for compactness of notation. Since the weights on TL are fully determined by the edge
weights on either the odd faces or the even faces, then it follows that all weights {wk}k≥1
are determined by w0. Note also that the change of weights from wk to wk+1 is equivalent
to first applying the spider move to every face of TL with the same parity (even or odd)
as k and then applying the edge contraction transformation to the graph thus obtained.

For k ≥ 0 an integer of even/odd parity σ , we define a random map �L � η �→
Fk(η) ∈ �L through the following three steps, cf. Fig. 4 (only the third one is actually
random):

(Deletion step) All pairs of parallel dimers of η covering two of the four boundary edges
of any face of parity σ are removed.

(Sliding step) For every face of parity σ with only one boundary edge covered by a dimer
of η, slide this dimer across that face.

(Creation step) For each (i, j) ∈ {0, 1, . . . , 2L − 1}2, if the face of parity σ and coor-
dinates (i, j) has no dimers of η covering any of the four boundary edges, add two
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Fig. 4. The three possible configurations around a face of the same parity as time k, and the effect of the
transformation Fk (in the second line, similar transformations hold when the dimer is on the top, bottom or
right edge). Red edges denote dimers

parallel vertical dimers to the face with probabilitywb
i, j;kw

d
i, j;k/�i, j;k or two parallel

horizontal dimers with probability wa
i, j;kw

c
i, j;k/�i, j;k (the operations are performed

independently for each (i, j) and k).

Let π(L)
�;k denote the probability measure (on �L(�)) of the dimer model on TL with

weights wk and height change � = (�1,�2). The following property is crucial for the
study of the growth model defined in next section:

Proposition 3.1. Suppose that η ∼ π
(L)
�;k . Then, Fk(η) ∼ π

(L)
−�;k+1.

The above proposition is implicitly known but we could not find an explicit statement
in the literature.

3.2. The growth process. Here we turn back to the case where the graph TL has 2-
periodic edge weights with values 1 and 0 < a ≤ 1 as described in Sect. 2. Coherently
with the conventions of Sect. 3.1, we call such weighting w0.

Let e1 (resp. e2) be the vector from the face (0, 0) to the face (1, 0) (resp. to the face
(0, 1)) and τn(η) be the translation of the dimer configuration η by n1e1 + n2e2, n =
(n1, n2) ∈ Z

2. Note that e1, e2 are just the usual length-one vectors pointing to the right
and up, respectively. With some abuse of notation, given a face f or edge e we denote
τn( f ), τn(e) the face/edge translated by n1e1 + n2e2. Note that if n1, n2 are both even,
then the vector n connects two faces of the same parity and two edges of the same parity
(i.e. both with white edge on top or both with black edge on top).

The random map T that defines our dynamics is given as follows:

Definition 3.2. Given η ∈ �L , we let

T (η) := τ(−1,−1)[F1 ◦ F0(η)]. (3.2)
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In other words, we apply first F0, then F1 and then we shift the configuration one step
down and one step to the left on TL . Given an initial condition η(0) ∈ �L , we let
η(k), k ∈ N denote the configuration at time k, i.e. the result of the application of k i.i.d.
copies of the map T to η(0).

We begin with the basic properties of the dynamics:

Theorem 3.3. The Markov chain defined by the transformation T is ergodic on each
sector �L(�), i.e. it connects any two elements in �L(�). Moreover, if η ∼ π

(L)
� then

T (η) ∼ π
(L)
� .

It is easy to deduce that stationarity holds also for the infinite dynamics. Indeed, note
that the definitions of F0, F1 and T make perfect sense as maps from �Z2 to itself (with
�Z2 the set of perfect matchings of the infinite lattice Z2). Then:

Theorem 3.4. For every local function g and for any slope ρ in
◦
P one has

Eπρ g(T (η)) = πρ(g(η)). (3.3)

A dimer covering of Z
2 is naturally associated to a height function [22]; we

briefly recall this definition and then discuss how the height function evolves under
the dynamics. This will provide an interpretation of the Markov chain as a two-
dimensional stochastic growth model. Given η ∈ �Z2 one associates a height func-
tion hη : f ∈ (Z2)∗ �→ hη( f ) (defined on the faces f of the graph) by fixing it as
hη( f0) = 0 on a given reference face f0, say the even face with coordinates (0, 0), and
by establishing that its gradients are given as1

hη( f
′) − hη( f ) =

∑

e∈C f → f ′
σe(1e∈η − 1/4), (3.4)

where C f→ f ′ is any nearest-neighbor path from f to f ′ (it is well-known that the r.h.s.
of (3.4) is path-independent).

By construction of the finite-volume measures π
(L)
� , one has

πρ[hη(τn( f )) − hη( f )] = n · ρ

2
(3.5)

if n ∈ (2Z)2.
FromTheorem 3.4, we know that if η(0) ∼ πρ , the law of the height gradients of η(k)

is time-independent. However, we have not yet determined how the additive constant
hη(k)( f0) changes with time from the initial value hη(0)( f0) = 0. Assume from now on
that the reference face f0 is even. To motivate our convention given in Definition 3.6
below, we start from the following observation.

Proposition 3.5. If f1, f2 are two even faces and η ∈ �Z2 , then

hτ(−1,0)[F0(η)]( f2) − hτ(−1,0)[F0(η)]( f1) = hη(τ(1,0)( f2)) − hη(τ(1,0)( f1)) (3.6)

hT (η)( f2) − hT (η)( f1) = hτ(−1,0)[F0(η)](τ(0,1)( f2)) − hτ(−1,0)[F0(η)](τ(0,1)( f1)). (3.7)

We make therefore the following choice:

1 Note the similarity with (2.1). On the torus, the height is a multi-valued function that increases by �i (η)

along a closed path winding in direction i = 1, 2.
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Definition 3.6. Given η ∈ �Z2 , we set

hτ(−1,0)[F0(η)]( f0) := hη(τ(1,0)( f0)) (3.8)

hT (η)( f0) := hτ(−1,0)[F0(η)](τ(0,1)( f0)). (3.9)

This way, the whole height functions of F0(η) and of T (η) are completely defined,
including the overall additive constant, in terms of that of η.

Remark 3.7. From Proposition 3.5, it follows immediately that (3.8)–(3.9) hold for any
even face f if they hold for f0; in other words, Definition 3.6 is actually independent of
the choice of the even face f0. One can check that (3.8)–(3.9) do not, in general, hold
for odd faces. If they did, the height function of η(k) would be a deterministic function
of the height function of η(k − 1), which is not the case.

3.3. Speed of growth and fluctuations.

Theorem 3.8 (Speed and fluctuations). Let f be any face of Z2, k ∈ N and let for

lightness of notation hk(·) := hη(k)(·). Then, for ρ ∈ ◦
P ,

v(ρ) := 1

k
Eπρ (hk( f ) − h0( f )) = c1(ρ) − c2(ρ) (3.10)

with

c1(ρ) = πρ(e1 ∈ η), c2(ρ) = πρ(e2 ∈ η) (3.11)

where e1 is a horizontal edge with an “a” face above it and e2 is a vertical edge with
an “a” face to its left. One has for any face f

lim
u→∞ lim sup

k→∞
Pπρ (|hk( f ) − h0( f ) − v(ρ)k| ≥ uσ(k)) = 0 (3.12)

where

σ(k) =
{√

log(k + 1) if ρ ∈ L
1 if ρ = 0, a < 1.

(3.13)

Remark 3.9. As discussed at the beginning of Sect. 6, the function v(·) satisfies a number
of simple reflection symmetries, namely:

v(ρ1, ρ2) = −v(ρ2, ρ1), (3.14)

v(ρ1, ρ2) = ρ1 − ρ2 − v(−ρ2,−ρ1) (3.15)

and

v(ρ1, ρ2) = ρ2 + v(ρ1,−ρ2), v(ρ1, ρ2) = ρ1 + v(−ρ1, ρ2). (3.16)

As a consequence, v(·) is fully determined by its restriction to the subset

P ∩ {ρ1 ≥ 0, 0 ≤ ρ2 ≤ ρ1}.
The function v(·) can be explicitly computed (this computation is rather involved and

takes the whole Sect. 6):
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Theorem 3.10 (Formula for the speed). Let ρ+ = π(ρ1 + ρ2) ∈ [−π, π ], ρ− = π(ρ1 −
ρ2) ∈ [−π, π ] and c = a/(1 + a2) ∈ (0, 1/2]. We have

v(ρ) = ρ−
2π

− π − arccos[�]
2π

sign(ρ−ρ+) (3.17)

where

� = −cos(ρ−) + cos(ρ+) +
√

(cos(ρ−) − cos(ρ+))2 + 4c2 sin2(ρ−) sin2(ρ+)

2
(3.18)

and arccos(�) ∈ [0, π ].
The speed of growth is differentiable, except if the weights are genuinely 2-periodic

(i.e. a < 1) and the slope corresponds to that of the smooth phase:

Theorem 3.11 (Asymptotic behavior of the speed close to the smooth phase). The func-
tion v(·) is C2 on L (recall definition (2.3)). For a < 1 it is not differentiable at ρ = 0
and one has the following asymptotic expansion for ρ ∼ 0. Assume ρ+ > 0, ρ− > 0 and
let r := ρ−/ρ+ ∈ (0, 1) (the other cases can be obtained by symmetry, see Remark 3.9).
Then, as ρ+ → 0 (under the assumption a < 1)

v(ρ) = rρ+
2

−
√

f1(r)

2π

[√
2ρ+ +

(
f1(r)

6
√
2

+
f2(r)√
2 f1(r)

)
ρ3
+

]
+ O(ρ5

+) (3.19)

where f1(r) > 0.
When a < 1, one eigenvalue of Hρ diverges as ρ → 0, the other tends to zero and

det(Hρ) tends to a finite strictly negative limit.

The explicit expressions of f1, f2 can be found in Sect. 6.3. From (3.19), one sees
that

∂ρ+v(ρ) = − 2

4π
√

f1(r)

(
2 f1(r) − r f ′

1(r)
)
+ O(ρ+)

as ρ+ → 0, which is non-trivial and nowhere vanishing for c < 1/2. Hence ∂ρ+v(ρ)

depends on r as ρ → 0 and so ∇v(ρ) is not continuous at ρ = 0.
As discussed in the introduction, of particular relevance for the large-scale fluctuation

properties of the growth model is the sign of the determinant of the Hessian matrix
Hρ , a negative or a vanishing determinant indicating that the model belongs to the
AKPZ universality class. For a < 1, Theorem 3.11 gives that the sign is negative in a
neighborhood of ρ = 0. For a = 1, the formulas for the derivatives of v(ρ) are relatively
simple and an explicit computation of the determinant shows that

det(Hρ) < 0 (3.20)

for every ρ ∈ L (cf. Eq. (7.7) below). For a < 1, on the other hand, we see no direct way
of proving (3.20), starting from the explicit expression (3.17) (we did try to simplify the
resulting expressions using Mathematica).

To circumvent this problem, we first give an equivalent, complex-analytic character-
ization of the speed of growth. Assume that 0 < ρ−, ρ+ < π and define

X = ρ−
2

+
π

2
∈ (π/2, π), Y = −ρ+

2
+
3

2
π ∈ (π, 3π/2). (3.21)
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Theorem 3.12. For z ∈ C, let G(z) = z − √
z2 + 2c with the branch cut as spec-

ified in (6.5). The mapping from Q+ := {z ∈ C : Re(z) > 0, Im(z) > 0} to
(π/2, π)× (π, 3π/2) defined by z ∈ Q+ �→ (X (z),Y (z)) = (arg(G(z)), argG(1/z)) is
a diffeomorphism. Here, we adopt the convention that the argument arg(·) ranges from
−π/2 to +3π/2.

For 0 < ρ−, ρ+ < π the function v(·) of Theorem 3.10 is equivalently given as
follows:

v(ρ) = X

π
− 1 +

1

π
arg z(X,Y ), (3.22)

with X = X (ρ),Y = Y (ρ) as in (3.21). The other three cases (−π < ρ− < 0 < ρ+ <

π , −π < ρ+ < 0 < ρ− < π and −π < ρ−, ρ+ < 0) can be obtained by symmetry.

From the characterization of v(·) provided by Theorem 3.12, we can prove that the
growth model does indeed belong to the AKPZ universality class for ρ ∈ L, coherently
with the logarithmic upper bound on growth of fluctuations provided by Eq. (3.12):

Theorem 3.13 (AKPZ signature of the speed of growth). For every a ≤ 1 and ρ ∈ L,
one has

det(Hρ) < 0. (3.23)

4. Stationarity of Gibbs Measures

In this section, we prove Proposition 3.1 as well as Theorems 3.3 and 3.4.

Proof of Proposition 3.1. We consider the case k even, as the odd case follows from
the same argument but interchanging even and odd below. Notice that the whole dimer
configuration η is determined by dimers covering edges on the boundary of the even
faces and that there is a height change crossing an even face horizontally (resp. vertically)
if and only if there is exactly one vertical (resp. horizontal) dimer covering an edge on
the boundary of that even face. It then follows immediately that the only step in the
definition of Fk which has an effect on the height function is the sliding step: since after
sliding the single dimer on the boundary of the even face moves to an edge of opposite
parity, the height change of Fk(η) is the opposite as that of η.

Take the torus TL with weights wk and apply the spider move to all the even faces,
followed by edge contraction of all the resulting two-valent vertices; see Fig. 5 for a
schematic of the transformation for the underlying graph. By construction, one obtains
the graph TL with weights wk+1. Explicitly, the weights around the even face with
coordinates (i, j) are given by

(
wc
i, j;k

�i, j;k
,
wd
i, j;k

�i, j;k
,
wa
i, j;k

�i, j;k
,
wb
i, j;k

�i, j;k

)
, (4.1)

using the same labeling conventions as above.
To see that Fk(η) ∼ π

(L)
−�;k+1, we proceed as follows. Call Pk the transition matrix

from �L(�) to �L(−�) of the random map Fk and let wk
e be the weight of the edge e

as determined by wk . If we prove that, for every η′ ∈ �L(−�),

∑

η∈�L (�)

[
∏

e∈η

wk
e

]
Pk(η, η′) = N

∏

e∈η′
wk+1
e (4.2)
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Fig. 5. The left figure applies the square move, drawn in dashed red, to the even faces of T2. All original
edges (but not the vertices) of the graph are removed from by this procedure and the right figure shows the
end result. The dashed edges in the right figure are those that are incident to two-valent vertices and so will be
contracted under the edge contraction procedure. In both figures, the half edges represent edges which wrap
around the torus

for some constant N independent of η′, then the claim of the Proposition follows and
actually N equals the ratio of partition functions of π�;k and π−�;k+1.

Call A(η′) the set of even faces such that η′ has no dimer along the boundary, D(η′)
the set of even faces such that two parallel boundary edges are covered by dimers of η′
and R(η′) the set of even faces that are neither in A(η′) nor in D(η′). Note first of all that
the set S(η′) := {η such that Pk(η, η′) �= 0} is the set of configurations such that: (a) for
every face in A(η′), η has two parallel dimers (either vertical or horizontal) along the
boundary of the face; (b) for every face in D(η′), η has no dimer along the face and (c)
for every even face in R(η′), η has a single dimer along its boundary, on the edge that is
opposed to the one on which η′ has a dimer. Secondly, observe that by the definition of
the creation step, for all η ∈ S(η′), Pk(η, η′) equals the product over (i, j) ∈ D(η′) of

w
ri, j (η′)
i, j;k w

r ′
i, j (η

′)
i, j;k

�i, j;k
= �i, j;k

w
ri, j (η′)
i, j;k

�i, j;k

w
r ′
i, j (η

′)
i, j;k

�i, j;k

where (ri, j (η′), r ′
i, j (η

′)) equals (a, c) or (b, d) according to whether η′ has two parallel
horizontal or two parallel vertical dimers at even face (i, j). Next, note that for all
η ∈ S(η′), one has

∏

e∈η

wk
e =

∏

(i, j)∈A(η′)

(
w
ri, j (η)

i, j;k w
r ′
i, j (η)

i, j;k
) ∏

(i, j)∈R(η′)

⎛

⎝
w

pi, j (η)

i, j;k
�i, j;k

�i, j;k

⎞

⎠ (4.3)

where (ri, j (η), r ′
i, j (η)) are as above, while pi, j (η) is a, b, c, d according to the position

of the unique edge of η along the boundary of the even face (i, j). Multiplying by
Pk(η, η′) and then summing over η ∈ S(η′) (i.e. over the two possible orientations of
dimers of η at faces in A(η′)), we see that the l.h.s. of (4.2) equals

∏

e∈η′
wk+1
e

∏
�i, j;k (4.4)
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where the product in the r.h.s. runs over all even faces of TL . We used the fact that,
after moving a dimer in the sliding step and changing weights from wk to wk+1, the
weight assigned to the dimer is divided by �i, j;k . In conclusion, (4.2) is proven with
N =∏�i, j;k . ��
Proof of Theorem 3.3. For the two-periodic weighting, w0 is determined by

(wa
i, j;0, w

b
i, j;0, w

c
i, j;0, w

d
i, j;0) =

{
a(1, 1, 1, 1) if (i, j) mod 2 = (0, 0)
(1, 1, 1, 1) if (i, j) mod 2 = (1, 1).

It follows from Proposition 3.1 that [F1 ◦ F0](η) ∼ π
(L)
�,2. We have just to prove that if

we translate by −e1 − e2 the weights w2 we obtain the original two-periodic weights w0,
up possibly to an overall positive prefactor that multiplies all weights and is inessential
in the definition of the measure.

A simple computation based on (3.1) gives that

(wa
i, j;1, w

b
i, j;1, w

c
i, j,1, w

d
i, j;1) =

{
1
2a (1, 1, 1, 1) if (i, j) mod 2 = (0, 0)
1
2 (1, 1, 1, 1) if (i, j) mod 2 = (1, 1).

=
{

1
2 (1, 1/a, 1, 1/a) if (i, j) mod 2 = (1, 0)
1
2 (1/a, 1, 1/a, 1) if (i, j) mod 2 = (0, 1).

and

(wa
i, j;2, w

b
i, j;2, w

c
i, j;2, w

d
i, j;2) = 2c

{
(1, 1, 1, 1) if (i, j) mod 2 = (0, 0)
a(1, 1, 1, 1) if (i, j) mod 2 = (1, 1)

with c = a/(1 + a2) as usual. Translating by −e1 − e2 the weights w2, one is back to
the original weights w0, up to the global prefactor 2c, as wished.

Remark 4.1. Note also that, modulo an overall multiplicative constant, the weights w1
correspond to interchanging the positions of “a” and “1” faces in the original 2-periodic
weighting w0.

As far as ergodicity is concerned, assume that there are n > 1 ergodicity classes
within �L(�), i.e. subsets C1, . . . Cn of �L(�) that are invariant for the dynamics. On
the other hand, it is known that any two configurations in �L(�) can be connected by a
chain of elementary rotations (i.e. the flip of two parallel adjacent dimers from vertical to
horizontal or vice-versa). It follows that there exist two configurations, η ∈ Ci , η′ ∈ C j
with i �= j that differ by a single elementary rotation at a face f . Assume first that
f is an even face at single faces. Then, apply the transformation T to both η and
η′. Since in the “delete step” of F0 the discrepancy at the face f disappears, the two
updates can be coupled so that T (η) = T (η′). This contradicts the assumption that
η, η′ belong to two different ergodicity classes. Assume that f is an odd face instead
and call �η ⊂ Ci ,�η′ ⊂ C j the subset of configurations from which one can reach
η, η′ via a single application of T . If i �= j , then �η ∩ �η′ = ∅. Let σ ∈ �η and
η = T (σ ) = τ(−1,−1)[F1 ◦ F0](σ ); note that the two parallel dimers that η has around
the face f have been added in the “addition” step of F1. On the other hand, the two
parallel dimers at f could have been given (in the same addition step) the opposite
orientation, with positive probability. In this case, the resulting configuration would be
η′ instead, so that σ ∈ �η′ . This contradicts the assumption that �η ∩ �η′ = ∅ and also
contradicts that there is more than one ergodicity class within �L(�). ��
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Fig. 6. The even faces f1, f2 together with their translates τ(1,0)( f1), τ(1,0)( f2) when f2 is either to the right
or above f1, and the edges e1, . . . , e4 of the proof

Proof of Theorem 3.4. We give only a sketchy proof since the argument is standard.
Call U f the support of f . The configuration T (η) restricted to U f depends only on the
restriction of η to Û f , the set of edges within distance d from U f , where d is an integer

independent of f . Then, since the measure π
(L)
�Lρ� converges locally to πρ [23], we can

couple two random configurations sampled from the two measures in such a way that
with high probability (as L → ∞) they coincide in Û f . Then, (3.3) follows immediately

from the stationarity of π
(L)
� for the finite-volume dynamics. ��

Remark 4.2. In [33], one of us proved that the Gibbs measures πρ of the dimer model
on the infinite hexagonal graph are stationary for an irreversible Markov chain where
particles can performunbounded jumps. In that case, deducing stationarity for the infinite
system from stationarity on the torus required non-trivial arguments since the dynamics
are non local (i.e. in that case it is not true that the configuration at time 1 in a domain
U depends only on the initial condition in a configuration-independent neighborhood
of U ).

5. Proof of Proposition 3.5 and Theorem 3.8

Proof of Proposition 3.5. We will prove only (3.6) as the proof of (3.7) is essentially
identical. It is enough to prove (3.6) for faces f1, f2 that are separated by a single
odd face. Suppose for instance that f2 is to the right of f1. For lightness of notation
η′ := τ(−1,0)[F0(η)]. Then, with the notations of Fig. 6, the l.h.s. of (3.6) equals

1e2∈η′ − 1e1∈η′ = 1e2∈η′,e1 �∈η′ − 1e1∈η′,e2 �∈η′ .

From the definition of the “sliding step” of F0, one easily checks that the event
{e2 ∈ η′, e1 �∈ η′} is equivalent to the event that {e2 ∈ η, e3 �∈ η}. Similarly, the event
{e1 ∈ η′, e2 �∈ η′} is equivalent to {e2 �∈ η, e3 ∈ η}. Therefore, the l.h.s. of (3.6) equals

1e2∈η,e3 �∈η − 1e2 �∈η,e3∈η = 1e2∈η − 1e3∈η (5.1)

which equals the r.h.s. of (3.6).
If instead f2 is above f1 then we see that the l.h.s. of (3.6) equals

1e1∈η′ − 1e2∈η′ = 1e1∈η′,e2 �∈η′ − 1e2∈η′,e1 �∈η′ . (5.2)
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From the definition of F0 this is easily seen to be equal to

1e4∈η,e3 �∈η − 1e3∈η,e4 �∈η = 1e4∈η − 1e3∈η (5.3)

which equals the r.h.s. of (3.6). ��

5.1. Proof of Theorem 3.8.

Proof of (3.10). Since the process is stationary, it is clear that the second expression in
(3.10) is independent of k and of f . We will therefore take k = 1 and choose f to be an
even face of type a. From Definition 3.6 and Remark 3.7 we see that the height increase
in a step at f is

hT (η)( f ) − hη( f )

= hτ(−1,0)[F0(η)](τ(0,1)( f )) − hτ(−1,0)[F0(η)]( f ) + hτ(−1,0)[F0(η)]( f ) − hη( f )

= [hτ(−1,0)[F0(η)](τ(0,1)( f )) − hτ(−1,0)[F0(η)]( f )] + [hη(τ(1,0) f ) − hη( f )]. (5.4)

Now we take expectation over η ∼ πρ and obtain

πρ[hη(τ(1,0) f ) − hη( f )] = 1/4 − c2(ρ). (5.5)

On the other hand,

πρ[hτ(−1,0)[F0(η)](τ(0,1)( f )) − hτ(−1,0)[F0(η)]( f )] = c1(ρ) − 1/4: (5.6)

in fact, from Proposition 3.1 and Remark 4.1 we have that, if η ∼ πρ , then τ(−1,0)[F0(η)]
has the law πρ with “a” and “1” faces interchanged and the dimer configuration shifted
by −e1 or, equivalently, has the law of a configuration sampled from πρ and shifted by
+e2. Altogether, (3.10) follows. ��
Remark 5.1. If we assumed that f is an even face of type “1” instead, we would get
instead of (3.10)

v(ρ) = c3(ρ) − c4(ρ), (5.7)

where c3(ρ) is the density of horizontal dimers with the 1 face above and c4(ρ) the
density of vertical dimers with the 1 face on the left. Reassuringly, one can prove (via a
change of variables in the integral kernels (6.2) giving the probabilities ci (ρ)) that

c1(ρ) − c2(ρ) = c3(ρ) − c4(ρ). (5.8)

Proof of (3.12). By stationarity of πρ , the law of hk( f ) − h0( f ) is independent of f ,
so we assume without loss of generality that f is an even face. Let �� be the collection
of the O(�2) even faces within distance � from f and let

Q��
(k) :=

∑

x∈��

Qx (k), Qx (k) := hk(x) − h0(x). (5.9)

We have clearly

Q��
(k + 1) = Q��

(k) + K��
(k), K��

(k) :=
∑

x∈��

hk+1(x) − hk(x) (5.10)
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so that (letting V�(k) := VarPπρ
(Q��

(k)))

V�(k + 1) − V�(k)

= 2Eπρ

[(
Q��

(k) − Eπρ Q��
(k)
) (

K��
(k) − Eπρ (K��

(k))
)]

+ VarPπρ
(K��

(k))

≤ 2
√
V�(k)

√
VarPπρ

(K��
(k)) + VarPπρ

(K��
(k)). (5.11)

We will prove in a moment the following

Lemma 5.2. There exists C such that, for every k ≥ 0, � ≥ 1,

VarPπρ
(K��

(k)) = VarPπρ
(K��

(0)) ≤ C�2σ 2(�) (5.12)

where σ(·) is as in (3.13).

Given this claim, it is easy to conclude the proof of (3.12). Indeed, we see that (with Ci
denoting positive constants)

V�(k + 1) − V�(k) ≤ C1

√
V�(k)�σ (�) + �2σ 2(�). (5.13)

A simple inductive argument allows to deduce, for k = �,

Vk(k) ≤ C2k
4σ 2(k). (5.14)

(Just check by induction that V�(k) ≤ C2k2�2σ 2(�) for k = 0, 1, . . . , �, if C2 ≥
max(1,C2

1/4).)
Now we are ready to prove (3.12). Write

Pπρ (|hk( f ) − h0( f ) − v(ρ)k| ≥ uσ(k))

= Pπρ (|Q f (k) − Eπρ Q f (k)| ≥ uσ(k))

= Pπρ (|Q f (k) − Eπρ Q f (k)| ≥ uσ(k); |Q�k (k) − Eπρ Q�k (k)|
≤ √

uk2σ(k)) + o(1) (5.15)

where o(1) tends to zero as u → ∞ uniformly in k, by Tchebyshev’s inequality, thanks
to (5.14). On the other hand

Q�k (k) − Eπρ Q�k (k) = −Ak(0) + Ak(k) + Ãk (5.16)

A�(k) :=
∑

x∈��

[hk(x) − hk( f ) − πρ(hk(x) − hk( f ))] (5.17)

Ã� := |��|[Q f (k) − Eπρ Q f (k)]. (5.18)

In the second line, πρ(hk(x) − hk( f )) is actually time-independent. The law of A�(k)
is time-independent by stationarity of πρ and moreover:

Lemma 5.3. One has

πρ

[
Ak(0)

2
]

= O(k4σ 2(k)). (5.19)
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Therefore, by Tchebyshev’s inequality,

|Ak(0)|, |Ak(k)| ≤ √
uk2σ(k), (5.20)

with probability 1 + o(1) as u → ∞. Finally, we note from (5.18) that if event (5.20)
holds and at the same time |Q�k (k) − Eπρ Q�k (k)| ≤ √

uk2σ(k), since |�k | grows
proportionally to k2 one cannot have |Q f (k) − Eπρ Q f (k)| ≥ uσ(k) for u large. Eq.
(3.12) is then proven. ��
Proof of Lemma 5.2. Given that the sum in the definition of K��

(k) runs over even
faces, we apply (5.4) to write

K��
(k) = K (1)

��
(k) + K (2)

��
(k)

K ( j)
��

(k) =
∑

x∈��

r ( j)
x (k)

r (1)
x (k) = hτ(−1,0)[F0(η(k))](τ(0,1)(x)) − hτ(−1,0)[F0(η(k))](x)
r (2)
x (k) = hη(k)(τ(1,0)(x)) − hη(k)(x)

and byCauchy–Schwarz it is sufficient to upper bound the variances of K ( j)
��

(k), j = 1, 2
separately. By definition of the map F0 and of the height function,

r (1)
x (k) = 1e′

x∈[τ(−1,0)F0(η(k))] − 1/4, r (2)
x (k) = 1/4 − 1ex∈η(k) (5.21)

with ex (resp. e′
x ) the vertical edge connecting the top-right and the bottom-right (resp.

top-right and top-left) vertices of face x . Since the laws of η(k) and F0(η(k)) are sta-
tionary, the variance of K ( j)

��
(k), j = 1, 2 are independent of k. One has

VarPπρ
(K (2)

��
(k)) =

∑

x,y∈��

πρ(ex ∈ η; ey ∈ η) (5.22)

with π(A; B) denoting the covariance of A, B. It is known [23] that dimer-dimer cor-
relations decay like the inverse distance square if πρ is a rough phase (i.e. ρ ∈ L), and
exponentially fast if πρ is a smooth phase. Then, inequality (5.12) for K (2)

��
(k) immedi-

ately follows. The argument for K (1)
��

(k) is essentially identical. ��
Proof of Lemma 5.3. This is an immediate consequence of the known fact that, if πρ is
a rough phase (as is the case for ρ �= 0 or ρ = 0, a = 1) then the variance Varπρ (h(x)−
h(y)) grows proportionally to log |x − y| when |x − y| → ∞, while if πρ is a smooth
phase then the variance is uniformly bounded in x, y [23]. ��

6. Proof of Theorem 3.10

It is easy to prove (3.17) when |ρ1| = |ρ2| (i.e. when ρ+ρ− = 0), by symmetry con-
siderations. Indeed, a reflection across a line passing through the center of a face and
forming an angle −π/4 with respect to the horizontal axis maps π(ρ1,ρ2) to π(ρ2,ρ1)

and, from definition (3.10), changes sign of the speed v(ρ) = c1(ρ) − c2(ρ) since it
exchanges edges e1 and e2 in (3.11). In other words, (3.14) holds. Similarly, a reflection
across a line forming an angle π/4 with respect to the horizontal axis maps π(ρ1,ρ2) to
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Fig. 7. An even face of type a, with c1, . . . , c4 denoting the densities of the four edges on its boundary, so
that v = c1 − c2, ρ1 = c4 − c2, ρ2 = c3 − c1. After reflection across the dashed line, c1 turns into c4 and c2
into c3. Therefore, the slope becomes (−ρ2,−ρ1) and the speed becomes c4 − c3 = ρ1 − ρ2 − v(ρ1, ρ2)

π(−ρ2,−ρ1) and implies (3.15) (see caption of Fig. 7). To obtain (3.16), take reflections
w.r.t. horizontal/vertical lines throught the center of a face. Note that indeed the r.h.s. of
(3.17) satisfies symmetries (3.14)–(3.16).

As a consequence of the symmetries, the speed must vanish when ρ1 = ρ2 (i.e. when
ρ− = 0) and must equal ρ1 when ρ2 = −ρ1, i.e. when ρ+ = 0, as the r.h.s. of (3.17)
indeed does.

In the rest of the section, we will therefore assume that |ρ1| �= |ρ2|.

6.1. Kasteleyn matrix. The speed of growth v(ρ) is given by the difference between the
probabilities of two events. We begin by recalling how to express probabilities of local
events via the Kasteleyn matrix and how to rewrite its matrix elements as single integrals
in the complex plane, as was done in [6]. We adopt a similar coordinate system to the
one used in [6] but we have chosen to interchange the white and black vertices, so that
we can keep the same height change conventions from a previous paper [5].

Namely, with reference to Fig. 8, where the graph has been rotated 45◦ clockwise,
we assign to each vertex in Z

2 coordinates x = (x1, x2) with x1 + x2 ∈ 2Z + 1. Then,
the set of black vertices is

B = {(x1, x2) ∈ Z
2 : x1 mod 2 = 0, x2 mod 2 = 1}

and the set of white vertices is

W = {(y1, y2) ∈ Z
2 : y1 mod 2 = 1, y2 mod 2 = 0}.

For i ∈ {0, 1}, we also let

Bi = {(x1, x2) ∈ B : x1 + x2 mod 4 = 2i + 1}
and

Wi = {(y1, y2) ∈ W : y1 + y2 mod 4 = 2i + 1}.
The fundamental domain of the two-periodic weighting is given by a 2 by 2 block
consisting of a vertex from each W0,W1,B0 and B1. We suppose that if the vertex b ∈ B0
is in the fundamental domain, then so are the vertices b + ê2 ∈ W0, b + ê1 ∈ W1, and
b + ê1 + ê2 ∈ B1, with ê1 = (1, 1) and ê2 = (−1, 1). We impose that the edges inside
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Fig. 8. The fundamental domain and the coordinates of its four vertices, where the coordinate axes (not drawn)
are horizontal/vertical, with the origin in the center of the bottom-left face. The vectors e1, e2 are instead the
45◦ rotations of the vectors introduced in Sect. 3.2, and they denote the two direction w.r.t. which we compute
the slope

the fundamental domain have weight a and the edges crossing to another fundamental
domain have weight 1; see Fig. 8.

The Kasteleyn matrix K is a weighted version of the adjacency matrix of Z2. The
matrix element K(y, x) is zero if x ∈ B and y ∈ W are not neighbors. If they are
neighbors, then K(y, x) equals the weight (a or 1) of the edge from x to y, times i (the
imaginary unit) if the edge is parallel to ê2. The non-zero values of the matrix elements
are therefore a, ia, 1, i.

Given positive real numbers r1, r2,we introduce the “inverseKasteleynmatrix”K−1
r1,r2

as follows. Define first the 2 × 2 matrix

K (z, w) =
(
i(a + w−1) a + z
a + z−1 i(a + w)

)

and the characteristic polynomial

P(z, w) = − det K (z, w) = a

(
2

c
+ w +

1

w
+ z +

1

z

)
. (6.1)

Let x ∈ Bε1 and y ∈ Wε2 and let (u, v) ∈ Z
2 be such that the unique fundamental domain

containing x (resp. y) has black vertex in B0 with coordinates X (resp. Y ) satisfying
Y − X = 2(uê1 + vê2). Then, we let

K
−1
r1,r2(x, y) = 1

(2π i)

∫

�r1

dz

z

∫

�r2

dw

w
(K (z, w))−1

ε1+1,ε2+1
zuwv (6.2)

where the integrals are taken in the complex plane and �r is a contour of radius r around
the origin, oriented anti-clockwise.
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The link between the Gibbs measure πρ and the Kasteleyn matrix is as follows [23].
Whenever the slope ρ corresponds to a rough phase, i.e. ρ ∈ L (recall (2.3)) there exists
a unique choice r = (r1, r2) = r(ρ) (magnetic coordinates) such that, given any integer
n and edges ei , i ≤ n with black/white vertices of coordinates xi and yi respectively,
one has

πρ(e1, . . . , en ∈ η) =
(

n∏

i=1

K(yi , xi )

)
det{K−1

r1,r2(xi , y j )}i, j≤n . (6.3)

The image of the curve P(z, w) = 0 in C2 under the map (z, w) �→ (log |z|, log |w|) is
called the amoeba of P , often denoted byA(P). The setB = {r : r = r(ρ) for some ρ ∈
L} is the interior component of the amoeba and the correspondence r ∈ B ↔ ρ(r) ∈ L
is a bijection [23]. In the rest of this section, we assume that r ∈ B. Note that this is not
a restriction since ρ = 0 has already been taken into account.

Both the speed v(ρ) [through (3.10)] and the slope ρ [through (3.4)] can be expressed
as linear combinations of probabilities as in the l.h.s. of (6.3),withn = 1.Beforeworking
out the explicit expressions, let us recall a few known facts [6] about K−1

r1,r2 . Set

h(ε1, ε2) = ε1(1 − ε2) + ε2(1 − ε1)

and

c̃(u1, u2) = 2(1 + a2) + a(u1 + u−1
1 )(u2 + u−1

2 ).

Note that c̃(u1, u2) = P(u1/u2, u1u2).We next state the following lemmawithout proof
from [6]:

Lemma 6.1 (Lemma 4.3 from [6]). For x = (x1, x2) ∈ Bε1 and y = (y1, y2) ∈ Wε2 with
ε1, ε2 ∈ {0, 1},

K
−1
r1,r2(x, y) = −i1+h(ε1,ε2)

(2π i)2

∫

�R1

du1
u1

∫

�R2

du2
u2

aε2uh(ε1,ε2)−1
2 + a1−ε2u1u

−h(ε1,ε2)
2

c̃(u1, u2)u
x1−y1+1

2
1 u

y2−x2−1
2

2
(6.4)

where R1 = √
r1/r2 and R2 = 1/

√
r1r2.

The proof of the above lemma, see [6], follows from a change of variables, which also
explains the shift in contours of integration. The following are from [6] and are useful
for later computations. Define for w ∈ C\i[−√

2c,
√
2c]

√
w2 + 2c = e

1
2 log(w+i

√
2c)+ 1

2 log(w−i
√
2c) (6.5)

where the logarithm takes arguments in (−π/2, 3π/2). Write
√
1/w2 + 2c for the same

function evaluated at 1/w. Set

G(w) = 1√
2c

(w −
√

w2 + 2c).

Note that, since c ≤ 1/2, the branch cut i[−√
2c,

√
2c] is included in [−i, i]. The choice

in branch cut also gives that
√

w2 + 2c = −
√

(−w)2 + 2c. (6.6)

Let us note the following, for later use:
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Remark 6.2. We have

√
z2 + 2c =

⎧
⎪⎪⎨

⎪⎪⎩

√
x2 + 2c if z = x ∈ R

+
√
2c − y2 if z = iy + 0+,−√

2c < y <
√
2c

i
√
y2 − 2c if z = iy + 0+, y >

√
2c

−i
√
y2 − 2c if z = iy + 0+, y < −√

2c

. (6.7)

If z → i
√
2c + 0+ (resp. z → −i

√
2c + 0+), then any limit point of arg

√
z2 + 2c is in

[0, π/2] (resp. in [−π/2, 0]).
The transformation u = G(ω) is amap between |u| < 1 and thewhole plane (without

the cut) in ω. For u = Reiθ with R < 1, the inverse of this transformation is given by

ω =
√
c

2
(Reiθ − R−1e−iθ ). (6.8)

Moreover, when R < 1 and θ runs from 0 to 2π , ω in (6.8) runs (clockwise) over an
ellipse, that does not cross the cut. We denote by γR the ellipse, oriented anti-clockwise.

For x = (x1, x2) ∈ Bε1 and y = (y1, y2) ∈ Wε2 define for i ∈ {1, 2}

ki = x2 − y2 + (−1)i

2
− (−1)i h(ε1, ε2)

li = y1 − x1 + (−1)i

2
.

(6.9)

Define for two contours γ and γ ′ (that avoid the branch cut) and k, l ∈ Z

D̃γ,γ ′(k, l) = i−k−l

(2π i)22(1 + a2)

∫

γ

dω1

∫

γ ′
dω2

G(ω1)
lG(ω2)

k

(1 − ω1ω2)

√
ω2
1 + 2c

√
ω2
2 + 2c

(6.10)

and also define

Dγ,γ ′(x, y) = −i1+h(ε1,ε2)(aε2 D̃γ,γ ′(k1, l1) + a1−ε2 D̃γ,γ ′(k2, l2)). (6.11)

We state the following lemma without proof from [6].

Lemma 6.3 (Lemma 4.4 in [6]). Let R1 = √
r1/r2 and R2 = 1/

√
r1r2 with R1, R2 < 1.

Then, we have
K

−1
r1,r2(x, y) = DγR1 ,γR2

(x, y). (6.12)

The proof of this lemma involves using the change of variables u = G(ω) for each
variable u1 and u2. Note that the contours γR1, γR2 encircle the branch cut i[−

√
2c,

√
2c]

of G(ω j ), j = 1, 2.

Remark 6.4. The general theory of [23] implies that, whenever r ∈ B (equivalently,
when r = r(ρ) with ρ ∈ L), the polynomial P(r1z, r2w) has two and only two zeros
on T = {(z, w) ∈ C

2, |z| = |w| = 1}, that are simple and conjugate, i.e. of the form
(z0, w0) and (z0, w0).

We have the following lemma which is a culmination and extension of Lemmas 3.3 and
4.5 from [6].
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Lemma 6.5. Let r ∈ B, let R1, R2 be defined as in Lemma 6.3 as functions of r and
assume R1, R2 < 1. Then, there exists a unique ωc ∈ R>0 × iR>0 such that

D̃γR1 ,γR2
(k, l) = i−k−l

4π i(1 + a2)

(∫ ωc

ωc

dω +
∫ −ωc

−ωc

dω

)
G(ω−1)lG(ω)k

ω
√

ω2 + 2c
√

ω−2 + 2c

+ S̃(k, l) (6.13)

where the integration path from ωc to ωc (resp. from−ωc to−ωc) stays in the half-plane
with positive (resp. negative) real part,

S̃(k, l) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if k ≥ 0 or l ≥ 0
a−1 if k = l = −1

i−k−l

(2π i)22(1+a2)

∫
�R

dω1
∫
�R

dω2
G(ω1)

lG(ω2)
k

(1−ω1ω2)

√
ω2
1+2c

√
ω2
2+2c

otherwise,

(6.14)
and R > 1.

Proof of Lemma 6.5. The function in the r.h.s. of (6.10) has a polewheneverω1 = 1/ω2.
We show first of all:

Claim 6.6. There exist four distinct values of ω1 ∈ γR1 such that ω2 := 1/ω1 ∈ γR2

and there is exactly one of them for each of the four quadrants of C\{R ∪ iR}. We call
by convention ωc the one that is in R>0 × iR>0, the others being −ωc, ωc,−ωc.

Proof. Since each ωi , i = 1, 2 runs along the clockwise-oriented ellipse γRi defined by
(6.8), we have

ω1ω2 = c

2

(
R1e

iθ1 − R−1
1 e−iθ1

) (
R2e

iθ2 − R−1
2 e−iθ2

)

= c

2

(
1

r2
ei(θ1+θ2) − 1

r1
e−i(θ1−θ2) − r1e

i(θ1−θ2) + r2e
−i(θ1+θ2)

)
.

(6.15)

Set u1 = ieiθ1 and u2 = ieiθ2 . Then,

ω1ω2 = c

2

(
− 1

r2
u1u2 − r2

1

u1u2
− r1

u1
u2

− 1

r1

u2
u1

)
. (6.16)

Set w = 1/(u1u2) and z = u1/u2 and note |z| = |w| = 1. This gives

ω1ω2 = c

2

(
−wr2 − 1

r2w
− r1z − 1

r1z

)
. (6.17)

Comparing with (6.1) we conclude that 1 − ω1ω2 = 0 is equivalent to having
P(zr1, wr2) = 0. Recall from Remark 6.4 that z0, w0 are not both real. We also have
that they cannot be both purely imaginary, since it is clear from (6.1) that P(z0r1, w0r2)
would not be zero in that case. Therefore, we can assume that at least one among z0/w0
and z0w0 is not real, and assume that the former is the case (in the other case, the
following argument works the same exchanging the roles of u1 and u2). Recalling the
definitions of z, w in terms of u1, u2 we see that the condition ω1ω2 = 1 implies that
u1 can have only one of the four possible values ±√

z0/w0,±√
z0/w0. The four values

are distinct and there is one of them in each of the four quadrants of C\{R ∪ iR}. As a
consequence, Claim 6.6 immediately follows. ��
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Fig. 9. The left figure shows the contour in γ̃R1 in blue and the contour γR2 in red (dashed). The deformation
of moving the blue contour inside the red contour, shown in the center figure, picks up a single contour integral
from the simple pole contribution on the r.h.s of the integrand in (6.18), as shown in the right figure

We resume the proof of Lemma 6.5. Via the change of variables ω1 �→ ω−1
1 ,

D̃γR1 ,γR2
(k, l) = i−k−l

(2π i)22(1 + a2)

∫

γ̃R1

dω1

ω1

∫

γR2

dω2
G(ω−1

1 )lG(ω2)
k

(ω1 − ω2)

√
ω−2
1 + 2c

√
ω2
2 + 2c

(6.18)

where γ̃R1 represents the contour from γR1 under the image ω �→ 1/ω, oriented anti-
clockwise. Claim 6.6 indicates that γ̃R1 intersects γR2 at four points, ωc,−ωc, ωc, and
−ωc. Since R1, R2 < 1, the contour γ̃R1 is outside of γR2 on the real axis and inside γR2

on the imaginary axis. Note also that the branch cut i(−∞,−1/
√
2c] ∪ i[1/√2c,∞)

of G(1/·) is outside the contour γ̃R1 . Fixing ω2 we integrate over ω1, by deforming the
contour γ̃R1 to a circle �1/R with small 1/R < R2 < 1. The deformation crosses a pole
ω1 = ω2 if and only if ω2 is in the portion of γR2 from −ωc to ωc or from ωc to −ωc.
Fig. 9 shows these deformations.

The integral becomes then

D̃γR1 ,γR1
(k, l) = i−k−l

4π i (1 + a2)

(∫ ωc

ωc

+
∫ −ωc

−ωc

)
dω

ω

G(ω−1)lG(ω)k√
ω−2 + 2c

√
ω2 + 2c

+
i−k−l

(2π i)22(1+a2)

∫

�1/R

dω1

ω1

∫

γR2

dω2
G(ω−1

1 )lG(ω2)
k

(ω1−ω2)

√
ω−2
1 +2c

√
ω2
2+2c

(6.19)

where the first line is the contribution from the pole. For the double integral in the above
equation, we can deform γR2 to �R because 1/R < 1 < R, so that the branch cut of
G(·) remains inside the contour. We can then apply the change of variables ω1 �→ 1/ω1
and so the double integral becomes

i−k−l

(2π i)22(1 + a2)

∫

�R

dω1

∫

�R

dω2
G(ω1)

lG(ω2)
k

(1 − ω1ω2)

√
ω2
1 + 2c

√
ω2
2 + 2c

, (6.20)

where the orientation of �R is as usual anti-clockwise. To show that the above integral
is equal to S̃(k, l), notice that G(ω) behaves like

√
c/(

√
2ω) as |ω| → ∞ and when

k ≥ 0 or l ≥ 0, we can push one or the other contour through infinity to get that the
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integral is zero. Also when l = k = −1, we can compute the residue at infinity which
gives 1/a and hence the double integral in the above equation is equal to S̃(k, l). ��
Remark 6.7. Note that, as a consequence of argωc ∈ (0, π/2), one has argG(ωc) ∈
(π/2, π). An easy way to see this is to observe that logG(ω) is analytic in the open
quadrant R>0 × iR>0, so that its imaginary part arg(G(ω)) is harmonic. On the other
hand, along the positive real axis argG(ω) = π , while along the positive imaginary axis,
argG(ω) ∈ [π/2, π ], as follows from Remark 6.2. Given that at infinity G(ω) ∼ −c/ω
whose argument is also in [π/2, π ] and since ωc is in the interior of the quadrant, we
deduce the claim. A similar argument gives argG(ω−1

c ) ∈ (π, 3π/2).

The following result reduces by symmetry the case of R1, R2 not both smaller than
1 to the case R1, R2 < 1:

Lemma 6.8. Let r ∈ B and assume x = (x1, x2) ∈ Bε1 , y = (y1, y2) ∈ Wε2 with
ε1, ε2 ∈ {0, 1}. If R1 = √

r1/r2 �= 1 and R2 = 1/
√
r1r2 �= 1. Then,

K
−1
r1,r2(x, y) = − i1+h(ε1,ε2)

(
aε2 D̃γ̃1,γ̃2((1 − 2δ2)k1, (1 − 2δ1)l1))

+ a1−ε2 D̃γ̃1,γ̃2((1 − 2δ2)k2, (1 − 2δ1)l2)

) (6.21)

where for i ∈ {0, 1}
γ̃i =

{
γRi if Ri < 1
γ1/Ri if Ri > 1 (6.22)

and

δi =
{
0 if Ri < 1
1 if Ri > 1. (6.23)

Proof. This is immediate from making the change of variables u1 �→ u−1
1 or u2 �→ u−1

2
depending on whether R1 > 1 or R2 > 1 (or both) in the formula for K−1

r1,r2 given in
Lemma 6.1. ��
Remark 6.9. Expanding the formulas for the slopes given in (6.31), (6.32) in terms of
their integral formulas given in Lemma 6.1, shows that R1 = 1 or R2 = 1 is equivalent
to |ρ1| = |ρ2|; see Lemma 6.12 below. For the remaining computations for the speed, it
is sufficient to consider R1 < 1 and R2 < 1 (recall that we already computed the speed
for |ρ1| = |ρ2| at the beginning of this section) and use symmetry.

6.2. Computation of the speed of growth. We first express the speed as a function of
ωc, δ1 and δ2, which are themselves functions of R1, R2 and therefore of r1, r2, see
Lemma 6.10. Then, we find a formula (Lemma 6.11) for the slope ρ also in terms of ωc,
δ1 and δ2. Finally, in Lemma 6.13 we put together the two results to obtain the speed as
function of the slope and formula (3.17).

Lemma 6.10. For r ∈ B, let v = v(r) be defined as

v := v(r) = πρ(r)(e1 ∈ η) − πρ(r)(e2 ∈ η) (6.24)
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(compare with Eqs. (3.10) and (3.11)). For R1, R2, δ1, and δ2 as given in Lemma 6.8
with R1, R2 �= 1, we have

v = (−1)δ1

π
(argG(ωc)−π)− (−1)δ1+δ2

π
argωc + 1(δ1,δ2)=(0,0) − 1(δ1,δ2)=(1,0). (6.25)

Here we have defined v to be a function of r whereas in (3.10) we have defined it as a
function of ρ. It turns out that this is equivalent because the correspondence r ∈ B ↔
ρ(r) ∈ L is a bijection [23], as already mentioned.

Proof. From (6.3) and recalling that vertices w0, b0, w1 are in the same fundamental
domain, we have

v = aiK−1
r1,r2((1, 0), (0, 1)) − aK−1

r1,r2((1, 0), (2, 1)). (6.26)

We apply the formula in Lemma 6.8 which gives

v = ai(−i)(D̃γ̃1,γ̃2 (2δ2 − 1, 2δ1 − 1) + aD̃γ̃1,γ̃2 (0, 0))

− a(aD̃γ̃1,γ̃2 (0, 0) + D̃γ̃1,γ̃2 (2δ2 − 1, 1 − 2δ1))

= a[D̃γ̃1,γ̃2 (2δ2 − 1, 2δ1 − 1) − D̃γ̃1,γ̃2 (2δ2 − 1, 1 − 2δ1)]

= a(S̃(2δ2 − 1, 2δ1 − 1) − S̃(2δ2 − 1, 1 − 2δ1)) +
c

4π i

(∫ ωc

ωc

+
∫ −ωc

−ωc

)
dω

ω

× i(1−2δ2)+(1−2δ1)G(ω−1)−1+2δ1G(ω)−1+2δ2 − i1−2δ2−(1−2δ1)G(ω−1)1−2δ1G(ω)−1+2δ2
√

ω2 + 2c
√

ω−2 + 2c
(6.27)

where we have used the formula from Lemma 6.5. The formulas for S̃ can be evaluated
as given in Lemma 6.5. Using

1

G(ω)
= − 1√

2c
(ω +

√
ω2 + 2c) (6.28)

together withG(ω−1)+G(ω−1)−1 = −√
2/c

√
ω−2 + 2c, we can simplify the integrand

above and we obtain

v = 1(δ1,δ2)=(0,0) − 1(δ1,δ2)=(1,0) +
c

4π i

(∫ ωc

ωc

+
∫ −ωc

−ωc

)
dω

ω

√
2

c

G(ω)−1+2δ2(−1)δ1+δ2

√
ω2 + 2c

= 1(δ1,δ2)=(0,0) − 1(δ1,δ2)=(1,0) +
c

2π i

∫ ωc

ωc

dω

ω

√
2

c

G(ω)−1+2δ2(−1)δ1+δ2

√
ω2 + 2c

(6.29)

where we used (6.6). We can now evaluate the above integral by noting that
d
dω

logG(ω) = −1/
√

ω2 + 2c and (6.28), which implies that

v = 1

2π i

[
(−1)δ1 logG(ω) + (−1)δ1+δ2+1 logω

]ω=ωc

ω=ωc
+ 1(δ1,δ2)=(0,0) − 1(δ1,δ2)=(1,0).

(6.30)

By using the fact that argωc ∈ (0, π/2) and argG(ωc) ∈ (π/2, π), see Remark 6.7, and
the convention arg(·) ∈ (−π/2, 3π/2] we evaluate the above equation which gives the
result. ��
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The formulas for the two components of the slope ρ1 and ρ2 are functions of the mag-
netic coordinates. Using the height function convention, translation invariance and (6.3),
we find that

ρ1(r1, r2) = a
(
K

−1
r1,r2((1, 2), (0, 1)) − K

−1
r1,r2((1, 0), (2, 1))

)
(6.31)

which can be seen by using Fig. 8. Similarly,

ρ2(r1, r2) = ai
(
K

−1
r1,r2((1, 2), (2, 1)) − K

−1
r1,r2((1, 0), (0, 1))

)
. (6.32)

We have the following formulas for the slopes ρ1, ρ2.

Lemma 6.11. For R1, R2, δ1, and δ2 as in Lemma 6.8 with R1, R2 �= 1, we have

ρ1 = (−1)δ1

π
(argG(ωc) − π)+

(−1)δ2

π

(
argG(ω−1

c ) − π
)
+1(δ1,δ2)=(0,1)−1(δ1,δ2)=(1,0)

(6.33)
and

ρ2 = − (−1)δ1

π
(argG(ωc) − π)

+
(−1)δ2

π

(
argG(ω−1

c ) − π
)
+ 1(δ1,δ2)=(1,1) − 1(δ1,δ2)=(0,0). (6.34)

Proof. For ρ1, we have from (6.31) and Lemma 6.8 that

ρ1 = a[aD̃γ̃1,γ̃2(0, 0) + D̃γ̃1,γ̃2(1 − 2δ2, 2δ1 − 1)]
− a[D̃γ̃1,γ̃2(2δ2 − 1, 1 − 2δ1) + aD̃γ̃1,γ̃2(0, 0)]

= a[D̃γ̃1,γ̃2(1 − 2δ2, 2δ1 − 1) − D̃γ̃1,γ̃2(2δ2 − 1, 1 − 2δ1)].
(6.35)

We apply the integral formula given in Lemma 6.5 which gives

ρ1 = 1(δ1,δ2)=(0,1) − 1(δ1,δ2)=(1,0) +
c

4π i

(∫ ωc

ωc

+
∫ −ωc

−ωc

)
dω

ω

× (−1)δ1+δ2
G(ω−1)2δ1−1G(ω)1−2δ2 − G(ω−1)1−2δ1G(ω)2δ2−1

√
ω2 + 2c

√
ω−2 + 2c

.

(6.36)

Expanding out the above integrand and using the formula for G(ω) gives

ρ1 = 1(δ1,δ2)=(0,1) − 1(δ1,δ2)=(1,0)

+
1

4π i

(∫ ωc

ωc

+
∫ −ωc

−ωc

)
dω

[
(−1)δ2

ω2
√

ω−2 + 2c
− (−1)δ1√

ω2 + 2c

]
.

(6.37)

The above integrals can be computed similarly to (6.29), with the result (6.33).
For ρ2, we have from (6.32) and Lemma 6.8 that

ρ2 = ai(−i)(aD̃γ̃1,γ̃2(0, 0) + D̃γ̃1,γ̃2(1 − 2δ2, 1 − 2δ1))

− ai(−i)(D̃γ̃1,γ̃2(2δ2 − 1, 2δ1 − 1) + aD̃γ̃1,γ̃2(0, 0))

= a(D̃γ̃1,γ̃2(1 − 2δ2, 1 − 2δ1) − D̃γ̃1,γ̃2(2δ2 − 1, 2δ1 − 1)).

(6.38)
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We apply the integral formula given in Lemma 6.5 which gives

ρ2 = 1(δ1,δ2)=(1,1) − 1(δ1,δ2)=(0,0) +
c

4π i

(∫ ωc

ωc

+
∫ −ωc

−ωc

)
dω

ω

× i2δ2+2δ1+2G(ω−1)1−2δ1G(ω)1−2δ2 − i2−2δ1−2δ2G(ω−1)−(1−2δ1)G(ω)−(1−2δ2)

√
ω2 + 2c

√
ω−2 + 2c

.

(6.39)

Expanding out the above integrand and using the formula for G(ω) gives

ρ2 = 1(δ1,δ2)=(1,1) − 1(δ1,δ2)=(0,0)

+
1

4π i

(∫ ωc

ωc

+
∫ −ωc

−ωc

)
dω

[
(−1)δ1√
ω2 + 2c

+
(−1)δ2

ω2
√

ω−2 + 2c

]
.

(6.40)

Computing the integrals, one gets (6.34). ��
It follows from Lemma 6.11 that

ρ1 + ρ2 = 2

π
(−1)δ2 argG(ω−1

c ) − 3(−1)δ2 (6.41)

and

ρ1 − ρ2 = 2

π
(−1)δ1 argG(ωc) − (−1)δ1 . (6.42)

From these equations and Remark 6.7 we see that

Lemma 6.12. Let r ∈ B with R1, R2 �= 1, ρ = ρ(r) and δ1, δ2 be defined as in (6.23).
Recall that ρ ∈ L, with L defined through (2.3). We have

δ1 = 0 if and only if 0 < ρ1 − ρ2 < 1,
δ1 = 1 if and only if −1 < ρ1 − ρ2 < 0,
δ2 = 0 if and only if −1 < ρ1 + ρ2 < 0
δ2 = 1 if and only if 0 < ρ1 + ρ2 < 1,

(6.43)

while |ρ1| = |ρ2| correspond to having either R1 = 1 or R2 = 1.

Putting together Lemmas 6.10 and 6.11 we obtain.

Lemma 6.13. For ρ ∈ L, |ρ1| �= |ρ2|, the speed of growth is given by

v(ρ) = ρ1 − ρ2

2
+

(−1)δ1+δ2

2
− (−1)δ1+δ2

π
argωc (6.44)

where argωc ∈ (0, π/2) satisfies

c (−1)δ1+δ2 sin(π(ρ1 + ρ2)) sin(π(ρ1 − ρ2))

= ((cos(π(ρ1 − ρ2)) + cos(2 argωc)) (cos(π(ρ1 + ρ2)) + cos(2 argωc)))
1
2 .

(6.45)
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Proof. Equation (6.44) follows immediately from Lemmas 6.11 and 6.10, so we only
need to determine a formula for argωc. Let X̄1/2 = |G(ωc)| and Ȳ 1/2 = |G(ω−1

c )|.
Then, we have the following

√
2

c
ωc = G(ωc) − G(ωc)

−1 = X̄1/2ei argG(ωc) − X̄−1/2e−i argG(ωc). (6.46)

This equation represents a triangle in the upper half plane since argωc ∈ (0, π/2),
argG(ωc) ∈ (π/2, π) and arg(−e−i argG(ωc)) = π − argG(ωc) ∈ (0, π/2). By using
this triangle, the sine rule gives that

X̄ = − sin(arg(G(ωc) + argωc)

sin(arg(G(ωc) − argωc)
. (6.47)

Similarly, √
2

c
ω−1
c = Ȳ 1/2ei argG(ω−1

c ) − Ȳ−1/2e−i argG(ω−1
c ). (6.48)

This equation represents a triangle in the lower half plane since argω−1
c ∈ (−π/2, 0),

argG(ω−1
c ) ∈ (π, 3π/2) and arg(−e−i argG(ω−1

c )) = π − argG(ω−1
c ) ∈ (−π/2, 0). By

using this triangle, the sine rule gives that

Ȳ = − sin(arg(G(ω−1
c ) − argωc)

sin(arg(G(ω−1
c ) + argωc)

. (6.49)

We also have using (6.46) and (6.48)

2

c
=
√
2

c
ωc

√
2

c
ω−1
c

=
(
X̄

1
2 ei argG(ωc) − X̄− 1

2 e−i argG(ωc)

)(
Ȳ

1
2 ei argG(ω−1

c ) − Ȳ− 1
2 e−i argG(ω−1

c )

)
.

(6.50)

Taking the real part of the above equation yields

(X̄ Ȳ + 1) cos(argG(ωc) + argG(ω−1
c )) − (X̄ + Ȳ ) cos(argG(ωc) − argG(ω−1

c ))

= 2

c

√
X̄ Ȳ .

(6.51)

Using the equations for (6.47) and (6.49) we find that

c

2
sin(2 argG(ωc)) sin(2 argG(ω−1

c )) =
(
sin(argG(ωc) + argωc)

× sin(argG(ω−1
c ) + argωc) sin(argG(ωc) − argωc) sin(argG(ω−1

c ) − argωc)

)1/2
.

(6.52)

The equations (6.41), (6.42) for argG(ωc) and argG(ω−1
c ), together with angle addition

formulas followed by factorizing and simplifying, give the result (6.45). ��
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Finally, we show how to choose the correct solution of (6.45) for arg(ωc):

Proof of Theorem 3.10. As we remarked at the beginning of Sect. 6, we can assume that
|ρ+| �= |ρ−|. Also, given symmetries (3.14), (3.15), we can assume that 0 < ρ1−ρ2 < 1
and −1 < ρ1 + ρ2 < 0 (i.e. δ1 = δ2 = 0) and all other cases immediately follow.

Solving (6.45) for arg(ωc), we find that

arg(ωc) = 1
2 arccos(y±), (6.53)

y± = − cos(ρ−)−cos(ρ+)±
√

(cos(ρ−)−cos(ρ+))2+4c2 sin2(ρ−) sin2(ρ+)2

2 (6.54)

and the r.h.s. of (6.53) must be in [0, π/2] thanks to Lemma 6.5. Imposing that the speed
vanishes at ρ = (−1/2,−1/2), as a consequence of (3.15), imposes that the correct
solution is y− and (3.17) is proven. ��

6.3. Asymptotic expansion of the speed of growth for small slope. The proof of Theo-
rem 3.11 is a lengthy but straightforward application of calculus; we do not give details.
The explicit form of f1(r) and f2(r) turn out to be

f1(r) = 1

4

(
1 + r2 −

√
1 + 2(−1 + 8c2)r2 + r4

)
(6.55)

f2(r) = 1

48

(
−1 − r4 +

(1 + r2)(1 + (−2 + 32c2)r2 + r4)√
1 + 2(−1 + 8c2)r2 + r4

)
. (6.56)

Note that f1(·) > 0 whenever a < 1, i.e. c < 1/2 (it vanishes identically if c → 1/2).
To prove the last claim of Theorem 3.11, we remark that the error term O(ρ5

+) in (3.19)
gives a o(1) contribution to the determinant and the trace of Hρ as ρ → 0. Starting from
(3.19), a Taylor expansion shows (with the same notations r = ρ−/ρ+ as in Theorem
3.11) that

Tr[Hρ] = 1 + r2

2πρ+

f ′
1(r)

2 − 2 f1(r) f ′′
1 (r)

2
√
2 f1(r)3/2

+ o(1) (6.57)

as ρ → 0. With similar computations, one finds

det(Hρ) = ( f1(r)2 + 6 f2(r))(2 f1(r) f ′′
1 (r) − f ′

1(r)
2)

16π2 f1(r)2
+ o(1). (6.58)

It is not hard to check that ( f1(r)2 + 6 f2(r)) > 0, while 2 f1(r) f ′′
1 (r) − f ′

1(r)
2 is

negative whenever a < 1. As a consequence, for a < 1 the trace of Hρ diverges and its
determinant tends to a finite negative limit as ρ → 0, as claimed.

7. AKPZ Signature of the Growth Model

In this section we prove Theorems 3.12 and 3.13.
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Proof of Theorem 3.12. Note that, as a consequence of arg z ∈ (0, π/2) for z ∈ Q+,
one has argG(z) ∈ (π/2, π). An easy way to see this is to remark that logG(z) is
analytic in Q+, so that its imaginary part arg(G(z)) is harmonic. On the other hand,
along the positive real axis argG(z) = π , while along the positive imaginary axis,
recalling definition (6.5), argG(z) is easily seen to be in [π/2, π ]. Given that at infinity
G(z) ∼ −c/z whose argument is also in [π/2, π ] and since Q+ is open, we deduce
the claim. A similar argument gives argG(1/z) ∈ (π, 3π/2). Altogether, we see that
(X (z),Y (z)) ∈ (π/2, π) × (π, 3π/2).

Next, we check that the map from z to (X,Y ) is a local diffeomorphism. Writing as
usual z = |z|eiθ , we have (using the usual identities ∂θ z = i z and ∂|z|z = z/|z|, as well
as the definition X = Im logG(z))

∂θ X = Re(V (z)), ∂θY = −Re(V (1/z)), (7.1)

∂|z|X = 1

|z| Im(V (z)), ∂|z|Y = − 1

|z| Im(V (1/z)) (7.2)

where V (z) := zG ′(z)
G(z) . The determinant of the Jacobian vanishes only if

Re(V (z))Im(V (1/z)) = Re(V (1/z))Im(V (z)) (7.3)

and we show in a moment that this condition is never satisfied. We will see later that
Re(V (z)), Re(V (1/z)) are non-zero in the whole Q+, so (7.3) is equivalent to

Im(V (z))

Re(V (z))
= Im(V (1/z))

Re(V (1/z))
, (7.4)

i.e. V (z) has the same argument as V (1/z), i.e.

V (z)

V (1/z)
= α (7.5)

for some α > 0. Now we use the explicit form of G(z), which implies that

V (z) = − z√
z2 + 2c

. (7.6)

The l.h.s. of (7.5) is real on the positive real axis. One can check from Remark 6.2
that its argument is in [0, π/2] when the imaginary axis is approached from the first
quadrant. To be precise, if z tends to iy, y > 0, the argument tends to π/2 if y > 1/

√
2c

or y <
√
2c and to 0 if

√
2c < y < 1/

√
2c; if y = √

2c or 1/
√
2c the limit need not

exist but the limit points are in [0, π/2]. Also, for |z| → ∞ or |z| → 0 (with z ∈ Q+)
the argument of the l.h.s. of (7.5) is in (0, π/2) because the ratio is z

√
2c + o(z) and

z/
√
2c + o(z) respectively. Since arg(V (z)/V (1/z)) is a harmonic function in the open

set Q+ with boundary values in [0, π/2] and not identically 0, it vanishes nowhere in
Q+, so (7.5) cannot hold for any α > 0. By the way, the same harmonicity argument
gives that the real parts of V (z) or V (1/z) vanish nowhere in Q+, as mentioned above.

Once we know that the map z �→ (X,Y ) is a local diffeomorphism, we can conclude
that it is a global diffeomorphism, via a theorem byHadamard [15,17], if we prove that it
is proper, i.e. for every sequence zn ∈ Q+ such that zn → z ∈ ∂Q+, (X (zn),Y (zn)) tends
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to a point on theboundaryof (π/2, π)×(π, 3π/2).2 Here,whenwewrite zn → z ∈ ∂Q+,
we mean that either z is purely real, or it is purely imaginary, or |zn| tends to infinity.
When zn tends to a real limit, it is clear that argG(z) tends to π while when |zn| → ∞,
arg(G(1/z)) tends to π . When instead zn tends to iy, then Remark 6.2 shows that
argG(zn) tends to π/2 if y >

√
2c while arg(G(1/zn)) tends to 3π/2 if y < 1/

√
2c.

Since
√
2c ≤ 1/

√
2c, we proved our claim that in all cases (X (zn),Y (zn)) approaches

the boundary of (π/2, π) × (π, 3π/2).
The proof of (3.22) follows from Eqs. (6.41), (6.42) and (6.44), because for ρ+ >

0, ρ− > 0 one has δ1 = 0, δ2 = 1, cf. (6.43). ��
Proof of Theorem 3.13. For a = 1, an explicit computation starting from (3.17) shows
that

det(Hρ)
∣∣
a=1 = − 4π2 cos(ρ+/2)2 cos(ρ−/2)2

(3 + cos(ρ+) + cos(ρ−) − cos(ρ+) cos(ρ−))2
(7.7)

that is strictly negative in L. Similarly, for ρ+ > 0 a lengthy but straightforward analysis
of (3.17) gives

det(Hρ)
∣∣
ρ−=0 = − π2c4 sin(ρ+)2

1 − 2c2 − 2c2 cos(ρ+)
< 0. (7.8)

Therefore, from now on we will assume by symmetry 0 < ρ+, ρ− < π . Since the
relation (3.21) between (ρ1, ρ2) and (X,Y ) is affine, it is sufficient to prove that the
Hessian of arg z(X,Y ) has a strictly negative determinant. We know from Theorem 3.11
that det(Hρ) < 0 for ρ small, so we need only to prove that the sign of the determinant
vanishes nowhere.

We have from (7.1)

∂ arg(z)

∂X
= 1

Re(V (z))
,

∂ arg(z)

∂Y
= − 1

Re(V (1/z))
. (7.9)

Differentiating once more,

∂2 arg(z)

∂X2 = − 1

[Re(V (z))]2 ∂XRe(V (z)) (7.10)

∂2 arg(z)

∂X∂Y
= − 1

[Re(V (z))]2 ∂YRe(V (z)) = 1

[Re(V (1/z))]2 ∂XRe(V (1/z)) (7.11)

∂2 arg(z)

∂Y 2 = 1

[Re(V (1/z))]2 ∂YRe(V (1/z)). (7.12)

Then, the determinant of the Hessian of θ as function of (X,Y ) is

−∂XRe(V (z))∂YRe(V (1/z)) − ∂YRe(V (z))∂XRe(V (1/z))

[Re(V (1/z))]2[Re(V (z))]2 (7.13)

2 Hadamard’s theorem is formulated as a necessary and sufficient condition for a smooth map from R
n to

R
n to be a diffeomorphism. In our case the map is from Q+ to (π/2, π) × (π, 3π/2) but the proof works

essentially the same, see for instance [26, Th. 4.4] for an analogous case where the map is between two open
connected subsets of R4.



A (2 + 1)-Dimensional Anisotropic KPZ Growth Model with a Smooth Phase 515

and it is enough to prove that the numerator vanishes nowhere. A few lines of com-
putations (writing ∂X = 1/(∂θ X)∂θ + 1/(∂|z|X)∂|z| and similarly for ∂Y ) show that the
numerator equals

|z|
(

1

Im(V (z))Re(V (1/z))
− 1

Re(V (z))Im(V (1/z))

)

× (∂θRe(V (z))∂|z|Re(V (1/z)) − ∂θRe(V (1/z))∂|z|Re(V (z))
)
. (7.14)

Again, a straightforward computation gives that the second line equals

1

|z| (Im(U (z))Re(U (1/z)) − Re(U (z))Im(U (1/z))) (7.15)

where

U (z) = z
G ′(z) + zG ′′(z)

G(z)
− V (z)2 = − 2cz

(z2 + 2c)3/2
. (7.16)

The first line in (7.14) never vanishes, because we already proved that (7.3) is never
satisfied. Similarly, (7.15) vanishes only if

U (z)

U (1/z)
= α (7.17)

for some α > 0. The l.h.s. of (7.17) is positive on the positive real axis. This time, one
sees that arg(U (z)/U (1/z)) ∈ (−π/2, 0) for |z| → ∞ and in arg(U (z)/U (1/z)) ∈
[−π/2, 0] (and not identically zero) when the positive imaginary axis is approached.
Since arg(U (z)/U (1/z)) is harmonic on the open setQ+, it vanishes nowhere and (7.17)
is nowhere satisfied. ��
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