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Abstract: We study the problem of static, spherically symmetric, self-gravitating elas-
tic matter distributions in Newtonian gravity. To this purpose we first introduce a new
definition of homogeneous, spherically symmetric (hyper)elastic body in Euler coordi-
nates, i.e., in terms of matter fields defined on the current physical state of the body. We
show that our definition is equivalent to the classical one existing in the literature and
which is given in Lagrangian coordinates, i.e. in terms of the deformation of the body
from a given reference state. After a number of well-known examples of constitutive
functions of elastic bodies are re-defined in our new formulation, a detailed study of the
Seth model is presented. For this type of material the existence of single and multi-body
solutions is established.

1. Introduction

In the Euler formulation of continuum mechanics, the configuration of static, self-
gravitating matter distributions in Newtonian gravity is described by the equation

−Div σ + ρ∇V = 0, V (x) = −
∫

�

ρ(y)

|x − y| dy, x ∈ �, (1.1)

where σ = σ(x) and ρ = ρ(x) are the Cauchy stress tensor and the mass density of the
matter, respectively, V = V (x) is the gravitational potential self-induced by the matter
distribution and � ⊂ R

3 is the interior of the matter support. We set G = 1, where G is
Newton’s gravitational constant. Equation (1.1) must be complemented by a constitutive
equation relating the stress tensor and the mass density of the matter and which depends
on the type of material considered.

The constitutive equation σi j = − f (ρ)δi j defines a barotropic fluid with equation
of state p = f (ρ), where p is the fluid pressure. In this case solutions of (1.1) are
necessarily spherically symmetric [13,14] and the pressure is a decreasing function of
the distance from the center of symmetry, which entails that any static, self-gravitating
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fluid matter distribution with bounded support is a priori a single ball of matter. The
existence of such fluid balls has been established for very general equation of state
functions f , see [8,20,23]. When the matter distribution is made of collisionless kinetic
particles (Vlasov matter), the existence of static balls is also well-understood, including
their stability [9,12,23], while the problem without symmetry restrictions is in large
part still open; see [22,26] for results on axially symmetric solutions. The existence and
stability of static self-gravitating shells of Vlasov matter has been proved in [21,25].

In this paper we consider matter distributions that consist of single or multiple elastic
bodies, for which an explicit constitutive equation relating σ to ρ is not available in
general. In fact elastic bodies are commonly defined using the Lagrangian formulation
of continuum mechanics, that is to say, by specifying how σ and ρ depend on the
deformation ψ : B → R

3 of the body from a given reference configuration thereof
in which the body occupies the domain B ⊂ R

3, see [6] and Appendix A below for
details. One drawback of the Lagrangian formulation is that it generally provides only
limited information on the region � = ψ(B) occupied by the matter distribution in its
actual physical state and, consequently, on related properties, such as the formation of
multiple bodies and the shape of the physical boundary ∂�. In addition to this, within
the applications in astrophysics, where bodies represent stars, planets, etc., the physical
interpretation of the “reference configuration” is questionable, as these bodies are only
observable in their current deformed state.

The above discussion suggests that a pure Euler formulation of the problem of self-
gravitating elastic bodies in equilibrium may be desirable. In this paper we derive this
formulation in the case of spherically symmetric configurations. More specifically we
show in Appendix A that under the a priori assumption that the matter distribution is
spherically symmetric, the constitutive equation of a homogeneous (hyper)elastic body
can be written in the explicit form σ = σ(δ, η), where δ(r) and η(r) are dimensionless
quantities that measure respectively the density and the local mass of the body in units
of the same quantities associated to a given matter distribution with constant density.
In Sect. 2 we use this new form of the constitutive equation to define homogeneous
spherically symmetric (hyper)elastic bodies in physical space. This definition is slightly
different for elastic balls and elastic shells and is not yet completely independent of
the reference state of the body, as it still involves the (constant) density of the material
and the inner radius of the shell in the reference state. However, we show that these two
reference constants can be expressed in terms of physical space parameters. In Sect. 3 we
present the constitutive equation σ = σ(δ, η) for some well-known examples of elastic
materials which have important applications in physics, chemistry and other sciences.
In Sect. 4 we focus the attention on the Seth elasticity model [27]. For this particular
elastic matter model we prove the existence of single self-gravitating balls, as well as the
existence of multi-body distributions consisting of an interior ball, or vacuum region,
surrounded by an arbitrary number of shells. We choose the Seth model on the one
hand because it leads to relatively simple equations and, on the other hand, because we
can construct an explicit self-similar solution of the equations for the density ρ, which
makes it possible to analyze the large radius behavior of general solutions by using the
powerful methods of dynamical systems theory. In a sequel of the present paper we will
extend our results on self-gravitating elastic balls to more general constitutive equations,
including all the examples listed in Sect. 3 below.

We conclude this Introduction by mentioning some works on static, self-gravitating
elastic bodies in Newtonian gravity which are related to our results; see [1] for a short
review on the analogous problem in General Relativity. A survey of applications to
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planetary objects, including a detailed historical account to the problem, can be found in
the recent monograph [17]. A very influential reference in the early stage of the theory
is the treatise by Love [15]. More recently, the existence of single body configurations
near the reference state (small deformations) is proved in [3] using the implicit function
theorem in Lagrangian coordinates. The special case of the latter result for spherically
symmetric static shells, in Newtonian and Einsteinian gravity, is discussed in [11]. For
large deformations, the distinction between the reference and the deformed state of the
body becomes important and the problem considerablymore difficult. In [5] this problem
was studied using variational calculusmethods, but the only propertywhichwas possible
to prove on the regularity of the physical boundary ∂� of the body was that ∂� has zero
Lebesgue measure. To the authors knowledge, the results presented in this paper are the
first analytical results on the existence of static, self-gravitating bodies in the non-linear
theory elasticity with no restriction on the amount of internal strain of the matter.

2. Spherically Symmetric Steady States of Self-Gravitating Elastic Matter

In spherical symmetry we have a priori that ρ = ρ(r), where r = |x |, and the Cauchy
stress tensor has the form

σi j (x) = −prad(r)
xi x j
r2

− ptan(r)
(
δi j − xi x j

r2

)
,

where prad(r) and ptan(r) are called respectively radial and tangential stress (or pressure).
Moreover

∇V (r) = m(r)

r2
x

r
, where m(r) = 4π

∫ r

0
ρ(s)s2ds

is the mass of the matter distribution enclosed in the ball of radius r > 0. We abuse
slightly the notation by using the same symbol to denote spherically symmetric functions
in Cartesian and spherical coordinates (e.g., ρ(x) = ρ(r)). For spherically symmetric
configurations (1.1) reduces to

p′
rad(r) + 2

prad(r) − ptan(r)

r
+ ρ

m

r2
= 0, r ∈ �, (2.1)

where

� = Int{r > 0 : ρ(r) > 0}
is the interior of the matter support. We assume that prad > 0 and ptan > 0 in �; in
particular we exclude from our analysis those hypothetical astrophysical objects, e.g.,
dark-matter stars, which are theorized to have negative interior pressures. Moreover,
we employ the standard boundary conditions for astrophysical systems surrounded by
vacuum that the radial pressure should vanish on the boundary of thematter support [17];
see [10] for other boundary conditions used in astrophysics.

Definition 1. A triple (ρ, prad, ptan) is said to be a spherically symmetric, static, self-
gravitating n-body matter distribution with non-vacuum core if there exist

0 = r0 < r1 < · · · < r2n−1

such that
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(i) � = ∪n
j=1 I j , where I j := (r2 j−2, r2 j−1),

(ii) (ρ, prad, ptan) ∈ C1(�) ∩ C0(�) satisfy (2.1) in �,
(iii) prad, ptan are positive in �,
(iv) prad(r j ) = 0, for j = 1, . . . , 2n − 1, and prad(r0) > 0,
(v) prad(0) = ptan(0),
(vi) ρ(r) = ptan(r) = ptan(r) = 0, for r ∈ [0,∞)\�.

If the conditions r0 = 0, prad(r0) > 0 are replaced with r0 > 0 and prad(r0) = 0, then
(ρ, prad, ptan) is said to be a spherically symmetric, static, self-gravitating n-bodymatter
distribution with vacuum core. The restriction of (ρ, prad, ptan) into the closed interval
I j , j = 1, . . . , n, will be called the j th body in the matter distribution and denoted by
B j . The local mass ofB j is

m j (r) = 4π
∫ r

r2 j−2

ρ(s) s2ds, r ∈ I j ,

and its total mass is

Mj = m(r2 j−1) − m(r2 j−2), j = 1, . . . , n.

The total mass of the n-body distribution is M = M1 + · · · + Mn = m(r2n−1).

Note that each single body B1, . . . ,Bn in a multi-body distribution may be made of a
different type of material. If 2 ≤ j ≤ n, then each B j is necessarily a shell of matter,
whileB1 is either a shell, if r0 > 0, or a ball, if r0 = 0. By definition we have

(ρ, prad, ptan) = B1 + · · · +Bn, r ∈ �.

Remark. The number of bodies in a static, self-gravitating matter distribution may be
restricted by the type of material(s) considered. For instance, for perfect fluids the pres-
sure is a decreasing function of the radius and thus static, self-gravitating fluids can only
exist in a single ball configuration. When the type of material(s) allows for the existence
of multiple bodies, one can construct n-body matter distributions by gluing together
single body solutions (e.g., a ball with single disjoint shells).

Remark. Condition (v) ensures that the Cauchy stress tensor is continuous at the center.

In the remainder of this sectionwe discuss what it means that a body ismade of elastic
matter. As mentioned in the Introduction, the standard definition of elastic body is given
in the Lagrangian formulation of continuum mechanics, i.e., by specifying how σ and
ρ depend on the deformation of the body from a given reference state, see Appendix A.
Our purpose is to introduce an alternative definition in Euler coordinates, i.e., in terms
of matter fields defined on the actual physical state of the body. We need to distinguish
the cases when the body is a ball and a shell, and thus introduce the following two
definitions:

Definition 2. Let B = (ρ, prad, ptan) be a static, self-gravitating ball supported in I ,
where I ⊂ (0,∞) is an open, bounded interval such that 0 ∈ I ; let m(r) be the local
mass of the ball. Given a constant K > 0 and two functions p̂rad, p̂tan : (0,∞)2 → R

independent ofK, we say thatB ismade of homogeneous elasticmatter with constitutive
functions p̂rad, p̂tan and that B has reference density K > 0 if the radial and tangential
pressures have the form

prad(r) = p̂rad(δ(r), η(r)), ptan(r) = p̂tan(δ(r), η(r)),
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where

δ(r) = ρ(r)

K , η(r) = m(r)
4π
3 Kr3

, r ∈ I.

Definition 3. Let B = (ρ, prad, ptan) be a static, self-gravitating shell supported in I ,
where I ⊂ (0,∞) is an open, bounded interval such that 0 /∈ I ; letm(r) be the localmass
of the shell. Given two constants K,S > 0, and two functions p̂rad, p̂tan : (0,∞)2 →
R independent of K,S, we say that B is made of homogeneous elastic matter with
constitutive functions p̂rad, p̂tan and that B has reference density K > 0 and reference
inner radius S if the radial and tangential pressures have the form

prad(r) = p̂rad(δ(r), η(r)), ptan(r) = p̂tan(δ(r), η(r)),

δ(r) = ρ(r)

K , η(r) =
(S
r

)3

+
m(r)
4π
3 Kr3

, r ∈ I.

A particular important case is when the elastic material making up the body is hypere-
lastic.

Definition 4. Let B be a static, self-gravitating ball or shell of homogeneous elastic
matter. If there exists a function w : (0,∞)2 → R such that w(1, 1) = 0 and

p̂rad(δ, η) = δ2∂δw(δ, η), p̂tan(δ, η) = p̂rad(δ, η) +
3

2
δη∂ηw(δ, η), (2.2)

then the body is said to be made of hyperelastic matter with stored energy function w.

A body made of (hyper)elastic matter will also be called (hyper)elastic body for short.
In Appendix Awe show that Definitions 2–4 are formally equivalent to the standard def-
initions, given in Lagrangian coordinates, of homogeneous, (hyper)elastic balls/shells,
when the deformation and the Piola-Kirchhoff stress tensor are assumed to be spherically
symmetric. We show in Appendix B that the Eq. (2.1) for hyperelastic bodies admits a
variational formulation.

Remark. Hyperelasticmaterials are the only admissible elasticmattermodels inGeneral
Relativity because the stored energy function is a source term for the gravitational field
in Einstein’s theory.

Remark. When the stored energy function does not depend on η, i.e., w(δ, η) = w(δ),
the elasticmaterial reduces to barotropicfluidmatterwith pressure p = δ2w′(δ) = f (ρ).

Remark. As suggested by the terminology, K corresponds to the density of the body in
the reference state. Similarly, the reference inner radius S of the shell corresponds to the
inner radius of the shell in the reference state, see Appendix A. These two constants are
the only linkwith the reference state in the definitions above.An alternative interpretation
of the constants K,S in physical space is given at the end of this section.

Remark. We emphasize that the reference parameters K,S are not material constants,
that is to say, balls and shells of a given elastic material, i.e., with given constitutive
functions p̂rad, p̂tan, can have different values of the reference parameters K, S.
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Remark. Definitions 2–4 could be extended to include inhomogeneous materials by
letting the reference density K depend on r > 0, but for simplicity we shall not do so.
The class of homogeneous materials already encompasses the most common examples
of elastic matter found in the literature, see Sect. 3, and includes in particular the case of
barotropic fluid matter, which is one of the most popular matter models in astrophysics,
see [10].

We now translate in our formulation a number of standard assumptions on the con-
stitutive functions of elastic matter. The usual formulation of these assumptions in La-
grangian coordinates is given in Appendix A. The first assumption is that the reference
state of the body should be a natural state, i.e., stress-free. Since in our formulation the
reference state of the body corresponds to a state in which it has constant densityK, and,
in the case of a shell, inner radius S, then δ = η = 1 holds for a body in its reference
state. Hence we require the condition

p̂rad(1, 1) = p̂tan(1, 1) = 0. (2.3a)

The second assumption on the constitutive functions demands that for infinitesimal
deformations the body should behave according to Hooke’s law of linear elasticity. As
shown inAppendixA, this condition is achieved by postulating the existence of constants
λ,μ, called Lamé coefficients, such that

∂δ p̂rad(1, 1) = λ + 2μ, ∂η p̂rad(1, 1) = −4

3
μ, (2.3b)

∂δ p̂tan(1, 1) = λ, ∂η p̂tan(1, 1) = 2μ

3
. (2.3c)

Remark. The Poisson ratio of an elastic material is defined in terms of the Lamé coef-
ficients as ν = (λ + μ)−1λ/2. The Poisson ratio of most materials (e.g., metals, rubber,
etc.) lies in the interval ν ∈ (0, 1/2). Materials with ν < 0, e.g., paper, are called auxetic.

To justify our next assumption, let ρc = ρ(0) be the central density of an elastic ball.
As

lim
r→0+

η(r) = ρc

K = δ(0),

the central pressures of the ball are

prad(0) = p̂rad(δ(0), δ(0)), ptan(0) = p̂tan(δ(0), δ(0)).

Thus, in order to ensure that condition (v) in Definition 1 is satisfied for all possible
values of the central density, we assume

p̂rad(δ, δ) = p̂tan(δ, δ), for all δ > 0. (2.3d)

In terms of the variables (δ, η,m) the system (2.1) within each body reads

∂δ p̂rad(δ, η)δ′ = −3

r
∂η p̂rad(δ, η) (δ − η) − 2

r
( p̂rad(δ, η) − p̂tan(δ, η)) − K δ

m

r2
,

(2.4a)

η′ = 3

r
(δ − η) , (2.4b)

m′ = 4πKr2δ, (2.4c)
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where we recall that each body may have a different constitutive function as well as
different reference parameters.

The system (2.4) must be complemented by appropriate initial conditions, which
depend on the type and location of the body. In the case of a single ball, initial data are
given at r = 0 according to

δ(0) = η(0) = δc := ρc/K > 0, m(0) = 0,

where ρc is the central density of the ball. If the body is a single shell with inner radius
r0 > 0, then the initial data for (2.4) must be given at r = r0 according to

η(r0) =
( S
r0

)3

, δ(r0) : prad(δ(r0), η(r0)) = 0, m(r0) = 0.

If the body is a shell surrounding a n-body matter distribution with total mass M =
M1 + · · · + Mn , then the initial data for (2.4) must be given at some radius r2n > r2n−1
according to

η(r2n) =
( S
r2n

)3

, δ(r2n) : prad(δ(r2n), η(r2n)) = 0, m(r2n) = M.

Definition 5. Given 0 ≤ r0 < R ≤ ∞, a regular solution of (2.4) in the interval
(r0, R) is a triple of non-negative functions (δ, η,m) ∈ C1((r0, R)) ∩ C0([r0, R)) that
satisfy (2.4) for r ∈ (r0, R). Moreover in the case r0 = 0 we require

lim
r→0+

δ(r) = lim
r→0+

η(r) = δc, lim
r→0+

m(r) = 0, (2.5)

for some positive constant δc. Equation (2.5) will be referred to as the regular center
condition.

To conclude this section we want to discuss briefly the interpretation in physical space
of the reference parametersK,S. Consider first the case of an elastic ball with reference
density K and total mass M . Let

F(δ) = p̂rad(δ, δ) = p̂tan(δ, δ).

The central pressure pc of the ball is pc = F(ρc/K), where ρc = ρ(0) is the central
density. Hence, provided F is invertible, we obtain

K = ρc

F−1(pc)
, (2.6)

which defines K in terms of the physical parameters ρc, pc. Alternatively one may use
the fact that at the radius r1 of the ball there holds

p̂rad

(
ρ(r1)

K ,
M

4π
3 Kr31

)
= 0, (2.7)

which can be used to defineK implicitly in terms of the physical parametersρ(r1), r1, M .
A similar interpretation can be given for the reference parameters of an elastic shell. Let
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r0 be the inner radius of the shell in physical space.Asη(r0) = (S/r0)3 and prad(r0) = 0,
then

p̂rad

(
ρ(r0)

K ,

( S
r0

)3
)

= 0. (2.8)

Similarly, on the outer radius r1 > 0 of the shell there holds

p̂rad

(
ρ(r1)

K ,

( S
r1

)3

+
M

4π
3 Kr31

)
= 0, (2.9)

where M is the mass of the shell. The system (2.8)–(2.9) defines implicitly the reference
parameters K,S in terms of the physical parameters r0, r1, ρ(r0), ρ(r1) and M . Of
course, explicit formula for the reference parameters in terms of the physical ones can
be derived only for very simple constitutive functions, while in general one has to
solve (2.6)–(2.9) numerically.

3. Example of Constitutive Functions

In this section we present a selection of constitutive functions for elastic materials using
the formulation given in the previous section. We emphasize that the formula in this
section are only valid for spherically symmetric distributions. For the analogous consti-
tutive functions expressed in Lagrangian coordinates and with no symmetry restriction,
see Appendix A and the references [4,7,16,28]. All examples in this section verify the
conditions (2.3).

Seth materials The constitutive functions for spherically symmetric Seth materials are

p̂rad(δ, η) = λ η2/3 +
λ + 2μ

2
η−4/3δ2 − p0, (3.1a)

p̂tan(δ, η) = (λ + μ) η2/3 +
λ

2
η−4/3δ2 − p0, (3.1b)

p0 = 3λ + 2μ

2
, (3.1c)

where the Lamé coefficients satisfy μ > 0 and 3λ + 2μ > 0 (i.e., p0 > 0) and so
−1 < ν < 1/2. A detailed analysis of this model is presented in Sect. 4. The Seth model
is not hyperelastic and therefore it is not suitable as elastic matter model in General
Relativity.

Saint Venant-Kirchhoff materials The Saint Venant-Kirchhoff model is hyperelastic
with stored energy function given by

w(δ, η) = 1

8

(
η4/3

δ2
+

2

η2/3
− 3

)2

(λ + 2μ) + μ

(
η4/3

δ2
+

2

η2/3
− 3

)

− μ

2

(
2η2/3

δ2
+

1

η4/3
− 3

)
,
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where the Lamé coefficients satisfy μ > 0, 3λ + 2μ > 0. It follows that

p̂rad(δ, η) = μ
η4/3

δ

(
1 − η4/3

δ2

)
+ λ

η2/3

2δ

(
3η2/3 − η2

δ2
− 2

)
,

p̂tan(δ, η) = μ
δ

η2/3

(
1 − η−2/3

)
+ λ

δ

2η2/3

(
3 − 2η−2/3 − η4/3

δ2

)
.

Quasi-linear Signorini materials The (quasi-linear) Signorini model is hyperelastic
with stored energy function given by

w(δ, η) = 1

δ

[
1

8

(
δ2

η4/3
+ 2η2/3 − 3

)2

(λ + μ) +
μ

2

(
δ2

η4/3
+ 2η2/3 − 1

)]
− μ,

where μ > 0 and 9λ + 5μ > 0, i.e., −5/8 < ν < 1/2. The constitutive functions for
the radial and tangential pressure read

p̂rad(δ, η) = λ + μ

8
η4/3

(
3

(
δ

η

)4

+ 4

(
δ

η

)2

− 4

)
+
3λ + μ

4
η2/3

(
2 −

(
δ

η

)2
)

− p0,

p̂tan(δ, η) = λ + μ

8
η4/3

(
4 −

(
δ

η

)4
)
+
3λ + μ

4

δ2

η4/3
− p0,

p0 = 9λ + 5μ

8
.

Hadamard materials. The Hadamard model is hyperelastic with stored energy function
given by

w(δ, η) = 1

2

(
α

(
η4/3

δ2
+

2

η2/3
− 3

)
+ β

(
2η2/3

δ2
+

1

η4/3
− 3

)
+ h

(
δ−2

)
− h(1)

)
,

where the compatibility conditions (2.3) imply

h′(1) = −(α + 2β), h′′(1) = λ + 2μ

2
, α + β = μ.

The constitutive functions for the radial and tangential pressure are

p̂rad(δ, η) = −1

δ

(
αη4/3 + 2βη2/3 + h′ (δ−2

))
,

p̂tan(δ, η) = −1

δ

[
αη4/3

(
δ

η

)2

+ βη2/3

(
1 +

(
δ

η

)2
)
+ h′ (δ−2

)]
.
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Materials with linear constitutive function. Due to the compatibility conditions (2.3),
the constitutive functions of spherically symmetric elastic bodies have all the same linear
approximation, namely

p̂rad(δ, η) = (λ + 2μ)δ − 4μ

3
η − p0,

p̂tan(δ, η) = λ δ +
2μ

3
η − p0,

p0 = 3λ + 2μ

3
.

Materials with linear constitutive function are hyperelastic with stored energy function
given by

w(δ, η) = (λ + 2μ) log δ − 4μ

3
log η +

4μ

3

η

δ
+
3λ + 2μ

3δ
− λ − 2μ.

4. Analysis of the Seth Model

In this section we present a detailed analysis of the Sethmodel, for which the constitutive
functions of the principal pressures are given in terms of the Lamé coefficients by (3.1).
Although this is not always necessary in what follows, we assume that

λ > 0, μ > 0, hence ν = λ

2(λ + μ)
∈ (0, 1/2),

which are conditions satisfied by most materials. As ∂δ p̂rad(δ, η) > 0 holds in the matter
interior, the system (2.4) for Seth materials becomes

δ′ = −3

r
θ1(δ, η)(δ − η) − 2

r
θ2(δ, η) − θ3(δ, η)

m

r2
δ, (4.1a)

η′ = 3

r
(δ − η), m′ = 4πKr2δ, (4.1b)

where

θ1(δ, η) := ∂η p̂rad(δ, η)

∂δ p̂rad(δ, η)
= 2

3(λ + 2μ)

(
λ

η

δ
− (λ + 2μ)

δ

η

)
, (4.1c)

θ2(δ, η) := p̂rad(δ, η) − p̂tan(δ, η)

∂δ p̂rad(δ, η)
= μ

λ + 2μ

δ2 − η2

δ
, (4.1d)

θ3(δ, η) := K
∂δ p̂rad(δ, η)

= K
λ + 2μ

η4/3

δ
. (4.1e)

The Eq. (4.1) admit the (non-regular) self-similar solution (δ�, η�,m�) ∈ C1((0,∞))

given by

δ�(r) = c

K
1

r3/2
, η�(r) = 2c

K
1

r3/2
, m�(r) = 8πc

3
r3/2, (4.2)

where

c =
( 3

π

)3/4
(9λ + 14μ)3/4

16
√
K

.
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The associated principal pressures are given by

p�
rad(r) = −p0 +

9λ + 2μ

8

(
2c

K

)2/3 1

r
,

p�
tan(r) = −p0 +

9λ + 8μ

8

(
2c

K

)2/3 1

r
.

Note that p�
tan(r) > p�

rad(r), for all r > 0, the radial pressure is positive for r < R,
negative for r > R and vanishes at r = R, where

R =
(
2c

K

)2/3 9λ + 8μ

12λ + 8μ
.

Hence, the self-similar solution truncated at r = R describes a static, self-gravitating
ball with irregular center. It is convenient introduce the new variables

x(r) = ϑ η(r)2/3, y(r) = δ(r)

η(r)
, z = 3

4πK
m(r)

r3η(r)
,

where

ϑ = K
√

4π

3(λ + 2μ)
.

Note that z = 1 holds for balls, while z < 1 for shells. In terms of the new variables the
system (4.1) for regular solutions becomes

x ′ = −2x

r
(1 − y), (4.3a)

y′ = 1

r
(a + by + y2)

1 − y

y
− r x2z, (4.3b)

z′ = 3y

r
(1 − z), (4.3c)

where

a = 2(λ + μ)

λ + 2μ
≥ 1, b = 2μ

λ + 2μ
≤ 1

are positive material constants. The self-similar solution takes the form

x�(r) =
(
2c

K

)2/3
ϑ

r
, y�(r) = 1

2
, z�(r) = 1.

We call a solution of (4.3) regular if the corresponding solution of (4.1) is regular in the
sense of Definition 5. In particular the regular center condition (2.5) in the new variables
becomes

lim
r→0+

y(r) = lim
r→0+

z(r) = 1.



986 A. Alho, S. Calogero

Theorem 1. Let r0 ≥ 0, x0 > 0, y0 > 0, z0 ≥ 0 be given with y0 = z0 = 1 if
r0 = 0. There exists a unique regular solution (x(r), y(r), z(r)) ∈ C1([r0,∞)) of (4.3)
satisfying limr→r+0

(x(r), y(r), z(r)) = (x0, y0, z0). Moreover the following holds:

(i) if y0 ≤ 1, then y(r) < 1 and x(r) < x0, for all r > r0;
(ii) (x(r), y(r), z(r)) ∼ (x�(r), y�(r), z�(r)) as r → ∞.

Proof. Local existence and uniqueness of regular solutions in a right interval [r0, r0 + ε)

for some ε > 0 follows by standard ODE theory when r0 > 0, while for r0 = 0 it
follows by results proved e.g. in [24] (see also [19] for a detailed proof of a similar result
in the general relativistic case). Moreover, the solution can be continued uniquely up to
R > r0 + ε as long as inf(r0,R) y(r) > 0, sup(r0,R) y(r) < ∞, sup(r0,R) x(r) < ∞ and
sup(r0,R) z(r) < ∞. As shown by the dynamical systems analysis below, these bounds
are verified a priori for all R > r0, hence the proof of the first statement of the theorem
will follow a posteriori by this analysis.

Let r > r0, u(r) = r x(r), and introduce the new independent variable ξ by

d

dξ
= r y

d

dr
.

The system (4.3) in the new variables becomes the autonomous dynamical system

du

dξ
= −u(1− 2y)y,

dy

dξ
= (a + by + y2)(1− y) − u2yz,

dz

dξ
= 3y2(1− z). (4.4)

Note that u = 0 and z = 1 are invariant surfaces for the dynamical system (4.4).
Moreover, since

(
dy

dξ

)
y=0

= a > 0,

(
dz

dξ

)
z=0

= 3y2,

then V = (0,∞)3 is a forward invariant set. As (dy/dξ)|y=1 < 0 on V , the region
V∗ = (0,∞)×(0, 1)×(0,∞) is also forward invariant, which in particular using (4.3a)
proves the claim (i) in the theorem.

We now show that z → 1 as ξ → ∞ along any orbit of (4.4). In fact, if γ =
(u(ξ), y(ξ), z(ξ)) is an orbit in the region {z > 1}, then z(ξ) is decreasing, while if
γ ∈ {z < 1}, then z(ξ) is increasing. Hence, the z-component of any orbit must have a
limit. If this limit is not 1, then it must hold y(ξ) → 0, as ξ → ∞, but this is impossible
because (dy/dξ)|y=0 = a > 0.We conclude that theω-limit set of any orbit γ coincides
with the ω-limit set of the projection of γ on the surface z = 1. Hence we can restrict
to study the 2-dimensional dynamical system induced by (4.4) on z = 1, which is

du

dξ
= −u(1 − 2y)y,

dy

dξ
= (a + by + y2)(1 − y) − u2y. (4.5)

Let U = (0,∞)2 and let � be the set of all orbits γ of (4.5) such that γ ∩U is not empty.
Since U is forward invariant, then for all γ ∈ � there exists ξ0 ∈ R such that γ (ξ) ∈ U ,
for all ξ > ξ0. As we are only interested in positive solutions of (4.3), we can restrict
ourselves to study the behavior of the orbits γ ∈ �.

We now show that any orbit γ ∈ � must eventually be trapped in the region U∗ =
(0,∞) × (0, 1). If not, and since U∗ is forward invariant, then there would exist γ ∈ �,
γ (ξ) = (u(ξ), y(ξ)), such that γ ∩ U∗ is empty. Thus, y(ξ) > 1 for all sufficiently
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large ξ ∈ R and so u(ξ) → ∞ as ξ → ∞. In particular there exists ξ0 ∈ R such that
u(ξ) > 1, for all ξ > ξ0. Hence, dy/dξ ≤ −y, that is y(ξ) ≤ C exp(−ξ), for ξ > ξ0,
where C > 0 is a numerical constant, which leads to the contradiction that y(ξ) < 1 for
ξ large.

The dynamical system (4.5) has two fixed points:

P : (uP , yP ) = 1

2

(√
1 + 4a + 2b, 1

)
, Q : (uQ, yQ) = (0, 1).

The fixed point P is an hyperbolic sink and corresponds to the self-similar solution (4.2),
while the fixed point Q is an hyperbolic saddle, with the unstable direction pointing
towards the interior of U∗. In particular, Q is the source of one only interior orbit. It is
easy to show that this orbit corresponds to the solutions of (4.1) with regular center, but
we shall not make use of this fact. The claim (ii) in the theorem has now been reduced to
the statement that the fixed point P is the ω-limit of all orbits γ ∈ � of (4.5). To prove
this we begin by showing that there are no periodic orbits within U∗. Let v(u, y) be the
vector field in the right hand side of (4.5). We have

div v(u, y) = b − a + y − 2by − u2 − y2.

If λ ≤ 2μ we estimate

div v(u, y) ≤ b − a + y(1 − 2b) = − 2λ

λ + 2μ
+

λ − 2μ

λ + 2μ
y < 0, (u, y) ∈ U∗.

If λ > 2μ we estimate

div v(u, y) ≤ 1 + b − a = 2μ − λ

λ + 2μ
< 0, (u, y) ∈ U∗.

Hence, div v(u, y) < 0 for all (u, y) ∈ U∗ and thus, by the Bendixson-Dulac theorem,
there are no periodic orbits within U∗. Next define

D = {(u, y) : (u − uP )2 + (y − yP )2 < 1/2}.
We now show that the open region D∩U∗ is forward invariant (see Fig. 1). As we already
know that U∗ is forward invariant, it suffices to prove that

(
d

dξ
[(u − uP )2 + (y − yP )2]

)
∂D∩U∗

< 0.

A simple computation shows that

d

dξ
[(u − uP )2 + (y − yP )2] = 2y(u − uP )2(y − yP )

−(y − yP )2(4a + y(2y + 2b − 1)).

Using a ≥ 1 and b ≤ 1 we find

4a + y(2y + 2b − 1) ≥ 4a − (2b − 1)2

8
≥ 4a − 1

8
≥ 31

8
.
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P

Q

uP − 1
2 uP + 1

2

∂D ∩ U∗

y

y = 1

u

Fig. 1. All orbits of the dynamical system (4.4) entering the region U = (0, ∞)2 are eventually trapped in
the region D ∩ U∗
.

Hence
(

d

dξ
[(u − uP )2 + (y − yP )2]

)
∂D∩U∗

≤ 2(1/2)3/2 − 31

8
(1/2) < 0.

We now prove that each orbit γ ∈ � must eventually be trapped within D ∩ U∗. If
not, and since D ∩ U∗ is forward invariant, then there would exist an orbit γ ∈ �,
γ (ξ) = (u(ξ), y(ξ)), such that, for all sufficiently large ξ , either 0 < u(ξ) < uP − 1/2
or u(ξ) > uP + 1/2, see Fig. 1. In the first case the orbit is positively bounded, hence
its ω-limit set must exist. However, due to the absence of periodic orbits and the local
properties of the fixed point Q described above, the Poincaré–Bendixson theorem entails
that no point in the region (0, uP − 1/2) × (0, 1) can be a ω limit point, hence no orbit
can be trapped in this region. In the second case, i.e., u(ξ) > uP +1/2 for all sufficiently
large ξ , we show that y(ξ) < 1/2, for ξ large enough. In fact,

(
dy

dξ

)
u>u p+1/2,1/2≤y<1

≤ 1

2
(1 + a + b) − 1

2
(u p + 1/2)2

= 1

2
(1/2 + b/2 − u p)

≤ 1

4
(1 + b − √

5 + 2b) < 0, for all 0 ≤ b ≤ 1.

Thus, each orbit γ ∈ � that satisfies u(ξ) > uP + 1/2 for large ξ must eventually be
trapped in the subregion where 0 < y < 1/2. Hence, du/dξ < 0 for large ξ , which
implies that the orbit is positively bounded. Thus, its ω-limit set should be non-empty,
but, again due to Poincaré–Bendixson’s theorem, this is not possible. We conclude that,
as claimed, each orbit intersecting γ ∈ � must eventually be trapped within D ∩U∗ and
so its ω-limit set must lie in this region. As the only possible ω-limit point in D ∩ U∗ is
the fixed point P , the proof is complete. ��
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Corollary 1. For all regular solutions of (4.1) there holds

p̄rad(r) := p̂rad(δ(r), η(r)) → −p0 = −3λ + 2μ

2
, as r → ∞.

With the results of Theorem 1 and Corollary 1 at hand we can now discuss the existence
of static, spherically symmetric, self-gravitating n-body distributions in the Seth model.
For this we shall need the following simple lemma.

Lemma 1. For the Seth model, the conditions prad(r) = 0 and δ(r) ≥ 0 hold simulta-
neously if and only if

η(r) ≤
(
3λ + 2μ

2λ

)3/2

, δ(r) = η(r)2/3

√
2λ

λ + 2μ

(
3λ + 2μ

2λ
− η(r)2/3

)1/2

. (4.6)

Moreover at all radii r > 0 such that prad(r) = 0 and δ(r) ≥ 0 there holds

p′
rad(r) = 2μ

r

3λ + 2μ

λ + 2μ
(η(r)2/3 − 1) − K

r2
m(r)δ(r). (4.7)

In particular if 0 < η(r) ≤ 1, then p′
rad(r) < 0, while if δ(r) = 0, then p′

rad(r) > 0.

Proof. The first statement follows by solving p̂rad(δ(r), η(r)) = 0 in terms of δ(r). As
to (4.7), we have, for all r > 0 such that prad(r) = 0,

p′
rad(r) = 2ptan(r)

r
− ρ(r)

m(r)

r2
= 2

p̂tan(δ(r), η(r))

r
− Kδ(r)

m(r)

r2
.

Substituting the formula (4.6) for δ(r) in p̂tan(δ(r), η(r)) completes the proof of
(4.7). ��
We can now prove the existence of static, self-gravitating balls in the Seth model.

Theorem 2. Let ρc > 0 be given. A unique static, self-gravitating elastic ball (ρ, prad,
ptan) in the Seth model with reference density K and central density ρ(0) = ρc exists if
and only if ρc > K. Moreover, if r1 > 0 is the radius of the ball, then ρ(r1) > 0 and the
following estimates hold:

√(
2λ

3λ + 2μ

) (
3M

4πK

)1/3

< r1 <

(
3M

4πK

)1/3

, M <
4π

3
ρcr

3
1 , (4.8)

where M = m(r1) > 0 is the total mass of the ball.

Proof. Let (ρ, prad, ptan) be a static, self-gravitating elastic ball in the Seth model satis-
fying ρ(0) = ρc. By definition it must hold that prad(0) > 0. Using η(r) → δc = ρc/K
as r → 0+, we have

prad(r) → p0

((ρc

K
)2/3 − 1

)
, as r → 0+,

which shows that the central radial pressure is positive if and only if ρc > K. This
concludes the proof of the “only if” portion of the theorem. To prove the logically
opposite statement, let (δ, η,m) ∈ C1((0,∞)) be the unique regular solution of (4.1)
satisfying δ(0) = η(0) = δc = ρc/K > 1 and m(0) = 0. Define ρ̄(r) = K δ(r),
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p̄rad(r) = p̂rad(δ(r), η(r)) and p̄tan(r) = p̂tan(δ(r), η(r)). It follows by Corollary 1
that there exists a unique r1 > 0 such that p̄rad(r1) = 0 and p̄rad(r) > 0, for r ∈ [0, r1).
Moreover

y(0) = δ(0)

η(0)
= 1,

hence by Theorem 1(i)

y(r) = δ(r)

η(r)
< 1, for all r > 0 (4.9)

and thus

p̄tan(r) = p̄rad(r) + p̄tan(r) − p̄rad(r)

= p̄rad(r) + μη(r)2/3(1 − y(r)) > p̄rad(r) ≥ 0, for r ∈ (0, r1].
Hence, (ρ, prad, ptan) = (ρ̄, p̄rad, p̄tan)Ir≤r1 defines a self-gravitating ball of radius r1
and mass M = m(r1), which is uniquely determined by ρc due to the uniqueness of the
solution (δ, η,m) of (4.3) with data δ(0) = η(0) = δc, m(0) = 0. If δ(r1) = 0, then
limr→r+1

p′
rad(r) > 0, see Lemma 1, which is clearly impossible. Hence, δ(r1) > 0, i.e.,

ρ(r1) > 0, must hold. Thus

η(r1) = M
4π
3 Kr31

<

(
3λ + 2μ

2λ

)3/2

,

which gives the lower bound in (4.8). As to the upper bound, we have

0 = p̂rad(δ(r1), η(r1)) = λη(r1)
2/3 +

λ + 2μ

2
η(r1)

−4/3δ(r1)
2 − p0

= η2/3(r1)[(p0 − λ)(y(r1)
2 − 1) + p0(1 − η(r1)

−2/3)].
Using p0 > λ and y(r1) < 1, see (4.9), we obtain 1 − η(r1)−2/3 > 0, i.e., η(r1) > 1,
which gives the upper bound in (4.8). Finally, Theorem 1(i) gives η(r1) < η(0) = ρc/K,
hence

M = m(r1) = 4π

3
K r31 η(r1) <

4π

3
ρcr

3
1 .

��
We now use a similar argument to prove the existence of single shells of Seth elastic
matter.

Theorem 3. A unique single static, self-gravitating elastic shell (ρ, prad, ptan) in the
Seth model with reference parameters K,S and inner radius r0 > 0 exists if and only if

rmin :=
(

2λ

3λ + 2μ

)1/2

S ≤ r0 < S. (4.10)

Moreover, ρ(r0) = 0 if and only if r0 = rmin, while the outer radius r1 of the shell
satisfies ρ(r1) > 0 and√

2λ

3λ + 2μ

(
S3 +

3M

4πK

)1/3

< r1 <

(
S3 +

3M

4πK

)1/3

, (4.11)

where M is the total mass of the shell.
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Proof. If a single shell with inner radius r0 > 0 exists, then it must hold

η(r0) =
( S
r0

)3

,

δ(r0) =
( S
r0

)2
√

2λ

λ + 2μ

(
3λ + 2μ

2λ
−

( S
r0

)2
)1/2

(i.e., prad(r0) = 0), (4.12a)

and

p′
rad(r0) = 2μ

r0

3λ + 2μ

λ + 2μ

[( S
r0

)2/3

− 1

]
> 0,

or
(
r0 = S and p′′

rad(S) ≥ 0
)
. (4.12b)

A simple computation shows that, if (4.12a) holds with r0 = S, then p′′
rad(S) = −4πK,

hence the second condition in (4.12b) is never satisfied together with (4.12a). Thus (4.12)
implies

1 <
S
r0

≤
(
3λ + 2μ

2λ

)1/2

,

which in turn is equivalent to (4.10). Now, given r0 satisfying (4.10), define η(r0) and
δ(r0) as in (4.12a), so that prad(r0) = 0 and p′

rad(r0) > 0. Let (δ, η,m) ∈ C1((r0,∞))

be the unique regular solution of (4.1) with initial data (δ(r0), η(r0),m(r0) = 0). Define
ρ̄(r) = K δ(r), p̄rad(r) = p̂rad(δ(r), η(r)) and p̄tan(r) = p̂tan(δ(r), η(r)). It follows by
Corollary 1 that there exists a unique r1 > 0 such that p̄rad(r1) = 0 and p̄rad(r) > 0,
for r ∈ (r0, r1). Moreover, using η(r0) > 1, and letting y(r0) = δ(r0)/η(r0), we have

0 = p̄rad(r0) = p̂rad(δ(r0), η(r0)) = λη(r0)
2/3 +

λ + 2μ

2
η(r0)

−4/3δ(r0)
2 − p0

= η2/3(r0)[(p0 − λ)(y(r0)
2 − 1)

+ p0(1 − η(r0)
−2/3)] > η2/3(r0)(p0 − λ)(y(r0)

2 − 1),

hence 0 < y(r0) < 1. By Theorem 1(i)

y(r) = δ(r)

η(r)
< 1, for all r > r0 (4.13)

and thus

p̄tan(r) = p̄rad(r) + p̄tan(r) − p̄rad(r)

= p̄rad(r) + μη(r)2/3(1 − y(r)) > p̄rad(r) ≥ 0, for r ∈ [r0, r1].
Hence, (ρ, prad, ptan) = (ρ̄, p̄rad, p̄tan)Ir0≤r≤r1 defines a self-gravitating shell supported
in the interval [r0, r1] andwithmassM = m(r1), which is uniquely determined by r0 due
to the uniqueness of the solution (δ, η,m) of (4.3) with initial data (δ(r0), η(r0),m(r0)).
The proof of (4.11) is identical to that of (4.8). In fact if ρ(r1) = 0, then Lemma 1 gives
limr→r+1

p′
rad(r) > 0, which is not possible. Hence

δ(r1) > 0, i.e. η(r1) =
( S
r1

)3

+
3M

4πKr31
<

(
3λ + 2μ

2λ

)3/2

,
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which gives the lower bound on r1. As to the upper bound, we have

0 = p̂rad(δ(r1), η(r1)) = λη(r1)
2/3 +

λ + 2μ

2
η(r1)

−4/3δ(r1)
2 − p0

= η2/3(r1)[(p0 − λ)(y(r1)
2 − 1) + p0(1 − η(r1)

−2/3)].
Using p0 > λ and y(r1) < 1, see (4.13), we obtain 1 − η(r1)−2/3 > 0, i.e., η(r1) > 1,
which gives the upper bound in (4.8). ��
The next theorem generalizes Theorem 3 to the case when the region surrounded by the
shell of Seth matter is not vacuum.

Theorem 4. Let n ∈ N, n > 1, and B1 + · · · + Bn be a n-body static, spherically
symmetric, self-gravitating matter distribution. Assume thatBn is a shell of Seth elastic
matter with Lamé coefficients λ,μ and with reference parameters K,S. Then the inner
radius r2n−2 of Bn satisfies

rmin :=
(

2λ

3λ + 2μ

)1/2

S ≤ r2n−2 < S. (4.14)

In particular S > r2n−3 must hold. Conversely, if rmin > r2n−3, then there exists
rmax ∈ (rmin,S) such that for all given r2n−2 ∈ [rmin, rmax) there exists a unique r2n−1 >

r2n−2 and a unique single shell Bn = (ρ, prad, ptan) of the given Seth elastic material
supported in the interval [r2n−2, r2n−1], such thatB1 + · · · +Bn is a static, spherically
symmetric, self-gravitating n-body matter distribution. Moreover ρ(r2n−2) = 0 if and
only if r2n−2 = rmin, while the outer radius r2n−1 of the elastic shell Bn satisfies
ρ(r2n−1) > 0 and√

2λ

3λ + 2μ

(
S3 +

3Mn

4πK

)1/3

< r2n−1 <

(
S3 +

3Mn

4πK

)1/3

, (4.15)

where Mn is the mass of Bn.

Proof. At the inner radius r2n−2 of Bn it must hold

η(r2n−2)=
( S
r2n−2

)3

, δ(r2n−2) =
( S
r2n−2

)2
√

2λ

λ + 2μ

(
3λ + 2μ

2λ
−

( S
r2n−2

)2
)1/2

,

so that prad(r2n−2) = 0, and

p′
rad(r2n−2) = 2μ

r2n−2

3λ + 2μ

λ + 2μ

[( S
r2n−2

)2

− 1

]

−K
∑n−1

k=1 Mk

r22n−2

δ(r2n−2) := F(r2n−2) ≥ 0,

fromwhich the necessary condition (4.14) follows immediately. Since F(rmin) > 0, then
by continuity there exists rmax ∈ (rmin,S) such that F(r) > 0, for all r ∈ [rmin, rmax).
Hence, provided S is so that rmin > r2n−3 and choosing r2n−2 ∈ [rmin, rmax), the
(unique) solution of (4.3) with initial data (η(r2n−2), δ(r2n−2),m(r2n−2) = M1 +
· · · Mn−1) gives rise to a shell supported in [r2n−2, r2n−1], where r2n−1 is the first ra-
dius at which the radial pressure vanishes (and which exists by Corollary 1). Finally, as
rmin ≤ r2n−2 < S, the proof of (4.15) is identical to the proof of (4.11). ��
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The previous theorem can be used to construct spherically symmetric, static, self-
gravitating n-body matter distributions in the Seth model recursively, which is particular
useful for, e.g., numerical simulations. In fact, suppose that B1 is a ball of Seth elastic
matter with Lamé coefficients (λ(1), μ(1)) andwith reference densityK(1). The existence
of such ball is proved in Theorem 2. Alternatively,B1 could be a single shell of the given
Seth material and with reference parameters (K(1),S(1)), see Theorem 3. The (outer)
radius r1 of B1 depends on the Lamé coefficients and the reference parameters of B1,
that is

r1 = r1(λ
(1), μ(1),K(1),S(1)).

By Theorem 4 we can add a shellB2 of Seth matter aroundB1 if the Lamé coefficients
(λ(2), μ(2)) and the reference inner radius S(2) of B2 satisfy

(
2λ(2)

3λ(2) + 2μ(2)

)1/2

S(2) > r1.

The outer radius of B2 depends on the Lamé coefficients and the reference parameters
of B1,B2, that is

r3 = r3(λ
(1), λ(2), μ(1), μ(2),K(1),K(2),S(1),S(2)).

Similarly, we can place a shellB3 of Sethmatter aroundB1+B2 if the Lamé coefficients
(λ(3), μ(3)) and the reference parameters (K(3),S(3)) of B3 satisfy

(
2λ(3)

3λ(3) + 2μ(3)

)1/2

S(3) > r3,

and so on. The general sufficient condition to add a shellB j+1 of Seth matter around a j-
bodymatter distributionB1+· · ·+B j of Sethmatter, j ≥ 1, is that the Lamé coefficients
(λ( j+1), μ( j+1)) and the reference parameters (K( j+1),S( j+1)) of B j+1 satisfy

(
2λ( j+1)

3λ( j+1) + 2μ( j+1)

)1/2

S( j+1) > r2 j−1,

where

r2 j−1 = r2 j−1(λ
(1), . . . , λ( j), μ(1), . . . , μ( j),K(1), . . . ,K( j),S(1), . . . ,S( j))

is the outer radius of the shellB j . We remark that this result applies in particular when
the bodies are made of the same Seth elastic material, i.e., when they all have the same
Lamé coefficientsλ,μ. In this caseTheorem4entails that a static, spherically symmetric,
n-body matter distribution exists provided the reference inner radii S(1), . . . ,S(n) of the
bodies satisfy

S( j) >

(
3λ + 2μ

2λ

)1/2

r2 j−3(λ, μ,K(1), . . . ,K( j−1),S(1), . . . ,S( j−1)), j = 2, . . . , n.

In particular, the bodies are allowed to have the same reference density, i.e.,

K(1) = · · · = K(n) = K.
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A. Appendix: Static Self-Gravitating Elastic Matter

We begin by recalling how the stress tensor σ of an elastic body is defined in the
Lagrangian formulation of continuum mechanics. Let B ⊂ R

3 be a non-empty, open,
bounded, connected set with smooth boundary. The region B is called material manifold
and corresponds to the domain occupied by the body in a given reference state. A static
(i.e., time independent) deformation of the body is described by a C2 map ψ : B → R

3,
such that ψ is injective (except possibly at the boundary) and preserves orientation, i.e.,
det F > 0, where F = ∇ψ is the deformation gradient. The region ψ(B) identifies the
domain occupied by the matter distribution in its physical state, i.e., after it has been
deformed. On the material manifold B we define two matter fields: a reference mass
density ρref ∈ C(B) such that infB ρref > 0 and a 2-tensor field � ∈ C1(B), called the
first Piola-Kirchhoff stress tensor, satisfying

DIV� (X) = Gρref(X)

∫
B

ρref(Y )
ψ(X) − ψ(Y )

|ψ(X) − ψ(Y )|3 dY, X ∈ B. (A.1)

Here G = 0 when the self-induced gravitational force acting on the body is neglected,
otherwiseG equals Newton’s gravitational constant, see [3,5]. The body is called elastic
if �(X) = �̂(X, F(X)), for all X ∈ B. For elastic bodies, the PDE (A.1) transforms
into a second order PDE on the deformation map, which has to be supplemented with
appropriate boundary conditions, depending on the specific problem under study. For
instance, the zero-traction boundary conditions describing an isolated body surrounded
by vacuum are the non-linear Neumann-type boundary conditions

�̂(X, F(X)) · N = 0 on ∂B, (A.2)

where N is the outward unit normal vector field on the boundary ∂B, see [3]. The
mass density ρ and the Cauchy stress tensor σ at the point x = ψ(X) in the physical
(deformed) state of the body are given by

ρ(ψ(X)) = ρref(X)

det F(X)
, σ (ψ(X)) =

(
�̂(X, F(X)) · FT (X)

det F(X)

)
. (A.3)

The definition of ρ ensures that the mass of any subregion of the body is preserved by the
deformation, while the definition of σ ensures that (1.1) is satisfied for x ∈ � := ψ(B).
Moreover, provided the boundary of � is sufficiently regular, so that the normal field n
on ∂� is well defined, then the boundary conditions (A.2) transform into σ ·n = 0, which
in the spherically symmetric case is equivalent to the vanishing of the radial pressure on
the physical boundary.
An elastic body is called homogeneous if ρref(X) = K > 0 (constant) and �(X) =
�̂(F(X)). An homogeneous elastic body is said to be isotropic if �̂(A · F) = �̂(F), for
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all A ∈ SO(3), and frame indifferent if �̂(A · F) = A · �̂(F), for all A ∈ SO(3). In the
following, an elastic body which is homogeneous, isotropic and frame indifferent will
be called perfect elastic body for short.
The reference state of a perfect elastic body is called a natural state if �̂(I) = 0, where I
denotes the 3×3 identity matrix, otherwise the reference state is said to be pre-stressed.
An homogeneous elastic body is called hyperelastic if there exists a functionW such that
�̂(F) = ∂FW (F). The functionW is called stored energy function of the body; without
loss of generality, it is assumed thatW (I) = 0. In the case of perfect hyperelastic bodies
the stored energy function can be written in the form W (F) = �(λ1, λ2, λ3), where λi ,
i = 1, 2, 3, are the principal stretches, that is to say, λ21, λ

2
2, λ

2
3 are the eigenvalues of

the (right) Cauchy–Green tensor

C = FT · F.

For consistency with linear elasticity (i.e., Hooke’s law) in the infinitesimal strain limit,
the stored energy function W (F) = �(λ1, λ2, λ3) of hyperelastic bodies should satisfy

∂2�

∂λi∂λ j
(1, 1, 1) = λ + 2μδi j (A.4)

for some constants λ,μ, called Lamé coefficients [18].

A.1. Examples of elastic models. In the following examples we denote J = det F =
det∇ψ , and use the Almansi strain tensor A and the Green strain tensor E defined as

A = 1

2
(I − C−T ), E = 1

2
(C − I).

The principal invariants of the Cauchy–Green tensor are given by

i1(C) = Tr(C) = λ21 + λ22 + λ23,

i2(C) = 1

2

[
(Tr(C))2 − Tr(C2)

]
= λ21λ

2
2 + λ21λ

2
3 + λ22λ

2
3,

i3(C) = det (C) = J 2 = λ21λ
2
2λ

2
3,

while for the Almansi tensor we have

i1(A) = 1

2

[
3 −

(
1

λ21
+

1

λ22
+

1

λ23

)]
,

i2(A) = 1

4

(
1

λ21λ
2
2

+
1

λ21λ
2
3

+
1

λ22λ
2
3

+
1

λ21
+

1

λ22
+

1

λ23

)
;

we shall not need the expression of i3(A).
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Sethmodel The Sethmodel postulates a linear relation between theCauchy-stress tensor
and the Almansi tensor, that is

σ(ψ(X)) = λi1(A(X))I + 2μA(X), (A.5)

where the Lamé coefficients satisfy μ > 0, 3λ + 2μ > 0. It follows by (A.3) that the
first Piola-Kirchoff stress tensor of Seth materials is given by

�̂(F) = J (λi1(A)I + 2μA) · F−T .

The Seth model is not hyperelastic.

Saint-Venant-Kirchhoff model The Saint-Venant-Kirchhoff model postulates a linear
relation between the second Piola-Kirchhoff stress tensor and the Green strain tensor,
namely

F−1 · �̂(F) = λTr(E)I + 2μE .

This model is hyperelastic with stored energy function given by

W (F) = λ + 2μ

8
(i1(C) − 3)2 + μ(i1(C) − 3) − μ

2
(i2(C) − 3)

= λ

8
(

3∑
i=1

λ2i − 3)2 +
μ

4

3∑
i=1

(λ2i − 1)2,

where the Lamé coefficients satisfy μ > 0, 3λ + 2μ > 0.

Quasi-linear Signorini model The first Piola-Kirchoff stress tensor of the (quasi-linear)
Signorini model is given by

�̂(F) = J S(A) · F−T , i.e., σ(ψ(X)) = S(A(X)),

where S(A) is given in terms of the Almansi tensor by

S(A) = [λi1(A) +
1

2
(λ + μ)i1(A)2]I + 2[μ − (λ + μ)i1(A)]A,

where the Lamé coefficients λ,μ satisfyμ > 0, 9λ+5μ > 0. This model is hyperelastic
with stored energy function given by

W (F) = J [1
2
(λ + μ)i1(A)2 + μ(1 − i1(A))] − μ

= 1

8
λ1λ2λ3

⎡
⎣4μ

(
3∑

i=1

λ−2
i − 1

)
+ (λ + μ)

(
3∑

i=1

λ−2
i − 3

)2⎤
⎦ − μ. (A.6)
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Hadamard model The stored energy function of Hadamard materials has the form

W (F) = 1

2
(α(i1(C) − 3) + β(i2(C) − 3) + h(i3(C)) − h(1))

= 1

2
(α(λ21 + λ22 + λ23 − 3) + β(λ21λ

2
2 + λ21λ

2
3 + λ22λ

2
3 − 3) + h(λ21λ

2
2λ

2
3) − h(1)),

(A.7)

where α, β are constant and h is a function. The natural state condition ∂FW (I) = 0
and the compatibility conditions (A.4) with linear elasticity are satisfied if and only if

h′(1) = −(α + 2β), h′′(1) = λ + 2μ

2
, α + β = μ.

Incompressiblematerials All hyperelasticmaterials considered above are compressible.
By adding the constraint J = λ1λ2λ3 = 1 in the stored energy function, one obtains the
incompressible version of each material. For instance, the stored energy function of the
incompressible Hadamard materials is

W (F) = 1

2
(α(λ21 + λ22 + λ23 − 3) + β(λ21λ

2
2 + λ21λ

2
3 + λ22λ

2
3 − 3), λ1λ2λ3 = 1. (A.8)

Materials with the stored energy function (A.8) are also calledMooney-Rivlin materials,
see [4].

A.2. Spherically symmetric elastic bodies. In this and the next section we show that
the definition of homogeneous elastic bodies in Lagrangian coordinates is formally
equivalent, in spherical symmetry, to Definition 2 for balls and Definition 3 for shells in
physical space.
A deformation is spherically symmetric if there exists a function ξ : [0,∞) → R such
that

ψ(X) = ξ(R)
X

R
, where R = |X |.

Moreover, the material manifold B is either a ball of radius T > 0, i.e.,

B = {X ∈ R
3 : 0 ≤ R < T },

or a shell with inner radius S and outer radius T , i.e.,

B = {X ∈ R
3 : S < R < T }.

When B is a ball, regularity of ψ up to the center requires ξ(0) = 0, i.e., a ball cannot
be deformed to a shell by a smooth deformation [2].
The deformation gradient F = ∇ψ has the form

FI J (X) = n(R)

τ (R)2

XI X J

R2 + τ(R)

(
δI J − XI X J

R2

)
, (A.9)

where

τ(R) = ξ(R)

R
, n(R) := det F(R) = τ(R)2ξ ′(R). (A.10)



998 A. Alho, S. Calogero

The requirement det F > 0 forces the radial deformation ξ to be a monotonically
increasing function; in particular ξ is invertible. For homogeneous materials, the mass
density in physical space becomes

ρ(ψ(X)) = K
n(R)

.

Hence, denoting x = ψ(X) and r = |x |, we have

ρ(r) = K
n(ξ−1(r))

. (A.11)

The most general spherically symmetric Piola-Kirchhoff stress tensor � has the form

�I J (X) = −Prad(R)
XI X J

R2 − Ptan(R)

(
δI J − XI X J

R2

)
,

for some functions Prad, Ptan. In particular, spherically symmetric bodies are necessarily
isotropic and frame indifferent. For homogeneous elastic bodies, the principal pressures
Prad and Ptan must be functions of the deformation gradient, and therefore can be written
as

Prad(R) = P̂rad(n(R), τ (R)), Ptan(R) = P̂tan(n(R), τ (R)).

Substituting in (A.3) we obtain the stress tensor at the point ψ(X) in physical space:

σI J (ψ(X)) = − P̂rad(n(R), τ (R))

τ (R)2

XI X J

R2 − τ(R)

n(R)
P̂tan(n(R), τ (R))

(
δI J − XI X J

R2

)
.

(A.12)
Using ψ−1(x)/ξ−1(r) = x/r we obtain

σi j (x) = −prad(r)
xi x j
r2

− ptan(r)
(
δi j − xi x j

r2

)
,

where

prad(r) = τ(ξ−1(r))−2 P̂rad(n(ξ−1(r)), τ (ξ−1(r))),

ptan(r) = τ(ξ−1(r)

n(ξ−1(r))
P̂tan(n(ξ−1(r)), τ (ξ−1(r))).

As n(ξ−1(r)) = K/ρ(r) and τ(ξ−1(r)) = r/ξ−1(r), we find that

prad(r) = p̂rad(δ(r), η(r)), ptan(r) = p̂tan(δ(r), η(r)),

where

δ(r) = ρ(r)

K , η(r) =
(

ξ−1(r)

r

)3

, (A.13)

and

p̂rad(δ, η) = η2/3 P̂rad(δ
−1, η−1/3), p̂tan(δ, η) = δ

η1/3
P̂tan(δ

−1, η−1/3). (A.14)
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Moreover

η′(r) = −3
η(r)

r
+ 3η(r)2/3

(ξ−1)′(r)
r

= −3
η(r)

r
+ 3η(r)2/3(rξ ′(ξ−1(r))−1.

From (A.10) we have ξ ′(ξ−1(r)) = η(r)2/3n(ξ−1(r)), hence, by (A.11),

(r3η(r))′ = 3r2
ρ(r)

K , (A.15)

When the body in physical space is a ball with radius r1, then (A.15) gives

η(r) = 3
∫ r
0 ρ(s)s2 ds

Kr3
= m(r)

4π
3 Kr3

r ∈ (0, r1), (A.16)

where m(r) is the local mass of the ball in physical space. When the body in physical
space is a shell supported in the interval [r0, r1], r0 > 0, then

η(r) = η(r0)
(r0
r

)3
+
3
∫ r
r0

ρ(s)s2 ds

Kr3
= η(r0)

(r0
r

)3
+

m(r)
4π
3 Kr3

r ∈ (r0, r1),

where m(r) is the local mass of the shell in physical space. Having assumed that a
shell in physical space can only form when the material manifold itself is a shell, then
r0 = ξ(S), hence

η(r0) =
(

ξ−1(r0)

r0

)3

=
( S
r0

)3

⇒ η(r) =
(S
r

)3

+
m(r)
4π
3 Kr3

, r ∈ (r0, r1). (A.17)

Remark. Note that we do not allow S = 0, i.e., we disregard the possibility that a shell
in physical space is obtained by deforming a ball in the reference state. This choice is
motivated both on physical grounds, since gravity cannot create a cavity in a ball, and
on mathematical grounds, since, as mentioned above, a deformation producing a shell
from a ball would necessary be discontinuous at the center of the ball.

Example: Sethmodel TheAlmansi strain tensor A = 1
2 (I−C−T ) in spherical symmetry

becomes

AI J = 1

2
(δI J − (F−1)2I J )

= 1

2

(
1 − τ(R)4

n(R)2

)
XI X J

R2 +
1

2

(
1 − 1

τ(R)2

) (
δI J − XI X J

R2

)
.

Hence

i1(A) = 1

2

(
3 − τ(R)4

n(R)2
− 2

τ(R)2

)
.

Replacing in (A.5) we have

σ(ψ(X)) =
(
3λ + 2μ

2
− λ + 2μ

2

τ(R)4

n(r)2
− λ

τ(R)2

)
XI X J

R2



1000 A. Alho, S. Calogero

+

(
3λ + 2μ

2
− λ + μ

τ(R)2
− λ

2

τ(R)4

n(R)2

) (
δI J − XI X J

R2

)
.

Comparing with (A.12) we see that

P̂rad(n, τ ) = λ +
λ + 2μ

2

τ 6

n2
− 3λ + 2μ

2
τ 2,

P̂tan(n, τ ) = λ

2

τ 3

n
+ (λ + μ)

n

τ 3
− 3λ + 2μ

2

n

τ
.

Using the preceding equations in (A.14) leads to the equations of state (3.1) in physical
space.

A.3. Hyperelastic materials. In this section we focus on the important case of homoge-
neous hyperelastic materials, which means that the the first Piola-Kirchhoff stress tensor
can be written in the form

�(X) = ∂FW (F(X)), that is �̂(F) = ∂FW (F)

for some function W (F), called the stored energy function. As in spherical symmetry
anymaterial is frame indifferent and isotropic, we can restrict to a stored energy function
of the form

W (F) = �(λ1, λ2, λ3)

where λ1, λ2, λ3 > 0 are the principal stretches, i.e., λ21, λ
2
2, λ

2
3 are the eigenvalues of

the Cauchy–Green tensor C = FT · F . Moreover, in spherical symmetry we have

CI J (X) = n(R)2

τ(R)4

XI X J

R2 + τ(R)2
(

δI J − XI X J

R2

)
,

hence the principal stretches are

λ1 = n(R)

τ (R)2
, λ2 = λ3 = τ(R)

and therefore we can restrict to stored energy functions of the form

W (F) = �(λ1, λ2, λ2) = φ(λ1, λ2). (A.18)

Note that λ1, λ2 = λ3 are the eigenvalues of F and we can rewrite (A.9) as

FI J (X) = λ1(R)
XI X J

R2 + λ2(R)

(
δI J − XI X J

R2

)
. (A.19)

Lemma 2. Thefirst Piola-Kirchhoff stress tensor of homogeneous hyperelasticmaterials
in spherical symmetry is given by

�(X) = −Prad(R)
XI X J

R2 − Ptan(R)

(
δI J−

XI X J

R2

)
,

where

Prad(R) = −∂1φ(λ1(R), λ2(R)), Ptan(R) = −1

2
∂2φ(λ1(R), λ2(R)).
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Proof. We have

� = (∂1φ)
∂λ1

∂F
+ (∂2φ)

∂λ2

∂F
. (A.20)

Using that ∂A det A = (det A)A−1 and ∂ATrA = I we obtain

1

λ1

∂λ1

∂F
+

2

λ2

∂λ2

∂F
= F−1,

∂λ1

∂F
+ 2

∂λ2

∂F
= I.

It follows that

∂λ1

∂F
= − λ1

λ2 − λ1
(I − λ2F

−1),
∂λ1

∂F
= λ2

2(λ2 − λ1)
(I − λ1F

−1).

As

(F−1)I J = 1

λ1

XI X J

R2 +
1

λ2

(
δI J − XI X J

R2

)
,

we further have

∂λ1

∂FI J
= XI X J

R2 ,
∂λ2

∂FI J
= 1

2

(
δI J − XI X J

R2

)
.

Replacing in (A.20) yields the result. ��
As in spherical symmetry F = FT is given by (A.19) and det F = λ1λ

2
2, (A.3) gives

σI J (ψ(X)) = ∂1φ(λ1(R), λ2(R))

λ2(R)2

XI X J

R2 +
1

2

∂2φ(λ1(R), λ2(R))

λ1(R)λ2(R)

(
δI J − XI X J

R2

)
.

Hence, using that ψ−1(x)/ξ−1(r) = x/r , we obtain

σi j (x) = −prad(r)
xi x j
r2

− ptan(r)
(
δi j − xi x j

r2

)
,

where

prad(r) = −∂1φ(λ1(ξ
−1(r)), λ2(ξ

−1(r))),

λ2(ξ
−1(r))2

, ptan(r) = −∂2φ(λ1(ξ
−1(r)), λ2(ξ

−1(r)))

2λ1(ξ−1(r))λ2(ξ−1(r))
.

Defining δ(r) = ρ(r)/K, η(r) = 1/τ(ξ−1(r))3 = 1/λ2(ξ−1(r))3 as in (A.13) and
using that, by (A.11),

λ1(ξ
−1(r)) = η(r)2/3

δ(r)
,

we obtain

prad(r) = p̂rad(δ(r), η(r)), p̂tan(r) = ptan(δ(r), η(r))

where

p̂rad(δ, η) = −η2/3∂1φ(δ−1η2/3, η−1/3), p̂tan(δ, η) = −1

2

δ

η1/3
∂2φ(δ−1η2/3, η−1/3).
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Finally, letting

w(δ, η) = φ(δ−1η2/3, η−1/3)

we obtain

p̂rad(δ, η) = δ2∂δw(δ, η), p̂tan(δ, η) = p̂rad(δ, η) +
3

2
δη∂ηw(δ, η).

Moreover, due to (A.18) and the compatibility conditions (A.4) with linear elasticity, we
have

∂21φ(1, 1) = λ + 2μ, ∂22φ(1, 1) = 4λ + 4μ, ∂1∂2φ(1, 1) = 2λ.

For materials satisfying the natural state condition (2.3a) the previous equations be-
come (2.3b)–(2.3c).

Examples For the quasi-linear Signorini model in spherical symmetry we have

W (F) = φ(λ1, λ2) = λ1λ
2
2

8

⎡
⎣4μ

(
1

λ21
+

2

λ22
− 1

)
+ (λ + μ)

(
1

λ21
+

2

λ22
− 2

)2
⎤
⎦ − μ.

Hence, w(δ, η) = φ(δ−1η2/3, η−1/3) is given by

w(δ, η) = 1

δ

[
1

8

(
δ2

η4/3
+ 2η2/3 − 3

)2

(λ + μ) +
μ

2

(
δ2

η4/3
+ 2η2/3 − 1

)]
− μ.

Similarly, one obtains the other stored energy functions presented in Sect. 3.

B. Appendix: Variational Formulation for Hyperelastic Materials

In this appendix we show that the Eq. (2.1) for static, spherically symmetric, self-
gravitating hyperelastic bodies admits a variational formulation. It is convenient to define

�(ρ, η) = K−1w(ρ/K, η),

so that (2.2) becomes

prad(r) = ρ(r)2∂ρ�(ρ(r), η(r)), ptan(r) = prad(r) +
3

2
ρ(r)η(r)∂η�(ρ(r), η(r)).

(B.1)
Moreover, we assume for simplicity that r ∈ (0,∞); a similar argument applies to the
case r ∈ (r0,∞) with r0 > 0. Hence the function η is given by

η(r) = m(r)
4π
3 Kr3

, m(r) = 4π
∫ r

0
ρ(s)s2 ds, r > 0.

Consider the functional

E[ρ] =
∫ ∞

0
ρ(r)�(ρ(r), η(r))r2 dr − 1

8π

∫ ∞

0

(
m(r)

r2

)2

r2 dr.
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If ρ0 is a minimizer and we set ρτ (r) = ρ0(r) + τφ(r), where φ is a smooth function
with compact support, we obtain

0 =
(

d

dτ
E[ρτ ]

)
τ=0

=
∫ ∞

0
∂ρ(ρ�)(ρ0(r), η0(r))φ(r)r2 dr

+
∫ ∞

0

3ρ0(r)

K ∂η�(ρ0(r), η0(r))

(
1

r2

∫ r

0
s2φ(s) ds

)
r dr

−
∫ ∞

0

m0(r)

r2

(∫ r

0
s2φ(s) ds

)
dr.

Exchanging the order of integration in the last integral we find
∫ ∞

0

m0(r)

r2

(∫ r

0
s2φ(s) ds

)
dr = −

∫ ∞

0
V0(s)φ(s)s2ds,

where V0(s) = − ∫ ∞
s m0(r)/r2 dr is the potential induced by the minimizer. Similarly

the second integral is
∫ ∞

0

3ρ0(r)

K ∂η�(ρ0(r), η0(r))

(
1

r2

∫ r

0
s2φ(s) ds

)
r2 dr =

∫ ∞

0
�0(s)φ(s)s2 ds,

where

�0(s) =
∫ ∞

s

3ρ0(r)

K ∂η�(ρ0(r), η0(r))
dr

r
.

Since φ is arbitrary, it must hold that ∂ρ(ρ�)(ρ0(r), η0(r)) + �0(r) + V0(r) = 0.
Differentiating with respect to r we obtain

d

dr
∂ρ(ρ�)(ρ0(r), η0(r)) − 3

r

ρ0(r)

K ∂η�(ρ0(r), η0(r)) +
d

dr
V0(r) = 0. (B.2)

Letting p0rad(r) = ρ0(r)2∂ρ�(ρ0(r), η0(r)) be the radial pressure of the minimizer and
using that

η′(r) = 3

r

(ρ(r)

K − η(r)
)
,

we have

d

dr
[∂ρ(ρ�)(ρ0(r), η0(r))] = −3

η0(r)

r
∂η�(ρ0(r), η0(r)) +

3

r

ρ0(r)

K ∂η�(ρ0(r), η0(r))

+
1

ρ0(r)

d

dr
p0rad(r).

Replacing in (B.2) and using d
dr V0(r) = m0(r)/r2, as well as prad − ptan = − 3

2ρη∂η�,
we obtain

1

ρ0(r)

d

dr
p0rad(r) +

2

r

p0rad(r) − p0tan(r)

ρ0(r)
+
m0(r)

r2
= 0,

which is (2.1) inside the support of the matter.
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