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Abstract: In this paper, we define a quantum analogue of the notion of empirical mea-
sure in the classical mechanics of N -particle systems. We establish an equation govern-
ing the evolution of our quantum analogue of the N -particle empirical measure, and we
prove that this equation contains the Hartree equation as a special case. Applications
to the mean-field limit of the N -particle Schrödinger equation include an O(1/

√
N )

convergence rate in some appropriate dual Sobolev norm for the Wigner transform of
the single-particle marginal of the N -particle density operator, uniform in � ∈ (0, 1]
provided that V and (−�)3/2+d/4V have integrable Fourier transforms.

1. Introduction and Main Result

1.1. The mean-field limit for the dynamics of N identical particles. In classical mechan-
ics, the dynamics of N identical, interacting point particles is governed by Newton’s
second law of motion written for each particle. One obtains in this way a system of
6N coupled ordinary differential equations, set on a 6N -dimensional phase space. For
large values of N , solving such a differential system becomes impracticable. One way
of reducing the complexity of this problem is to solve the Liouville equation for the
phase space number density of the “typical particle”, replacing the force exerted on that
particle by the “self-consistent” force, also called the “mean-field force”, computed in
terms of the solution of the Liouville equation itself. Themean-field equation so obtained
is the Vlasov equation (see equation (10) below). When the force field derives from a
C1,1 potential, the validity of this approximation has been proved in [10,12,35]. The
case of the Coulomb (electric), or of the Newton (gravitational) potential remains open
at the time of this writing, in spite of significant progress on this program: see [24,25]
for singularities weaker than the Coulomb or Newton 1/r singularity at the origin, or
[29,30] for the Coulomb potential with a vanishing regularization as the particle number
N tends to infinity.
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All these results are based on a remarkable property of the phase-space empirical
measure of the N -particle system governed by a system of coupled ordinary differential
equations. This property, first established by Klimontovich (see [27] and references
therein), is stated as Proposition 1.2 below. See also [33] for another approach, which
avoids using the nice properties of this empirical measure, and applies to more general
dynamics (involving jump or diffusion processes for instance).

In quantum mechanics, the analogous mean-field approximation goes back to the
work of Hartree [23]. Rigorous derivations of the time-dependent Hartree equation from
the quantum N -body problem have been obtained in the case of bounded potentials by
Spohn [40] (for pure states, using the BBGKY hierarchy)—see also [3] for a discussion
of the case ofmixed states following Spohn’s very concise argument. The case of singular
potentials, including the Coulomb potential, is treated in [13] (see also [4]) in terms of
the BBGKY hierarchy, in [28,37] by a simpler argument in the case of pure states,
and in [7,11,39] with second quantization techniques (using in particular an important
observation on coherent states due to Hepp [26] in the case of bounded potentials, and
extended by Ginibre and Velo [15,16] for singular potentials). All these results assume
that the value of the Planck constant is kept fixed while N tends to infinity. This is also
true in the special case of the Fermi-Dirac statistics which involves a mean-field scaling
of the interaction leading, after some appropriate rescaling of time, to an effective Planck
constant � ∼ N−1/3: see [5,34,38].

On the other hand, the system ofNewton’s equations governs the asymptotic behavior
of the quantum N -body problem for all N kept fixed as � tends to zero. Equivalently,
the asymptotic behavior of solutions of the von Neumann equation in the classical limit
is described by the Liouville equation. Since the von Neumann equation governs the
evolution of time-dependent density operators on someHilbert space, while the Liouville
equation describes the dynamics of a probability density in phase space, the classical limit
can be formulated in terms of theWigner function, associated to any quantum observable
as recalled in Appendix B. There is a huge literature on this subject; see for instance
[31] for a proof of the weak convergence of the Wigner function of a solution of the von
Neumann equation to a positive measure, solution of the Liouville equation, in the limit
as � → 0. This result holds true for all C1,1 potentials and a very general class of initial
data (without any explicit dependence in �). Likewise, the Vlasov equation governs the
asymptotic behavior of solutions of the Hartree equation (equation (3) below) for a very
large class of potentials including theCoulombcase: see again [31] for a result formulated
in terms of weak convergence of Wigner functions. For regular potentials, more precise
information on the convergence of Wigner functions can be found in [1,2,6].

In otherwords, themean-field limit has been established rigorously both for eachfixed
� > 0 and for the vanishing � limit of the quantum N -particle dynamics independently.
This suggests the problem of obtaining a uniform in � ∈ (0, 1] convergence rate estimate
for the mean-field limit of the quantum N -particle dynamics. A positive answer to this
question, valid without restriction on the initial data, would justify in particular using
the Vlasov instead of the Hartree equation for large systems of heavy particles.

The first results in this direction are [36] (where the mean-field limit is established
termby term in the semiclassical expansion) and [22] forWKBstates along distinguished
limits of the form N → +∞ with � ≡ �(N ) → 0. See also [14] for results in the case
of very special interactions, not defined in terms of a potential.

If both the interaction potential and the initial data are analytic, the BBGKY ap-
proach leads to a uniform in � ∈ (0, 1] convergence rate estimate for the mean-field
limit, of optimal order O(1/N ): see [21]. This O(1/N ) bound, obtained at the cost of
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stringent, physically unsatisfying regularity assumptions, is similar to the nonuniform in
� convergence rate obtained in [11]—except the latter result holds for singular potentials
including the Coulomb case.

A newapproach to the uniformity problemhas been proposed in [17,19]; it is based on
a quantum analogue of the quadraticMonge–Kantorovich–Wasserstein distance, similar
to the one used in [12]. This method provides an estimate of the convergence rate in the
mean-field limit that is uniform as � → 0. This method can be combined with the usual
BBGKY strategy, following carefully the dependence of the error estimate in terms of
�, to produce a uniform in � ∈ (0, 1] convergence rate of order O((ln ln N )−1/2) for
initial data of semiclassical type: see [21].

The main results of the present article are Theorem 1.1, and Theorem 3.3 together
with Definition 2.2. Theorem 1.1 establishes the quantum mean-field limit with rate of
convergence of order 1√

N
, uniformly in � ∈ (0, 1] and for all initial factorized data.

By “all”, we mean that any dependence in the Planck constant is allowed. In our main
statement ((7) in Theorem 1.1), the Planck constant appears only in theWigner functions
in terms of which the convergence rate at time t for the mean-field limit is expressed, in
a Sobolev type dual norm (1)–(2). Equivalently, according to formula (63), this corre-
sponds to pairing the evolved density operators with semiclassicalWeyl operators whose
full symbol is any test function in the definition of the dual norm.

The proof of Theorem 1.1 requires defining a notion of empirical “measure” in
quantum mechanics. The precise definition of this new (to the best of our knowledge)
mathematical object can be found inDefinition 2.2 of Sect. 3, and the equation governing
its dynamics is derived in Theorem 3.3.

1.2. The uniform in � convergence rate for the mean-field limit. Before stating this
convergence rate estimate, we need to introduce some notation used systematically in
the present paper.

Denote by H := L2(Rd) (the single-particle Hilbert space) and, for each N ≥ 1, let
HN := H⊗N 
 L2((Rd)N ). Henceforth, L(H) (resp. L1(H)) designates the space of
bounded (resp. trace-class) operators on H. For each permutation σ ∈ SN (the group
of permutations of {1, . . . , N }), let Uσ be the unitary operator on HN defined by the
formula

(Uσ �N )(x1, . . . , xN ) := �N (xσ−1(1), . . . , xσ−1(N )).

We denote by Ls(HN ) (resp. L1
s (HN )) the set of bounded (resp. trace-class) operators

FN on HN satisfying the condition

Uσ FNU
∗
σ = FN , for all σ ∈ SN .

We denote by D(H) the set of density operators on H, i.e. operators R satisfying

R = R∗ ≥ 0 , traceH(R) = 1.

Likewise, we denote by Ds(HN ) the set of symmetric N -particle densities on HN , i.e.
Ds(HN ) := D(HN ) ∩ Ls(HN ).

Let RN ∈ Ds(HN ); set rN ≡ rN (x1, . . . , xN ; y1, . . . , yN ) to be the integral kernel of
RN . The first marginal of the quantum density RN is the element RN :1 of D(H) whose
integral kernel is

rN :1(x, y) :=
∫

(Rd )N−1
rN (x, z2, . . . , zN ; y, z2, . . . , zN ) dz2 . . . dzN .
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For each integer n ≥ 0, we denote by Cn,n
b (Rd × Rd) the set of complex-valued

functions f ≡ f (x, ξ) on Rd × Rd such that ∂α
x ∂

β
ξ f exists, and is continuous and

bounded on Rd × Rd for all α, β ∈ Nd such that max(|α|, |β|) ≤ n. This is a Banach
space for the norm

‖ f ‖n,n,∞ := max
max(|α|,|β|)≤n ‖∂

α
x ∂

β
ξ f ‖L∞(Rd×Rd ). (1)

Finally, let ‖ · ‖′n,n,∞ be the norm of the topological dual of Cn,n
b (Rd × Rd). In other

words, for each continuous linear functional L on Cn,n
b (Rd × Rd), one has

‖L‖′n,n,∞ := sup{|〈L , f 〉| s.t. ‖ f ‖n,n,∞ ≤ 1}. (2)

Theorem 1.1. Assume that V ∈ C0(Rd) is an even, real-valued function whose Fourier
transform V̂ satisfies

V := 1
(2π)d

∫
Rd
|V̂ (ω)|(1 + |ω|)[d/2]+3 dω <∞.

Let Rin ∈ D(H), and let t �→ R(t) be the solution to the Cauchy problem for the Hartree
equation

i�∂t R(t) = [− 1
2�

2� + VR(t), R(t)] , R(0) = Rin , (3)

with mean-field potential

VR(t)(x) :=
∫

Rd
V (x − z)r(t, z, z) dz , (4)

where r ≡ r(t, x, y) is the integral kernel of R(t).
For each N ≥ 2, let t �→ FN (t) be the solution to the Cauchy problem for the von

Neumann equation

i�∂t FN (t) = [HN , FN (t)] , FN (0) = Fin
N , (5)

with initial data Fin
N = (Rin)⊗N , where the N-body quantum Hamiltonian is

HN :=
N∑
j=1
− 1

2�
2�x j +

1

N

∑
1≤ j<k≤N

V (x j − xk). (6)

Then, for all � ∈ (0, 1], all N ≥ 1 and all t ≥ 0, the Wigner transforms at scale � of
FN :1(t) and R(t) satisfy the bound

‖W�[FN :1(t)] −W�[R(t)]‖′[d/2]+2,[d/2]+2,∞ ≤
γd + 1√

N
exp
(√

dγd te
t max(1,�2)V

)
,

(7)

where

�2 := max
1≤ j≤d

d∑
k=1

1
(2π)d

∫
Rd
|V̂ (ω)||ω j ||ωk | dω ,

while γd is a positive constant which depends only on the space dimension d.
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The definition and the elementary properties of the Wigner transform are recalled in
the Appendix. We recall that, in the classical limit, i.e. for � → 0, quantum densities
propagated by the von Neumann equation will typically fail to converge to any limiting
density operator. However, up to extracting subsequences �n → 0, the corresponding
sequence of Wigner transforms will have limit points in S ′(Rd ×Rd), and the classical
limit of quantum mechanics can be described in terms of the evolution of these limit
points. See [31] for a presentation of this description of the classical limit (especially
Theorems III.1 and IV.1 in [31]).

The O(1/
√
N ) estimate in this result is on a par with the convergence rate obtained

in [39]—except (7) is uniform in � ∈ (0, 1], unlike the bound in [39]. On the other
hand, one should keep in mind that the regularity assumptions on the potential are more
stringent in Theorem 1.1 than in [39], which can handle singular potentials, including
the Coulomb case.

Notice that γd is the constant which appears in the Calderon–Vaillancourt theorem
(Theorem B.1 in Appendix B).

Notice also the double exponential growth in time of the bound in Theorem 1.1, to be
compared either with the simple exponential growth in the nonuniform in � convergence
rate in [39], or in the uniform as � → 0 estimate in [17].

A last difference between the convergence rate obtained in [11,39] and the bound
in Theorem 1.1 lies in the metric used to measure the difference between the Hartree
solution and the first marginal of the N -body density operator: the estimate in [11,39]
is expressed in terms of the trace norm, whereas (7) is formulated in terms of Wigner
transforms, whose difference is measured in some dual Sobolev norm. In the classical
limit, quantum particles are expected to be perfectly localized on phase-space curves,
and Schatten norms (including the trace norm) are ill-suited to capturing this asymptotic
behavior—see section 5 of [20] for a detailed discussion of this point.

Finally, the choice of initial data Fin
N = (Rin)⊗N in Theorem 1.1 is consistent with

bosonic statistics, i.e. with the assumption that

Uσ F
in = Fin

N Uσ = Fin for all σ ∈ SN ,

if and only if Rin is of the form

Rin = |ψ in〉〈ψ in| , with ψ in ∈ L2(Rd) and ‖ψ in‖L2(Rd ) = 1 ,

(usingDirac’s bra-ket notation) i.e. if and only if Rin is a rank-one orthogonal projection.
In other words, the initial data in Theorem 1.1 is consistent with bosonic statistics if and
only if it is a factorized pure state. Of course the mathematical result holds for the more
general class of initial data considered in Theorem 1.1.

1.3. Empirical measure of N-particle systems in classical mechanics. As mentioned
above, an important ingredient in the rigorous derivation of the Vlasov equation from
the N -particle system of Newton’s equations in classical mechanics (see [10,12]) is the
following remarkable property of the empirical measure, which is briefly recalled below
for the reader’s convenience.

Consider the system of Newton’s equations of motion for a system of N identical
point particles of mass 1, with pairwise interaction given by a (real-valued) potential
V/N assumed to be even and smooth (at least C2) on Rd , and such that V , ∇V and
∇2V are bounded on Rd :
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋk = ξk , xk(0) = xink ,

ξ̇k = − 1

N

N∑
l=1
∇V (xk − xl) , ξk(0) = ξ ink .

(8)

(The term corresponding to l = k in the sum is equal to 0 since V is even). We denote
by T N

t the flow defined by the differential system (8).
Set zk := (xk, ξk) and ZN := (z1, . . . , zN ). To each N -tuple ZN ∈ (Rd × Rd)N ,

one associates the empirical measure

μZN :=
1

N

N∑
k=1

δzk . (9)

One defines in this way a map

(Rd × Rd)N � ZN �→ μZN ∈ P(Rd × Rd)

(where P(X) designates the set of Borel probability measures on X ). The system (8)
takes the form

ẋk = ξk , ξ̇k = −
∫

Rd×Rd
∇V (xk − y)μZN ( dy dη) , 1 ≤ k ≤ N ,

and this implies the following remarkable result.

Proposition 1.2. For each N ≥ 1, the map t �→ μT N
t ZN

is continuous on R with values

in P(Rd × Rd) equipped with the weak topology, and is a weak solution (in the sense
of distributions) to the Vlasov equation

∂t f + ξ · ∇x f − divξ

(
f (∇x V �x,ξ f )

) = 0. (10)

With Proposition 1.2, the derivation of the Vlasov equation (10) from Newton’s
equations (8) for N -particle systems is equivalent to the continuous dependence of weak
solutions to (10) on the initial data for the weak topology of Borel probability measures
on the single particle phase-space.

In view of the conceptual simplicity of the approach of the mean-field limit in classi-
cal mechanics based on the empirical measure (see [10,12,35]), it seems that a similar
structure on the quantum N -body problem would be extremely helpful for the pur-
pose of deriving the mean-field limit with a uniform convergence rate in the Planck
constant �.

A notion of empirical measure in quantummechanics will be introduced inDefinition
2.2 below. The equation governing its evolution—equation (34)—will be derived in
Theorem 3.3. The Hartree equation can be viewed as a “special case” of equation (34).
More precisely, Theorem3.5 states that solutions to theHartree equation can be identified
with a special class of solutions to equation (34).

There is an obvious difficulty with the problem addressed in Theorems 3.3 and 3.5:
indeed, the proof of Proposition 1.2 is based on the method of characteristics for solving
transport equations such as (10). But there is no obvious analogue of particle trajectories
or of the method of characteristics in quantum mechanics. This explains why the proofs
of Theorems 3.3 and 3.5 require a quite involved algebraic setting. (See Appendix A for
additional insight on this algebraic structure).
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1.4. Outline of the paper. Sections 2 and 3 are focussed on the problem of defining a
notion of quantum empirical measure and deriving the equation governing its evolution.
The analogue of the empirical measure in quantum mechanics proposed here isMN (t)
introduced in Definition 2.2 (in Sect. 2). The equation governing the evolution ofMN (t)
is (34), established in Theorem 3.3 (in Sect. 3).

Of critical importance in (34) is the contribution of the interaction term involving the
potential V . This interaction term can be viewed as a twisted variant of the commutator
[VR(t), R(t)] that appears on the right hand side of (3), and is defined in formula (27)
and in Proposition 3.2. In fact, equation (34) itself is a noncommutative variant of the
time-dependent Hartree equation (3) (in terms of density operators).

More precisely, there exists a special class (defined in (36)) of solutions to the equation
(34) satisfied by our quantum analogue of the empirical measure, for which this equation
is exactly equivalent to the time-dependent Hartree equation (3): see Theorem 3.5.

The main application of this new notion of quantum empirical “measure” is Theorem
1.1, whose proof occupies Sect. 4.

Various fundamental notions and results on Weyl’s quantization needed in this paper
are recalled in Appendix B.

2. A Quantum Analogue of the Notion of Empirical Measure

2.1. Marginals of N-particle densities. First we recall the notion of k-particle marginal
of a symmetric probability density fN on (Rd ×Rd)N , the N -particle (classical) phase-
space.

For each p ∈ [1,+∞], we designate by L p
s ((Rd × Rd)N ) the set of functions φ ≡

φ(x1, ξ1, . . . , xN , ξN ) such that φ ∈ L p((Rd × Rd)N ) and

φ(xσ(1), ξσ(1), . . . , xσ(N ), ξσ(N )) = φ(x1, ξ1, . . . , xN , ξN ) a.e. on (Rd × Rd)N

for all σ ∈ SN .
For each N > 1, let fN ≡ fN (x1, ξ1, . . . , xN , ξN ) be a symmetric probability density

on the N -particle phase-space (Rd × Rd)N . In other words,

fN ∈ L1
s ((R

d × Rd)N ) , fN ≥ 0 a.e. on (Rd × Rd)N ,

and ∫
(Rd×Rd )N

fN (x1, ξ1, . . . , xN , ξN ) dx1 dξ1 . . . dxN dξN = 1.

The k-particle marginal of fN is the symmetric probability density on the k-particle
phase-space (Rd × Rd)k defined by the formula

fN :k(x1, ξ1, . . . , xk, ξk)

:=
∫

(Rd×Rd )N−k
fN (x1, ξ1, . . . , xN , ξN ) dxk+1 dξk+1 . . . dxN dξN .

The analogous notion for symmetric, quantum N -particle density operators is defined
as follows.

Definition 2.1. Let N ≥ 1 and FN ∈ Ds(HN ). For each k = 1, . . . , N , the k-particle
marginal of FN is the unique FN :k ∈ Ds(Hk) such that

traceHk (Ak FN :k) = traceHN ((Ak ⊗ I⊗(N−k))FN ) , for all Ak ∈ L(Hk).

(In particular FN :N = FN .)
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2.2. A quantumnotion of empiricalmeasure. Let f inN be a symmetric probability density
on (Rd × Rd)N , and set

fN (t, x1, ξ1, . . . , xN , ξN ) := f in(T N−t (x1, ξ1, . . . , xN , ξN )) ,

where T N
t is the flow defined by the differential system (8).

Specializing formula (32) in [18] to m = 1 leads to the identity

fN :1(t, x, ξ) dx dξ =
∫

(Rd×Rd )N
μT N

t ZN
( dx dξ) f inN (ZN ) dZN , (11)

which holds for each symmetric probability density f inN on (Rd × Rd)N . Equivalently,
equation (11) can be recast as∫

Rd×Rd
φ(x, ξ) fN :1(t, x, ξ) dx dξ

=
∫

(Rd×Rd )N

(∫
Rd×Rd

φ(x, ξ)μT N
t ZN

( dx dξ)

)
f inN (ZN ) dZN

(12)

for each test function φ ∈ L∞(Rd × Rd).
In other words, for each t ∈ R, the time-dependent, measure-valued function

mN (t; ZN , dx dξ) := μT N
t ZN

( dx dξ) (13)

is the integral kernel of the (unique) linear map

MN (t) : L∞(Rd × Rd) → L∞s ((Rd × Rd)N ) (14)

such that∫
Rd×Rd

(MN (t)φ)(ZN ) f inN ( dZN ) :=
∫

Rd×Rd
φ(x, ξ) fN :1(t, x, ξ) dx dξ (15)

for each symmetric probability density on (Rd × Rd)N . That (15) holds for each sym-
metric probability density f inN on (Rd × Rd)N implies indeed that

MN (t)φ := �N ◦ T N
t ,

where

�N (ZN ) := 1

N

N∑
j=1

φ(x j , ξ j ) =
∫

Rd×Rd
φ(x, ξ)μZN ( dx dξ).

In quantum mechanics, the analogue of the differential system (8) is the N -body
Schrödinger equation

i�∂t�N =HN�N , (16)

where �N ≡ �N (t, x1, . . . , xN ) ∈ C is the N -body wave function, and where HN is
the quantum N -body Hamiltonian defined in (6), which is recast as

HN :=
N∑

k=1
− 1

2�
2�xk +

1

N

∑
1≤k<l≤N

Vkl . (17)
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For each k, l = 1, . . . , N , the notationVkl in (17) designates the (multiplication) operator
defined by

(Vkl�N )(x1, . . . , xN ) := V (xk − xl)�N (x1, . . . , xN ).

Since V ∈ L∞(Rd), the operator Vkl is bounded onHN for all k, l = 1, . . . , N , andHN
defines a self-adjoint operator on HN with domain H2((Rd)N ). The quantum analogue
of the flow T N

t is the unitary groupUN (t) := eitHN /�, and, since the function V is even,
one easily checks that

Fin
N ∈ Ds(HN )⇒ FN (t) := UN (t)∗Fin

N UN (t) ∈ Ds(HN ) for all t ∈ R. (18)

Formula (15) suggests that the quantum analogue of the empirical measure

μT N
t ZN

( dx dξ)

used in classical mechanics is the time-dependent linear map defined below.
For each k = 1, . . . , N , we denote by Jk the linear map fromL(H) toL(HN ) defined

by the formula

Jk A := I ⊗ . . .⊗ I︸ ︷︷ ︸
k−1 terms

⊗A ⊗ I ⊗ . . .⊗ I︸ ︷︷ ︸
N−k terms

.

Definition 2.2. For each N ≥ 1, set

Min
N :=

1

N

N∑
k=1

Jk ∈ L(L(H),Ls(HN )).

For all t ∈ R, we define MN (t) ∈ L(L(H),Ls(HN )) by the formula

MN (t)A := UN (t)(Min
N A)UN (t)∗.

With this definition, one easily arrives at the quantum analogue of (12).

Lemma 2.3. For each Fin
N ∈Ds(HN ) and all t ∈ R, set FN (t) := UN (t)∗Fin

N UN (t).
Then one has

traceH(AFN :1(t)) = traceHN ((MN (t)A)Fin
N ) for all A ∈ L(H).

Proof. Since the density operator Fin
N is symmetric, applying (18) implies that FN (t) ∈

Ds(HN ) for all t ∈ R. Therefore

traceH(AFN :1(t)) = traceHN ((J1A)FN (t)) = traceHN ((Jk A)FN (t)) (19)

for all k = 1, . . . , N . Averaging both sides of (19) in k, we find that

traceH(AFN :1(t)) = traceHN ((Min
N A)FN (t))= traceHN ((Min

N A)UN (t)∗Fin
N UN (t))

= traceHN (UN (t)(Min
N A)UN (t)∗Fin

N )= traceHN ((MN (t)A)Fin
N ),

which is the desired identity. ��
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3. An Evolution Equation for MN (t)

In the present section, we seek to establish a quantum analogue of Proposition 1.2 for
the time dependent linear map t �→MN (t). At variance with the proof of Proposition
1.2, which is based on the method of characteristics for the transport equation, and of
which there is no quantum analogue as mentioned above, our approach to this problem
is based solely on the first equation in the BBGKY hierarchy.

3.1. The first BBGKY equation. The time dependent density t �→ FN (t) given in terms
of the initial quantum density Fin

N by the formula

FN (t) := UN (t)∗Fin
N UN (t) ,

is the solution of the Cauchy problem for the von Neumann equation (5).
TheBBGKYhierarchy is the sequence of differential equations for themarginals FN :k

(for k = 1, . . . , N ) deduced from (5). Because of the pairwise particle interaction, the
equation for FN :k always involves FN :k+1 and is never in closed form for 1 ≤ k ≤ N−1.

Nevertheless, only the first equation in the BBGKY hierarchy is needed in the sequel.
It is obtained as follows: let A ∈ L(H) satisfy [�, A] ∈ L(H). Multiplying both sides
of (5) by J1A and taking the trace shows that

i�∂t traceH(AFN :1(t)) = i�∂t traceHN ((J1A)FN (t))

= traceHN ((J1A)[HN , FN (t)])
= − traceHN ([HN , J1A]FN (t)) ,

(20)

where the first equality above follows from the first identity in (19). Next one has

[HN , J1A] =
N∑

k=1

[
− 1

2�
2�xk , J1A

]
+

1

N

∑
1≤k<l≤N

[Vkl , J1A]

= J1
([
− 1

2�
2�, A

])
+

1

N

N∑
l=2
[V1l , J1A].

Using the first identity in (19) with
[− 1

2�
2�, A

]
in the place of A shows that

traceHN ([HN , J1A]FN (t)) = traceH
([
− 1

2�
2�, A

]
FN :1(t)

)

+
1

N

N∑
l=2

traceHN ([V1l , J1A]FN (t)). (21)

If σ is the transposition exchanging 2 and l = 3, . . . , N , then

Uσ [V1l , J1A]U∗σ = [V12, J1A] ,
and since FN (t) is symmetric, for each l = 3, . . . , N , one has

traceHN ([V1l , J1A]FN (t)) = traceHN (Uσ [V1l , J1A]U∗σ FN (t))

= traceHN ([V12, J1A]FN (t))

= traceHN

((
[V12, A ⊗ I ] ⊗ I⊗(N−2)) FN (t)

)

= traceH2([V12, A ⊗ I ]FN :2(t)).
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Hence

1

N

N∑
l=2

traceHN ([V1l , J1A]FN (t)) = N − 1

N
traceH2([V12, A ⊗ I ]FN :2(t)). (22)

Substituting the second term in the right hand side of (21) with the right hand side
of (22) shows that (20) can be put in the form

i�∂t traceH(AFN :1(t)) + traceH
([
− 1

2�
2�, A

]
FN :1(t)

)

= −N − 1

N
traceH2([V12, A ⊗ I ]FN :2(t)) ,

(23)

for all A ∈ L(H) such that [�, A] ∈ L(H), which is the first BBGKY equation.1

Using Lemma 2.3, we easily express the left-hand side of (23) in terms of MN (t):

i�∂t traceH(AFN :1(t)) + traceH
([
− 1

2�
2�, A

]
FN :1(t)

)

= i�∂t traceHN ((MN (t)A)Fin
N ) + traceHN

((
MN (t)

[
− 1

2�
2�, A

])
Fin
N

)
.

For each � ∈ L(L(H),Ls(HN )) and each (possibly unbounded) operator D on H, we
henceforth denote2 by ad∗(D)� the linear map defined by

(ad∗(D)�)A := −�[D, A] (24)

for all A ∈ L(H) such that [D, A] ∈ L(H). With this notation, (23) becomes

traceHN

(((
i�∂tMN (t)− ad∗(− 1

2�
2�)MN (t)

)
A
)
Fin
N

)

= −N − 1

N
traceH2([V12, A ⊗ I ]FN :2(t)).

(25)

3.2. The interaction term. The present section is focussed on the problem of express-
ing the right hand side of (25) in terms of MN (t), which is the most critical part of
our analysis. Since the right hand side of (25) involves FN :2 and cannot be expressed
exclusively in terms of FN :1, it is not a priori obvious that there is an equation in closed
form governing the evolution of MN (t).

First, we introduce some additional notation. For each ω ∈ Rd , we denote by Eω ∈
L(H) the multiplication operator defined by the formula

Eωψ(x) := eiω·xψ(x).

The family of operators Eω obviously satisfies

E∗ω = E−ω = E−1ω .

For each � ∈ L(L(H),Ls(HN )) and each B ∈ L(H), denote by �(•B) and �(B•) the
elements of L(L(H),Ls(HN )) defined by

�(•B) : A �→ �(AB) and �(B•) : A �→ �(BA).

1 More precisely, it is the weak formulation of the first BBGKY equation.
2 By analogy with the notation for the co-adjoint representation of a Lie algebra.
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Definition 3.1. For each integer N ≥ 2, set

EN := {(�1,�2) ∈ L(L(H),L(HN ))2 s.t. for all F ∈ L1(HN ) the map

ω �→ traceHN ((�1E
∗
ω)(�2Eω)F) is continuous on Rd}. (26)

For each S ∈ S ′(Rd) whose Fourier transform Ŝ is a bounded measure on Rd , and for
each �1,�2 ∈ L(L(H),L(HN )) such that

(�1,�2(•A)) and (�2(A•),�1) ∈ EN for all A ∈ L(H) ,

let C[S,�1,�2] be the element of L(L(H),L(HN )) defined by the formula

C[S,�1,�2]A :=
∫

Rd

(
(�1E

∗
ω)(�2(EωA))− (�2(AEω))(�1E

∗
ω)
)
Ŝ( dω) (27)

for all A ∈ L(H). The linear map C[S,�1,�2] satisfies
‖C[S,�1,�2]‖ ≤ 2‖�1‖‖�2‖‖Ŝ‖T V . (28)

The integral defining C[S,�1,�2]A on the right hand side of (27) is to be understood
in the ultraweak sense.3 Indeed, for each A ∈ L(H), the function

Rd � ω �→ (�1E
∗
ω)(�2(EωA))− (�2(AEω))(�1E

∗
ω) ∈ L(HN )

is ultraweakly continuous since (�1,�2(•A)) and (�2(A•),�1) ∈ EN . Moreover

‖(�1E
∗
ω)(�2(EωA))− (�2(AEω))(�1E

∗
ω)‖ ≤ 2‖�1‖‖�2‖‖A‖.

Hence, the integral on the right hand side of (27) is well defined in the ultraweak sense,
and satisfies

‖C[S,�1,�2]A‖ ≤ 2‖�1‖‖�2‖‖A‖
∫

Rd
|Ŝ|( dω) = 2‖�1‖‖�2‖‖A‖‖Ŝ‖T V

for all A ∈ L(H), which implies (28).
The main result in this section is the following proposition.

3 LetH be a separable Hilbert space. The ultraweak topology is the topology defined onL(H) by the family
of seminorms A �→ | traceH(AF)| as F runs through L1(H). Let m be a bounded, complex-valued Borel
measure on Rd , and let f : Rd → L(H) be ultraweakly continuous and such that

sup
ω∈Rd

‖ f (ω)‖ <∞.

Then the linear functional

L1(H) � F �→ 〈L f,m , F〉 :=
∫

Rd
traceH( f (ω)F)m( dω) ∈ C

is continuous with norm

‖L f,m‖ ≤ sup
ω∈Rd

‖ f (ω)‖‖m‖T V .

Hence there exists a unique �m ∈ L(H) such that 〈L f,m , F〉 = traceH(�mF). The operator �m is the
ultraweak integral of f m, denoted

∫
Rd

f (ω)m( dω) := �m .
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Proposition 3.2. Let V be an even, real-valued element of S ′(Rd) whose Fourier trans-
form V̂ is a bounded measure. Let FN be the solution to the Cauchy problem for the von
Neumann equation (5) with initial condition Fin

N . Then, for each t ∈ R, each integer
N > 1 and each A ∈ L(H), one has

N − 1

N
traceH2 ([V12, A ⊗ I ]FN :2(t)) = traceHN

(
(C[V,MN (t),MN (t)]A)Fin

N

)
,

where C[V,MN (t),MN (t)]A is the element of Ls(HN ) defined in (27).

Proof. Observe first that, for each G ∈ L1(H2), one has

traceH2(V12G) = 1
(2π)d

∫
Rd

traceH2(Eω ⊗ E∗ω G)V̂ ( dω). (29)

Indeed, for all φ1, φ2, ψ1, ψ2 ∈ H, applying the formula for the Fourier transform of a
convolution product and Plancherel’s equality shows that

〈ψ1 ⊗ ψ2|V12|φ1 ⊗ φ2〉 = 〈φ1ψ1|V � (ψ2φ2)〉
= 1

(2π)d

∫
Rd

F(φ̄1ψ1)(ω)F(ψ̄2φ2)(ω)V̂ ( dω)

= 1
(2π)d

∫
Rd
〈ψ1 ⊗ ψ2|Eω ⊗ E∗ω|φ1 ⊗ φ2〉V̂ ( dω) ,

which proves (29) for G = |φ1⊗ φ2〉〈ψ1⊗ψ2|. The general case follows by a straight-
forward density argument involving dominated convergence.

Setting successively G = (A ⊗ I )FN :2(t) and G = FN :2(t)(A ⊗ I ) in (29) shows
that

N−1
N traceH2([V12, A ⊗ I ]FN :2(t))

= N−1
N

∫
Rd

traceH2(([Eω, A] ⊗ E∗ω)FN :2(t)) V̂ ( dω)

(2π)d

= N−1
N

∫
Rd

traceHN (((J2E
∗
ω)J1(EωA)− J1(AEω)(J2E

∗
ω))FN (t)) V̂ ( dω)

(2π)d
,

(30)

where the second equality follows from Definition 2.1 with k = 2 and the obvious
identity

k �= l �⇒ [Jk S, JlT ] = 0 for all S, T ∈ L(H). (31)

By symmetry of FN (t),

N−1
N

∫
Rd

traceHN (((J2E
∗
ω)J1(EωA)− J1(AEω)(J2E

∗
ω))FN (t)) V̂ ( dω)

(2π)d

= 1
N2

∑
1≤k �=l≤N

∫
Rd

traceHN (((Jl E
∗
ω)Jk(EωA)−Jk(AEω)(Jl E

∗
ω))FN (t)) V̂ ( dω)

(2π)d

= 1
N2

∑
1≤k,l≤N

∫
Rd

traceHN (((Jl E
∗
ω)Jk(EωA)− Jk(AEω)(Jl E

∗
ω))FN (t)) V̂ ( dω)

(2π)d

=
∫

Rd
traceHN (((Min

N E∗ω)Min
N (EωA)−Min

N (AEω)(Min
N E∗ω))FN (t)) V̂ ( dω)

(2π)d
,

(32)
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since, for each k = 1, . . . , N and for all ω ∈ Rd ,

(Jk E
∗
ω)Jk(EωA) = Jk(E

∗
ωEωA) = Jk A = Jk(AEωE

∗
ω) = Jk(AEω)(Jk E

∗
ω).

By cyclicity of the trace,

traceHN (((Min
N E∗ω)Min

N (EωA)−Min
N (AEω)(Min

N E∗ω))FN (t))

= traceHN (((Min
N E∗ω)Min

N (EωA)−Min
N (AEω)(Min

N E∗ω))UN (t)∗Fin
N UN (t))

= traceHN (UN (t)((Min
N E∗ω)Min

N (EωA)−Min
N (AEω)(Min

N E∗ω))UN (t)∗Fin
N )

= traceHN (((MN (t)E∗ω)MN (t)(EωA)−MN (t)(AEω)(MN (t)E∗ω))Fin
N ),

(33)

since

UN (t)(Min
N S)(Min

N T )UN (t)∗ = UN (t)(Min
N S)UN (t)∗UN (t)(Min

N T )UN (t)∗

= (MN (t)S)(MN (t)T )

for all S, T ∈ L(H) according to Definition 2.2. Putting together (30), (32), and (33)
shows that

N−1
N traceH2([V12, A ⊗ I ]FN :2(t))

=
∫

Rd
traceHN (((MN (t)E∗ω)MN (t)(EωA)−MN (t)(AEω)(MN (t)E∗ω))Fin

N )
V̂ ( dω)

(2π)d

= traceHN ((C[V,MN (t),MN (t)]A)Fin
N )

as expected. ��

3.3. Writing an equation forMN (t). With (25) and Proposition 3.2, we see thatMN (t)
satisfies

traceHN

(((
i�∂tMN (t)− ad∗(− 1

2�
2�)MN (t)

)
A
)
Fin
N

)

= − traceHN

(
(C[V,MN (t),MN (t)]A) Fin

N

)

for all A ∈ L(H) such that [�, A] ∈ L(H), and all Fin
N ∈ Ls(HN ).

Our first main result in this paper is the following theorem.

Theorem 3.3. Let V ∈ Cb(Rd) be an even, real-valued function whose Fourier trans-
form V̂ is a bounded measure. Let

UN (t) = eitHN /� , withHN :=
N∑

k=1
− 1

2�
2�xk +

1

N

∑
1≤k<l≤N

V (xk − xl) ,

and letMN (t) be the element of L(L(H),Ls(HN )) in Definition 2.2. Then

i�∂tMN (t) = ad∗(− 1
2�

2�)MN (t)− C[V,MN (t),MN (t)]. (34)
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Remark. Unfortunately the terms

ad∗(− 1
2�

2�)MN (t) and C[V,MN (t),MN (t)]
on the right hand side of (34) seem to be of a very different nature. This is in sharp
contrast with the Hartree equation, where the kinetic energy− 1

2�
2� and the interaction

potential energy VR(t) defined in (4) appear together on an equal footing in right hand
side of (3). However, both terms appearing on the right hand side of (34) can be formally
assembled in a single expression which is reminiscent of the commutator appearing on
the right hand side of (3). See Appendix A for a complete discussion of this point.

Proof. Setting

SN := i�∂t (MN (t)A)−
(

ad∗(− 1
2�

2�)MN (t)
)
A + C[V,MN (t),MN (t)]A ,

one has

SN ∈ Ls(HN ) and traceHN (SN F
in
N ) = 0

for all Fin
N ∈ Ds(HN ).

Lemma 3.4. Any GN ∈ L1
s (HN ) can be decomposed as

GN =
4∑

k=1
λkG

k
N , with Gk

N ∈ Ds(HN ) and λk ∈ C. (35)

Therefore

traceHN (SNGN ) = 0 for all GN ∈ L1
s (HN ).

Pick GN of the form

GN := S∗N |�N 〉〈�N | ,
where

�N ∈ HN , such that ‖�N‖HN = 1 , and Uσ �N = �N for all σ ∈ SN .

Thus

0 = traceHN (SNGN ) = 〈�N |SN S∗N |�N 〉 = ‖S∗N�N‖2HN
,

i.e.

S∗N�N = 0 for all �N ∈ HN such that Uσ �N = �N for all σ ∈ SN .

For each �N ∈ HN , one has

S∗N�N = S∗N �̃N , with �̃N = 1

N !
∑

τ∈SN

Uτ�N .

By construction, Uσ �̃N = �̃N for all σ ∈ SN , so that S∗N�N = 0 for all �N ∈ HN .
Hence S∗N = 0, or equivalently SN = 0. Since this holds for all A ∈ L(H) such that
[�, A] ∈ H, we conclude that (34) holds. ��
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Proof of the lemma. Indeed, write

GN = �(GN ) + i�(GN ) , with

{�(GN ) := 1
2 (GN + G∗N ) ,

�(GN ) := 1
2i (GN − G∗N ).

One has

�(GN ) = �(GN )∗ and �(GN ) = �(GN )∗ ∈ L1
s (HN ) ,

so that �(GN ) and �(GN ) have spectral decompositions of the form

�(GN ) =
∑
n≥0

αnpn , �(GN ) =
∑
n≥0

βnqn ,

where

{
p2
n = pn = p∗n = Uσ pnU

∗
σ ,

q2
n = qn = q∗n = Uσ qnU

∗
σ ,

and m �= n ⇒
{
traceHN (pnpm) = 0 ,

traceHN (qnqm) = 0 ,

for all m, n ≥ 0 and σ ∈ SN , and

∑
n≥0

|αn| traceHN (pn) <∞ ,
∑
n≥0

|βn| traceHN (qn) <∞.

The decomposition (35) is obtained with

λ1G
1
N =

∑
n≥0

α+
npn , λ2G

2
N = −

∑
n≥0

α−n pn ,

λ3G
3
N =

∑
n≥0

iβ+
n qn , λ4G

4
N = −

∑
n≥0

iβ−n qn ,

setting

λ1 =
∑
n≥0

α+
n traceHN (pn) , λ2 = −

∑
n≥0

α−n traceHN (pn) ,

λ3 =i
∑
n≥0

β+
n traceHN (pn) , λ4 = −i

∑
n≥0

β−n traceHN (pn).

Of course, if one of the numbers λ j for j = 1, . . . , 4 is equal to zero, the corresponding

density G j
N can be chosen arbitrarily in Ds(HN ). ��
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3.4. Hartree’s equation is a special case of equation (34). In order to complete the
analogy between Proposition 1.2 and Theorem 3.3, we now explain the connection
between Hartree’s equation (the quantum analogue of Vlasov’s equation (10)) and the
evolution equation (34) satisfied by t �→MN (t).

In the classical case, t �→ μT N
t ZN

( dx dξ) := m(t, dx dξ ; ZN ) is a measured-valued
function of t , parametrized by ZN . Thismeasured-valued function of timem is a solution
of the Vlasov equation (10) for all ZN ∈ (Rd ×Rd)N : the partial derivatives in (10) act
on the variables t, x, ξ in m, and not on ZN . Any classical solution f ≡ f (t, x, ξ) of
the Vlasov equation can be viewed as special case of m of the form m(t, dx dξ ; ZN ) =
f (t, x, ξ) dx dξ ; most importantly, such an m is constant in ZN .

The quantum analogue of such an m is a time-dependent element t �→ R(t) of
L(L(H),Ls(HN )) of the form

R(t) : A �→ traceH(R(t)A)IHN , (36)

assuming that R(t) ∈ D(H) for all t ∈ R.

Theorem 3.5. The time-dependent element t �→ R(t) of L(L(H),Ls(HN )) defined by
(36) is a solution to the evolution equation (34) if and only if t �→ R(t) is a solution to
the Hartree equation

i�∂t R(t) = [− 1
2�

2� + VR(t), R(t)]. (37)

Here VR(t) ∈ L(H) designates the operator defined by

(VR(t)φ)(x) := φ(x)
∫

Rd
V (x − z)r(t, z, z) dz ,

denoting by r(t, x, y) the integral kernel of the trace-class operator R(t).

The key observation in the proof of Theorem 3.5 is summarized in the next lemma.

Lemma 3.6. Let R ∈ D(H) and define R ∈ L(L(H),Ls(HN )) by the formula

RA := traceH(RA)IHN , for all A ∈ L(H).

Then, for each � ∈ L(L1(HN ),L1(H)) and each A ∈ L(H), one has

(R,�∗(•A)) and (�∗(A•),R) ∈ EN
(where �∗ ∈ L(L(H),L(HN )) is the adjoint of �), and

C[V,R,�∗] = − ad∗(VR)�∗

for all even, real-valued V ∈ Cb(Rd)whose Fourier transform V̂ is a bounded measure.

Proof of the lemma. For all G ∈ L1(HN ), one has

traceHN ((RE∗ω)(�∗(EωA))G) = traceH(RE∗ω) traceHN ((�∗(EωA))G)

= traceH(RE∗ω) traceH(EωA(�G))

and likewise

traceHN ((�∗(AEω))(RE∗ω)G) = traceH(RE∗ω) traceH(Eω(�G)A).
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Hence both functions

ω �→ traceHN ((RE∗ω)(�∗(EωA))G) and ω �→ traceHN ((�∗(AEω))(RE∗ω)G)

are continuous on R, so that

(R,�∗(•A)) and (�∗(A•),R) ∈ EN .

Since the potential V is even, the bounded measure V̂ is invariant under the transfor-
mation ω �→ −ω, and therefore

C[V,R,�∗]A
= 1

(2π)d

∫
Rd

(
trace(RE∗ω)�∗(EωA)−�∗(AEω) trace(RE∗ω)

)
V̂ ( dω)

= 1
(2π)d

∫
Rd

V̂ (ω) trace(RE∗ω)�∗([Eω, A]) dω

= �∗
[

1
(2π)d

∫
Rd

V̂ (ω) trace(RE∗ω)Eω dω, A

]
.

Since

trace(RE∗ω) = ρ̂(ω) , where ρ(x) := r(x, x)

(where r ≡ r(x, y) is the integral kernel of the trace-class operator R), one has

1
(2π)d

∫
Rd

V̂ (ω) trace(RE∗ω)Eω dω = 1
(2π)d

∫
Rd

V̂ (ω)ρ̂(ω)Eω dω = V � ρ = VR .

Therefore

C[V,R,�∗]A = �∗ [VR, A] = −(ad∗(VR)�∗)A.

��
Proof of the theorem. First observe that R(t) is the adjoint of the linear map

L1(HN ) � G �→ (traceHN (G))R(t) ∈ L1(H) ,

which is obviously continuous, since

‖(traceHN (G))R(t)‖L1(H) ≤ ‖G‖L1(HN )‖R(t)‖L1(H) = ‖G‖L1(HN ).

By Lemma 3.6

C[V,R(t),R(t)] = − ad∗(VR(t))R(t)

so that, for each A ∈ L(H)

C[V,R(t),R(t)]A = (− ad∗(VR(t))R(t))A = R(t)[VR(t), A]
= traceH(R(t)[VR(t), A])IHN = − traceH([VR(t), R(t)]A)IHN .
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On the other hand, for each A ∈ L(H) such that [�, A] ∈ L(H), one has

(ad∗(− 1
2�

2�)R(t))A = −R(t)[− 1
2�

2�, A]
= − traceH(R(t)[− 1

2�
2�, A])IHN

= traceH([− 1
2�

2�, R(t)]A)IHN .

In other words(
i�∂tR(t)− ad∗(− 1

2�
2�)R(t) + C[V,R(t),R(t)]

)
A

= traceH
(
(i�∂t R(t)− [− 1

2�
2� + VR(t), R(t)])A

)
IHN

for each A ∈ L(H) such that [�, A] ∈ L(H).
Thus,R(t) is a solution to the evolution equation (34) if and only if R(t) is a solution

to the Hartree equation (37). ��

4. Uniformity in � of the Mean-Field Limit: Proof of Theorem 1.1

The proof of Theorem 1.1 is quite involved, and will be split in several steps.
Step 1. Set R(t)A := traceH(R(t)A)IHN for all A ∈ L(H). By Theorems 3.3 and 3.5,
one has

i�∂t (MN (t)−R(t)) = ad∗
(
− 1

2�
2�
)

(MN (t)−R(t))

+ C[V,R(t),R(t)] − C[V,MN (t),MN (t)].
Formula (27) shows that (�1,�2) �→ C[V,�1,�2] is C-bilinear on its domain of
definition. More precisely, let �1,�2,�

′
1,�

′
2 ∈ L(L(H),L(HN ) satisfy

(�̃1, �̃2(•A)) and (�̃2(A•) , �̃1) ∈ EN with �̃ j = � j or�
′
j , j = 1, 2

for all A ∈ L(H). Then, for all λ1, λ2, λ′1, λ′2 ∈ C, one has

((λ1�1+λ′1�′1), (λ2�2+λ′2�′2)(•A)) and ((λ2�2 + λ′2�′2)(A•), (λ1�1 + λ′1�′1)) ∈ EN
and

C[V, λ1�1 + λ′1�′1, λ2�2 + λ′2�′2] = λ1λ2C[V,�1,�2] + λ′1λ2C[V,�′1,�2]
+ λ1λ

′
2C[V,�1,�

′
2] + λ′1λ′2C[V,�′1,�′2].

Hence

C[V,R(t),R(t)] − C[V,MN (t),MN (t)] = C[V,R(t),R(t)−MN (t)]
− C[V,MN (t)−R(t),MN (t)].

On the other hand, Lemma 2.3 shows thatMN (t) is the adjoint of the continuous linear
map

L1
s (HN ) � G �→ G :1 ∈ L1(H) ,

where G :1 is the unique element of L1(H) such that

traceH(GA) = traceHN (G(J1A)) , for all A ∈ L(H).
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Therefore, one has

C[V,R(t),R(t)−MN (t)] = ad∗(VR(t))(MN (t)−R(t))

by Lemma 3.6, and hence

i�∂t (MN (t)−R(t)) = ad∗
(
− 1

2�
2� + VR(t)

)
(MN (t)−R(t))

− C[V,MN (t)−R(t),MN (t)].
(38)

Step 2. Let Ain ∈ L(H), and let t �→ A(t) be the solution to the Cauchy problem

{
i�∂t A(t) = [− 1

2�
2� + VR(t), A(t)] ,

A(0) = Ain .

Thus

i�∂t ((MN (t)−R(t))(A(t))) = (MN (t)−R(t))(i�∂t A(t))

+
(

ad∗
(
− 1

2�
2� + VR(t)

)
(MN (t)−R(t))

)
A(t)

− C[V,MN (t)−R(t),MN (t)]A(t)

= (MN (t)−R(t))(i�∂t A(t)− [− 1
2�

2� + VR(t), A(t)])
− C[V,MN (t)−R(t),MN (t)]A(t)

= −C[V,MN (t)−R(t),MN (t)]A(t).

Hence

(MN (t)−R(t))(A(t)) = (MN (0)−R(0))(A(0))

− i

�

∫ t

0
C[V,MN (s)−R(s),MN (s)]A(s) ds.

Step 3. Let W (t) be a unitary operator on HN such that

‖(MN (t)−R(t))(A(t))Fin
N ‖L1(HN )

= traceHN ((MN (t)−R(t))(A(t))Fin
N W (t)) ;

then

‖(MN (t)−R(t))(A(t))Fin
N ‖L1(HN )

= traceHN ((MN (0)−R(0))(A(0))Fin
N W (t))

− i

�

∫ t

0
traceHN ((C[V,MN (s)−R(s),MN (s)]A(s))Fin

N W (t)) ds

≤ ‖(MN (0)−R(0))(A(0))Fin
N ‖L1(HN )

+
1

�

∫ t

0
| traceHN ((C[V,MN (s)−R(s),MN (s)]A(s))Fin

N W (t))| ds.

(39)
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Returning to the formula (27), we see that

| traceHN ((C[V,MN (s)−R(s),MN (s)]A(s))Fin
N W (t))|

= 1
(2π)d

∣∣∣∣
∫

Rd
traceHN ((C[Eω,MN (s)−R(s),MN (s)]A(s))Fin

N W (t))V̂ ( dω)

∣∣∣∣
≤ 1

(2π)d

∫
Rd
| traceHN ((C[Eω,MN (s)−R(s),MN (s)]A(s))Fin

N W (t))||V̂ |( dω).

(40)

Observe that

C[Eω,MN (s)−R(s),MN (s)]A(s) = ((MN (s)−R(s))E∗ω)(MN (s)(EωA(s)))

−(MN (s)(A(s)Eω))((MN (s)−R(s))E∗ω)

= (MN (s)[Eω, A(s)])((MN (s)−R(s))E∗ω)

+ [MN (s)E∗ω,MN (s)(EωA(s))]
= (MN (s)[Eω, A(s)])((MN (s)−R(s))E∗ω)

+
1

N
MN (s)[E∗ω, EωA(s)].

The last equality follows from the following simple computation: because of (31)

[Min
N S,Min

N T ] =
1

N
Min

N [S, T ]

for all S, T ∈ L(H) and each N ≥ 1, so that, for each t ∈ R

[MN (t)S,MN (t)T ] = [UN (t)(Min
N S)UN (t)∗,UN (t)(Min

N T )UN (t)∗]
= UN (t)[Min

N S,Min
N T ]UN (t)∗ = 1

N
MN (t)[S, T ] ,

according to Definition 2.2.
Hence

| traceHN ((C[Eω,MN (s)−R(s),MN (s)]A(s))Fin
N W (t))|

≤ ‖W (t)(MN (s)[Eω, A(s)])‖‖((MN (s)−R(s))E∗ω)Fin
N ‖L1(HN )

+
1

N
‖W (t)(MN (s)[E∗ω, EωA(s)])‖‖Fin

N ‖L1(HN ).

(41)

By construction

‖MN (t)A‖ = ‖UN (t)(Min
N A)UN (t)∗‖

= ‖Min
N A‖ ≤ 1

N

N∑
k=1
‖J ∗k A‖ = ‖A‖.

Since W (t) is unitary, the inequality above implies that

‖W (t)(MN (s)[Eω, A(s)])‖ ≤ ‖[Eω, A(s)]‖ ,
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and

‖W (t)(MN (s)[E∗ω, EωA(s)])‖ ≤ ‖[E∗ω, EωA(s)]‖ = ‖[E∗ω, A(s)]‖
because [E∗ω, EωA(s)] = Eω[E∗ω, A(s)] and Eω is unitary.

Since Fin
N ∈ Ds(HN ), we conclude from the two previous inequalities and (41) that

| traceHN ((C[Eω,MN (s)−R(s),MN (s)]A(s))Fin
N W (t))|

≤ ‖[Eω, A(s)]‖‖((MN (s)−R(s))E∗ω)Fin
N ‖L1(HN ) +

1

N
‖[E∗ω, A(s)]‖. (42)

Step 4.As mentioned above, for each integer n ≥ 0, we designate byCn,n
b (Rd×Rd) the

set of complex-valued functions f ≡ f (x, ξ)defined onRd×Rd such that ∂α
x ∂

β
ξ f exists,

is continuous and bounded on Rd ×Rd for all α, β ∈ Nd satisfying max(|α|, |β|) ≤ n.
This is a Banach space for the norm

‖ f ‖n,n,∞ = max
max(|α|,|β|)≤n ‖∂

α
x ∂

β
ξ f ‖L∞(Rd×Rd ).

Denote by Bn the closed unit ball of Cn,n
b (Rd × Rd) centered at the origin, i.e.

Bn := {a ∈ Cn,n
b (Rd × Rd) s.t. ‖a‖n,n,∞ ≤ 1}.

Pick T > 0; for each t ∈ R, define

dTN (t) := sup
B∈W[T ]

‖((MN (t)−R(t))(S(t, 0)BS(0, t)))Fin
N ‖L1(HN ) , (43)

where

W[T ] :=
⋃

0≤τ≤T
V[τ ] , with V[τ ] :=

{
S(0, τ )OPW

�
[a]S(τ, 0) : a ∈ B[d/2]+2} ,

denoting by t �→ S(t, s) the operator-valued solution to the Cauchy problem

i�∂t S(t, s) = (− 1
2�

2� + VR(t))S(t, s) , S(s, s) = IH. (44)

Since E∗ω is the Weyl operator with symbol (x, ξ) �→ e−iω·x , one has obviously

max(1, |ω|)−[d/2]−2E∗ω ∈ V[0] =W[0].
Hence

‖((MN (s)−R(s))E∗ω)Fin
N ‖L1(HN )

≤ max(1, |ω|)[d/2]+2 sup
a∈B[d/2]+2

‖((MN (s)−R(s))OPW
�
[a])Fin

N ‖L1(HN )

= max(1, |ω|)[d/2]+2 sup
B∈V[s]

‖((MN (s)−R(s))(S(s, 0)BS(0, s)))Fin
N ‖L1(HN )

≤ max(1, |ω|)[d/2]+2dTN (s).
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Therefore, inequality (42) becomes

1

�
| traceHN ((C[Eω,MN (s)−R(s),MN (s)]A(s))Fin

N W (t))|

≤ 1

�
‖[Eω, A(s)]‖max(1, |ω|)[d/2]+2dTN (s) +

1

N�
‖[E∗ω, A(s)]‖.

(45)

We are left with the task of estimating

‖[Eω, A(s)]‖
�

for all A(s) = S(s, 0)Ain S(0, s) with Ain ∈W[T ].
In other words, A(s) is of the form

S(s, τ )OPW
�
[a]S(τ, s) with a ∈ B[d/2]+2 , and 0 ≤ τ ≤ T .

The key estimate for all such operators is provided by the following lemma.

Lemma 4.1. Under the assumptions of Theorem 1.1, there exists a positive constant
γd > 0 such that, for all Ain ∈ W[T ], all ω ∈ Rd and all s ∈ [0, T ], the operator
A(s) = S(s, 0)Ain S(0, s) satisfies

‖[Eω, A(s)]‖
�

≤ √dγd |ω|eT max(1,�2) ,

where

�2 := max
1≤ j≤d

d∑
k=1

1
(2π)d

∫
Rd
|V̂ (ξ)||ξ j ||ξk | dξ.

We shall take Lemma 4.1 for granted, finish the proof of Theorem 1.1, and postpone
the proof of Lemma 4.1 until the end of the present section.

Inserting the bound provided by Lemma 4.1 shows that for all s, t ∈ [0, T ] and all
Ain ∈W[T ], one has

1

�
| traceHN ((C[Eω,MN (s)−R(s),MN (s)]A(s))Fin

N W (t))|

≤ √dγde
T max(1,�2)|ω|

(
max(1, |ω|)[d/2]+2dTN (s) +

1

N

)
.

(46)

Step 5. Now we use the inequality (46) to bound the right hand side of the integral
inequality (39). One finds that, for each t ∈ [0, T ] and each Ain ∈W[T ],

‖(MN (t)−R(t))(A(t))Fin
N ‖L1(HN )≤‖((MN (0)−R(0))Ain)Fin

N ‖L1(HN )

+
√
dγde

T max(1,�2)

∫ t

0

∫
Rd

(
max(1, |ω|)[d/2]+2dTN (s)+ 1

N

)
|ω||V̂ (ω)| dω ds

(2π)d

≤ dTN (0)+dγde
T max(1,�2)V

∫ t

0

(
dTN (s)+

1

N

)
ds ,

(47)

where we recall that

V := 1
(2π)d

∫
Rd
|V̂ (ω)|(1 + |ω|)[d/2]+3 dω <∞ ,
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since

‖((MN (0)−R(0))Ain)Fin
N ‖L1(HN ) ≤ dTN (0).

Observing that A(t) = S(t, 0)Ain S(0, t) with t ∈ [0, T ], and maximizing the left hand
side of the inequality (47) as Ain runs through W[T ], one finds that

dTN (t) ≤ dTN (0) +
√
dγde

T max(1,�2)V
∫ t

0

(
dTN (s) +

1

N

)
ds (48)

for all t ∈ [0, T ]. Applying Gronwall’s lemma to the integral inequality (48) shows that

dTN (T ) +
1

N
≤
(
dTN (0) +

1

N

)
exp
(√

dγdT e
T max(1,�2)V

)
. (49)

Step 6. Next, observe that

dTN (T ) ≥ sup
B∈V[T ]

‖((MN (T )−R(T ))(S(T, 0)BS(0, T )))Fin
N ‖L1(HN )

= sup
B∈V[0]

| traceHN (((MN (T )−R(T ))B)Fin
N )|

= sup
B∈V[0]

| traceH((FN :1(T )− R(T ))B)|.

On the other hand

traceH((FN :1(T )− R(T ))OPW
�
[a])

=
∫∫

Rd×Rd
(W�[FN :1(T )] −W�[R(T )]) (x, ξ)a(x, ξ) dx dξ ,

according to formula (63) in Appendix B. Hence

dTN (T ) ≥ sup
a∈B[d/2]+2

∣∣∣∣
∫∫

Rd×Rd
(W�[FN :1(T )] −W�[R(T )]) (x, ξ)a(x, ξ) dx dξ

∣∣∣∣
= ‖W�[FN :1(T )] −W�[R(T )]‖′[d/2]+2,[d/2]+2,∞ . (50)

Step 7. Next we seek an upper bound for dTN (0), to be inserted on the right hand side of
(49). By the Calderon–Vaillancourt theorem (see Theorem B.1 in Appendix B), one has

V[0] ⊂ B(0, γd)L(H).

Hence

dTN (0) := sup
B∈V[0]

‖((MN (0)−R(t))B)Fin
N ‖L1(HN )

≤ sup
‖B‖≤γd

‖((MN (0)−R(t))B)Fin
N ‖L1(HN )

≤γd sup
‖B‖≤1

∥∥∥∥((MN (0)−R(0))B)

√
Fin
N

√
Fin
N

∥∥∥∥L1(HN )

≤γd sup
‖B‖≤1

∥∥∥∥((MN (0)−R(0))B)

√
Fin
N

∥∥∥∥L2(HN )

,

(51)
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by the Cauchy-Schwarz inequality, since ‖
√
Fin
N ‖L2(HN ) = 1, so that one is left with

the task of computing

∥∥∥∥((MN (0)−R(0))B)

√
Fin
N

∥∥∥∥L2(HN )

.

One expands

∥∥∥∥((MN (0)−R(0))B)

√
Fin
N

∥∥∥∥
2

L2(HN )

= traceHN

(√
Fin
N ((MN (0)−R(0))B)∗((MN (0)−R(0))B)

√
Fin
N

)

= traceHN (((MN (0)−R(0))B)∗((MN (0)−R(0))B)Fin
N )

= traceHN ((MN (0)B)∗(MN (0)B)Fin
N )− traceHN ((MN (0)B)∗(R(0)B)Fin

N )

− traceHN ((R(0)B)∗(MN (0)B)Fin
N ) + traceHN ((R(0)B)∗(R(0)B)Fin

N ).

One has

traceHN ((R(0)B)∗(R(0)B)Fin
N ) = | traceH(R(0)B)|2 traceHN (Fin

N )

= | traceH(R(0)B)|2 ,

and

traceHN ((R(0)B)∗(MN (0)B)Fin
N ) = traceH((R(0)B) traceHN ((MN (0)B)Fin

N )

= traceH(R(0)B) traceH(BFin
N :1).

Then

traceHN ((MN (0)(B))∗R(0)(B)Fin
N )= traceHN (Fin

N (MN (0)(B))∗R(0)(B))

= traceHN ((Fin
N (MN (0)(B))∗R(0)(B))∗)= traceHN (R(0)(B)∗MN (0)(B)Fin

N )

= traceH(R(0)B)traceH(BFin
N :1).

It remains to compute

traceHN ((MN (0)B)∗(MN (0)B)Fin
N )

= 1

N 2

∑
1≤k �=l≤N

traceHN traceHN ((Jk B
∗)(Jl B)Fin

N )

+
1

N 2

N∑
k=1

traceHN ((Jk B)∗(Jk B)Fin
N )

= N − 1

N
traceH2((B

∗ ⊗ B)Fin
N :2) +

1

N
traceH(B∗BFin

N :1).
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Summarizing, we have found that
∥∥∥∥(MN (0)−R(0))(B)

√
Fin
N

∥∥∥∥
2

L2(HN )

= N − 1

N
traceH2((B

∗ ⊗ B)Fin
N :2) +

1

N
traceH(B∗BFin

N :1)

− 2�
(
traceH(R(0)B) traceH(BFin

N :1)
)
+ | traceH(R(0)B)|2.

One can rearrange this term as
∥∥∥∥((MN (0)−R(0))B)

√
Fin
N

∥∥∥∥
2

L2(HN )

= N − 1

N
traceH2((B

∗ ⊗ B)(Fin
N :2 − Fin

N :1 ⊗ Fin
N :1))

+
1

N
(traceH(B∗BFin

N :1)− | traceH(BFin
N :1)|2)

+ | traceH(B(Fin
N :1 − R(0)))|2.

Hence

sup
‖B‖≤1

∥∥∥∥((MN (0)−R(0))B)

√
Fin
N

∥∥∥∥
2

L2(HN )

≤ N − 1

N
‖Fin

N :2 − Fin
N :1 ⊗ Fin

N :1‖L1(H2)
+ ‖Fin

N :1 − R(0)‖2L1(H)
+

1

N
.

(52)

Since we have assumed in Theorem 1.1 that Fin
N = (Rin)⊗N , one has

Fin
N :1 = Rin = R(0) and Fin

N :2 = (Rin)⊗2 = Fin
N :1 ⊗ Fin

N :1.

Therefore, we conclude from (51) and (52) that

dTN (0) ≤ γd√
N

. (53)

Inserting the bounds (53) and (50) in (49), we conclude that

‖W�[FN :1(T )] −W�[R(T )]‖′[d/2]+2,[d/2]+2,∞≤
γd√
N

exp
(√

dγdT e
T max(1,�2)V

)

+
1

N

(
exp
(√

dγdT e
T max(1,�2)V

)
−1
)

,

which obviously implies (7).

Remark. By comparison with the proofs of Theorem 2.4 in [17], a striking feature
of the present proof is that it uses a different distance for each time t at which we
seek to compare the Hartree solution R(t) and the first marginal FN :1(t) of the N -
particle density. Specifically, for each T > 0, the distance dTN (T ) is used to estimate
the difference, W�[FN :1(T )] − W�[R(T )]. On the contrary, in [17], the convergence
rate for all time intervals is estimated in terms of a single pseudo-distance constructed
by analogy with the quadratic Monge-Kantorovich (or Wasserstein) distance used in
optimal transport.
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Proof of Lemma 4.1.4

Let S be the solution to the Cauchy problem (44). Then

i�∂t A(t) = [− 1
2�

2� + VR(t), A(t)] , A(0) = Ain ⇐⇒ A(t) = S(t, 0)Ain S(0, t).

Picking Ain ∈W[T ] implies that Ain is of the form Ain = S(0, τ )OPW
�
[a]S(τ, 0) with

a ∈ B[d/2]+2.
For each j = 1, . . . , d, one has

i�∂t [x j , A(t)] = [x j , [− 1
2�

2� + VR(t), A(t)]]
= [− 1

2�
2� + VR(t), [x j , A(t)]] + �

2[∂x j , A(t)] ,
so that, by Duhamel’s formula,

[x j , A(t)] = S(t, τ )[x j ,OPW� [a]]S(τ, t)− i
∫ t

τ

S(t, s)[�∂x j , A(s)]S(s, t) ds.

Since S(t, s) is unitary and S(s, t) = S(t, s)∗, one has

‖[x j , A(t)]‖ ≤ ‖[x j ,OPW� [a]]‖ +
∣∣∣∣
∫ t

τ

‖[�∂x j , A(s)]‖ ds
∣∣∣∣ . (54)

Likewise

i�∂t [−i�∂x j , A(t)] = [−i�∂x j , [− 1
2�

2� + VR(t), A(t)]]
= [− 1

2�
2� + VR(t), [−i�∂x j , A(t)]] − i�[∂ j VR(t), A(t)].

Since

−i�[∂ j VR(t), A(t)] = �

(2π)d

∫
Rd

ω j V̂ (ω) trace(R(t)E∗ω)[Eω, A(t)] dω ,

Duhamel’s formula implies that

[−i�∂x j , A(t)] = S(t, τ )[−i�∂x j ,OP
W
�
[a]]S(τ, t)

− i
(2π)d

∫
Rd

ω j V̂ (ω)

(∫ t

τ

S(t, s) trace(R(s)E∗ω)[Eω, A(t)]S(s, t) ds

)
dω.

Since R(s) = R(s)∗ ≥ 0 and trace(R(s)) = 1, one has | trace(R(s)E∗ω)| ≤ 1 and
therefore, arguing as in the proof of (54)

‖[−i�∂x j , A(t)]‖ ≤ ‖[−i�∂x j ,OP
W
�
[a]]‖

+ 1
(2π)d

∫
Rd
|ω j ||V̂ (ω)|

∣∣∣∣
∫ t

τ

‖[Eω, A(s)]‖ ds
∣∣∣∣ dω.

4 We thank one of the referees for suggesting the present proof of Lemma 4.1 based on the computations
in Appendix B of [5] or Appendix C of [6]. This proof requires less regularity on the interaction potential V ,
and is much simpler than our original argument, which followed instead the analysis in [9].
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On the other hand

[Eω, A(s)] =
(∫ 1

0

d

dλ

(
EλωA(s)E∗λω

)
dλ

)
Eω

=
(∫ 1

0
Eλω[iω · x, A(s)]E∗λω dλ

)
Eω ,

so that

‖[Eω, A(t)]‖ ≤
d∑

k=1
|ωk |‖[xk, A(t)]‖. (55)

Thus

‖[−i�∂x j , A(t)]‖ ≤ ‖[−i�∂x j ,OP
W
�
[a]]‖

+ 1
(2π)d

d∑
k=1

∫
Rd
|ω j ||ωk ||V̂ (ω)|

∣∣∣∣
∫ t

τ

‖[xk, A(s)]‖ ds
∣∣∣∣ dω.

(56)

Set

N (t) := max
1≤ j≤d(‖[x j , A(t)]‖ + ‖[−i�∂x j , A(t)]‖) ,

and

�2 := max
1≤ j≤d

d∑
k=1

1
(2π)d

∫
Rd
|ω j ||ωk ||V̂ (ω)| dω.

Then

N (t) ≤ N (τ ) + max(1, �2)

∣∣∣∣
∫ t

τ

N (s) ds

∣∣∣∣ ,

and Gronwall’s lemma implies that

N (t) ≤ N (τ )e|t−τ |max(1,�2) t ∈ [0, T ].
The argument leading to this bound is similar to Appendix C in [6].

Then, by (55) and the Cauchy-Schwarz inequality,

1

�
‖[Eω, A(t)]‖ ≤

√
d

�
|ω|N (t) ≤

√
d

�
|ω|N (τ )e|t−τ |max(1,�2)

≤
√
d

�
|ω|N (τ )eT max(1,�2)

since t, τ ∈ [0, T ]. We have assumed that Ain = S(0, τ )OPW
�
[a]S(τ, 0), so that one has

A(τ ) = OPW
�
[a]. Hence

N (τ ) := max
1≤ j≤d(‖[x j ,OP

W
�
[a]]‖ + ‖[−i�∂x j ,OP

W
�
[a]]‖) ≤ γd�

by the Calderon–Vaillancourt theorem (Theorem B.1 in Appendix B), since

[x j ,OPW� [a]] = i�OPW
�
[∂ξ j a] , [−i�∂x j ,OP

W
�
[a]] = −i�OPW

�
[∂x j a]

and a ∈ B[d/2]+2. ��
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Appendix A. A Unified Setting for the Terms ad∗(− 1
2 �

2�)MN (t) and
C[V,MN (t),MN (t)]

According to Lemma 3.6,

ad∗(− 1
2�

2�)RN (t)− C[V,RN (t),RN (t)] = ad∗(− 1
2�

2� + VR(t))RN (t) ,

when RN (t) is of the form (36).
This suggests to look for a common structure in both terms ad∗(− 1

2�
2�)MN (t) and

C[V,MN (t),MN (t)], although MN (t) is not in the form (36). This can be achieved,
at least at the formal level, by the following remark.

All the tensor products appearing in the discussion below designate tensor products of
C- vector spaces. Observe thatL(L(H),L(HN )) is aL(H)op⊗L(HN )-bimodule, where
L(H)op is the opposite of the algebra L(H)—in other words, the product in L(H)op is

L(H)⊗ L(H) � A ⊗ B �→ BA ∈ L(H).

The product in the algebra L(H)op ⊗ L(HN ) is defined by the formula

(P ⊗ QN )(P ′ ⊗ Q′N ) := (P ′P)⊗ (QN Q
′
N ) , P, P ′ ∈ L(H) , QN , Q′N ∈ L(HN ).

The left scalar multiplication in the L(H)op ⊗ L(HN )-bimodule L(L(H),L(HN )) is
defined as follows. Let � ∈ L(L(H),L(HN )), let P ∈ L(H) and QN ∈ L(HN ), then

(P ⊗ QN ) ·� : L(H) � A �→ QN�(PA) ∈ L(HN ).

That this is a left action of L(H)op ⊗ L(HN ) on L(L(H),L(HN )) is seen with the
following elementary computation

((P ′ ⊗ Q′N ) · ((P ⊗ QN ) ·�))A = Q′N ((P ⊗ QN ) ·�)(P ′A)

= (Q′N QN )�(PP ′A)

= (((PP ′)⊗ (Q′N QN ))�)A ,

for all P, P ′ and A ∈ L(H) and QN , Q′N ∈ L(HN ). Likewise, one easily checks that the
right scalar multiplication in the L(H)op ⊗L(HN )-bimodule L(L(H),L(HN )), defined
by the formula

� · (P ⊗ QN ) : L(H) � A �→ �(AP)QN ∈ L(HN )

is indeed a right action.
In this setting, one has

� · (P ⊗ QN )− (P ⊗ QN ) ·� = b1(�⊗ (P ⊗ QN )) , (57)
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where

b1 : L(L(H),L(HN ))⊗ (L(H)op ⊗ L(HN ))→ L(L(H),L(HN ))

is the Hochschild boundary map in degree one, defined on the space of Hochschild
1-chains

C1(L(L(H),L(HN ));L(H)op ⊗ L(HN )) := L(L(H),L(HN ))⊗ (L(H)op ⊗ L(HN ))

with values in the space of Hochschild 0-chains

C0(L(L(H),L(HN ));L(H)op ⊗ L(HN )) := L(L(H),L(HN )).

(See for instance section 1.1 in [32] for a quick presentation of Hochschild homology.)
Hence

C[Eω,MN ,MN ] = (MN E
∗
ω)MN (EωA)− (MN (AEω))(MN E

∗
ω)

= −b1(MN ⊗ (Eω ⊗ (MN E
∗
ω))).

(58)

In the special case where QN = IHN , the identity (57) takes the form

b1(�⊗ (P ⊗ IHN ) = ad∗(P)� , (59)

and this is the key observation leading to Lemma 3.6.
Since the Hochschild boundary map b1 is linear, one can think of the operator

C[V,MN ,MN ] as

C[V,MN ,MN ] = −b1

(
MN ⊗

∫
Rd

Eω ⊗ (MN E
∗
ω)V̂ ( dω)

)
. (60)

With the previous identity, equation (34) takes the form

i�∂tMN (t) = b1(MN (t)⊗H [MN (t)]) (61)

where H [MN (t)] is the N -body quantum Hamiltonian viewed as the element of
L(H)op ⊗ L(HN ) defined by the formula

H [MN (t)] := − 1
2�

2�⊗ IHN +
∫

Rd
Eω ⊗ (MN E

∗
ω)V̂ ( dω). (62)

While the discussion in the previous paragraphs is mathematically rigorous, writing (34)
as (61) is purely formal for two reasons. First, � is an unbounded operator on H, so that
one cannot think ofMN (t)⊗ (− 1

2�
2�⊗ IHN ) as a Hochschild 1-chain, i.e. an element

of C1(L(L(H),L(HN ));L(H)op ⊗ L(HN )). The term∫
Rd

Eω ⊗ (MN E
∗
ω)V̂ ( dω)

is even more annoying. Unless V̂ is a finite linear combination of Dirac measures, this
integral does not define an element of L(H)op ⊗ L(HN ). At best, this integral could
be thought of as an element of some completion of L(H)op ⊗ L(HN ), the choice of
which might not be completely obvious. (For instance, using cross norms to define the
topology on the algebra L(H)op ⊗ L(HN ) might lead to serious difficulties since the
map R � ω �→ Eω ∈ L(H) is not continuous for the norm topology. Likewise, one
should probably avoid thinking of the integral above as a Bochner integral since L(H)
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and L(HN ) are not separable.) In view of these difficulties, we shall not go further in
this direction, and stick to our Definition 3.1 of the interaction term C[V,MN ,MN ].
Nevertheless, it might be useful to keep in mind the form (61) of the governing equation
(34) forMN , together with the formal expression of the interaction term as in (60)–(62).

Of course, ifMN (t) is of the formR(t) given by (36), then
∫

Rd
Eω ⊗ (MN E

∗
ω)V̂ ( dω) =

(∫
Rd

Eω traceH(R(t)E∗ω)V̂ ( dω)

)
⊗ IHN

= VR(t) ⊗ IHN ,

so that

H [R(t)] = (− 1
2�

2� + VR(t))⊗ IHN .

Then, according to (59),

b1(R(t)⊗H [R(t)]) = ad∗(− 1
2�

2� + VR(t))R(t) ,

so that equation (61) forR given by (36) takes the form

i�∂tR(t) = b1(R(t)⊗H [R(t)]) = ad∗(− 1
2�

2� + VR(t))R(t) ,

which is clearly equivalent to (3) for R(t).

Appendix B. Wigner Transformation, Weyl Quantization and the Calderon–
Vaillancourt Theorem

We first recall the notion of Wigner transform [41]. For each K ∈ L(H) with integral
kernel k ≡ k(x, y) ∈ C such that k ∈ S(Rd × Rd), the Wigner transform at scale � of
K is the element of S(Rd × Rd) defined by the formula

W�[K ](x, ξ) := 1
(2π)d

∫
Rd

k(x + 1
2�y, x − 1

2�y)e−iξ ·y dy.

By Plancherel’s theorem, for each pair of operators K1, K2 ∈ L(H)with integral kernels
k1, k2 ∈ S(Rd × Rd), one has

∫∫
Rd×Rd

W�[K1](x, ξ)W�[K2](x, ξ) dx dξ

= 1

(2π�)d

∫∫
Rd×Rd

k1(x, y)k2(x, y) dx dy = 1

(2π�)d
traceH(K ∗1 K2).

Therefore, the linear map K �→ (2π�)d/2W�[K ] extends as an unitary isomorphism
from L2(H) to L2(Rd × Rd). Observe that

W�[K ∗](x, ξ) = W�[K ](x, ξ) , for a.e. (x, ξ) ∈ Rd × Rd .

We next recall the semiclassical Weyl quantization. For each a ∈ S(Rd
x × Rd

ξ ) with
polynomial growth as |x | + |ξ | → +∞, the expression

(OPW
�
[a]ψ)(x) = 1

(2π)d

∫∫
Rd×Rd

a
( x + y

2
, �ξ
)
eiξ ·(x−y)ψ(y) dξ dy
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defines a linear map from S(Rd) to itself. Observe that
∫

Rd
φ(x)(OPW

�
[a]ψ)(x) dx =

∫∫
Rd×Rd

W�[|φ〉〈ψ |](x, ξ)a(x, ξ) dx dξ.

This formula extends to density operators more general than |φ〉〈ψ |, viz.

traceL2(Rd )(ROPW
�
[a]) =

∫∫
Rd×Rd

W�[R](x, ξ)a(x, ξ) dx dξ (63)

for all R ∈ D(H).
This defines the operator OPW

�
[a] by duality as a linear map from S(Rd) to S ′(Rd)

for all a ∈ S ′(Rd × Rd). Observe that

OPW
�
[a]∗ = OPW

�
[a].

Finally, we mention the following variant of the Calderon–Vaillancourt theorem due
to Boulkhemair [8]—see also formula (54) on p. 236 in [9].

Theorem B.1 (Calderon–Vaillancourt). For each integer d ≥ 1, there exists a constant
γd > 0 with the following property.

Let a ∈ S ′(Rd
x × Rd

ξ ) satisfy the condition

|α|, |β| ≤ [d/2] + 1 �⇒ ∂α
x ∂

β
ξ a ∈ L∞(Rd

x × Rd
ξ ).

Then, for all � ∈ (0, 1), one has

‖OPW
�
[a]‖L(L2(Rd )) ≤ γd max|α|,|β|≤[d/2]+1 ‖∂

α
x ∂

β
ξ a‖L∞(Rd×Rd ).
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