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Abstract: The purpose of this paper is to prove the existence of global in time local en-
ergy weak solutions to the Navier—Stokes equations in the half-space Ri. Such solutions
are sometimes called Lemarié—Rieusset solutions in the whole space R>. The main tool
in our work is an explicit representation formula for the pressure, which is decomposed
into a Helmholtz—Leray part and a harmonic part due to the boundary. We also explain
how our result enables to reprove the blow-up of the scale-critical L3 (Ri) norm obtained
by Barker and Seregin for solutions developing a singularity in finite time.

1. Introduction

This paper is devoted to the proof of existence of local energy weak solutions to the
Navier—Stokes equations in the half-space

du+u-Vu—Au+Vp=0, V-u=0 in(0,7T)xR3,

1.1
u=0 on (0, T) x dR3 (D
for initial data ug locally uniformly in L? and divergence-free. The study of weak finite
energy solutions to (1.1) with initial data ug € L(z, (L2), where Q2 can be for instance a
bounded domain, R or Ri, has a long history which goes back to the seminal works of
Leray [24] and Hopf [17]. The study of infinite energy solutions is much more recent. It
is interesting in its own right since one can study nontrivial dynamics generated by the
solutions themselves and not driven by a source term. Let us just mention the latest works
of Abe and Giga [1-4] about Stokes and Navier—Stokes equations in L, of Gallay and
Slijepcevi¢ [12] about boundedness for 2D Navier—Stokes equations and of Maremonti
and Shimizu [27], Kwon and Tsai [22] about global weak solutions with initial data non
decaying at space infinity.
We are interested in a special kind of infinite energy solutions, so-called local energy
weak solutions. For these solutions the energy is locally uniformly bounded. This notion


http://crossmark.crossref.org/dialog/?doi=10.1007/s00220-019-03344-4&domain=pdf
http://orcid.org/0000-0002-3484-1874

518 Y. Maekawa, H. Miura, C. Prange

of solutions has been pioneered by Lemarié—Rieusset [23] in the whole space R>, and
later slightly extended by Kikuchi and Seregin [21]. Our goal is to extend the notion of
solution to the half-space Ri and to prove local in time as well as global in time existence
results. This answers an open problem mentioned by Barker and Seregin in [5, Section
1]:

Unfortunately, and analogue of Lemarié—Rieusset type solutions for the half-space
is not known yet. In fact it is an interesting open problem.

The class of local energy weak solutions, which will be made precise in Definition 1.1,
is very useful, even for the study of finite energy weak solutions to (1.1), so-called Leray—
Hopf solutions, for at least three reasons.

The first reason is that they satisfy a local energy inequality. In particular, the solutions
are suitable in the sense of Caffarelli, Kohn and Nirenberg [6,25], so that we can apply &-
regularity to them. The half-space analogues of [6,25], corresponding to the e-boundary
regularity, have been worked out in [32,34,35].

The second reason is that local energy weak solutions appear as limits of rescaled
solutions of the Navier—Stokes equations. This is the case for instance when studying the
local behavior of a Leray—Hopf solution near a potential singularity. The energy being
supercritical in 3D with respect to the Navier—Stokes scaling u; (y, s) = Au(ry, A%s), the
energy blows-up when zooming. The limit object is still a solution of the Navier—Stokes
system, not in the finite energy class, but in the local energy class.

Finally, the theory of local energy solutions plays also an important role in the seminal
work of Jia and Sverdk [19] about the construction of forward self-similar solutions with
large initial data. This work and the subsequent studies [16,20] represent a big progress
toward understanding non-uniqueness of Leray—Hopf solutions.

Combining the features of the local energy weak solutions emphasized in the previous
paragraph makes them powerful objects to study, for instance, blow-up of scale-critical
norms near potential singularities. In this way, Seregin [31] was able to improve the
celebrated result of Escauriaza, Seregin and Sverak [9]. Seregin proved that: if a weak
finite energy solution u to (1.1) in R? has a first singularity at time T, in the sense that
u is smooth in the time interval (0, T') and that the L°° norm of u is infinite in any
parabolic cylinder B(xo, p) x (T — pz, T), for fixed x¢ € R3 and any p > 0, then

||u(',t)||L3(R3) —> 00 as t— T —0.

One of our objectives is to show that the solutions we construct make it possible to prove
the blow-up of the L* norm in the case of the half-space R} following the scheme in
[31]. Hence, we will recover the result of [5, Theorem 1.1] of the blow-up of the L34
norm 3 < g < 00, in the case ¢ = 3.

The content of this paper was summarized in the review article [28]. In particular,
our notion of local energy weak solutions is compared to the notion of weak solutions
in the half-space appearing in the work of Maremonti and Shimizu [27].

1.1. Definition of local energy weak solutions. Let us first recall the definition of loc-
uniform Lebesgue spaces: for 1 < g < oo,

d 1 d
Ll (R :=1feL, (R | sup | fll pagpeco.1ydy <09 -
nEZd_lxzzo
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Let us define the space L” RY) of solenoidal vector fields in L7, as follows:

uloc, o( uloc

LY. RY = {f eL!, (RH /Rd f-Vedx =0 forany ¢ € ch(Ri)}.

For more properties of these spaces of locally uniformly p-integrable functions, see [26]
and the references cited therein. We also refer to Lemma A.4, which characterizes the
functions of £> as the functions L> which have some (not quantified) decay at
infinity.

Here we state the definition of local energy weak solutions to (1.1) when the initial
data belongs to

uloc,o uloc,o

(R3 ) — COO uloc (R3)

uloc o

We will actually be able to construct local energy weak solutions for data in Lu loc.o (R ).

Nevertheless, the introduction of the space ,Cu loc.o (]R ) is useful since the solutions in
this class decay at spatial infinity, and hence, the parasitic solutions (the flows driven by
the pressure with linear growth) are automatically excluded in this class. Then we can
state the definition of solutions in a simple fashion compared with the solutions in the
class of nondecaying functions, where the structure of the pressure has to be included in
the definition of solutions (see Remark 1.2 below on this point). Although L2 (]R )

(Ri) the study in this class has an important application

uloc,o

is strictly smaller than Lulac o

to the blow up criterion of solutions to (1.1) in L3, which will be discussed in Sect. 7.

Definition 1.1. Let T € (0, 00l and Q7 := (0, T) x ]R3 A pair (u, p) is called a local

energy weak solution to (1.1) in Q7 with the initial data ug € ‘culoc U(R ) if (u, p)
satisfies the following conditions:

() We have u € L0, T; L2, R T < oo, u € L0, T); L2, (RD)) if
T =oo0and p € loc((O T)XR) and
2
T T 3 3
su Vu dt + su Vpl? dt] < oo 1.2
s /0 190 gy 8+ 0 < /5 AZT ., ) (1.2)

for all finite 7/ € (0, T1and § € (0, T'). Here B(x) is the ball of radius 1 centered at x.
(i1) The pair (u, p) satisfies
T
/0 —(u, at(p)Lz(Ri) +(Vu, V‘P)LZ(Ri) — (p, div ¢>L2(Ri) + (u - Vu, 90>L2(R3) dt =0

forany ¢ € C°((0,T) x @)3 such that ¢|x,—0 = 0.
(1.3)

(iii) The functiont > (u(t), w);2 (®R3) belongs to C ([0, T')) for any compactly supported

w e L2(R1)3. Moreover, for any compact set K C R3,

tim (1) = woll 2k, = 0. (1.4)
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(iv) The pair (u, p) satisfies the local energy inequality: for any x € C2°((0, T) x IRTi)
and fora.e.t € (0, T),

t
2 2
IG5 53, +2 / X Vull3 2 g, ds
0 (1.5)

t
< /0 (lul, 85 x> + AX2>L2(R3) + (- V2, Jul? + 2p>L2(Ri)ds'

Remark 1.2. (1) Our definition is close to the one used in [18,19], where the authors
defined local energy weak solutions in (0, T') x R3 which decay at spatial infinity and
they do not include the representation formula for the pressure. For T < oo one can also

define local energy weak solutions for initial data in Li loc.o (Ri). In this case one has

to replace the condition u € L*®(0, T} Eﬁlocﬁ(Ri)) by u € L*(0,T; Liloc)d(Ri)).
However, since the solutions in this class do not decay at all as |x| — oo, the uniqueness
is violated even for smooth solutions unless one imposes some additional condition
on the pressure. This lack of the uniqueness is brought by the flows driven by the
pressure, called parasitic solutions. A typical way to exclude such parasitic solutions is
to assume in addition that the pressure V p is writtenas Vp(t) = Vpyeim () +V prar(t),
where fora.e.t € (0, T), Vppem(t) is defined as the solution to the Poisson equations
—ApHem () = V-V(u()@u(t)) in R and 33 pgerm (t) = 00on IR which is expressed
in terms of (some derivatives of) the Newton potential, while V p g, (¢) is the harmonic
pressure which satisfies Apg,(f) = 01in Ri and

Jim IV prar Ol i1,k esg<ren =0 for ae.t€©.1).  (L6)
This condition for the pressure is not needed for solutions in L*°(0, T'; [,il oc. U(Ri)),

since the solutions in this class decay at spatial infinity, and thus, the parasitic solutions
are automatically excluded.

(2) The e-regularity theorem holds for any local energy weak solutions in Definition 1.1.
This is not trivial since the regularity assumption for our local energy weak solutions
is not strong enough and therefore one has to show that any local energy weak solution
admits additional regularity so that the known e-regularity theorem is applied. To this
end, a detailed study of the pressure term is required, which will be done in Sect. 2,
and we also need a uniqueness result (Liouville theorem) for the homogeneous Stokes
system obtained in our companion paper [26, Theorem 5]. This issue will be handled in
Sect. 3.

(3) According to (iv) in Definition 1.1, only test functions x compactly supported in
space and time are allowed in the energy inequality (1.5). However, the continuity at 0
stated in point (iii) of Definition 1.1 allows to take test functions constant in time. Let

X € Cé’o(Ri). For § > 0, let n € C*°(R) is a cut-off such that || < 1, n = 0 on

(=00, 1) and n = 1 on (2, 00). Then x5 := x(n(;) — n(55)) € CZ((0. T) x RY) is
an admissible test function in (1.5). Plugging s in (1.5), we let § — 0. Only one term
really deserves some attention. We have

t t
f / u*3; (x*n(5)?)dxds — / / 285 (x%) — f | xuol?dx
0 JRr3 0 JRr3 R3

t t
= f / lul*0, (x*)n(5)*dxds — / [ lul*0, (x*)n(5)*dxds
0 JR3 0 JR3



Local Energy Weak Solutions for the Navier—Stokes Equations 521

28
+ / f lul?x%3;(n(5)*)dxds — / | xuol*dx
0 JR3 R3

0(5).

Indeed,

26
/ / |u? %235 (n(5)*)dxds — / | xuol*dx
0o JRI R3

¥

28
=26—1/ f Iulzxzn/(g)n(g)dxds—/ |xuol*dx
0o JRr} R3

T

28
_ s /0 fR )P~ luoPn' Iy xdxds

28
. / 8, (1()?) / ol x2dxds — / xuoPdx,
0 R} R3

where the first term in the right hand side goes to zero by the boundedness of the Hardy—
Littlewood maximal function on L*° and the local strong convergence to initial data
(1.4), and the sum of the last two terms in the right hand side is zero. We hence obtain

t
1O g +2 fo XVl g ds

t
< llxuol3> s, + /0 (ul®, 85 x> + Ax?) 2y + (- VX, [ul® +2p) 253 ds.
(1.7)

This result will be used in Sect. 4.

1.2. Outline of our results. The main result of our paper is stated as follows:

Theorem 1. For any ug € Eﬁ loc.o (R}r) there exists a local energy weak solution (u, p)

to (1.1) in Qo with initial data uy.

This result states the global in time existence of local energy weak solutions in the
sense of Definition 1.1. It is the analog for the half-space of the theorem of Lemarié—
Rieusset [23, Theorem 33.1] and of Kikuchi and Seregin [21, Theorem 1.5] for the whole
space R3. Local in time existence of local energy weak solutions for data in Li loc.o (Ri)
is proved in Sect. 5, see Proposition 5.1. '

The proof of Theorem 1 goes roughly as follows. The evolution starts with arough data

barely locally in L2, ug € Eﬁ 1oc- The local in time local energy weak solution obtained

thanks to Proposition 5.1 instantly becomes slightly more regular, u (-, #y) € Ef;loc!a (Ri)

for almost all 7 in the time existence interval. This allows to decompose the data u (-, #y)

into a large C2° (Ri) part for which we have global in time Leray—Hopf solutions, and
a small part in Lﬁ loc.o (R}r) for which we have local in time existence of mild solutions

thanks to Proposition 7.1 in [26]. The difficult part of this reasoning is to transfer the

decay of the initial data ug € L‘iluao to the solution u(-, t), i.e. to prove that not only

u(-, 1) € L* (Ri) for almost all 7y, but that actually u(-, f9) € o (Ri) for

uloc,o ; : . uloc,o
almost all 7y. This issue is already addressed in [23, Proposition 32.2] and [21, Theorem
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1.4] in the case of the whole space. We handle this question for Ri. Our main result in
this direction is the following theorem, which holds under the assumption below. Let
T > 0and § > 0 be fixed.

Assumption 1.3. There exists A7 s > 1 such that for all ug € Eilocﬁ(Ri), for ev-
ery solution u to (1.1) in Q7 in the sense of Definition 1.1 with initial data ug, if

u 3, < § then
I OHLﬁloc(R}r) =

2
T T 3
sup sup/ |u(~,t)|2+// |Vu|2+</f |u|3) <Ars. (1.8)
1€(0,7) yez2 /U o JUm o JUm

Theorem 2. Assume that Assumption 1.3 holds. Then for all ug € [,31 oc.o (Ri), all weak
local energy solution u to (1.1) on Q7 in the sense of Definition 1.1 with initial data ug

satisfies

T
sup sup/ |19Ru(-,t)|2+/ f |9 Vul?
1€(0,7) yez3 Y Um o JOm

T 3 T \ %R%o
+<f / |19Ru|3) +<f / |p|2) —%0, (1.9)
o JOm s JOm

forall § € (0, T), with ¥ the cut-off defined in Sect. 1.3 and Vg := 9 (-/R).

Explaining how to prove Theorem 2 leads us to the central results our work. The
starting point to get the decay estimate (1.9) is the local energy inequality (1.5) tested
against ¢ = 191% Xxo» Where x,, is a cut-off supported around xo. Estimating the right
hand side of the energy inequality requires precise estimates for the pressure. Therefore,
alot of work is devoted to studying the pressure of solutions in the sense of Definition 1.1.
The foremost novelty of our paper is to provide a decomposition of the pressure along
with estimates. In the whole space, the pressure solves

—Ap=V-(V-u®u) in R>.

It is equal to the Helmholtz pressure of the Helmholtz—Leray decomposition. At least
formally, we can represent this pressure using the fundamental solution of —A. We then
decompose the integral into a local part and a nonlocal part. To handle the nonlocal part,
the point is that the pressure is defined up to a constant (possibly depending on time), so
that one can gain the additional integrability needed to estimate the large scales of the

data (which may not decay). For all xg € R3, there exists a function Cxo (1) € L’ 0,7)
such that for all (x, ) € R3 x (0, T),

1 1
plx. 1) = e (1) = —<|u(x, > + —/ K(x —y)-uly, 1) @u(y, t)dy
3 4 B(x0,2)

Ploc

* i (K(x—y)—K@xo—y)-u(y,t) @u(y, t)dy,
T JR3\B(x0,2)

Pnonloc

(1.10)
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with K = Vz(plc_|)’ see [21,23]. This decomposition is then used to estimate fR3 pV
(9% Xxo)ut-

In the present work, we generalize the representation formula (1.10) to the case of
the Ri. Due to the boundary aRi, in addition to the Helmholtz pressure, a harmonic
pressure has to be taken into account. Indeed, the pressure solves

—Ap=V-(V-u®u) inR3,
i p ( ) : i

ap = Vlx3=0Au3 on BRi.

We are able to provide an explicit representation for the Helmholtz part of the pressure,
as well as for the harmonic part. Each pressure has to be splitted (as above for R?)
into a local part and a nonlocal part. It is the purpose of Sect. 2 to do this work. The
precise decomposition of the pressure is given in (2.18). Propositions 2.1, 2.2 and 2.3
are pivotal results in our work: the estimates for each pressure terms are provided there.
To our knowledge, such an extensive study of the pressure in a domain with boundaries
is new. We are able to provide explicit representation formulas. In this matter, we rely on
the results for the linear theory in RE obtained in the companion paper [26]. As a word
of conclusion, let us mention that this level of precision in the description of the pressure
can be achieved due to the special structure of R, which allows to use the Fourier
transform in the horizontal direction and hence to obtain explicit formulas. In more
general domains (exterior domains, domains with unbounded curved boundaries), the
study of solutions with locally integrable data relies on mild assumptions on the pressure
which make it possible to rule out parasitic solutions. In this vein, see for instance the
works [1,3] for data in L2°.

1.3. Notations. We gather some notations which are used recurrently in thls paper. We
define CJ(xg) := xo + (=13, 2)d NRY and for r > 0, r[J(xg) := xo + (— 2)d NRY.
Moreover, [J'(xq) = x{, + (-3, 2)d ' R and Oy (x0) := x0.4 +( Lhcr
The function x € C2° (R?) stands for a non negative cut-off, equal to 1 on [J(0) and 0
on2[](0),and x, € C oo(Rd) stands for a non negative cut-off, equal to 1 on r[](0) and
0 on (r + HJ(0). We also let Xpr = Xr(- = X0). Finally, 9 € C®(R?) denotes a non

negative cut-off equal to 0 on [J(0) and 1 on 2[J(0)¢. The notation P(-) = ¢~ A’ )2
denotes the Poisson semigroup. The notation my(D’) stands for a tangential Fourier
multiplier homogeneous of order «, @ > —d + 1 which may change from line to line.

1.4. Overview of the paper. The structure of the paper is as follows. First we derive
properties of the local energy weak solutions in the sense of Definition 1.1 (Sects. 2, 3,
4). Then, we investigate local in time and global in time existence results (Sects. 5 and
6). Eventually, we apply the results of the paper to investigate the blow-up of the scale-
critical norm L3 (Sect. 7). Let us now describe each section in more details. Section
2 is the foundation for the paper. The decomposition of the pressure, along with the
representation formulas and estimates are provided there. In Sect. 3 we give further
properties that all solutions in the sense of Definition 1.1 share. The goal is to show
that e-regularity results apply for our class of solutions. In Sect. 4, we prove the crucial
result, Theorem 2 enabling to transfer the decay of the initial data ug € Eu loc,o 1O the
solution. Section 5 addresses the local in time existence of local energy weak solutions
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fordatainug € Lg loc.o- This result, combined with Theorem 2 about the spatial decay of

solutions makes it possible to prove Theorem 1 in Sect. 6. We eventually use Theorem 2
in Sect. 7 to prove the blow-up of |Ju(-, t)||L3(]R<ﬁ) whent — T,incase T < o0 is the
time of the first blow-up for u. This result is stated in Theorem 4. In Appendix A.1 we
state results about the Helmholtz—Leray projection. Most of these results are taken from
the companion paper [26].

2. Pressure Estimates

Let xo € Ri be fixed. Our goal is to get local estimates for the pressure p(x, t) of the
Navier—Stokes initial value problem (1.1) for x € [1(xo), in terms of the local energy
norm of the velocity . For this purpose, let us consider the cut-off x, := x, ,, which
is defined in Sect. 1.3. We will also need to work with the cut-off x, := x, ,. The first

step is to decompose the solution u of (1.1) into a local part u;°_ with finite energy and

loc
a ngnlogal part uﬁ‘;nloc with lgcally finite energy. qut of time we drop the superscript
xo in this section, because it is clear that the quantities depending on the cut-off x, or
X, depend on xq, which is fixed here. let («, p) be any local weak solution to (1.1) with
initial data ug in the sense of Definition 1.1. Let us denote by uy;, u;‘ff“, and u“®" the

. . nonloc
solutions of the following systems:

duii — Augi +Vp; =0 in (0, T) x R3,

Vo =0,
3 2.1
u; =0 on (0, T) x Ry,
ugi (-, 0) = uo,
Quf®" — Aul + Vi = -V . (xu®u) in(0,T) x R},
V. uu®u — 0,
loc (22)
uf® =0 on (0, T) x dR3,
up2(-,0) =0,
and the nonlocal part solves
at”Z%oc - Auz;e;lb;oc + VPZ?:;OC =-V-(- Xf)ld Q u),
V- MZSZOC =0, in (0, T) x Ri,
Uonioe =0 on (0, T) x 9R3,
i (.0) =0. s

The couple (uy;, pi;) is the solution to the Stokes system, (u;‘fg” , pl”()‘%’”) is the local and

nonlinear part, and (uZ?;}“loml, p!‘;f%ac o) 1s the nonlocal and nonlinear part. These are
constructed as mild solutions which satisfy the integral representation formula. Formally
we have u = w; + u?ﬁ’” + ”Zgzuloc and p = pi; + p;’f“ "prﬁL;oc for the solution (u,.p)
to (1.1), which will be rigorously verified when (u, p) is a local weak energy solution

in the sense of Definition 1.1. For each system (2.2) and (2.3), we will split the pressure
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into a Helmholtz part, which comes from the Helmholtz—Leray decomposition of the
source term, and a harmonic part, which is due to the boundary.

In this paragraph, we concentrate on the linear pressure p;;. We obtain a representation
formula and estimate it directly. Notice that the pressure py; is the solution of

—Ap;; =0 inR3,
{ Pii + (2.4)

04pii = Vlx;=0Au; 3 on BRE_.

In other words, the Helmholtz part of the pressure is zero, so p;; is equal to its harmonic
part. The representation formula for p;; follows by inverse Laplace transform from the
formula for the pressure of the resolvent problem given in [26, Section 2]. Hence, it is
formally written as

1
pii(x, 1) == — 6”/ @ (x" — 7', x3,23) - ug (', 23)d7 dz3d
2ri Jr R3

_ 1 At / / i /
=— e (x" =z, x3,23) - X,up(2, 23)dz dz3dA

2mi Jr R} (2.5)

+/ M /} o (x" =2 x3,23) - (1 — xug(2', z3)dz dzzd
r Ry
= p;looc(x’ t) + ﬁzgnloc(x’ t)’
Here
g : R? x (0, 00) x (0, 00) — C? (2.6)

is the harmonic pressure kernel for the resolvent problem, and I' = I', with « € (0, 1)
is the curve

{(AeCllargr| =n, |\ = k}U{k € C|largA| <n, [A| =«} 2.7)

for some € (5, ). The local pressure p;°. is certainly the most subtle term to analyze.

Because x,uq is barely in L?, it is not regular enough to be in the admissible class for
the initial data of [15]. On the other hand, due to the decay properties of the kernel g;
the representation of ﬁzgn 1oc 18 not well defined. This however motivates the following
definition of the harmonic nonlocal pressure as follows:

! :
Puontocs D) 1= 5— | ! f Grxo (2 23) - (1= x)up(@, 23)dedzsdd, (2.8)
Tl Jr R}

where
Groxxo (@ 23) = (" — 7 x3,23) — qa(xy — 24 %03, 23). (2.9

Then (2.8) is well-defined for nonlocalized data. Then, since p;; can be defined modulo
constants, instead of (2.5), we define p;; as

pui(x, 1) =: pio(x, 1) + pd o (x,1). (2.10)

For the local pressure in (2.2), we first decompose the source term by using the
Helmholtz decomposition. We have

Vo(u®u) =PV - (xJu®u) +QV - (xju ®u) =PV - (xJu ®u) + Vpi2",.
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Notice that there exists a constant ¢ < co such that

Ploe (%, 1) = exfu @ ux, 1) + / CVING =2 ) xu @ u( 23, deldz,
, ”

(2.11)
where N is the Neumann function for the half-space. We now denote by p;‘ff,“harm the
remaining (harmonic) pressure, defined in the following way

uu L UuQu uQu
Pioc,harm = Ploc — Ploc,H" (2.12)

uQu u@u
loc,harm’ ploc,harm
term —PPV - ( Xfu ® u). By the Poincaré—Sobolev—Wirtinger inequality (see [11, Section
I1.6]) there exists a constant ¢(¢) € R and a constant C < oo such that

By definition the pair (u ) solves a system akin (2.2) but with source

1P o — O 3 <CIVp® s

. 2.13
L2075 ®Y) — loc.harm Ty 5 0,7, 18 (R3)) (2.13)

Since p}‘{f"harm is defined up to a constant, we assume, without loss of generality that

¢ = 0. The difficulty for this pressure terms comes from the fact that one has to estimate
singular integral operators in space and time. When possible, we will directly rely on
maximal regularity results for the Stokes system in the half-space, see [15].

Let us now spend some time explaining how to get a formula for the nonlocal pressure
ng%oc (x,t) at a point x € [J(xo) making sense for non decaying data. The difficulty
comes from ensuring that the kernels in the representation formulas have enough decay
at infinity to make sense for non decaying data. Such issues are of course already present
in the whole space. Nevertheless, the case of the half-space is more involved for two
reasons: (i) besides the Helmholtz pressure, one has to analyze a harmonic pressure
driven by the trace of Aus on the boundary B]Ri, (ii) the expression for the Helmholtz—
Leray projection is more complicated, see (A.1). We decompose the pressure in (2.3)

: uQ@u - __ uQu uQu uQu :
1nt; V Puontoc = VY Prontoc.i + VY Pharm» Where Pronioc.H 1S the Helmholtz pressure and
uu

Pharm 18 the harmonic pressure due to the presence of the boundary BRz. The Helmholtz
pressure is given by the decomposition of V - ((1 — Xf)u ® u) into

V(= xDu®@u) =PV (1 — xH)u®@u) +QV - (1 — x))u @ u)
=PV - ((1 — x)u®u) + VpLs

nonloc,H’

where P is the Helmholtz—Leray projection in Ri defined in [26, Section 6]. Hence

pi®y . is asolution of the following Neumann problem,

2 . 3
— Ap®H V-V = x)u®u) inRj,

nonloc,H —

3a Ppemtoer =V - (1 = x))uus) on 9R3

u@u

nonloc.q 18 defined up to a con-

which decays away from the boundary. Notice that p

u@u,xo

stant p, - 5 (¢). Using the Neumann function N for the half-space, we can express

prB )+ pZﬁ';;ZO 4 (1) as a singular integral with the kernel V2N. This kernel
has the critical decay ﬁ, which is not enough to handle non localized data. Having

the constant depend on x( and 7 makes it possible to gain additional decay of the kernel.
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Aspects related to the definition of the pressure for non decaying data have been investi-
gated intensively in [21], though in the case of the whole space R3. Here, we adapt their
ideas to the case of Ri. Formally, we would like to choose

Phroniod 1 (8) = f3 VIN(x) — 2, x0.3, 23)(1 — x2 (2, 23)u @ u(z', 23, H)d7'dz3.
R}

Although this quantity is not well defined because the kernel VZZN is decaying too slowly,
it motivates the following definition of the Helmholtz pressure

Prottoe. (1) 1= /RB VZNixo (@ 23) (1= x2 (2 23)u @ u(z, 23, H)d dz3.
' (2.14)
with
Nyxo(@' 23) := N(x" — 2/, x3,23) = N(xj — 2/, x0.3, 23). (2.15)

Formula (2.14) makes now sense for data u bounded in the local energy norm.
The harmonic pressure is the solution of the following Neumann boundary value
problem
— Api® =0 in R3,

harm
3
8de§)rL;n = V|x3:0AMZSIMZOC,3 on OR;.

For the harmonic pressure, the equation and the Neumann condition in the system (2.16)
are automatically compatible. The representation formula for pZC(lX’r’:n follows by inverse
Laplace transform from the formula for the pressure of the resolvent problem given in
[26, Section 2]. Again, notice that the pressure is defined up to some constant ngrm (1)
depending only on xp and on time. As above for the Helmholtz pressure, the reason
for being of this constant is to ensure that we have enough decay at the large scales.
Formally, we would like to take

® A—s)
Pharm (X0, 1) _E// ( 9/ q.(xg — 2’ x0,3, 23)

'(]PV (1 = Xf)u ® u)) (7, z3, 8)dz'dz3d)ds,

(2.16)

where g, and I are defined as above in (2.6) and (2.7), but due to the decay properties of
the kernel g, this constant is not well defined. As in the case of p;;, we therefore define
the harmonic pressure pharm as

& . A(t—
pZarL;n(x’t)' 27”/ / ( V)/ fh(x _Z X3, 23)

R (BV (= xDu®w) (23, 9)de dzsdids,

27‘[1/ / = S)f q)»xxo(Z z3) 2.17)

(1= x3) (PV (1 = Xf)u ® u)) (7, z3, 8)dz'dzzdAds

. UQuU u@u
= Pharm, <1(x’ H+ pharm,zl(x’ 1,
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where g;, x x, is defined by (2.9). The formula (2.17) makes sense for non localized data,
and this argument again essentially relies on the fact that the pressure can be determined
up to constants.

To put it in a nutshell, we remark that we have formally decomposed the pressure p
in the system (1.1) in the following way

o (x0) _ .. u@u uu
p = P( 0= Dii * Pioe + Pronioc

— 40 uo uQu uQu u@u u@u uQu
= Pioc + Phronioc + ploc,H + ploc,harm + pnunloc,H + pharm,fl + pharm,zl :
=Pli _u® _ U®
pi _pluucu _pZOnuloc

(2.18)

It is essential to keep in mind that every term in decomposition above depends on xg.

However, for two points xo and x), the definition po) — p(x()) is a constant that depends
only on time. In Sect. 3 the decomposition (2.18) will be verified for any local weak
solutions in the sense of Definition 1.1. We aim now at estimating every term in the right
hand side of (2.18) in [(xq) for a fixed xo € Ri. The results are summarized in the
following three propositions.

Proposition 2.1 (Estimates for the linear pressure terms). There exists a constant C < 00

such that for all t € (0, 00),

Vil 2 w3y = Clluoll 2
ulnc( +)

uloc

t
- , 2.19
log(e + 1) ®}) (2.19)

3
r4 ”P;l(?c(t)”LZ(D(xO)) = C||”0”L2(5|:|(x0))’ (2.20)
L u 1 u
12 ||Pn2,1loc(t)||Loo(D(xO))) +12 ||Vpﬂ2ﬂloc(t)||LOO(D()C()))) =< C””O”%[ﬁ({giy (2.21)

Let T > 0 be fixed. Notice that (2.20) implies that for all p € [1, ‘3—‘), there exists a
constant C(T) < oo such that
||p7(?c”LP(O,T;LZ(D(xo))) = C||u0”L2(5|:|(x0))‘

Moreover, for all § € (0, T), there exists a constant C (T, §) < oo such that

u
”pl(?c”LOO(é,T;LZ(D(xQ))) = C”u0||L2(5|:|(x0))'

Proposition 2.2 (Estimates for the local pressure terms). Let T > 0. There exists a
constant C(T) < oo such that

loe. Hl 12 0,1:0.2 (Dxo)) loc.harml ;5 0,7:02 o))
+ V uQu H i
VP30 rnt ) (2.22)

2 2
=C (”uHLOO(O,T;LZ(SD(XO))) + ”V””L2(0,T:L2(5D(xo)>)) ’

Proposition 2.3 (Estimates for the nonlocal pressure terms). Let T > Qand 1 < g < oo.
There exist constants C(T), Cy(T) < oo such that for almost all t € (0, T),
® ® 2
||PZO,;;UC,H('1 t)||L°°(|:|(x0)) + ||szon’70a1_1(', [)”LOC(D(X())) < Cllu(, t)”Lilou(Ri)’
(2.23)
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uQu uQu 2
||Pharm,§1(', t)”LO"(D(xo)) + ||Vpharm’§1(', t)”Lq(I:I(xO)) = Cq ||u||LOO(O’t;L510(-(Ri))’
(2.24)
uQu uu 1 2
1Pharm 1G> Ol Lo @op * 1V Pharmz1 ¢ Dl oo Qg = CE Ml 0,112, wd)-
(2.25)

2.1. Estimates for the linear pressure terms: Proof of Proposition 2.1.

Proof of estimate (2.19) for p;i. As for the estimate of V py; (), we use the equation
Vpii = —0:u;; + Auy; and hence by Proposition 5.3 in [26] there exists a constant C
such that for all r € (0, c0),

IV pii (t)lngm(Rg) < 119, uy; (t)”LﬁzocﬂRi) + IIAuu(t)IILgm(Rg)
Clog(e+1)
< f”“O”Lilml(Riy
The result is proved. O

We now turn to the estimate of pluuoc. Let us again emphasize that this is the term that
requires most care. Indeed we cannot rely of the maximal regularity of [15] since ug is
no more than locally in L2. Therefore, we have to estimate the integral formula (2.10)
directly. We need to be careful so as to avoid dealing with singular integrals in time.

Proof of estimate (2.20) for p;‘o"c. The proof is based on a direct estimate of formula
(2.5). Applying Minkowski’s inequality, we have for fixed x3 € [(xo),

o0
/ / @ (- — 7', x3,23) - xuo(2, 23)d7'dz3
0 JR? 20 o))
o0

S Z /nn+1

n=0

dzs (2.26)
L2 x0))

/2 @ (- — 7', x3,23) - xuo(, 23)d7’
R

Let x € [(xp). Then we have

/3 @ (x" =2/, x3,23) - xyuo(2, 23)d7'dz3
R+

1

e~ 1M2z3 ,

< C/ — 5 | xyuoldz'dz3
R (X" — 2/ + x3 +23)

IA

00 1 1 (x/ — Z/)

— —6,6)2

e ey
0 R - 3 3

Then Young’s inequality for convolutions gives, for almost all z3 € (0, 00),

1(—6,6)2 (x’ — Z/)
r2 (Ix" — 2| +x3 +23)2

|xsu0(z’, z3)ldz’

L% (R?)
{ Cllog(xs + z3)lllxstto (- 23)ll 2, w2y ¥3+ 23 < 3,

1
ClixauoC 23) L2, w2y X3 +23 > 3.
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Now, combining this with (2.26), we obtain

o0
/ /2 (- — 7', x3,23) - xyuo(Z, z23)d7'dz3
0 R

L2[O(xo))

o0

Z /nn+1

n=0
o

€

n=1

1
1 _
C H | log x3] f() e~ M2 ll xsu0(s Z3)||L%/(Rz)dZ3

IA

’ dZ3
L2 (xo))

f 472 (@ )
R

L2([O3(x0)

IA

n+l Y 1
,/ e M5 xuo (-, 23) 1l 2, ey d23
; 2

L2(03(x0))

(x3 <

),

Bf—

+ £2(Us(x0))

|
L h
C Hfo e |M223||X4u0(~, Z3)”L3(R2)d13 (x3 > %)'

L2(O3(x0))
(2.27)

We study each term in the sum in the right hand side of (2.27). Of course, most of the

terms in the sum on n are 0, due to the fact that x,u( is compactly supported. Forn > 1,
we have

n+l 1 1
—|A|12 —|A|12
/ e M5 0, 23) 1l 2, g2y dzs < € P guoll 2 g
n z

Thus,
[ee) n+l 5 %
> / e M5B guo -, 23)11 2, r2ydz3
n=1 n Z LZ(DS(XO))
o0 . % C
= lxatoll 2y Y e < Nk Psolzat
n=1 ’

As for the last term in the right-hand side of (2.27), the direct computation yields
the bound such as C |A|_% | x, uoll L2R3) by using the Holder inequality for the integral

fol ...dz3. In other words, for k € (0, 1) fixed, the right-hand side in (2.27) is bounded
by

1 1 C
C —Tt— ||X4”0”L2(Ri) < _1||X4u0”L2(R§r)

A2 A% K
for |A| > k and a constant C (k) < oo, which is the situation in which we are interested;

see (2.7) for the choice of the curve I on which g, will be integrated. We are now close
to the conclusion. Indeed,

u
||P1(?c(t) ”LZ(D()C()))

< / JRe(r
r

|dA|
L2(0(x0))

f% @ (x" =2/, x3,23) - xyuo(2, z3)dZ'dz3

¥
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oRe(r
/I: | 1 |d)\|||X4“O||L2(R§r)

NE:

IA

IA

_3
Ct™4 ”X4u0”L2(R§r)'
The result is proved. O

Proof of estimate (2.21) for pnonloc We directly estimate the first term in the right hand

side of (2.17). The main huge simplification compared to the estimate for pl comes
from the fact that (1 — x,)ug is supported away from the singularity of the kernel at X0-
Minkowski’s inequality implies that,

o0
f /2 Groxx0(@, 23) - (1 = xuo(Z', z3)d7'dz3
0 R

L (Hxo))
n+l —|M%z3
= Z Z / f 3 0@, z3)|dZ'dz3
“0yeze |7" oy A+1x =2
< Lo°(Uxo))
= C|)\|_§”u0”Lﬁwc(R§r)-
Hence, we have
Re(M)t

u 1
”pngnloc(I)HLM(D(m))) = /;‘ |d}h|”u0”L310c(R3—) <Cr: ”MO”Lglm(Rz)«

A2

The estimate of V pn(m 1oc (1) is obtained in the same manner. This yields the result. O

2.2. Estimates for the local pressure terms: Proof of Proposition 2.2.

Proof of estimate (2.22). The estimate for pl”o%f‘H is a consequence of the L bounded-

ness of singular integral operators. The proof of the estimate for pl”f”h arm 18 based on the

maximal regularity theory for the Stokes system of Giga and Sohr [15] We recall that by
assumption pl”ff"‘hmm satisfies (2.13) with ¢ = 0. The pressure ploC harm 18 the pressure
of the system (2.2) where the right hand side has been replaced by the divergence-free
field:

Fi=P(VOPDu@u)+P(xu-Vu). (2.28)

We recall that the Helmholtz—Leray projection P is bounded on Lq(Ri) for 1 <
q < oo. Hence, it is clear that the least regular term in (2.28) is IF’(Xfu . Vu) €
L2(0, T; L3 (R3)). Therefore, we aim at controlling F in (2.28) in L2 (0, T; L3 (R3)).
By (2.13) (with ¢ = 0 by assumption) and estimate (2.22) of [15, Theorem 2.8] we then
have

Hpu®u H ; ; H pu®u ; 0
loc,harm L3 (0,T;L§ (D(xo))) loc,harm L3 .T:L8 (Ri))
uQu
=C HV‘DZOC harm HLZ(O T Lg(Ri)) CIEl, 3

L2(0 T; LS(R3))

Let us now estimate each term in (2.28). For the first one, Gagliardo—Nirenberg’s in-
equality implies
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8
(/ POCu w)ﬁ)g

= lxuC. 0l e 1 Vi, D1l 23y

< Cllu(, t)||L2(5|:|(x0))”vu(' t)”LZ(SD(xO))

+Cllu, t)II IVu(., t)ll

L2500 ))' L2500y

Therefore,

HP(X“M Vu)

L2 0,T; L8 (R )
< CT3 ||””L°°<0,T;L2<5D<xo>>> ||V””L2(0,T:L2(5D<xo>))

+C ||M||Lo<>(0 260 1V ”L2(0 7:22(50(x0)))

< Clul? +C || Vul?

L(0,T;L2(50(x0))) L2(0,7:L2(500(x0))) ?

where C depends only on 7 > 0. We also have

2
HP(V(X“ u® u)”Lz(o T; LS(R ))

IA

CT15 uUuQu
e @ ”L3<0TL3(SD<xo))>

IA

CTt 15 ”u”Loo(() T:L2(50(x0)))

5
+CT 5 ”“”LOO(O T;L2(50(x0))) ”V””L2(0,T;L2(5D(x0)))

< Clul; +C [|Vul}

L(0,7;L2(50(x0))) L2(0,7;L2(5s0xo))
This completes the proof. O

Let us notice that from the proof we actually have slightly better integrability in space
for plm harm- Indeed,

uQu
H ploc,harm

< H uQu

: % H _ :
£20.7:3 o)) — Pioc,harm L%(O,T;Lg(Ri))

However, the exponent % in both time and space is enough for our purposes.

2.3. Estimates for the nonlocal pressure terms: Proof of Proposition 2.3. One key ad-
vantage of estimating the nonlocal part (versus the local part) of the pressure is that we
are away from the singularity. Hence, since the kernels in (2.17) have enough decay for
the integrals to converge for non localized data, we have some room. In particular, we
can put additional derivatives on the kernels by integrations by parts. We rely on the
decomposition for the Helmholtz—Leray projection given in Lemma A.1.
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Proof of estimate (2.23) for p®" ... The Helmholtz pressure is estimated in the same

way as for the whole space. Indeed, the kernel decays as follows: for all x € [J(xp), for
all (z, z3) € R3,

Clx — x| C
VIN(X' — 7, x3,23) — VEN(x) — 2/, %03, 23)| < < -
lx —z] lx —z|

with a constant C < oo. Hence, for all x € [1(xg), for all r € (0, T),

o lu @ u(z, t)|
|prmnloc,H('x’ t)| = ¢ ~/R3 mdz

1
- XZ;TW/D@) a 0P = Clut DI g
NeL”

uQu

where we have extended u by 0 on R? \Ri as usual. The estimate of Vp, " ., is

obtained in the same manner. The result is proved. O

Proof of estimate (2.24) for p"®"* _.. Let us recall the formula

harm,<1

® A
Pharm.<1 (X, 1) = 2_711/ / = 3)/ @.(x" =7, x3,23)

(2.29)

: (XzPV (1= xDu® M)) (7, z3, 5)d7'dzzd)ds.

The key observation is that, in virtue of the support of the cut-off functions,
X3PV - (1= xDu®u) = x3Vpish (2.30)

and the right-hand side has an enough regularity as estimated in the proof of (2.23)
above, i.e.,

EPY - (1= xDu @l inpe < Cllut, t)ll B (2.31)

Let us give the estimate of Vp“®* _ . From the pointwise estimate of Vg, and the
g Phrarm.<1 p q

compactness of the support of x2, we see

IVt (x, 1)

harm,<1

1
RA)(t—s)— C|M213 dx uQu dzds
f /1%3/ | |(| /—Z/|+)C3+Z3|)3|X2 pnanlocH|
1+5 uQu
r= R dzds
/ =9 /]R3 Z(x' =z | +x3 +23)3 X3V Pignioe

o 1
C t—s_“f/ ——dzzds||u
A ( ) 0 Zg (x3 + Z3) 3 ” ”Loo(o t; Lu10< (Ri))

o
Ct2x3 ||u||

IA

IA

IA

IA

L0117, (RD)’

where o € (0, 1) and C depends only on o. This proves the derivative estimate in (2.24).

The estimate of p}&" _, (x, ) is shown similarly or even easily, by observing for any

ce0,Dand0 <e K1,
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®
|pZarI;n <l(x t)|

g 1
<C RO —s)— LI)»IZm da 2y pudu dzds
./ /R?/ | |(|xl—Z/|+x3+Z3|)2|X2 prmnloc,Hl

—1+5 uu
=C ) =972 X3V p \dzds
/ /ﬂ% Z(x —z | +x3+23)2 2 ¥ Pnonloc,H
x3+3 1
= C/ (Z—S)7]+%/ — dzds|lul? s
B max(3—3.0) 23 (43 +23)¢ 10,112, (R3)
< Ct2 3 ||u||

LoO0,15 L2, (RD)

Here we have used (2.31) and the compactness of the support of x». The details are
omitted here. The proof of (2.24) is complete. O

Proof of estimate (2.25) for pi’rL;n -1~ Considering the expression (A.1), we notice that

there are two types of terms we have to deal with. Let
v, we L®(0,T; Ly, (R) N L*(0, T Hy . (RD))

(typically v = u and w = u or variants). We have to estimate

t
/ /ek(H) /3 Groxro(@s 23) - (1 = XD F (2, 23, s)dZ dz3d)dss (2.32)
Ry
with F replaced by

Fa(Z,23.5) = da((1 — x)v @ w)) (', 23.5) (type A)
for some @ € {1,...3}, or
Fp(Z, z3,9) (type B)

o
i=mo(DHV' ® V//O [P(lz3 — y3D) + P(z3 + y3)1 (1 — x))v @ w(Z, y3, $)dy3

where mq(D’) is a (tangential) Fourier multiplier homogeneous of order 0 (see Appendix
A.1). Here g, x x, stands for g, (x" — -, x3, -) — ¢5.(x;, — -, X0,3, -), according to definition
(2.9). The idea for both (type A) and (type B) is to transfer some derivatives from the
source term to the kernel. Of course, integrating by parts implies that some derivatives
fall on the cut-off 1 — x22. These terms are much simpler to analyze since

dist (supp(V(X )), supp(l — 42)) > 1 and dist (supp(V(xz)) D(xo)) >1,

(2.33)

so that neither the singularity of the Neumann kernel, nor the one of the Helmholtz—

Leray projection are seen. Below, we focus on the terms where none of the derivatives

falls on the cut-off 1 — Xzz-

Terms (type A). Notice that x € [(x() and by definition of the cut-off x,, the integral in

zin (2.32) is on 2[J(x()¢. Integrating by parts in (2.32) and using the pointwise bound

on V2g, proved in [26, Section 3], we reduce the problem to estimating
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e)\(tfs)

o vo (@ 23) - (M= D (A= xHv ® w)) (2, 23, 5)d7'dzadrds

t e—cl}»|213
= C/ / ERe()L)(t_s) s mhj ® UJ(Z/, 73, S)|dZ/dZ3|d)\|dS.
Ry -

‘We then have

—Clklzz'ﬁ
_— dz’'d
f <1+|x—z|>4'”®w' @dzs

1 /-oo —c|k|7 /
< _— e 3 v ® w|dz'dz3
Z L+1n/1* Jo O'w)

n’€Z2

IA

o 1
—cl|A|2Zn . .
C E e G2, @Hllwl ol @3

n=1

IA

_1
CIAI"2|v(, S)”Lgm(Ri) lw(-, S)”LilOC(R}r),

1
where we take advantage of the additional decay in || provided by e ~¢*1223 when |A|
is large. We eventually get, for almost every € 0, T,

M aaqxxx()(z z3) - (1= x) (1= xHv@w)) (7', z3, s)dz'dz3d)rds

Re(k)(z 5)
// —ldA|lv(, S)HL? (R)”w("s)”Lﬁzoc(Ri)ds

Ct2 “v”LOO(O*T;Liloc(R )) ”w”LOO(O T; Lu]oc(Ri))'

IA

IA

Terms (type B). We rely on Lemma A.1 to estimate these terms. Using this lemma we
have

t
‘ / / M) / Brxxo (@ 23) - (1 = X)) FpdZ dz3dads
0 Jr R3

ek(t—s)

” Grxxo (@ 23) - (1 = x))Bidz dzzdads

(2.34)

M V2@ 23) - (1= 3 Bade dzsdds

+ commutator terms.

The terms designated by “commutator terms’ correspond to one or two derivatives falling
on the cut-off 1 — Xzz. We explained above that these terms are much easier to handle so
we focus on the two first terms in the right hand side of (2.34). We now use the bounds
on B and B; proved in Lemma A.1 below. The estimate is similar to the one for (type A)
above. We sketch how to estimate the first term in the right hand side above. We have
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e)»(tfx)

L Drn @ z) (1= X)Bidz dzzdhrds

' o—clA2z3
=C / / eRe=s) f e dZIBi (23,9 dzaldAlds
Ri (1 + |x —Z |) uloc,z’
Re(A)(l s)
< // T I Dl Iz, s
<c / (=9 G2, gy lwe )z gds
=<

2
vl oo, 7: 2, win Wl oo 0,7:02,, ) -

The second term in the right hand side of (2.34) is even simpler to handle, since the kernel
V245 x.x, has even more spatial decay. The same is true for the estimate of Vp/&" .
This concludes the proof of the estimate. O

3. Properties of Weak Solutions

In this section we show the basic properties of local energy weak solutions in the sense of
Definition 1.1. The goal is to prove that any local energy weak solution is a mild solution
and admits additional regularity which enable us to apply the e-regularity theorem for
the half-space [32,34,35]. The e-regularity for solutions of (1.1) is the key in Sect. 6
for the global existence and Sect. 7 for the blow-up result. The first result of this section
is stated as follows, where the uniqueness result for solutions to the Stokes system [26,
Theorem 5] plays a crucial role.

Proposmon 3.1. Let (u, p) be any local energy weak solutions with initial data uy €
(R ) in the sense of Definition 1.1. Then

uloc o
t
ut) = e Mug — / e UTIAPY . (4 @ u)ds, (3.1)
0
p admits the decomposition of (2.18), and

du, Viu, vpeL (0, T]; L Ly R3)). (3.2)

loc loc

Proof. Set
t
v(t) = e Pug — / e CIAPY . (4 @ u)ds.
0

(R 33 ase = 0,
and let ¢, € C§° (R3) be a smooth cut-off satisfying ¢, = 1 on |x| < g and ¢ = 0 on

Let {u0}0<€<1 - Co J(R ) be a sequence such that “0 — up in Luloc

|x] > % Then we set

t
Vi) = e_tAuf) - f e TIAPY . (gu ® u)ds.
0
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—tA e —tA &
We see that [le™" % uy — e ”OHLﬁ,M(Ri) < Clluy — u0||Lilo(_(R3) — 0ase — 0 and
that, for g € [1, 3),

t
I / e TIAPY . (pu@u—u® u)ds||Lq ®)
/ e CDAPY - (peu @ u — u ® Wl @3)ds

1_3q-1
<C/ (t — —-3-3( ”)H(l_%)“(X)MHL;,M.(Ri)dS

(by applying [26, Theorem 3])

T
J, I
<C /0 =515 il 2 @ I = gull 2 gyds. (3.3)

Since u € L*(0, T, LulOCU(R )), we have ||(1 — (pg)u(s)||Li]m(Rs) — Qase —
0 for a.e.s € (0,T), while we have the trivial bound ||(1 — %)u(s)”Lﬁ;w,(Ri) <
[ ()| 12, (R} Thus, splitting the time integral around the singularity s = ¢ in (3.3)
and applying the Lebesgue convergence theorem in the region |f — s| > § with small
6 > 0, we obtain

t t
/ e UTIAPY . (gou @ u)ds — / e UIAPY . (4 @ u)ds
0 0

in L0, T: LY, (R}, qell, ).
As a consequence, we have
oo 3 3
v > v oas £ —> 0 in L0, T; LY (R), qe€ll,3).

In virtue of this convergence the local regularity of v and of the associated pressure is

obtained from the one of (v®, p?) by taking the limit. Since V - (pcu ®u) € Li (0, T) x
Ri) foreache € (0, 1) by the Sobolev embedding theorem and the regularity assumption
on the local energy weak solutions, each action of e~ ~%)A P, and V- in the definition of
v® is well-defined in a classical L9 framework. Moreover, the maximal regularity gives

the bound 9,v¢, V2v® € L4((0 T) x R3 1) and v® satisfies
00" — AV +Vp® =—-V-(peu®u), V-v*°=0 (t,x) €(0,T) x Ri (3.4)

and v® |BR3 =0int € (0, T), v®|;=0 = uo .. Here p° eL4((O T)XR ) is the pressure

associated with v° , which admits the representation and the decomposmon asin (2.18)

with ug and u ® u simply replaced by uf and g.u ® u, respectively: p© = pf, + pf:'®" +

QeuUQuU uo, s ug,e QeUQRU P UQU gogu®u Qe UQU P UQQU P UQU
Prontoc = ploc pnonloc plac harm +ploc H +ploc pnonluc H pharm <1 Pﬁurm,zl .
Hence, each term in this decomposition satisfies the similar estimates in Propositions 2.1,

2.2, and 2.3, which are uniform in ¢ € (0, 1). More precisely, there exists a constant
C < oo such that for all ¢ € (0, 00),
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! €
log(—)IIVPH(I)IILz LR = CHMO’E”l’gloc(Ri)’

t4 ||Ploc (t)“LZ(EI(xO)) Clluo,e ||L2 LR
2 ||pn0n106‘(t) ||L2(D(XO)) + tz ”Vpnonloc(t)”Lz(Rz) = Cllug,e ”Lﬁzoc(Ri)‘

Furthermore, forall 7 > O and 1 < g < o0, there exist C(T), Cy(T) < o0, such that
forallt € (0,T),

PeUQU

P UQU
+ H ploc,harm

H ploc,H

L%(O T;L%(D(xo))) HL%(O»TQL%(D(XO)))
\V/ P UQU

3 9
loc,harm H L2(0,T;L3 (R3))

< C sup + [ Vul?

L2(0,T;L2(J )
nezd ( Lm))

<”M||L°°(0 7:.20m)))

and

PeURuU PeUu 2
||Pn0nlOC’H(', I)HLOO(I:I(XO)) + ”memlgcyH(', t)||L°°(|:](x0)) < Cllu(, t)” 2 (]R3)’

QeuUQuU QeUQU
||Pharm7§1(', t)”LOO(D(X())) + ||Vpharm,<1( t)”Lq(D(X())) = Cq”“”Lao(Ot 12, (R3)’

peudu peugu
1P frs o Dl o Doy + 1V Pl o1 G Dl Qe < €12 el o052, @)

Here the constant C depends on 7" but is independent of ¢ € (0, 1). Since we have
obtained the estimates for the pressure in positive time, by regarding V p® as a given
forcing term in (3.4), we can apply the local regularity estimate of the inhomogeneous
heat equations, which results in, for any § € (0, T),

l8,0° | V0% 5
L3 6.7:L8 Do) £36,7:08 Dao
< C( SUp (1300, 75120y + 1V 220,752 @) (3.5)
neLy
+ ||Vv || ” s”

L33 L8 0o Lidr L8<2D(xo>>)>

Here the constant C depends only on 7" and §. By using the bound

€ < 3
v ”LOO(O*T;LZloc(Ri)) = C||u”L°O(0’T:L5m(R3>)’ q€ll, 3
which follows as in the computation of (3.3), we also have

V &
Vo ”Lz(2 T; LS(ZD(xo))) v ”L2(2 T; L8(ZD(XO)>)

< Csup, s (llull} +IVul?

L0,7; L2 L2(0,7:L2(0m)) )-

Thus we conclude from (3.5) and by taking the limit & — O that

19: ”Lz(a T:L8 o)) v ”L2<8 T; LS(D(xo»)
3.6
= C sup ( Jul’} 0

3 L=0,7;220m)) ”V””Lz(o,T;LZ(D(n») )
nely



Local Energy Weak Solutions for the Navier—Stokes Equations 539

and v satisfies
v —Av+Vp,=-V-w®u), V-v=0 (1,x)€(0,T) xR}

and v| RS = 0in (0, T) and v|,=9 = uo. Here p, is the associated pressure for v,
which is obtained as a limit of p®. Then p, satisfies the representation and the de-
composition of (2.18), and each term in (2.18) satisfies the estimates in Propositions
2.1, 2.2, and 2.3. It is easy to see that the map [0, T) +— fRi v(x,t) - ¢(x)dx be-

longs to C([0, T')) for any ¢ € Co (ﬁﬁ Indeed, the linear term e /A ug belongs
to C ([0, c0); Luluc U(]R )) since {e"A},>0 defines a bounded analytic semigroup in

ul oc. J(R ) (by [26, Theorem 2]) and is a Cp-analytic semigroup in L2 (R ), which
implies that e "y e C([0, 00); Luloc U(R )) for ug € ’Culoc U(R ) by the density
argument. On the other hand, the 1nhomogeneous term in the definition of v belongs to
C([0,T); Luloc g(R+)) forg € (1, 2) this is proved by using the fact that {e™ ’A}t>o is
a bounded analytic semigroup in Luloc - (R ) for 1 < g < oo again by [26, Theorem 2]
and the estimate for e "APV- in [26, Theorem 3] as in the proof of (3.3). The details are
omitted here. Thus, from the uniqueness result of the weak solution to the Stokes system,

proved in [26, Theorem 5], we have u = v and also p = p, (up to some constant). The
proof is complete. O

In virtue of the additional regularity obtained in Proposition 3.1, the e-regularity
theorem by Seregin et al [35] can be applied for our class of weak solutions.

Theorem 3 ([35, Theorem 1.1], [23, Theorem 14.4]). There exist £, > 0 and R, > 0
such that the following statement holds. Let (u, p) be any local energy weak solution
to (1.1) with initial data ug € L£> (Ri) in the sense of Definition 1.1. Let (ty, xo) €

0, T] x R3. If

uloc,o

1 1o 3 3
_Zf / (|u|‘ + |p|?>dxdt < &4
Pix Jt9—p} JB(x0.p)NRE

for some p, € (0, min{Ry, \/fo}] then u is Holder continuous on [ty — %, to] x
B(xo, §) NRY.

Proof. When xg € BRE then the result follows from Seregin et al [35, Theorem 1.1], and

thus the same is shown when {x € Rf_ |0 < x0.3 < min{Ry, \/fo}} by taking R, smaller
than in [35, Theorem 1.1] if necessary. When xp € {x € Ri | x0.3 > min{Ry, +/7}} then
the statement falls into the interior e-regularity theorem, see, e.g., [23, Theorem 14.4].
The proof is complete. O

4. Decay of the Leray Solutions at co

Let T > 0 and 6 > O be fixed. For the whole section, we work under Assumption 1.3.
The goal in this section is to prove Theorem 2, i.e. to show that if the initial data has
some decay at oo, then any weak local energy solution u to (1.1), with initial data u,
will decay at infinity. The assumption ug € Eu loc.o (Ri) is redundant for solutions in the
sense of Definition 1.1. However, we choose to add it in the statement of Theorem 2 in
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order to stress that this is the key to the decay of the solution at space infinity. It is easy
to get that the third term in the left hand side of (1.9) is bounded by the two first terms.

Indeed
t
/ / |9 gul®
o JOm
t 3 %
<C f(/ |z9Ru(x,s)|2dx> ds
o \JOwm

3
t 1
(// |19Ru|2+|19RVu|2+R_2|u|2), (4.1)
o JOm

forallt € [0,T] and all n € Zi. Remember that 9 cuts off the part of u# around 0.
Hence display (1.9) shows that the local energy of u goes to zero at spatial infinity. Let
us denote by Ar s the constant in the right hand side of the a priori estimate (1.8). We
also define the quantities

t
agr(t) = sup/ [9ru-, )%, Br(t) := sup/ f |9rVul?,
O o JOm

ne’i nezi

2

t 3

Yr(t) := sup (// mRuP).
nezd \Jo JUm

Notice that our definition of yr differs from the one of [21]. Our quantity has the same
homogeneity with respect to u as ag and Sg. By (4.1) it is straightforward to see that

1
t 6 t
yr(t) < C (f a%(s)ds)ﬁ (/ ar(s)ds + Br(1) + R—ZAT,(;)2 , 4.2)
0 0

forall t € [0, T']. The following inequalities will be useful to give a simpler form to our
estimates: for all € [0, T'],

t 6 t %
3 = 21
/ ap(s)ds <T7 </ aR (s)ds> , (4.3a)
0 0
! 20 4 1
/ ar(s)ds < T2 ( / ol (s)ds) , (4.3b)
0 0
t 3 27 t g
/ ap(s)ds <T= ( [ a%g(s)ds) ) (4.3¢c)
0 0

Moreover, it follows from (4.2) that for all § > 0, there exists a constant C(§, T) < 0o
such that

N‘_.

82—

B

t
yr(t) < 8Br(t) + C(8,T) <f a (s)ds) +CArsR™2, (4.3d)
0

forallt € [0, T].

An estimate similar to (1.9) was derived by Kikuchi and Seregin in [21] for R3 (see
also [23, Chapter 32]). Here the difficulty comes again from the pressure estimates,
which are more subtle than in the whole space. Our main tool for the proof of Theorem
2 is the following a priori estimate.
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Lemma 4.1. Assume that Assumption 1.3 holds. Then for all ugy € L2 (Ri), there

uloc,o
exists a constant C(T, ||u0||Lz’ ) < oo such that all weak local energy solution u to
.

(1.1) on Q7 in the sense ongﬁ)nition 1.1 with initial data u satisfies for all R > 1, for
allt € [0, T,

21

t
ar(t) + Br(1) < C(T, up) ((/0 ag(s)ds) +R1(10gR)+||19Ru0||L§loc(R§r)>.
(4.4)

This a priori estimate will be established below. With Lemma 4.1, we can now prove
Proposition 4.1.

Proof of Proposition 1.9. Denoting by

Yr(1) := a2 (6) + B2 (1),

forall t € (0, T), we get from (4.4) the following differential inequality

t
Yr(1) < C </ Yr(s)ds + R~ (log R) + [9xuoll 2 (R3)> , (4.5)
O utoc

withaconstant C (T, ug) < oo. The convergence result (1.9) follows now from a classical
Gronwall-type argument (see [21] for a similar argument). O

A remarkable point is that the differential inequality (4.5) derived from (4.4) is linear.
This comes from the fact that it is an inequality involving ¥ gu. All the nonlinear terms,
e.g. I3 below, have a structure ressembling

Oalul’u = [9gu|’u.

The remaining term u which is not paired with ¥ will be estimated by the a priori
estimate (1.8).
The remainder of this section is devoted to the proof of Lemma 4.1. We assume

Assumption 1.3. Let ug € Eiloc(Ri) such that ””0||L§1M(Ri) < § and u be any solution

to (1.1) in Q7 in the sense of Definition 1.1 with initial data u¢. For fixed xo € Ri and
R > 1, the idea is to test the local energy inequality with ¢ := 191% Xig1 € Ccr (Rf). This
test function is constant in time. According to Remark 1.2 (3), such test functions are
admissible in the local energy inequality. Let us emphasize that the strong convergence
(1.4) is fundamental here and enables to transfer the decay at infinity of the initial data
ug to the solution u. We have from (1.7)

t
fw|u<.,r>|2+2// ¥ |Vul*
R3 0 JR3
t t t
/w|u0|2+/f A1p|u|2+// W/.u|u|2+2// V- up (4.6)
R3 0 JR} 0 JR3 0 JR}

= L +hL+ 151+,

IA

The aim is on the one hand to take advantage of the fact that one gains R~! when one
derivative falls on 9, and on the other hand to combine ¥ and u. When a R™! (or
better) has been gained, one has won enough decay in R, so that we can simply use the
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global a priori estimate (1.8) on u in the local energy norm. For the other terms where
no R~! has been gained, it is of course important to estimate them in terms of ¥z in
order to be able to apply a Gronwall-type lemma.

Step 1. The three first terms in the right hand side of (4.6) can be handled identically to
[21]. For I, we simply have

11| < Clloguoll? (4.7)

uloc

®3D)’
For I, a direct computation yields

Ay =2|VORIX,, | +20RADRX,, , +40RVDR - Vi, +DRAX

x0,1°

so that we gain at least R~ for every term but the last. It follows the rough bound

t
|12(t)|§C// Wrul®+ CRV Az s
0 J20(x0)

SC/ sup/ |9gu|®> + CR A7 5
0 O

t
nezs
t
< C/ ag(s)ds + CArsR™!, (4.8)
0

forallt € [0, T]. For I3, we simply getforall § > 0, there exists aconstant C (8, T, ug) <
oo such that for all ¢ € [0, T],

3 t % 1 %
|13(t)|§CA%,;R_1+C(// wRuP) (// |u|3)
’ 0 J20(xp) 0 J20(xp)

3 1
< CA7 R+ CAZ syr(t)

-

3 1 t
gCA%aR—1+5ﬁR(t)+C(5,T,uo)A;5(/ ail(s)ds) . (49
’ ’ 0

The estimate of /4 is the heart of the matter. We decompose 14 as follows:

! 1 1 4
Iy = 4f /2 Xx?),lpV??R . 0RXx?),1” +/ f3 pﬁRvao_l cVpu =: Iy + 1a2.
0 JRY 0 JR3

The first term in the right hand side, /4 ; is easy to handle, because it has a Vi*g which
allows for the gain of R~!. One can thus rely on the estimates derived in Sect. 2 and on
the global a priori bound (1.8) to obtain

1 3
a1 = CAF (ol 2, )+ Ars) R™' = CAZ,RTL (4.10)

forallt € [0, T].

The rest of this section is devoted to the estimate for /4 . For /4, the main difficulty
is that we lack an estimate for g p in terms of quantities for ¥ gu. It is not enough to
just bound

1
a2l = C (Mol 2, g3y + A7) v (),



Local Energy Weak Solutions for the Navier—Stokes Equations 543

because that would lead to a nonlinear differential inequality of the type

o
Zgr(t) <C (f Zy(s)ds + n(R)> ;
0

with n(R) — 0 when R — oo. Though we do have an estimate of p in terms of u (see
Sect. 2), we have no information about the dependence in R. Therefore, we need to go
back to the representation formula for p given in (2.18) and estimate term by term. We
have O g p = Ug pii + Or Ploc + VR Pnonloc, following the notations introduced in Sect. 2.
Step 2 below is devoted the analysis of the linear pressure terms g p;; related to the
initial data, Step 3 to the local pressure ¥'g pjoc, While in Step 4 we handle the nonlocal
pressure ¥ g pnonioc- There are two recurrent ideas. The first one is to decompose the
cut-off 5 as follows,

Or(, x3) = Or(x', x3) — OR(Y', ¥3) + IR (Y, 3). (4.11)
The second, is to use the following inequality

|9 (Y, x3) — DR, y3)| < Cmin(R™x — yI, 1), (4.12)
for the difference in the right hand side of (4.11).

Step 2: linear pressure terms. For the linear pressure, we have from (2.18) dgp;i =
DRP)L. + PR Do 1oe- Thanks to the representation formula (2.10), for the first term we
have

OR Py (X, 1) 1= / e /‘% (" — 2. x3,23) - OR(Z, 23) xuup(x', x3)dZ dz3d M
r Ry
= /e“/3qx(x’—z’,x3,Z3)‘ﬁR(z’,Z3)x4u6(z’,zz)dz’dZ3d)\
r R3

+ /r M /R3 @ (x' =2, x3,23) - (Or(x', x3) — VR (2, 23)) x,uq (2, 23)d2 dz3d A
= i+ ’
The estimates of Proposition 2.1 give for the first term in the right hand side above, for
all p € [1, %‘), there exists a constant C(p) < oo such that
Il Lr0.7: 120000y = CIPRUON L2500 (x0))-

As for the second term in the right hand side above, using (4.12), and the fact that
|x — z| < 6 forall x € [](xp) and z € supp(x,), we obtain

/ M /} @ (x" =7 x3,23) - OR(X, x3) — Or(Z, 23)) xyu (2, z3)dz dz3d
r Ry
—1 Re(A)t / / Iy /
< CR e \ lgn(x" — 2, x3, 23) | X4 uo(2', 23)1dZ dz3d M.
r R3

The estimates of Proposition 2.1 then give, for all p € [1, %), there exists a constant
C(p) < oo such that

1
121l Lr0.7: 12000y = CR ™ uoll L2(5Dxg))-
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Hence, p € [1, %), there exists a constant C(p) < oo such that

0Rplocvxxo |- URU

< CIIﬂRPIOC”Lp(o ;220 1PRUI Lo 0,72 O x0))

cayy (I9ruolz, s+ R ol 2, s) (4.13)

IA

It remains to handle p° . Let x € U(xo). From dist (J(xo), supp(1 — x,)) > 1, it
follows that the singularity of the kernel in the representation formula (2.17) is not seen.
We have

‘/R} Grxx0 (25 23) - OR(D(1 = X)) (Duo(2', 23)dZ'dz3

RIS
5/ —)3|19R(x) DR |uo(z', 23)ldz'dz3
R

3(L+x —z]
—I?»Izzz , ,
+ — = Vr@)|uo(z, 23)|dz'dz
/Ri T+l —2)? R(2)uo(z’, 23)| 3
=: J3+ Js.

The second term is easily bounded as follows

_1
194G, Dll oo Ty < CIAT2 19RuON 2, ).
For the first term, we have

13C5 DIl Loo Doy

. lezs
< CR™ / —luo(z z3)|d7'dz3
B.R) (1+|x —z|)?

e \)L|2Z%
+Cf / lug(z', z3)|dz'dz3
R2\B(x,R) (1 +[x — (+x—2z])?

e \)»Izzs
+C/ / ———luo(Z, z3)1d7'dz3
R\(—R,x+R) JR2 (1 +|x3 — 23| + |x" = Z|)

1
< CIAT2R™ (og R)uoll ;2 (g3)-

Hence, Minkowski’s inequality implies that
”ﬁananloc( l) ”LDC(D()C()))

/ efer fR Grxan(@23) - ORI = x)@uo(@, 23)d7 dz3
r +

_1 _
CfeRCWW 2|d)L|(||19Ru0||Lz & + R~ (log B luoll 2 (R3))‘
r uloc "+ uloc "+

IA

|dA|
L))

IA
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It follows that

_1 -1
||19RP,L1,2,,ZOC(', t)llLOO(D(Xo)) <Ct 2 (||29RM0||L5106(R3) + R™ (log R)”MO”LglOC(Ri)) .
Therefore, for all p € [1, 2), there exists a constant C(p) < oo such that

u —1
”ﬂRPngn[gc||L17(0’T;L00(|:|(XO))) < C (”ﬁRuO”Lﬁlac(Ri) +R (log R) ”u()”Li]m.(]Ri)) ’

and

t
/ / ﬂRpZSnlocVXxo,l - URuU
0 JR3
3 1 _
< CAZ % (IDruol 2, sy + R dog Rluol2, ). (414)

This concludes the study of the linear pressure terms.

70%?5’16”‘7’1 :
preliminary work. The idea is to write the system satisfied by 95 u;‘fff‘harm. It will satisfy
(2.2) up to lower order terms, loss of incompressibility on supp(V¥'g) and zero initial
data. We have

Step 3: local pressure terms. We now turn to the term Jgp It requires some

®. ® ® o
o (0Ru?00,uhdrm) - A (ﬁRu?oc,uharm> +V (ﬁRP}loc,uharm) = F,
uQu _ . 3
v ﬁRulac‘harm =G in (0, T) x Ry,
u@u _ 3
OR U pe harm = 0 on (0, T) x dRY,
ﬁRM?o@c),uharm (.0) =0,
4.15)
where the source term is
F= VﬁRpfaQ?,uharm - AﬁRu’llo%jdharm —2Vig- Vu?o%,uharm (4.16)

— ORP(xju - Vu) — 9PV (xu ® u)
and

G :=Vog - u'®" 4.17)

loc,harm*

We perform one additional decomposition in order to deal separately with the right hand
side and the lack of incompressibility. We have

(Orui2", Orpi") = (v, pr) + (V6. PG) .
where (vr, pr) solves the Stokes system (4.15) with G = 0 and (vg, pg) solves the
Stokes system (4.15) with F = 0. The least regular term in the right hand side of (4.16)
is the fourth term, z?R]P’(xfu - Vu). It belongs to L% O, T; L% (Ri)), which is the energy

space. In this space P(dg Xfu - Vu) is bounded via Gagliardo—Nirenberg’s inequality as
follows
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v
19w L3 0t @)
t 3 %
< . 2
3
< (/ 19 R, S)IILZ(ZD( opIVut S)||L2(2D(XO))d)

2
3

+ / 1909120 LT ORI M50 1T 51085 )

= CA% 5||17R”||L6(0z L2(2D(xo)))

+CArsR™ L CA SHﬁRu”L"C(Ot 20000
The L>®(0, t; L*(200(x0))) norm of ¥gu is however difficult to handle in view of the
Gronwall estimate. Therefore, we estimate vgIP( Xfu - Vu), and actually F in whole,
in a subcritical energy space. We have room for that. Any space L> 0,T; L4 (Ri))
with 1 < g < % would work. Notice that ¢ = % is excluded because of the reason
mentioned above (energy space). Moreover, g = 1 is excluded because it is ruled out in
the maximum regularity theorem for the Stokes system of Giga and Sohr [15, Theorem
3.1], which we apply to estimate p F- According to [15, Theorem 3. 1], we will get that

DF € L%(O, T; L’(R )), with 1 + = = =50 that necessarily r € ( ) and

PPV, € L%<o, T xR}) € L3(0, T; L' (RY)).

This is clearly enough to bound the integral /4 . Therefore, we choose to estimate Fin
L% O, T; L%O (R )) but this choice is somewhat arbitrary. In this case, ¢ = 9 , which
yields r = 17 Let us now carry out the estlmates for pr first, and then pg. Since the

Helmholtz—Leray projection is bounded on L 5 (R3 +), we have

[POCu v s +|pvoduew)| < Ars.

L3o.rLY ®Y) L3075 RY) ~

Theorem 3.1 in [15] implies that

u@u ”

l[u + Vet arm |

3 9 3 9
loc,harm L7(0,T;L7(R§r)) loc harm L2 (O,T;Lg(]Ri))
u@u
+”ploc harm ” = AT"S'

LZ(OT LS(R*))

Subsequently, the first three terms in the right hand side of (4.16) are bounded by

” Vir ploc harm H H ﬂRuloc harm

3 9 3 9
L2(0, T;LS(RE)) L2(0,T;L2(R}))

+szR Vi <CArsR™.

3 9
loc,harm H L2(0,T;L5 ®R3)

It remains to estimate the last three terms. For these terms, we rely on Lemma A.3 in
order to commute the cut-off ¥ g and the Helmhotz—Leray projection IP. The commutator
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term itself, is actually more regular, so below, we focus always on the term where the
cut-off falls on the function. We have

VrP \%
IPRPOGu Vil 3

< IP@rx2u- V)l + 9%, PIGCu - V| 3

L3060 ®Y) L3001 ®D)

From the second term, we gain R~'. By the boundedness of the Helmholtz—Leray
projection and Holder’s inequality, we have

v \Y%
1R Vall 30 e

1 1

6 t 7
= Irut, )|° / Vu(., s)|? ds) )
< <f0 lORu(, )||L S o0t ) (0 VUG 172000

We now estimate the first factor in the right hand side. We have

1

t 6
19 gu(-, $)11° s ds)
</0 L3 200y

CIII?RMII

IA

10
£2(0,1;.220xo))) ”ﬁRu”Lz(O,t;Hl(ZD(Xo)))

' @/ pt %
C (f a%] (s)ds> </ ar(s)ds + Br(t) + R_ZAT,5>
0 0

For the fifth term in the right hand side of (4.16) we have

IA

192V (Pu @ ull 3 < Clvgu@ull 4

L7(O Lﬁ(Ri)) LT(R x(0,1))
=< C”ﬁRu||L3(Rix(0,t))”u”L3(R§rx(OJ)) = CA;gV]g ().
Therefore, pr is bounded by

Iprll 3 (4.18)

L2 (0.0:L 17 @0(x))

3 "o @ ! -2 &
< CAT’5 (/0 ag (s)ds) (/0 ag(s)ds + Br(t) + R AT,(;)

2
1 1 1 ro3 3
+ CA% 5)/,% () + C(log R)AT,(;R_1 + CA% 5 (/ “;e(s))
, , 0

where we have again applied [15, Theorem 3.1]. We now turn to the estimate for pg.
Mimicking an idea of [10], we introduce the solution (E, g) of the following stationary
Stokes problem with non homogeneous divergence

—AE+Vq:O inRz’_’
V-E=Vig- u?o%fdharm’ (4.19)

E=0 on BRE.
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Notice that E depends on ¢. At time t = 0, E(0) = 0. Furthermore 0; E is the solution
of (4.19) with Vg - 3:”70%“ as the inhomogeneous source term in the equation on the
divergence. It follows from [11, Theorem IV.3.3] that there exists a constant C < 00
such that

< C|VOg - u"®" .
v ”L2(0 T:L3 ®3) ”q”LZ(O ;L3 ®3)) VR - uloc’harm”L%(O,T;L%(Ri))
Moreover,
Vo E|l +110eqll 3 < C|VOg - dui2 |

3 9 3 9 .
L2(0,T;L3 (R})) L30T L8 ®Y) — loc.harm 'y 5 0, 7,18 (R3))

Hence, since 9; E = 0 on aRi, we have by the Poincaré-Sobolev inequality that

19 Ell 3 = CIVOE] 3

L2(0TL5(R3)) L2(0TL8(R )

<
ClIVig - 8tuloc harm ”LZ 0.T: LS ®3))

<CR 'Arg. (4.20)
We subsequently decompose the pair (vg, pg) into
v6 =V +E, pc=pc+q,
where the pair (Vg, pg) solves of course
306 — AV +Vps = —E in(0,T) xRS,
V.16 =0,

(4.21)
6 =0 on (0, T) x dR3,

;G('a O) =0.

The maximal regularity of Theorem 3.1 in [15] together with estimate (4.20) implies
that, up to adding a constant to pg,

C <CArsR™.
IIPGIILZ(OTLZ(R3)) v pG”Lf(orLsoR 3, = CAT
To conclude, we have proved
IIPGIILZ(0 rd @)
< <CA7sR™". 4.22
IIPGIILZ(OTLZ(]R “q”LZ(OTLZ(R W) T.8 (4.22)

The estimate for ¥ p;‘o‘gc’“H follows from the combination of the L? boundedness of

singular integral operators and of the commutator lemma, Lemma A.3. In the end, (4.18)
and (4.22) imply the following estimate: there exists a constant C < oo such that

u®u
ﬁRploc Xxg1 Dru

< C”I?RM“L?(O t L3(E|(xo)))” RP;OC ”LZ(O t: LZ(D()CO)))
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! 1 ‘ @ /[t e
< CA7;svr(1)? (( / a%‘(s)ds) ( f aR<s>ds+ﬂR<r>+R2AT,5>
’ 0 0

2
1 1 ro3 3
+Cy1§(t)+CA%5R_l(logR)+C(/ a;(s)> )
' 0

We will rewrite this last inequality in a simpler form, more useful for the Gronwall
estimate. Using the inequalities (4.3), we obtain for § > 0

.

t
< 8Br(1) +C(8, T,uo)A%(S(/ afg(s)ds> +C(T)A§5R—1(1og1e), (4.23)
s\, ,

with a constant C(§, T, ug) < oo. This concludes the study of g pjoc.

Step 4: nonlocal pressure terms. According to (2.18), we have 9 g pronioc = VR ngﬁoc gt
u®u

VR Pjygrm- FOI these terms we rely on the decomposition (4.11) and the inequality (4.12).
The Helmholtz pressure is easy to estimate. We have for almost every ¢t € (0, T),

1
198 Pyomioe, 11+ Dl 2o Daey < CR™ log RIATs + CAL 510RUC. Dl 2 @3,

1 1
< CArsR™'(log R) + CAZ sa}(1).

Therefore,

2

1
uQu
/ /% ﬁanonloc,HVXxo,l ’ ﬁRM
0 JR3
3

3 11 t
< CAJ R ' (og )T + CAZsv2 (1) (f aR(s)ids> L (424
0

Qu
arm,<1

u@u

u
For the terms p),, nonloc, H

to (2.14)

below, we will need the estimate of V(g p ). According

V(IR Pyonioe. )5 1)
= /11%3 (VL 0)VIN (' — 2/ x3, 23) (1 = x 72 23) (DR (x)
— OR(@)u @ u(Z', z3,1)d7'dz;

#V0R) [ VI = 2z (1 = 2z @ U 22,0 dzy
R3

+ / (VL) VNG =2 x5, 23) (1= 1) (2, 23)) 0k (@u @ u(Z, 23, 1)d2dzs
Ry

= K1+K2+K3.
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where N y, is defined by (2.15). We clearly have

1K1(, t)”L”(D(xo)) = CAT,(S(R_I log R),
”KZ(‘, t)”L")O(D(X())) =< CAT,(SR_I,

1 1
”Kl ('v t)”Loo(D(xo)) < CA’]Z")gaIZQ(t)7

so that

1 1
IV@rPE D oDy < CATsR™ ' (log R) + CAL ok (). (425)

nonloc, H
C u@Qu  __ u@u uQu
we decompose again into Orp, ... = ORPpgrm <1 + VR Phorm. ~1 and

uQu
harm,<1°

uu
harm>

For 9rp

analyze the two terms separately. Let us start with the analysis of 9z p which is

parallel to the proof of (2.24). We have

t /
[ / M9 / (' =7 x3,23) %3 (]P’V (1= x)u® “))
0 Jr R3

(', z3, 8)dz'dz3d\ds

1
— 2
< /t/eRe(k)(t—s)/ e 23 19p(x) — PR (2)
o Jr R3 (1+]x —z])?

/
X3 (PV (1= Xf)u ® u)) ‘dz’dmldﬂds

|
—clnl2
+/t/eRe(k)(ts)/ e—CIM22z3
2
0 Jr R} (L+]x —z))

B 2 ( 2 ! /
R@x3 (PV - ((1 = x)u®u)) |dz'dzz|drlds

=: K4+ Ks.

For both terms, the relation (2.30) is the basis of our estimates. For K4 we rely on (2.31)
for the estimate of (]P’V (1 — Xf)u ® u))/ and on (4.12) to bound ¥z (x) — Vg (2).
Using the fact that x» is compactly supported, we obtain for all o € (0, 1)

t 1 1
|Ky4| < C/ / /em()»)(l‘—S)—Cl)»|723|d)L| - - |9k (x)
o JrRIJr |x" — 2|

— OR@IIXFV S i ldzds

nonloc, H

t 1
—1 —1+Z 2
=< CR / (t - S) 2 / AW / |X2 VPZ(?;lI;{)C,H|dZdS
0 R} 23 X" =7/

1 ¢ Leo x3+3 1 2
<CR- /O(I_S)— +7/ odwdslulcg 2 @3

max(x3—3,0) <3 uloc

< CR_lt%AT,g.
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Concerning K5, we have

!/
913 (PY - (1 = xDu®w) = 0ra3Vrish,.
2 2
= BVORPLDY 1) — X3 (VIRIPIEE .

Hence, using the estimate (4.25) for V(g pl’;gfj oc. ) and the estimate (2.23) for pf;f;l‘; . H>
we eventually get for all o € (0, 1),

1 1
|Ks| < Ct° <A”R1(1og R+ A2 50;,3(;)) .

This ends the estimate for p{&* _ . We now turn to the term p}S" _,. We analyze

separately the terms (type A) and (type B) according to the decomposition given in
Appendix A.l. The analysis is in the same vein as the one carried out in the proof
of (2.24) in Sect. 2.3. Here as above additional difficulties comes from handling the
dependence in R. We start with the terms (type A). Integrating by parts, we are led to
studying

t
./ / M) /Ra By x50 (2, 23) - PR(O((1 = x)v @ w)' (@ 23, $)de'dz3dds
0 Jr v

1

t —c|Al2z3 9 -9

< C/ /eRe(A)(t—s)/ e 19 (x) ; RN 0w’ 25 5)de dzsldilds
0 Jr R3 (I+]x =2z

z o2z
+c/ /eRCW'—“/ ———— PRV @ w(Z, 23, 5)|dZ/dz3|dA|ds
0 JI R

3 (IL+|x —z))
=: K¢+ K7.

We have

1K7C Ol oo @)

t eRe()»)(tfs)
=< C/ / —1|d)\|”0RU(‘95)||L2 (Ri)”w('a S)”LZ ‘(Ri)ds
0 r |)\ | 7 uloc uloc

1 ! 1
< CA%af ——— 19RVC )2 gayds
’ 0 (t _ S)j uloc V" +

1
1 t s
< CAZ,TS </ aR(s)3ds> .
’ 0

For the integral on ]R§r in K¢ we proceed similarly to J3 above. We get a better bound,
since we have more decay on the kernel here. The estimate

Re(A)(t—s)

[ e 1o
||K6(7 t)”LOC(D(XO)) < CAT’SR l/ / T'dl' < CAT,(STzR 19
0 JTr 2

is good enough for our purposes. We now consider the terms of (type B). The functions
v and w below are controlled by u (v, w = u’, ug or u itself for instance). The main
idea here is again to decompose the cut-off according to (4.11). The last term will fall
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on v, which is what we want, while the difference of the two first terms in the right
hand side of (4.11) will yield decay in R via the inequality (4.12). In the expression for
the Helmhotz—Leray projection, we focus on the terms involving P (z3 + y3). The terms
involving P(z3 — y3) can be handled similarly using the decomposition (A.3). As in the
proof of Lemma A.1 we decompose

o0
(mo(D’)V’ ® V’/ P(z3+y3)(1 — xHv @ w(-, ys, s)dy3> @)
0
= Bi1(z,z3,5)+ V' @ V' By(<, 23, 5).

Let us first concentrate on the terms involving Bj. We have for x € (xo),

t
/ /‘M_S)/2 v (@ 2)0R) (L= X)) B1(Z, 23, 5)dZ dz3drds
0 JI' Ry

1

t —c|A|2z3 B _9

< f /eRe(A)(t—s)f e [9R (x) : RO| g (o s $)ld2desldalds
o Jr R3 (1+[x —z|)

t ) e*C|)¥|%ZS
s / / (ReI=s) / L 9R()IBIE . 23, 9)|d2 dza | ds
0o Jr R} (1+|x —z))
=: Kg+ Ko.
We handle Kg similarly to J3. Hence, we get

IKg(-, 1) ||L°°(D(XO))

1
t —c|A|2z3 s "t
< [ [y [ < OrC) = 98N g (1 23, )lde'dzsldnlds
0 JI Ry

(I+|x =23

IA

t
Re(A)(t—s) p—1 -1
€ [ [ e R tog R HIB 9l gu s

IA

t
— — _1
CR™'(logR) f / IR g2, @y W C 92, @ dHlds
0 F utoc utoc

CAr.sT*R ' (log R).

IA

We deal with Kg similarly to K> above. We first decompose g B as follows
Dr(2)|B1(Z, 23, 9)|
o0
[PR(z) — Fr(¥)I
< C/ / v @ w(y', y3,)|dy'dy;
1 Jrz T+zz+y3+ 102 =y

oo
1
+C s v w(y, y3,s)|dy'd
/] /Rz T —— R(YI (v, y3,8)ldy'dy;

=: Ko+ Ki1.

The term K g is dealt with similarly to K3. Notice though a major difference between
K3 and Kjo. Here we have fast decay of the kernel g, x x,, contrary to K3 where the



Local Energy Weak Solutions for the Navier—Stokes Equations 553

kernel N is slowly decaying. Hence, it is enough to estimate K¢ in Loo(Ri), contrary
to K3 which is compactly supported and estimated in L' (Ri). We have

—1
1 Ki0(, S)HL‘)C(Ri) < CR™ (log R)||v(, S)||L§IM(R3)||W(', S)”Li/oc(Ri)‘
For K11, we immediately get
I1K11(-, S)||L°°(R§r) < Cl|9grv(, S)”[,glw(ﬂ{i)”w(" S)HLilw,(Ri)'

Going back to Kg, we obtain
1 ! !
1Ko Dll oo Oy < CR™' log R) /0 (=922, @ lwl )l @ds

t
_1
+C/0 (t—s) 2||19RU('sS)”Lglor(Ri)”w('vS)”Lilm(ﬂgi)ds

1
1 ! 6
< CA7sR '(log R)T? + CAZ (T3 (f oe%(s)ds) :
' 0
We now focus on the terms involving B,. We first integrate by parts

t
/ / M / @@ PR = XDV @ V' Ba(Z, 23, $)d7 dzsdids
0 JI Ry

t
= / / M / V'OV xxg @ 23)0R(0)( = X B2(2 23, 5)d2 dz3dds
0 Jr Ry

+ commutator terms,
(4.26)

where the commutator terms are all the terms where at least one derivative falls on the
cut-off (1 — X22)~ For the commutator terms, V' (1 — Xzz) is compactly supported, so these
terms are quite straightforward to estimate. Hence, we concentrate on the first term in
the right hand side of (4.26). We have for x € [(xo),

t
/ f ) / V'OV Gy (@ 23)9R (L = 1)) Ba(Z', 23, 5)d2 dzad Ads
0 Jr Ry

1

t —c|A|2z3 ) -9

< / /eRe(x)(z—s)/ e |0R (x) ; R(Z)l|B2(Z/,13,S)|dzldz3|d}\‘|ds
0 Jr R3 (I+1]x —z))

t ' e*CW%Q

s / / (ReI—s) / L 9R()IBaE 23, 9)|dZ dzald | ds
0 Jr R} (I +]x —z))

=: Kip+Kj3.

Similarly to Kg above, we clearly have the following bound

R
||K12(~, t)||L°°(|:|(xO)) < CAT,(STZR 1.
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Then for K13 we decompose as follows

DR(2)|B2(2, 23, 5)

1
23+Yy3 / /
<C [9r(z) — FrW)|lv @ w(Y', y3, s)|dy'dys
fo fRz (3+y3+z —y))?
1
3+ )3 / /
+c/ / PRI ® Wy, 3, 9)ldydys
0o Jr2 (z3+y3+12 —y))3
= K14+K15.

Again for K5, similarly to K1; we have
1 Kq5(, S)”LOO(Ri) < ClI9gv(, s)||Lﬁloc(R§r)”w(" S)”Lﬁm(Ri)‘
Eventually, we bound K4 as follows

| K14(, S)||L<>0(R§r)

=< C/lf 13+y/3 S 10r@ — PRWIlv @ w(', y3,5)Idy'dys
rR2 (Z3+y3+12 = Y'])
3+)3
< CR™ / / . T ool ®whl v 9)ldydys
B(Z/ R) (Z3+ |Z |)

+c/ / BB @ wy, v, 9)ldy'dys
R2\B(,R) |Z =
< CR™ 1(10g(1 + R/z3))(1 + z3)||v (-, S)”Lﬁlop(Rz) lw(-, s)HLiloc(R%r)

HORTI A+ )09, @)Wz, =)

For the first term, we use the inequality log(1 + R/z3) < log(1 + R) +1log(1 + z3_1). The

growing factors 1 + z3 and (1 + z3) log(1 + z5 1) are subsequently eaten by the kernel
V' ® Vg, x.x, which has fast decay. Therefore,

1 1 t 6
IK13Co Dl o Oy < CAT.6R™ ' log R)(1+ T) + CAZ ;T3 (/ a;(s)ds>
0

We subsequently have

ORprN VX, | - OrU
D(xo) harm 0-1
4.27)

1
1 ! 6 3
< CA; T (/ a%(s)ds) yR(t)% + CA%éR_l(log R)(1+ T)T%.
. ) :

Hence, combining (4.3) with (4.24) and (4.27) we eventually get for all v > 0, there
exists a constant C(8, T, v) < oo such that

VR PnontocV Xy, 1 - VRU
Do) nonloc xg.1 (4 28)

1
1 t 2T 3
< VBR()+C(8, T, V)AL </ ad! (s)ds) +C(T)AZ ;R (log R).
s\, :
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This concludes the estimates for the pressure and Step 4.
Taking v = % we have that estimates (4.7), (4.8), (4.9), (4.10), (4.13), (4.14), (4.23)
and (4.28) immediately imply the differential inequality of Lemma 4.1.

5. Local Existence of Local Energy Weak Solutions

This section is devoted to the proof of the local existence of the local energy weak
solution.

Proposition 5.1. For all uy € Liloc U(Ri), there exist Ty > 0 depending only on
””0”L21 ~and a local energy weak solution of (1.1) in (0, Tp).

5.1. Regularized problem. Fore > 0, we first study the regularized problem for (v, g) =
(%, ¢°):

dv+ F(v)-Vv—Av+Vg=0, V-v=0 in(0,T)xR3,
v=0 on (0, T) x dR3, (5.1
vli=0 = vo := F¢(uo) inR3.

Here F. is a mollification operator for the vector fields in Ri defined as F.(u) =
(ws * m'Ri’ where w; is a standard radial symmetric mollifier supported in the ball
B(0, ¢) and ¥ is the extension of u given by

w(x) =ulx) if x3 >0,
(', x3) =u'(x', —x3) and u3(x", x3) = —u,(x’, —x3) if x3 <O.

Then F, (u) satisfies div F(#) = 0in R" and F,(u3), = 0 for x3 = 0 by the symmetry.
The following local well-posedness result can be shown by the contraction principle.

Proposition 5.2. Let ug € L? (Ri). For ¢ > 0 there exist T, = Ty(¢) > 0 and a

uloc,o

unique  mild  solution to the problem (5.1) in C([0, Ty); L?

uloc,o
R3)) N C((0, Ty); L®(R3)). Moreover if Ty is the maximal existence time for the mild
solution, v satisfies lim4, ||v(t)||LzI = o0

Proof. The proof is based on the standard Banach fixed point theorem as in [26]. Set
llull7 as

3
lullr = sup (w2 + 15 u@)]ge).
0<t<T uloc

Let Co > 0 be a constant such that

—A % 2 R3
le=Aullr < Coll + THlvoll2, o f € Lijpe o (BD),

uloc,o

which is well-defined by virtue of the Stokes estimate [26, Proposition 5.2]. Then let us
introduce the set

Xp = {u € L0, T; L2, ,(R3)) N CO, T; LP[RY)) |

uloc,o

3
lullr <2001+ THluoll 2, |-
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For each f € X1 we define the map ®.[ f](¢) = e_tAvo + B:[f, f1(t), where

t
BeLf. g)(1) = — f e IAPY L (F,(f)® g)ds, >0, f.g € Xr.
0

We will show that if T, is sufficiently small, then ®, defines a contraction map in
X 7. Indeed by using the estimate for the Stokes semigroup [26, Theorem 3] and the
elementary inequality

1F (D2, @+ A +e ) NF(Dl @y < 1122, @)
we have
! 1
I1B:Lf. )]z, < C / (¢ =) 2N Fe(Nlllgl2, ds
utoc O utoc

t
_1 _
= [e—9are sy, lelz, ds
0 ultoc utoc

_ 1
<C+&e T2 sup [Ifl,2  sup lgll2 - (5.2)
uloc 0<<tT uloc

O<t<T

Similarly, we have for f, g € Xr,

! 1
1 BeLf, g1(0)ll e < C/O (t =) 2[Fe()lliLeellglizeeds

t
1 —
<c [a— A+, slimds

3.1 3
< CU+e sup [fll,2  sup 1 gllue.

0<t<T 0<r<T
Thus we obtain
| B:[f, glllr < Ci(1 +5_3)T%||f||T||g||T» /g € Xr. (5-3)
If T is small so that
Ci(1+3)T22CH(1 + T%)||u0||L§IM < %, (5.4)

then (5.4) and the definition of C¢ imply that &, defines a contraction map from X7 into
X 7. Hence, there exists a unique fixed point u of ®, in X7, which is the mild solution
to (5.1) in X 7. Since vg € BUC, (Rf), e_tAvo is continuous at + = 0, and hence the
continuity in time of u also follows from the standard argument. (5.3) also shows the
uniqueness of the solution in the class ||v||7 < oco. This guarantees the existence of the
maximal interval [0, ;) where v satisfies ||v||r < oo for any T < T,. If T, is finite,
from (5.4) we have |v(?)]| 2, = L , which, in particular,

8C1(l+£’3)(T*—t)%C0(1+(T*—t)%)
implies lim,4 7, ||v(t)||Lz] =o00. O
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Due to the argument in [14, Lemma 4.1], the mild solution is smooth in ]Ri x (0, Ty).
For each x¢ € Ri we can use the cut-off argument in the proof of Proposition 3.1 to
define the pressure g = qfxo) so that (v, g) defines a classical solution to (5.1) even
when v does not decay at spatial infinity. Moreover, by the similar argument as in

Propositions 2.2 and 2.3, the pressure ¢ can be decomposed as ¢ = qii +Gioc + Gnonioc =

vo vo Fe(u)®u Fe(u)®u Fe(u)Qu Fe(v)®v Fe(v)®v
dioc + 9nonioc + qloc,H + qloc,harm + qnonloc,H + qharm,fl + qharm,zl such that the

following estimates hold.

Proposition 5.3. (Linear pressure estimates for the regularized problem) There exists a
constant C < oo such that for all t € (0, 00),

t
- . <
log(e + 1) IVai (t)”Lgloc(Ri) = C””O”L@M(Ri)’

3
r4 ||q;)(?c(t)||L2(|j(x0)) =< CHMOHLZ(SD()CO))’
v 1 v
12 ||qn2nloc(t)”L00(D(xO))) +12 ||angnloc(t)”po(m(m))) = C”u0||L§M(Ri)'

Proposition 5.4. (Local pressure estimates to the regularized problem) Let T > 0. There
exists a constant C(T) < oo such that for all xo € Ri,

Fe()®v

Fe (v)®v
H qloc, H

+ quoc,harm

£20.7:22 Oxo)) £20.7:23 Do)

+ H Vqu(U)(X)U

loc,harm L%(O,T;L%(Ri))
2 2
=C e (”””Lwo,T;LZ(D(n))) + ”V””L%o,T;LZ(D(n))))'
nezi

Proposition 5.5. (Nonlocal pressure estimates to the regularized problem) Let T > 0
and 1 < g < oo. There exist constants C(T), C(T, q) < oo such that for all xy € Rf_
and for almost all t € (0, T),

Fe(v)®(v) Fe(v)®(v) 2

||61,,0nloc,H (-, t)”LOO(D()CO)) + ”anonloc,H (-, t)”LOO(D(XO)) < Clv(, t)”Liloc(Ri)’
Fe(v)®(v) Fe(v)®(v) 2

”qharm,§1 (, t)||LOO(D(X0)) + ||tharm,§1 (s t)”L‘f(D(xo)) = Cq”v”L“’(O,t;Lﬁ,M(Ri))’

Fe(0)®(v) Fe()®(v) L2
Iparm, =1 C Ol Lo Qeeoyy + WV harm =1 C Do Qeoyy = C2 M0 000 1112, @3-

uloc

For later use, we summarize these pressure estimates as the following corollary:

Corollary 5.6. For T > 0 let v = v® be the mild solution to the problem (5.1) in
0,T) x Ri. There exist C = C(T) < oo and Cs = C(T, §) such that for any ¢ > 0
and xy € Ri, there exists a pressure q = qfxo) satisfying

Vgl - <C
l q”L%(S,T;L%(D(xo))) = Gslluollz2, (w3
2 2
O 0,702, ) + € S”Z% NV 0. 7.2 @0 -
nesLy

(5.5)
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Moreover there exist q1, g2 such that

g =q1+q2 for (0,T) x L(xo),

llgill 2 +llgz2ll s

£30.7:23 Do)
< Clluolle (®Y) +C vl

£30.7:220 o))

+C sup V|2 (5.6)
ne

L®(0,T;L2,, (B})) £20.7:L2Cwy) °

We now claim a key local energy estimate which guarantees the uniformity in & > 0
of the existence time of the solution obtained in Proposition 5.2.

Proposition 5.7. There exist constants M > 0and Ty = To(|lug || 12, ) > Oindependent
of ¢ > 0, such that

To
E(Ty) = sup / [u(-, £)[* + sup / / |Vol? < Mlluolliz . (3.7
() O uloc

neZ3, 1€(0,To) nezi /0

Proof. We let

a(t)= sup / (-, $)I2, (t)—sup/f Vo, (5.8)
neZ?, se0,r) /U nezd O

Testing the Eq. (5.1) against the function Xfov, we have the equality

t
/x30|v<t)|2dx+2// X2 IVultdds
R3 0 JR3

t t
= ||XxOFg(u())||L2 +2/ /R* AX§O|U|2dxds+/ /R} VX3 - Fe()|v|*dxds
0 o 0 v

uloc

+2/f qVXfomdxds.
0 JR3

(5.9)

We estimate each term in the right hand side. For the second term, we easily see

13
/ / Ax lv|*dxds < CTa(r). (5.10)
0 JR}
By the Gagliardo—Nirenberg inequality, we have
||Xxov||L4(R3 C”Xxov” 2(R3) ||V(Xxov)” 2(m3

P FE 5.11)

= C”Xxov”Lz(R3 (”XXOU”Lz(]Ri) + ”V(XX()U)HLZ(]]@))K-
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Therefore, the third term is estimated as follows:

t
f/ Vxxo - Fe(u)|v|*dxds
0 JR3

t
2
c /0 O PE s

A

(5.12)

IA

t
3 2
2
Ca(t) /0 1 XxoV ”L4(1R<§,)ds

Ca()I(Talt) + Tia(t)i f(1)1)
CTa>(t) +8B(t) + CsT3 (1),

A

A

where we have used Young’s inequality in the last line for § > 0. For the last term in
(5.9), we decompose the pressure as ¢ = g1 + g2 as in Corollary 5.6. Then we have

t
/ [3 CIVX,%O -vdxds
0 JRY

< llq1 ”L%(O,I;L%(D(xo))) ||Xx0v||L3(0,t;L3(|:|(x0)))

* ”qz”L%(o,z;LZ(D(xo)))||Xx°v||L4(O’“L2(R3”

= €T (Jluoll2, +a(®)+BM) )T @)+ BW)T +CTHuoll,2, (o).
(5.13)

Here we have used the estimate

1 1 1
”Xx0v||L3(0,t;L3(|:|(x0))) < Ta()i(a) +B(1))*, (5.14)

which is easily verified by interpolation as in (5.11). Applying estimates (5.10), (5.12)
and (5.13) to (5.9), we can find a constant C > 0 such that for any 7 € (0, min{1, 7} })

E(T) < |luoll3, +CT%(1+E(T)+ E(T)), (5.15)

uloc

where T is the maximal existence time given in Proposition 5.2. Let M > 1 be a constant
satisfying [le =" ug ||’i2 < M|luo ||i2 and define

uloc uloc

T := sup {T > 0; E(T) < 2Mug%

uloc

l>o0.

By the continuity of E, we must have E(Tp) = 2M ||v0||i2 . Therefore it follows from
uloc
(5.15) that

L
2Muoll}, < lluolls, +CTFA+2Muoll?, +8M [uoll®, ), (5.16)
uloc uloc uloc uloc
which leads to the following uniform bound in ¢

@M — Dluol?,

uloc

Tp >

C+2M|lugl2, +8M3|lug)®, )

uloc uloc

This completes the proof O
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Remark 5.8. Note that (t) < ||[Vv IIi2 0512, @) The quantity in the right hand side,

however, has no reason to control §(¢) in general. The main difference between the two
quantities is seen in the following property: from Vv € L>(0, t; Liloc(Ri)) it is easy
to get that for almost every s € (0, ¢), Vu(-, s) € Liloc(Ri), while this property is not
clear in general when just 8 is controlled. Therefore, special care is needed, for example

at the beginning of Sect. 6.
Another way to reformulate Proposition 5.7 is as follows.

Corollary 5.9. For all 5 > 0, there exist T > 0 and Ars > 1 such that for all ug €
‘Ciloc - (Ri), for all local energy weak solution u to (1.1) in the sense of Definition 1.1

on Ry x (0, T) with initial data uy, UC”uO”Lﬁzuc(Ri) <4, then

2
t t 3
sup/ |u(~,t)|2+// |Vu|2+<f/ |u|3> < Ars. (5.17)
nezd YU 0 JOm o JOe

In other words, for § > 0, there exists 7 > 0 such that Assumption 1.3 holds.

5.2. Convergence to the weak solutions. In this subsection we complete the proof of
Proposition 5.1. Here we follow the compactness argument used in [21] in principle
except for some estimates of the velocity and the pressure. Before giving the proof, we
first describe their strategy here. We first consider the regularized problem (5.1) in the unit
cube [J(0) and apply the compactness result to pass to the limit of some subsequence of
the solutions. We then apply similar argument in the bigger cubes n[1(0) forn = 2,3 - - ..
Note that our pressure is defined only locally in the cube [1(x¢) for each x(. Therefore
we have to glue them appropriately to define it in Ri. To this end we first derive the
uniform (in &) bounds of v® and an appropriate pressure ¢g"¢ in n[_J(0). In what follows
we denote n[1(0) by n[] for simplicity.

Proposition 5.10. Fore > 0,n = 1,2, -+, and ug € Liloc(Ri), there exist constants
To > 0 and A depending only on ||u0||L§1M and exists a pair (v, q") = (v¢, q™°)
satisfying the following statements:

(1) (v, q") is a solution to (5.1) in [0, Tp) x nl] and satisfies

To
sup/ |v(-,t)|2+/ / [Vv|? < C(n)A, (5.18)
1€(0,Tp) /nJ 0 o]

1000 150,735 w12 e < CDA. (5.19)

Here C(n) is a constant depending only on n, and (L>(0, To; Wol’3(nD)))* stands

for the dual of the space L>(0, Tp; W01’3(n|:|)).
(2) For any 6 > 0 there exists a constant C(8) such that

Vg™ s

L3 Qo = €O (5.20)
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(3) There exist g1 and q5 such that g™ can be decomposed as
q" =4qi +4q3.
and the following estimate holds:

+lasll s = C(mA. (5:21)

”‘11 ” L4(0 To:L2(nD)) —

L2(0 To; L2( Oy
Proof. Let v = v® be the mild solution given in Proposition 5.2. We then easily
see that (5.18) follows from Proposition 5.7. To see (5.21), consider the rescaling
V> vy (x, 1) = nu(nx, n?t), ¢ = qu(x, 1) = n?q(nx, n*t) and vy > Vo) (x) =
nvo(nx) forn =1, 2, ---. Then v, is a mild solution to the problem

V() + Fz (W) - Vo) — Avgy + Vg =0, Vv =0 in (0, 22) x R],
Vo =0 on (0, L) x gR3,
Vinl1=0 = Vo) inR3.
(5.22)
By the estimate (5.18), v(,) is uniformly bounded in ¢ > 0 with respect to the local
energy norm. Therefore, from Corollary 5.6 one can find a pressure ;) = g(n),1 +4(n),2
satisfying the estimate

”q(n) 1HL7(0 To/n: L’Z(|:|(O))) +llgm.2llLr o, To/n:L2(00)) = C”UO(n)”Lg,M(Ri)

+C v Limo 1 12,.@y * € sup [Vva I220.7ms22 iy (5:23)

77€+

rescaling back g(,),; (i = 1, 2) and defining the pressure as ql." (x,1) = anQ(n)i (jz—‘, nLZ),
from (5.23) we obtain the estimate (5.21). As for (5.20), since Vg" = Vq(y,) in Oxo) N
nlJ by (5.1), the estimate follows from (5.5).

It remains to show (5.19). Acting the test function ¢ € C§° (n3J(0))? to (5.1) and
using the pressure decomposition we have

To
0:v - pdxdt

To

(=Vv-Vo+v® F,(vV)Vo + p"V - pdxdt

0 n
To % To %
c(/ f |Vv|2dxdt> (/ f |V<p|2dxdt>
0 nJ 0 nJ
To é To % To %
</ f v] dxdt) (/ / |Fg(v)|3dxdt> <f f |V<p|3dxdt>
nJ 0 nlJ
3 To %
</ |q7|‘zdxdz> (/ /HD|V<p|3dxdt>
% To 5 %
(f <f 193] 2dx>8dr> (/ (f |V¢|2dx>zdr>
0 nJ

IA
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Since w; is supported in B(0, ¢) for ¢ > 0, we see from (5.14)

To To
/ f |Fe(v)Pdxdt < / / lv|3dxdt < C(n)A. (5.24)
0 nJ 0 (n+£)|:|
Hence, combining this and estimates (5.18) and (5.21) we obtain
To To 5 %
/ / 3 - pdxdt| <C(n)A </ (f |V<p|3dx)3dt> . (5.25)
0 nl] 0 nJ

This yields (5.19) as desired. O

In order to complete the proof of Proposition 5.1 we argue by induction in n to pass
to the limit for (v¥, p®) (¢ > 0). For n = 1 by using estimates (5.18),(5.19) and
(5.21) one can apply the Aubin-Lions lemma, and then using the uniform bound in
L'93(0, To; L'93([J)) we can extract a sequence {(v*, ql’k)},fil from {(v®, ¢1)}e=0
such that

vk 0@ in L0, To; L2O)),

vk — v in £2(0, To; w2 ([0,

vF = @ in 230, To; L3(O)), (5.26)

g = g in L3, To; wh3 () forany 8 € (0, Tp),

gi* =g inL30. To: L2 D)),

0 = q in 130, To: L2,

where ¢'* and ¢V are decomposed as ¢'"* = ¢]* + g and ¢ = ¢V + gi"

respectively. From (5.24) and (5.26), we also deduce
Fr W) — vV in L3(0, Ty; L3 ((R))) forany R < 1. (5.27)

Then (vV, ¢(V) satisfies (1.1) in the sense of distributions and the local energy inequality
in (0, To) x [1. So we let (u, p) = (v, ¢D) in (0, To) x 1.

For n = 2 by the same argument we can find a subsequence of {vk},‘(’i1 still denoted
by {vF}2° | and {g>*}2° | such that

vk 0@ in 220, Ty; L2(20)),

F =~ 0@ in L2(0, Tp; wh220)y),

vk > 0@ in 130, Ty: L3 20)),

¢*F = g® in L3, Ty; w3 20)) for any § € (0, Tp),
gt* =i inL30. To: L2 20)),

a3* = ¢ in L3, To; L220)),

F ) = v@ in L3, To; L*((R))) for any R < 2,
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where v, ¢@ := ¢® 14 satisfy (1.1) in the sense of distributions and also satisfy the

local energy inequality in (0, To) x 2[]. Moreover, (5.20) implies that for any xo € 2]

IVg@1l s 9 < C(HA.

L2(8,To; L8 (Oxg)n20dy) —

Since v® = u in (0, Tp) x [J, we may extend u by letting u = v®@ in (0, Tp) x 200
On the other hand, we have from (5.1) that V¢® = Vp in (0, To) x [J. Hence, there
exists a function 1@ e L3/4(0, Tp) such that q(z) (x,t) = px,t) — hD 1) for (x,1) €
(0, Tp) x L. Therefore we let p = ¢® — h® in (0, Tp) x 2L1.

Repeating this procedure for n = 3,4, ---, we obtain u € L*°(0, Tp; Liloc’a(R;ﬁ))
3 JE—
andp e L 12; (0, Tp) x R3) satisfying (1.1) and the local energy inequality (1.5). More-
over, by the construction the pair (u, p) satisfies

To To 3
2 2
sup / Vulls, 3.dt + sup / IVpll©, dt < oo foranyd e (0, Tp),
xe]Ri 0 L(B(x)NRY) )CER}_ S LE(B(x)m]Ri)

<oo foranyn=1,2,---,

(5.28)

1822l 50, 7 w22 (a Ty

t
/g0|u(t)|2dx+2// ©|Vu|>dxds
R3 0 JRr3

t
§f3¢|u0|2dx+/ /% lul?A¢ + Vo - u(jul* +2p)dxds (5.29)
R3 0 JR3

for all t € [0,Tp) and ¢ € C(‘)’O(Rf_). (5.28) and the uniform Liloc bound yield the
continuity of the function 7 — (u(t), w);» ®3) in [0, Tp) for any compactly supported

function w € L2(R3)3. Since F;(ug) converges to i in L?*(K) for any compact set

K C R3, we also see lim;_ o, (u(t), w) = (ug, w) by taking the limit in the weak
formulation of (5.1). Combining this with (5.29) we obtain

lim ||u(t) —u =0.
Tim () = uoll 2k,

This completes the proof of Proposition 5.1.

6. Global Existence of Local Energy Weak Solutions

In this section we prove Theorem 1. We construct a global in time local energy weak
solution, which is an analogue of the weak solution constructed by Lemarié—Rieusset
[23] for the whole space case R?; see also Kikuchi and Seregin [21]. In principle, the
proof proceeds as in the case of R>. Nevertheless, our proof does not rely on the weak-
strong uniqueness of the local energy weak solutions which was used in [21] for the
whole space case. In fact, compared with the case of Leray—Hopf weak solutions with
finite energy, the weak-strong uniqueness for local energy weak solutions is a more
delicate problem and seems to require additional work in handling the pressure term
whose structure is more complicated in the presence of the physical boundary than in
the whole space case. In this sense our proof below is simpler than the known ones for
the whole space case.
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Proof of Theorem 1. Step 1. Let us first assume that 7 < oo. Thanks to Proposition 5.1
we already know that there exists a local energy weak solution to (1.1) in Qz, with
initial data ug for some 7p > 0. We may assume that Ty < T'. The key tool to verify the
global existence is the e-regularity theorem, stated as in Theorem 3, is the spatial decay
of (u, p) in Theorem 2. Indeed, from Theorem 2 and Theorem 3, for any § € (0, Tp)
there exists Rs > 0 such that u is smooth in [4, To] x {x € R | |x] > Rs}, and in

particular, one can show the regularity u(t) € wh uloc ({x € R | |x] > Rs}) for any
t € (0, To]. On the other hand, from the definition of the local energy weak solution
we have u € L?(0, Top; Wh Z(BR[S (0) NR3 +)). Therefore, we conclude that there exists

to € (0, Tp) such that u(rg) € W lac(R%) and limg_, o ||19Ru(t0)||Lz LR = 0, where

the latter assertron holds again from Theorem 2. By the embeddrng property we have
u(ty) € LO (Ri) and limpg_, ||19Ru(t0)||Lpl ®) = 0 forany 2 < p < 6. Fix
€ > 0. By using Lemma A.4, u(#p) is decomposed as

uloc,o

u(to) = u"(t0) + u*“u(ty),

where ul€(to) € £ (R3) with ||u1€(ro)||L?h R} < € and u>€ e LI(R3). By
Proposition 7.1 in [26] we can construct a mild solution ul€to (1.1 in (59, T) X R}r

with initial data u'€(79) by taking € > 0 small enough, and u'€ satisfies

uloc,o

S 1,e % 1,e % \V4 1,e <C
up ([l @lla  +e8ub @)l +22[[Vu(0)] 2 ) < Cye.
to<t<T uloc uloc

Moreover, u € C([tg, T); Euloc U(R )) and by the bootstrap argument as in [14], u
is smooth in t > o, and for any 0 < § < 1, we have

sup (9" Ol ey + Y IV O @) < 00,
to+6<t<T k=0.1.2

Note that the associated pressure ¢ "€ has the structure given in Sect. 2, and in particular,

g€ at least belongs to L; ioclto, T) x R3 1) (though it has more regularity up to ¢ = tg

since 1€ has). Thanks to the enough regularity, (1€, g-€) satisfies the local energy
equality:

t
et O 23, +2 / Vi €135 3, ds
= I )32 g3, (6.1)
+ /ﬂluulﬂz, 01 + DX gy + (€ Vo P + 291 o g ds

forany x € CX([to, T) x ]R?i) and all rp < ¢’ <t < T. Next we construct (u>€, g>€)
as a weak solution to the perturbed Navier—Stokes equations

>t — AUPE +Vg>E = —div (u2,s @ ubE +ult @ u2t + U2t ® ul,s)’

V-u** =0, in (10, T) x R3,

(6.2)
€=0 on (0,T) x R,

u>|—0 = u>*(1p) in Ri.
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Since u"¢ has the enough regularity stronger than the scaling as stated as above, it
is standard to construct a Leray—Hopf weak solution u*t e Cy([t0, T); L2 (R )N

L1y, T; W0 2R3 )) ¢>¢ e L ([to,T) x R )+L6([t0,T) L2, (R})), satisfying

loc uloc

limy 4, ||u2 £(t) — u**(to) )2 ®3 = = 0 and the local energy inequality:

t
2 2 2,62
I O sy 2 [ 1T g
2 2
=< ”XM ’e(t/)”LZ(Ri)

' (6.3)
+/ (|u2'€|2» 8sX2 + AX2>L2(R3) + <u2’€ : VXZ» |M2’€|2 + ZqZ’G)Lz(Ri)ds
t/

t
- 2/ (Wb VUt ue Vult w2 o gy ds
t/

forallt € (t', T)andfora.e.t’ € [ty, T) including t' = to, where x € C°([to, T) x@)
is an arbitrary test function. Set

o) = uF @) +uPt @), q(t) =q @) +¢> (), 1€ (o, T).
Then we have lim, 4, [[v(?) — u(to) lr2x) = 0 for any compact set K < @,
v e L®(to, T; Lipe o (RD) N L (10, T W0 2 (R,

,(,C([to, T) x R} )+Lloc([to, T); Lyj,e(RD),

and (v, q) satisfies the Navier—Stokes equations in (fy, T') in the sense of distributions

T
/ —(v, 059) a3y + (VU V@) 2R3y — (g, dIV Q) 2R3y + (V- VU, 9) 12 g3y ds
0]
= (u(ty), <P(t0))L2(R§r)
(6.4)

forany ¢ € C2°([to, T) X ﬁf such that ¢|,—o = 0. We also have the weak continuity
of v in time. Next we shall show that (v, g) satisfies the local energy inequality:

t
X072, +2 f X VOl g3, ds
+ fo +

t
< X v s, + f (0%, 05 + AX) 2@y + (v - VA2, oI +2g) 12 g3 ds
fo
(6.5)

forany x € C°([to, T) x Ri) and for all ¢ € (79, T). Note that v(fg) = u(tg). To prove
(6.5) we first choose any ¢’ € (o, t) such that (6.3) holds. Then it suffices to show (6.5)
but 7o replaced by such ¢’; then we take the limit ¢ — 7 and by the continuity at the
initial time t = 7o in the local L? topology, we obtain (6.5). The advantage to take ' > #o
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first is that we can use the smoothness of u!*¢ in [¢, T), which justifies the computation
below:

t
Euit = 0O g, +2 [ 10l
= oS O g, + 100™ D117 ) + 200" @) x> ©O) o)

t
12 Le2 1 2
+2 f Va1 gy + 1V 0T s + 200Vt V) gy ds.
t/
Hence,

Evw < " ()3 + x> (133
+ /:(|u1’€|2, x>+ AX2>L2(R3) + V2 P + 2q1’€)L2(R3>ds
+ [ PP 0% + A gy + 0 - Vo PP 4 267) gy ds
B 2/;(“1,5 . Vuz’s + uz,a X Vul’g, “2’8X2>L2(R§r)ds

+ 20> (1), XPubF(0) 23 +4/ (XVube, X Vi*e) 2 ga)ds.

Thus we have
! 2 2 2
E.p < ||XU(I)||L2(R3 +/ (lvl7, 05 x "+ Ax )LZ(Rﬁ)dS
t/
t
2 () U (1)) ) — 2 /t (W™, uh e @ x* + AxP)) 23 ds
t
+/ <u1,€ . VX29 |u1,€|2 +2q1’€>L2(R§_) + <u2,€ . VXZ, |u2,€|2 +2q2,€>L2(Ri)ds
l/
'
- 2/ W Ve fu>e . vyhe, u2,5X2>L2(R3)dS
t *

t
+ 2> (1), qul’f(t))Lz(Ri) +4 /t (Vu>®, X2Vu1’S)L2(R§r)ds.
(6.6)

Since u>*¢ satisfies (6.2) in the sense of distributions, we have

2, 2.1, 2
W (), x*u' FO) 2@y — W@, xTu g(f/))Lz(Ri)
t
— / <u2,8’ aS(X2u1,8)>L2(R3) + <VM2’8, V(XZMLS))LZ(RE_)
t/
+(g>¢, div (qul’g))Lz(Ri)ds

1
_/ <u2,8 . Vu2,8’ X2ul,£)L2(]Ri)ds
t

t
= / (uz’s,ul’gasxz)Lz(Ri)ds
t/
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t
+/ (uz,s, XZ(AMI,S _ Vql,é‘ _ u],E . Vul,é‘))[g(Ri)ds
[/
t
- [ (Vi VOCubo) ) + (67 div () o s ds
t/
t
_ / (u2,a . Vu2,s +ul’5 . VuZ,s +u2,a . Vul,s7 XZMI,S)LZ(Ri)dS
t/
and hence,
(W @), xPu" D) ey — @A), U ()] g,
( L2(R3)
t
2, 1, 2
= /;/ (™%, u 9 x >L2(Rﬁ)ds
t
+/ —2(Vu>*, XZVul’S)Lz(Ri) + (e, ul’Ssz)Lg(Ri)ds
t/
) 2 1 1 2 2 ©.7
+/t/ W VX" g ) gy + VYT, g7 gy yds

t
_'/ (MI,E . Vul,é" X2M2)€)L2(]Rz)ds
t/
t
_ / (MZ,E i VM2,8 +ule. Vu2,a + u2,£ i Vul'g, qul’s)Lz(]Ri)ds'
t/

Combining (6.6) and (6.7), we obtain (6.5) for ¢’ replaced by 1, as desired. Finally we
setv(t) = u(t)and q(t) = p(¢) fort € [0, tp]. Itis clear that (v, ¢) satisfies the required
regularity as a local energy weak solution in Q7 . In particular, 7 > (v(7), w) 234

is continuous in (0, T') for any compactly supported w € L2(R3)3. Then for any ¢ €
CX(0,T) xR )3 such that ¢|;,—0 = 0, we have from (6.4),

T
/0 —(v, asgo)Lz(Rz) +(Vu, V‘/’)LZ(Ri) — (g, div ¢>L2(Ri) + (v - Vv, ‘P>L2(R3)ds
T
= L —(v, asgo)Lz(Ri) + (Vv, Vg")LZ(Ri) — (g, div ‘p)LZ(]Ri) +(v- Vv, ‘P)LZ(Ri)ds

fo
+/ —(u, 85‘/’)L2(R3) + (Vu, V(p)Lz(Ri) —(p, divgo)Lz(Ri) +{(u - Vu, §0)L2(R§)ds
0

= (u(t0), ¢(10)) 2R3

1o
+/O —(u, 3s§0)L2(R3) + (Vu, V‘p)ﬁ(Ri) —(p, divgo)Lz(Ri) +{(u - Vu, §0)L2(R§)ds
=0.

It remains to show the local energy inequality in [0, T'). It is clear that the local energy
inequality holds for ¢ € [0, 79] since v = u on [0, tp]. When ¢t > 1y we first apply (6.5)
then we use the local energy inequality for t = #, which gives (1.5).

Step 2. We now construct a solution for 7 = oo. The proof is recursive. From Step
1 above, we know that there exists a local energy weak solution u in the sense of

Definition 1.1 on the time interval (0, 1) starting from the initial data ug € EulOC(R ).
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Let N € N. Assume that a local energy weak solution u has been constructed on
the time interval (0, N). Since u € L*®(0, N; £2 (R}r)), we have that for almost all

uloc

to € (0, N), u(-, 19) € L2 (Ri). In particular, 7y can be taken arbitrarily close to N.

uloc

Fix 19 € (N — %, N) to fix the ideas. Hence, we consider the solution, in the sense of
Definition 1.1, u constructed in Step 1 living on the time interval (¢, N + 1) such that
(-, t9) := u(-, tp). The function which is equal to u on (0, #p) and to & on (fo, N + 1)
is then a local energy weak solution in the sense of Definition 1.1 on (0, N + 1). This

follows from the exact same arguments as in Step 1 above. The proof is complete. O

7. Application to a Blow-Up Criteria in the Half-Space

The goal of this section is to prove the following blow-up criterium in the half-space
Ri. We recall that a point (xg, ¢) is called regular if u is bounded in a parabolic ball
B(xo,r) x (t —r2, 1). If (xp, 1) is not regular it is, by definition, singular. We say that u
blows-up at time 7 if T is the time of the first occurrence of a singularity.

Theorem 4. Let u be a (finite) energy weak solution (i.e. a Leray—Hopf solution) to the
Navier—Stokes equations (1.1) with initial data ug € L(Z, (Ri). Assume that u blows-up
at a finite time T > 0. Then

luC, )l 3@y —> 00 as t =T —0.

This result is not new. It has been initially proved by Barker and Seregin in [5]. Our
goal here is to give another proof of this result, based on the existence theory of local
energy weak solutions developed in our present work. Our method is strongly inspired
by the one developed by Seregin in [31]. In this paper, Seregin proves the analogous
result of the blow-up of the L3 norm for blow-up solutions in the whole space.

Proof of Theorem 4. The only ingredient which was missing to transpose the proof of
[31] to the case of the half-space Ri is Theorem 2 above. In [5] Barker and Seregin avoid
the use of decay properties for local energy weak solutions by modifying the technique
of proof. They directly show that the rescaled solutions (see below) strongly converge
in Li)t. Our point is to show that the technique of [31] based on the convergence to local

energy solutions also applies to Ri.

The proof is by contraposition. Let T > 0. Let u be a finite energy weak solution to
(1.1)on Ri x (0, 0o) with initial data ug € Lg (Ri). Assume that there exists a constant
M < oo and a sequence of times #; € (0, T), ty — T such that for all k € N,

”u(',tk)”m(Rz) <M. (7.1)

We aim at showing that u is smooth. Let us consider the space-time point (xg, 7'), where

xo is an arbitrary point in R3. We will show that (xo, T') is a regular point for u. There
are two cases: either xo € R3 or xg € dR3. The first case of an interior point uses the
existence of local energy Leray solutions in R3. This case has been treated in [31] and
hence we do not repeat the argument. We concentrate on the second case of the boundary
regularity. Note however that the analysis of the interior point is parallel to the analysis
of a boundary point, so it is easy to adapt the arguments below to the case xo € Ri. The
strategy proceeds in three steps: (i) prove that a properly rescaled sequence of solutions
converges to a local energy solution of the Navier—Stokes equations which is zero at final

time and has initial data in £3100(R§r), (ii) prove a Liouville theorem for such solutions
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using a backward uniqueness result for parabolic equations, (iii) conclude the proof.
The key ingredient of the proof is the e-regularity theorem, Theorem 3. Here, we focus
on Step (i). Step (ii) has been extensively developed by Seregin and his coauthors in
[8,9,29,30,33] to name a few and is almost identical in R} and R®. The details for R}
are given in [5], so we will just sketch the argument for Step (ii). As we just explained,
we assume that xo € BIR{E in the following lines. Without loss of generality we even
assume xg = 0.

Step (i): rescaling and passing to the limit. For all k € N, for § > 0 to be determined

later, let A 1= % For all S > 0, we introduce the rescaled functions v*) defined

as follows
u® (y,5) = dauOy, T +13s), (7.2)

for all (y,s) € Ri x (=S, 00). Let us emphasize that by definition v®) depends on
S, although we do not keep track of this dependence in the notation. Since the scaling
is the one leaving invariant the Navier—Stokes equations, v®) is still a weak solution
to the Navier—Stokes equations, though on the domain Ri x (—S, 00). Moreover, the
blow-up time being the time at which the first singularity appears, u is smooth on
Or = Ri x (0, T). Hence, for all k € N, u® is smooth on Ri x (—8,0). It is clear
that u® is a local energy solution in the sense of Definition 1.1 on Ri X (=8, 0) with
initial data u (-, #z). By invariance of the L3 (Ri) norm under the Navier—Stokes scaling,
we get that

1 =) 3 @z) = G, 1)l @) < M, (7.3)

where C is the constant in (7.1). Therefore, there exists u_g € L3(Ri) such that up to
a subsequence (still denoted the same)

u® e, —8) =~ u_g (7.4)

weakly in L3 (Ri). Using Corollary 5.9, we see that there exists S > 0 such that u®
is uniformly bounded in the local energy norm on the time interval (—S, 0). Therefore,
there exists a constant 0 < A < oo such that forall k € N, forall s € (-8, 0),

0 0 3
sup/ |u<"><~,s>|2+/ / |Vu<">|2+(/ / |u<’<>|3) < A.
nezd YU -5 JOa -s /O

Itis now a standard procedure (see Sect. 5) to see that u*) converges (up to a subsequence)
weakly star in L%(—S, 0; L? (R3)), weakly in L2(—S, 0; H} (R3)) and strongly in

loc oc
L130c (R?r x (=S, 0)) tou, afunction which satisfies all the axioms in Definition 1.1 except

one: it is unclear that the strong continuity (1.4) in LIZOC (Ri) at initial time holds. The

convergence (1.4), though, is essential to transfer the decay of the initial data in Ei loc 1O
the solution, as explained in Sect. 4. The mere weak continuity to the initial data is not
enough for this purpose. Hence the argument has to be modified in the way discovered
by Seregin [31].

Following [31], we decompose u® into u® = ® 4 w(k), where w® is the solution
to the linear Stokes problem

yw® — Aw® +vg® =0, v.w® =0 in(=5,0) xR3,
w® =0 on (—S,0) x 9R3, (7.5)

w(k)(.v_S) =u(-, t) in]Ri,
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and v® is the solution to the perturbed Navier—Stokes system driven by w®) with zero
initial data

v® + ® +w®). v® + w®) - AP L vp® =,

v.o® =0 in (=S, 0) x R},
W0 =0 on (—S,0) x dR3,
v, -8 =0 inR3.

(7.6)

Since the initial data for w® belongs to L% (R ), the existence, uniqueness and a priori
bounds for (7.5) are well-known in the half-space R3. The results of [7] enable to
check Assumption (A) in [13] for the Stokes semigroup in Ri. Hence, there exists a
unique solution w® e c%=8,0]; L3 (Ri)) N L5(Ri x (=S8, 0)) such that there exists
a constant C(M) < oo (M is the constant in (7.1)), forall § > 0,

” w(k) ||L°°(—S,0;L3(Ri)) + || w(k) ”LS(]R%,X(—S,O)) = C(M) (77)

The uniformity in § > 0 of the constant C (M) is due to the fact that the norms in the
left hand side of (7.7) are invariant under the Navier—Stokes scaling. Notice moreover
that w® is smooth, so that it is uniformly bounded in k in the local energy norm, i.e.
for all S > 0, there exists a constant C(S) > O such that forallk € N,

s
sup / |w<k><-,s>|2+supf/ Vvw® 2 < C(s).
nez3, se(0,5) O nez3 Y0 O

As for v®, a small modification of the a priori estimate carried out in the proof of
Proposition 5.7 enables to show that (see display (5.15)) there exists a constant C such
that for all k € N, for all s € (—S, 0],

Er(s) < C(s+S)ﬁ(1+Ek(s)+Ek(s)3), (7.8)

where

S
Ex(s) == sup / O, )+ sup/ f Vo ®2,
ez, s'e(0,s) Y LI nez3 Jo JOm)

From (7.8), we deduce on the one hand that there exists S (uniform in k) such that £ (0)
is uniformly bounded in k, and on the other hand Ex(s) — 0 when s — —S§. We fix
now S as above. It follows now that (up to a subsequence) w® converges weakly star
in L%(—S, 0; L*(R3)), weakly in L3(R3 x (—S,0)), weakly in L2(—S,0; H! .(R}))
and strongly in Lloc(Ri x (=8, 0)) to a function w € CO([—S$, 0]; L3(R3)) N L3 (R3 x
(=S, 0)) solving the Stokes system (7.5) with u_g defined in (7.4) as initial data. More-
over, v¥) being uniformly bounded in the local al energy norm, v® converges (up to

2 (R3)), Weakly in L2(—S,0; H (R})),

strongly in Lloc(Ri x (=S, 0)) and strongly in Cc([s,0]; L loc (R )), forall § > —S to

a local energy solution v of (7.6) with w® replaced by w. Notice that for all xo € R3 -
passing to the limit on £ in

a subsequence) weakly star in L>°(—S, 0; L

f R, 2 < E(s) < Cls +8) 7,
O(xo)
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with C uniform in k, where the last inequality is due to (7.8), yields
/ oG s < “minf/ R, P < Cls+ )%,
Hxo) k Uxo)

Therefore, v(-, s) converges strongly to O in L%OC(@) when s — —S§. To put it in

a nutshell, u defined by u = v + w is a local energy weak solution with initial data
u_g € L3(R3) c r? (Ri) in the sense of Definition 1.1. Theorem 2 now implies that

0
sup sup/ |1?Rﬁ(~,s)|2+/ / [9g Vil|*
s€(=5,0) pez3 YU -s JUm)

0 3 0 , %R_m
+</f |z9Rﬁ|3) +<// |z9m§|2> =0,
-s JO®) s JOm

for all § > —S. Estimate (7.9) is the key point of the proof and the main contribution of
our work for the case of R3.

It remains to prove that u vanishes at final time, i.e. u(-, 0) = 0. This is standard
and could have been done directly without relying on the decomposition of «® into
v® + w®  We first remark that (7.1) implies that

(7.9)

(-, T)||L3(]R§r) <M, (7.10)

where M is the constant in (7.1). Indeed, up to a subsequence u (-, #;) converges weakly
in L3(R3) to % € L3(R?) and

1 1
3 3
(/ |ﬁ|3) §1iminf(/ |u(.,zk)|3> <M.
Ri k—o00 Ri

We show now that &' = u(-, T'). Indeed the global in time weak Leray solution u satisfies
the following weak continuity property: for all ¢ € C2° (Ri)3,

/ u(o,tk)~go—>/ u(-,T) ¢, k— oo. (7.11)
R3 R3
Therefore, for all ¢ € C2° (]Ri)3,

/ (u(uT)—i)-(p‘
%)

/ @G T)—uC.n)) ¢
R}

< +

/M(uc,m—ﬁ) -w‘ =0,

where the first term goes to zero by the continuity property (7.11), and the second term

goes to zero thanks to the weak convergence in L3(]R§r). This concludes the proof of

(7.10). The second observation is that due to the strong convergence of u® to i in
9

CO(1s.01: Ly,

loc (11@_)) for all 5 > —S, we have in particular, for alla > 0

k— _
/ u® (y, 0)|dy =3 li(y, 0)|dy. (7.12)
B(0,a)NR3} B(0,a)NR3
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Let a > 0. We thus infer from

1
1 3
> u® (v, 0)ldy < (/ G, T)|3dx>
as JB0,a)nR3 B(0,x;a)NR3

that ‘% fB(o,a)m]Ri lu(y, 0)|dy = 0, where we used (7.12) to pass to the limit in the left
hand side, while we used (7.10) to pass to the limit in the right hand side.

Step (ii): Liouville-type result. The goal of this section is to show that # = 0 in Ri X
(—S, 0). We just emphasize the main steps of the proof. The arguments have already
been written in details for the half-space in [5, end of Section 5]. They are not very
different from the arguments in [8,31].

First, we show that u = O in (Ri\B(O, 2R)) x (=S, 0) for some large R. The key for
this is the decay estimate (7.9). From this we know that u is smooth Ri\B(O, R) thanks
to the e-regularity theorem, Theorem 3 above. This gives bounds in L*° ((Ri\B(O, R)) x
(—S,0)) on u and its first-order spatial derivatives (in fact on derivatives at any order,
but this is not needed). This in turn, allows to apply the backward uniqueness theorem
[8, Theorem 5.1] on the vorticity @ = V x i, noticing in addition that

19,0 — Aw| < C(|Vo| + o)) (7.13)

and w(-,0) = 0. Hence,w = O on (Ri\B(O, 2R)) x (=S, 0).Fixnows € (—S§, 0). From
V-u = 0and w = 0 outside B(0, 2R), we know that Au(-,s) = 0. Hence, u(-, s) is
analytic on Ri\B(O, 2R). Moreover, we already know that i (-, s) vanishes on BRi. Asin
[5], we easily get that d3u(-, s) = 0 on BRi\B(O, 2R), and forall k € N, Vkﬁ(-, s)=0
on aRi\B(O, 2R). So we can extend i (-, s) by symmetry on R*\ B(0, 2R). Since ii(-, 5)
is analytic and vanishes at any order on aRi\B(O, 2R), we get by unique continuation
that i(-, s) = 0 on R3\ B(0, 2R) for almost every s € (—S,0).

The second step consists in showing that u is zero everywhere on ]Ri x (—S,0).
This follows from localizing in the ball B(0, 4R) N Ri. Let D be a smooth C*° domain
such that B(0,3R) N R}r C D C B(,4R) N Ri. Then u solves the Navier—Stokes
equations with no-slip boundary condition on d D since we know that u vanishes outside
D. For almost all so € (=S, 0), Vii(, so) € L2(D), so that by the classical theory of
the Navier—Stokes equations, 0;u, V2ii and V p belong to L2(D x (sg, so + &), for
some 8y > 0. Regularity for linear systems then implies bounds on V¥i for k = 0, 1
in L°(B(0,4R) N Ri) X (8o + &, 5o + 8o — k), for some tiny ¥ > 0. Hence, because
of the previous bounds and noticing furthermore that (7.13) holds and that w = 0 on
(B(0,4R)\B(0,2R)) O}Ri X (So+k, So+80—kK ), we can apply unique continuation across
spatial boundaries [8, Theorem 4.1] to get w = 0 on B(0, 4R) ﬁRi X (so+K, S0+80—K).
This being true for almost every sg € (—S, 0), we eventually get w = 0.

It remains to conclude that i = 0. For almost every s € (—S, 0), (-, s) = 0 so that
Aiu(-,s) = 0in D. Moreover, u(-, s) = 0 on d D. Therefore, u(-, s) = 0 in D, hence in
Ri, which concludes the proof of Step (ii).

Step (iii): end of the proof. We claim that there exists p, > 0 such that

1 0
= (1l +1p13 )dxdr < e, (7.14)
Pic J=p} B, p)NRE

where ¢, > 0 is the constant given by the e-regularity theorem, Theorem 3. Our goal
in this step is to prove this claim. From Step (ii) we know that # = 0 on Ri x (8, 0] for



Local Energy Weak Solutions for the Navier—Stokes Equations 573

8 € (—S, 0). This fact combined with the strong convergence of u® to i in LZ”OC (]RT?r X
(=S, 0)) gives that for k sufficiently large, for all p < VS s

1 0 3 1 (0 03 x
—2/ f luPdxdt = —2f / u®Pdyds < =.
Ak0)? J—Gup)? JBO, 1 p)NRE 07 Jp2 JB0,p)nR3 3

The pressure part is slightly more difficult to handle. Indeed, we do have bounds on
spatial derivatives of the pressure, thanks to results of Sect. 2. What we are lacking are
bounds on time derivatives of the pressure in order to get strong convergence of the
3 R
pressure in L 170 . (R3 x (=S, 0)). The point is whether this is true or not, we do not need
the pressure to converge strongly. Based on the work of Sect. 2, we can decompose the
pressure p® associated to u™ into a local part, which will be controlled by the local
L3 norm of u, and a linear and a nonlocal part, for which the scale invariant quantity in
(7.14) will be small. According to (2.18), we decompose p® as follows

1 ® @y ® 1 ® &y *
loc nonloc

k
p® =pi+p
From the semigroup estimates [26, Proposition 5.3], we immediately get that

(OF < C(S+5) Hu® (. _s
P Cs LB, Hx(=s,0) = CS+8) 73 [u™C, =)l 2 @3
_3
<CS+9) HuM =9l gs),

so that for all § > —S, there is a constant C (8, S) < o0, uniform in k, such that

1P o )l oo ®x(_5.0y = C(8, ). From Proposition 2.3, we readily have the follo-

wing L* bound: there is a constant C(S) < oo, uniform in k, such that

®) g
P2 2| oo (B0, 1) x (= 5,00 < C(S).

Therefore, for all p < min(1, ﬁ)’

! /0 / 1pii( )17 + [ p"S% |3 dxdt
(-, 8)]2 + X
MP)? J=upy2 JBO A p)ARE b Pronioc

L k 3 0 gy ® 3 0
: _2/ / 1Py o2+ Pl 2t | 2dyds < Cp 25 0.
P” J—p2 JB(0,p)NR}

It remains to handle the local part of the pressure. For this we proceed slightly differently
than in the proof of Proposition 2.2. Indeed (this idea is taken from [5, display (5.5)])

we estimate Xfu(k) - Vu® in the slightly energy subcritical space Lit (Ri x (=S, 0))
instead of L2 (—S, 0; L3 (R3)). We have

11

0 2k B2 \ 7
/ </ |X4u()-Vu()|lldy> ds
-5 \JR3

3 3
k)2 k)
< OV g gz, i 14 s o2, o)

uloc

1
(k) 4
175 B (0.5)x (—5.0))°
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Hence, reproducing the estimates of the proof of Proposition 2.2, we obtain for all

p < min(1, v/S)

L uPgu® 3 1
) (k) 3
— 3 -
p* fpz /B(O P)NR3 Proc = 12dyds < Clul s 0.5y 5.0 (7.15)

with C uniform in k. The right hand side of (7.15) goes to 0 when k — oco. In the end,
we get that for p sufficiently small and & sufficiently large, we have

1 0 3 3 3
ol Y RN R IO LRl LR IS
—(Akp SAkP +
(7.16)

which proves the claim. By (7.14) and Theorem 3, we conclude that u is smooth in
B(0, p) NRY x (—p3,0). O

Appendix A: Auxiliary Tools

A.l The Leray projector in the half-space. In this appendix, we consider the case of
arbitrary dimension d > 2. Using the formulas of [26], we have forall f, g € C° (Rﬂf),

(PV-(f®8) (@ za) =V - (f ® &) +da(fag) — V'(faga)
V/ oo
+ —1/ [P(lza — yal) + P(za + y)IV' @ V' - (f' ® ¢) (2, ya)dya
2(-AN2 Jo

(_A/)%V/ o ,
L — fo [P(lza — yal) + P(za + ya)l fuga(z', ya)dya
v/ Zd / / / /
72 ), P(zg — y))V' - (fag + 84, ya)dya
! o° / / ! /
5 P(ya —za)V' - (fag + [ 8a)('s ya)dya

2d
V/ o0 I !/ ! !
+?/o P(zqg +ya)V' - (fag + [ 8a)(', ya)dya
(A.1)

for the tangential component and
(PV - (f® ), 2a) = =V - (fag)

| [
v /0 [Pca — ya) + PGa + 30l (V ® V' - (f ® 8) + A (faga)) (' ya)dya

1 o0
-3 / [P(ya —z2a) = Pza +y)] (V' @ V' - (f ® g') + A'(faga)) (2, ya)dya
2d

(—A')2
2

/0 [P(za — yal) + PGa+ )1 V' - (fug' + F'e) (s vadya
(A.2)
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1
for the vertical component. Here P(-) = e~ (292" denotes as usual the Poisson semi-
group. Hence, it appears that the operator PV- can be decomposed as the sum of the
following two types of terms:

(v @ w) (type A)

for some @ € {1,...d — 1}, and
o
mo(DHV' ® V// [P(Iza — yal) + P(za + ya)l v ® wdya, (type B)
0

where m(D’) is a (tangential) Fourier multiplier homogeneous of order 0, which may

. . . _v. 1
be a matrix. We have used in particular the formula v V,/ = (—A’)Z to see that every

(-an?

term in (A.1) can be put in this form.
We show the following lemma on the estimate of the nonlocal terms (type B) in the
Helmholtz-Leray projection.

2

loc (Rf), we have the following decomposition

Lemma A.1. Forany v, w € L

(mo(D/)V/ ® V//o [P(Iza — yal) + P(za + ya)]1 (1 — Xf)v ® w(-, yd)d)’d> @)
=Bi1(Z,z20) + V' @ V'Ba(Z, z4).

Moreover, both 31 and B, belong to L*°((0, c0); L};loc (R=1YY and we have the follow-
ing bound:

1By (-, Zd)”Lleoc (RA—1y +1B2(, Zd)”LIIAM (Rd-1)

’ 2!
,Z 84

<
= C”v”Lilm(Rﬂ)”w”Lgloc(Rﬂ)
Jfor almost every z4 € (0, 00) with a constant C(d) < oo.

Remark A.2. In the paper [26, Proposition 6.3] we have introduced another decomposi-
tion of the terms (type B) of the Helmholtz—Leray projection. Above, we have suggested
another decomposition, which based on a splitting of the integral in the vertical variable
(see proof below), rather than on splitting of low and high frequencies as in [26]. Notice
that here this rough splitting is enough, since we are only considering the large scales,
while in the aforementioned paper, we were considering both small and large scales.

Proof of Lemma A.1. Below mq(D') stands for a tangential Fourier multiplier homoge-
neous of order 0 which may change from line to line. Let us first concentrate on the part
involving P(zq4 + y4). The part involving P(|zg — yq|) will be sketched below. So first
we aim at estimating

(MO(D/)V/ ® V//O P(zg+ya) (1 = xDv@w(, yd)dyd> (@)
= <mo(D’)V’ ® V’/] P(zg+ya)(1 — x)v @ w(., )’d)d)’d) ()

1
+V' eV (/O mo(D")P(zg + ya)(1 — xHv @ w(, yd)dyd) ()

=: Bi(Z,za) + V' ® V' Ba2(Z, za).
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In order to take care of the singularity near oo and y; = 0, we handle differently B and
By.Lety € (0, 1). For By, the idea is to put the derivatives on the Poisson kernel. This
gives,

Bi(Z, z4) = (/1 mo(DHYV' @ V'P(zq +ya)(1 = x)v @ w(, yd)dyd> @),

with y € (0, 1) fixed. We remark that for almost all y; € (1, 00),

Imo(D)V' ® V'Pzg +ya)(1 — xDv @ wl. ¥l gty
uloc,z

IA

C”mO(D/)V/ Q@ V'P(zq + yd)”LL(Rde)HU ® w(, Yd)“Lll (RA=1)

IA

(Zd + yd)2 ” 'U(', J’d) ”Liloc y (Rdfl) ”w(» }’d) ||L5[oc,z/(Rd71).

We have also used the fact that for any tangential Fourier multiplier my (D) homoge-
neous of order @ > —2, for all (y/, ;) € RZ, the kernel P(y’, y4) associated to the
Poisson semigroup P(y,) satisfies the bound

Cya
Ime(DYP(Y', ya)| < —————,
“ (ya + |y 4+

with a constant C(d) < oo. This bound on fractional derivatives of the Poisson kernel
is probably well-known. It can be easily proved by using Lemma 3.1 in [26]. Thus, for
almost every z4 € (0, 00)

H/; mo(D")V' & V'P(z4 + ya)(1 — x)v ® w(-, ya)dyq

1 d—1
Luloc,z/(R )

=

— ||V w .
1+24 I ”Lﬁlat(Ri)” ”Lilac(Ri)

As far as Bj is concerned, we have

1
By(Z\ 2, 5) = ( /0 mo(D')P(zq +ya)(1 — x2)v ® w(, yd)dyd> @)

We have for almost all y; € (0, 1),

Imo(D)Pza+ya)(1 = X0 @ wl, ¥l oy

IA

Cllmo(D)Pza + )l a1y |1 = XD @ w3l (gay

A

< Cllv(, yd)”[‘ﬁlocyz/(ﬂ{dfl) lw(, yd)ll]‘iloc,z_’ (Rd—1)-

In the end, for almost every z; € (0, 00),

1
H/O mo(D")P(zq + ya)(1 — x)H)v @ w(Z', ya)dyq

Ll J(Rd—l)

uloc

< Clv ||L510£(Ri) llw ”LZW(Rf)-
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We outline now how to deal with the part involving P(|zg — yg|). It is handled in a
similar way as the part involving P(z4 + y4). We split the integral in y; into

zq4—1 2d zq+1 00
/ +/ +/ +/ (A.3)
0 z4—1 2d zq+1

and we deal with the first and the fourth integral similarly to By, while the second and
the third are handled as B;. This concludes the proof of the lemma. O

A.2. A commutator lemma for the Helmholtz—Leray projection. The following lemma
is probably well-known, even in the half-space, but we could not find a reference. We
state and prove it for the sake of completeness.

Lemma A.3. Leta € W"OO(R‘i; R) a Lipschitz function. Then, for all 1 < p < oo, the
commutator [a, P] := aPP —P(a-) is bounded from LP(R‘i) to L4 (Rﬁ) with qi = % — %.
Moreover, for p, q and f as above,

a. P1f1l gmey < ClIVallLell fll Ly we)-
Proof. Let f € LP(RY). By writing f and af as
f=Pf+VP, af =Paf)+VO,
we see that p and g solve the following Neumann problems on Rf:
—AP=V.f inRY
{ 4P = fy on dRY
and
~AQ=V-(af) inR
[8dQ:afd on 9RY.

Hence, we can use the Neumann function N for the half-space to represent P and Q.
This gives, for all x € R?

P(x) = /d N(&' =2 x4, 20)V - (2, za)dZ dzq,
R

and
0(x) = /R NG =52V - @) ) d
Hence,
aVP-VQ = - fR VIN G — 2 xa. 2a) @(x) — a(2) £ (Q)dz.

This yields the result by classical estimates on singular integral, since VN (x — 2/, x4,
z)(a(x) —a@)| < ClValp=lx -z~ o
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A.3. Characterization of Lr (Ri).

uloc,o

Lemma A4. Let | < p < o0. Let Vg be the cut-off used in Theorem 2. Then

‘cgloc,a(Ri)
={rell, . RH|divf=0inR, f3=00ndR3, Jim RSl ) =0}.

(A4)

Proof. The inclusion C is trivial in (A.4). It suffices to show the inverse inclusion. The
argument is almost parallel to the whole space case proved in Kikuchi-Seregin [21]. Let
felL” (R3)3besuch that

uloc

div f =0in Ris f3 =0on 3Ri, lim ”ﬁRf”Lp ®3 = 0.
R—o0 uloc "+

Let {B;} be the collection of open cubes in Ri such that |B;| = 1, Ri = U;Bj, and
any Bj, intersects with at most 10 numbers of the other B;. Let {¢;} be the partition

of unity subordinate to {B;}: ¢; € CSO(JRT}_), suppg; N Ri C Bj, and Zj pj =1lin
Ri. Let xz € CSO(R3), L > 1, be a cut-off such that y; = 1 for |x| < L, xz = 1 for

Ix| > 2L, and || V¥ x1 ||p < Cix L~ for each k. Let vi € Wol’p(Bj)3 be the solution to
the divergence problem

v-v{=<pjf-vXL—/ i f-Vxidx in Bj, (A.5)

Bj

satisfying

lvzlwirs;) < Cllgi f - Ve —/ @i f - VxrdxllLes))

J
C
< Z”f”LP(Bj)-
Here, C is independent of L and j. Set
v = Z U;‘,
J
which satisfies

V.vp=f-Vxr in Ri, ”L|6Ri =0, suppuvr is compactin Rf_,

and
j C
el @3y = Csuplivgliers) < lefllLP(Bj).
j
Finally, we set

up = xLf —vr,

which satisfies V- u; = 0in Ri anduy 3 =0on E)Ri in the sense of generalized trace,
and the support of u, is compact, i.e., uy, € L? (Ri). It is easy to see that
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Llimoo If— ML”LL’IM(RJE) = Llimoo (”(1 - XL)f”Lf;]M(Ri) +llvr ||L510L-(R§r)) =0.

Finally, since L5 (R3) is the closure of C§° (R3) in LP(R3)® «— LP (R3)3, we con-

uloc

clude that the right-hand side of (A.4) is included in its left-hand side. The proof is
complete. O
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