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Abstract: We discuss a generalization of Chern–Simons theory in three dimensions
based on Leibniz (or Loday) algebras, which are generalizations of Lie algebras. Special
cases of such theories appear in gauged supergravity,where theLeibniz algebra is defined
in terms of the global (Lie) symmetry algebra of the ungauged limit and an embedding
tensor. We show that the Leibniz algebra of generalized diffeomorphisms in exceptional
field theory can similarly be obtained from a Lie algebra that describes the enhanced
symmetry of an ‘ungauged phase’ of the theory. Moreover, we show that a ‘topological
phase’ of E8(8) exceptional field theory can be interpreted as a Chern–Simons theory for
an algebra unifying the three-dimensional Poincaré algebra and the Leibniz algebra of
E8(8) generalized diffeomorphisms.
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1. Introduction

Chern–Simons actions define topological field theories in three dimensions (3D) [1]
and arise in numerous contexts, for instance: as part of string theory and supergravity
compactified to (or constructed in) 3D [2]; as a powerful framework for knot theory [3];
and as effective field theories for the quantumHall effect (see [4] for a review).Moreover,
pure gravity and supergravity in 3D have an interpretation as Chern–Simons theories
[5,6], as have their higher-spin generalizations, which in turn led to new toy-models for
AdS/CFT [7,8].

In general, a Lie algebra that admits an invariant quadratic form defines a gauge
invariant Chern–Simons action for a Yang-Mills gauge field in 3D. In this paper we will
show that there is a larger class of algebraic structures that allow for consistent Chern–
Simons theories: the Leibniz (or Loday) algebras [9]. They are defined by a ‘product’
that is not necessarily antisymmetric but satisfies a Jacobi-like identity. In the case that
the product is antisymmetric, this identity coincides with the Jacobi identity and hence
the algebra reduces to a Lie algebra. Genuine Leibniz algebras do exist, however, and
define a gauge invariant Chern–Simons action, provided they admit a quadratic form
satisfying suitable invariance conditions. Such algebras and their associated Chern–
Simons actions have already appeared in the literature, notably in duality covariant
formulations of gauged supergravity (in the ‘embedding tensor formalism’ [10,11]) and
of 11-dimensional or type IIB supergravity (in ‘exceptional field theory’ [12–14]). In
this paper we will discuss Leibniz–Chern–Simons theories from amore abstract point of
view that allows us, at least partially, to elevate the analogy between gauged supergravity
and exceptional field theory to a technically precise correspondence.

Exceptional field theory (ExFT) is a formulation of the spacetime actions of 11-
dimensional or type IIB supergravity that is covariant under the U-duality groups Ed(d),
d = 2, . . . , 9. To this end, the spacetime is extended, in the spirit of double field theory
[15–18], so that the coordinates transform covariantly under Ed(d), subject to (duality
covariant) section constraints. ExFT was developed in [19–21]; see [22–34] for previous
and subsequent work. In this paper we will mainly focus on the E8(8) ExFT [13], whose
bosonic field content consists of a ‘dreibein’ eμ

a , an E8(8) valuedmetricMMN ,M, N =
1, . . . , 248, and two gauge vectors Aμ

M , BμM . All fields depend on the 248 coordinates
Y M in the adjoint of E8(8), subject to the section constraints, and on (unconstrained)
external 3D coordinates xμ. The theory is invariant under generalized external and
internal diffeomorphisms of the xμ and Y M , respectively. The internal diffeomorphism
symmetry, when properly formulated, is governed by a Leibniz algebra rather than a
Lie algebra. In particular, the vector fields, which act as gauge fields for the generalized
internal diffeomorphisms, naturally combine into a Leibniz valued gauge field Aμ ≡
(Aμ

M , BμM ), and enter the action precisely in a Leibniz–Chern–Simons form [14].
As one of ourmain technical results, we exhibit the close parallel between the Leibniz

algebra structures (and their Chern–Simons actions) in gauged supergravity and ExFT
by showing that in both frameworks the Leibniz algebras can be obtained by means of
the same universal construction using an ‘embedding tensor’. Specifically, in gauged
supergravity the structure constants of the gauge algebra are defined in terms of a Lie
algebra g that encodes the global symmetry of the ungauged theory, and an embedding
tensor, which in 3D is a symmetric second rank tensor on the dual space g∗. Typically,
the embedding tensor is degenerate and not invariant under the action of g, which im-



Leibniz–Chern–Simons Theory and Phases 1057

plies that the resulting structure constants in general do not define a Lie algebra on
g∗. They define, however, a Leibniz algebra [35,36]. We will then show that there is a
completely analogous construction in ExFT, starting from an ‘ungauged phase’ that is
invariant under significantly enhanced global symmetries. In contrast to the full ExFT,
this symmetry is governed by a genuine Lie algebra: the semi-direct sum of the Lie
algebra of (infinitesimal) 248-dimensional diffeomorphisms and the current algebra of
Y -dependent e8(8) transformations. The quadratic invariant of the E8(8) generalized dif-
feomorphisms can then be taken as the embedding tensor, which yields precisely the
expected Leibniz algebra.

As a further application of the general framework of Leibniz–Chern–Simons theories,
we will show that a certain topological subsector of the E8(8) ExFT can be interpreted as
a Chern–Simons theory based on an enlarged Leibniz algebra. This ‘topological phase’
consists of a (covariantized) 3D Einstein-Hilbert term and topological terms for the
gauge vectors. Pure 3D gravity has an interpretation as a Chern–Simons theory based
on the Poincaré or (A)dS group [5,6], and we will show here that there is an enlarged
Leibniz algebra combining the Poincaré algebra with the algebra of generalized diffeo-
morphisms, with the former acting on the latter by certain ‘anomalous’ transformations.
We show that this algebra can again be obtained from an infinite-dimensional Lie algebra
g and an embedding tensor on g∗ that acts as the symmetric invariant of the full Leibniz
algebra. The corresponding Chern–Simons action precisely reproduces the topological
sector of the E8(8) ExFT, and we prove that the resulting gauge transformations are
equivalent to those following from [13], as it must be for consistency.

One may view this theory as a 3D Chern–Simons theory with an infinite-dimensional
‘gauge group’, whose algebra structure is encoded in the Y -dependence of all fields and
gauge parameters.1 Accordingly, the theory still encodes genuinely 11-dimensional dy-
namics (or 10-dimensional dynamics, depending on the solution of the section constraint)
and in particular is invariant under 11-dimensional diffeomorphisms, albeit formulated
for a ‘3 + 8 foliation’. While this theory is topological and hence does not describe
Einstein (super-)gravity in D = 11, it is part of the full E8(8) ExFT that encodes the
complete 11-dimensional supergravity.

Formally, this topological phase is obtained by setting MMN = 0 in the action and
gauge transformations. Of course, this is not strictly legal in that MMN was assumed
to be E8(8) valued and hence invertible, but we will show that setting MMN = 0 does
respect all gauge symmetries. Thus, while the resulting theory is not expected to be a
consistent truncation (in the technical sense that any solution of the truncated theory
can be uplifted to a solution of the full theory) it is nonetheless ‘consistent’ by itself in
that it has as much gauge symmetry as the full theory. In particular, this allows us, for
this subsector, to make the external diffeomorphism symmetry manifest, which in the
conventional formulation acts in an intricate way and so far could only be verified by
tedious computations.

We close with some general remarks. The topological subsector of the E8(8) ExFT,
for which we here provide a Chern–Simons interpretation, is obtained by truncating
the ‘physical’ degrees of freedom that in 3D are entirely encoded in MMN . A natural
and certainly legal way to do so would be to set it to a constant invertible matrix, say
MMN = δMN . However, any such choice would break part of the duality symmetry,
here from E8(8) to SO(16), while the topological theory still features the full E8(8)
duality. Thus, this theory appears to be some kind of ‘unbroken phase’. While we have

1 This is similar to Vasiliev’s higher-spin gravity in 3D, whose higher-spin algebra is defined through the
dependence on additional coordinates [37], with a Chern–Simons formulation for the topological sector.
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no a priori reason to assume that this theory by itself has some physical role to play
within string/M-theory, the fact that it exists and has such a natural Chern–Simons
interpretation is certainly intriguing. Regardless of whether the topological sector does
or does not make physical sense by itself, it is part of the full E8(8) ExFT, and so it would
be important to see whether the Leibniz algebra structure also simplifies the ‘matter
couplings’ includingMMN , a question to which we hope to come back to. We will also
show that the large Leibniz algebra can be modified to (A)dS gravity. Again, it would be
important to investigate whether this (topological) AdS theory by itself has a physical
interpretation within M-theory.

The remainder of this paper is organized as follows. In Sect. 2 we discuss Leibniz
algebras and their associated Chern–Simons theories in an ‘invariant’ (or index-free)
formulation that is appropriate for general applications. Section 3 is mainly a review of
the Leibniz algebra underlying the internal gauge symmetries of the E8(8) ExFT. In this
we hope to present several results that are scattered through the literature, see [13,14,33],
in a self-contained fashion. Then we turn in Sect. 4 to one of our main constructions, to
show that the Leibniz algebra of E8(8) generalized diffeomorphisms can be interpreted in
terms of a suitably formulated embedding tensor formalism. Finally, in Sect. 5, we define
a Leibniz algebra combining (an infinite-dimensional extension of) the 3D Poincaré
algebra and the E8(8) generalized diffeomorphisms. We prove that the resulting Chern–
Simons theory is equivalent to the topological subsector of the E8(8) ExFT. We also
present a generalization that includes a cosmological constant. Our conclusions and
outlook are in Sect. 6, while in the appendix we discuss the extension of the embedding
tensor formalism to higher dimensions.

2. Leibniz Algebras and Their Chern–Simons Theories

In this section we give a general discussion of 3DChern–Simons theories based on Leib-
niz algebras. In the first subsection we introduce Leibniz algebras and their associated
Yang-Mills-like vector gauge fields. In the second subsection we discuss the invariance
conditions on a inner product and prove that the corresponding Chern–Simons action is
gauge invariant.

2.1. Leibniz algebras and their gauge fields. A Leibniz (or Loday) algebra is a vector
space X0 equipped with a ‘product’ ◦ satisfying for any vectors x, y, z the Leibniz
identity

x ◦ (y ◦ z) = (x ◦ y) ◦ z + y ◦ (x ◦ z). (2.1)
If x ◦ y is antisymmetric in x, y, this reduces to the Jacobi identity, and hence the algebra
reduces to a Lie algebra. In the following sections we will give examples of genuine
Leibniz algebras and thereby go beyond Lie algebras.

An immediate consequence of (2.1) is that the product defines transformations

δx y = Lx y ≡ x ◦ y, (2.2)

that close and hence generalize the adjoint action of a Lie algebra. (Here we introduced
the notation Lx of (generalized) Lie derivatives that will be employed later.) To see that
(2.2) closes we compute

[Lx ,Ly]z ≡ Lx (Lyz) − Ly(Lx z)

= x ◦ (y ◦ z) − y ◦ (x ◦ z)

= (x ◦ y) ◦ z

= Lx◦yz,

(2.3)
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using the Leibniz identity (2.1) from the second to the third line. Note that the left-hand
side of (2.3) is manifestly antisymmetric in x, y, but the right-hand side is not. Thus,
antisymmetrizing on both sides of the equation we obtain

[Lx ,Ly]z = L[x,y]z, (2.4)

while symmetrization on both sides yields

0 = L{x,y}z, (2.5)

where we introduced the symmetrization and antisymmetrization of the product:

{x, y} ≡ 1
2 (x ◦ y + y ◦ x),

[x, y] ≡ 1
2 (x ◦ y − y ◦ x).

(2.6)

The symmetric bracket {, } measures the failure of the product to define a Lie algebra.
Importantly, even the antisymmetric bracket [, ] does not define a Lie algebra if {, }
is non-vanishing, for then the Jacobi identity is not satisfied. However, the resulting
‘Jacobiator’ acts trivially according to (2.5).

The subspace U generated by symmetrized products {v,w} forms an ideal2 which
according to (2.5) we will refer to as the ideal of trivial vectors. Thus Lu = 0, ∀u ∈
U . In general, the Leibniz algebra may contain further vectors outside of U whose
generalized Lie derivative (2.2) on all other vectors vanishes. In the following it will often
be convenient to represent this ideal as the image of a linear mapD : X1 → U , where X1
is a subspace of the symmetric tensor product X0 ⊗sym X0 (which typically corresponds
to the space of two-form gauge fields of the theory). Explicitly, this corresponds to a
representation of the symmetrized products as

{x, y} = 1
2D(x • y), (2.7)

where • denotes a bilinear symmetric pairing X0 ⊗sym X0 → X1. This bilinear map is
defined by (2.7) only up to contributions in the kernel of D, which has consequences
for the tensor hierarchies (or L∞ algebras) to be discussed momentarily, but it turns out
that the related subtleties are immaterial for the 3D constructions in this paper.

After this introductory discussion, our goal is now to develop generalizations of
Yang-Mills gauge theories for Leibniz algebras. In the same way that one introduces
for gauge groups of Lie type one-forms taking values in the adjoint representation, we
now introduce one-forms A = Aμdxμ taking values in the Leibniz algebra, of which
we think as the representation space of the generalized adjoint action (2.2). As in Yang-
Mills theory we define a gauge transformation w.r.t. to a Leibniz-algebra valued gauge
parameters λ:

δλAμ = Dμλ ≡ ∂μλ − Aμ ◦ λ. (2.8)

In contrast to conventional Yang-Mills theory, these transformations as such are not quite
consistent, because they do not close by themselves. An explicit computation using (2.7)
shows

[δλ1 , δλ2 ]Aμ = Dμ[λ2, λ1] +D(λ[1 • Dμλ2]). (2.9)

2 The results of [38] then imply that this algebraic structure forms part of an L∞ algebra [39]. See also
[40–42]. We will leave a more detailed discussion of the significance of such algebras in this context for future
work.
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The first term on the right-hand side takes the form of δ12Aμ, with λ12 = [λ2, λ1], but
the second term spoils closure. This suggests to postulate a new gauge symmetry with
one-form parameter λμ (living in the space X1 in which x • y takes values):

δλAμ = Dμλ − Dλμ, (2.10)

for then we have closure according to [δλ1 , δλ2 ]Aμ = Dμλ12 − Dλ12μ, where

λ12 = [λ2, λ1], λ12μ = λ[2 • Dμλ1]. (2.11)

The one-form gauge symmetry is also needed in order for exact parameters λ = Da
to yield trivial transformations. Indeed, from (2.10) it then follows that δAμ = 0 for
λμ = Dμa. More precisely, here we have to assume that the space in which λμ lives is
a representation space of the Leibniz algebra, so that there is a well-defined action of L
and hence a notion of covariant derivative, and that D is ‘covariant’ in that it commutes
with generalized Lie derivatives. This is satisfied for all explicit examples.

The new one-form gauge parameter can be associated to a new two-form gauge
potential Bμν taking values in the same space. Indeed, in order to define a gauge-covariant
field strength such a two-form is needed, because the naive Yang-Mills field strength for
Aμ in terms of the antisymmetric bracket [, ] in (2.6) is not gauge covariant. Again, the
failure of covariance is D exact, and so can be fixed by setting

Fμν = ∂μAν − ∂ν Aμ − [Aμ, Aν] + DBμν, (2.12)

and postulating appropriate gauge transformations for Bμν . Onemay then define a gauge
covariant field strength for Bμν , which in turn requires three-forms. This construction,
which in general proceeds to higher and higher forms, is referred to as ‘tensor hierar-
chy’ [43]. In this paper we will focus on 3D, and it turns out that the two- and higher
forms are not needed in order to write a gauge invariant action. Thus, we will not further
develop the tensor hierarchy, and leave a more general discussion of tensor hierarchies
for Leibniz algebras to future work.

2.2. Invariant inner product and Chern–Simons action. Wenow turn to the construction
of gauge invariant Chern–Simons actions, for which we need an inner product satisfying
suitable invariance conditions. Thus, we assume the existence of a symmetric bilinear
(but not necessarily non-degenerate) quadratic form, i.e., a mapping of two vectors x, y
of the Leibniz algebra to a number 〈x, y〉, satisfying δz〈x, y〉 = 0 or

〈z ◦ x, y〉 + 〈x, z ◦ y〉 = 0, (2.13)

for arbitrary x, y, z. This property is analogous to that of invariant quadratic forms of
Lie algebras. It turns out that we need in addition a ‘higher’ invariance condition, corre-
sponding to the need discussed above to introduce higher-form symmetries. Specifically,
we need to impose

〈x,U 〉 = 0, (2.14)

for arbitrary vectors x in the Leibniz algebra and the idealU of trivial vectors. Indeed, we
can think of this condition as an invariance condition under the ‘gauge transformation’
x → x + Da, as in (2.10). (More precisely, this would be the invariance condition of
〈x, x〉, but by polarization this implies the invariance of the bilinear form in general.)
Note that (2.14) implies that for non-trivialD (i.e., for non-trivial {, } or genuine Leibniz
algebras) the bilinear form is degenerate.
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Let us next specialize to 3D and define a Chern–Simons action for Leibniz valued
gauge vectors Aμ. Using the inner product, we can write

S =
∫

d3x εμνρ
〈
Aμ, ∂ν Aρ − 1

3 Aν ◦ Aρ

〉
, (2.15)

where we denote by εμνρ the constant Levi-Civita symbol defining a tensor density.
Thus, this action is manifestly invariant under 3D diffeomorphisms and is topological.

In order to prove the gauge invariance of this action under (2.10), it is convenient to
first determine its variation under arbitrary δA. We compute

δAS =
∫

d3x εμνρ
(〈

δAμ , 2 ∂ν Aρ

〉 − 1
3

〈
δAμ, Aν ◦ Aρ

〉

+ 2
3

〈
Aρ, Aν ◦ δAμ

〉
+ 2

3

〈
Aμ, {Aν, δAρ}〉)

=
∫

d3x εμνρ
(〈

δAμ, 2 ∂ν Aρ − Aν ◦ Aρ

〉
+ 1

3

〈
Aμ,D(Aν • δAρ)

〉)
,

(2.16)

where we discarded a total derivative, used the invariance condition (2.13), and (2.7).
We now observe that the final term in here vanishes by the ‘higher’ invariance condition
(2.14). Moreover, for the same reason, we can add the two-form term in (2.12) to the
first term to write the final result in the manifestly covariant form

δAS =
∫

d3x εμνρ
〈
δAμ,Fνρ

〉
. (2.17)

At this point it is important to recall that the bilinear form in general is degenerate, so
this relation does not imply that the field equations are F = 0. The field equations only
imply that a suitable projection of the field strength vanishes.

It is now easy to verify gauge invariance under δAμ = Dμλ. Inserting this transfor-
mation into (2.17) and integrating by parts, we need to compute D[μFνρ]. In contrast to
Lie algebras, this is not zero in general, but the failure of the naive Bianchi identity is
necessarily writable in terms of {, } and thus, by (2.7), is D exact. It then follows with
(2.14) that the action is invariant. Similarly, by (2.14), the Chern–Simons action is invari-
ant under the gauge transformations associated to the two-form, δAμ = −Dλμ, despite
the two-form not entering the Chern–Simons action. Summarizing, we have shown that
any Leibniz algebra that admits a quadratic form satisfying the invariance conditions
(2.13) and (2.14) defines a gauge invariant Chern–Simons action in 3D.

3. Leibniz Algebra of E8(8) Generalized Diffeomorphisms

In this section we review the gauge structure of internal generalized diffeomorphisms of
the E8(8) ExFT and show that they can be interpreted as a Leibniz algebra with invariant
quadratic form, for which the corresponding Chern–Simons action precisely yields the
topological terms for the gauge vectors of E8(8) ExFT.

We begin by recalling a few generalities of E8(8) and the associated generalized
Lie derivatives. The Lie algebra e8(8) is 248-dimensional, with generators (t M )N K =
− f MN

K and structure constants f MN
K , where M, N = 1, . . . , 248 are adjoint in-

dices. The maximal compact subgroup is SO(16), under which the adjoint representa-
tion decomposes as 248 → 120 ⊕ 128. The invariant Cartan-Killing form is defined
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by ηMN = 1
60 f MK

L f N L
K , which we freely use to raise and lower adjoint indices. We

next need some properties of the tensor product 248 ⊗ 248, which decomposes as

248 ⊗ 248 → 1 ⊕ 248 ⊕ 3875 ⊕ 27000 ⊕ 30380. (3.1)

It contains the adjoint 248, and the corresponding projector is given by:

P
M

N
K
L = 1

60
f M N P f PK

L

= 1

30
δM(N δKL) − 7

30
(P3875)

MK
NL − 1

240
ηMKηNL +

1

120
f MK

P f P NL ,

(3.2)

while the projector onto the 3875 reads

(P3875)
MK

NL = 1

7
δM(N δKL) − 1

56
ηMK ηNL − 1

14
f P N

(M fPL
K ). (3.3)

We next introduce functions or fields depending on coordinates Y M living in the
adjoint representation, subject to the E8(8) covariant ‘section constraints’

ηMN ∂M ⊗ ∂N = 0, f MNK ∂N ⊗ ∂K = 0, (P3875)MN
K L∂K ⊗ ∂L = 0.

(3.4)

This constraint is to be interpreted in the sense that for any two fields (or gauge param-
eters) A, B we have ηMN ∂M∂N A = ηMN ∂M A ∂N B = 0, and similarly for the other
conditions in (3.4). These constraints are necessary in order to define consistent gener-
alized Lie derivatives, to which we turn now. The generalized Lie derivative is defined
with respect to two gauge parameters	M ,
M , and acts on an adjoint vector V M (which
may carry an intrinsic density weight λ) as

L[λ]
(	,
)V

M = 	N ∂NV
M + f M NK RNV K + λ ∂N	NV M , (3.5)

where we defined
RM ≡ f MN

K ∂N	K + 
M . (3.6)

It is important that the gauge parameter 
M is not arbitrary, for otherwise we could
simply absorb the 	-dependent terms in (3.6) into a redefinition of 
. Rather, 
 is
‘covariantly constrained’ in the sense that it is subject to the same ‘sections constraints’
(3.4) as the partial derivatives. Specifically, (3.4) holds for any two factors being partial
derivatives or covariantly constrained, e.g.,

ηMN ∂M ⊗ 
N = 0, f MNK ∂N ⊗ 
K = 0, (P3875)MN
K L∂K ⊗ 
L = 0.

(3.7)

As a consequence of these section constraints, we have ‘trivial’ gauge parameters, i.e.,
gauge parameters that do not generate transformations on fields. These include param-
eters of the form

	M = ηMN�N ,

	M = (P3875)
MK

NL ∂KχNL ,

	M = f MN
K �N

K , 
M = ∂M�N
N + ∂N�M

N ,

(3.8)
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where �M is covariantly constrained, and �M
N is covariantly constrained in the first

index.
Let us now turn to the gauge structure, which will be governed by a Leibniz algebra.

In order to uncover this algebraic structure it is instrumental to group the two gauge
parameters into the ‘doubled’ object

ϒ = (
	M , 
M

)
, (3.9)

so that the second component is a covariantly constrained object. We now define the
product

ϒ1 ◦ ϒ2 ≡
(
L[1]

ϒ1
	2

M , L[0]
ϒ1


2M + 	2
N ∂M RN (ϒ1)

)
, (3.10)

where the Lie derivatives act as in (3.5), with the density weights indicated in square
parenthesis, and R(ϒ) is defined by (3.6). The (generalized) Lie derivative terms repre-
sent the naive ‘covariant’ action on ϒ = (	,
), but the ‘anomalous’ term containing
∂M RN is crucial for the following.

In order to prove that this indeed defines a Leibniz algebra it is convenient to use
the product (3.10) to define a generalized Lie derivative on a ‘doubled vector’ A, with
components of the same type as (3.9), as

LϒA ≡ ϒ ◦ A. (3.11)

The Leibniz algebra relation is then equivalent to the closure condition
[
Lϒ1,Lϒ2

]
A = L[ϒ1,ϒ2]A, (3.12)

where the bracket [, ] is the antisymmetrization of the Leibniz algebra (3.10), c.f. (2.6).
The equivalence of the above closure condition to the Leibniz algebra relation follows
as in (2.3). The proof of (3.12) proceeds by an explicit computation. We do not display
this computation, apart from noting the useful relations

RM ([ϒ1, ϒ2]) = 2	[1N ∂N RM (ϒ2]) + fMNK RN (ϒ1)R
K (ϒ2), (3.13)

which is sufficient for proving closure of (3.5), and

∂M RN ([ϒ1, ϒ2]) = L[−1]
ϒ1

(
∂M RN (ϒ2)

) − L[−1]
ϒ2

(
∂M RN (ϒ1)

)
, (3.14)

which can be verified by taking the derivative of (3.13) and using the Lemma (2.13) of
[13]. For more details we refer to Appendix A in [14].

According to the general scheme discussed in Sect. 2, the symmetrization of the
Leibniz product (3.10) is by construction ‘trivial’. As a consistency check, this can be
verified with an explicit computation:

{ϒ1, ϒ2} =
(
7(P3875)

MK
NL ∂K

(
	N

1 	L
2

)
+ 1

8 ∂M(
	N

1 	2N
)
+ f MN

K �N
K ,

∂M�N
N + ∂N�M

N
)
,

(3.15)

where
�M

N = 	(1
N
2)M − 1

2 f N K L 	(1
K ∂M	2)

L . (3.16)

This is indeed of the ‘trivial’ form (3.8), in particular, �M
N defined here is manifestly

covariantly constrained in the first index, which is carried by either 
M or ∂M . We
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can further spell out the decomposition (2.7) for the E8(8) Leibniz algebra, defining the
bilinear operation ϒ1 • ϒ2 by stripping off the derivatives in (3.15) (and multiplying by
an overall factor of 2). The vector space X1 in which • takes values thus decomposes into
different subspaces, corresponding to the different terms in (3.15), and to the two-form
gauge fields in the theory, c.f. [13]. Finally, the operator D acts differently on these
subspaces, its action being defined by the derivatives in (3.15) (and the inclusion map
for covariantly constrained terms).

Let us now turn to the definition of an invariant quadratic form on the Leibniz algebra.
For doubled, Leibniz valued fields A = (AM , BM ) it is given by

〈A1,A2〉 ≡
∫

d248Y
(
2A(1

M B2)M − f M NK A(1
N ∂M A2)

K )
. (3.17)

The invariance condition (2.13) is equivalent to the statement that this integral is in-
variant under the variations (3.11), which one may verify by an explicit computation.
In particular, both terms carry density weight one and thus vary into a total derivative
that vanishes under the integral, up to ‘anomalous’ contributions originating in the first
term from the anomalous transformations of B and in the second term from the non-
covariance of partial derivatives. An explicit computation shows that these anomalous
terms precisely cancel. (See Appendix A in [14] for more details.) Discarding total
derivatives, the bilinear form can also be written as

〈A1,A2〉 ≡
∫

d248Y
(
A1

M B2M + A2
M B1M − f M NK A1

N ∂M A2
K )

, (3.18)

and consequently, in terms of RM defined in (3.6), as

〈A1,A2〉 ≡
∫

d248Y
(
A1

M RM (A2) + A2
M B1M

)
. (3.19)

This form is convenient in order to establish the second invariance condition (2.14) in
the form

T trivial ⇒ 〈
A, T

〉 = 0 ∀ A. (3.20)

This follows because for trivial T we have RM (T ) = 0, as one may quickly verify, and
the contraction of the first component of a trivial T with a covariantly constrained BM
vanishes.

Having established the Leibniz algebra relations and the existence of an invariant
quadratic form, we can now define a Chern–Simons action for Leibniz algebra valued
gauge vectors

Aμ = (Aμ
M , BμM ). (3.21)

Their gauge transformations are given by (2.8) w.r.t. an algebra valued gauge parameter
ϒ = (	M , 
M ). In components these are determined with (3.10) to be

δAμ
M = Dμ	M ,

δBμM = Dμ
M − 	N ∂M RN (Aμ),
(3.22)

where here and in the following we use the covariant derivative

Dμ = ∂μ − LAμ
. (3.23)
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The associated field strengths Fμν = (Fμν
M ,GμνM ) for (3.21) can be defined as usual

through the commutator of covariant derivatives,

[Dμ, Dν] = −L(Fμν,Gμν), (3.24)

up to trivial contributions. Evaluating the Chern–Simons action (2.15) for Aμ and the
Leibniz algebra (3.10), using the invariant inner product (3.17), yields

SCS =
∫

d3x d248Y εμνρ
(
Fμν

M BρM − fK L
N ∂μAν

K ∂N Aρ
L

−2

3
f N K L∂M∂N Aμ

K Aν
M Aρ

L

−1

3
fMK L f K P

Q f LR S Aμ
M∂P Aν

Q∂R Aρ
S
)
. (3.25)

Here, Fμν
M denotes the components of the field strength defined as in (2.12) (which we

may or may not take to include 2-forms, as these drop out upon contraction with BρM ).
We record for later use the general variation of the action w.r.t. δA, δB:

δSCS =
∫

d3x d248Y εμνρ
(
δAμ

M
(
GνρM + fM

N
K ∂N Fνρ

K
)

+ δBμM Fνρ
M

)
,

(3.26)

which immediately follows from (2.17) and (3.18). The above action coincides with the
topological action given for the E8(8) ExFT in [13], and we have thus shown that that
term has an interpretation as a Leibniz–Chern–Simons theory.

4. Embedding Tensor and Ungauged Phase

Thegoal of this section is, first, to showhow the embedding tensor of gauged supergravity
defines a Leibniz algebra in terms of the global symmetry (Lie) algebra of ungauged
supergravity and, second, to show that there is an analogous construction for E8(8)
generalized diffeomorphisms. Specifically, we give an (infinite-dimensional) Lie algebra
containing 248-dimensional diffeomorphisms andE8(8) rotationswhose coadjoint action
defines, in terms of the bilinear form of the previous section, the Leibniz algebra of E8(8)
generalized diffeomorphisms.

4.1. Review of embedding tensor . We begin by reviewing gauged supergravity in the
embedding tensor formulation [10,11,44]. The embedding tensor�M

α is a tensor under
some duality group G, which is the global symmetry of the ungauged theory. This
tensor encodes the subgroup of G that is gauged. Specifically, one defines the ‘structure
constants’

XMN
K = �M

α(tα)N
K ≡ X[MN ]K + ZK

MN , (4.1)

where indicesα, β, . . . label the adjoint ofG, and indicesM, N , . . . label a representation
(typically thought of as the ‘fundamental’ representation), and (tα)N

K are the generators
in this representation. This representation is the G-representation in which the vector
fields Aμ

M of the ungauged theory transform, so that the covariant derivatives of the
gauged theory can be written as Dμ = ∂μ − Aμ

M�M
αtα . Similarly, all other couplings

of gauged supergravity can be written in terms of the embedding tensor �M
α .
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To identify the Leibniz algebra in this formalism, note that XMN
K in (4.1) is not

necessarily antisymmetric, and in the last equality we have decomposed it into its sym-
metric and antisymmetric part. Definingmatrices with components (XM )N

K = XMN
K ,

one now imposes the ‘closure constraint’ or ‘quadratic constraint’ for the commutator

[XM , XN ] = −XMN
K XK . (4.2)

This defines a Leibniz algebra [36]: writing for two vectors with components V M ,WM ,

(V ◦ W )M ≡ XNK
MV NWK , (4.3)

the closure constraint (4.2) is equivalent to the Leibniz algebra relation

U ◦ (V ◦ W ) − V ◦ (U ◦ W ) = (U ◦ V ) ◦ W. (4.4)

We can infer from (4.2), by symmetrizing on both sides of the equation,

ZK
MN XK = 0 ⇒ ZK

MN �K
α = 0, (4.5)

where we used the non-degeneracy of the Cartan-Killing form καβ ∝ (tα)N
K (tβ)K

N

to infer the second equation. In the above notation we have

{V,W }M = ZM
NK V

NWK . (4.6)

The tensor ZM
NK typically decomposes into [43]

ZM
NK = DM,I dI,NK , (4.7)

with the index I running over the space X1 of two-form gauge potentials. The above
decomposition (2.7) then corresponds to maps

(V • W )I = 2 dI,MN V MWN , (DU )M = DM,I UI . (4.8)

We now specialize to 3D. In this case the fundamental G-representation in which
vector fields are transforming is given by the coadjoint representation. This follows be-
cause vector fields are introduced as duals to theNoether currents of the global symmetry
group G of the ungauged theory. Expanding a local G transformation as 	M (x) t M in
terms of generators t M , the Noether currents are obtained by the corresponding vari-
ation of the Lagrangian into δL = ∂μ	M JμM . Defining the vector field strengths
through Fμν

M = εμνρ JρM , we finally learn that vector fields Aμ
M transform in the

coadjoint representation of G. (Of course for the finite-dimensional groups appearing
in gauged supergravity, the adjoint and coadjoint representation are typically equiva-
lent.) As a result, the embedding tensor takes the form �MN , with covariant derivatives
Dμ = ∂μ − Aμ

M�MN t N , for which (4.1) reduces to

XMN
K ≡ �ML f LK N , (4.9)

with ZK
MN = �L(M f LK N ). Moreover, the embedding tensor �MN is taken to be

symmetric as it serves to define the Chern–Simons coupling of the vector fields, see
(4.13) below. We can thus define the symmetric inner product

〈V,W 〉 ≡ �MNV
MWN . (4.10)
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It satisfies the invariance condition:

〈ξ ◦ V, V 〉 = �MN (XKL
Mξ K V L)V N = �MN�K P f PM

Lξ K V LV N

= �K P Z
P
NLξ K V LV N = 0,

(4.11)

where we used (4.5) in the last step. This proves that 〈V, V 〉 is invariant, and by polar-
ization this implies invariance of the bilinear form in general. Similarly, if any argument
is of the form ZM

NKUNK the inner product vanishes as a consequence of (4.5), thereby
implying the higher invariance condition (2.14). Conversely, invariance of�MN implies
the Leibniz relations, which can be seen by contracting

δK�MN ≡ XKM
L�LN + XKN

L�ML = 0 (4.12)

with f N P
Q and using the Jacobi identity in the second term.

We can write the Chern–Simons action (2.15) in this formalism, using (4.3) and
(4.10),

S =
∫

d3x εμνρ �MN Aμ
M(

∂ν Aρ
N − 1

3 XKL
N Aν

K Aρ
L)

, (4.13)

which is the form of the Chern–Simons action in gauged supergravity. We have thus
shown that the embedding tensor formalism for 3D gauged supergravity is a special case
of the Leibniz–Chern–Simons theories introduced above in an ‘invariant’ or ‘index-
free’ fashion. This index-free formulation is greatly advantageous for the applications
in previous and subsequent sections, where the algebras are governed by differential
operators and hence are infinite-dimensional, so that an index notation would obscure
much of the underlying generalized geometric structure.

4.2. Leibniz algebras via coadjoint action of Lie algebras. Our next goal is to rewrite
gauged supergravity relations such as (4.9) in an invariant or index-free language, which
will be instrumental below for the infinite-dimensional generalizations based on function
spaces. To this end we will have to carefully distinguish between the Lie algebra g of G
and its dual space g∗, since in the infinite-dimensional context there will be no invariant
metric to identify these spaces. We will follow the convention that adjoint vectors,
i.e., elements in g, are denoted by small latin or greek letters, while coadjoint vectors,
i.e., elements in g∗, are denoted by capital latin or greek letters. (Moreover, a vector
or covector is typically denoted by a greek letter if it plays the role of a symmetry
parameter.) We expand vectors and covectors w.r.t. bases as v = vMtM and A = AM t̃M ,
respectively, where t M is a basis of g, satisfying [t M , t N ] = f MN

K t K , and t̃M is the
dual basis. The pairing g ⊗ g∗ → R then reads

A(v) ≡ AMvM . (4.14)

The adjoint representation is defined, for ζ, v ∈ g, by

δζ v = adζ v = [ζ, v]. (4.15)

We will use the notation δζ for general variations w.r.t. a vector ζ , but it turns out to be
beneficial to also introduce notations such as adζ if the specific representation needs to
be made explicit. In order to define the coadjoint representation we have to specify how
ζ ∈ g acts on a coadjoint vector A ∈ g∗ to yield a new coadjoint vector δζ A. As the
latter is defined by its action on an adjoint vector v ∈ g, we can define

(δζ A)(v) = (ad∗
ζ A)(v) = −A([ζ, v]). (4.16)
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An immediate consequence is that for any pair of adjoint vectors v,w ∈ g

(ad∗
vA)(w) = −(ad∗

wA)(v). (4.17)

The sign in the definition (4.16) is such that the pairing (4.14) is invariant:

δζ (A(v)) ≡ (δζ A)(v) + A(δζ v) = 0. (4.18)

W.r.t. a basis, the coadjoint action is given by (ad∗
ζ A)M = f MN

K ζN AK .
Let us now return to the gauged supergravity relation (4.9), defining the Leibniz

algebra structure on g∗ in terms of the embedding tensor. Contraction with two coadjoint
vectors and one adjoint vector yields

AM BN XMN
K vK = AM�ML f LK N vK BN = AM�ML(ad∗

vB)L . (4.19)

Here we recognized in the last equality the coadjoint action of v on B. In order to rewrite
this equation in invariant language we recall that the structure constants X on the left-
hand side define the Leibniz algebra according to (4.3). The right-hand side suggests to
identify the embedding tensor � with a map

ϑ : g∗ → g, ϑ(t̃M ) = −�MN t N , (4.20)

such that (4.19) takes the form

(A ◦ B)(v) = −A(ϑ(ad∗
vB)) = −(ad∗

vB) (ϑ(A)) , (4.21)

using the pairing (4.14) between vectors and coadjoint vectors and the symmetry of �

in the second equality. Using (4.17) we may further rewrite the last term as

− (
ad∗

vB
)
(ϑ(A)) = (

ad∗
ϑ(A) B

)
(v). (4.22)

This shows that the Leibniz product is directly given by

A ◦ B ≡ ad∗
ϑ(A) B, (4.23)

using the coadjoint action (4.16) w.r.t. ϑ(A) ∈ g. In particular, we can rewrite the
generalized Lie derivative w.r.t. 	 ∈ g∗ defined as in Sect. 2 as

δ	A ≡ L	A ≡ ad∗
ϑ(	)A. (4.24)

We next observe that the map defined in (4.20) canonically induces a bilinear form
on the dual space,

� : g∗ ⊗ g∗ → R, (4.25)

by the relation

�(A, B) = −A(ϑ(B)). (4.26)

The fact that � is typically degenerate means that ϑ is not invertible: in general there is
no map g → g∗. Put differently, if for all A we have A(ϑ(B)) = 0 then ϑ(B) = 0, but
we cannot conclude that B = 0. In terms of �, we can now equivalently rewrite (4.19)
as

(A ◦ B)(v) = �(A, ad∗
v B). (4.27)
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In the remainder of this subsection we will prove, within this invariant formulation,
that the Leibniz algebra relations follow from the invariance of � under the gauge
transformations defined by � itself via (4.27). Starting from the invariance condition on
�, i.e., that for all A, B,	 ∈ g∗

δ	�(A, B) ≡ �(	 ◦ A, B) + �(A,	 ◦ B) = 0, (4.28)

we first prove invariance of the pairing (A ◦ B)(v) with (4.27):

δ	((A ◦ B)(v)) = �(	 ◦ A, ad∗
vB) + �(A, ad∗

v(	 ◦ B) + ad∗
adϑ(	)v

B)

= �(	 ◦ A, ad∗
vB) + �(A, ad∗

v(ad
∗
ϑ(	)B) + ad∗

[ϑ(	),v]B)

= �(	 ◦ A, ad∗
vB) + �(A,	 ◦ (ad∗

vB))

= 0.

(4.29)

Here we used, from the second to the third line, that the coadjoint action satisfies the Lie
algebra relation, and we used the invariance (4.28) in the last step. On the other hand,
we can also write out the left-hand side of (4.29) directly to obtain

0 = ((	 ◦ A) ◦ B)(v) + (A ◦ (	 ◦ B))(v) + (A ◦ B)(adϑ(	)v). (4.30)

The last term here can be written with (4.18) as

(A ◦ B)(adϑ(	)v) = −(ad∗
ϑ(	)(A ◦ B))(v) = −(	 ◦ (A ◦ B))(v). (4.31)

Back-substitution in (4.30) shows that the Leibniz relations hold upon pairing with v.
This holds for arbitrary v, which is sufficient to prove the Leibniz relations since

∀v : A(v) = 0 �⇒ A = 0. (4.32)

Can one also prove the converse, that the Leibniz relations imply invariance of �?
This is possible, but only under the assumption that the Lie algebra g has trivial center.
We first note that the Leibniz relations imply, as in Sect. 2, that the above generalized
Lie derivative acts trivially if the parameter equals a symmetrized bracket, c.f. (2.5):

∀A : 0 = L{	1,	2}A = ad∗
ϑ({	1,	2})A ⇒ ∀v : adϑ({	1,	2})v = 0,

(4.33)
where the inference follows by pairing the first equation with v ∈ g, using (4.18) and
the property

∀A : A(v) = 0 �⇒ v = 0. (4.34)

The last equation in (4.33) means [ϑ({	1,	2}), v] = 0 for all v, such that the vanishing
center of g implies that

ϑ({	1,	2}) = 0 ⇒ �(A, {	1,	2}) = 0, (4.35)

where the last inference follows upon pairing with A ∈ g∗ and using (4.26). Under this
assumption we can now prove invariance of �:

δ	�(A, A) = 2�(	 ◦ A, A) = −2 (	 ◦ A)(ϑ(A))

= −2�(	, ad∗
ϑ(A)A) = −2�(	, {A, A}) = 0,

(4.36)

where we used (4.27) in the third equality and (4.35) in the last equality.



1070 O. Hohm, H. Samtleben

4.3. E8(8) generalized diffeomorphisms and the ungauged phase. Our goal is to identify
a Lie algebra from which the Leibniz algebra of E8(8) generalized diffeomorphisms can
be derived by means of a suitable embedding tensor. In gauged supergravity, this Lie
algebra is the global symmetry of the ungauged limit, in which the embedding tensor
is set to zero. Specifically, this limit removes the connection terms insides covariant
derivatives, reducing them to partial derivatives, and also eliminates the potential and
Chern–Simons term. We will now try to identify a similar ‘phase’ of ExFT by setting to
zero the analogous terms of the E8(8) ExFT action, which yields

S =
∫

d3x d248Ye
(
R + 1

240 ∂μMMN ∂μMMN

)
. (4.37)

Here R is the familiar 3D Einstein-Hilbert term, without any further covariantizations.
We note that while all fields depend on x and Y , no Y -derivatives ∂M have been kept. In
a sense, the different Fourier modes of the fields have been decoupled, and we will see
in a moment that this leads to a significant symmetry enhancement.

This unusual looking theory is actually completely analogous to that obtained from
conventional (super-)gravity by compactifying, say, on a torus butwithout truncation and
then taking the ‘decompactification limit’. To make this point more transparent consider
the Fourier expansion of a generic field on a torus T d ,

φ(x, y) =
∑
k∈Zd

ϕk(x) exp
(
i
k · y
R

)
, (4.38)

with torus coordinates y ∼= y +2πR, where we restored the radius R (that for simplicity
we take to be equal for all radii). The covariant derivatives emerging in Kaluza–Klein
on a torus then take the schematic form

Dμ = ∂μ − Aμ
m∂m + · · · ⇒ Dμ = ∂μ − 1

R

∑
k

i Aμ · k + · · · , (4.39)

where ∂m = ∂
∂ym are the internal derivatives. We observe that the inverse radius 1

R (or,
equivalently, the Kaluza–Klein mass scale) acts as the coupling constant of the gauging.
Thus, taking the ‘decompactification’ or ‘zero mass’ limit R → ∞ equals the ungauged
limit, in which covariant derivatives reduce to partial derivatives. Similarly, it is easy
to convince oneself that all other couplings due to gauging, such as potential terms,
disappear in this limit, confirming that (4.37) reasonably plays the role of the ungauged
limit.3

Having identified the ‘ungauged phase’ of the E8(8) ExFT, let us now inspect its
surviving symmetries. We claim that they are given by

local external diffeomorphisms : ξμ(x,Y ),

global E8(8) rotations : σM (Y ),

global internal diffeomorphisms : λM (Y ).

(4.40)

Here we refer to a symmetry as ‘local’ if its parameter may depend on the external
x coordinates and as ‘global’ if its parameter only depends on Y . Indeed, in order to

3 It is often claimed that compactifying on a circle of radius R and then sending R → ∞ gives back the
original, uncompactified theory. The above considerations make clear, however, that one obtains rather an
‘ungauged phase’ such as (4.37) that is quite different from any conventional theory.
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establish the parallel to gauged supergravity, we have to think of the Y -dependence as
parametrizing an infinite-dimensional global symmetry (rather than a finite-dimensional
local symmetry).

Let us now inspect these symmetry transformations in more detail. The ξμ act like
usual 3D diffeomorphisms, which are a manifest invariance of (4.37) since there are no
∂M derivatives that could detect the Y -dependence of ξμ. The global internal diffeomor-
phisms with parameter 	M act on the external dreibein as in the full ExFT:

δλeμ
a = λN ∂Neμ

a + ∂NλNeμ
a, (4.41)

while the dreibein is left invariant under E8(8) rotations w.r.t. σ . However, for M, or
equivalently a coset representative VA

M , the variations look different than in the full
ExFT:

δ(λ,σ )VA
M = λN ∂NVA

M + f MN
KσNVA

K . (4.42)

The E8(8) rotation is a manifest invariance of (4.37), and the λ variations of the action
combine into a total derivative. It would seem to be more natural to have the generalized
Lie derivative (3.5) w.r.t. λ acting on V (we cannot use the normal Lie derivative because
of V being E8(8) valued), but this is actually equivalent under the parameter redefinition
σM → σM + fM N

K ∂NλK . In contrast to the parameter
M in the full ExFT, here we take
σM to be unconstrained, so this is a legal redefinition. Thus, in presence of unconstrained
σM transformations it makes no difference whether we use the generalized Lie derivative
or the simplified form (4.42).

We will now identify the global symmetry Lie algebra g of the above ungauged
phase, which can be determined from the closure relations of (4.42). One finds that the
Lie bracket for functions ζ = (λM , σM ) is given by

[ζ1, ζ2] = (
2 λ[1N ∂Nλ2]M , 2 λ[1N ∂Nσ2]M + f K L

Mσ1Kσ2L
)
. (4.43)

Lie algebras of this form are naturally associated to any given Lie algebra g0 (which here
is e8(8)) as follows. First, for an arbitrary manifoldM , the setL of smoothmapsM → g0
forms an infinite-dimensional Lie algebra, with the natural Lie bracket obtained from
g0. Second, the Lie algebraD of (infinitesimal) diffeomorphisms on M acts on L and its
Lie bracket as a derivation. We can then define the semi-direct sum L ⊕ D, whose Lie
bracket is (4.43). (What is special about (4.43) is that the ‘Lie algebra indices’ have the
same range as the ‘world indices’ of M ; in general they need not be correlated.) Note
that the Lie algebra g has a non-trivial ideal, given by all elements of the form (0, σ ).
Similarly, the set of elements of the form (λ, 0) forms a subalgebra that is isomorphic
to the diffeomorphism algebraD.

Next, we investigate the adjoint and coadjoint representations of (4.43). The adjoint
representation acts on vectors v = (pM , qM ) ∈ g according to δζ v = adζ v = [ζ, v],
which yields for the components

δζ p
M = λN ∂N pM − ∂NλM pN ,

δζqM = λN ∂NqM − pN ∂NσM + f K L
MσKqL .

(4.44)
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A coadjoint vector in g∗ can be viewed as (doubled) functionsA ≡ (AM , BM ), with the
pairing g ⊗ g∗ → R given by the integral4

A(v) ≡
∫

dY
(
AMqM + BM pM

)
, (4.45)

where fromnowonwe set dY ≡ d248Y . The coadjoint action δζA = ad∗
ζA is determined,

as in (4.18), by requiring invariance of the integral. One quickly verifies that under (4.44)
and

δζ A
M = λN ∂N AM + f MN

KσN AK + ∂NλN AM ,

δζ BM = λN ∂N BM + ∂MλN BN + ∂NλN BM + AN ∂MσN ,
(4.46)

the expression under the integral in (4.45) transforms into a total derivative, thereby
proving invariance.

We will now show that the coadjoint action (4.46) on A gives rise to the E8(8) gen-
eralized diffeomorphisms using a simple identification of (λ, σ ) with ϒ = (	,
).
Specifically, let us define a map ϑ : g∗ → g as in (4.20) by

ϑ(ϒ) = (
ϑ(ϒ)M , ϑ(ϒ)M

) = (
	M , fM

N
K ∂N	K + 
M

)
, (4.47)

or, using the notation for the matrix RM defined in (3.6),

ϑ(ϒ) = (
	M , RM (	,
)

)
. (4.48)

Using the E8(8) Leibniz algebra (3.10) written out explicitly in the following form (which
uses that 
 is covariantly constrained, c.f. Eq. (2.15) in [13])

ϒ1 ◦ ϒ2 = (
	1

N ∂N	2
M + f MN

K RN (ϒ1)	2
K + ∂N	1

N	2
M ,

	1
N ∂N
2M + ∂N	N

1 
2M + ∂M	N
1 
2N + 	2

N ∂M RN (ϒ1)
)
,

(4.49)

it then becomes manifest, using the form of the coadjoint action (4.46), that the E8(8)
generalized Lie derivative can be written as in (4.24),

LϒA = ad∗
ϑ(ϒ)A. (4.50)

This shows that ϑ as defined in (4.47) encodes the expected Leibniz structure.
We now reconsider the bilinear form (3.17), whose arguments are coadjoint vectors

A = (AM , BM ) ∈ g∗, with the goal to interpret it as the embedding tensor for the Leibniz
algebra of E8(8) generalized diffeomorphisms. To this end, we compute the embedding
tensor in the bilinear form induced by the map ϑ defined in (4.47) according to (4.26):

�(A1,A2) = −A1(ϑ(A2)) = −
∫

dY
(
A1

Mϑ(A2)M + B1M ϑ(A2)
M)

= −
∫

dY
(
A1

M B2M + A2
M B1M − f M NK A1

N ∂M A2
K )

, (4.51)

4 This has a direct precursor in Witten’s treatment of the coadjoint representation of the Virasoro group
[45], where coadjoint vectors are viewed as quadratic differentials, and the pairing between vectors and
covectors is given by the invariant integral. Note that this characterization of g∗ yields a smaller space than
the unconstrained definition of the dual space as the ‘space of all functionals of g’, which would include delta
distributions.
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which indeed coincides with (3.18), up to an overall sign that we picked for later con-
venience. According to (4.27), the Leibniz algebra should then satisfy

(A1 ◦ A2)(ζ ) = �(A1, ad
∗
ζ A2). (4.52)

To confirm this, we evaluate the right-hand side by taking the second argument of (4.51)
to be given by the coadjoint action (4.46) ofA2. The left-hand side is evaluated with the
pairing (4.45) and the Leibniz algebra (4.49). One finds that both sides precisely agree,
proving that (4.51) can indeed be interpreted as the embedding tensor that ‘derives’ the
E8(8) Leibniz algebra from the Lie algebra (4.43).

Let us emphasize that the verification of (4.52) does not require the use of any
constraints, neither the section constraints on ∂M nor those on BM . (More precisely,
there are different ways of writing the Leibniz algebra that are only equivalent under
the assumption of section constraints. The above verification without section constraints
requires the form (4.49).) However, the product (4.49) satisfies the Leibniz relations (or,
equivalently, defines generalized Lie derivatives that close) only provided we impose
these constraints. Thus, from the point of view of the embedding tensor formulation,
these constraints are needed in order to satisfy the quadratic constraints. Luckily, as
proved in the previous subsection, the invariance of � under δϒ = Lϒ implies the
Leibniz relations. As the former is easier to prove than the latter (see Appendix A in
[14]), we have thereby simplified the discussion of the closure constraints.

Let us finally point out the following subtlety of the above construction: While the
embedding tensor (4.51) is gauge invariant under the transformations defined by the
Leibniz algebra, the map ϑ given in (4.47) is not gauge invariant in the sense that

�(A1,A2) ≡ ϑ(ad∗
ϑ(A1)

A2) − adϑ(A1)ϑ(A2) (4.53)

does not vanish. In fact, invariance of�does not imply invariance ofϑ since by (4.51) this
only needs to hold upon pairing with another coadjoint vector, whose second component
is assumed to be ‘covariantly constrained’. As a consistency check one may verify that
(4.53) indeed does vanish after pairing with such a coadjoint vector. For the same reason,
for� given, ϑ is not uniquely determined by (4.51), because the first component ϑ(A)M

can be shifted by terms that vanish upon contraction with a constrained BM .5

5. Topological Phase of E8(8) Exceptional Field Theory

We show that the topological subsector of the E8(8) ExFT has an interpretation as a
Chern–Simons theory based on an extended Leibniz algebra. In the first subsection, we
construct the extended E8(8)-Poincaré Leibniz algebra and discuss the corresponding
Chern–Simons theory. In the second subsection we will interpret this Leibniz algebra,
as above, via the coadjoint action of an extended Lie algebra. In the third subsection
we prove the equivalence of the Chern–Simons gauge transformations and that of the
original E8(8) ExFT, while the last subsection briefly discusses the extension to the AdS
case.

5 Note, however, that this degeneracy of the adjoint/coadjoint pairing does not invalidate the proof around
Eq. (4.29) that invariance of� implies the Leibniz algebra relations, because we established the latter relations
upon pairing with an arbitrary (unconstrained) vector v, and the inference (4.32) thus is still valid. In contrast,
(4.34) no longer holds, and thus the Leibniz algebra relations do not conversely imply invariance of �. Note
added: after submission of this paper we found a more streamlined treatment in which the ‘global’ Lie algebra
is given by a coset algebra g/I, so that the adjoint/coadjoint pairing is non-degenerate [46].
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5.1. E8(8) Poincaré Leibniz algebra. We now show that the above Leibniz algebra based
on E8(8) generalized diffeomorphisms can be enlarged to contain an infinite-dimensional
generalization of the 3D Poincaré algebra. These Poincaré transformations in turn act via
novel anomalous terms on the E8(8) Leibniz algebra, in a way that permits the existence
of an invariant quadratic form on the total Leibniz algebra. The corresponding Chern–
Simons theory will then be show to reproduce exactly the topological subsector of the
E8(8) ExFT as described in the introduction.

The elements of this algebra combine parameters of the 3D Poincaré group and of
the E8(8) Leibniz algebra discussed in the previous section, all being functions of 248
coordinates:

� = (
ξa, λa; 	M , 
M

)
, (5.1)

where a, b = 0, 1, 2 are SO(1, 2) indices. The Leibniz algebra structure is defined by

�1 ◦ �2 ≡ (
ξa12, λ12a; 	M

12, 
12M
)
, (5.2)

where

ξa12 = 2 εabc ξ[1b λ2]c + 2L[1]
	[1ξ2]

a,

λ12a = εabc λb1 λc2 + 2L[0]
	[1λ2]a,

	M
12 = L[1]

ϒ1
	M

2 ,


12M = L[0]
ϒ1


2M + 	N
2 ∂M RN (ϒ1) − 1

κ
ξ[1a∂Mλ2]a,

(5.3)

and κ is a free parameter. Moreover, we use the notation ϒ ≡ (	M , 
M ), and we have
employed the notation L for the E8(8) generalized Lie derivatives above. In particular,
the Poincaré parameters, not carrying E8(8) indices, are scalar (densities) of specific
weights. Note that the last term in 
12 can be thought of as a non-central extension of
the E8(8) Leibniz algebra by Poincaré generators and takes structurally the same form as
the ‘anomalous’ term 	∂R whose need we discussed in Sect. 3; in particular, due to its
free index being carried by a derivative, it is manifestly compatible with the constraint on

. In contrast to the term 	∂R, however, the coefficient of this term is a free parameter
in that the above satisfies the Leibniz algebra relation

�1 ◦ (�2 ◦ �3) − �2 ◦ (�1 ◦ �3) = (�1 ◦ �2) ◦ �3, (5.4)

for any value of κ , as we will prove momentarily. Thus, we could take the limit κ → ∞
and remove this non-central extension, but it turns out that a suitable invariant quadratic
form only exists for finite κ .

In order to verify that (5.3) indeed satisfies the Leibniz algebra relations (5.4) it is
convenient to consider the adjoint action on a vector in the Leibniz algebra,

A ≡ (
ea, ωa; AM , BM

)
, (5.5)

defined by δA ≡ �◦A, and then to prove that they close, with an ‘effective’ parameter
given by the Leibniz algebra itself. Indeed, it is easy to see, precisely as in (2.3), that
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closure is equivalent to the Leibniz algebra relations (5.4). Using (5.3), the adjoint action
reads in terms of components,

δea = εabc ξb ωc − εabcebλc + L[1]
	 ea − L[1]

A ξa,

δωa = εabcλ
bωc + L[0]

	 ωa − L[0]
A λa,

δAM = L[1]
ϒ AM ,

δBM = L[0]
	 BM + AN ∂M RN (ϒ) − 1

2κ
ξa∂Mωa +

1

2κ
ea∂Mλa .

(5.6)

Most of these variations are guaranteed to close by themselve. For instance, the Poincaré
transformations w.r.t. λ and ξ acting on ea and ωa close by themselves, because the
Poincaré subsector defines a Lie algebra whose adjoint action closes. (This subsector
does not define a subalgebra, however, because it acts non-centrally on the E8(8) part, as
encoded in the last two terms in the last line of (5.6)). Moreover, the E8(8) generalized
diffeomorphisms close by themselves (and acting on ea, ωa as scalar densities), by the
general results reviewed in Sect. 3. Thus, the only non-trivial check is the closure on
BM of variations involving the non-central variations proportional to 1

κ
. For instance, a

quick computation shows that two Lorentz transformations on BM close according to

[
δλ1 , δλ2

]
BM = − 1

2κ
ea∂Mλ12a, (5.7)

with λ12 given by the algebra (5.3). The closure relations for the remaining parameters
follow similarly, thereby completing the proof of (5.4). Let us also note that the trivial
parameters of the above transformations are unmodified compared to the pure E8(8) case
(3.8), because themodifications by Poincaré parameters are antisymmetric. In particular,
the symmetrization of the Leibniz product (5.3) vanishes in the first two (i.e. Poincaré)
components, and reduces in the E8(8) components to (3.15).

After having constructed the Leibniz algebra (5.3), our next task is to construct a sym-
metric bilinear form that is invariant in the sense of Sect. 2. We start from the following
ansatz generalizing the invariant form (3.17) of the pure E8(8) Leibniz structure:

〈A1,A2〉 = 2
∫

d248Y
(
e(1

a ω2)a + 2 κ A(1
M B2)M − κ f K MN A(1

M∂K A2)
N

)
.

(5.8)

The first term added here is the symmetric invariant of the 3D Poincaré algebra (which
was used by Witten to show that pure 3D gravity without cosmological constant has
an interpretation as a Chern–Simons theory of the 3D Poincaré group [6]). The second
and third term, which we here multiplied by an overall factor κ , equal the bilinear form
(3.17) and are hence invariant under pure E8(8) generalized diffeomorphisms. Thus, it
remains to verify that the additional variations of the Poincaré invariant due to the E8(8)
diffeomorphisms in the first two lines of (5.6) are cancelled by the new, non-central
variations of BM . We compute with (5.6)

δ(e(1
a ω2)a) = L[1]

	 (e(1
a ω2)a) − ∂N

(
ξa A(1

Nω2)a
)

+A(1
N (

ξa∂Nω2)a − e2)
a∂Nλa

)
. (5.9)

The first term is the covariant variation (of weight one), as needed for invariance under
an integral. The second term vanishes under the integral, and the third term is precisely
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cancelled in the combination (5.8), due to the extra variations of B proportional to 1
κ
,

thus proving the invariance of (5.8). The ‘higher’ invariance condition (3.20) follows as
for the pure E8(8) theory, since the form of ‘trivial’ parameters is unchanged.

We see that both for the Leibniz relations as for the existence of an invariant bilinear
form κ is a free parameter, but it needs to be finite in order to have a non-degenerate
quadratic invariant. More precisely, κ needs to be non-zero in order for the invariant
not to vanish for arbitrary values of A, B (or alternatively ea, ωa); the bilinear form is
actually degenerate because of (3.20). We will see that in the final topological theory
the actual value of κ , as long as it is finite, has no physical significance in that it can be
absorbed into a rescaling of the dreibein.

We can now construct the Chern–Simons gauge theory based on the Leibniz algebra
(5.3) with quadratic invariant (5.8).We thus introduce one-formsAμ in 3D taking values
in the Leibniz algebra and postulate Yang-Mills-like gauge transformations as in (2.8),

δAμ = ∂μ� − Aμ ◦ �. (5.10)

Parametrizing the gauge parameter as (5.1) and the gauge field as

Aμ = (
eμ

a, ωμa; Aμ
M , BμM

)
, (5.11)

the gauge transformations read in components6

δeμ
a = Dμξa − εabceμbλc + εabc ξb ωμc + L[1]

	 eμ
a,

δωμa = Dμλa − εabc ωμ
bλc + L[0]

	 ωμa,

δAμ
M = Dμ	M ,

δBμM = Dμ
M − 	N ∂M RN (Aμ, Bμ) +
1

2κ
eμ

a∂Mλa − 1

2κ
ξa∂Mωμa,

(5.12)

where we introduced covariant derivatives (3.23) w.r.t. the internal E8(8) generalized
diffeomorphisms. Under the latter symmetries the above are the expected gauge trans-
formations for the one-form sector of the E8(8) ExFT, and so are the local Lorentz
transformations for eμ

a and ωμa , but not for BμM , which is related to the corresponding
field of the E8(8) ExFT by a field redefinition to be discussed in the next subsection.

Evaluating the Chern–Simons action (2.15), using the algebra (5.3) and the invariant
(5.8), yields

S =
∫

d3x d248Y
(
εμνρeμ

a Rνρa + 2 κ LCS(A, B)
)
, (5.13)

with the Chern–Simons Lagrangian in (3.25) for the gauge vectors, and the (3D version
of the) generalized Riemann tensor,7

Rμνa = Dμωνa − Dνωμa − εabc ωμ
b ων

c, (5.14)

where Dμωνa = ∂μωνa − Aμ
M∂Mωνa are the covariant derivatives w.r.t. internal gen-

eralized diffeomorphisms. The first term in (5.13) is the 3D form of the Einstein-Hilbert
term eR, but due to the covariant derivatives in (5.14) it depends also on the gauge

6 These component fields should not be confused with those in (5.5), because here we consider algebra
valued one-form fields, as opposed to zero-form ‘matter fields’.

7 Compared to the conventions of [12,13] we have redefined the spin connection by ω → −ω. Moreover,
the spin connection is related to its standard form by the 3D redefinition ωμ

ab = εabcωμc .
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vectors Aμ
M . (The non-central extension of the Leibniz algebra is needed in order for

the couplings to Aμ
M to properly combine into the gauge covariant derivative.) The

above action coincides with the topological sector of the E8(8) ExFT action obtained by
truncating the ‘scalar’ fieldsMMN , except for a field redefinition of BμM , to which we
turn below.

5.2. E8(8) Poincaré Leibniz algebra via coadjoint action. We now ask whether there is
a similar construction to that in Sect. 4, where we showed that the Leibniz algebra of
E8(8) generalized diffeomorphisms can be obtained, as in gauged supergravity, from a
genuine Lie algebra and a choice of embedding tensor. Is there a further extension of
that (infinite-dimensional) Lie algebra so that the full E8(8) Poincaré Leibniz algebra is
obtained in the same fashion? The answer is affirmative, as we will now show.

The Lie algebra is defined for functions ζ = (ρa, τa, λ
M , σM ), with Lie brackets

[ζ1, ζ2] =
(
2 εabcρ[1b τ2]c + 2 ∂N

(
λ[1Nρ2]a

)
,

εabc τ b1 τ c2 + 2 λ[1N ∂N τ2]a,
2 λ[1N ∂Nλ2]M ,

2 λ[1N ∂Nσ2]M + f K L
Mσ1Kσ2L + 2 α ρ[1a∂Mτ2]a

)
.

(5.15)

The parameter α in the last line is a free parameter, not constrained by the Jacobi
identities. Note also the density term in the first line (for which we could also have
introduced a free parameter that we fixed here to the final value). The adjoint action on
a = (na,ma, pM , qM ) is given by δζa = [ζ, a] and reads in components

δζn
a = εabcρb mc − εabc nb τc + ∂N (λNna) − ∂N (pNρa),

δζma = εabc τ b mc + λN ∂Nma − pN ∂N τa,

δζ p
M = λN ∂N pM − pN ∂NλM ,

δζqM = λN ∂NqM − pN ∂NσM + f K L
MσKqL + α ρa∂Mma − α na∂Mτa .

(5.16)

The coadjoint representation onA = (ea, ωa, AM , BM ) ∈ g∗ is determined by demand-
ing invariance of the pairing

A(a) ≡
∫

dY
(
eama + ωan

a + AMqM + BM pM
)
. (5.17)

One finds

δζ e
a = εabcτb ec + εabcρb ωc + ∂N (λNea) + α ∂M (AMρa)

δζ ωa = εabc τ bωc + λN ∂Nωa + α AM∂Mτa,

δζ A
M = ∂N (λN AM ) + f MN

KσN AK ,

δζ BM = ∂N (λN BM ) + ∂MλN BN + AN ∂MσN − ρa∂Mωa + ea∂Mτa .

(5.18)

Note that the anomalous Poincaré variations in the last line are not multiplied by α, i.e.,
they survive even if we send α → 0 to remove the analogous term in the last line of
(5.15). Thus, in this sense, this structure is an inevitable consequence of the coupling to
the Poincaré algebra.
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Next, we define the map ϑ : g∗ → g by

ϑ(�) = ϑ(ξa, λa,	
M , 
M ) = (ξa, λa,	

M , RM (	,
)), (5.19)

so that by comparing with (5.6) we confirm, upon setting α = −1,

L�A = � ◦ A = ad∗
ϑ(�)A, (5.20)

up to the rescaling

ea → 1

2κ
ea, ξa → 1

2κ
ξa . (5.21)

We can now reconstruct the quadratic invariant as in (4.51):

�(A1,A2) = −A1(ϑ(A2)), (5.22)

which reproduces (5.8), upon the rescaling (5.21), and up to the same global sign as in
(4.51).

5.3. Equivalence of gauge transformations. Wewill nowprove equivalence of the gauge
transformations following from the Chern–Simons formulation to those of the E8(8)
ExFT constructed in [13], and in particular give the required field redefinition of BμM .
We saw already that the Yang-Mills transformations of the Chern–Simons formulation
give rise to the expected form of internal E8(8) generalized diffeomorphisms. Next, we
turn to the external diffeomorphisms, which in the formulation of [13] are parametrized
by ξμ(x,Y ), and show that the local translations ξa can be matched with these transfor-
mations. Note that the manifest diffeomorphism invariance of the Chern–Simons theory
here only implies invariance under the Y -independent transformations with ξμ = ξμ(x),
and thus we have to identify the remaining diffeomorphisms (that in some sense mix x
and Y ) among the infinite-dimensional Yang-Mills gauge transformations.

We begin by performing the following field-dependent redefinition of gauge param-
eters that introduces the vector parameter ξμ = ξμ(x,Y ):

ξa = ξνeν
a, λa → λa + ξνωνa . (5.23)

Note that at this stage we do not perform an analogous parameter redefinition of 	, 
.
We then find from (5.12) the transformations w.r.t. to the new parameter ξμ:

δeμ
a = ξνDνeμ

a + Dμξνeν
a − ξνTνμ

a,

δωμa = ξνDνωμa + Dμξνωνa − ξνRνμa,

δAμ
M = 0,

δBμM = 1

2κ
eμ

a∂Mλa +
1

κ
ξνe[μa∂Mων]a +

1

2κ
eμ

a∂Mξνωνa,

(5.24)

where Rμνa is the (generalized) 3D Riemann tensor (5.14), and we introduced the gen-
eralized torsion tensor

Tμν
a = Dμeν

a − Dνeμ
a − εabcωμbeνc + εabcωνbeμc. (5.25)

In order to compare with the transformations of the full ExFT, we have to add an
equations-of-motion symmetry. A general such symmetry takes the form δAμ = �μν
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ενρσFρσ , with�μν antisymmetric. Choosing�μν ∝ εμνρξρ we infer that the following
provides a trivial on-shell symmetry:

δAμ = ξνFνμ, (5.26)

where the field strength, discussed in Sect. 2, takes the form

Fμν = 2 ∂[μAν] − A[μ ◦ Aν] + · · · , (5.27)

up to trivial 2-forms that are irrelevant in the action. For the vielbein and spin connection
components these curvatures are given by (5.14) and (5.25), respectively, while the
curvatures Fμν

M , GμνM for Aμ = (Aμ
M , BμM ) are as discussed in Sect. 3, c.f. (3.24),

except for the following modification:

GμνM = GμνM +
1

κ
e[μa∂Mων]a, (5.28)

due to the non-central extension of the algebra. Adding (5.26) to (5.24) we obtain equiv-
alent gauge transformations, in which the field strength terms in δe and δω are cancelled,
while field strength terms are added to δA, δB:

δξ eμ
a = ξνDνeμ

a + Dμξνeν
a,

δωμa = ξνDνωμa + Dμξνωνa,

δAμ
M = ξνFνμ

M ,

δBμM = ξνGνμM +
1

2κ
eμ

a∂Mλa +
1

κ
ξνe[μa∂Mων]a +

1

2κ
eμ

a∂Mξνωνa .

(5.29)

Writing the gauge transformation of BμM in terms of the field strength Gμν via (5.28),
some terms cancel, and we get

δBμM = ξνGνμM +
1

2κ
eμ

a∂Mλa +
1

2κ
eμ

a∂Mξνωνa . (5.30)

Our goal is now to find a field redefinition so that the gauge transformations of
BμM can be matched with those of the original E8(8) ExFT in [13]. In particular, in the
latter formulation BμM is inert under local Lorentz transformations, while in (5.30) it
transforms under λa . This suggests to define a new field as

B̄μM ≡ BμM +
1

4κ
eμ

aεabc ωM
bc, ωM

ab ≡ eμ[a∂Meμ
b], (5.31)

because ωM has an anomalous Lorentz transformation �λωM
ab = εabc∂Mλc, as can be

verified with (5.12), which precisely cancels the e∂Mλ term in (5.30). B̄ is then Lorentz
invariant, as in the conventional ExFT formulation. Performing the redefinition (5.31)
in the action (5.13) one obtains

S =
∫

d3x d248Y
(
eR̂ + 2 κ LCS(A, B̄)

)
, (5.32)

where we defined an ‘improved’ Riemann tensor so that

eR̂ = εμνρeμ
a R̂νρ a = eR + eeaμebνFμν

MωMab. (5.33)
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This is the form of the covariantized Einstein-Hilbert term for generic ExFTs, where
a term proportional to Fμν is added in order to guarantee local Lorentz invariance.
The novelty of the 3D case is that this term is not needed but can be absorbed into a
redefinition of BμM , as done by (the inverse of) (5.31), in which case the non-invariance
of the Einstein-Hilbert term is compensated by a non-trivial Lorentz transformation of
BμM .

Having identified the field redefinition that matches the actions of the original and the
Chern–Simons formulation, as well as matching the local Lorentz transformations, we
prove in the remainder of this section that also the external generalized diffeomorphisms
w.r.t. ξμ are equivalent, as it should be for consistency. To this end we have to compute
the transformation of the redefined BμM in (5.31) under (5.29), for which in turn we
need the anomalous diffeomorphism transformation of ωM

ab. To this end, we compute

�ξ(∂Meμ
b) = ∂MξλDλeμ

b + Dμ(∂Mξλ)eλ
b − ξλ∂M∂N Aλ

Neμ
b, (5.34)

where �ξ denotes the non-covariant part of the diffeomorphism transformation (the
difference between the full variation and the ‘covariant’ terms that take the same form as
standard infinitesimal diffeomorphisms, but with ∂μ replaced by Dμ). The above relation
can be verified by a direct computation. From this we derive

�ξωM
ab = ∂Mξλeμ[aDλeμ

b] + Dμ(∂Mξλ)eμ[aeλ
b]. (5.35)

When using (5.30) in order to compute the transformation of (5.31) we may use the
explicit form the spin connection, because in [12,13] we employed a second order
formalism that treats ω as determined by its own field equations, Tμν

a = 0. It reads

ωμa = ενρσ
(
eνaeμb − 1

2eμaeνb
)
Dρeσ

b. (5.36)

Moreover, we have to write the field strength in (5.30) in terms of B̄:

GμνM (B) = GμνM (B̄) − 1

2κ
D[μ

(
eν]aεabc ωM

bc), (5.37)

so that one obtains for the variation of (5.31)

δξ B̄μM = ξνGνμM (B̄) − 1

2κ
ξνD[ν

(
eμ]aεabc ωM

bc)

+
1

4κ
ξνDν

(
eμ

aεabc ωM
bc) + 1

4κ
Dμξν

(
eν

aεabc ωM
bc) + (∂Mξ terms)

= ξνGνμ(B̄) + Dμ

( 1

4κ
ξνeν

aεabc ωM
bc

)
+ (∂Mξ terms),

(5.38)

where we give the ∂Mξ terms momentarily. The terms in the second line are the covari-
ant terms from the variation of the terms in (5.31) proportional to 1

κ
. We observe that

terms combined into a total Dμ derivative, which can be eliminated by the parameter
redefinition


̄M = 
M +
1

4κ
ξνeν

aεabc ωM
bc. (5.39)
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The total 
 and ξ transformations are now given by

δξ,
̄ B̄μM = Dμ
̄M + ξνGνμM

+
1

2κ
eμ

a
(
∂Mξνωνa +

1

2
εabc ∂MξνeρbDνeρ

c

+
1

2
εabc Dρ(∂Mξν)eρbeν

c
)
,

(5.40)

where we restored the ∂Mξ terms, using (5.35). Inserting (5.36) one finds after some
manipulations, using a Schouten identity in the form 0 = ∂Mξ [ν ελρσ ], the following
form of the external diffeomorphisms:

δξ B̄μM = ξνGνμM +
1

4κ
εμνσ D

ν(∂Mξσ ) +
1

4κ
∂Mξνεμ

ρσ Dρgσν

= ξνGνμM +
1

4κ
εμνλ g

λρDν
(
gρσ ∂Mξσ

)
.

(5.41)

The last form is precisely the gauge transformation of BμM in the original formulation
(upon truncating the ‘matter’ fields M), see Eq. (3.24) in [13]. More precisely, in the
full ExFT an on-shell modification of the gauge transformations is needed, in which
the field strengths terms in δξ A and δξ B are replaced by their on-shell dual ‘matter
currents’. For the topological sector considered here wemay perform another equations-
of-motion symmetry (5.26), but now only for the sector of gauge vectors (A, B), in
order to remove the field strengths terms Fμν and Gμν ,8 so that δξ Aμ

M = 0, and
δξ BμM reduces to the second term in (5.41), which agrees, upon truncating the matter
fields M, with Eq. (3.40) in [13]. This completes our discussion of the proof that the
gauge transformations of the topological sector of the E8(8) ExFT can be interpreted as
Yang-Mills gauge transformations based on the Leibniz-Poincaré algebra (5.3).

5.4. Generalization to AdS gravity. We have seen that the topological sector of E8(8)
ExFT has a Chern–Simons interpretation, reproducing in particular the 3D Einstein-
Hilbert term without cosmological constant. It is natural to ask whether there is an
extension to include a non-vanishing cosmological constant, as is the case for pure 3D
gravity, where the Poincaré group is simply replaced by the (A)dS groups, SO(2, 2)
or SO(1, 3), respectively. Moreover, both in gauged supergravity and ExFT there is a
potential, so that generic compactifications indeed give rise to a non-vanishing cosmo-
logical constant, thereby suggesting that a reformulation with a 3+8 (and eventually
3+248) split may naturally involve an external (A)dS3 space.

We will now show that there is an extension of the Leibniz algebra (5.3) to a de
Sitter-Leibniz algebra, whose Chern–Simons action leads to a cosmological constant.
We denote the cosmological constant by v = − 1

�2
, with (A)dS radius �, (and we can

think of it as the ground state value of the potential in a complete theory, V0 = v). The
Leibniz algebra is defined in terms of functions � = (ξa, λa; 	M , 
M ) by

�1 ◦ �2 ≡ (
ξa12, λ12a; 	M

12, 
12M
)
, (5.42)

8 Perhapsmore simply, it is straightforward to verify with (3.26) that the pure field strength terms in δξ Aμ
M

and δξ BμM are a separate invariance of the Chern–Simons action and can hence be dropped in the formulas
for external diffeomorphisms.
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where

ξa12 = 2 εabc ξ[1b λ2]c + 2L[1]
	[1ξ

a
2],

λ12a = εabc λb1 λc2 − 1

�2
εabc ξb1 ξ c2 + 2L[0]

	[1λ2]a,

	M
12 = L[1]

ϒ1
	M

2 ,


12M = L[0]
ϒ1


2M + 	N
2 ∂M RN (ϒ1) − 1

κ
ξa[1∂Mλ2]a .

(5.43)

The AdS length scale � only appears in the second line, as a modification of the Lorentz
sub-algebra, as is the case for the conventional (A)dS algebra. We can now compute the
adjoint action on an algebra valued field A ≡ (ea, ωa, AM , BM ) to find the transforma-
tions

δea = εabcξbωc − εabcebλc + L[1]
	 ea − L[1]

A ξa,

δωa = εabcλ
bωc − 1

�2
εabc ξbec + L[0]

	 ωa − L[0]
A λa,

δAM = L[1]
ϒ AM ,

δBM = L[0]
	 BM + AN ∂M RN (ϒ) − 1

2κ
ξa∂Mωa +

1

2κ
ea∂Mλa .

(5.44)

The new term proportional to the cosmological constant in δωa is the only change in
the transformation rules. The Leibniz algebra relations are thus automatically satisfied,
because their equivalent closure conditions hold precisely as for the pure (A)dS Lie
algebra.

We next have to ask whether there is still in invariant quadratic form. It turns out that
the invariant (5.8) for the Poincaré-Leibniz algebra continues to be invariant, because
under the new term in the variation proportional to v we have

δv(e(1
aω2)a) = v εabc ξb e(1

ae2)
c = 0, (5.45)

as a consequence of the symmetrization. Thus, we can define a Chern–Simons action
based on (5.43), using the same invariant (5.8), to obtain

S =
∫

d3x d248Y
(
eR − 2 e v + 2 κ LCS(A, B)

)
. (5.46)

Thus, the only modification is the addition of a cosmological constant term proportional
to v.

Let us point out a peculiar difference of the above construction to pure AdS3 gravity
and its supersymmetric and higher-spin generalizations. In the latter case the algebras
always factorize; for instance, for pure gravitywe have SO(2, 2) ∼= SL(2,R)×SL(2,R),
and the super- and higher-spin groups factorize similarly. As a consequence, there is a
second invariant of the Lie algebra [6], which reads

ve(1
ae2)a + ω(1

aω2)a, (5.47)

which is non-degenerate for v �= 0. Due to the splitting of the gauge groups, the Chern–
Simons action is then really the sum of two SL(2,R)Chern–Simons termswith arbitrary
relative coefficients. There is no analogue for the E8(8) ExFT, however, because the
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second invariant cannot be consistently extended. In fact, in ExFT, e carries (density)
weight one and ω weight zero, so that in (5.47) both terms fail to have a total weight of
one, as would be necessary for invariance under an integral as in (5.8).9

We have shown that the Chern–Simons formulation can be extended so as to include
a cosmological constant term proportional to v. In particular, for v < 0 the theory admits
AdS3 solutions, and so one can investigate it as a (toy-)model for the AdS/CFT corre-
spondence. As a first step it would be important to determine the asymptotic symmetries.
While for pure 3D gravity they are given by (two copies of) the Virasoro algebra, with
the Brown-Henneaux central charge c = 3�

2G , already for supergravity and higher-spin
theories the asymptotic symmetries are no longer governed by Lie algebras, but rather
by so-called W -algebras (although the value of the central charge remains unchanged)
[7,8,47]. Thus, it is plausible to suspect that the same happens for the theory considered
here. Finally, we note that W -algebras have recently been shown to have an interpreta-
tion as L∞ algebras [51], as have the bulk ExFTs, and so intriguingly both the bulk and
boundary degrees of freedom may be governed by suitable ∞-algebras. This may lead
to a new perspective on holography more generally.

6. Summary and Outlook

We have discussed the general construction of Chern–Simons actions in 3D based on
Leibniz algebras and shown that they arise naturally in gauged supergravity and excep-
tional field theory. For the E8(8) exceptional field theory both the topological terms for
the gauge vectors themselves and the full ‘topological phase’ including also the dreibein
and spin connection allow for such Chern–Simons interpretations. We have also shown
that there is a universal construction of such Leibniz algebras that is applicable both to
gauged supergravity and exceptional field theory. It starts from a genuine Lie algebra g
(that we can view as the global symmetry of the ‘ungauged phase’) and an embedding
tensor, that in 3D is a symmetric tensor � on the dual space g∗. Interpreting the em-
bedding tensor as a map ϑ : g∗ → g, one can define the Leibniz algebra in terms of
the coadjoint representation as A ◦ B = ad∗

ϑ(A)B. The original embedding tensor � is
invariant under this action, which in turn implies the Leibniz relations.

With this construction we believe to have made a potentially significant conceptual
advance in that it gives an answer to the question whether the generalized diffeomor-
phisms in double and exceptional field theory can be interpreted as originating frommore
conventional transformations, such as diffeomorphisms on a larger manifold, by putting
additional structures. Obvious analogies are symplectic manifolds in which the general
diffeomorphism group is reduced to the symplectomorphisms that leave the symplectic
form invariant. However, such a construction cannot give generalized diffeomorphisms,
for starting from a Lie algebra and demanding invariance of some structure at best yields
a non-trivial subalgebra that is still a Lie algebra, but not a genuine Leibniz algebra. (See
Sect. 3.1 in [52].) This obstacle is circumvented in the above construction by having the
‘invariant structure’ (the embedding tensor) itself define the ‘adjoint action’ of the Leib-
niz algebra—in terms of the coadjoint action of the original Lie algebra. Moreover, this

9 There is another 3DChern–Simons-type theory with an infinite-dimensional extension of the AdS algebra
that does not factorize [48]. This is based on the algebra of volume preserving diffeomorphisms on S3 [49],
which is a genuine Lie algebra that, however, does not have an invariant quadratic form. The Chern–Simons
term constructed in [49] can be interpreted as a Leibniz–Chern–Simons theory, with the embedding tensor
being the invariant quadratic form on the dual space of one-forms given by �(ω, η) = ∫

S3 ω ∧ dη. We hope
to elaborate on this connection in more detail in future work and thank an anonymous referee for inquiring
about this. Note added: In the meantime, the preprint [50] appeared in which this connection is developed.
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Lie algebra is crucially not just a diffeomorphism algebra but rather the semi-direct
sum of a diffeomorphism algebra and the current algebra based on the corresponding
U-duality group. It is important to investigate this construction further, in particular in
order to see whether it sheds light on some of the conceptual questions of double and
exceptional field theory.

In view of the realization of the ‘topological phase’ of the E8(8) exceptional field the-
ory as a Leibniz–Chern–Simons theory, it remains to see whether the ‘matter couplings’
given by the E8(8)/SO(16) coset degrees of freedom can be efficiently described in a
similar language, presumably upon introducing auxiliary fields. Moreover, even without
matter couplings, it would be interesting to see whether the topological phase makes
physical sense by itself. Although here we can only speculate, one may wonder whether
this Chern–Simons theory represents a protected topological sector of M-theory.
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Appendix

A. Embedding Tensor in General Dimensions

Although our focus in this paper is the 3D case, for completeness we discuss here how
to define embedding tensors for generalized diffeomorphisms in arbitrary dimensions,
i.e., starting from more general Lie algebras g0. This will illustrate from a yet different
angle that the 3D case, which superficially seems to be rather special, fits nicely into the
pattern in general dimensions.

We start with the Lie algebra g0 of the U-duality group under consideration, with gen-
erators tα satisfying [tα, tβ ] = fαβ

γ tγ . Furthermore, we pick a representation space R of
g0 in which the coordinates live, and write for a generic vector vM , M = 1, . . . , dim(R),
and for the representation matrices (tα)M

N . We can now define an infinite-dimensional
extension g of g0 as described after (4.43). Specifically, the elements of g are functions
of Y M denoted by ζ = (λM , σα), with Lie brackets

[ζ1, ζ2] = (
2 λ[1N ∂Nλ2]M , 2 λ[1N ∂Nσ2]α + fβγ

ασ1
βσ2

γ
)
. (A.1)

We now consider some important representations of this Lie algebra. First, the repre-
sentation R naturally extends to infinite-dimensional g representations, whose elements
are R valued functions vM (Y ), on which ζ ∈ g acts as

δζ v
M ≡ ρζ v

M ≡ λN ∂NvM + γ ∂NλNvM − σα(tα)N
MvN . (A.2)

Here γ is an arbitrary density weight, and so we can denote this representation space
more appropriately as R[γ ]. Using that the (tα)M

N form a representation of the original
algebra g0, it is straightforward to verify that (A.2) is indeed a representation of (A.1):

[ρζ1 , ρζ2 ] = ρ[ζ1,ζ2]. (A.3)

We again note that the coordinate indices need not be correlated with the R represen-
tation indices; the above would be a representation regardless, but this form is the one
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appearing in our subsequent construction.10 More generally, we can canonically define
representations on any tensor power of R. In addition, we can consider the dual repre-
sentation R∗, whose elements are functions AM with invariant pairing R ⊗ R∗ → R

given by

A(v) =
∫

dY vM AM , (A.4)

where dY ≡ ddim(R)Y . More precisely, if the original representation space is R[γ ] the
dual space (R[γ ])∗ consists of functions AM of intrinsic density weight 1 − γ , with the
transformation rules

δζ AM ≡ ρ∗
ζ AM ≡ λN ∂N AM + (1 − γ )∂NλN AM + σα(tα)M

N AN . (A.5)

As usual, this definition is equivalent to

(ρ∗
ζ A)(v) = −A(ρζ v). (A.6)

Next, we investigate the adjoint and coadjoint representations. The adjoint repre-
sentation acts on a = (pM , qα) ∈ g as δζa = [ζ, a], which yields in components

δζ p
M = λN ∂N pM − pN ∂NλM ,

δζq
α = λN ∂Nq

α − pN ∂Nσα + fβγ
ασβqγ .

(A.7)

The coadjoint representation acts on g∗, whose elements are functions A = (Aα, BM )

with the pairing g∗ ⊗ g → R defined as usual by an integral:

A(a) =
∫

dY
(
pM BM + qαAα

)
. (A.8)

The coadjoint action is determined by requiring invariance of the integral and found to
be

δζ Aα = λN∂N Aα + ∂NλN Aα + fαβ
γ σβ Aγ ,

δζ BM = λN∂N BM + ∂MλN BN + ∂NλN BM + Aα ∂Mσα.
(A.9)

This definition of the coadjoint representation is of course equivalent to (4.16).
In order to relate to the embedding tensor formulation in arbitrary dimensions, we

next have to use the general fact that for any representation R there is a canonical map

π : R ⊗ R∗ → g∗. (A.10)

(For R equal to g or g∗ this coincides with the coadjoint representation, and so this map
is a natural extension of our 3D construction based on the coadjoint representation.)
This map is defined as follows: Since its image is a coadjoint vector it naturally acts on
adjoint vectors ζ , and so we can define, for v ∈ R, A ∈ R∗,

(π(v, A))(ζ ) ≡ (ρ∗
ζ A)(v). (A.11)

To illustrate this definition we note that for a finite-dimensional Lie algebra with gener-
ators tα this reads in a basis

π(v, A)α = vM (tα)M
N AN . (A.12)

10 A related question is whether in (A.2) one could employ the full Lie derivative w.r.t. λ, which can only
be written if both indices are identified. It turns out that this would spoil closure.
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We now evaluate (A.11) for our infinite-dimensional algebra and representations by
computing for the right-hand side with (A.5)

(ρ∗
ζ A)(v) =

∫
dY

(
λM(

vN ∂M AN − ∂M
(
vN AN

)

+ γ ∂M
(
vN AN

))
+ σαvM (tα)M

N AN

)
,

(A.13)

where we integrated by parts in order to move derivatives away from λ. With the pairing
(A.8) we can then read off the map π from the left-hand side of (A.11):

π(v, A) = (
vM (tα)M

N AN , −∂MvN AN + γ ∂M
(
vN AN

))
. (A.14)

We are now ready to re-interpret the embedding tensor in these invariant terms. To this
end we return to the general form �M

α for the embedding tensor, which was employed
for the gauged supergravity relation

XMN
K = �M

α(tα)N
K , (A.15)

c.f. (4.1), and view it as a map

� : R ⊗ g∗ → R. (A.16)

Contracting (A.15) with v,w ∈ R and A ∈ R∗ and recognizing the map (A.12), we can
write the Leibniz product on R via

A(v ◦ w) = �(v, π(w, A)). (A.17)

We now claim that the Leibniz algebra defined by generalized Lie derivatives in
generic dimensions is defined through this relation upon taking the embedding tensor to
be given, for v ∈ R, A = (Aα, BM ) ∈ g∗, by

�(v,A) = −
∫

dY
(
vM BM − κ (tα)M

N Aα ∂NvM)
, (A.18)

where κ is a constant to be determined. Note that the last term requires an invariant
bilinear form on the original Lie algebra g0 in order to raise the index on tα , which is the
first time that this assumption is needed. Evaluating the right-hand side of (A.17) with
(A.14) we obtain

�(v, π(w, A)) =
∫

dY
(
vM∂MwN AN − γ vM∂M (wN AN )

+ κ(tα)M
N ∂NvMwK (tα)K

L AL
)
.

(A.19)

Integrating by parts, this can be rewritten in terms of the standard form of the generalized
Lie derivative,

Lvw
M ≡ vN ∂NwM + κ (tα)N

M (tα)L
K ∂K vL wN + γ ∂NvNwM , (A.20)

as follows

�(v, π(w, A)) =
∫

dY
(
Lvw

M)
AM . (A.21)

Provided we choose λ and κ , which so far are free parameters, appropriately (depending
on the group and representation R), the right-hand side is equal to A(v ◦w). This proves
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that the Leibniz algebra of generalized Lie derivatives is recovered in accordance with
the embedding tensor construction (A.17).

As for the 3D case, it is illuminating to also view the embedding tensor as a map

ϑ : R → g, (A.22)

defined, for v ∈ R, A ∈ g∗, by

A(ϑ(v)) ≡ −�(v,A). (A.23)

From (A.18) one finds that this map reads explicitly

ϑ(v) = (
vM , −κ(tα)M

N ∂NvM)
. (A.24)

One of the advantages of this map is that, again, we can define the Leibniz product (or
generalized Lie derivative) more explicitly by

v ◦ w ≡ ρϑ(v)w. (A.25)

In order to prove that this is equivalent to (A.17) we act with a covector A ∈ R∗:

A(v ◦ w) = A(ρϑ(v)w) = −(ρ∗
ϑ(v)A)(w) = −(π(w, A))(ϑ(v)) = �(v, π(w, A)),

(A.26)

where we used (A.6) and (A.11). One may also quickly verify with (A.24) that (A.25)
yields the familiar formulas for generalized Lie derivatives (and thereby for the corre-
sponding Leibniz algebras).

At this stage a cautionary remark is in order. In general, the embedding tensor map
ϑ is not gauge invariant. If ϑ were gauge invariant we would have an immediate proof
of the Leibniz relations as follows: Invariance means that, for v,w ∈ R, the following
expression vanishes:

�(v,w) ≡ δv(ϑ(w)) − adϑ(v)ϑ(w) = ϑ(v ◦ w) − [ϑ(v), ϑ(w)]. (A.27)

The Leibniz relations in turn involve the combination

(v1 ◦ v2) ◦ w + v2 ◦ (v1 ◦ w) − v1 ◦ (v2 ◦ w)

= ρϑ(v1◦v2)w − [ρϑ(v1), ρϑ(v2)]w
= ρ�(v1,v2)w,

(A.28)

where we used that ρ forms a representation of the Lie algebra g, and we recognized
(A.27) in the last step. Thus, invariance of ϑ or � ≡ 0 implies the Leibniz relations, but
the converse is not true: Due to the section constraints there are ‘trivial’ parameters, so
that one may have ρ�(v1,v2)w = 0 without �(v1, v2) being zero. This is indeed what
happens for generic ExFTs.
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