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Abstract: We provide a full characterisation of quantum differentiability (in the sense
of Connes) on quantum tori. We also prove a quantum integration formula which differs
substantially from the commutative case.

1. Introduction

Quantum tori (also known as noncommutative tori and irrational rotation algebras) are
landmark examples in noncommutative geometry. These algebras have featured in many
directions in physics, such as the study of the quantum Hall effect [2,3,57], Matrix
theory [11], string theory [51] and deformation quantisation [48]. Quantum tori have
been heavily studied from the perspective of operator algebras [20,42,47] and were later
taken as a fundamental example in noncommutative geometry (see [6], [23, Chapter 12]
and [13]). In the context of foliation theory, quantum tori are studied as the C∗-algebra
associated to a Kronecker foliation [9, Chapter 2, Section 9.β].

Connes introduced the quantised calculus in [7] as an analogue of the algebra of
differential forms in a noncommutative setting, and later explored the linkwith the action
functional of Yang-Mills theory [8]. Connes successfully applied quantised calculus in
computing the Hausdorff measure of Julia sets and limit sets of Quasi-Fuchsian groups
in the plane [9, Chapter 4, Section 3.γ ] (for a more recent exposition see [12,14]).

The core ingredients of the quantised calculus, as outlined in [7], are a separable
Hilbert space H , a unitary self-adjoint operator F on H and a C∗-algebraA represented
on H such that for all a ∈ A the commutator [F, a] is a compact operator on H . Then
the quantised differential of a ∈ A is defined to be the operator d̄a = i[F, a]. The
compact operators on H are described by Connes as being analogous to infinitesimals,
and the rate of decay of the sequence of singular values:

μ(n, T ) := inf{‖T − R‖ : rank(R) ≤ n}
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corresponds in some way to the “size” of the infinitesimal T (see [10]). In this setting
one can quantify the smoothness of an element a ∈ A in terms of the rate of decay of
{μ(n, d̄a)}∞n=0. Of particular interest are those elements a ∈ A which satisfy:

μ(n, d̄a) = O((n + 1)−1/p), n → ∞, or,
∞∑

n=0

μ(n, d̄a)p < ∞, or,

sup
n≥1

1

log(n + 2)

n∑

k=0

μ(k, d̄a)p < ∞ ,

for some p ∈ (0,∞). The first condition stated above is that d̄a is in the weak-Schatten
ideal Lp,∞, the second condition is for d̄a to be in the Schatten ideal Lp, and the final
condition is that |d̄a|p is in theMacaev-Dixmier idealM1,∞ [9, Chapter 4, Section 2.β]
(see also [36, Example 2.6.10]).

The link between quantised calculus and geometry is discussed by Connes in [8]. A
model example for quantised calculus is to take a compact Riemannian spin manifold
M with Dirac operator D, and define H to be the Hilbert space of square integrable
sections of the spinor bundle. The algebra A = C(M) of continuous functions on M
acts by pointwise multiplication on H , and one defines

F := χ[0,∞)(D) − χ(−∞,0)(D).

One then has d̄ f = i[F, M f ], whereM f is the operator on H of pointwisemultiplication
by f . In quantised calculus the immediate question is to determine the relationship
between the degree of differentiability of f ∈ C(M) and the rate of decay of the
singular values of d̄ f . In general, we have the following:

f ∈ C∞(M) ⇒ |d̄ f |d ∈ M1,∞,

where d is the dimension of the manifold M [8, Theorem 3.1].
For certain special cases it is possible to obtain a far more precise understanding

of the relationship between the smoothness of f and the singular values of d̄ f . The
simplest example is to take the unit circle T = {z ∈ C : |z| = 1}, with A = C(T),
H = L2(T) and the standard choice of F in this setting is the Hilbert transform. Then
by a result of Peller [41, Theorem 7.3], we have that for any p ∈ (0,∞): d̄ f ∈ Lp if

and only if f is in the Besov space B1/p
p,p (T). Peller’s work has been extended to obtain

even more precise relationships between f and the singular values of d̄ f , for example
Gheorghe [21] found necessary and sufficient conditions on f to ensure that d̄ f is in
an arbitrary Riesz-Fisher space. For more details from a quantised calculus perspective,
see [9, Chapter 4, Section 3.α].

In higher dimensions, the relationship between f and d̄ f has also been studied
[15,28,50]. To illustrate the situation, consider the d-dimensional torus Td , d ≥ 2. The
appropriate Dirac operator in this setting is:

D =
d∑

j=1

−iγ j ⊗ ∂ j ,

where ∂ j denotes differentiationwith respect to the j th coordinate onTd , and {γ1, . . . , γd}
denotes the d-dimensional Euclidean gammamatrices,which are self-adjoint 2� d

2 �×2� d
2 �
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complex matrices satisfying γ jγk + γkγ j = 2δ j,k1. The operator D may be considered

as an unbounded self-adjoint operator on the Hilbert space L2(T
d ,C2� d2 �

). The corre-
sponding operator F is a linear combination of Riesz transforms. The commutators of
Riesz transforms andmultiplication operators are studied in classical harmonic analysis:
Janson and Wolff [28] proved that for d̄ f to be in Lp when p > d it is necessary and

sufficient that f is in the Besov space B
d
p
p,p(T

d). On the other hand, Janson and Wolff
also proved that if p ≤ d then d̄ f ∈ Lp if and only if f is a constant.

A farmore general characterisation of the spectral properties of commutators of Riesz
transforms and multiplication operators was obtained by R. Rochberg and S. Semmes
[50]. To date, investigations on the relationship between f and d̄ f have been limited to
the commutative case. To the best of our knowledge, the results treated in this paper are
the first concerning quantum differentiability in the strictly noncommutative setting.

A related direction of research concerning quantised differentials is trace formulae.
As early as [8] it was known that for functions on compact manifolds, it is possible to
express the Dixmier trace trω(|d̄ f |p) as an integral of a derivative of f (See Sect. 2.1
for the relevant definitions, and [36, Chapter 6] for details on Dixmier traces).

If f ∈ C∞(Td), let ∇ f = (∂1 f, ∂2 f, . . . , ∂d f ) be the gradient vector of f , and let

‖∇ f ‖2 =
(∑d

j=1 |∂ j f |2
) 1

2
. Then as a special case of [8, Theorem 3.3] we have:

trω(|d̄ f |d) = kd

∫

Td
‖∇ f (t)‖d2dm(t), (1.1)

where kd is a constant, and m denotes the flat measure on T
d (i.e., the Haar measure).

From the perspective of noncommutative geometry this formula “shows how to pass from
quantized 1-forms to ordinary forms, not by a classical limit, but by a direct application
of the Dixmier trace” [8, Page 676]. It is also possible to prove a similar formula for
functions on the non-compact manifold R

d , and indeed to extend the class of traces on
the left hand side of (1.1) to the much larger class of all continuous normalised traces
on L1,∞ [34].

Recently there has been work on generalising the methods of harmonic analysis on
tori to quantum tori.

On a noncommutative torus Td
θ (defined in terms of an arbitrary antisymmetric real

d × d matrix θ ), it is possible to define analogues of many of the tools of harmonic
analysis, such as differential operators and function spaces [59] (see Sect. 2.2). In this
setting, there are analogues of all of the components of (1.1), although the integral on
the right must be replaced with the canonical trace associated to Td

θ . However, the most
straightforward generalisation of (1.1) to Td

θ is actually false. In this paper we state and
prove a correct version of (1.1) for noncommutative tori (Theorem 1.2). The formula is
stated for an appropriate class of elements x ∈ L2(T

d
θ ) as:

ϕ(|d̄x |d) = cd

∫

Sd−1
τ

(( d∑

j=1

|∂ j x − s j

d∑

k=1

sk∂k x |2
) d

2
)
ds. (1.2)

Here, τ is the canonical trace associated to the noncommutative torus, and cd is a certain
constant depending on d (different to the constant kd in (1.1)). The integral is over
s = (s1, . . . , sd) in the (d − 1)-dimensional sphere Sd−1, with respect to its rotation-
invariant measure ds. The partial derivatives {∂1x, . . . , ∂d x} are defined in Sect. 2.2.2.
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In the commutative case, the above formula reduces to (1.1) (for a full comparison, see
the discussion in Sect. 1.2). There are a number of nontrivial corollaries to (1.2), which
we describe in the section below.

1.1. Main results. We have three main results. We take θ to be an arbitrary d × d
antisymmetric real matrix where d ≥ 2, in particular θ = 0 is not excluded. For further
explanation of the notation, see Sect. 2 below.

Our first main result provides sufficient conditions for d̄x ∈ Ld,∞:

Theorem 1.1. If x ∈ Ḣ1
d (Td

θ ), then d̄x has bounded extension, and the extension is in
Ld,∞.

The space Ḣ1
d (Td

θ ) is a noncommutative homogeneous Sobolev space defined with re-
spect to the partial derivatives ∂ j , j = 1, . . . , d (these notions will be defined and
discussed in Sect. 2.2.2). We note that the above condition is similar to that in [34,
Theorem 11].

With Theorem 1.1, we can prove our second main result, the following trace formula:

Theorem 1.2. Let x ∈ Ḣ1
d (Td

θ ) be self-adjoint. Then there is a constant cd depending
only on the dimension d such that for any continuous normalised trace ϕ on L1,∞ we
have:

ϕ(|d̄x |d) = cd

∫

Sd−1
τ

(( d∑

j=1

|∂ j x − s j

d∑

k=1

sk∂k x |2
) d

2
)
ds.

Here, the integral over Sd−1 is taken with respect to the rotation-invariant measure ds
on Sd−1, and s = (s1, . . . , sd).

As an aside we note that it is possible to give a short argument that the integrand above
is continuous as a function of s ∈ S

d−1.
Theorem 1.2, in addition to being of interest in its own right, has a couple of corol-

laries, which to the best of our knowledge are novel.

Corollary 1.3. Let x ∈ Ḣ1
d (Td

θ ) be self-adjoint. Then there are constants cd and Cd
depending only on d such that for any continuous normalised trace ϕ on L1,∞ we have

cd‖x‖dḢ1
d

≤ ϕ(|d̄x |d) ≤ Cd‖x‖dḢ1
d
.

As a converse to Theorem 1.1, we prove our third main result: the necessity of the
condition x ∈ Ḣ1

d (Td
θ ) for d̄x ∈ Ld,∞.

Theorem 1.4. Let x ∈ L2(T
d
θ ). If d̄x has bounded extension in Ld,∞ then x ∈ Ḣ1

d (Td
θ ).

The a priori assumption that x ∈ L2(T
d
θ ) can be justified as follows: L2(T

d
θ ) is the

smallest class of x where we can define d̄x in a natural way. Furthermore, one can
motivate this assumption by noting that an L2-condition is necessary and sufficient for
Connes’ trace theorem to hold in the commutative setting, see [35, Theorem 2.5] for
details.

Sinceϕ vanishes on the trace classL1, Corollary 1.3 immediately yields the following
noncommutative version of the p ≤ d component of [28, Theorem 1]:
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Corollary 1.5. If x ∈ L2(T
d
θ ) and d̄x ∈ Lp, for p ≤ d, then x is a constant.

Indeed, the p ≤ d component of [28, Theorem 1] is an immediate and simple conse-
quence of Corollary 1.5 when θ = 0.

A further corollary of Theorem 1.2 is that ϕ(|d̄x |d) does not depend on the choice of
continuous normalised trace ϕ. This implies certain asymptotic properties of the singular
numbers of d̄x , beyond being merely in Ld,∞ [29,52].

1.2. Comparison to the commutative case. Take x ∈ Ḣ1
d (Td

θ ). Consider the right hand
side of the trace formula in Theorem 1.2,

cd

∫

Sd−1
τ

(( d∑

j=1

|∂ j x − s j

d∑

k=1

sk∂k x |2
) d

2
)
ds.

Define ∇x = (∂1x, ∂2x, . . . , ∂d x), and

‖∇x‖2 :=
( d∑

j=1

|∂ j x |2
) 1

2
.

In the commutative case (when θ = 0), x is a scalar valued function and ‖∇x‖d2 coincides
with the integrand in (1.1). Assuming commutativity, we can define the unit vector

u = ∇x
‖∇x‖2 and take out a factor of ‖∇x‖

d
2
2 to get:

τ

( ∫

Sd−1

( d∑

j=1

|∂ j x − s j

d∑

k=1

sk∂k x |2
) d

2
ds

)

= τ

(
‖∇x‖

d
2
2

∫

Sd−1

( d∑

j=1

|u j − s j

d∑

k=1

skuk |2
) d

2
ds

)

(where u = (u1, u2, . . . , ud), and the interchange of τ and the integral is easily justified
by Fubini’s theorem in the commutative case). However, since themeasure ds on Sd−1 is
invariant under rotations, we can choose coordinates {e1, . . . , ed} forRd so that u = e1,
and then:

bd :=
∫

Sd−1

( d∑

j=1

|u j − s j

d∑

k=1

skuk |2
) d

2
ds

is independent of u, and is a constant scalar. Thus in the commutative case we have:

ϕ(|d̄x |d) = cdbdτ(‖∇x‖d2).

This recovers (1.1) upon taking kd = cdbd . In the noncommutative case, we cannot
take out a factor of ‖∇x‖22, and this explains why the form of the right hand side of
Theorem 1.2 is more complicated than kdτ(‖∇x‖d2).
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2. Notation

2.1. Operators, Ideals and traces. The following material concerning operator ideals
and traces is standard. Formore details we refer the reader to [36,53]. Let H be a complex
separable Hilbert space, and let B(H) denote the set of bounded operators on H , and let
K(H) denote the ideal of compact operators on H . Given T ∈ K(H), the sequence of
singular values μ(T ) = {μ(k, T )}∞k=0 is defined as:

μ(k, T ) = inf{‖T − R‖ : rank(R) ≤ k}.
Equivalently, μ(T ) is the sequence of eigenvalues of |T | arranged in non-increasing
order with multiplicities.

Let p ∈ (0,∞). The Schatten class Lp is the set of operators T in K(H) such that
μ(T ) is p-summable, i.e. in the sequence space �p. If p ≥ 1 then theLp norm is defined
as:

‖T ‖p := ‖μ(T )‖�p =
( ∞∑

k=0

μ(k, T )p

)1/p

.

With this norm Lp is a Banach space, and an ideal of B(H).
Analogously, the weak Schatten class Lp,∞ is the set of operators T such that μ(T )

is in the weak L p-space �p,∞, with quasi-norm:

‖T ‖p,∞ = sup
k≥0

(k + 1)1/pμ(k, T ) < ∞.

As with the Lp spaces, Lp,∞ is an ideal of B(H). We also have the following form of
Hölder’s inequality,

‖T S‖r,∞ ≤ cp,q‖T ‖p,∞‖S‖q,∞ (2.1)

where 1
r = 1

p + 1
q , for some constant cp,q .

Of particular interest is L1,∞, and we are concerned with traces on this ideal. For
more details, see [36, Section 5.7] and [52]. A functional ϕ : L1,∞ → C is called a trace
if it is unitarily invariant. That is, for all unitary operators U and T ∈ L1,∞ we have
that ϕ(U∗TU ) = ϕ(T ). It can then be shown that for all bounded operators B we have
ϕ(BT ) = ϕ(T B).

An important fact about traces is that any trace ϕ on L1,∞ vanishes on L1 [36,
Theorem 5.7.8]. A trace ϕ is called continuous if it is continuous with respect to theL1,∞
quasi-norm. It is known that not all traces on L1,∞ are continuous [37, Remark 3.1(3)].
Within the class of continuous traces on L1,∞ there are the well-known Dixmier traces
[36, Chapter 6].

Finally, we say that a trace ϕ on L1,∞ is normalised if ϕ takes the value 1 on any
compact positive operator with eigenvalue sequence { 1

n+1 }∞n=0 (any two such operators
are unitarily equivalent, and so the particular choice of operator is inessential).

2.2. Noncommutative tori. Harmonic analysis on noncommutative tori is an established
subject. The exposition here closely follows [59], and for sake of brevity we refer the
reader to [59] for a detailed exposition of the topic and provide here only the definitions
relevant to this text.



Quantum Differentiability on Quantum Tori 1237

2.2.1. Basic definitions. We fix an integer d > 1 and θ = {θ j,k}dj,k=1, a d × d anti-
symmetric real matrix. The C∗-algebra of continuous functions on the noncommutative
torus, denoted C(Td

θ ), is the universal C∗-algebra on d unitary generators U1, . . . ,Ud
which satisfy:

UjUk = e2π iθ j,kUkU j , 1 ≤ j, k ≤ d.

Given n = (n1, . . . , nd) ∈ Z
d , we adopt the shorthand notation:

Un := Un1
1 Un2

2 · · ·Und
d .

There exists an action α of the torus group T
d on C(Td

θ ), given on a generator Uj by:

αz(Uj ) = z jU j , z = (z1, z2, . . . , zd) ∈ T
d . (2.2)

The action α can be extended to a norm-continuous group of automorphisms of C(Td
θ ).

There is a distinguished trace state τ on C(Td
θ ), which may be constructed in several

ways, one of which is by averaging over α as follows: It can be shown that the fixed
point subalgebra of C(Td

θ ) under the action of α is exactly the trivial subalgebra C1.
Hence, if x ∈ C(Td

θ ), then averaging over Td with respect to the Haar measure m on
T
d : ∫

Td
αz(x) dm(z)

yields a multiple of the identity element. Defining

τ(x)1 =
∫

Td
αz(x) dm(z)

yields the canonical trace state τ on C(Td
θ ). Given τ we can now define the GNS

Hilbert space L2(C(Td
θ ), τ ), which we denote L2(T

d
θ ), and we identify C(Td

θ ) as an
algebra of bounded operators on L2(T

d
θ ), where x ∈ C(Td

θ ) acts on ξ ∈ L2(T
d
θ ) by left

multiplication. Taking the weak operator topology closure C(Td
θ )′′ in B(L2(T

d
θ )) yields

a von Neumann algebra, which we denote L∞(Td
θ ).

The L p-spaces for p ∈ [1,∞) on T
d
θ are then defined as the operator L p-spaces

[36,43] on (L∞(Td
θ ), τ ),

L p(T
d
θ ) := Lp(L∞(Td

θ ), τ ).

For x ∈ L1(T
d
θ ) and n ∈ Z

d , we define:

x̂(n) = τ(x(Un)∗).

By the definition of τ , we see that τ(Un) = δn,0, and then standard Hilbert space
arguments show that any x ∈ L2(T

d
θ ) can be written as an L2-convergent series:

x =
∑

n∈Zd

x̂(n)Un,

with
‖x‖22 =

∑

n∈Zd

|̂x(n)|2. (2.3)
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The space C∞(Td
θ ) is defined to be the subset of x ∈ C(Td

θ ) such that the sequence
of Fourier coefficients {̂x(n)}n∈Zd has rapid decay (i.e., the sequence {|̂x(n)|}n∈Zd is
eventually dominated by the reciprocal of any polynomial). We may consider C∞(Td

θ )

as the space of smooth functions on T
d
θ , since in the commutative setting this space

corresponds with the space of C∞ functions. There is also a canonical Fréchet topology
on C∞(Td

θ ), and the spaceD′(Td
θ ), called the space of distributions on Td

θ , is defined to
be the topological dual of C∞(Td

θ ).

2.2.2. Calculus for quantum tori. Many aspects of harmonic analysis on Td carry over
to Td

θ . For example we may define the partial differentiation operators ∂ j , j = 1, . . . , d
by:

∂ j (U
n) = 2π in jU

n, n = (n1, . . . , nd) ∈ Z
d .

Every partial derivation ∂ j can be viewed a densely defined closed (unbounded) operator
on L2(T

d
θ ), whose adjoint is equal to −∂ j . Let � = ∂21 + · · ·+ ∂2d be the Laplacian. Then

� = −(∂∗
1 ∂1 + · · · + ∂∗

d ∂d), so −� is a positive operator on L2(T
d
θ ) with spectrum

equal to {4π2|n|2 : n ∈ Z
d}. As in the Euclidean case, we let Dj = −i∂ j , which is

then self-adjoint. Given n = (n1, . . . , nd) ∈ N
d
0 (N0 denoting the set of nonnegative

integers), the associated partial derivation Dn is defined to be Dn1
1 · · · Dnd

d . The order of
Dn is |n|1 = n1 + · · · + nd . By duality, the derivations transfer to D′(Td

θ ) as well.

For α ∈ R, denote by Jα the α-order Bessel potential (1 − �)
α
2 . The potential (or

fractional) Sobolev space of order α ∈ R is defined to be

Hα
p (Td

θ ) = {
x ∈ D′(Td

θ ) : Jαx ∈ L p(T
d
θ )

}
, (2.4)

equipped with the norm

‖x‖Hα
p

= ‖Jαx‖p.

Since J 0 is the identity, H0
p(T

d
θ ) = L p(T

d
θ ). As in the classical case, if α is a non-

negative integer then Hα
p (Td

θ ) admits an equivalent norm in terms of the sum of the
p-norms of the partial derivatives of order up to α. To be explicit, the Sobolev space of
order k ∈ N on T

d
θ may be described as:

Hk
p(T

d
θ ) = {

x ∈ D′(Td
θ ) : Dnx ∈ L p(T

d
θ ) for each n ∈ N

d
0 with |n|1 ≤ k

}
,

equipped with the norm

‖x‖Hk
p

=
( ∑

0≤|n|1≤k

‖Dnx‖p
p

) 1
p
.

The equivalence of the above norm and the Bessel potential norm ‖J kx‖p is a well-
established fact in the theory of harmonic analysis on T

d
θ , being proved in the p = 2

case by [54, Theorem 2.1] and a later proof for general p can be found as [59, Theorem
2.9].
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In this paper, we will mainly use the “homogeneous” Sobolev space Ḣ1
p(T

d
θ ) and the

potential Sobolev spaces Hα
2 (Td

θ ). The norm of Ḣ1
p(T

d
θ ) with p ≥ 2, may be described

in the following equivalent forms:

‖x‖Ḣ1
p

=
( d∑

j=1

‖∂ j x‖p
p

) 1
p ≈

d∑

j=1

‖∂ j x‖p ≈ ‖(
d∑

j=1

|∂ j x |2) 1
2 ‖p, (2.5)

where the relevant constants depend only on d and p. Then Ḣ1
p(T

d
θ ) may be defined

as the subspace of D′(Td
θ ) for which the above norm is finite. Note that the difference

between Ḣ1
p(T

d
θ ) and H1

p(T
d
θ ) is that for Ḣ1

p(T
d
θ ) we do not assume that the L p-norm is

finite. For any x ∈ H1
p(T

d
θ ), we have the following Poincaré type inequality

‖x − x̂(0)‖p ≤ Cp,d‖x‖Ḣ1
p
. (2.6)

See [59, Theorem 2.12]. For every α ∈ R, the space Hα
2 (Td

θ ) is a Hilbert space with the
inner product

〈x, y〉 = τ(Jα y∗ Jαx).

It is proved in [54, Theorem 3.3] and [26, Proposition 9.2] for arbitrary real α, β ∈ R

with α > β, the embedding

Hα
2 (Td

θ ) ↪→ Hβ
2 (Td

θ ) is compact. (2.7)

The Dirac operator D (more precisely, the spin-Dirac operator) is defined in terms

of γ matrices in direct analogy to commutative tori. Define N = 2� d
2 � and select N × N

complex self-adjoint matrices {γ1, . . . , γd} satisfying γ jγk + γkγ j = 2δ j,k1, and define:

D =
d∑

j=1

γ j ⊗ Dj

as an unbounded, densely defined linear operator on the Hilbert space CN ⊗ L2(T
d
θ ).

This definition coincides with [23, Definition 12.14].
Since all Dj ’s are self-adjoint, D is also self-adjoint. We then define the sign of D

via the Borel functional calculus, which can be expressed as

sgn(D) =
d∑

j=1

γ j⊗ Dj√
D2
1 + D2

2 + · · · + D2
d

.

Given x ∈ L∞(Td
θ ), denote by Mx : y �→ xy the operator of left multiplication

on L2(T
d
θ ). The operator 1⊗Mx is a bounded linear operator on C

N⊗L2(T
d
θ ), where 1

denotes the identity operator on C
N . The commutator

d̄x := i[sgn(D), 1⊗Mx ], x ∈ L∞(Td
θ )

denotes the quantised differential on quantum tori.
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On the other hand, if x is not necessarily bounded we may still define d̄x on the
dense subspace C∞(Td

θ ) ⊗ C
N as follows. Suppose that x ∈ L2(T

d
θ ). Then if η ∈

C∞(Td
θ ) ⊗ C

N , we will have (1 ⊗ Mx )η ∈ L2(T
d
θ ) ⊗ C

N . Moreover, sgn(D)η is still
in C∞(Td

θ ) ⊗C
N since by definition an element of C∞(Td

θ ) has Fourier coefficients of
rapid decay, and sgn(D) is represented as a Fourier multiplier with bounded symbol.
Thus the expression:

(d̄x)η := isgn(D)(1 ⊗ Mx )η − i(1 ⊗ Mx )sgn(D)η

is a well-defined element of L2(T
d
θ ) ⊗ C

N for all η ∈ C∞(Td
θ ) ⊗ C

N .

2.2.3. Fourier multipliers for quantum tori. Let g be a bounded scalar function on Z
d .

For x ∈ L2(T
d
θ ), the Fourier multiplier Tg with symbol g is defined on x by:

Tgx =
∑

n∈Zd

g(n)̂x(n)Un . (2.8)

By virtue of the Plancherel identity (2.3), Tg indeed defines a bounded linear operator
on L2(T

d
θ ) and the above series converges in the L2-sense. If g is unbounded, we may

define Tg on the dense subspace of L2(T
d
θ ) of those x with finitelymany non-zero Fourier

coefficients.
An equivalent perspective on Fourier series is to consider a function φ ∈ L1(T

d) on
the commutative torus. We may then define the convolution of φ with x ∈ L2(T

d
θ ) by:

φ ∗ x =
∫

Td
αw(x)φ(w)dw.

In terms of Fourier coefficients, we have:

φ ∗ x = Tφ̂x .

Fourier multipliers for quantum tori were studied in detail in [59, Chapter 7] (there,
Tg was denoted by Mg). From the perspective of functional calculus, we may also write:

Tg = g(
1

2π i
∂1,

1

2π i
∂2, . . . ,

1

2π i
∂d).

The above defined derivatives Dα , Laplacian �, and Bessel potential Jα may all be
viewed as Fourier multipliers: the symbol of Dj is 2πξ j ; the symbol of � is −|2πξ |2;
and the symbol of Jα is (1 + |2πξ |2) α

2 . We will denote by 〈ξ 〉 the function (1 + |ξ |2) 1
2

in the sequel.
A far reaching extension of the notion of a Fourier multiplier is a pseudodifferential

operator.We outline the pseudodifferential operator theory for the noncommutative torus
in Sect. 5.
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3. Cwikel-Type Estimates for Quantum Tori

In the classical, commutative setting, Cwikel estimates are bounds on the singular values
of operators of the form:

M f g(−i∇)

where f and g are essentially bounded functions on R
d , and M f and g(−i∇) denote

pointwisemultiplication and Fourier multiplication on L2(R
d) respectively (see e.g. [53,

Chapter 4] and [17]).
In the setting of noncommutative tori, we instead consider operators of the form

MxTg , where x ∈ L∞(Td
θ ) and g ∈ �∞(Zd). We can obtain the following as a special

case of [32]:

Theorem 3.1. (i) If x ∈ L p(T
d
θ ) and g ∈ �p(Z

d) with 2 ≤ p < ∞, then Mx Tg is in
Lp and

‖Mx Tg‖Lp ≤ Cp‖x‖p‖g‖p.

(ii) If x ∈ L p(T
d
θ ) and g ∈ �p,∞(Zd) with 2 < p < ∞, then Mx Tg is in Lp,∞ and

‖Mx Tg‖Lp,∞ ≤ Cp‖x‖p‖g‖p,∞.

Proof. We in fact prove the following far stronger estimate, stated in the language
of symmetric function spaces [36, Chapter 2]: For any symmetric function space E
whose norm satisfies the Fatou property1 and is an interpolation space of L2 and L∞, if
x ⊗ g ∈ E(L∞(Td

θ ) ⊗ �∞(Zd)) then MxTg is in E(B(L2(T
d
θ ))), with norm bound,

‖MxTg‖E(B(L2(T
d
θ ))) ≤ CE‖x ⊗ g‖E(L∞(Td

θ )⊗�∞(Zd )). (3.1)

After proving (3.1), we explain how it entails the results in the statement of the
theorem.

In fact (3.1) can be obtained by a direct application of [32, Corollary 3.5]. Here
we have two von Neumann algebras L∞(Td

θ ) and �∞(Zd) represented on the same
Hilbert space L2(T

d
θ ) by left multiplication and Fourier multiplication respectively. In

this setting, we can use [32, Corollary 3.5] which states that if we have an estimate of
the form:

‖MxTg‖L2(B(L2(T
d
θ ))) ≤ ‖x‖L2(T

d
θ )‖g‖�2(Zd ) (3.2)

then (3.1) follows.
To prove (3.2), we can express the Hilbert-Schmidt norm in terms of an expansion

with respect to the basis {Um}m∈Zd of L2(T
d
θ ),

‖MxTg‖2L2
=

∑

m,n∈Zd

∣∣∣τ
(
x
(
TgU

m)
(Un)∗

)∣∣∣
2

=
∑

m,n∈Zd

∣∣∣τ
(
xg(m)Um(Un)∗

)∣∣∣
2 =

∑

m,n∈Zd

|g(m)|2
∣∣∣τ

(
xUm(Un)∗

)∣∣∣
2

=
∑

m∈Zd

|g(m)|2
∑

n∈Zd

∣∣∣τ
(
xUm(Un)∗

)∣∣∣
2
.

1 Meaning that if An is a sequence of positive operators with An ↑ A in the weak operator topology, then
‖A‖E ≤ supn ‖An‖E .
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By the Plancherel formula (2.3), we have
∑

n∈Zd

|τ(xUm(Un)∗)|2 = ‖xUm‖22 = ‖x‖22.

Thus,

‖MxTg‖2L2
= ‖x‖22‖g‖22.

Hence, (3.2) holds and thus by [32, Corollory 3.5] it follows that (3.1) holds.
Now, we take E = L p in (3.1) for p ∈ (2,∞). This is indeed an interpolation space

between L2 and L∞ whose norm satisfies the Fatou property. Then combining (3.1)
with the identity

‖x ⊗ g‖L p(L∞(Td
θ )⊗�∞(Zd )) = ‖x‖p‖g‖p

yields (i).
Finally, to obtain (ii), we take E = L p,∞ in (3.1) and use the estimate:

‖x ⊗ g‖L p,∞(L∞(Td
θ )⊗�∞(Zd )) ≤ ‖x‖p‖g‖p,∞.

This completes the proof of (ii). ��
Consider the function onZd ,n �→ (1+|n|2)− d

2 .When |n| > 1,wehave (1+|n|2)− d
2 ≤

|n|−d . For |n| ≤ 1, (1+ |n|2)− d
2 is bounded from above by 1. Hence n �→ (1+ |n|2)− d

2 ∈
�1,∞(Zd), and so n �→ (1+ |n|2)− β

2 ∈ � d
β
,∞(Zd). Then it follows immediately from the

above theorem that:

Corollary 3.2. Consider the linear operator (1⊗x)(1 + D2)−
β
2 on CN⊗L2(T

d
θ ). If x ∈

L d
β
(Td

θ ) with d
β

> 2, then (1⊗Mx )(1 + D2)−
β
2 ∈ L d

β
,∞, and

‖(1⊗Mx )(1 + D2)−
β
2 ‖L d

β
,∞ ≤ C‖x‖ d

β
,

where the constant C > 0 depends only on d and β.

At this point it is worth noting that since the function n �→ (1+|n|2)− α
2 is in � d

α
,∞(Z),

for all α > 0 we have:
J−α ∈ L d

α
,∞. (3.3)

4. Proof of Theorem 1.1

This section is devoted to the proof of Theorem1.1, that is, that the condition x ∈ Ḣ1
d (Td

θ )

is sufficient for d̄x ∈ Ld,∞, and with an explicit norm bound:

‖d̄x‖d,∞ ≤ Cd‖x‖Ḣ1
d (Td

θ ).

Note that due to the Poincaré inequality (2.6), Ḣ1
d (Td

θ ) is a subset of Ld(T
d
θ ), and thus

in particular the operator d̄x is well-defined.
The following lemma is a corollary of Theorem 3.1(i).
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Lemma 4.1. Suppose that p > d
2 and x ∈ L p(T

d
θ ). If p ≥ 2, then there exists a constant

Cp,d > 0 such that

∥∥[
sgn(D) − D√

1 + D2
, 1⊗Mx

]∥∥Lp
≤ Cp,d‖x‖p,

meaning that, if x ∈ L p(T
d
θ ) then the above commutator (initially defined on C∞(Td

θ )⊗
C

N ) admits an extension to a bounded operator which is in the ideal Lp with the above
norm bound.

Proof. Let 1 ≤ j ≤ d, and for n ∈ Z
d define

h j (n) := n j

|n| − n j

((2π)−2 + |n|2) 1
2

.

Thus,

Th j = h j (− i

2π
∇) = −i∂ j√−�

− −i∂ j

(1 − �)
1
2

and so,

sgn(D) − D√
1 + D2

=
d∑

j=1

γ j ⊗
(

−i∂ j√−�
− −i∂ j

(1 − �)
1
2

)

=
d∑

j=1

γ j ⊗ h j (− i

2π
∇)

=
d∑

j=1

γ j ⊗ Th j .

One can easily check that h j ∈ �p(Z
d) as p > d

2 . Expanding out the commutator,

[
sgn(D) − D√

1 + D2
, 1⊗Mx

] = [ d∑

j=1

γ j⊗Th j , 1⊗Mx
]

=
d∑

j=1

γ j⊗[Th j , Mx ].

Hence,

‖[sgn(D) − D√
1 + D2

, 1⊗Mx
]‖Lp ≤ d max

1≤ j≤d
‖[Th j , Mx

]‖Lp

≤ d max
1≤ j≤d

(‖Th j Mx‖Lp + ‖MxTh j ‖Lp

)

= d max
1≤ j≤d

(‖Mx∗Th j ‖Lp + ‖MxTh j ‖Lp

)
.

The desired conclusion follows then from Theorem 3.1.(i). ��
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The proof of the next lemma relies on the technique of double operator integrals
(see [40] and [45] and references therein). Let H be a (complex) separable Hilbert
space. Let D0 and D1 be self-adjoint (potentially unbounded) operators on H , and
E0 and E1 be the associated spectral measures. For all x, y ∈ L2(H), the measure
(λ, μ) �→ Tr(x dE0(λ) y dE1(μ)) is a countably additive complex valued measure
on R

2. We say that φ ∈ L∞(R2) is E0 ⊗ E1 integrable if there exists an operator
T D0,D1

φ ∈ B(L2(H)) such that for all x, y ∈ L2(H),

Tr(x T D0,D1
φ y) =

∫

R2
φ(λ,μ)Tr(x dE0(λ) y dE1(μ)).

The operator T D0,D1
φ is called the transformer. For A ∈ L2(H), we define

T D0,D1
φ (A) =

∫

R2
φ(λ,μ)dE0(λ) A dE1(μ). (4.1)

This is called a double operator integral.

Lemma 4.2. Let x ∈ Ḣ1
d (Td

θ ). Then

∥∥[ D√
1 + D2

, 1⊗Mx
]∥∥Ld,∞ ≤ Bd‖x‖Ḣ1

d

where the constant Bd > 0 depends only on d. Aswith Lemma4.1, the above commutator
is interpreted as being initially defined on C∞(Td

θ ) ⊗ C
N .

Proof. Set g(t) = t (1 + t2)− 1
2 for t ∈ R. Suppose initially that x ∈ C∞(Td

θ ). Under
this assumption, [D, 1⊗ Mx ] extends to a bounded operator, and thus we can apply [4,
Theorem 4.1] (see also Proposition 2.6 and Theorem 3.1 in [44]) to get

[g(D), 1⊗Mx ] = T D,D
g[1] ([D, 1⊗Mx ]), (4.2)

where g[1](λ, μ) := g(λ)−g(μ)
λ−μ

for different λ,μ ∈ R. By [34, Lemma 9], we have

g[1] = ψ1ψ2ψ3, with

ψ1 = 1 +
1 − λμ

(1 + λ2)
1
2 (1 + μ2)

1
2

, ψ2 = (1 + λ2)
1
4 (1 + μ2)

1
4

(1 + λ2)
1
2 + (1 + μ2)

1
2

, ψ3 = 1

(1 + λ2)
1
4 (1 + μ2)

1
4

.

It follows that
T D,D
g[1] = T D,D

ψ1
T D,D

ψ2
T D,D

ψ3
. (4.3)

By [34, Lemma 8], we see that the transformer T D,D
ψ2

is bounded on both L1 and L∞.
For k = 1, 3 the function ψk can be written as a linear combination of products of

bounded functions of λ and of μ, and from this it follows that T D,D
ψk

is a bounded linear
map on L1 and L∞. For further details, see e.g. [45, Corollary 2] and [49, Corollary
2.4].

Then by real interpolation of (L1,L∞) (see [18] or [60]), the transformers T D,D
ψk

with k = 1, 2, 3 are bounded linear transformations from Ld,∞ to Ld,∞.
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We now exploit the identity in (4.2) and the product of terms in (4.3), noticing that

‖[g(D), 1⊗Mx ]‖Ld,∞ ≤ ‖T D,D
ψ1

‖Ld,∞→Ld,∞‖T D,D
ψ2

‖Ld,∞→Ld,∞

× ‖T D,D
ψ3

([D, 1⊗Mx ])‖Ld,∞

≤ Cd‖T D,D
ψ3

([D, 1⊗Mx ])‖Ld,∞ ,

where the constant Cd > 0 does not depend on x . Since ψ3(λ, μ) = (1 + λ2)−1/4(1 +
μ2)−1/4 is a product a function of λ and a function of μ, by (4.1), we have

T D,D
ψ3

([D, 1⊗Mx ]) = (1 + D2)−1/4[D, 1⊗Mx ](1 + D2)−1/4.

Hence

‖[g(D), 1⊗Mx ]‖Ld,∞ ≤ Cd‖(1 + D2)−1/4[D, 1⊗Mx ](1 + D2)−1/4‖Ld,∞ .

Expanding out D and using the quasi-triangle inequality for Ld,∞, we have

‖(1 + D2)−1/4[D, 1⊗Mx ](1 + D2)−1/4‖Ld,∞

≤ Kd

d∑

j=1

‖(1 + D2)−1/4[γ j⊗Dj , 1⊗Mx ](1 + D2)−1/4‖Ld,∞ ,

where Kd > 0 depends only on d. But [γ j⊗Dj , 1⊗Mx ] = −iγ j⊗M∂ j x , thus we obtain

‖(1 + D2)−1/4[γ j⊗Dj , 1⊗Mx ](1 + D2)−1/4‖Ld,∞ = ‖(1 − �)−1/4M∂ j x (1 − �)−1/4‖Ld,∞ .

Note that the first norm ‖ · ‖Ld,∞ is the norm of Ld,∞(CN ⊗ L2(T
d
θ )), and the second

one is the norm of Ld,∞(L2(T
d
θ )).

We are reduced to estimating the quantity ‖(1− �)−1/4M∂ j x (1− �)−1/4‖Ld,∞ . By
polar decomposition, for every j , there is a partial isometry Uj such that

∂ j x = Uj |∂ j x | = Uj |∂ j x | 12 |∂ j x | 12 .

Taking β = 1
2 , and recalling that x is such that ‖Uj |∂ j x | 12 ‖2d ≤ ‖ |∂ j x | 12 ‖2d =

‖∂ j x‖
1
2
d < ∞, we apply Corollary 3.2 to get (for some constant Qd )

‖M|∂ j x |
1
2
(1 − �)−1/4‖L2d,∞ = ‖(1 − �)−1/4M|∂ j x |

1
2
‖L2d,∞ ≤ Qd‖ |∂ j x | 12 ‖2d

and

‖(1 − �)−1/4M
Uj |∂ j x |

1
2
‖L2d,∞ ≤ Qd‖Uj |∂ j x | 12 ‖2d ≤ Qd‖ |∂ j x | 12 ‖2d .

Thus, by the Hölder inequality (2.1),

‖(1 − �)−1/4M∂ j x (1 − �)−1/4‖Ld,∞ ≤ c d
2 , d2

Q2
d‖ |∂ j x | 12 ‖22d = c d

2 , d2
Q2

d‖∂ j x‖d .
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Taking Bd = c d
2 , d2

dQ2
dCd Kd , we conclude that

‖[g(D), 1⊗Mx ]‖Ld,∞ ≤ Bd

d∑

j=1

‖∂ j x‖d ≤ Bd‖x‖Ḣ1
d
. (4.4)

We now remove the initial assumption that x ∈ C∞(Td
θ ). Suppose that x ∈ Ḣ1

d (Td
θ ).

As C∞(Td
θ ) is dense in H1

d (Td
θ ) [59, Proposition 2.7], we may select a sequence

{xn}∞n=0 ⊂ C∞(Td
θ ) such that limn→∞ ‖xn − x‖H1

d (Td
θ ) = 0. From (4.4), we have

that the sequence {[g(D), 1⊗Mxn ]}∞n=0 is Cauchy in theLd,∞ topology. Hence, there is
a limit T ∈ Ld,∞. On the other hand, if η ∈ C∞(Td

θ ) ⊗C
N from the Hölder inequality

we have:

‖(1 ⊗ Mxn )η − (1 ⊗ Mx )η‖L2(T
d
θ )⊗CN ≤ ‖xn − x‖Ld (Td

θ )‖η‖L2d/(d−2)(T
d
θ )⊗CN

and similarly,

‖(1⊗ Mxn )g(D)η − (1⊗ Mx )g(D)η‖L2(T
d
θ )⊗CN ≤ ‖xn − x‖Ld (Td

θ )‖g(D)η‖L2d/(d−2)(T
d
θ )⊗CN .

Therefore, for each fixed η ∈ C∞(Td
θ ) ⊗ C

N we have:

[g(D), 1 ⊗ Mxn ]η → [g(D), 1 ⊗ Mx ]η
in the L2(T

d
θ ) ⊗ C

N sense. Thus,

[g(D), 1 ⊗ Mx ]η = Tη

for all η ∈ C∞(Td
θ ) ⊗ C

N . Therefore T and [g(D), 1 ⊗ Mx ] are equal, and we have:

[g(D), 1 ⊗ Mxn ] → [g(D), 1 ⊗ Mx ]
in the Ld,∞ topology. Thus (4.4) holds for all x ∈ Ḣ1

d (Td
θ ). ��

Now we are able to complete the proof of Theorem 1.1.

Proof of Theorem 1.1. Let x ∈ Ḣ1
d (Td

θ ). Combining Lemmas 4.1 and 4.2, we find that

∥∥[
sgn(D), 1⊗Mx

]∥∥Ld,∞ ≤ Cd,d‖x‖d + Bd‖x‖Ḣ1
d
.

We can remove the dependence on ‖x‖d on the right hand side by the aid of the
Poincaré inequality (2.6). Since for constant operator x̂(0) ∈ L∞(Td

θ ), it is obvious
that

[
sgn(D), 1⊗Mx̂(0)

] = 0, we have

∥∥[
sgn(D), 1⊗Mx

]∥∥Ld,∞ = ∥∥[
sgn(D), 1⊗Mx−x̂(0)

]∥∥Ld,∞
≤ Cd,d‖x − x̂(0)‖d + Bd‖x − x̂(0)‖Ḣ1

d

≤ Cd‖x‖Ḣ1
d
.

The theorem is therefore proved. ��
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5. Pseudodifferential Operators on Quantum Tori

In this sectionwe give an introduction to some recent developments in pseudodifferential
operators on quantum tori. The most important result stated in this section for us is
Theorem 5.6, which is a form of Connes’ trace formula obtained in [39].

The theory of pseudodifferential operators goes back to Kohn-Nirenberg [30] and
Hörmander [27]. It has been extended to the noncommutative setting, especially the
quantum torus case, by many authors; see for instance [22,31,33,38,56,58]. Our main
references of this part are [1,6] and [16], while the details can be found in [25,26]. In the
following, let us collect some definitions and well known properties of symbol classes
and pseudodifferential operators on quantum tori.

Denote by 〈ξ 〉 the function (1 + |ξ |2) 1
2 on R

d . For every m ∈ R, the class Sm(Rd ;
C∞(Td

θ )) consists of all maps ρ ∈ C∞(Rd ;C∞(Td
θ )) such that, for all multi-indices

α, β ∈ N
d
0 , there exists Cα,β > 0 such that

‖DαDβ
ξ ρ(ξ)‖ ≤ Cα,β〈ξ 〉m−|β|1 , ∀ξ ∈ R

d .

Endowed with the locally convex topology generated by the semi-norms

p(m)
N (ρ) := sup

|α|1+|β|1≤N
sup
ξ∈Rd

〈ξ 〉−m+|β|1‖DαDβ
ξ ρ(ξ)‖, N ∈ N0,

Sm(Rd ;C∞(Td
θ )) is then a Fréchet space.

Letρ ∈ Sm(Rd ;C∞(Td
θ )),m ∈ R, andρ j (ξ) ∈ Sm− j (Rd ;C∞(Td

θ )) for each j ∈ N.
If for every N ≥ 1,

ρ(ξ) −
∑

j<N

ρ j (ξ) ∈ Sm−N (Rd;C∞(Td
θ )),

we shall write ρ(ξ) ∼ ∑
j≥0 ρ j (ξ). This is referred to as an asymptotic expansion of

the symbol ρ.
The homogeneous class of symbols Ṡm(Rd;C∞(Td

θ )) consists ofmapsρ ∈ C∞(Rd\
{0};C∞(Td

θ )) satisfying

ρ(λξ) = λmρ(ξ), ∀ξ ∈ R
d \ {0}, ∀λ > 0.

In this case, ρ onRd \{0} is determined by its restriction to Sd−1, the d-dimensional unit
sphere. If a (not necessarily homogeneous) symbol ρ admits an asymptotic expansion
ρ ∼ ∑

j≥0 ρm− j with ρm− j ∈ Ṡm− j (Rd;C∞(Td
θ )) for each j ≥ 0, then ρ is called a

classical symbol, and the leading term ρm is called the principal symbol of ρ.

Let us turn to the definition of pseudodifferential operators with the above symbols
on quantum torus. Let αs be a d-parameter group of automorphisms given by

αs(U
n) = e2π is·nUn, (5.1)

which is a periodic version of the action in (2.2) ifwe identify [0, 1]d withTd by the corre-
spondence (s1, s2, . . . , sd) ↔ (e2π is1 , e2π is2 , . . . , e2π isd ). For ρ ∈ C∞(Rd;C∞(Td

θ )),
let Pρ be the pseudodifferential operator sending arbitrary a ∈ C∞(Td

θ ) to

Pρ(a) :=
∫

Rd

∫

Rd
e−2π is·ξ ρ(ξ)αs(a)ds dξ. (5.2)
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Note that this integral does not converge absolutely; it is defined as an oscillatory integral.
See [16,25,26,56] formore information.By [25, Proposition 5.9], ifa = ∑

n∈Zd anUn ∈
C∞(Td

θ ) and ρ ∈ Sm(Rd;C∞(Td
θ )) with m ∈ R, then

Pρ(a) =
∑

n∈Zd

ρ(n)anU
n, (5.3)

where the sum converges in the operator norm to an element inC∞(Td
θ ). In other words,

the pseudodifferential operator on Td
θ with symbol ρ is determined by the value of ρ on

Z
d , which coincides with the definition given in [33].
If ρ ∈ Sm(Rd;C∞(Td

θ )) with m ∈ R, then Pρ is said to be a pseudodifferential
operator of order m.

Also note that, by the noncommutativity, if we change the order of ρ(ξ) and αs(a) in
(5.2) (or ρ(n) andUn in (5.3)), we get another pseudodifferential operator with the same
symbol. In [58], these two operators are distinguished as column and row operators. But
in this paper, we will not need to consider both kinds of operators, and so we focus only
on those with the form (5.2) or (5.3).

Example 5.1. Let us formulate some first examples of symbols defined above.

i) Let x ∈ C∞(Td
θ ) and consider the constant functionψ(ξ) ≡ x , ξ ∈ R

d . Obviously,
ψ ∈ S0(Rd;C∞(Td

θ )). So by the above definition, the multiplier Mx (y) = xy on
T
d
θ is an order 0 pseudodifferential operator. The principal symbol of this operator

is x itself.
ii) Let k ∈ N

d
0 . The symbol of the |k|1-order differential operator Dk = Dk1

1 · · · Dkd
d

is ψ(ξ) = (2πξ1)
k1(2πξ2)

k2 · · · (2πξd)
kd . It is easily checked that ψ ∈ S|k|1(Rd ;

C∞(Td
θ )). Thus, Dk is a pseudodifferential operator of order |k|1, and its principal

symbol is (2πξ)k .
iii) Let α ∈ R, and consider the α-order Bessel potential Jα = (1 − �)

α
2 on the

quantum torus, which is a Fourier multiplier with symbol ψ(ξ) = 〈2πξ 〉α =
(1 + |2πξ |2) α

2 ∈ Sα(Rd;C∞(Td
θ )). Thus, Jα is an α-order pseudodifferential

operator.Moreover, as a scaler-valued function,ψ(ξ) has the asymptotic expansion

〈2πξ 〉α ∼
∞∑

j=0

(
j
α
2

)
|2πξ |α−2 j .

Hence, Jα is classical with principal symbol |2πξ |α . See [25, Proposition 5.14].

The above examples illustrate that both pointwise multipliers Mx and Fourier multi-
pliers Tg from (2.8) are considered as the special cases of pseudodifferential operators.
For general symbol ρ, Pρ may be thought as a limit of linear combinations of operators
composed by pointwise multipliers and Fourier multipliers.

The composition of two pseudodifferential operators is again a pseudodifferential
operator, and there is a method for computing an asymptotic expansion of its symbol.
The following proposition, which is the quantum analogue of the classical result in [55,
p. 237], first appears in [16]; a complete proof is given in [26, Proposition 7.5].

Proposition 5.2. Let ρ1, ρ2 be two symbols in Sn1(Rd ;C∞(Td
θ )) and Sn2(Rd;C∞(Td

θ ))

respectively. Then there exists a symbol ρ3 in Sn1+n2(Rd ;C∞(Td
θ )) such that

Pρ3 = Pρ1 Pρ2 .
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Moreover,

ρ3 −
∑

|α|1<N0

(2π i)−|α|1
α! Dα

ξ ρ1D
αρ2 ∈ Sn1+n2−N0(Rd;C∞(Td

θ )), ∀ N0 ≥ 0, (5.4)

where the first derivative Dα
ξ is the derivative of ρ1 with respect to the variable ξ ∈ R

d ,

and the second derivative Dα is the derivation on C∞(Td
θ ) described in Sect. 2.2.2.

Many authors have considered the question of the mapping properties of pseudodif-
ferential operators on functions spaces on quantum tori [22,26,58]. In this paper we are
concerned solely with the boundedness of a pseudodifferential operator on L2(T

d
θ ).

The following proposition can be found in [26, Proposition 10.1], [56, Corollary 6.6].

Proposition 5.3. Let ρ ∈ S0(Rd;C∞(Td
θ )). Then the pseudodifferential operator Pρ

extends to a bounded operator from L2(T
d
θ ) to L2(T

d
θ ).

Proposition 5.3 is simply a special case of the general Sobolev space mapping property
of pseudodifferential operators [26, Proposition 6.6]. Even greater generalisations to
mapping properties of pseudodifferential operators on Sobolev spaces and Besov and
Triebel-Lizorkiin spaces [58, Section 6.2] are also known.

Symbols of negative order are in particular of order zero, and thus if m > 0 and
ρ ∈ S−m(Rd ,C∞(Td

θ )) then Pρ has bounded extension on L2(T
d
θ ). However in the

case of strictly negative order we can provide more detailed information on Pρ . The
following is proved in [26, Lemma 13.6]:

Proposition 5.4. If ρ ∈ S−m(Rd;C∞(Td
θ )) with m > 0, then Pρ is a compact operator

on L2(T
d
θ ). Furthermore, Pρ ∈ L d

m ,∞.

The proof of Proposition 5.4 is a simple combination of the fact that since Pρ has
order −m, and Jm has order m, the product formula in Proposition 5.2 implies that
the composition Pρ Jm is of order zero. Hence by Proposition 5.3, Pρ Jm has bounded
extension, and since J−m ∈ L d

m ,∞ (3.3), it follows immediately that Pρ ∈ L d
m ,∞.

Thanks to Proposition 5.4, we can easily obtain from the symbol calculus the follow-
ing:

Corollary 5.5. Let x ∈ C∞(Td
θ ), and α > 0. Then

[Mx , (1 − �)−
α
2 ] ∈ L d

α+1 ,∞.

Indeed, [Mx , (1 − �)− α
2 ] is a pseudodifferential operator of order at most −α − 1, as

can be seen by a short computation using Proposition 5.2.
Next, we are going to present Connes’ trace formula on quantum torus in the specific

form obtained in [39, Theorem 6.5]. This trace formula will play a crucial role in the
proof of the trace formula for a quantised differential. Recall that if ρ is a homogeneous
symbol of order 0, then ρ(ξ) = ρ(

ξ
|ξ | ) for every ξ �= 0. So this ρ could be viewed as a

function on the (d − 1)-dimensional sphere Sd−1.
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Theorem 5.6. Let A be a classical pseudodifferential operator on T
d
θ of order 0 with

self-adjoint extension, and denote by ρA its principal symbol. Then for any normalised
trace ϕ on L1,∞, we have

ϕ
(|A|d(1 − �)−

d
2
) = 1

d

∫

Sd−1
τ(|ρA(s)|d)ds.

The reason to refer specifically to [39] is that if d is odd then |A|d is not a pseudodif-
ferential operator in the usual sense, and so it needs to be understood as an element of the
C∗-closure of the algebra of order 0 pseudodifferential operators on L2(T

d
θ ). It is proved

in [39] that on the C∗-closure the principal symbol mapping extends to a C∗-algebra
homomorphism, and hence ρ|A|d = |ρA|d .

6. The Trace Formula

This section is devoted to the proofs of Theorem 1.2 and Corollary 1.3. That is, we show
that for all x ∈ Ḣ1

d (Td
θ ) and all continuous normalised traces ϕ on the ideal L1,∞ that:

ϕ(|d̄x |d) = cd

∫

Sd−1
τ

(( d∑

j=1

|∂ j x − s j

d∑

k=1

sk∂k x |2
) d

2
)
ds (6.1)

for a positive constant cd . Moreover, there are positive constants 0 < cd < Cd < ∞
such that:

cd‖x‖dḢ1
d

≤ ϕ(|d̄x |d) ≤ Cd‖x‖dḢ1
d
. (6.2)

Our strategy of proof is as follows: first, (6.1) is proved for x ∈ C∞(Td
θ ) by aid of the

theory of pseudodifferential operators developed in the preceding section. Then by an
approximation argument based on the density of C∞(Td

θ ) in Ḣ1
d (Td

θ ), we complete the
proof of (6.1) in full generality. Finally (6.2) is achieved by bounding the right hand side
of (6.1) from above and below by a constant multiple of ‖x‖d

Ḣ1
d
.

To begin with, we explain how the operator |d̄x |d can, up to trace class perturbations,
bewritten in the form |A|d(1+D2)− d

2 for a certain order zero pseudodifferential operator
A. Let x ∈ C∞(Td

θ ). For j = 1, . . . , d, we define the operators {A j }dj=1 on L2(T
d
θ ) by

A jη :=
(
M∂ j x − 1

2

d∑

k=1

( Dj Dk

1 − �
M∂k x + M∂k x

D j Dk

1 − �

))
η, η ∈ L2(T

d
θ ).

For each j , A j is defined initially on C∞(Td
θ ), but by functional calculus A j extends

uniquely to a bounded operator on L2(T
d
θ ) which we denote with the same symbol. We

then define the operator A on C
N ⊗ L2(T

d
θ ) as

A :=
d∑

j=1

γ j ⊗ A j . (6.3)

If x = x∗, since ∂ j commutes with the adjoint operation ∗, we have for every
y1, y2 ∈ L2(T

d
θ ),

〈(∂ j x)y1, y2〉 = τ
(
(∂ j x)y1y

∗
2

) = τ
(
y1(∂ j x

∗y2)∗
) = 〈y1, (∂ j x

∗)y2〉,
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which yields (M∂ j x )
∗ = M∂ j x∗ = M∂ j x . Furthermore, since each Dj is a self-adjoint

operator on L2(T
d
θ ), we know that

( Dj Dk

1 − �
M∂k x

)∗ = M∂k x
D j Dk

1 − �
.

Therefore, each A j is a self-adjoint operator, and so is A.

We will now show that |d̄x |d − |A|d(1 + D2)− d
2 ∈ L1. The following lemma is an

important first step:

Lemma 6.1. Let β ≥ 0, and α > 0 be such that α + 1 < d. Then for A defined in (6.3),
we have

[|A|, (1 + D2)−
α
2 ] (1 + D2)−

β
2 ∈ L d

α+β+1 ,∞.

Proof. As (1 + D2)− 1
2 ∈ Ld,∞, the operator (1 + D2)−

β
2 is in L d

β
,∞. Thus by Hölder’s

inequality, it suffices to consider β = 0. First, we shall prove that [A j , (1 − �)− α
2 ] ∈

L d
α+1 ,∞. From Corollary 5.5, we have that

[M∂ j x , (1 − �)−
α
2 ] ∈ L d

α+1 ,∞.

Hence, by linearity, it suffices to prove that

[ Dj Dk

1 − �
M∂k x , (1 − �)−

α
2

]
∈ L d

α+1 ,∞ (6.4)

and [
M∂k x

D j Dk

1 − �
, (1 − �)−

α
2

]
∈ L d

α+1 ,∞. (6.5)

Note that (6.5) follows from (6.4) by taking the adjoint. Sowe prove only (6.4). However,
since

Dj Dk
1−�

commutes with (1 − �)− α
2 , we have

[ Dj Dk

1 − �
M∂k x , (1 − �)−

α
2

]
= Dj Dk

1 − �

[
M∂k x , (1 − �)−

α
2

]
.

By functional calculus,
Dj Dk
1−�

is bounded on L2(T
d
θ ). Then (6.4) and (6.5) follow from

Corollary 5.5 and the boundedness of
Dj Dk
1−�

on L2(T
d
θ ).

Thus, we have proved that

[A, (1 + D2)−
α
2 ] =

d∑

j=1

γ j ⊗ [A j , (1 − �)−
α
2 ] ∈ L d

α+1 ,∞.

To complete the proof, we need to replace A with |A|. To this end, we use the result of
[46], which implies that if 1 < p < ∞ and A and B are self-adjoint operators such that
[A, B] ∈ Lp, then [|A|, B] ∈ Lp; see also [19, Corollary 3.5] for more general results.
Since d

α+1 > 1, the result follows from interpolation. ��
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Lemma 6.2. Let T be a bounded operator on C
N ⊗ L2(T

d
θ ), and suppose that

T ∈ A(1 + D2)−
1
2 + L 2d

3 ,∞,

where A is given in (6.3). Then |T |d ∈ L1,∞ and for any continuous normalised trace
ϕ on L1,∞, we have

ϕ(|T |d) = ϕ(|A|d(1 + D2)−
d
2 ).

Proof. By the aid of Lemma 6.1, the proof proceeds as in [34, Lemma 14], and is
therefore omitted. ��
Lemma 6.3. For x ∈ C∞(Td

θ ) and A defined in (6.3), we have

d̄x − A(1 + D2)−
1
2 = [sgn(D), 1 ⊗ Mx ] − A(1 + D2)−

1
2 ∈ L d

2 ,∞.

Proof. Let g(D) = D(1 + D2)− 1
2 . Then

sgn(D) − g(D) = sgn(D)
(
1 − |D|

(1 + D2)
1
2

)

= sgn(D)
( 1

(1 + D2)
1
2
(
(1 + D2)

1
2 + |D|)

)
.

Since (1 + D2)− 1
2 ∈ Ld,∞, it follows that sgn(D) − g(D) ∈ L d

2 ,∞. Therefore,

[sgn(D), 1 ⊗ Mx ] − [g(D), 1 ⊗ Mx ] ∈ L d
2 ,∞.

Thus, it suffices to prove

[g(D), 1 ⊗ Mx ] − A(1 + D2)−
1
2 ∈ L d

2 ,∞. (6.6)

Now let us prove (6.6). By a short computation using Proposition 5.2, we see that the
principal symbol of [ Dj

(1−�)
1
2
, Mx ] is

1

|2πξ |∂ j x −
d∑

k=1

2πξk2πξ j

|2πξ |3 ∂k x . (6.7)

We also need to determine the principal symbol of A j (1 − �)− 1
2 , and to this end we

compute the principal symbol of A j . Recall that

A j = M∂ j x − 1

2

d∑

k=1

( Dj Dk

1 − �
M∂k x + M∂k x

D j Dk

1 − �

)
.
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It is evident that the symbol of M∂k x
D j Dk
1−�

is
2πξ j2πξk

1+|2πξ |2 ∂k x , so the principal symbol is
ξ j ξk

|ξ |2 ∂k x . By Proposition 5.2, we know that the symbol of
Dj Dk
1−�

M∂k x has the asymptotic
expansion

∑

α∈Nd
0

(2π i)−|α|1
α! Dα

ξ

( 2πξ j2πξk

(1 + |2πξ |2) 1
2

)
Dα(∂k x).

Thus, the principal symbol of 1
2

∑d
k=1

(
Dj Dk
1−�

M∂k x+M∂k x
D j Dk
1−�

)
is

∑d
k=1

ξkξ j

|ξ |2 ∂k x , which

ensures that the principal symbol of A j (1 − �)− 1
2 is of order −1, given by

1

2π |ξ |∂ j x −
d∑

k=1

ξkξ j

2π |ξ |3 ∂k x ,

the same as that of [ Dj

(1−�)
1
2
, Mx ] given in (6.7). Hence, the order of [ Dj

(1−�)
1
2
, Mx ] −

A j (1 − �)− 1
2 is −2. By Theorem 5.4, we have

[ Dj

(1 − �)
1
2

, Mx ] − A j (1 − �)−
1
2 ∈ L d

2 ,∞.

Since [g(D), 1⊗ Mx ] = ∑
j γ j ⊗[ Dj

(1−�)
1
2
, Mx ] and A(1 + D2)− 1

2 = ∑
j γ j ⊗ A j (1−

�)− 1
2 , we obtain (6.6). The lemma is thus proved. ��

Based on the above lemmas, we are able to complete the proof of Theorem 1.2.

Proof of Theorem 1.2. Assume initially that x ∈ C∞(Td
θ ). By Lemma 6.3, we have that:

d̄x ∈ A(1 + D2)−
1
2 + L d

2 ,∞.

For any continuous normalised trace ϕ on L1,∞, we invoke Lemma 6.2 to obtain that:

ϕ(|d̄x |d) = ϕ(|A|d(1 + D2)−
d
2 ).

In theproof ofLemma6.3,wehave that the principal symbol of A j is ∂ j x−∑d
k=1

ξkξ j

|ξ |2 ∂k x ,

which restricted to the unit sphere Sd−1 is ∂ j x −∑d
k=1 ξkξ j∂k x . Now we appeal to The-

orem 5.6 to conclude

ϕ(|d̄x |d) = cd

∫

Sd−1
τ

(( d∑

j=1

|∂ j x − s j

d∑

k=1

sk∂k x |2
) d

2
)
ds.

However, the appeal to Theorem 5.6 relies on the assumption that x ∈ C∞(Td
θ ), so

we remove this assumption by an approximation argument. Indeed, let x ∈ Ḣ1
d (Td

θ ).
By Theorem 1.1, we have d̄x ∈ Ld,∞. By the density of C∞(Td

θ ) in Ḣ1
d (Td

θ ) (see [59,
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Proposition 2.7]), we can choose a sequence {xn}∞n=1 ⊂ C∞(Td
θ ) such that xn→x in

Ḣ1
d (Td

θ ). We shall show that ϕ(|d̄xn|d)→ϕ(|d̄x |d) and
∫

Sd−1
τ

(( d∑

j=1

|∂ j xn − s j

d∑

k=1

sk∂k xn |2
) d

2
)
ds→

∫

Sd−1
τ

(( d∑

j=1

|∂ j x − s j

d∑

k=1

sk∂k x |2
) d

2
)
ds.

(6.8)
Note that we have a bound:

∫

Sd−1
τ

(( d∑

j=1

|∂ j xn − s j

d∑

k=1

sk∂k xn|2
) d

2
)
ds ≤ Cd‖xn‖Ḣ1

d

for a certain constant Cd , and hence (6.8) is immediate. On the other hand, using Theo-
rem 1.1, we have:

‖d̄x − d̄xn‖Ld,∞ ≤ Cd‖x − xn‖Ḣ1
d (Td

θ )→0.

By a verbatim repetition of the argument in the proof of [34, Theorem 17], we get

‖|d̄x |d − |d̄xn|d‖L1,∞→0.

Since the trace ϕ is assumed to be continuous in the L1,∞ quasi-norm, it follows that
ϕ(|d̄xn|d)→ϕ(|d̄x |d). ��

We are now concerned with relating the right hand side of the trace formula in
Theorem 1.2 with the Ḣ1

d -norm of x .

Proof of Corollary 1.3. We prove the upper bound first. Denote

T (x) :=
( d∑

j=1

|∂ j x − s j

d∑

k=1

sk∂k x |2
) 1

2
, s ∈ S

d−1.

Then

|T (x)|2 =
d∑

j=1

∣∣∂ j x − s j

d∑

k=1

sk∂k x
∣∣2

=
d∑

j=1

(
|∂ j x |2 −

d∑

k=1

(s j∂ j x
∗ · sk∂k x + sk∂k x

∗ · s j∂ j x) + s2j |
d∑

k=1

sk∂k x |2
)

=
d∑

j=1

|∂ j x |2 + |
d∑

k=1

sk∂k x |2 −
d∑

j,k=1

(
s j∂ j x

∗ · sk∂k x + sk∂k x
∗ · s j∂ j x

)
.

However, observing that

|
d∑

j=1

s j∂ j x |2 =
d∑

j,k=1

s j∂ j x
∗ · sk∂k x ,
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we get

|T (x)|2 =
d∑

j=1

|∂ j x |2 − |
d∑

j=1

s j∂ j x |2. (6.9)

We then have have easily:

|T (x)|2 ≤
d∑

j=1

|∂ j x |2.

Therefore,

‖|T (x)|2‖ d
2

≤ ‖
d∑

j=1

|∂ j x |2‖ d
2
.

Hence, by (2.5), for every s ∈ S
d−1, we have

τ
(|T (x)|d) = ‖|T (x)|2‖

d
2
d
2

≤ ‖
d∑

j=1

|∂ j x |2‖
d
2
d
2

≤ Cd‖x‖dḢ1
d
.

Thus, the upper bound is proved.
Now we prove the lower bound. Since |T (x)|2 = ∑d

j=1 |∂ j x − s j
∑d

k=1 sk∂k x |2, for
each j we have

|∂ j x − s j

d∑

k=1

sk∂k x |2 ≤ |T (x)|2,

and therefore,

‖∂ j x − s j

d∑

k=1

sk∂k x‖d ≤ ‖T (x)‖d . (6.10)

For brevity, define

X j = ‖∂ j x − s j

d∑

k=1

sk∂k x‖d .

Then (6.11) implies that

( d∑

j=1

X j
)d ≤ dd‖T (x)‖dd . (6.11)

By the triangle inequality,

X j = ‖(1 − s2j )∂ j x −
∑

k �= j

s j sk∂k x‖d

≥ (1 − s2j )‖∂ j x‖d −
∑

k �= j

|s j sk |‖∂k x‖d

and therefore,
d∑

j=1

X j ≥
d∑

j=1

(
(1 − s2j ) −

∑

k �= j

|s j sk |
)
‖∂ j x‖d .
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Now, select 1 ≤ l ≤ d such that ‖∂l x‖d is the minimum of {‖∂1x‖d , ‖∂2x‖d , . . . , ‖∂d
x‖d}. Denote by el the l-th canonical basic vector of Rd , and assume that s ∈ B(el , ε)∩
S
d−1. We have:

∣∣(1 − s2l ) −
∑

k �=l

|slsk |
∣∣ ≤ max

(
1 − s2l ,

∑

k �=l

|sksl |
)
.

Hence, (1 − sl) ≤ |s − el | ≤ ε, so (1 − s2l ) = (1 − sl)(1 + sl) ≤ 2ε, and by the
Cauchy-Schwarz inequality

∑

k �=l

|sksl | ≤ (
∑

k �=l

|sk |2) 1
2 d

1
2 |sl |

≤ |s − el |d 1
2 |sl |

≤ √
dε.

So, ∣∣(1 − s2l ) −
∑

k �=l

|slsk |
∣∣ ≤ max{2,√d}ε. (6.12)

On the other hand, if j �= l, then |s j | ≤ ε and so:

(1 − s2j ) −
∑

k �= j

|sks j | = 1 − |s j |
d∑

k=1

|sk |

≥ 1 − √
dε. (6.13)

If we select ε sufficiently small, we have 1 − √
dε ≥ 3max{2,√d}ε. Then combining

(6.12) and (6.13), we have that for all j �= l:

3
∣∣(1 − s2l ) −

∑

k �=l

|sl sk |
∣∣ ≤ (1 − s2j ) −

∑

k �= j

|sks j | ,

and thus,

∣∣(1 − s2l ) −
∑

k �=l

|slsk |
∣∣ ‖∂l x‖d ≤ 1

3

(
(1 − s2j ) −

∑

k �= j

|sks j |
)‖∂ j x‖d .

Therefore, using the numerical inequality that if |z| ≤ 1
3 |w| then |z − w| ≥ 2

3 |w|, we
have

(
(1 − s2j ) −

∑

k �= j

|sks j |
)‖∂ j x‖d +

(
(1 − s2l ) −

∑

k �=l

|sl sk |
)‖∂l x‖d

≥ 2

3

(
(1 − s2j ) −

∑

k �= j

|sks j |
)‖∂ j x‖d

≥ 1

3
(1 − √

dε)(‖∂ j x‖d + ‖∂l x‖d).
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Consequently, for s ∈ B(el , ε) ∩ S
d−1, we have,

d∑

j=1

X j ≥ (1 − √
dε)

d∑

j=1

‖∂ j x‖d .

Now,

∫

Sd−1

( d∑

j=1

X j

)d
ds ≥

∫

B(el ,ε)∩Sd−1

( d∑

j=1

X j

)d
ds

≥ cd,ε‖x‖Ḣ1
d
.

By virtue of (6.11), the desired conclusion is proved. ��

7. Proof of Theorem 1.4

In this section, we are going to give the proof of Theorem 1.4. We require a lemma on
the quantised derivative of x acting by a Fourier multiplier.

Recall that for a function ψ ∈ L1(T
d), the convolution with x ∈ L2(T

d
θ ) is defined

as:

ψ ∗ x =
∫

Td
ψ(w)αw−1(x) dm(w).

Lemma 7.1. Let ψ ∈ L1(T
d). If x ∈ L2(T

d
θ ) is such that d̄x extends to a bounded

operator in Ld,∞, then d̄(ψ ∗ x) also extends to a bounded operator in Ld,∞ and we
have:

‖d̄(ψ ∗ x)‖Ld,∞ ≤ Cd‖d̄x‖Ld,∞‖ψ‖1
for a certain constant Cd .

Proof. Let α be the d-parameter group of automorphisms given in (2.2), i.e. if u ∈ T
d

then αu(Un) = unUn . Then for each u ∈ T
d , αu commutes with Fourier multipliers on

T
d
θ , and u �→ αu is a strongly continuous family of unitary operators on L2(T

d
θ ). By the

definition of convolution, we have

ψ ∗ x =
∫

Td
ψ(u) α−1

u (x) dm(u). (7.1)

Since αu and
Dj√

D2
1+D

2
2+···+D2

d

commute, we see that 1 ⊗ αu commutes with sgn(D).

Therefore, by the fact that
(
α−1
u (x)

)
y = α−1

u

(
x
(
αu(y)

))
, we obtain

[sgn(D), 1 ⊗ Mψ∗x ] =
∫

Td
ψ(u) (1 ⊗ αu−1)[sgn(D), 1 ⊗ Mx ](1 ⊗ αu) dm(u).

Applying [34, Lemma 18] to the finite Borel measure ψ(u) dm(u) on Td , we get

‖[sgn(D), 1 ⊗ Mψ∗x ]‖Ld,∞ ≤ Cd‖[sgn(D), 1 ⊗ Mx ]‖Ld,∞‖ψ‖1
where the constant comes from the use of the quasi-triangle inequality in the Ld,∞
quasi-norm. This now completes the proof. ��
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Proof of Theorem 1.4. Firstly, we prove the theorem for self-adjoint x ∈ L2(T
d
θ ). If we

show that x ∈ Ḣ1
d (Td

θ ), then Corollary 1.3 will ensure that there exists a constant cd > 0
such that for all continuous normalised traces ϕ on L1,∞,

cd‖x‖Ḣ1
d

≤ ϕ(|d̄x |d) 1
d ≤ ‖d̄x‖d,∞.

Thus, we are reduced to proving x ∈ Ḣ1
d (Td

θ ).
Consider the square Fejér mean

FN (x) =
∑

m∈Zd ,max j |m j |≤N

(
1 − |m1|

N + 1

)
· · ·

(
1 − |md |

N + 1

)
x̂(m)Um .

For every N ∈ N, it is the convolution of x with the periodic function

FN (u) = 1

(N + 1)d

( sin
(
π(N + 1)u1

)

sin
(
πu1

)
)2 · · ·

( sin
(
π(N + 1)ud

)

sin
(
πud

)
)2

.

The family {FN }N∈N is an approximate identity of L1(T
d) (see [24]), sowe have uniform

bound of ‖FN‖1 in N ∈ N. Thus, we can apply Lemma 7.1 to FN . The result is

‖d̄(
FN (x)

)‖Ld,∞ ≤ ‖d̄x‖Ld,∞‖FN‖1 ≤ C‖d̄x‖Ld,∞ .

Since each FN (x) is a polynomial in Td
θ , Corollary 1.3 yields

cd‖FN (x)‖Ḣ1
d

≤ ϕ(|d̄(
FN (x)

)|d) 1
d ≤ C‖d̄x‖Ld,∞ .

Hence, for each j , we obtain a bounded sequence {∂ j FN (x)}N∈N in Ld(T
d
θ ). Moreover,

since Ld(T
d
θ ) is reflexive, wemay assume that ∂ j FN (x) converges to some y j ∈ Ld(T

d
θ ).

On the other hand, by [5, Proposition 3.1], we have limN FN (x) = x in L2(T
d
θ ). Hence,

∂ j FN (x) converges to ∂ j x in D′(Td
θ ). Therefore, we have y j = ∂ j x ∈ Ld(T

d
θ ). Conse-

quently, we conclude that x ∈ Ḣ1
d (Td

θ ).
It remains to consider x ∈ L2(T

d
θ ) which are not self-adjoint. Write x = x1 + ix2

with

x1 = 1

2
(x + x∗), x2 = 1

2i
(x − x∗).

If [sgn(D), 1⊗ Mx ] ∈ Ld,∞, then [sgn(D), 1⊗ Mx∗ ] = −[sgn(D), 1⊗ Mx ]∗ ∈ Ld,∞.
Then we have [sgn(D), 1⊗Mx1 ] ∈ Ld,∞ and [sgn(D), 1⊗Mx2 ] ∈ Ld,∞. By the above
conclusion for self-adjoint elements, we know that x1, x2 ∈ Ḣ1

d (Td
θ ), which implies

x = x1 + ix2 ∈ Ḣ1
d (Td

θ ). More precisely,

‖x‖Ḣ1
d

≤ ‖x1‖Ḣ1
d
+ ‖x2‖Ḣ1

d

≤ C1(‖[sgn(D), 1 ⊗ Mx1]‖Ld,∞ + ‖[sgn(D), 1 ⊗ Mx2 ]‖Ld,∞)

≤ C2(‖[sgn(D), 1 ⊗ Mx ]‖Ld,∞ + ‖[sgn(D), 1 ⊗ Mx ]∗‖Ld,∞)

= 2C2‖[sgn(D), 1 ⊗ Mx ]‖Ld,∞ .

The theorem is proved. ��
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