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Abstract: The purpose of this paper is to prove the existence of global in time local en-
ergy weak solutions to the Navier–Stokes equations in the half-spaceR3

+. Such solutions
are sometimes called Lemarié–Rieusset solutions in the whole space R3. The main tool
in our work is an explicit representation formula for the pressure, which is decomposed
into a Helmholtz–Leray part and a harmonic part due to the boundary. We also explain
how our result enables to reprove the blow-up of the scale-critical L3(R3

+) norm obtained
by Barker and Seregin for solutions developing a singularity in finite time.

1. Introduction

This paper is devoted to the proof of existence of local energy weak solutions to the
Navier–Stokes equations in the half-space{

∂t u + u · ∇u − �u + ∇ p = 0, ∇ · u = 0 in (0, T ) × R
3
+,

u = 0 on (0, T ) × ∂R3
+

(1.1)

for initial data u0 locally uniformly in L2 and divergence-free. The study of weak finite
energy solutions to (1.1) with initial data u0 ∈ L2

σ (�), where � can be for instance a
bounded domain, R3 or R3

+, has a long history which goes back to the seminal works of
Leray [24] and Hopf [17]. The study of infinite energy solutions is much more recent. It
is interesting in its own right since one can study nontrivial dynamics generated by the
solutions themselves and not driven by a source term. Let us just mention the latest works
of Abe and Giga [1–4] about Stokes and Navier–Stokes equations in L∞, of Gallay and
Slijepčević [12] about boundedness for 2D Navier–Stokes equations and of Maremonti
and Shimizu [27], Kwon and Tsai [22] about global weak solutions with initial data non
decaying at space infinity.

We are interested in a special kind of infinite energy solutions, so-called local energy
weak solutions. For these solutions the energy is locally uniformly bounded. This notion
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of solutions has been pioneered by Lemarié–Rieusset [23] in the whole space R3, and
later slightly extended by Kikuchi and Seregin [21]. Our goal is to extend the notion of
solution to the half-spaceR3

+ and to prove local in time as well as global in time existence
results. This answers an open problem mentioned by Barker and Seregin in [5, Section
1]:

Unfortunately, and analogue of Lemarié–Rieusset type solutions for the half-space
is not known yet. In fact it is an interesting open problem.

The class of local energyweak solutions,whichwill bemade precise inDefinition 1.1,
is very useful, even for the study of finite energyweak solutions to (1.1), so-called Leray–
Hopf solutions, for at least three reasons.
The first reason is that they satisfy a local energy inequality. In particular, the solutions
are suitable in the sense of Caffarelli, Kohn and Nirenberg [6,25], so that we can apply ε-
regularity to them. The half-space analogues of [6,25], corresponding to the ε-boundary
regularity, have been worked out in [32,34,35].
The second reason is that local energy weak solutions appear as limits of rescaled
solutions of the Navier–Stokes equations. This is the case for instance when studying the
local behavior of a Leray–Hopf solution near a potential singularity. The energy being
supercritical in 3Dwith respect to theNavier–Stokes scaling uλ(y, s) = λu(λy, λ2s), the
energy blows-up when zooming. The limit object is still a solution of the Navier–Stokes
system, not in the finite energy class, but in the local energy class.
Finally, the theory of local energy solutions plays also an important role in the seminal
work of Jia and Šverák [19] about the construction of forward self-similar solutions with
large initial data. This work and the subsequent studies [16,20] represent a big progress
toward understanding non-uniqueness of Leray–Hopf solutions.

Combining the features of the local energyweak solutions emphasized in the previous
paragraph makes them powerful objects to study, for instance, blow-up of scale-critical
norms near potential singularities. In this way, Seregin [31] was able to improve the
celebrated result of Escauriaza, Seregin and Šverák [9]. Seregin proved that: if a weak
finite energy solution u to (1.1) in R

3 has a first singularity at time T , in the sense that
u is smooth in the time interval (0, T ) and that the L∞ norm of u is infinite in any
parabolic cylinder B(x0, ρ) × (T − ρ2, T ), for fixed x0 ∈ R

3 and any ρ > 0, then

‖u(·, t)‖L3(R3) −→ ∞ as t → T − 0.

One of our objectives is to show that the solutions we construct make it possible to prove
the blow-up of the L3 norm in the case of the half-space R

3
+ following the scheme in

[31]. Hence, we will recover the result of [5, Theorem 1.1] of the blow-up of the L3,q

norm 3 ≤ q < ∞, in the case q = 3.
The content of this paper was summarized in the review article [28]. In particular,

our notion of local energy weak solutions is compared to the notion of weak solutions
in the half-space appearing in the work of Maremonti and Shimizu [27].

1.1. Definition of local energy weak solutions. Let us first recall the definition of loc-
uniform Lebesgue spaces: for 1 ≤ q ≤ ∞,

Lq
uloc(R

d
+) :=

{
f ∈ L1

loc(R
d
+) | sup

η∈Zd−1×Z≥0

‖ f ‖Lq (η+(0,1)d ) < ∞
}

.
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Let us define the space L p
uloc,σ (Rd

+) of solenoidal vector fields in Lq
uloc as follows:

Lq
uloc,σ (Rd

+) :=
{
f ∈ Lq

uloc(R
d
+)

d |
∫
R
d
+

f · ∇ϕ dx = 0 for any ϕ ∈ C∞
0 (Rd

+)

}
.

For more properties of these spaces of locally uniformly p-integrable functions, see [26]
and the references cited therein. We also refer to Lemma A.4, which characterizes the
functions of L2

uloc,σ as the functions L2
uloc,σ which have some (not quantified) decay at

infinity.
Here we state the definition of local energy weak solutions to (1.1) when the initial

data belongs to

L2
uloc,σ (R3

+) := C∞
c,σ

L2
uloc (R3

+).

Wewill actually be able to construct local energy weak solutions for data in L2
uloc,σ (R3

+).

Nevertheless, the introduction of the space L2
uloc,σ (R3

+) is useful since the solutions in
this class decay at spatial infinity, and hence, the parasitic solutions (the flows driven by
the pressure with linear growth) are automatically excluded in this class. Then we can
state the definition of solutions in a simple fashion compared with the solutions in the
class of nondecaying functions, where the structure of the pressure has to be included in
the definition of solutions (see Remark 1.2 below on this point). Although L2

uloc,σ (R3
+)

is strictly smaller than L2
uloc,σ (R3

+) the study in this class has an important application

to the blow up criterion of solutions to (1.1) in L3, which will be discussed in Sect. 7.

Definition 1.1. Let T ∈ (0,∞] and QT := (0, T ) × R
3
+. A pair (u, p) is called a local

energy weak solution to (1.1) in QT with the initial data u0 ∈ L2
uloc,σ (R3

+) if (u, p)
satisfies the following conditions:
(i) We have u ∈ L∞(0, T ;L2

uloc,σ (R3
+)) if T < ∞, u ∈ L∞

loc([0, T );L2
uloc,σ (R3

+)) if

T = ∞ and p ∈ L
3
2
loc((0, T ) × R

3
+), and

sup
x∈R3

+

∫ T ′

0
‖∇u‖2

L2(B(x)∩R3
+)
dt + sup

x∈R3
+

(∫ T ′

δ

‖∇ p‖
3
2

L
9
8 (B(x)∩R3

+)
dt

) 2
3

< ∞ (1.2)

for all finite T ′ ∈ (0, T ] and δ ∈ (0, T ′). Here B(x) is the ball of radius 1 centered at x .
(ii) The pair (u, p) satisfies

∫ T

0
−〈u, ∂tϕ〉L2(R3

+)
+ 〈∇u,∇ϕ〉L2(R3

+)
− 〈p, div ϕ〉L2(R3

+)
+ 〈u · ∇u, ϕ〉L2(R3

+)
dt = 0

for any ϕ ∈ C∞
c ((0, T ) × R

3
+)

3 such that ϕ|x3=0 = 0.
(1.3)

(iii) The function t → 〈u(t), w〉L2(R3
+)
belongs toC([0, T )) for any compactly supported

w ∈ L2(R3
+)

3. Moreover, for any compact set K ⊆ R
3
+,

lim
t→0

‖u(t) − u0‖L2(K ) = 0. (1.4)
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(iv) The pair (u, p) satisfies the local energy inequality: for any χ ∈ C∞
c ((0, T ) × R

3
+)

and for a.e. t ∈ (0, T ),

‖(χu)(t)‖2
L2(R3

+)
+ 2
∫ t

0
‖χ∇u‖2

L2(R3
+)
ds

≤
∫ t

0
〈|u|2, ∂sχ2 + �χ2〉L2(R3

+)
+ 〈u · ∇χ2, |u|2 + 2p〉L2(R3

+)
ds.

(1.5)

Remark 1.2. (1) Our definition is close to the one used in [18,19], where the authors
defined local energy weak solutions in (0, T ) × R

3 which decay at spatial infinity and
they do not include the representation formula for the pressure. For T < ∞ one can also
define local energy weak solutions for initial data in L2

uloc,σ (R3
+). In this case one has

to replace the condition u ∈ L∞(0, T ;L2
uloc,σ (R3

+)) by u ∈ L∞(0, T ; L2
uloc,σ (R3

+)).
However, since the solutions in this class do not decay at all as |x | → ∞, the uniqueness
is violated even for smooth solutions unless one imposes some additional condition
on the pressure. This lack of the uniqueness is brought by the flows driven by the
pressure, called parasitic solutions. A typical way to exclude such parasitic solutions is
to assume in addition that the pressure∇ p is written as∇ p(t) = ∇ pHelm(t)+∇ pHar (t),
where for a.e. t ∈ (0, T ), ∇ pHelm(t) is defined as the solution to the Poisson equations
−�pHelm(t) = ∇·∇(u(t)⊗u(t)) inR3

+ and ∂3 pHelm(t) = 0 on ∂R3
+ which is expressed

in terms of (some derivatives of) the Newton potential, while ∇ pHar (t) is the harmonic
pressure which satisfies �pHar (t) = 0 in R3

+ and

lim
R→∞ ‖∇′ pHar (t)‖{|x ′|≤1,R<xd<R+1} = 0 for a.e. t ∈ (0, T ). (1.6)

This condition for the pressure is not needed for solutions in L∞(0, T ;L2
uloc,σ (R3

+)),
since the solutions in this class decay at spatial infinity, and thus, the parasitic solutions
are automatically excluded.
(2) The ε-regularity theorem holds for any local energy weak solutions in Definition 1.1.
This is not trivial since the regularity assumption for our local energy weak solutions
is not strong enough and therefore one has to show that any local energy weak solution
admits additional regularity so that the known ε-regularity theorem is applied. To this
end, a detailed study of the pressure term is required, which will be done in Sect. 2,
and we also need a uniqueness result (Liouville theorem) for the homogeneous Stokes
system obtained in our companion paper [26, Theorem 5]. This issue will be handled in
Sect. 3.
(3) According to (iv) in Definition 1.1, only test functions χ compactly supported in
space and time are allowed in the energy inequality (1.5). However, the continuity at 0
stated in point (iii) of Definition 1.1 allows to take test functions constant in time. Let

χ ∈ C∞
c (R3

+). For δ > 0, let η ∈ C∞(R) is a cut-off such that |η| ≤ 1, η ≡ 0 on

(−∞, 1) and η ≡ 1 on (2,∞). Then χδ := χ(η( ·
δ
) − η( T−·

δ
)) ∈ C∞

c ((0, T ) × R
3
+) is

an admissible test function in (1.5). Plugging χδ in (1.5), we let δ → 0. Only one term
really deserves some attention. We have∫ t

0

∫
R
3
+

|u|2∂s(χ2η( ·
δ
)2)dxds −

∫ t

0

∫
R
3
+

|u|2∂s(χ2) −
∫
R
3
+

|χu0|2dx

=
∫ t

0

∫
R
3
+

|u|2∂s(χ2)η( ·
δ
)2dxds −

∫ t

0

∫
R
3
+

|u|2∂s(χ2)η( ·
δ
)2dxds
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+
∫ 2δ

0

∫
R
3
+

|u|2χ2∂s(η( ·
δ
)2)dxds −

∫
R
3
+

|χu0|2dx
= o(δ).

Indeed, ∫ 2δ

0

∫
R
3
+

|u|2χ2∂s(η( ·
δ
)2)dxds −

∫
R
3
+

|χu0|2dx

= 2δ−1
∫ 2δ

0

∫
R
3
+

|u|2χ2η′( ·
δ
)η( ·

δ
)dxds −

∫
R
3
+

|χu0|2dx

= 2δ−1
∫ 2δ

0

∫
R
3
+

(|u(·, s)|2 − |u0|2)η′( ·
δ
)η( ·

δ
)χ2dxds

+
∫ 2δ

0
∂s(η( ·

δ
)2)

∫
R
3
+

|u0|2χ2dxds −
∫
R
3
+

|χu0|2dx,

where the first term in the right hand side goes to zero by the boundedness of the Hardy–
Littlewood maximal function on L∞ and the local strong convergence to initial data
(1.4), and the sum of the last two terms in the right hand side is zero. We hence obtain

‖(χu)(t)‖2
L2(R3

+)
+ 2
∫ t

0
‖χ∇u‖2

L2(R3
+)
ds

≤ ‖χu0‖2L2(R3
+)
+
∫ t

0
〈|u|2, ∂sχ2 + �χ2〉L2(R3

+)
+ 〈u · ∇χ2, |u|2 + 2p〉L2(R3

+)
ds.

(1.7)

This result will be used in Sect. 4.

1.2. Outline of our results. The main result of our paper is stated as follows:

Theorem 1. For any u0 ∈ L2
uloc,σ (R3

+) there exists a local energy weak solution (u, p)
to (1.1) in Q∞ with initial data u0.

This result states the global in time existence of local energy weak solutions in the
sense of Definition 1.1. It is the analog for the half-space of the theorem of Lemarié–
Rieusset [23, Theorem 33.1] and of Kikuchi and Seregin [21, Theorem 1.5] for the whole
spaceR3. Local in time existence of local energy weak solutions for data in L2

uloc,σ (R3
+)

is proved in Sect. 5, see Proposition 5.1.
Theproof ofTheorem1goes roughly as follows.The evolution startswith a roughdata

barely locally in L2, u0 ∈ L2
uloc. The local in time local energy weak solution obtained

thanks to Proposition 5.1 instantly becomes slightlymore regular, u(·, t0) ∈ L4
uloc,σ (R3

+)

for almost all t0 in the time existence interval. This allows to decompose the data u(·, t0)
into a large C∞

c (R3
+) part for which we have global in time Leray–Hopf solutions, and

a small part in L4
uloc,σ (R3

+) for which we have local in time existence of mild solutions
thanks to Proposition 7.1 in [26]. The difficult part of this reasoning is to transfer the
decay of the initial data u0 ∈ L2

uloc,σ to the solution u(·, t), i.e. to prove that not only

u(·, t0) ∈ L4
uloc,σ (R3

+) for almost all t0, but that actually u(·, t0) ∈ L4
uloc,σ (R3

+) for
almost all t0. This issue is already addressed in [23, Proposition 32.2] and [21, Theorem
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1.4] in the case of the whole space. We handle this question for R3
+. Our main result in

this direction is the following theorem, which holds under the assumption below. Let
T > 0 and δ > 0 be fixed.

Assumption 1.3. There exists AT,δ ≥ 1 such that for all u0 ∈ L2
uloc,σ (R3

+), for ev-
ery solution u to (1.1) in QT in the sense of Definition 1.1 with initial data u0, if
‖u0‖L2

uloc(R
3
+)

≤ δ then

sup
t∈(0,T )

sup
η∈Z3

+

∫
�(η)

|u(·, t)|2 +
∫ T

0

∫
�(η)

|∇u|2 +
(∫ T

0

∫
�(η)

|u|3
) 2

3

≤ AT,δ. (1.8)

Theorem 2. Assume that Assumption 1.3 holds. Then for all u0 ∈ L2
uloc,σ (R3

+), all weak
local energy solution u to (1.1) on QT in the sense of Definition 1.1 with initial data u0
satisfies

sup
t∈(0,T )

sup
η∈Z3

+

∫
�(η)

|ϑRu(·, t)|2 +
∫ T

0

∫
�(η)

|ϑR∇u|2

+

(∫ T

0

∫
�(η)

|ϑRu|3
) 2

3

+

(∫ T

δ

∫
�(η)

|p| 32
) 2

3 R→∞−→ 0, (1.9)

for all δ ∈ (0, T ), with ϑ the cut-off defined in Sect. 1.3 and ϑR := ϑ(·/R).

Explaining how to prove Theorem 2 leads us to the central results our work. The
starting point to get the decay estimate (1.9) is the local energy inequality (1.5) tested
against ϕ := ϑ2

Rχx0 , where χx0 is a cut-off supported around x0. Estimating the right
hand side of the energy inequality requires precise estimates for the pressure. Therefore,
a lot ofwork is devoted to studying the pressure of solutions in the sense ofDefinition 1.1.
The foremost novelty of our paper is to provide a decomposition of the pressure along
with estimates. In the whole space, the pressure solves

−�p = ∇ · (∇ · u ⊗ u) in R
3.

It is equal to the Helmholtz pressure of the Helmholtz–Leray decomposition. At least
formally, we can represent this pressure using the fundamental solution of −�. We then
decompose the integral into a local part and a nonlocal part. To handle the nonlocal part,
the point is that the pressure is defined up to a constant (possibly depending on time), so
that one can gain the additional integrability needed to estimate the large scales of the

data (which may not decay). For all x0 ∈ R
3, there exists a function cx0(t) ∈ L

3
2 (0, T )

such that for all (x, t) ∈ R
3 × (0, T ),

p(x, t) − cx0(t) = −1

3
|u(x, t)|2 + 1

4π

∫
B(x0,2)

K (x − y) · u(y, t) ⊗ u(y, t)dy︸ ︷︷ ︸
ploc

+
1

4π

∫
R3\B(x0,2)

(K (x − y) − K (x0 − y)) · u(y, t) ⊗ u(y, t)dy︸ ︷︷ ︸
pnonloc

,

(1.10)
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with K := ∇2( 1
|x | ), see [21,23]. This decomposition is then used to estimate

∫
R3 p∇

(ϑ2
Rχx0)u.
In the present work, we generalize the representation formula (1.10) to the case of

the R
3
+. Due to the boundary ∂R3

+, in addition to the Helmholtz pressure, a harmonic
pressure has to be taken into account. Indeed, the pressure solves{ − �p = ∇ · (∇ · u ⊗ u) in R3

+,

∂d p = γ |x3=0�u3 on ∂R3
+.

(1.11)

We are able to provide an explicit representation for the Helmholtz part of the pressure,
as well as for the harmonic part. Each pressure has to be splitted (as above for R3)
into a local part and a nonlocal part. It is the purpose of Sect. 2 to do this work. The
precise decomposition of the pressure is given in (2.18). Propositions 2.1, 2.2 and 2.3
are pivotal results in our work: the estimates for each pressure terms are provided there.
To our knowledge, such an extensive study of the pressure in a domain with boundaries
is new.We are able to provide explicit representation formulas. In this matter, we rely on
the results for the linear theory in R

3
+ obtained in the companion paper [26]. As a word

of conclusion, let us mention that this level of precision in the description of the pressure
can be achieved due to the special structure of R3

+, which allows to use the Fourier
transform in the horizontal direction and hence to obtain explicit formulas. In more
general domains (exterior domains, domains with unbounded curved boundaries), the
study of solutions with locally integrable data relies on mild assumptions on the pressure
which make it possible to rule out parasitic solutions. In this vein, see for instance the
works [1,3] for data in L∞

σ .

1.3. Notations. We gather some notations which are used recurrently in this paper. We
define �(x0) := x0 + (− 1

2 ,
1
2 )

d ∩ R
d
+ and for r > 0, r�(x0) := x0 + (− r

2 ,
r
2 )

d ∩ R
d
+.

Moreover, �′
(x0) := x ′

0 + (− 1
2 ,

1
2 )

d−1 ⊆ R
d−1 and �d(x0) := x0,d + (− 1

2 ,
1
2 ) ⊆ R.

The function χ ∈ C∞
c (Rd) stands for a non negative cut-off, equal to 1 on �(0) and 0

on 2�(0), and χr ∈ C∞
c (Rd) stands for a non negative cut-off, equal to 1 on r�(0) and

0 on (r + 1)�(0). We also let χx0,r = χr (· − x0). Finally, ϑ ∈ C∞(Rd) denotes a non

negative cut-off equal to 0 on �(0) and 1 on 2�(0)c. The notation P(·) = e−(−�′)
1
2 ·

denotes the Poisson semigroup. The notation mα(D′) stands for a tangential Fourier
multiplier homogeneous of order α, α > −d + 1 which may change from line to line.

1.4. Overview of the paper. The structure of the paper is as follows. First we derive
properties of the local energy weak solutions in the sense of Definition 1.1 (Sects. 2, 3,
4). Then, we investigate local in time and global in time existence results (Sects. 5 and
6). Eventually, we apply the results of the paper to investigate the blow-up of the scale-
critical norm L3 (Sect. 7). Let us now describe each section in more details. Section
2 is the foundation for the paper. The decomposition of the pressure, along with the
representation formulas and estimates are provided there. In Sect. 3 we give further
properties that all solutions in the sense of Definition 1.1 share. The goal is to show
that ε-regularity results apply for our class of solutions. In Sect. 4, we prove the crucial
result, Theorem 2 enabling to transfer the decay of the initial data u0 ∈ L2

uloc,σ to the
solution. Section 5 addresses the local in time existence of local energy weak solutions
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for data in u0 ∈ L2
uloc,σ . This result, combinedwith Theorem 2 about the spatial decay of

solutions makes it possible to prove Theorem 1 in Sect. 6. We eventually use Theorem 2
in Sect. 7 to prove the blow-up of ‖u(·, t)‖L3(R3

+)
when t → T , in case T < ∞ is the

time of the first blow-up for u. This result is stated in Theorem 4. In Appendix A.1 we
state results about the Helmholtz–Leray projection. Most of these results are taken from
the companion paper [26].

2. Pressure Estimates

Let x0 ∈ R
3
+ be fixed. Our goal is to get local estimates for the pressure p(x, t) of the

Navier–Stokes initial value problem (1.1) for x ∈ �(x0), in terms of the local energy
norm of the velocity u. For this purpose, let us consider the cut-off χ4 := χx0,4 , which
is defined in Sect. 1.3. We will also need to work with the cut-off χ2 := χx0,2 . The first
step is to decompose the solution u of (1.1) into a local part ux0loc with finite energy and
a nonlocal part ux0nonloc with locally finite energy. Most of time we drop the superscript
x0 in this section, because it is clear that the quantities depending on the cut-off χ4 or
χ2 depend on x0, which is fixed here. let (u, p) be any local weak solution to (1.1) with
initial data u0 in the sense of Definition 1.1. Let us denote by uli , u

u⊗u
loc , and uu⊗u

nonloc the
solutions of the following systems:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂t uli − �uli + ∇ pli = 0 in (0, T ) × R
3
+,

∇ · uli = 0,

uli = 0 on (0, T ) × ∂R3
+,

uli (·, 0) = u0,

(2.1)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂t u
u⊗u
loc − �uu⊗u

loc + ∇ pu⊗u
loc = −∇ · (χ2

4
u ⊗ u) in (0, T ) × R

3
+,

∇ · uu⊗u
loc = 0,

uu⊗u
loc = 0 on (0, T ) × ∂R3

+,

uu⊗u
loc (·, 0) = 0,

(2.2)

and the nonlocal part solves⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂t u
u⊗u
nonloc − �uu⊗u

nonloc + ∇ pu⊗u
nonloc = −∇ · ((1 − χ2

4
)u ⊗ u),

∇ · uu⊗u
nonloc = 0, in (0, T ) × R

3
+,

uu⊗u
nonloc = 0 on (0, T ) × ∂R3

+,

uu⊗u
nonloc(·, 0) = 0.

(2.3)
The couple (uli , pli ) is the solution to the Stokes system, (uu⊗u

loc , pu⊗u
loc ) is the local and

nonlinear part, and (uu⊗u
nonlocal , p

u⊗u
nonlocal) is the nonlocal and nonlinear part. These are

constructed asmild solutions which satisfy the integral representation formula. Formally
we have u = uli + uu⊗u

loc + uu⊗u
nonloc and p = pli + pu⊗u

loc + pu⊗u
nonloc for the solution (u, p)

to (1.1), which will be rigorously verified when (u, p) is a local weak energy solution
in the sense of Definition 1.1. For each system (2.2) and (2.3), we will split the pressure



Local Energy Weak Solutions for the Navier–Stokes Equations 525

into a Helmholtz part, which comes from the Helmholtz–Leray decomposition of the
source term, and a harmonic part, which is due to the boundary.

In this paragraph,we concentrate on the linear pressure pli .Weobtain a representation
formula and estimate it directly. Notice that the pressure pli is the solution of{ − �pli = 0 in R3

+,

∂d pli = γ |x3=0�uli,3 on ∂R3
+.

(2.4)

In other words, the Helmholtz part of the pressure is zero, so pli is equal to its harmonic
part. The representation formula for pli follows by inverse Laplace transform from the
formula for the pressure of the resolvent problem given in [26, Section 2]. Hence, it is
formally written as

pli (x, t) := 1

2π i

∫
�

eλt
∫
R
3
+

qλ(x
′ − z′, x3, z3) · u′

0(z
′, z3)dz′dz3dλ

= 1

2π i

∫
�

eλt
∫
R
3
+

qλ(x
′ − z′, x3, z3) · χ4u

′
0(z

′, z3)dz′dz3dλ

+
∫

�

eλt
∫
R
3
+

qλ(x
′ − z′, x3, z3) · (1 − χ4)u

′
0(z

′, z3)dz′dz3dλ

=: pu0loc(x, t) + p̃u0nonloc(x, t).

(2.5)

Here
qλ : R

2 × (0,∞) × (0,∞) → C
2 (2.6)

is the harmonic pressure kernel for the resolvent problem, and � = �κ with κ ∈ (0, 1)
is the curve

{λ ∈ C | |arg λ| = η, |λ| ≥ κ} ∪ {λ ∈ C | |arg λ| ≤ η, |λ| = κ} (2.7)

for some η ∈ (π
2 , π). The local pressure pu0loc is certainly the most subtle term to analyze.

Because χ4u0 is barely in L2, it is not regular enough to be in the admissible class for
the initial data of [15]. On the other hand, due to the decay properties of the kernel qλ

the representation of p̃u0nonloc is not well defined. This however motivates the following
definition of the harmonic nonlocal pressure as follows:

pu0nonloc(x, t) := 1

2π i

∫
�

eλt
∫
R
3
+

qλ,x,x0(z
′, z3) · (1 − χ4)u

′
0(z

′, z3)dz′dz3dλ, (2.8)

where
qλ,x,x0(z

′, z3) := qλ(x
′ − z′, x3, z3) − qλ(x

′
0 − z′, x0,3, z3). (2.9)

Then (2.8) is well-defined for nonlocalized data. Then, since pli can be defined modulo
constants, instead of (2.5), we define pli as

pli (x, t) =: pu0loc(x, t) + pu0nonloc(x, t). (2.10)

For the local pressure in (2.2), we first decompose the source term by using the
Helmholtz decomposition. We have

∇ · (χ2
4
u ⊗ u) = P∇ · (χ2

4
u ⊗ u) +Q∇ · (χ2

4
u ⊗ u) = P∇ · (χ2

4
u ⊗ u) + ∇ pu⊗u

loc,H .
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Notice that there exists a constant c < ∞ such that

pu⊗u
loc,H (x, t) := cχ2

4
u ⊗ u(x, t) +

∫
R
3
+

∇2
z N (x ′ − z′, x3, z3)χ2

4
u ⊗ u(z′, z3, t)dz′dz3,

(2.11)
where N is the Neumann function for the half-space. We now denote by pu⊗u

loc,harm the
remaining (harmonic) pressure, defined in the following way

pu⊗u
loc,harm := pu⊗u

loc − pu⊗u
loc,H . (2.12)

By definition the pair (uu⊗u
loc,harm, pu⊗u

loc,harm) solves a system akin (2.2) but with source

term−P∇ · (χ2
4
u⊗u). By the Poincaré–Sobolev–Wirtinger inequality (see [11, Section

II.6]) there exists a constant c(t) ∈ R and a constant C < ∞ such that

‖pu⊗u
loc,harm − c(t)‖

L
3
2 (0,T ;L 9

5 (R3
+))

≤ C‖∇ pu⊗u
loc,harm‖

L
3
2 (0,T ;L 9

8 (R3
+))

. (2.13)

Since pu⊗u
loc,harm is defined up to a constant, we assume, without loss of generality that

c = 0. The difficulty for this pressure terms comes from the fact that one has to estimate
singular integral operators in space and time. When possible, we will directly rely on
maximal regularity results for the Stokes system in the half-space, see [15].

Let us now spend some time explaining how to get a formula for the nonlocal pressure
pu⊗u
nonloc(x, t) at a point x ∈ �(x0) making sense for non decaying data. The difficulty

comes from ensuring that the kernels in the representation formulas have enough decay
at infinity to make sense for non decaying data. Such issues are of course already present
in the whole space. Nevertheless, the case of the half-space is more involved for two
reasons: (i) besides the Helmholtz pressure, one has to analyze a harmonic pressure
driven by the trace of �u3 on the boundary ∂R3

+, (ii) the expression for the Helmholtz–
Leray projection is more complicated, see (A.1). We decompose the pressure in (2.3)
into ∇ pu⊗u

nonloc = ∇ pu⊗u
nonloc,H + ∇ pu⊗u

harm , where pu⊗u
nonloc,H is the Helmholtz pressure and

pu⊗u
harm is the harmonic pressure due to the presence of the boundary ∂R3

+. The Helmholtz
pressure is given by the decomposition of ∇ · ((1 − χ2

4
)u ⊗ u) into

∇ · ((1 − χ2
4
)u ⊗ u) = P∇ · ((1 − χ2

4
)u ⊗ u) +Q∇ · ((1 − χ2

4
)u ⊗ u)

= P∇ · ((1 − χ2
4
)u ⊗ u) + ∇ pu⊗u

nonloc,H ,

where P is the Helmholtz–Leray projection in R
3
+ defined in [26, Section 6]. Hence

pu⊗u
nonloc,H is a solution of the following Neumann problem,

⎧⎨
⎩

− �pu⊗u
nonloc,H = ∇ · ∇((1 − χ2

4
)u ⊗ u) in R3

+,

∂d p
u⊗u
nonloc,H = ∇ · ((1 − χ2

4
)uu3) on ∂R3

+

which decays away from the boundary. Notice that pu⊗u
nonloc,H is defined up to a con-

stant pu⊗u,x0
nonloc,H (t). Using the Neumann function N for the half-space, we can express

pu⊗u
nonloc,H (x, t) + pu⊗u,x0

nonloc,H (t) as a singular integral with the kernel ∇2
z N . This kernel

has the critical decay 1
|x−z|3 , which is not enough to handle non localized data. Having

the constant depend on x0 and t makes it possible to gain additional decay of the kernel.
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Aspects related to the definition of the pressure for non decaying data have been investi-
gated intensively in [21], though in the case of the whole space R3. Here, we adapt their
ideas to the case of R3

+. Formally, we would like to choose

pu⊗u,x0
nonloc,H (t) :=

∫
R
3
+

∇2
z N (x ′

0 − z′, x0,3, z3)(1 − χ2
4
(z′, z3))u ⊗ u(z′, z3, t)dz′dz3.

Although this quantity is notwell defined because the kernel∇2
z N is decaying too slowly,

it motivates the following definition of the Helmholtz pressure

pu⊗u
nonloc,H (x, t) :=

∫
R
3
+

∇2
z Nx,x0(z

′, z3)(1 − χ2
4
(z′, z3))u ⊗ u(z′, z3, t)dz′dz3,

(2.14)

with

Nx,x0(z
′, z3) := N (x ′ − z′, x3, z3) − N (x ′

0 − z′, x0,3, z3). (2.15)

Formula (2.14) makes now sense for data u bounded in the local energy norm.
The harmonic pressure is the solution of the following Neumann boundary value

problem { − �pu⊗u
harm = 0 in R3

+,

∂d p
u⊗u
harm = γ |x3=0�uu⊗u

nonloc,3 on ∂R3
+.

(2.16)

For the harmonic pressure, the equation and the Neumann condition in the system (2.16)
are automatically compatible. The representation formula for pu⊗u

harm follows by inverse
Laplace transform from the formula for the pressure of the resolvent problem given in
[26, Section 2]. Again, notice that the pressure is defined up to some constant px0harm(t)
depending only on x0 and on time. As above for the Helmholtz pressure, the reason
for being of this constant is to ensure that we have enough decay at the large scales.
Formally, we would like to take

pu⊗u
harm(x0, t) := 1

2π i

∫ t

0

∫
�

eλ(t−s)
∫
R
3
+

qλ(x
′
0 − z′, x0,3, z3)

·
(
P∇ · ((1 − χ2

4
)u ⊗ u)

)′
(z′, z3, s)dz′dz3dλds,

where qλ and � are defined as above in (2.6) and (2.7), but due to the decay properties of
the kernel qλ this constant is not well defined. As in the case of pli , we therefore define
the harmonic pressure pu⊗u

harm as

pu⊗u
harm(x, t) := 1

2π i

∫ t

0

∫
�

eλ(t−s)
∫
R
3
+

qλ(x
′ − z′, x3, z3)

· χ2
2

(
P∇ · ((1 − χ2

4
)u ⊗ u)

)′
(z′, z3, s)dz′dz3dλds,

+
1

2π i

∫ t

0

∫
�

eλ(t−s)
∫
R
3
+

qλ,x,x0(z
′, z3)

· (1 − χ2
2 )
(
P∇ · ((1 − χ2

4
)u ⊗ u)

)′
(z′, z3, s)dz′dz3dλds

=: pu⊗u
harm,≤1(x, t) + pu⊗u

harm,≥1(x, t),

(2.17)
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where qλ,x,x0 is defined by (2.9). The formula (2.17) makes sense for non localized data,
and this argument again essentially relies on the fact that the pressure can be determined
up to constants.

To put it in a nutshell, we remark that we have formally decomposed the pressure p
in the system (1.1) in the following way

p := p(x0) = pli + pu⊗u
loc + pu⊗u

nonloc

= pu0loc + pu0nonloc︸ ︷︷ ︸
=pli

+ pu⊗u
loc,H + pu⊗u

loc,harm︸ ︷︷ ︸
=pu⊗u

loc

+ pu⊗u
nonloc,H + pu⊗u

harm,≤1 + pu⊗u
harm,≥1︸ ︷︷ ︸

=pu⊗u
nonloc

.

(2.18)

It is essential to keep in mind that every term in decomposition above depends on x0.
However, for two points x0 and x ′

0, the definition p(x0) − p(x ′
0) is a constant that depends

only on time. In Sect. 3 the decomposition (2.18) will be verified for any local weak
solutions in the sense of Definition 1.1. We aim now at estimating every term in the right
hand side of (2.18) in �(x0) for a fixed x0 ∈ R

3
+. The results are summarized in the

following three propositions.

Proposition 2.1 (Estimates for the linear pressure terms).There exists a constantC < ∞
such that for all t ∈ (0,∞),

t

log(e + t)
‖∇ pli (t)‖L2

uloc(R
3
+)

≤ C‖u0‖L2
uloc(R

3
+)

, (2.19)

t
3
4 ‖pu0loc(t)‖L2(�(x0))

≤ C‖u0‖L2(5�(x0))
, (2.20)

t
1
2 ‖pu0nonloc(t)‖L∞(�(x0)))

+ t
1
2 ‖∇ pu0nonloc(t)‖L∞(�(x0)))

≤ C‖u0‖L2
uloc(R

3
+)

. (2.21)

Let T > 0 be fixed. Notice that (2.20) implies that for all p ∈ [1, 4
3 ), there exists a

constant C(T ) < ∞ such that

‖pu0loc‖L p(0,T ;L2(�(x0)))
≤ C‖u0‖L2(5�(x0))

.

Moreover, for all δ ∈ (0, T ), there exists a constant C(T, δ) < ∞ such that

‖pu0loc‖L∞(δ,T ;L2(�(x0)))
≤ C‖u0‖L2(5�(x0))

.

Proposition 2.2 (Estimates for the local pressure terms). Let T > 0. There exists a
constant C(T ) < ∞ such that∥∥∥pu⊗u

loc,H

∥∥∥
L

3
2 (0,T ;L 3

2 (�(x0)))
+
∥∥∥pu⊗u

loc,harm

∥∥∥
L

3
2 (0,T ;L 3

2 (�(x0)))

+
∥∥∥∇ pu⊗u

loc,harm

∥∥∥
L

3
2 (0,T ;L 9

8 (R3
+))

≤ C
(
‖u‖2

L∞(0,T ;L2(5�(x0)))
+ ‖∇u‖2

L2(0,T ;L2(5�(x0)))

)
.

(2.22)

Proposition 2.3 (Estimates for the nonlocal pressure terms).Let T > 0 and 1 ≤ q < ∞.
There exist constants C(T ),Cq(T ) < ∞ such that for almost all t ∈ (0, T ),

‖pu⊗u
nonloc,H (·, t)‖L∞(�(x0))

+ ‖∇ pu⊗u
nonloc,H (·, t)‖L∞(�(x0))

≤ C‖u(·, t)‖2
L2
uloc(R

3
+)

,

(2.23)
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‖pu⊗u
harm,≤1(·, t)‖L∞(�(x0))

+ ‖∇ pu⊗u
harm,≤1(·, t)‖Lq (�(x0))

≤ Cq‖u‖2
L∞(0,t;L2

uloc(R
3
+))

,

(2.24)

‖pu⊗u
harm,≥1(·, t)‖L∞(�(x0))

+ ‖∇ pu⊗u
harm,≥1(·, t)‖L∞(�(x0))

≤ Ct
1
2 ‖u‖2

L∞(0,t;L2
uloc(R

3
+))

.

(2.25)

2.1. Estimates for the linear pressure terms: Proof of Proposition 2.1.

Proof of estimate (2.19) for pli . As for the estimate of ∇ pli (t), we use the equation
∇ pli = −∂t uli + �uli and hence by Proposition 5.3 in [26] there exists a constant C
such that for all t ∈ (0,∞),

‖∇ pli (t)‖L2
uloc(R

3
+)

≤ ‖∂t uli (t)‖L2
uloc(R

3
+)
+ ‖�uli (t)‖L2

uloc(R
3
+)

≤ C log(e + t)

t
‖u0‖L2

uloc(R
3
+)

.

The result is proved. ��
We now turn to the estimate of pu0loc. Let us again emphasize that this is the term that

requires most care. Indeed we cannot rely of the maximal regularity of [15] since u0 is
no more than locally in L2. Therefore, we have to estimate the integral formula (2.10)
directly. We need to be careful so as to avoid dealing with singular integrals in time.

Proof of estimate (2.20) for pu0loc. The proof is based on a direct estimate of formula
(2.5). Applying Minkowski’s inequality, we have for fixed x3 ∈ �(x0),∥∥∥∥

∫ ∞

0

∫
R2

qλ(· − z′, x3, z3) · χ4u0(z
′, z3)dz′dz3

∥∥∥∥
L2(�′

(x0))

≤
∞∑
n=0

∫ n+1

n

∥∥∥∥
∫
R2

qλ(· − z′, x3, z3) · χ4u0(z
′, z3)dz′

∥∥∥∥
L2(�′

(x0))
dz3 (2.26)

Let x ∈ �(x0). Then we have∣∣∣∣
∫
R
3
+

qλ(x
′ − z′, x3, z3) · χ4u0(z

′, z3)dz′dz3
∣∣∣∣

≤ C
∫
R
3
+

e−|λ| 12 z3
(|x ′ − z′| + x3 + z3)2

|χ4u0|dz′dz3

≤ C
∫ ∞

0
e−|λ| 12 z3

∫
R2

1(−6,6)2(x
′ − z′)

(|x ′ − z′| + x3 + z3)2
|χ4u0(z

′, z3)|dz′dz3.

Then Young’s inequality for convolutions gives, for almost all z3 ∈ (0,∞),∥∥∥∥
∫
R2

1(−6,6)2(x
′ − z′)

(|x ′ − z′| + x3 + z3)2
|χ4u0(z

′, z3)|dz′
∥∥∥∥
L2
z′ (R

2)

≤
{

C | log(x3 + z3)|‖χ4u0(·, z3)‖L2
z′ (R

2) x3 + z3 ≤ 1
2 ,

C‖χ4u0(·, z3)‖L2
z′ (R

2) x3 + z3 > 1
2 .
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Now, combining this with (2.26), we obtain∥∥∥∥
∫ ∞

0

∫
R2

qλ(· − z′, x3, z3) · χ4u0(z
′, z3)dz′dz3

∥∥∥∥
L2(�(x0))

≤
∞∑
n=0

∥∥∥∥∥
∫ n+1

n

∥∥∥∥
∫
R2

qλ(· − z′, x3, z3) · χ4u0(z
′, z3)dz′

∥∥∥∥
L2(�′

(x0))
dz3

∥∥∥∥∥
L2(�3(x0))

≤ C
∞∑
n=1

∥∥∥∥
∫ n+1

n
e−|λ| 12 z3‖χ4u0(·, z3)‖L2

z′ (R
2)dz3

∥∥∥∥
L2(�3(x0))

+

⎧⎪⎪⎨
⎪⎪⎩

C

∥∥∥∥| log x3| ∫ 10 e−|λ| 12 z3‖χ4u0(·, z3)‖L2
z′ (R

2)dz3

∥∥∥∥
L2(�3(x0))

(x3 ≤ 1
2 ),

C

∥∥∥∥∫ 10 e−|λ| 12 z3‖χ4u0(·, z3)‖L2
z′ (R

2)dz3

∥∥∥∥
L2(�3(x0))

(x3 > 1
2 ).

(2.27)

We study each term in the sum in the right hand side of (2.27). Of course, most of the
terms in the sum on n are 0, due to the fact that χ4u0 is compactly supported. For n ≥ 1,
we have ∫ n+1

n
e−|λ| 12 z3‖χ4u0(·, z3)‖L2

z′ (R
2)dz3 ≤ e−|λ| 12 n‖χ4u0‖L2(R3

+)
.

Thus,

∞∑
n=1

∥∥∥∥
∫ n+1

n
e−|λ| 12 z3‖χ4u0(·, z3)‖L2

z′ (R
2)dz3

∥∥∥∥
L2(�3(x0))

≤ ‖χ4u0‖L2(R3
+)

∞∑
n=1

e−|λ| 12 n ≤ C

|λ| 12
‖χ4u0‖L2(R3

+)
.

As for the last term in the right-hand side of (2.27), the direct computation yields

the bound such as C |λ|− 1
4 ‖χ4u0‖L2(R3

+)
by using the Hölder inequality for the integral∫ 1

0 . . . dz3. In other words, for κ ∈ (0, 1) fixed, the right-hand side in (2.27) is bounded
by

C

(
1

|λ| 12
+

1

|λ| 14

)
‖χ4u0‖L2(R3

+)
≤ C

|λ| 14
‖χ4u0‖L2(R3

+)

for |λ| ≥ κ and a constant C(κ) < ∞, which is the situation in which we are interested;
see (2.7) for the choice of the curve � on which qλ will be integrated. We are now close
to the conclusion. Indeed,

‖pu0loc(t)‖L2(�(x0))

≤
∫

�

eRe(λ)t
∥∥∥∥
∫
R
3
+

qλ(x
′ − z′, x3, z3) · χ4u0(z

′, z3)dz′dz3
∥∥∥∥
L2(�(x0))

|dλ|
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≤
∫

�

eRe(λ)t

|λ| 14
|dλ|‖χ4u0‖L2(R3

+)

≤ Ct−
3
4 ‖χ4u0‖L2(R3

+)
.

The result is proved. ��
Proof of estimate (2.21) for pu0nonloc. We directly estimate the first term in the right hand
side of (2.17). The main huge simplification compared to the estimate for pu0loc comes
from the fact that (1− χ4)u0 is supported away from the singularity of the kernel at x0.
Minkowski’s inequality implies that,∥∥∥∥

∫ ∞

0

∫
R2

qλ,x,x0(z
′, z3) · (1 − χ4)u0(z

′, z3)dz′dz3
∥∥∥∥
L∞(�(x0))

≤
∞∑
n=0

∑
η′∈Z2

∥∥∥∥∥∥
∫ n+1

n

∫
�′

(η′)

e−|λ| 12 z3
(1 + |x ′ − z′|)3 · |u0(z′, z3)|dz′dz3

∥∥∥∥∥∥
L∞(�(x0))

≤ C |λ|− 1
2 ‖u0‖L2

uloc(R
3
+)

.

Hence, we have

‖pu0nonloc(t)‖L∞(�(x0)))
≤
∫

�

eRe(λ)t

|λ| 12
|dλ|‖u0‖L2

uloc(R
3
+)

≤ Ct−
1
2 ‖u0‖L2

uloc(R
3
+)

.

The estimate of ∇ pu0nonloc(t) is obtained in the same manner. This yields the result. ��

2.2. Estimates for the local pressure terms: Proof of Proposition 2.2.

Proof of estimate (2.22). The estimate for pu⊗u
loc,H is a consequence of the L3 bounded-

ness of singular integral operators. The proof of the estimate for pu⊗u
loc,harm is based on the

maximal regularity theory for the Stokes system of Giga and Sohr [15]. We recall that by
assumption pu⊗u

loc,harm satisfies (2.13) with c = 0. The pressure pu⊗u
loc,harm is the pressure

of the system (2.2) where the right hand side has been replaced by the divergence-free
field:

F := P

(
∇(χ2

4
)u ⊗ u

)
+ P

(
χ2
4
u · ∇u

)
. (2.28)

We recall that the Helmholtz–Leray projection P is bounded on Lq(R3
+) for 1 <

q < ∞. Hence, it is clear that the least regular term in (2.28) is P
(
χ2
4
u · ∇u

) ∈
L

3
2 (0, T ; L 9

8 (R3
+)). Therefore, we aim at controlling F in (2.28) in L

3
2 (0, T ; L 9

8 (R3
+)).

By (2.13) (with c = 0 by assumption) and estimate (2.22) of [15, Theorem 2.8] we then
have ∥∥∥pu⊗u

loc,harm

∥∥∥
L

3
2 (0,T ;L 3

2 (�(x0)))
+
∥∥∥∇ pu⊗u

loc,harm

∥∥∥
L

3
2 (0,T ;L 9

8 (R3
+))

≤ C
∥∥∥∇ pu⊗u

loc,harm

∥∥∥
L

3
2 (0,T ;L 9

8 (R3
+))

≤ C‖F‖
L

3
2 (0,T ;L 9

8 (R3
+))

.

Let us now estimate each term in (2.28). For the first one, Gagliardo–Nirenberg’s in-
equality implies
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(∫
R
3
+

|P(χ2
4
u · ∇u)| 98

) 8
9

≤ ‖χ4u(·, t)‖
L

18
7 (R3

+)
‖χ4∇u(·, t)‖L2(R3

+)

≤ C‖u(·, t)‖L2(5�(x0))
‖∇u(·, t)‖L2(5�(x0))

+ C‖u(·, t)‖
2
3

L2(5�(x0))
‖∇u(·, t)‖

4
3

L2(5�(x0))
.

Therefore,

∥∥∥P(χ2
4
u · ∇u)

∥∥∥
L

3
2 (0,T ;L 9

8 (R3
+))

≤ CT
1
6 ‖u‖L∞(0,T ;L2(5�(x0)))

‖∇u‖L2(0,T ;L2(5�(x0)))

+ C ‖u‖
2
3

L∞(0,T ;L2(5�(x0)))
‖∇u‖

4
3

L2(0,T ;L2(5�(x0)))

≤ C ‖u‖2
L∞(0,T ;L2(5�(x0)))

+ C ‖∇u‖2
L2(0,T ;L2(5�(x0)))

,

where C depends only on T > 0. We also have

∥∥∥P(∇(χ2
4
)u ⊗ u)

∥∥∥
L

3
2 (0,T ;L 9

8 (R3
+))

≤ CT
1
15 ‖u ⊗ u‖

L
5
3 (0,T ;L 5

3 (5�(x0)))

≤ CT
1
15 ‖u‖2

L∞(0,T ;L2(5�(x0)))

+ CT
1
15 ‖u‖

4
5

L∞(0,T ;L2(5�(x0)))
‖∇u‖

6
5

L2(0,T ;L2(5�(x0)))

≤ C ‖u‖2
L∞(0,T ;L2(5�(x0)))

+ C ‖∇u‖2
L2(0,T ;L2(5�(x0)))

.

This completes the proof. ��
Let us notice that from the proof we actually have slightly better integrability in space

for pu⊗u
loc,harm . Indeed,

∥∥∥pu⊗u
loc,harm

∥∥∥
L

3
2 (0,T ;L 9

5 (�(x0)))
≤ C

∥∥∥∇ pu⊗u
loc,harm

∥∥∥
L

3
2 (0,T ;L 9

8 (R3
+))

.

However, the exponent 3
2 in both time and space is enough for our purposes.

2.3. Estimates for the nonlocal pressure terms: Proof of Proposition 2.3. One key ad-
vantage of estimating the nonlocal part (versus the local part) of the pressure is that we
are away from the singularity. Hence, since the kernels in (2.17) have enough decay for
the integrals to converge for non localized data, we have some room. In particular, we
can put additional derivatives on the kernels by integrations by parts. We rely on the
decomposition for the Helmholtz–Leray projection given in Lemma A.1.
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Proof of estimate (2.23) for pu⊗u
nonloc,H . The Helmholtz pressure is estimated in the same

way as for the whole space. Indeed, the kernel decays as follows: for all x ∈ �(x0), for
all (z′, z3) ∈ R

3
+,∣∣∣∇2

z N (x ′ − z′, x3, z3) − ∇2
z N (x ′

0 − z′, x0,3, z3)
∣∣∣ ≤ C |x − x0|

|x − z|4 ≤ C

|x − z|4
with a constant C < ∞. Hence, for all x ∈ �(x0), for all t ∈ (0, T ),

|pu⊗u
nonloc,H (x, t)| ≤ C

∫
R3

|u ⊗ u(z, t)|
1 + |x − z|4 dz

=
∑
η∈Z3

1

1 + |η|4
∫
�(η)

|u(·, t)|2 ≤ C‖u(·, t)‖2
L2
uloc(R

3
+)

,

where we have extended u by 0 on R
3\R3

+ as usual. The estimate of ∇ pu⊗u
nonloc,H is

obtained in the same manner. The result is proved. ��
Proof of estimate (2.24) for pu⊗u

harm,≤1. Let us recall the formula

pu⊗u
harm,≤1(x, t) = 1

2π i

∫ t

0

∫
�

eλ(t−s)
∫
R
3
+

qλ(x
′ − z′, x3, z3)

·
(
χ2
2P∇ · ((1 − χ2

4
)u ⊗ u)

)′
(z′, z3, s)dz′dz3dλds.

(2.29)

The key observation is that, in virtue of the support of the cut-off functions,

χ2
2P∇ · ((1 − χ2

4
)u ⊗ u) = χ2

2∇ pu⊗u
nonloc,H (2.30)

and the right-hand side has an enough regularity as estimated in the proof of (2.23)
above, i.e.,

‖χ2
2P∇ · ((1 − χ2

4
)u ⊗ u)‖L1∩L∞ ≤ C‖u(·, t)‖2

L2
uloc(R

3
+)

. (2.31)

Let us give the estimate of ∇ pu⊗u
harm,≤1. From the pointwise estimate of ∇qλ and the

compactness of the support of χ2, we see

|∇ pu⊗u
harm,≤1(x, t)|

≤ C
∫ t

0

∫
R
3
+

∫
�

e�(λ)(t−s)−c|λ| 12 z3 |dλ| 1

(|x ′ − z′| + x3 + z3|)3 |χ2
2∇ pu⊗u

nonloc,H |dzds

≤ C
∫ t

0
(t − s)−1+ σ

2

∫
R
3
+

1

zσ3 (|x ′ − z′| + x3 + z3)3
|χ2

2∇ pu⊗u
nonloc,H |dzds

≤ C
∫ t

0
(t − s)−1+ σ

2

∫ ∞

0

1

zσ3 (x3 + z3)
dz3ds‖u‖2

L∞(0,t;L2
uloc(R

3
+))

≤ Ct
σ
2 x−σ

3 ‖u‖2
L∞(0,t;L2

uloc(R
3
+))

,

where σ ∈ (0, 1) andC depends only on σ . This proves the derivative estimate in (2.24).
The estimate of pu⊗u

harm,≤1(x, t) is shown similarly or even easily, by observing for any
σ ∈ (0, 1) and 0 < ε � 1,
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|pu⊗u
harm,≤1(x, t)|

≤ C
∫ t

0

∫
R
3
+

∫
�

e�(λ)(t−s)−c|λ| 12 z3 |dλ| 1

(|x ′ − z′| + x3 + z3|)2 |χ2
2∇ pu⊗u

nonloc,H |dzds

≤ C
∫ t

0
(t − s)−1+ σ

2

∫
R
3
+

1

zσ3 (|x ′ − z′| + x3 + z3)2
|χ2

2∇ pu⊗u
nonloc,H |dzds

≤ C
∫ t

0
(t − s)−1+ σ

2

∫ x3+3

max(x3−3,0)

1

zσ3 (x3 + z3)ε
dz3ds‖u‖2

L∞(0,t;L2
uloc(R

3
+))

≤ Ct
σ
2 ‖u‖2

L∞(0,t;L2
uloc(R

3
+))

.

Here we have used (2.31) and the compactness of the support of χ2. The details are
omitted here. The proof of (2.24) is complete. ��
Proof of estimate (2.25) for pu⊗u

harm,≥1. Considering the expression (A.1), we notice that
there are two types of terms we have to deal with. Let

v, w ∈ L∞(0, T ; L2
uloc(R

3
+)
) ∩ L2(0, T ; H1

0,loc(R
3
+)
)

(typically v = u and w = u or variants). We have to estimate∫ t

0

∫
�

eλ(t−s)
∫
R
3
+

qλ,x,x0(z
′, z3) · (1 − χ2

2 )F(z′, z3, s)dz′dz3dλds (2.32)

with F replaced by

FA(z′, z3, s) := ∂α((1 − χ2
4
)v ⊗ w)

)′
(z′, z3, s) (type A)

for some α ∈ {1, . . . 3}, or
FB(z′, z3, s) (type B)

:= m0(D
′)∇′ ⊗ ∇′

∫ ∞

0
[P(|z3 − y3|) + P(z3 + y3)] (1 − χ2

4
)v ⊗ w(z′, y3, s)dy3

wherem0(D′) is a (tangential) Fourier multiplier homogeneous of order 0 (seeAppendix
A.1). Here qλ,x,x0 stands for qλ(x ′ − ·, x3, ·)−qλ(x ′

0 −·, x0,3, ·), according to definition
(2.9). The idea for both (type A) and (type B) is to transfer some derivatives from the
source term to the kernel. Of course, integrating by parts implies that some derivatives
fall on the cut-off 1 − χ2

2
. These terms are much simpler to analyze since

dist
(
supp(∇(χ2

2
)), supp(1 − χ2

4
)
)

≥ 1 and dist
(
supp(∇(χ2

2
)),�(x0)

)
≥ 1,

(2.33)
so that neither the singularity of the Neumann kernel, nor the one of the Helmholtz–
Leray projection are seen. Below, we focus on the terms where none of the derivatives
falls on the cut-off 1 − χ2

2
.

Terms (type A).Notice that x ∈ �(x0) and by definition of the cut-off χ2 , the integral in
z in (2.32) is on 2�(x0)c. Integrating by parts in (2.32) and using the pointwise bound
on ∇2qλ proved in [26, Section 3], we reduce the problem to estimating
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∣∣∣∣
∫ t

0

∫
�

eλ(t−s)
∫
R
3
+

∂αqλ,x,x0(z
′, z3) · (1−χ2

2
)
(
(1−χ2

4
)v ⊗ w)

)′
(z′, z3, s)dz′dz3dλds

∣∣∣∣
≤ C

∫ t

0

∫
�

eRe(λ)(t−s)
∫
R
3
+

e−c|λ| 12 z3
(1 + |x ′ − z′|)4 |v ⊗ w(z′, z3, s)|dz′dz3|dλ|ds.

We then have

∫
R
3
+

e−c|λ| 12 z3
(1 + |x − z|)4 |v ⊗ w|dz′dz3

≤
∑

η′∈Z2

1

1 + |η′|4
∫ ∞

0
e−c|λ| 12 z3

∫
�′

(α′)
|v ⊗ w|dz′dz3

≤ C
∞∑
n=1

e−c|λ| 12 n‖v(·, s)‖L2
uloc(R

3
+)

‖w(·, s)‖L2
uloc(R

3
+)

≤ C |λ|− 1
2 ‖v(·, s)‖L2

uloc(R
3
+)

‖w(·, s)‖L2
uloc(R

3
+)

,

where we take advantage of the additional decay in |λ| provided by e−c|λ| 12 z3 when |λ|
is large. We eventually get, for almost every t ∈ 0, T ,

∣∣∣∣
∫ t

0

∫
�

eλ(t−s)
∫
R
3
+

∂αqλ,x,x0(z
′, z3) · (1−χ2

2
)
(
(1−χ2

4
)v⊗w)

)′
(z′, z3, s)dz′dz3dλds

∣∣∣∣
≤ C

∫ t

0

∫
�

eRe(λ)(t−s)

|λ| 12
|dλ|‖v(·, s)‖L2

uloc(R
3
+)

‖w(·, s)‖L2
uloc(R

3
+)
ds

≤ Ct
1
2 ‖v‖L∞(0,T ;L2

uloc(R
3
+))

‖w‖L∞(0,T ;L2
uloc(R

3
+))

.

Terms (type B). We rely on Lemma A.1 to estimate these terms. Using this lemma we
have ∣∣∣∣

∫ t

0

∫
�

eλ(t−s)
∫
R
3
+

qλ,x,x0(z
′, z3) · (1 − χ2

2
)FBdz

′dz3dλds

∣∣∣∣
≤
∣∣∣∣
∫ t

0

∫
�

eλ(t−s)
∫
R
3
+

qλ,x,x0(z
′, z3) · (1 − χ2

2
)B1dz

′dz3dλds

∣∣∣∣
+

∣∣∣∣
∫ t

0

∫
�

eλ(t−s)
∫
R
3
+

∇′2qλ,x,x0(z
′, z3) · (1 − χ2

2
)B2dz

′dz3dλds

∣∣∣∣
+ commutator terms.

(2.34)

The terms designated by “commutator terms” correspond to one or twoderivatives falling
on the cut-off 1− χ2

2
. We explained above that these terms are much easier to handle so

we focus on the two first terms in the right hand side of (2.34). We now use the bounds
onB1 andB2 proved in LemmaA.1 below. The estimate is similar to the one for (type A)
above. We sketch how to estimate the first term in the right hand side above. We have
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∣∣∣∣
∫ t

0

∫
�

eλ(t−s)
∫
R
d
+

qλ,x,x0(z
′, z3) · (1 − χ2

2
)B1dz

′dz3dλds

∣∣∣∣
≤ C

∫ t

0

∫
�

eRe(λ)(t−s)
∫
R
3
+

e−c|λ| 12 z3
(1 + |x ′ − z′|)3 dz

′‖B1(·, z3, s)‖L1
uloc,z′

dz3|dλ|ds

≤ C
∫ t

0

∫
�

eRe(λ)(t−s)

|λ| 12
|dλ|‖v(·, s)‖L2

uloc(R
3
+)

‖w(·, s)‖L2
uloc(R

3
+)
ds

≤ C
∫ t

0
(t − s)−

1
2 ‖v(·, s)‖L2

uloc(R
3
+)

‖w(·, s)‖L2
uloc(R

3
+)
ds

≤ t
1
2 ‖v‖L∞(0,T ;L2

uloc(R
3
+))

‖w‖L∞(0,T ;L2
uloc(R

3
+))

.

The second term in the right hand side of (2.34) is even simpler to handle, since the kernel
∇′2qλ,x,x0 has even more spatial decay. The same is true for the estimate of ∇ pu⊗u

harm .
This concludes the proof of the estimate. ��

3. Properties of Weak Solutions

In this section we show the basic properties of local energy weak solutions in the sense of
Definition 1.1. The goal is to prove that any local energy weak solution is a mild solution
and admits additional regularity which enable us to apply the ε-regularity theorem for
the half-space [32,34,35]. The ε-regularity for solutions of (1.1) is the key in Sect. 6
for the global existence and Sect. 7 for the blow-up result. The first result of this section
is stated as follows, where the uniqueness result for solutions to the Stokes system [26,
Theorem 5] plays a crucial role.

Proposition 3.1. Let (u, p) be any local energy weak solutions with initial data u0 ∈
L2
uloc,σ (R3

+) in the sense of Definition 1.1. Then

u(t) = e−tAu0 −
∫ t

0
e−(t−s)A

P∇ · (u ⊗ u)ds, (3.1)

p admits the decomposition of (2.18), and

∂t u, ∇2u, ∇ p ∈ L
3
2
loc((0, T ]; L

9
8
loc(R

3
+)). (3.2)

Proof. Set

v(t) = e−tAu0 −
∫ t

0
e−(t−s)A

P∇ · (u ⊗ u)ds.

Let {uε
0}0<ε<1 ⊆ C∞

0,σ (R3
+) be a sequence such that uε

0 → u0 in L2
uloc(R

3
+)

3 as ε → 0,

and let ϕε ∈ C∞
0 (R3) be a smooth cut-off satisfying ϕε = 1 on |x | ≤ 1

ε
and ϕ = 0 on

|x | ≥ 2
ε
. Then we set

vε(t) = e−tAuε
0 −

∫ t

0
e−(t−s)A

P∇ · (ϕεu ⊗ u)ds.
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We see that ‖e−tAuε
0 − e−tAu0‖L2

uloc(R
3
+)

≤ C‖uε
0 − u0‖L2

uloc(R
3) → 0 as ε → 0 and

that, for q ∈ [1, 3
2 ),

‖
∫ t

0
e−(t−s)A

P∇ · (ϕεu ⊗ u − u ⊗ u)ds‖Lq
uloc(R

3
+)

≤
∫ t

0
‖e−(t−s)A

P∇ · (ϕεu ⊗ u − u ⊗ u)‖Lq
uloc(R

3
+)
ds

≤ C
∫ t

0
(t − s)−

1
2− 3

2 (1− 1
q )‖(1 − ϕε)u ⊗ u‖L1

uloc(R
3
+)
ds

(by applying [26, Theorem 3])

≤ C
∫ T

0
|t − s|−2+ 3

2q ‖u‖L2
uloc(R

3
+)

‖(1 − ϕε)u‖L2
uloc(R

3
+)
ds. (3.3)

Since u ∈ L∞(0, T ;L2
uloc,σ (R3

+)), we have ‖(1 − ϕε)u(s)‖L2
uloc(R

3
+)

→ 0 as ε →
0 for a.e. s ∈ (0, T ), while we have the trivial bound ‖(1 − ϕε)u(s)‖L2

uloc(R
3
+)

≤
‖u(s)‖L2

uloc(R
3
+)
. Thus, splitting the time integral around the singularity s = t in (3.3)

and applying the Lebesgue convergence theorem in the region |t − s| ≥ δ with small
δ > 0, we obtain

∫ t

0
e−(t−s)A

P∇ · (ϕεu ⊗ u)ds →
∫ t

0
e−(t−s)A

P∇ · (u ⊗ u)ds

in L∞(0, T ; Lq
uloc(R

3
+)), q ∈ [1, 3

2 ).

As a consequence, we have

vε → v as ε → 0 in L∞(0, T ; Lq
uloc(R

3
+)), q ∈ [1, 3

2 ).

In virtue of this convergence the local regularity of v and of the associated pressure is

obtained from the one of (vε, pε) by taking the limit. Since∇ ·(ϕεu⊗u) ∈ L
5
4 ((0, T )×

R
3
+) for each ε ∈ (0, 1) by the Sobolev embedding theorem and the regularity assumption

on the local energy weak solutions, each action of e−(t−s)A, P, and∇· in the definition of
vε is well-defined in a classical Lq framework. Moreover, the maximal regularity gives

the bound ∂tv
ε,∇2vε ∈ L

5
4 ((0, T ) × R

3
+) and vε satisfies

∂tv
ε − �vε + ∇ pε = −∇ · (ϕεu ⊗ u), ∇ · vε = 0 (t, x) ∈ (0, T ) × R

3
+ (3.4)

and vε|∂R3
+

= 0 in t ∈ (0, T ), vε|t=0 = u0,ε. Here pε ∈ L
5
4 ((0, T )×R

3
+) is the pressure

associated with vε, which admits the representation and the decomposition as in (2.18)
with u0 and u⊗u simply replaced by uε

0 and ϕεu⊗u, respectively: pε = pε
li + pϕεu⊗u

loc +
pϕεu⊗u
nonloc = p

u0,ε
loc + p

u0,ε
nonloc+ p

ϕεu⊗u
loc,harm+ p

ϕεu⊗u
loc,H + pϕεu⊗u

loc + pϕεu⊗u
nonloc,H + pϕεu⊗u

harm,≤1+ p
ϕεu⊗u
harm,≥1.

Hence, each term in this decomposition satisfies the similar estimates in Propositions 2.1,
2.2, and 2.3, which are uniform in ε ∈ (0, 1). More precisely, there exists a constant
C < ∞ such that for all t ∈ (0,∞),
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t

log(e + t)
‖∇ pε

li (t)‖L2
uloc(R

3
+)

≤ C‖u0,ε‖L2
uloc(R

3
+)

,

t
3
4 ‖pu0,εloc (t)‖L2(�(x0))

≤ C‖u0,ε‖L2
uloc(R

3
+)

,

t
1
2 ‖pu0,εnonloc(t)‖L2(�(x0))

+ t
1
2 ‖∇ p

u0,ε
nonloc(t)‖L2(R3

+)
≤ C‖u0,ε‖L2

uloc(R
3
+)

.

Furthermore, for all T > 0 and 1 ≤ q < ∞, there exist C(T ),Cq(T ) < ∞, such that
for all t ∈ (0, T ),∥∥∥pϕεu⊗u

loc,H

∥∥∥
L

3
2 (0,T ;L 3

2 (�(x0)))
+
∥∥∥pϕεu⊗u

loc,harm

∥∥∥
L

3
2 (0,T ;L 3

2 (�(x0)))

+
∥∥∥∇ pϕεu⊗u

loc,harm

∥∥∥
L

3
2 (0,T ;L 9

8 (R3
+))

≤ C sup
η∈Z3

+

(
‖u‖2

L∞(0,T ;L2(�(η)))
+ ‖∇u‖2

L2(0,T ;L2(�(η)))

)
,

and

‖pϕεu⊗u
nonloc,H (·, t)‖L∞(�(x0))

+ ‖∇ pϕεu⊗u
nonloc,H (·, t)‖L∞(�(x0))

≤ C‖u(·, t)‖2
L2
uloc(R

3
+)

,

‖pϕεu⊗u
harm,≤1(·, t)‖L∞(�(x0))

+ ‖∇ pϕεu⊗u
harm,≤1(·, t)‖Lq (�(x0))

≤ Cq‖u‖2
L∞(0,t;L2

uloc(R
3
+))

,

‖pϕεu⊗u
harm,≥1(·, t)‖L∞(�(x0))

+ ‖∇ pϕεu⊗u
harm,≥1(·, t)‖L∞(�(x0))

≤ Ct
1
2 ‖u‖2

L∞(0,t;L2
uloc(R

3
+))

.

Here the constant C depends on T but is independent of ε ∈ (0, 1). Since we have
obtained the estimates for the pressure in positive time, by regarding ∇ pε as a given
forcing term in (3.4), we can apply the local regularity estimate of the inhomogeneous
heat equations, which results in, for any δ ∈ (0, T ),

‖∂tvε‖
L

3
2 (δ,T ;L 9

8 (�(x0)))
+ ‖∇2vε‖

L
3
2 (δ,T ;L 9

8 (�(x0)))

≤ C
(
sup
η∈Z3

+

( ‖u‖2
L∞(0,T ;L2(�(η)))

+ ‖∇u‖2
L2(0,T ;L2(�(η)))

)
+ ‖∇vε‖

L
3
2 ( δ

2 ,T ;L 9
8 (2�(x0)))

+ ‖vε‖
L

3
2 ( δ

2 ,T ;L 9
8 (2�(x0)))

)
.

(3.5)

Here the constant C depends only on T and δ. By using the bound

‖vε‖L∞(0,T ;Lq
uloc(R

3
+))

≤ C‖u‖L∞(0,T ;L2
uloc(R

3
+))

, q ∈ [1, 3
2 )

which follows as in the computation of (3.3), we also have

‖∇vε‖
L

3
2 ( δ

2 ,T ;L 9
8 (2�(x0)))

+ ‖vε‖
L

3
2 ( δ

2 ,T ;L 9
8 (2�(x0)))

≤ C supη∈Z3
+

( ‖u‖2
L∞(0,T ;L2(�(η)))

+ ‖∇u‖2
L2(0,T ;L2(�(η)))

)
.

Thus we conclude from (3.5) and by taking the limit ε → 0 that

‖∂tv‖
L

3
2 (δ,T ;L 9

8 (�(x0)))
+ ‖∇2v‖

L
3
2 (δ,T ;L 9

8 (�(x0)))

≤ C sup
η∈Z3

+

(
‖u‖2

L∞(0,T ;L2(�(η)))
+ ‖∇u‖2

L2(0,T ;L2(�(η)))

)
,

(3.6)
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and v satisfies

∂tv − �v + ∇ pv = −∇ · (u ⊗ u), ∇ · v = 0 (t, x) ∈ (0, T ) × R
3
+

and v|∂R3
+

= 0 in (0, T ) and v|t=0 = u0. Here pv is the associated pressure for v,
which is obtained as a limit of pε. Then pv satisfies the representation and the de-
composition of (2.18), and each term in (2.18) satisfies the estimates in Propositions
2.1, 2.2, and 2.3. It is easy to see that the map [0, T ) → ∫

R
3
+
v(x, t) · ϕ(x)dx be-

longs to C([0, T )) for any ϕ ∈ C∞
0 (R3

+)
3. Indeed, the linear term e−tAu0 belongs

to C([0,∞); L2
uloc,σ (R3

+)) since {e−tA}t≥0 defines a bounded analytic semigroup in

L2
uloc,σ (R3

+) (by [26, Theorem 2]) and is a C0-analytic semigroup in L2
σ (R3

+), which

implies that e−tAu0 ∈ C([0,∞); L2
uloc,σ (R3

+)) for u0 ∈ L2
uloc,σ (R3

+) by the density
argument. On the other hand, the inhomogeneous term in the definition of v belongs to
C([0, T ); Lq

uloc,σ (R3
+)) for q ∈ (1, 3

2 ): this is proved by using the fact that {e−tA}t≥0 is

a bounded analytic semigroup in Lq
uloc,σ (R3

+) for 1 < q < ∞ again by [26, Theorem 2]

and the estimate for e−tA
P∇· in [26, Theorem 3] as in the proof of (3.3). The details are

omitted here. Thus, from the uniqueness result of the weak solution to the Stokes system,
proved in [26, Theorem 5], we have u = v and also p = pv (up to some constant). The
proof is complete. ��

In virtue of the additional regularity obtained in Proposition 3.1, the ε-regularity
theorem by Seregin et al [35] can be applied for our class of weak solutions.

Theorem 3 ([35, Theorem 1.1], [23, Theorem 14.4]). There exist ε∗ > 0 and R∗ > 0
such that the following statement holds. Let (u, p) be any local energy weak solution
to (1.1) with initial data u0 ∈ L2

uloc,σ (R3
+) in the sense of Definition 1.1. Let (t0, x0) ∈

(0, T ] × R
3
+. If

1

ρ2∗

∫ t0

t0−ρ2∗

∫
B(x0,ρ∗)∩R3

+

(
|u|3 + |p| 32

)
dxdt < ε∗

for some ρ∗ ∈ (0,min{R∗,
√
t0}] then u is Hölder continuous on [t0 − ρ∗

16 , t0] ×
B(x0,

ρ∗
8 ) ∩ R

3
+.

Proof. When x0 ∈ ∂R3
+ then the result follows from Seregin et al [35, Theorem 1.1], and

thus the same is shown when {x ∈ R
3
+ | 0 ≤ x0,3 ≤ min{R∗,

√
t0}} by taking R∗ smaller

than in [35, Theorem 1.1] if necessary. When x0 ∈ {x ∈ R
3
+ | x0,3 ≥ min{R∗,

√
t0}} then

the statement falls into the interior ε-regularity theorem, see, e.g., [23, Theorem 14.4].
The proof is complete. ��

4. Decay of the Leray Solutions at ∞
Let T > 0 and δ > 0 be fixed. For the whole section, we work under Assumption 1.3.
The goal in this section is to prove Theorem 2, i.e. to show that if the initial data has
some decay at ∞, then any weak local energy solution u to (1.1), with initial data u0,
will decay at infinity. The assumption u0 ∈ L2

uloc,σ (R3
+) is redundant for solutions in the

sense of Definition 1.1. However, we choose to add it in the statement of Theorem 2 in
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order to stress that this is the key to the decay of the solution at space infinity. It is easy
to get that the third term in the left hand side of (1.9) is bounded by the two first terms.
Indeed ∫ t

0

∫
�(η)

|ϑRu|3

≤ C

(∫ t

0

(∫
�(η)

|ϑRu(x, s)|2dx
)3

ds

) 1
4

(∫ t

0

∫
�(η)

|ϑRu|2 + |ϑR∇u|2 + R−2|u|2
) 3

4

, (4.1)

for all t ∈ [0, T ] and all η ∈ Z
3
+. Remember that ϑR cuts off the part of u around 0.

Hence display (1.9) shows that the local energy of u goes to zero at spatial infinity. Let
us denote by AT,δ the constant in the right hand side of the a priori estimate (1.8). We
also define the quantities

αR(t) := sup
η∈Z3

+

∫
�(η)

|ϑRu(·, t)|2, βR(t) := sup
η∈Z3

+

∫ t

0

∫
�(η)

|ϑR∇u|2,

γR(t) := sup
η∈Z3

+

(∫ t

0

∫
�(η)

|ϑRu|3
) 2

3

.

Notice that our definition of γR differs from the one of [21]. Our quantity has the same
homogeneity with respect to u as αR and βR . By (4.1) it is straightforward to see that

γR(t) ≤ C

(∫ t

0
α3
R(s)ds

) 1
6
(∫ t

0
αR(s)ds + βR(t) + R−2AT,δ

) 1
2

, (4.2)

for all t ∈ [0, T ]. The following inequalities will be useful to give a simpler form to our
estimates: for all t ∈ [0, T ],∫ t

0
α3
R(s)ds ≤ T

6
7

(∫ t

0
α21
R (s)ds

) 1
7

, (4.3a)

∫ t

0
αR(s)ds ≤ T

20
21

(∫ t

0
α21
R (s)ds

) 1
21

, (4.3b)

∫ t

0
α

3
4
R(s)ds ≤ T

27
28

(∫ t

0
α21
R (s)ds

) 1
28

. (4.3c)

Moreover, it follows from (4.2) that for all δ > 0, there exists a constant C(δ, T ) < ∞
such that

γR(t) ≤ δβR(t) + C(δ, T )

(∫ t

0
α21
R (s)ds

) 1
21

+ CAT,δR
−2, (4.3d)

for all t ∈ [0, T ].
An estimate similar to (1.9) was derived by Kikuchi and Seregin in [21] for R3 (see

also [23, Chapter 32]). Here the difficulty comes again from the pressure estimates,
which are more subtle than in the whole space. Our main tool for the proof of Theorem
2 is the following a priori estimate.
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Lemma 4.1. Assume that Assumption 1.3 holds. Then for all u0 ∈ L2
uloc,σ (R3

+), there
exists a constant C(T, ‖u0‖L2

uloc
) < ∞ such that all weak local energy solution u to

(1.1) on QT in the sense of Definition 1.1 with initial data u0 satisfies for all R ≥ 1, for
all t ∈ [0, T ],

αR(t) + βR(t) ≤ C(T, u0)

((∫ t

0
α21
R (s)ds

) 1
21

+ R−1(log R) + ‖ϑRu0‖L2
uloc(R

3
+)

)
.

(4.4)

This a priori estimate will be established below. With Lemma 4.1, we can now prove
Proposition 4.1.

Proof of Proposition 1.9. Denoting by

YR(t) := α21
R (t) + β21

R (t),

for all t ∈ (0, T ), we get from (4.4) the following differential inequality

YR(t) ≤ C

(∫ t

0
YR(s)ds + R−1(log R) + ‖ϑRu0‖L2

uloc(R
3
+)

)
, (4.5)

with a constantC(T, u0) < ∞. The convergence result (1.9) followsnow fromaclassical
Gronwall-type argument (see [21] for a similar argument). ��

A remarkable point is that the differential inequality (4.5) derived from (4.4) is linear.
This comes from the fact that it is an inequality involving ϑRu. All the nonlinear terms,
e.g. I3 below, have a structure ressembling

ϑ2
R |u|2u = |ϑRu|2u.

The remaining term u which is not paired with ϑR will be estimated by the a priori
estimate (1.8).

The remainder of this section is devoted to the proof of Lemma 4.1. We assume
Assumption 1.3. Let u0 ∈ L2

uloc(R
3
+) such that ‖u0‖L2

uloc(R
3
+)

≤ δ and u be any solution

to (1.1) in QT in the sense of Definition 1.1 with initial data u0. For fixed x0 ∈ R
3
+ and

R ≥ 1, the idea is to test the local energy inequality withψ := ϑ2
Rχx0,1 ∈ C∞

c (Rd
+). This

test function is constant in time. According to Remark 1.2 (3), such test functions are
admissible in the local energy inequality. Let us emphasize that the strong convergence
(1.4) is fundamental here and enables to transfer the decay at infinity of the initial data
u0 to the solution u. We have from (1.7)∫

R
3
+

ψ |u(·, t)|2 + 2
∫ t

0

∫
R
3
+

ψ |∇u|2

≤
∫
R
3
+

ψ |u0|2 +
∫ t

0

∫
R
3
+

�ψ |u|2 +
∫ t

0

∫
R3

∇ψ · u|u|2 + 2
∫ t

0

∫
R
3
+

∇ψ · up
=: I1 + I2 + I3 + I4.

(4.6)

The aim is on the one hand to take advantage of the fact that one gains R−1 when one
derivative falls on ϑR , and on the other hand to combine ϑR and u. When a R−1 (or
better) has been gained, one has won enough decay in R, so that we can simply use the
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global a priori estimate (1.8) on u in the local energy norm. For the other terms where
no R−1 has been gained, it is of course important to estimate them in terms of ϑR in
order to be able to apply a Gronwall-type lemma.

Step 1. The three first terms in the right hand side of (4.6) can be handled identically to
[21]. For I1, we simply have

|I1| ≤ C‖ϑRu0‖2L2
uloc(R

3
+)

. (4.7)

For I2, a direct computation yields

�ψ = 2|∇ϑR |2χx0,1 + 2ϑR�ϑRχx0,1 + 4ϑR∇ϑR · ∇χx0,1 + ϑ2
R�χx0,1,

so that we gain at least R−1 for every term but the last. It follows the rough bound

|I2(t)| ≤ C
∫ t

0

∫
2�(x0)

|ϑRu|2 + CR−1AT,δ

≤ C
∫ t

0
sup
η∈Z3

+

∫
�(η)

|ϑRu|2 + CR−1AT,δ

≤ C
∫ t

0
αR(s)ds + CAT,δR

−1, (4.8)

for all t ∈ [0, T ]. For I3,we simply get for all δ > 0, there exists a constantC(δ, T, u0) <

∞ such that for all t ∈ [0, T ],

|I3(t)| ≤ CA
3
2
T,δR

−1 + C

(∫ t

0

∫
2�(x0)

|ϑRu|3
) 2

3
(∫ t

0

∫
2�(x0)

|u|3
) 1

3

≤ CA
3
2
T,δR

−1 + CA
1
2
T,δγR(t)

≤ CA
3
2
T,δR

−1 + δβR(t) + C(δ, T, u0)A
1
2
T,δ

(∫ t

0
α21
R (s)ds

) 1
21

. (4.9)

The estimate of I4 is the heart of the matter. We decompose I4 as follows:

I4 = 4
∫ t

0

∫
R
3
+

χ
1
2
x0,1 p∇ϑR · ϑRχ

1
2
x0,1u +

∫ t

0

∫
R
3
+

pϑR∇χx0,1 · ϑRu =: I4,1 + I4,2.

The first term in the right hand side, I4,1 is easy to handle, because it has a ∇ϑR which
allows for the gain of R−1. One can thus rely on the estimates derived in Sect. 2 and on
the global a priori bound (1.8) to obtain

|I4,1(t)| ≤ CA
1
2
T,δ

(
‖u0‖L2

uloc(R
3
+)
+ AT,δ

)
R−1 ≤ CA

3
2
T,δR

−1, (4.10)

for all t ∈ [0, T ].
The rest of this section is devoted to the estimate for I4,2. For I4,2, the main difficulty

is that we lack an estimate for ϑR p in terms of quantities for ϑRu. It is not enough to
just bound

|I4,2| ≤ C
(
‖u0‖L2

uloc(R
3
+)
+ AT,δ

)
γ

1
2
R (t),
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because that would lead to a nonlinear differential inequality of the type

ZR(t) ≤ C

(∫ t

0
Z

1
2
R(s)ds + η(R)

)
,

with η(R) → 0 when R → ∞. Though we do have an estimate of p in terms of u (see
Sect. 2), we have no information about the dependence in R. Therefore, we need to go
back to the representation formula for p given in (2.18) and estimate term by term. We
have ϑR p = ϑR pli +ϑR ploc +ϑR pnonloc, following the notations introduced in Sect. 2.
Step 2 below is devoted the analysis of the linear pressure terms ϑR pli related to the
initial data, Step 3 to the local pressure ϑR ploc, while in Step 4 we handle the nonlocal
pressure ϑR pnonloc. There are two recurrent ideas. The first one is to decompose the
cut-off ϑR as follows,

ϑR(x ′, x3) = ϑR(x ′, x3) − ϑR(y′, y3) + ϑR(y′, y3). (4.11)

The second, is to use the following inequality∣∣ϑR(x ′, x3) − ϑR(y′, y3)
∣∣ ≤ C min(R−1|x − y|, 1), (4.12)

for the difference in the right hand side of (4.11).

Step 2: linear pressure terms. For the linear pressure, we have from (2.18) ϑR pli =
ϑR p

u0
loc + ϑR p

u0
nonloc. Thanks to the representation formula (2.10), for the first term we

have

ϑR p
u0
loc(x, t) :=

∫
�

eλt
∫
R
3
+

qλ(x
′ − z′, x3, z3) · ϑR(z′, z3)χ4u

′
0(x

′, x3)dz′dz3dλ

=
∫

�

eλt
∫
R
3
+

qλ(x
′ − z′, x3, z3) · ϑR(z′, z3)χ4u

′
0(z

′, z3)dz′dz3dλ

+
∫

�

eλt
∫
R
3
+

qλ(x
′ − z′, x3, z3) · (ϑR(x ′, x3) − ϑR(z′, z3))χ4u

′
0(z

′, z3)dz′dz3dλ

=: J1 + J2.

The estimates of Proposition 2.1 give for the first term in the right hand side above, for
all p ∈ [1, 4

3 ), there exists a constant C(p) < ∞ such that

‖J1‖L p(0,T ;L2(2�(x0)))
≤ C‖ϑRu0‖L2(5�(x0))

.

As for the second term in the right hand side above, using (4.12), and the fact that
|x − z| ≤ 6 for all x ∈ �(x0) and z ∈ supp(χ4), we obtain∣∣∣∣

∫
�

eλt
∫
R
3
+

qλ(x
′ − z′, x3, z3) · (ϑR(x ′, x3) − ϑR(z′, z3))χ4u

′
0(z

′, z3)dz′dz3dλ

∣∣∣∣
≤ CR−1

∫
�

eRe(λ)t
∫
R
3
+

|qλ(x
′ − z′, x3, z3)||χ4u

′
0(z

′, z3)|dz′dz3dλ.

The estimates of Proposition 2.1 then give, for all p ∈ [1, 4
3 ), there exists a constant

C(p) < ∞ such that

‖J2‖L p(0,T ;L2(2�(x0)))
≤ CR−1‖u0‖L2(5�(x0))

.
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Hence, p ∈ [1, 4
3 ), there exists a constant C(p) < ∞ such that∣∣∣∣
∫ t

0

∫
R
3
+

ϑR p
u0
loc∇χx0,1 · ϑRu

∣∣∣∣
≤ C‖ϑR p

u0
loc‖L p(0,T ;L2(2�(x0)))

‖ϑRu‖L∞(0,T ;L2(�(x0)))

≤ CA
1
2
T,δ

(
‖ϑRu0‖L2

uloc(R
3
+)
+ R−1‖u0‖L2

uloc(R
3
+)

)
. (4.13)

It remains to handle pu0nonloc. Let x ∈ �(x0). From dist
(�(x0), supp(1 − χ4)

) ≥ 1, it
follows that the singularity of the kernel in the representation formula (2.17) is not seen.
We have ∣∣∣∣

∫
R
3
+

qλ,x,x0(z
′, z3) · ϑR(x)(1 − χ4)(z)u0(z

′, z3)dz′dz3
∣∣∣∣

≤
∫
R
3
+

e−|λ| 12 z3
(1 + |x − z|)3 |ϑR(x) − ϑR(z)| |u0(z′, z3)|dz′dz3

+
∫
R
3
+

e−|λ| 12 z3
(1 + |x − z|)3ϑR(z)|u0(z′, z3)|dz′dz3

=: J3 + J4.

The second term is easily bounded as follows

‖J4(·, t)‖L∞(�(x0))
≤ C |λ|− 1

2 ‖ϑRu0‖L2
uloc(R

3
+)

.

For the first term, we have

‖J3(·, t)‖L∞(�(x0))

≤ CR−1
∫
B(x,R)

e−|λ| 12 z3
(1 + |x − z|)2 |u0(z′, z3)|dz′dz3

+ C
∫ ∞

0

∫
R2\B(x,R)

e−|λ| 12 z3
(1 + |x − z|)3 |u0(z′, z3)|dz′dz3

+ C
∫
R+\(x−R,x+R)

∫
R2

e−|λ| 12 z3
(1 + |x3 − z3| + |x ′ − z′|)3 |u0(z′, z3)|dz′dz3

≤ C |λ|− 1
2 R−1(log R)‖u0‖L2

uloc(R
3
+)

.

Hence, Minkowski’s inequality implies that

‖ϑR p
u0
nonloc(·, t)‖L∞(�(x0))

≤
∫

�

eRe(λ)t
∥∥∥∥
∫
R
3
+

qλ,x,x0(z
′, z3) · ϑR(x)(1 − χ4)(z)u0(z

′, z3)dz′dz3
∥∥∥∥
L∞(�(x0))

|dλ|

≤ C
∫

�

eRe(λ)t |λ|− 1
2 |dλ|

(
‖ϑRu0‖L2

uloc(R
3
+)
+ R−1(log R)‖u0‖L2

uloc(R
3
+)

)
.
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It follows that

‖ϑR p
u0
nonloc(·, t)‖L∞(�(x0))

≤ Ct−
1
2

(
‖ϑRu0‖L2

uloc(R
3
+)
+ R−1(log R)‖u0‖L2

uloc(R
3
+)

)
.

Therefore, for all p ∈ [1, 2), there exists a constant C(p) < ∞ such that

‖ϑR p
u0
nonloc‖L p(0,T ;L∞(�(x0)))

≤ C
(
‖ϑRu0‖L2

uloc(R
3
+)
+ R−1(log R)‖u0‖L2

uloc(R
3
+)

)
,

and ∣∣∣∣
∫ t

0

∫
R
3
+

ϑR p
u0
nonloc∇χx0,1 · ϑRu

∣∣∣∣
≤ CA

1
2
T,δT

1
6

(
‖ϑRu0‖L2

uloc(R
3
+)
+ R−1(log R)‖u0‖L2

uloc(R
3
+)

)
. (4.14)

This concludes the study of the linear pressure terms.

Step 3: local pressure terms. We now turn to the term ϑR p
u⊗u
loc,harm . It requires some

preliminary work. The idea is to write the system satisfied by ϑRu
u⊗u
loc,harm . It will satisfy

(2.2) up to lower order terms, loss of incompressibility on supp(∇ϑR) and zero initial
data. We have⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂t

(
ϑRu

u⊗u
loc,harm

)
− �

(
ϑRu

u⊗u
loc,harm

)
+ ∇

(
ϑR p

u⊗u
loc,harm

)
= F,

∇ ·
(
ϑRu

u⊗u
loc,harm

)
= G in (0, T ) × R

3
+,

ϑRu
u⊗u
loc,harm = 0 on (0, T ) × ∂R3

+,

ϑRu
u⊗u
loc,harm(·, 0) = 0,

(4.15)
where the source term is

F := ∇ϑR p
u⊗u
loc,harm − �ϑRu

u⊗u
loc,harm − 2∇ϑR · ∇uu⊗u

loc,harm (4.16)

− ϑRP(χ2
4
u · ∇u) − ϑRP(∇(χ2

4
)u ⊗ u)

and

G := ∇ϑR · uu⊗u
loc,harm . (4.17)

We perform one additional decomposition in order to deal separately with the right hand
side and the lack of incompressibility. We have(

ϑRu
u⊗u
loc , ϑR p

u⊗u
loc

) = (vF , pF ) + (vG , pG) ,

where (vF , pF ) solves the Stokes system (4.15) with G = 0 and (vG , pG) solves the
Stokes system (4.15) with F = 0. The least regular term in the right hand side of (4.16)

is the fourth term, ϑRP(χ2
4
u · ∇u). It belongs to L

3
2 (0, T ; L 9

8 (R3
+)), which is the energy

space. In this space P(ϑRχ2
4
u · ∇u) is bounded via Gagliardo–Nirenberg’s inequality as

follows
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‖ϑRχ2
4
u · ∇u‖

L
3
2 (0,t;L 9

8 (R3
+))

≤
(∫ t

0
‖ϑRu(·, s)‖

3
2

L
18
7 (2�(x0))

‖∇u(·, s)‖
3
2

L2(2�(x0))
ds

) 2
3

≤ C

(∫ t

0
‖ϑRu(·, s)‖

3
2

L2(2�(x0))
‖∇u(·, s)‖

3
2

L2(2�(x0))
ds

) 2
3

+

(∫ t

0
‖ϑRu(·, s)‖L2(2�(x0))

‖∇(ϑRu)(·, s)‖
1
2

L2(2�(x0))
‖∇u(·, s)‖

3
2

L2(2�(x0))
ds

) 2
3

≤ CA
1
2
T,δ‖ϑRu‖L6(0,t;L2(2�(x0)))

+ CAT,δR
− 1

3 + CA
2
3
T,δ‖ϑRu‖

2
3

L∞(0,t;L2(2�(x0)))
.

The L∞(0, t; L2(2�(x0))) norm of ϑRu is however difficult to handle in view of the
Gronwall estimate. Therefore, we estimate ϑRP(χ2

4
u · ∇u), and actually F in whole,

in a subcritical energy space. We have room for that. Any space L
3
2 (0, T ; Lq(R3

+))

with 1 < q < 9
8 would work. Notice that q = 9

8 is excluded because of the reason
mentioned above (energy space). Moreover, q = 1 is excluded because it is ruled out in
the maximum regularity theorem for the Stokes system of Giga and Sohr [15, Theorem
3.1], which we apply to estimate pF . According to [15, Theorem 3.1], we will get that

pF ∈ L
3
2 (0, T ; Lr (R3

+)), with 1 +
3
r = 3

q , so that necessarily r ∈ ( 32 ,
9
5 ) and

pF∇χx0,1 ∈ L
3
2 (0, T × R

3
+) ⊆ L

3
2 (0, T ; Lr (R3

+)).

This is clearly enough to bound the integral I4,2. Therefore, we choose to estimate F in

L
3
2 (0, T ; L 10

9 (R3
+)) but this choice is somewhat arbitrary. In this case, q = 10

9 , which
yields r = 30

17 . Let us now carry out the estimates for pF first, and then pG . Since the

Helmholtz–Leray projection is bounded on L
10
9 (R3

+), we have∥∥∥P(χ2
4
u · ∇u)

∥∥∥
L

3
2 (0,T ;L 10

9 (R3
+))

+
∥∥∥P(∇(χ2

4
)u ⊗ u)

∥∥∥
L

3
2 (0,T ;L 10

9 (R3
+))

≤ AT,δ.

Theorem 3.1 in [15] implies that

‖uu⊗u
loc,harm‖

L
3
2 (0,T ;L 9

2 (R3
+))

+ ‖∇uu⊗u
loc,harm‖

L
3
2 (0,T ;L 9

5 (R3
+))

+‖pu⊗u
loc,harm‖

L
3
2 (0,T ;L 9

5 (R3
+))

≤ AT,δ.

Subsequently, the first three terms in the right hand side of (4.16) are bounded by∥∥∥∇ϑR p
u⊗u
loc,harm

∥∥∥
L

3
2 (0,T ;L 9

5 (R3
+))

+
∥∥∥�ϑRu

u⊗u
loc,harm

∥∥∥
L

3
2 (0,T ;L 9

2 (R3
+))

+
∥∥∥2∇ϑR · ∇uu⊗u

loc,harm

∥∥∥
L

3
2 (0,T ;L 9

5 (R3
+))

≤ CAT,δR
−1.

It remains to estimate the last three terms. For these terms, we rely on Lemma A.3 in
order to commute the cut-off ϑR and the Helmhotz–Leray projection P. The commutator



Local Energy Weak Solutions for the Navier–Stokes Equations 547

term itself, is actually more regular, so below, we focus always on the term where the
cut-off falls on the function. We have

‖ϑRP(χ2
4
u · ∇u)‖

L
3
2 (0,t;L 10

9 (R3
+))

≤ ‖P(ϑRχ2
4
u · ∇u)‖

L
3
2 (0,t;L 10

9 (R3
+))

+ ‖[ϑR,P](χ2
4
u · ∇u)‖

L
3
2 (0,t;L 30

17 (R3
+))

.

From the second term, we gain R−1. By the boundedness of the Helmholtz–Leray
projection and Hölder’s inequality, we have

‖ϑRχ2
4
u · ∇u‖

L
3
2 (0,t;L 10

9 (R3
+))

≤
(∫ t

0
‖ϑRu(·, s)‖6

L
5
2 (2�(x0))

ds

) 1
6
(∫ t

0
‖∇u(·, s)‖2

L2(2�(x0))
ds

) 1
2

.

We now estimate the first factor in the right hand side. We have

(∫ t

0
‖ϑRu(·, s)‖6

L
5
2 (2�(x0))

ds

) 1
6

≤ C‖ϑRu‖
7
10

L42(0,t;L2(2�(x0)))
‖ϑRu‖

3
10

L2(0,t;H1(2�(x0)))

≤ C

(∫ t

0
α21
R (s)ds

) 1
60
(∫ t

0
αR(s)ds + βR(t) + R−2AT,δ

) 3
20

.

For the fifth term in the right hand side of (4.16) we have

‖ϑR∇(χ2
4
)u ⊗ u‖

L
3
2 (0,t;L 9

8 (R3
+))

≤ C‖ϑRu ⊗ u‖
L

3
2 (R3

+×(0,t))

≤ C‖ϑRu‖L3(R3
+×(0,t))‖u‖L3(R3

+×(0,t)) ≤ CA
1
2
T,δγ

1
2
R (t).

Therefore, pF is bounded by

‖pF‖
L

3
2 ((0,t);L 30

17 (2�(x0)))
(4.18)

≤ CA
1
2
T,δ

(∫ t

0
α21
R (s)ds

) 1
60
(∫ t

0
αR(s)ds + βR(t) + R−2AT,δ

) 3
20

+ CA
1
2
T,δγ

1
2
R (t) + C(log R)AT,δR

−1 + CA
1
2
T,δ

(∫ t

0
α

3
4
R(s)

) 2
3

where we have again applied [15, Theorem 3.1]. We now turn to the estimate for pG .
Mimicking an idea of [10], we introduce the solution (E, q) of the following stationary
Stokes problem with non homogeneous divergence⎧⎪⎪⎨

⎪⎪⎩
− �E + ∇q = 0 in R3

+,

∇ · E = ∇ϑR · uu⊗u
loc,harm,

E = 0 on ∂R3
+.

(4.19)
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Notice that E depends on t . At time t = 0, E(0) = 0. Furthermore ∂t E is the solution
of (4.19) with ∇ϑR · ∂t u

u⊗u
loc as the inhomogeneous source term in the equation on the

divergence. It follows from [11, Theorem IV.3.3] that there exists a constant C < ∞
such that

‖∇E‖
L

3
2 (0,T ;L 9

2 (R3
+))

+ ‖q‖
L

3
2 (0,T ;L 9

2 (R3
+))

≤ C‖∇ϑR · uu⊗u
loc,harm‖

L
3
2 (0,T ;L 9

2 (R3
+))

.

Moreover,

‖∇∂t E‖
L

3
2 (0,T ;L 9

8 (R3
+))

+ ‖∂t q‖
L

3
2 (0,T ;L 9

8 (R3
+))

≤ C‖∇ϑR · ∂t u
u⊗u
loc,harm‖

L
3
2 (0,T ;L 9

8 (R3
+))

.

Hence, since ∂t E = 0 on ∂R3
+, we have by the Poincaré-Sobolev inequality that

‖∂t E‖
L

3
2 (0,T ;L 9

5 (R3
+))

≤ C‖∇∂t E‖
L

3
2 (0,T ;L 9

8 (R3
+))

≤ C‖∇ϑR · ∂t u
u⊗u
loc,harm‖

L
3
2 (0,T ;L 9

8 (R3
+))

≤ CR−1AT,δ. (4.20)

We subsequently decompose the pair (vG, pG) into

vG = ṽG + E, pG = p̃G + q,

where the pair (̃vG , p̃G) solves of course⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂t ṽG − �ṽG + ∇ p̃G = −∂t E in (0, T ) × R
3
+,

∇ · ṽG = 0,

ṽG = 0 on (0, T ) × ∂R3
+,

ṽG(·, 0) = 0.

(4.21)

The maximal regularity of Theorem 3.1 in [15] together with estimate (4.20) implies
that, up to adding a constant to p̃G ,

‖ p̃G‖
L

3
2 (0,T ;L 9

2 (R3
+))

≤ C‖∇ p̃G‖
L

3
2 (0,T ;L 9

5 (R3
+))

≤ CAT,δR
−1.

To conclude, we have proved

‖pG‖
L

3
2 (0,T ;L 9

2 (R3
+))

≤ ‖ p̃G‖
L

3
2 (0,T ;L 9

2 (R3
+))

+ ‖q‖
L

3
2 (0,T ;L 9

2 (R3
+))

≤ CAT,δR
−1. (4.22)

The estimate for ϑR p
u⊗u
loc,H follows from the combination of the L3 boundedness of

singular integral operators and of the commutator lemma, LemmaA.3. In the end, (4.18)
and (4.22) imply the following estimate: there exists a constant C < ∞ such that∣∣∣∣

∫ t

0

∫
R
3
+

ϑR p
u⊗u
loc ∇χx0,1 · ϑRu

∣∣∣∣
≤ C‖ϑRu‖L3(0,t;L3(�(x0)))

‖ϑR p
u⊗u
loc ‖

L
3
2 (0,t;L 3

2 (�(x0)))
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≤ CA
1
2
T,δγR(t)

1
2

((∫ t

0
α21
R (s)ds

) 1
60
(∫ t

0
αR(s)ds + βR(t) + R−2AT,δ

) 3
20

+Cγ
1
2
R (t) + CA

1
2
T,δR

−1(log R) + C

(∫ t

0
α

3
4
R(s)

) 2
3
)

.

We will rewrite this last inequality in a simpler form, more useful for the Gronwall
estimate. Using the inequalities (4.3), we obtain for δ > 0∣∣∣∣
∫ t

0

∫
R
3
+

ϑR p
u⊗u
loc ∇χx0,1 · ϑRu

∣∣∣∣
≤ δβR(t) + C(δ, T, u0)A

1
2
T,δ

(∫ t

0
α21
R (s)ds

) 1
21

+ C(T )A
3
2
T,δR

−1(log R), (4.23)

with a constant C(δ, T, u0) < ∞. This concludes the study of ϑR ploc.

Step4: nonlocal pressure terms.According to (2.18),wehaveϑR pnonloc = ϑR p
u⊗u
nonloc,H+

ϑR p
u⊗u
harm . For these terms we rely on the decomposition (4.11) and the inequality (4.12).

The Helmholtz pressure is easy to estimate. We have for almost every t ∈ (0, T ),

‖ϑR p
u⊗u
nonloc,H (·, t)‖L∞(�(x0))

≤ CR−1(log R)AT,δ + CA
1
2
T,δ‖ϑRu(·, t)‖L2

uloc(R
3
+)

≤ CAT,δR
−1(log R) + CA

1
2
T,δα

1
2
R(t).

Therefore, ∣∣∣∣
∫ t

0

∫
R
3
+

ϑR p
u⊗u
nonloc,H∇χx0,1 · ϑRu

∣∣∣∣
≤ CA

3
2
T,δR

−1(log R)T
2
3 + CA

1
2
T,δγ

1
2
R (t)

(∫ t

0
αR(s)

3
4 ds

) 2
3

. (4.24)

For the terms pu⊗u
harm,≤1 below, we will need the estimate of ∇(ϑR p

u⊗u
nonloc,H ). According

to (2.14)

∇(ϑR p
u⊗u
nonloc,H )(x, t)

:=
∫
R
3
+

(∇′
z, ∂x3)∇2

z N (x ′ − z′, x3, z3)(1 − χ2
4
(z′, z3))(ϑR(x)

− ϑR(z))u ⊗ u(z′, z3, t)dz′dz3

+ ∇ϑR(x)
∫
R
3
+

∇2
z Nx,x0(x

′ − z′, x3, z3)(1 − χ2
4
(z′, z3))u ⊗ u(z′, z3, t)dz′dz3

+
∫
R
3
+

(∇′
z, ∂x3)∇2

z N (x ′ − z′, x3, z3)(1 − χ2
4
(z′, z3))ϑR(z)u ⊗ u(z′, z3, t)dz′dz3

=: K1 + K2 + K3.
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where Nx,x0 is defined by (2.15). We clearly have

‖K1(·, t)‖L∞(�(x0))
≤ CAT,δ(R

−1 log R),

‖K2(·, t)‖L∞(�(x0))
≤ CAT,δR

−1,

‖K1(·, t)‖L∞(�(x0))
≤ CA

1
2
T,δα

1
2
R(t),

so that

‖∇(ϑR p
u⊗u
nonloc,H )(·, t)‖L∞(�(x0))

≤ CAT,δR
−1(log R) + CA

1
2
T,δα

1
2
R(t). (4.25)

For ϑR p
u⊗u
harm , we decompose again into ϑR p

u⊗u
harm = ϑR p

u⊗u
harm,≤1 + ϑR p

u⊗u
harm,≥1 and

analyze the two terms separately. Let us start with the analysis of ϑR p
u⊗u
harm,≤1, which is

parallel to the proof of (2.24). We have∣∣∣∣
∫ t

0

∫
�

eλ(t−s)
∫
R
3
+

qλ(x
′ − z′, x3, z3) · χ2

2

(
P∇ · ((1 − χ2

4
)u ⊗ u)

)′

(z′, z3, s)dz′dz3dλds

∣∣∣∣
≤
∫ t

0

∫
�

eRe(λ)(t−s)
∫
R
3
+

e−c|λ| 12 z3 |ϑR(x) − ϑR(z)|
(1 + |x − z|)2∣∣∣∣χ2

2

(
P∇ · ((1 − χ2

4
)u ⊗ u)

)′∣∣∣∣ dz′dz3|dλ|ds

+
∫ t

0

∫
�

eRe(λ)(t−s)
∫
R
3
+

e−c|λ| 12 z3
(1 + |x − z|)2∣∣∣∣ϑR(z)χ2

2

(
P∇ · ((1 − χ2

4
)u ⊗ u)

)′∣∣∣∣ dz′dz3|dλ|ds
=: K4 + K5.

For both terms, the relation (2.30) is the basis of our estimates. For K4 we rely on (2.31)
for the estimate of

(
P∇ · ((1 − χ2

4
)u ⊗ u)

)′
and on (4.12) to bound ϑR(x) − ϑR(z).

Using the fact that χ2 is compactly supported, we obtain for all σ ∈ (0, 1)

|K4| ≤ C
∫ t

0

∫
R
3
+

∫
�

e�(λ)(t−s)−c|λ| 12 z3 |dλ| 1

|x ′ − z′| |ϑR(x)

− ϑR(z)||χ2
2∇ pu⊗u

nonloc,H |dzds

≤ CR−1
∫ t

0
(t − s)−1+ σ

2

∫
R
3
+

1

zσ3 |x ′ − z′| |χ
2
2∇ pu⊗u

nonloc,H |dzds

≤ CR−1
∫ t

0
(t − s)−1+ σ

2

∫ x3+3

max(x3−3,0)

1

zσ3
dz3ds‖u‖2

L∞(0,t;L2
uloc(R

3
+))

≤ CR−1t
σ
2 AT,δ.
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Concerning K5, we have

ϑR(z)χ2
2

(
P∇ · ((1 − χ2

4
)u ⊗ u)

)′ = ϑRχ2
2∇ pu⊗u

nonloc,H

= χ2
2∇(ϑR p

u⊗u
nonloc,H ) − χ2

2 (∇ϑR)pu⊗u
nonloc,H .

Hence, using the estimate (4.25) for∇(ϑR p
u⊗u
nonloc,H ) and the estimate (2.23) for pu⊗u

nonloc,H ,
we eventually get for all σ ∈ (0, 1),

|K5| ≤ Ctσ
(
AT,δR

−1(log R) + A
1
2
T,δα

1
2
R(t)

)
.

This ends the estimate for pu⊗u
harm,≤1. We now turn to the term pu⊗u

harm,≥1. We analyze
separately the terms (type A) and (type B) according to the decomposition given in
Appendix A.1. The analysis is in the same vein as the one carried out in the proof
of (2.24) in Sect. 2.3. Here as above additional difficulties comes from handling the
dependence in R. We start with the terms (type A). Integrating by parts, we are led to
studying∣∣∣∣
∫ t

0

∫
�

eλ(t−s)
∫
R
3
+

∂αqλ,x,x0(z
′, z3) · ϑR(x)

(
(1 − χ2

4
)v ⊗ w)

)′
(z′, z3, s)dz′dz3dλds

∣∣∣∣
≤ C

∫ t

0

∫
�

eRe(λ)(t−s)
∫
R
3
+

e−c|λ| 12 z3 |ϑR(x) − ϑR(z)|
(1 + |x − z|)4 |v⊗w(z′, z3, s)|dz′dz3|dλ|ds

+ C
∫ t

0

∫
�

eRe(λ)(t−s)
∫
R
3
+

e−c|λ| 12 z3
(1 + |x − z|)4 |ϑRv ⊗ w(z′, z3, s)|dz′dz3|dλ|ds

=: K6 + K7.

We have

‖K7(·, t)‖L∞(�(x0))

≤ C
∫ t

0

∫
�

eRe(λ)(t−s)

|λ| 12
|dλ|‖ϑRv(·, s)‖L2

uloc(R
3
+)

‖w(·, s)‖L2
uloc(R

3
+)
ds

≤ CA
1
2
T,δ

∫ t

0

1

(t − s)
1
2

‖ϑRv(·, s)‖L2
uloc(R

3
+)
ds

≤ CA
1
2
T,δT

1
3

(∫ t

0
αR(s)3ds

) 1
6

.

For the integral on R
3
+ in K6 we proceed similarly to J3 above. We get a better bound,

since we have more decay on the kernel here. The estimate

‖K6(·, t)‖L∞(�(x0))
≤ CAT,δR

−1
∫ t

0

∫
�

eRe(λ)(t−s)

|λ| 12
|dλ| ≤ CAT,δT

1
2 R−1,

is good enough for our purposes. We now consider the terms of (type B). The functions
v and w below are controlled by u (v, w = u′, ud or u itself for instance). The main
idea here is again to decompose the cut-off according to (4.11). The last term will fall
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on v, which is what we want, while the difference of the two first terms in the right
hand side of (4.11) will yield decay in R via the inequality (4.12). In the expression for
the Helmhotz–Leray projection, we focus on the terms involving P(z3 + y3). The terms
involving P(z3 − y3) can be handled similarly using the decomposition (A.3). As in the
proof of Lemma A.1 we decompose

(
m0(D

′)∇′ ⊗ ∇′
∫ ∞

0
P(z3 + y3)(1 − χ2

4
)v ⊗ w(·, y3, s)dy3

)
(z′)

=: B1(z
′, z3, s) + ∇′ ⊗ ∇′B2(z

′, z3, s).

Let us first concentrate on the terms involving B1. We have for x ∈ �(x0),∣∣∣∣
∫ t

0

∫
�

eλ(t−s)
∫
R
3
+

qλ,x,x0(z
′, z3)ϑR(x)(1 − χ2

2
)B1(z

′, z3, s)dz′dz3dλds

∣∣∣∣
≤
∫ t

0

∫
�

eRe(λ)(t−s)
∫
R
3
+

e−c|λ| 12 z3 |ϑR(x) − ϑR(z)|
(1 + |x − z|)3 |B1(z

′, z3, s)|dz′dz3|dλ|ds

+
∫ t

0

∫
�

eRe(λ)(t−s)
∫
R
3
+

e−c|λ| 12 z3
(1 + |x − z|)3ϑR(z)|B1(z

′, z3, s)|dz′dz3|dλ|ds
=: K8 + K9.

We handle K8 similarly to J3. Hence, we get

‖K8(·, t)‖L∞(�(x0))

≤
∫ t

0

∫
�

eRe(λ)(t−s)
∫
R
3
+

e−c|λ| 12 z3 |ϑR(x) − ϑR(z)|
(1 + |x − z|)3 |B1(z

′, z3, s)|dz′dz3|dλ|ds

≤ C
∫ t

0

∫
�

eRe(λ)(t−s)R−1(log R)|λ|− 1
2 ‖B1(·, s)‖L1

uloc(R
3
+)

|dλ|ds

≤ CR−1(log R)

∫ t

0

∫
�

eRe(λ)(t−s)|λ|− 1
2 ‖v(·, s)‖L2

uloc(R
3
+)

‖w(·, s)‖L2
uloc(R

3
+)
dλ|ds

≤ CAT,δT
1
2 R−1(log R).

We deal with K9 similarly to K2 above. We first decompose ϑR B1 as follows

ϑR(z)|B1(z
′, z3, s)|

≤ C
∫ ∞

1

∫
R2

|ϑR(z) − ϑR(y)|
(1 + z3 + y3 + |z′ − y′|)4 |v ⊗ w(y′, y3, s)|dy′dy3

+ C
∫ ∞

1

∫
R2

1

(1 + z3 + y3 + |z′ − y′|)4ϑR(y)|v ⊗ w(y′, y3, s)|dy′dy3

=: K10 + K11.

The term K10 is dealt with similarly to K3. Notice though a major difference between
K3 and K10. Here we have fast decay of the kernel qλ,x,x0 , contrary to K3 where the
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kernel N is slowly decaying. Hence, it is enough to estimate K10 in L∞(R3
+), contrary

to K3 which is compactly supported and estimated in L1(R3
+). We have

‖K10(·, s)‖L∞(R3
+)

≤ CR−1(log R)‖v(·, s)‖L2
uloc(R

3
+)

‖w(·, s)‖L2
uloc(R

3
+)

.

For K11, we immediately get

‖K11(·, s)‖L∞(R3
+)

≤ C‖ϑRv(·, s)‖L2
uloc(R

3
+)

‖w(·, s)‖L2
uloc(R

3
+)

.

Going back to K9, we obtain

‖K9(·, t)‖L∞(�(x0))
≤ CR−1(log R)

∫ t

0
(t − s)−

1
2 ‖v(·, s)‖L2

uloc(R
3
+)

‖w(·, s)‖L2
uloc(R

3
+)
ds

+ C
∫ t

0
(t − s)−

1
2 ‖ϑRv(·, s)‖L2

uloc(R
3
+)

‖w(·, s)‖L2
uloc(R

3
+)
ds

≤ CAT,δR
−1(log R)T

1
2 + CA

1
2
T,δT

1
3

(∫ t

0
α3
R(s)ds

) 1
6

.

We now focus on the terms involving B2. We first integrate by parts∫ t

0

∫
�

eλ(t−s)
∫
R
3
+

qλ,x,x0(z
′, z3)ϑR(x)(1 − χ2

2
)∇′ ⊗ ∇′B2(z

′, z3, s)dz′dz3dλds

=
∫ t

0

∫
�

eλ(t−s)
∫
R
3
+

∇′ ⊗ ∇′qλ,x,x0(z
′, z3)ϑR(x)(1 − χ2

2
)B2(z

′, z3, s)dz′dz3dλds

+ commutator terms,
(4.26)

where the commutator terms are all the terms where at least one derivative falls on the
cut-off (1−χ2

2
). For the commutator terms,∇′(1−χ2

2
) is compactly supported, so these

terms are quite straightforward to estimate. Hence, we concentrate on the first term in
the right hand side of (4.26). We have for x ∈ �(x0),∫ t

0

∫
�

eλ(t−s)
∫
R
3
+

∇′ ⊗ ∇′qλ,x,x0(z
′, z3)ϑR(x)(1 − χ2

2
)B2(z

′, z3, s)dz′dz3dλds

≤
∫ t

0

∫
�

eRe(λ)(t−s)
∫
R
3
+

e−c|λ| 12 z3 |ϑR(x) − ϑR(z)|
(1 + |x − z|)5 |B2(z

′, z3, s)|dz′dz3|dλ|ds

+
∫ t

0

∫
�

eRe(λ)(t−s)
∫
R
3
+

e−c|λ| 12 z3
(1 + |x − z|)5ϑR(z)|B2(z

′, z3, s)|dz′dz3|dλ|ds
=: K12 + K13.

Similarly to K8 above, we clearly have the following bound

‖K12(·, t)‖L∞(�(x0))
≤ CAT,δT

1
2 R−1.
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Then for K13 we decompose as follows

ϑR(z)|B2(z
′, z3, s)|

≤ C
∫ 1

0

∫
R2

z3 + y3
(z3 + y3 + |z′ − y′|)3 |ϑR(z) − ϑR(y)||v ⊗ w(y′, y3, s)|dy′dy3

+ C
∫ 1

0

∫
R2

z3 + y3
(z3 + y3 + |z′ − y′|)3ϑR(y)|v ⊗ w(y′, y3, s)|dy′dy3

=: K14 + K15.

Again for K15, similarly to K11 we have

‖K15(·, s)‖L∞(R3
+)

≤ C‖ϑRv(·, s)‖L2
uloc(R

3
+)

‖w(·, s)‖L2
uloc(R

3
+)

.

Eventually, we bound K14 as follows

‖K14(·, s)‖L∞(R3
+)

≤ C
∫ 1

0

∫
R2

z3 + y3
(z3 + y3 + |z′ − y′|)3 |ϑR(z) − ϑR(y)||v ⊗ w(y′, y3, s)|dy′dy3

≤ CR−1
∫ 1

0

∫
B(z′,R)

z3 + y3
(z3 + |z′ − y′|)2 |v ⊗ w(y′, y3, s)|dy′dy3

+ C
∫ 1

0

∫
R2\B(z′,R)

z3 + y3
|z′ − y′|3 |v ⊗ w(y′, y3, s)|dy′dy3

≤ CR−1(log(1 + R/z3))(1 + z3)‖v(·, s)‖L2
uloc(R

3
+)

‖w(·, s)‖L2
uloc(R

3
+)

+ CR−1(1 + z3)‖v(·, s)‖L2
uloc(R

3
+)

‖w(·, s)‖L2
uloc(R

3
+)

.

For the first term, we use the inequality log(1 + R/z3) ≤ log(1 + R) + log(1 + z−1
3 ). The

growing factors 1 + z3 and (1 + z3) log(1 + z−1
3 ) are subsequently eaten by the kernel

∇′ ⊗ ∇′qλ,x,x0 which has fast decay. Therefore,

‖K13(·, t)‖L∞(�(x0))
≤ CAT,δR

−1(log R)(1 + T ) + CA
1
2
T,δT

1
3

(∫ t

0
α3
R(s)ds

) 1
6

.

We subsequently have∣∣∣∣
∫ t

0

∫
�(x0)

ϑR p
u⊗u
harm∇χx0,1 · ϑRu

∣∣∣∣
≤ CA

1
2
T,δT

(∫ t

0
α3
R(s)ds

) 1
6

γR(t)
1
2 + CA

3
2
T,δR

−1(log R)(1 + T )T
2
3 .

(4.27)

Hence, combining (4.3) with (4.24) and (4.27) we eventually get for all ν > 0, there
exists a constant C(δ, T, ν) < ∞ such that∣∣∣∣

∫ t

0

∫
�(x0)

ϑR pnonloc∇χx0,1 · ϑRu

∣∣∣∣
≤ νβR(t) + C(δ, T, ν)A

1
2
T,δ

(∫ t

0
α21
R (s)ds

) 1
21

+ C(T )A
3
2
T,δR

−1(log R).

(4.28)
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This concludes the estimates for the pressure and Step 4.
Taking ν = 1

3 , we have that estimates (4.7), (4.8), (4.9), (4.10), (4.13), (4.14), (4.23)
and (4.28) immediately imply the differential inequality of Lemma 4.1.

5. Local Existence of Local Energy Weak Solutions

This section is devoted to the proof of the local existence of the local energy weak
solution.

Proposition 5.1. For all u0 ∈ L2
uloc,σ (R3

+), there exist T0 > 0 depending only on
‖u0‖L2

uloc
and a local energy weak solution of (1.1) in (0, T0).

5.1. Regularized problem. For ε > 0,wefirst study the regularized problem for (v, q) =
(vε, qε):⎧⎪⎪⎨

⎪⎪⎩
∂tv + Fε(v) · ∇v − �v + ∇q = 0, ∇ · v = 0 in (0, T ) × R

3
+,

v = 0 on (0, T ) × ∂R3
+,

v|t=0 = v0 := Fε(u0) in R3
+.

(5.1)

Here Fε is a mollification operator for the vector fields in R
3
+ defined as Fε(u) =

(ωε ∗ ũ)|
R
3
+
, where ωε is a standard radial symmetric mollifier supported in the ball

B(0, ε) and ũ is the extension of u given by

ũ(x) = u(x) if x3 > 0,

ũ′(x ′, x3) = u′(x ′,−x3) and ũ3(x
′, x3) = −un(x

′,−x3) if x3 < 0.

Then Fε(u) satisfies div Fε(u) = 0 in Rn and Fε(u3)n = 0 for x3 = 0 by the symmetry.
The following local well-posedness result can be shown by the contraction principle.

Proposition 5.2. Let u0 ∈ L2
uloc,σ (R3

+). For ε > 0 there exist T∗ = T∗(ε) > 0 and a

unique mild solution to the problem (5.1) in C([0, T∗); L2
uloc,σ

(R3
+)) ∩C((0, T∗); L∞(R3

+)). Moreover if T∗ is the maximal existence time for the mild
solution, v satisfies limt↑T∗ ‖v(t)‖L2

uloc
= ∞.

Proof. The proof is based on the standard Banach fixed point theorem as in [26]. Set
‖u‖T as

‖u‖T = sup
0<t<T

(‖u(t)‖L2
uloc

+ t
3
4 ‖u(t)‖L∞).

Let C0 > 0 be a constant such that

‖e−·Av0‖T ≤ C0(1 + T
3
4 )‖v0‖L2

uloc
, f ∈ L2

uloc,σ (R3
+),

which is well-defined by virtue of the Stokes estimate [26, Proposition 5.2]. Then let us
introduce the set

XT =
{
u ∈ L∞(0, T ; L2

uloc,σ (R3
+)) ∩ C(0, T ; L∞

σ (R3
+)) |

‖u‖T ≤ 2C0(1 + T
3
4 )‖u0‖L2

uloc

}
.
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For each f ∈ XT we define the map �ε[ f ](t) = e−tAv0 + Bε[ f, f ](t), where

Bε[ f, g](t) = −
∫ t

0
e−(t−s)A

P∇ · (Fε( f ) ⊗ g)ds, t > 0, f, g ∈ XT .

We will show that if Tε is sufficiently small, then �ε defines a contraction map in
XT . Indeed by using the estimate for the Stokes semigroup [26, Theorem 3] and the
elementary inequality

‖Fε( f )‖L2
uloc(R

3
+)
+ (1 + ε−3)−1‖Fε( f )‖L∞(R3

+)
≤ ‖ f ‖L2

uloc(R
3
+)

,

we have

‖Bε[ f, g](t)‖L2
uloc

≤ C
∫ t

0
(t − s)−

1
2 ‖Fε( f )‖L∞‖g‖L2

uloc
ds

≤ C
∫ t

0
(t − s)−

1
2 (1 + ε−3)‖ f ‖L2

uloc
‖g‖L2

uloc
ds

≤ C(1 + ε−3)T
1
2 sup
0<t<T

‖ f ‖L2
uloc

sup
0<<tT

‖g‖L2
uloc

. (5.2)

Similarly, we have for f, g ∈ XT ,

‖Bε[ f, g](t)‖L∞ ≤ C
∫ t

0
(t − s)−

1
2 ‖Fε( f )‖L∞‖g‖L∞ds

≤ C
∫ t

0
(t − s)−

1
2 (1 + ε−3)‖ f ‖L2

uloc
‖g‖L∞ds

≤ C(1 + ε−3)t−
1
4 sup
0<t<T

‖ f ‖L2
uloc

sup
0<t<T

t
3
4 ‖g‖L∞ .

Thus we obtain

‖Bε[ f, g]‖T ≤ C1(1 + ε−3)T
1
2 ‖ f ‖T ‖g‖T , f, g ∈ XT . (5.3)

If T is small so that

C1(1 + ε−3)T
1
2 2C0(1 + T

3
4 )‖u0‖L2

uloc
≤ 1

4
, (5.4)

then (5.4) and the definition ofC0 imply that�ε defines a contraction map from XT into
XT . Hence, there exists a unique fixed point u of �ε in XT , which is the mild solution
to (5.1) in XT . Since v0 ∈ BUCσ (Rd

+), e
−tAv0 is continuous at t = 0, and hence the

continuity in time of u also follows from the standard argument. (5.3) also shows the
uniqueness of the solution in the class ‖v‖T < ∞. This guarantees the existence of the
maximal interval [0, T∗) where v satisfies ‖v‖T < ∞ for any T < T∗. If T∗ is finite,
from (5.4) we have ‖v(t)‖L2

uloc
≥ 1

8C1(1+ε−3)(T∗−t)
1
2 C0(1+(T∗−t)

3
4 )
, which, in particular,

implies limt↑T∗ ‖v(t)‖L2
uloc

= ∞. ��
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Due to the argument in [14, Lemma 4.1], the mild solution is smooth inR3
+ × (0, T∗).

For each x0 ∈ R
3
+ we can use the cut-off argument in the proof of Proposition 3.1 to

define the pressure q = qε
(x0)

so that (v, q) defines a classical solution to (5.1) even
when v does not decay at spatial infinity. Moreover, by the similar argument as in
Propositions 2.2 and 2.3, the pressure q can be decomposed as q = qli +qloc +qnonloc =
qv0
loc + qv0

nonloc + qFε(u)⊗u
loc,H + qFε(u)⊗u

loc,harm + qFε(u)⊗u
nonloc,H + qFε(v)⊗v

harm,≤1 + qFε(v)⊗v
harm,≥1 such that the

following estimates hold.

Proposition 5.3. (Linear pressure estimates for the regularized problem) There exists a
constant C < ∞ such that for all t ∈ (0,∞),

t

log(e + t)
‖∇qli (t)‖L2

uloc(R
3
+)

≤ C‖u0‖L2
uloc(R

3
+)

,

t
3
4 ‖qv0

loc(t)‖L2(�(x0))
≤ C‖u0‖L2(5�(x0))

,

t
1
2 ‖qv0

nonloc(t)‖L∞(�(x0)))
+ t

1
2 ‖∇qv0

nonloc(t)‖L∞(�(x0)))
≤ C‖u0‖L2

uloc(R
3
+)

.

Proposition 5.4. (Local pressure estimates to the regularized problem) Let T > 0. There
exists a constant C(T ) < ∞ such that for all x0 ∈ R

3
+,∥∥∥qFε(v)⊗v

loc,H

∥∥∥
L

3
2 (0,T ;L 3

2 (�(x0)))
+
∥∥∥qFε(v)⊗v

loc,harm

∥∥∥
L

3
2 (0,T ;L 3

2 (�(x0)))

+
∥∥∥∇qFε(v)⊗v

loc,harm

∥∥∥
L

3
2 (0,T ;L 9

8 (R3
+))

≤ C sup
η∈Z3

+

(
‖v‖2

L∞(0,T ;L2(�(η)))
+ ‖∇v‖2

L2(0,T ;L2(�(η)))

)
.

Proposition 5.5. (Nonlocal pressure estimates to the regularized problem) Let T > 0
and 1 ≤ q < ∞. There exist constants C(T ), C(T, q) < ∞ such that for all x0 ∈ R

3
+

and for almost all t ∈ (0, T ),

‖qFε(v)⊗(v)
nonloc,H (·, t)‖L∞(�(x0))

+ ‖∇qFε(v)⊗(v)
nonloc,H (·, t)‖L∞(�(x0))

≤ C‖v(·, t)‖2
L2
uloc(R

3
+)

,

‖qFε(v)⊗(v)
harm,≤1 (·, t)‖L∞(�(x0))

+ ‖∇qFε(v)⊗(v)
harm,≤1 (·, t)‖Lq (�(x0))

≤ Cq‖v‖2
L∞(0,t;L2

uloc(R
3
+))

,

‖qFε(v)⊗(v)
harm,≥1 (·, t)‖L∞(�(x0))

+ ‖∇qFε(v)⊗(v)
harm,≥1 (·, t)‖L∞(�(x0))

≤ Ct
1
2 ‖v‖2

L∞(0,t;L2
uloc(R

3
+))

.

For later use, we summarize these pressure estimates as the following corollary:

Corollary 5.6. For T > 0 let v = vε be the mild solution to the problem (5.1) in
(0, T ) × R

3
+. There exist C = C(T ) < ∞ and Cδ = C(T, δ) such that for any ε > 0

and x0 ∈ R
3
+, there exists a pressure q = qε

(x0)
satisfying

‖∇q‖
L

3
2 (δ,T ;L 9

8 (�(x0)))
≤ Cδ‖u0‖L2

uloc(R
3
+)

+ C ‖v‖2
L∞(0,T ;L2

uloc(R
3
+))

+ C sup
η∈Z3

+

‖∇v‖2
L2(0,T ;L2(�(η)))

.

(5.5)
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Moreover there exist q1, q2 such that

q = q1 + q2 for (0, T ) × �(x0),

‖q1‖
L

3
2 (0,T ;L 3

2 (�(x0)))
+ ‖q2‖

L
5
4 (0,T ;L2(�(x0)))

≤ C‖u0‖L2
uloc(R

3
+)
+ C ‖v‖2

L∞(0,T ;L2
uloc(R

3
+))

+ C sup
η∈Z3

+

‖∇v‖2
L2(0,T ;L2(�(η)))

. (5.6)

We now claim a key local energy estimate which guarantees the uniformity in ε > 0
of the existence time of the solution obtained in Proposition 5.2.

Proposition 5.7. There exist constants M > 0 and T0 = T0(‖u0‖L2
uloc

) > 0 independent
of ε > 0, such that

E(T0) := sup
η∈Z3

+, t∈(0,T0)

∫
�(η)

|v(·, t)|2 + sup
η∈Z3

+

∫ T0

0

∫
�(η)

|∇v|2 ≤ M‖u0‖2L2
uloc

. (5.7)

Proof. We let

α(t) = sup
η∈Z3

+, s∈(0,t)

∫
�(η)

|v(·, s)|2, β(t) = sup
η∈Z3

+

∫ t

0

∫
�(η)

|∇v|2. (5.8)

Testing the Eq. (5.1) against the function χ2
x0v, we have the equality∫

R
3
+

χ2
x0 |v(t)|2dx + 2

∫ t

0

∫
R3

χ2
x0 |∇v|2dxds

= ‖χx0Fε(u0)‖2L2
uloc

+ 2
∫ t

0

∫
R
3
+

�χ2
x0 |v|2dxds +

∫ t

0

∫
R
3
+

∇χ2
x0 · Fε(v)|v|2dxds

+ 2
∫ t

0

∫
R
3
+

q∇χ2
x0 · vdxds.

(5.9)

We estimate each term in the right hand side. For the second term, we easily see∫ t

0

∫
R
3
+

�χ2
x0 |v|2dxds ≤ CTα(t). (5.10)

By the Gagliardo–Nirenberg inequality, we have

‖χx0v‖L4(R3
+)

≤ C‖χx0v‖
1
4

L2(R3
+)

‖∇(χx0v)‖
3
4

L2(R3
+)

≤ C‖χx0v‖
1
4

L2(R3
+)

(‖χx0v‖L2(R3
+)
+ ‖∇(χx0v)‖L2(R3

+)
)
3
4 .

(5.11)
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Therefore, the third term is estimated as follows:∫ t

0

∫
R
3
+

∇χx0 · Fε(v)|v|2dxds

≤ C
∫ t

0
‖Fε(v)‖L2

uloc(R
3
+)

‖χx0v‖2
L4(R3

+)
ds

≤ Cα(t)
1
2

∫ t

0
‖χx0v‖2

L4(R3
+)
ds

≤ Cα(t)
1
2 (Tα(t) + T

1
4 α(t)

1
4 β(t)

3
4 )

≤ CTα
3
2 (t) + δβ(t) + CδTα3(t),

(5.12)

where we have used Young’s inequality in the last line for δ > 0. For the last term in
(5.9), we decompose the pressure as q = q1 + q2 as in Corollary 5.6. Then we have∫ t

0

∫
R
3
+

q∇χ2
x0 · vdxds

≤ ‖q1‖
L

3
2 (0,t;L 3

2 (�(x0)))
‖χx0v‖L3(0,t;L3(�(x0)))

+ ‖q2‖
L

5
4 (0,t;L2(�(x0)))

‖χx0v‖L4(0,t;L2(R3
+))

≤ CT
1
12

(
‖v0‖L2

uloc
+ α(t) + β(t)

)
α(t)

1
4 (α(t) + β(t))

1
4 + CT

1
4 ‖v0‖L2

uloc
α(t).

(5.13)

Here we have used the estimate

‖χx0v‖L3(0,t;L3(�(x0)))
≤ T

1
12 α(t)

1
4 (α(t) + β(t))

1
4 , (5.14)

which is easily verified by interpolation as in (5.11). Applying estimates (5.10), (5.12)
and (5.13) to (5.9), we can find a constant C > 0 such that for any T ∈ (0,min{1, T∗})

E(T ) ≤ ‖u0‖2L2
uloc

+ CT
1
24 (1 + E(T ) + E(T )3), (5.15)

where T∗ is themaximal existence time given in Proposition 5.2. LetM > 1 be a constant
satisfying ‖e−tAu0‖2L2

uloc
≤ M‖u0‖2L2

uloc
and define

T0 := sup
{
T > 0; E(T ) ≤ 2M‖u0‖2L2

uloc

}
> 0.

By the continuity of E , we must have E(T0) = 2M‖v0‖2L2
uloc

. Therefore it follows from

(5.15) that

2M‖u0‖2L2
uloc

≤ ‖u0‖2L2
uloc

+ CT
1
24
0 (1 + 2M‖u0‖2L2

uloc
+ 8M3‖u0‖6L2

uloc
), (5.16)

which leads to the following uniform bound in ε

T0 ≥
⎛
⎝ (2M − 1)‖u0‖2L2

uloc

C(1 + 2M‖u0‖2L2
uloc

+ 8M3‖u0‖6L2
uloc

)

⎞
⎠

24

.

This completes the proof ��
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Remark 5.8. Note that β(t) ≤ ‖∇v‖2
L2(0,t;L2

uloc(R
3
+))

. The quantity in the right hand side,

however, has no reason to control β(t) in general. The main difference between the two
quantities is seen in the following property: from ∇v ∈ L2(0, t; L2

uloc(R
3
+)) it is easy

to get that for almost every s ∈ (0, t), ∇v(·, s) ∈ L2
uloc(R

3
+), while this property is not

clear in general when just β is controlled. Therefore, special care is needed, for example
at the beginning of Sect. 6.

Another way to reformulate Proposition 5.7 is as follows.

Corollary 5.9. For all δ > 0, there exist T > 0 and AT,δ ≥ 1 such that for all u0 ∈
L2
uloc,σ (R3

+), for all local energy weak solution u to (1.1) in the sense of Definition 1.1

on R3
+ × (0, T ) with initial data u0, if ‖u0‖L2

uloc(R
3
+)

≤ δ, then

sup
η∈Z3

+

∫
�(η)

|u(·, t)|2 +
∫ t

0

∫
�(η)

|∇u|2 +
(∫ t

0

∫
�(η)

|u|3
) 2

3 ≤ AT,δ. (5.17)

In other words, for δ > 0, there exists T > 0 such that Assumption 1.3 holds.

5.2. Convergence to the weak solutions. In this subsection we complete the proof of
Proposition 5.1. Here we follow the compactness argument used in [21] in principle
except for some estimates of the velocity and the pressure. Before giving the proof, we
first describe their strategy here.Wefirst consider the regularized problem (5.1) in the unit
cube�(0) and apply the compactness result to pass to the limit of some subsequence of
the solutions.We then apply similar argument in the bigger cubes n�(0) for n = 2, 3 · · · .
Note that our pressure is defined only locally in the cube �(x0) for each x0. Therefore
we have to glue them appropriately to define it in R

3
+. To this end we first derive the

uniform (in ε) bounds of vε and an appropriate pressure qn,ε in n�(0). In what follows
we denote n�(0) by n� for simplicity.

Proposition 5.10. For ε > 0, n = 1, 2, · · · , and u0 ∈ L2
uloc(R

3
+), there exist constants

T0 > 0 and A depending only on ‖u0‖L2
uloc

and exists a pair (v, qn) = (vε, qn,ε)

satisfying the following statements:

(1) (v, qn) is a solution to (5.1) in [0, T0) × n� and satisfies

sup
t∈(0,T0)

∫
n�

|v(·, t)|2 +
∫ T0

0

∫
n�

|∇v|2 ≤ C(n)A, (5.18)

‖∂tv‖
(L5(0,T0;W 1,3

0 (n�)))∗ ≤ C(n)A. (5.19)

Here C(n) is a constant depending only on n, and (L5(0, T0;W 1,3
0 (n�)))∗ stands

for the dual of the space L5(0, T0;W 1,3
0 (n�)).

(2) For any δ > 0 there exists a constant C(δ) such that

‖∇qn‖
L

3
2 (δ,T0;L

9
8 (�(x0)∩n�))

≤ C(δ)A. (5.20)
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(3) There exist qn1 and qn2 such that qn can be decomposed as

qn = qn1 + qn2 ,

and the following estimate holds:∥∥qn1∥∥L 3
2 (0,T0;L

3
2 (n�))

+ ‖qn2 ‖
L

5
4 (0,T0;L2(n�))

≤ C(n)A. (5.21)

Proof. Let v = vε be the mild solution given in Proposition 5.2. We then easily
see that (5.18) follows from Proposition 5.7. To see (5.21), consider the rescaling
v → v(n)(x, t) = nv(nx, n2t), q → q(n)(x, t) = n2q(nx, n2t) and v0 → v0(n)(x) =
nv0(nx) for n = 1, 2, · · · . Then v(n) is a mild solution to the problem⎧⎪⎪⎨
⎪⎪⎩

∂tv(n) + F ε
n
(v(n)) · ∇v(n) − �v(n) + ∇q(n) = 0, ∇ · v(n) = 0 in (0, T0

n ) × R
3
+,

v(n) = 0 on (0, T0
n ) × ∂R3

+,

v(n)|t=0 = v0(n) in R3
+.

(5.22)
By the estimate (5.18), v(n) is uniformly bounded in ε > 0 with respect to the local
energy norm. Therefore, from Corollary 5.6 one can find a pressure q(n) = q(n),1 +q(n),2
satisfying the estimate∥∥q(n),1

∥∥
L

3
2 (0,T0/n;L 3

2 (�(0)))
+ ‖q(n),2‖L p(0,T0/n;L2(�(0))) ≤ C‖v0(n)‖L2

uloc(R
3
+)

+C
∥∥v(n)

∥∥2
L∞(0,T0/n;L2

uloc(R
3
+))

+ C sup
η∈Z3

+

∥∥∇v(n)

∥∥2
L2(0,T0/n;L2(�(η)))

(5.23)

rescaling back q(n),i (i = 1, 2) and defining the pressure as qni (x, t) := 1
n2
q(n)i (

x
n , t

n2
),

from (5.23) we obtain the estimate (5.21). As for (5.20), since∇qn = ∇q(x0) in�(x0)∩
n� by (5.1), the estimate follows from (5.5).

It remains to show (5.19). Acting the test function ϕ ∈ C∞
0 (n�(0))3 to (5.1) and

using the pressure decomposition we have∣∣∣∣
∫ T0

0

∫
n�

∂tv · ϕdxdt

∣∣∣∣
=
∣∣∣∣
∫ T0

0

∫
n�

(−∇v · ∇ϕ + v ⊗ Fε(v)∇ϕ + pn∇ · ϕdxdt

∣∣∣∣
≤ C

(∫ T0

0

∫
n�

|∇v|2dxdt
) 1

2
(∫ T0

0

∫
n�

|∇ϕ|2dxdt
) 1

2

+ C

(∫ T0

0

∫
n�

|v|3dxdt
) 1

3
(∫ T0

0

∫
n�

|Fε(v)|3dxdt
) 1

3
(∫ T0

0

∫
n�

|∇ϕ|3dxdt
) 1

3

+

(∫ T0

0

∫
n�

|qn1 | 32 dxdt
) 2

3
(∫ T0

0

∫
n�

|∇ϕ|3dxdt
) 1

3

+

(∫ T0

0
(

∫
n�

|qn2 |2dx) 5
8 dt

) 4
5
(∫ T0

0
(

∫
n�

|∇ϕ|2dx) 5
2 dt

) 1
5

.
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Since ωε is supported in B(0, ε) for ε > 0, we see from (5.14)

∫ T0

0

∫
n�

|Fε(v)|3dxdt ≤
∫ T0

0

∫
(n+ε)�

|v|3dxdt ≤ C(n)A. (5.24)

Hence, combining this and estimates (5.18) and (5.21) we obtain

∣∣∣∣
∫ T0

0

∫
n�

∂tv · ϕdxdt

∣∣∣∣ ≤C(n)A

(∫ T0

0
(

∫
n�

|∇ϕ|3dx) 5
3 dt

) 1
5

. (5.25)

This yields (5.19) as desired. ��
In order to complete the proof of Proposition 5.1 we argue by induction in n to pass
to the limit for (vε, pε) (ε > 0). For n = 1 by using estimates (5.18),(5.19) and
(5.21) one can apply the Aubin–Lions lemma, and then using the uniform bound in
L10/3(0, T0; L10/3(�)) we can extract a sequence {(vk, q1,k)}∞k=1 from {(vε, q1,ε)}ε>0
such that

vk
∗−⇀ v(1) in L∞(0, T0; L2(�)),

vk ⇀ v(1) in L2(0, T0;W 1,2(�)),

vk → v(1) in L3(0, T0; L3(�)), (5.26)

q1,k ⇀ q(1) in L
5
4 (δ, T0;W 1, 98 (�)) for any δ ∈ (0, T0),

q1,k1 ⇀ q(1)
1 in L

3
2 (0, T0; L 3

2 (�)),

q1,k2 ⇀ q(1)
2 in L

5
4 (0, T0; L2(�)),

where q1,k and q(1) are decomposed as q1,k = q1,k1 + q1,k2 and q(1) = q(1)
1 + q(1)

2
respectively. From (5.24) and (5.26), we also deduce

Fk(v
k) → v(1) in L3(0, T0; L3(�(R))) for any R < 1. (5.27)

Then (v(1), q(1)) satisfies (1.1) in the sense of distributions and the local energy inequality
in (0, T0) × �. So we let (u, p) = (v(1), q(1)) in (0, T0) × �.

For n = 2 by the same argument we can find a subsequence of {vk}∞k=1 still denoted
by {vk}∞k=1 and {q2,k}∞k=1 such that

vk
∗−⇀ v(2) in L∞(0, T0; L2(2�)),

vk ⇀ v(2) in L2(0, T0;W 1,2(2�)),

vk → v(2) in L3(0, T0; L3(2�)),

q2,k ⇀ q(2) in L
5
4 (δ, T0;W 1, 98 (2�)) for any δ ∈ (0, T0),

q2,k1 ⇀ q(2)
1 in L

3
2 (0, T0; L 3

2 (2�)),

q2,k2 ⇀ q(2)
2 in L

5
4 (0, T0; L2(2�)),

Fk(v
k) → v(2) in L3(0, T0; L3(�(R))) for any R < 2,
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where v(2), q(2) := q(2)
1 +q(2)

2 satisfy (1.1) in the sense of distributions and also satisfy the
local energy inequality in (0, T0) × 2�. Moreover, (5.20) implies that for any x0 ∈ 2�

‖∇q(2)‖
L

3
2 (δ,T0;L

9
8 (�(x0)∩2�))

≤ C(δ)A.

Since v(2) = u in (0, T0) × �, we may extend u by letting u = v(2) in (0, T0) × 2�.
On the other hand, we have from (5.1) that ∇q(2) = ∇ p in (0, T0) × �. Hence, there
exists a function h(2) ∈ L5/4(0, T0) such that q(2)(x, t) = p(x, t) − h(2)(t) for (x, t) ∈
(0, T0) × �. Therefore we let p = q(2) − h(2) in (0, T0) × 2�.

Repeating this procedure for n = 3, 4, · · · , we obtain u ∈ L∞(0, T0; L2
uloc,σ (R3

+))

and p ∈ L
3
2
loc((0, T0)×R

3
+) satisfying (1.1) and the local energy inequality (1.5). More-

over, by the construction the pair (u, p) satisfies

sup
x∈R3

+

∫ T0

0
‖∇u‖2

L2(B(x)∩R3
+)
dt + sup

x∈R3
+

∫ T0

δ

‖∇ p‖
3
2

L
9
8 (B(x)∩R3

+)
dt < ∞ for any δ ∈ (0, T0),

‖∂t u‖
(L5(0,T0;W 1,3

0 (n�)))∗ < ∞ for any n = 1, 2, · · · ,

(5.28)

∫
R
3
+

ϕ|u(t)|2dx+2
∫ t

0

∫
R
3
+

ϕ|∇u|2dxds

≤
∫
R
3
+

ϕ|u0|2dx +
∫ t

0

∫
R
3
+

|u|2�ϕ + ∇ϕ · u(|u|2 + 2p)dxds (5.29)

for all t ∈ [0, T0) and ϕ ∈ C∞
0 (R3

+). (5.28) and the uniform L2
uloc bound yield the

continuity of the function t → 〈u(t), w〉L2(R3
+)

in [0, T0) for any compactly supported

function w ∈ L2(R3
+)

3. Since Fε(u0) converges to u0 in L2(K ) for any compact set

K ⊆ R
3
+, we also see limt→0+〈u(t), w〉 = 〈u0, w〉 by taking the limit in the weak

formulation of (5.1). Combining this with (5.29) we obtain

lim
t→0+

‖u(t) − u0‖L2(K ) = 0.

This completes the proof of Proposition 5.1.

6. Global Existence of Local Energy Weak Solutions

In this section we prove Theorem 1. We construct a global in time local energy weak
solution, which is an analogue of the weak solution constructed by Lemarié–Rieusset
[23] for the whole space case R3; see also Kikuchi and Seregin [21]. In principle, the
proof proceeds as in the case of R3. Nevertheless, our proof does not rely on the weak-
strong uniqueness of the local energy weak solutions which was used in [21] for the
whole space case. In fact, compared with the case of Leray–Hopf weak solutions with
finite energy, the weak-strong uniqueness for local energy weak solutions is a more
delicate problem and seems to require additional work in handling the pressure term
whose structure is more complicated in the presence of the physical boundary than in
the whole space case. In this sense our proof below is simpler than the known ones for
the whole space case.
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Proof of Theorem 1. Step 1. Let us first assume that T < ∞. Thanks to Proposition 5.1
we already know that there exists a local energy weak solution to (1.1) in QT0 with
initial data u0 for some T0 > 0. We may assume that T0 < T . The key tool to verify the
global existence is the ε-regularity theorem, stated as in Theorem 3, is the spatial decay
of (u, p) in Theorem 2. Indeed, from Theorem 2 and Theorem 3, for any δ ∈ (0, T0)
there exists Rδ > 0 such that u is smooth in [δ, T0] × {x ∈ R

3
+ | |x | ≥ Rδ}, and in

particular, one can show the regularity u(t) ∈ W 1,2
uloc({x ∈ R

3
+ | |x | ≥ Rδ}) for any

t ∈ (0, T0]. On the other hand, from the definition of the local energy weak solution
we have u ∈ L2(0, T0;W 1,2(BRδ (0) ∩ R

3
+)). Therefore, we conclude that there exists

t0 ∈ (0, T0) such that u(t0) ∈ W 1,2
uloc(R

3
+) and limR→∞ ‖ϑRu(t0)‖L2

uloc(R
3
+)

= 0, where
the latter assertion holds again from Theorem 2. By the embedding property we have
u(t0) ∈ L6

uloc,σ (R3
+) and limR→∞ ‖ϑRu(t0)‖L p

uloc(R
3
+)

= 0 for any 2 ≤ p < 6. Fix
ε > 0. By using Lemma A.4, u(t0) is decomposed as

u(t0) = u1,ε(t0) + u2,εu(t0),

where u1,ε(t0) ∈ L4
uloc,σ (R3

+) with ‖u1,ε(t0)‖L4
uloc(R

3
+)

≤ ε, and u2,ε ∈ L2
σ (R3

+). By

Proposition 7.1 in [26] we can construct a mild solution u1,ε to (1.1) in (t0, T ) × R
3
+

with initial data u1,ε(t0) by taking ε > 0 small enough, and u1,ε satisfies

sup
t0<t<T

(‖u1,ε(t)‖L4
uloc

+ t
3
8 ‖u1,ε(t)‖L∞ + t

1
2 ‖∇u1,ε(t)‖L4

uloc

) ≤ C∗ε.

Moreover, u ∈ C([t0, T );L4
uloc,σ (R3

+)) and by the bootstrap argument as in [14], u1,ε

is smooth in t > t0, and for any 0 < δ � 1, we have

sup
t0+δ≤t<T

(‖∂t u1,ε(t)‖L∞(R3
+)
+
∑

k=0,1,2

‖∇ku1,ε(t)‖L∞(R3
+)

)
< ∞.

Note that the associated pressure q1,ε has the structure given in Sect. 2, and in particular,

q1,ε at least belongs to L
3
2
loc([t0, T ) × R

3
+) (though it has more regularity up to t = t0

since u1,ε has). Thanks to the enough regularity, (u1,ε, q1,ε) satisfies the local energy
equality:

‖χu1,ε(t)‖2
L2(R3

+)
+ 2
∫ t

t0
‖χ∇u1,ε‖2

L2(R3
+)
ds

= ‖χu1,ε(t ′)‖2
L2(R3

+)

+
∫ t

t ′
〈|u1,ε |2, ∂sχ2 + �χ2〉L2(R3

+)
+ 〈u1,ε · ∇χ2, |u1,ε |2 + 2q1,ε〉L2(R3

+)
ds

(6.1)

for any χ ∈ C∞
c ([t0, T ) × R

3
+) and all t0 ≤ t ′ < t < T . Next we construct (u2,ε, q2,ε)

as a weak solution to the perturbed Navier–Stokes equations⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂t u
2,ε − �u2,ε + ∇q2,ε = −div

(
u2,ε ⊗ u2,ε + u1,ε ⊗ u2,ε + u2,ε ⊗ u1,ε

)
,

∇ · u2,ε = 0, in (t0, T ) × R
3
+,

u2,ε = 0 on (0, T ) × ∂R3
+,

u2,ε|t=0 = u2,ε(t0) in R
3
+.

(6.2)
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Since u1,ε has the enough regularity stronger than the scaling as stated as above, it
is standard to construct a Leray–Hopf weak solution u2,ε ∈ Cw([t0, T ); L2

σ (R3
+)) ∩

L2(t0, T ;W 1,2
0 (R3

+)), q
2,ε ∈ L1

loc([t0, T ) × R
3
+) + L

5
6 ([t0, T ); L2

uloc(R
3
+)), satisfying

limt↓t0 ‖u2,ε(t) − u2,ε(t0)‖L2(R3
+)

= 0 and the local energy inequality:

‖χu2,ε(t)‖2
L2(R3

+)
+ 2
∫ t

t ′
‖χ∇u2,ε‖2

L2(R3
+)
ds

≤ ‖χu2,ε(t ′)‖2
L2(R3

+)

+
∫ t

t ′
〈|u2,ε |2, ∂sχ2 + �χ2〉L2(R3

+)
+ 〈u2,ε · ∇χ2, |u2,ε |2 + 2q2,ε〉L2(R3

+)
ds

− 2
∫ t

t ′
〈u1,ε · ∇u2,ε + u2,ε · ∇u1,ε, u2,εχ2〉L2(R3

+)
ds

(6.3)

for all t ∈ (t ′, T ) and for a.e. t ′ ∈ [t0, T ) including t ′ = t0, whereχ ∈ C∞
c ([t0, T )×R

3
+)

is an arbitrary test function. Set

v(t) = u1,ε(t) + u2,ε(t), q(t) = q1,ε(t) + q2,ε(t), t ∈ (t0, T ).

Then we have limt↓t0 ‖v(t) − u(t0)‖L2(K ) = 0 for any compact set K ⊆ R
3
+,

v ∈ L∞(t0, T ;L2
uloc,σ (R3

+)) ∩ L2(t0, T ;W 1,2
0,uloc(R

3
+)),

q ∈ L
3
2
loc([t0, T ) × R

3
+) + L

5
6
loc([t0, T ); L2

uloc(R
3
+)),

and (v, q) satisfies the Navier–Stokes equations in (t0, T ) in the sense of distributions

∫ T

t0
−〈v, ∂sϕ〉L2(R3

+)
+ 〈∇v,∇ϕ〉L2(R3

+)
− 〈q, div ϕ〉L2(R3

+)
+ 〈v · ∇v, ϕ〉L2(R3

+)
ds

= 〈u(t0), ϕ(t0)〉L2(R3
+)

(6.4)

for any ϕ ∈ C∞
c ([t0, T )×R

3
+)

3 such that ϕ|x3=0 = 0. We also have the weak continuity
of v in time. Next we shall show that (v, q) satisfies the local energy inequality:

‖χv(t)‖2
L2(R3

+)
+ 2
∫ t

t0
‖χ∇v‖2

L2(R3
+)
ds

≤ ‖χv(t0)‖2L2(R3
+)
+
∫ t

t0
〈|v|2, ∂sχ2 + �χ2〉L2(R3

+)
+ 〈v · ∇χ2, |v|2 + 2q〉L2(R3

+)
ds

(6.5)

for any χ ∈ C∞
c ([t0, T ) ×R

3
+) and for all t ∈ (t0, T ). Note that v(t0) = u(t0). To prove

(6.5) we first choose any t ′ ∈ (t0, t) such that (6.3) holds. Then it suffices to show (6.5)
but t0 replaced by such t ′; then we take the limit t ′ → t0 and by the continuity at the
initial time t = t0 in the local L2 topology, we obtain (6.5). The advantage to take t ′ > t0
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first is that we can use the smoothness of u1,ε in [t ′, T ), which justifies the computation
below:

Et,t ′ := ‖χv(t)‖2
L2(R3

+)
+ 2
∫ t

t ′
‖χ∇v‖2

L2(R3
+)
ds

= ‖χu1,ε(t)‖2
L2(R3

+)
+ ‖χu2,ε(t)‖2

L2(R3
+)
+ 2〈χu1,ε(t), χu2,ε(t)〉L2(R3

+)

+ 2
∫ t

t ′
‖χ∇u1,ε‖2

L2(R3
+)
+ ‖χ∇u1,ε‖2

L2(R3
+)
+ 2〈χ∇u1,ε, χ∇u2,ε〉L2(R3

+)
ds.

Hence,

Et,t ′ ≤ ‖χu1,ε(t ′)‖2
L2(R3

+)
+ ‖χu2,ε(t ′)‖2

L2(R3
+)

+
∫ t

t ′
〈|u1,ε |2, ∂sχ2 + �χ2〉L2(R3

+)
+ 〈u1,ε · ∇χ2, |u1,ε |2 + 2q1,ε〉L2(R3

+)
ds

+
∫ t

t ′
〈|u2,ε |2, ∂sχ2 + �χ2〉L2(R3

+)
+ 〈u2,ε · ∇χ2, |u2,ε |2 + 2q2,ε〉L2(R3

+)
ds

− 2
∫ t

t ′
〈u1,ε · ∇u2,ε + u2,ε · ∇u1,ε, u2,εχ2〉L2(R3

+)
ds

+ 2〈u2,ε(t), χ2u1,ε(t)〉L2(R3
+)
+ 4
∫ t

t ′
〈χ∇u1,ε, χ∇u2,ε〉L2(R3

+)
ds.

Thus we have

Et,t ′ ≤ ‖χv(t ′)‖2
L2(R3

+)
+
∫ t

t ′
〈|v|2, ∂sχ2 + �χ2〉L2(R3

+)
ds

− 2〈u2,ε(t ′), χ2u1,ε(t ′)〉2
L2(R3

+)
− 2

∫ t

t ′
〈u2,ε, u1,ε(∂sχ2 + �χ2)〉L2(R3

+)
ds

+
∫ t

t ′
〈u1,ε · ∇χ2, |u1,ε |2 + 2q1,ε〉L2(R3

+)
+ 〈u2,ε · ∇χ2, |u2,ε |2 + 2q2,ε〉L2(R3

+)
ds

− 2
∫ t

t ′
〈u1,ε · ∇u2,ε + u2,ε · ∇u1,ε, u2,εχ2〉L2(R3

+)
ds

+ 2〈u2,ε(t), χ2u1,ε(t)〉L2(R3
+)
+ 4
∫ t

t ′
〈∇u2,ε, χ2∇u1,ε〉L2(R3

+)
ds.

(6.6)

Since u2,ε satisfies (6.2) in the sense of distributions, we have

〈u2,ε(t), χ2u1,ε(t)〉L2(R3
+)

− 〈u2,ε(t ′), χ2u1,ε(t ′)〉2
L2(R3

+)

=
∫ t

t ′
〈u2,ε, ∂s

(
χ2u1,ε)〉L2(R3

+)
+ 〈∇u2,ε,∇(χ2u1,ε)〉L2(R3

+)

+ 〈q2,ε, div (χ2u1,ε)〉L2(R3
+)
ds

−
∫ t

t ′
〈u2,ε · ∇u2,ε, χ2u1,ε〉L2(R3

+)
ds

=
∫ t

t ′
〈u2,ε, u1,ε∂sχ2〉L2(R3

+)
ds
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+
∫ t

t ′
〈u2,ε, χ2(�u1,ε − ∇q1,ε − u1,ε · ∇u1,ε)〉L2(R3

+)
ds

−
∫ t

t ′
〈∇u2,ε,∇(χ2u1,ε)〉L2(R3

+)
+ 〈q2,ε, div (χ2u1,ε)〉L2(R3

+)
ds

−
∫ t

t ′
〈u2,ε · ∇u2,ε + u1,ε · ∇u2,ε + u2,ε · ∇u1,ε, χ2u1,ε〉L2(R3

+)
ds

and hence,

〈u2,ε(t), χ2u1,ε(t)〉L2(R3
+)

− 〈u2,ε(t ′), χ2u1,ε(t ′)〉2
L2(R3

+)

=
∫ t

t ′
〈u2,ε, u1,ε∂sχ2〉L2(R3

+)
ds

+
∫ t

t ′
−2〈∇u2,ε, χ2∇u1,ε〉L2(R3

+)
+ 〈u2,ε, u1,ε�χ2〉L2(R3

+)
ds

+
∫ t

t ′
〈u2,ε · ∇χ2, q1,ε〉L2(R3

+)
+ 〈u1,ε∇χ2, q2,ε〉L2(R3

+)
ds

−
∫ t

t ′
〈u1,ε · ∇u1,ε, χ2u2,ε〉L2(R3

+)
ds

−
∫ t

t ′
〈u2,ε · ∇u2,ε + u1,ε · ∇u2,ε + u2,ε · ∇u1,ε, χ2u1,ε〉L2(R3

+)
ds.

(6.7)

Combining (6.6) and (6.7), we obtain (6.5) for t ′ replaced by t0, as desired. Finally we
set v(t) = u(t) and q(t) = p(t) for t ∈ [0, t0]. It is clear that (v, q) satisfies the required
regularity as a local energy weak solution in QT . In particular, t → 〈v(t), w〉L2(R3+)

is continuous in (0, T ) for any compactly supported w ∈ L2(R3
+)

3. Then for any ϕ ∈
C∞
c ((0, T ) × R

3
+)

3 such that ϕ|x3=0 = 0, we have from (6.4),

∫ T

0
−〈v, ∂sϕ〉L2(R3

+)
+ 〈∇v,∇ϕ〉L2(R3

+)
− 〈q, div ϕ〉L2(R3

+)
+ 〈v · ∇v, ϕ〉L2(R3

+)
ds

=
∫ T

t0
−〈v, ∂sϕ〉L2(R3

+)
+ 〈∇v,∇ϕ〉L2(R3

+)
− 〈q, div ϕ〉L2(R3

+)
+ 〈v · ∇v, ϕ〉L2(R3

+)
ds

+
∫ t0

0
−〈u, ∂sϕ〉L2(R3

+)
+ 〈∇u,∇ϕ〉L2(R3

+)
− 〈p, div ϕ〉L2(R3

+)
+ 〈u · ∇u, ϕ〉L2(R3

+)
ds

= 〈u(t0), ϕ(t0)〉L2(R3
+)

+
∫ t0

0
−〈u, ∂sϕ〉L2(R3

+)
+ 〈∇u,∇ϕ〉L2(R3

+)
− 〈p, div ϕ〉L2(R3

+)
+ 〈u · ∇u, ϕ〉L2(R3

+)
ds

= 0.

It remains to show the local energy inequality in [0, T ). It is clear that the local energy
inequality holds for t ∈ [0, t0] since v = u on [0, t0]. When t > t0 we first apply (6.5)
then we use the local energy inequality for t = t0, which gives (1.5).
Step 2. We now construct a solution for T = ∞. The proof is recursive. From Step
1 above, we know that there exists a local energy weak solution u in the sense of
Definition 1.1 on the time interval (0, 1) starting from the initial data u0 ∈ L2

uloc(R
3
+).
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Let N ∈ N. Assume that a local energy weak solution u has been constructed on
the time interval (0, N ). Since u ∈ L∞(0, N ;L2

uloc(R
3
+)), we have that for almost all

t0 ∈ (0, N ), u(·, t0) ∈ L2
uloc(R

3
+). In particular, t0 can be taken arbitrarily close to N .

Fix t0 ∈ (N − 1
2 , N ) to fix the ideas. Hence, we consider the solution, in the sense of

Definition 1.1, ũ constructed in Step 1 living on the time interval (t0, N + 1) such that
ũ(·, t0) := u(·, t0). The function which is equal to u on (0, t0) and to ũ on (t0, N + 1)
is then a local energy weak solution in the sense of Definition 1.1 on (0, N + 1). This
follows from the exact same arguments as in Step 1 above. The proof is complete. ��

7. Application to a Blow-Up Criteria in the Half-Space

The goal of this section is to prove the following blow-up criterium in the half-space
R
3
+. We recall that a point (x0, t) is called regular if u is bounded in a parabolic ball

B(x0, r) × (t − r2, t). If (x0, t) is not regular it is, by definition, singular. We say that u
blows-up at time T if T is the time of the first occurrence of a singularity.

Theorem 4. Let u be a (finite) energy weak solution (i.e. a Leray–Hopf solution) to the
Navier–Stokes equations (1.1) with initial data u0 ∈ L2

σ (R3
+). Assume that u blows-up

at a finite time T > 0. Then

‖u(·, t)‖L3(R3
+)

−→ ∞ as t → T − 0.

This result is not new. It has been initially proved by Barker and Seregin in [5]. Our
goal here is to give another proof of this result, based on the existence theory of local
energy weak solutions developed in our present work. Our method is strongly inspired
by the one developed by Seregin in [31]. In this paper, Seregin proves the analogous
result of the blow-up of the L3 norm for blow-up solutions in the whole space.

Proof of Theorem 4. The only ingredient which was missing to transpose the proof of
[31] to the case of the half-spaceR3

+ is Theorem 2 above. In [5] Barker and Seregin avoid
the use of decay properties for local energy weak solutions by modifying the technique
of proof. They directly show that the rescaled solutions (see below) strongly converge
in L3

x,t . Our point is to show that the technique of [31] based on the convergence to local
energy solutions also applies to R

3
+.

The proof is by contraposition. Let T > 0. Let u be a finite energy weak solution to
(1.1) onR3

+ × (0,∞) with initial data u0 ∈ L2
σ (R3

+). Assume that there exists a constant
M < ∞ and a sequence of times tk ∈ (0, T ), tk → T such that for all k ∈ N,

‖u(·, tk)‖L3(R3
+)

≤ M. (7.1)

We aim at showing that u is smooth. Let us consider the space-time point (x0, T ), where

x0 is an arbitrary point in R
3
+. We will show that (x0, T ) is a regular point for u. There

are two cases: either x0 ∈ R
3
+ or x0 ∈ ∂R3

+. The first case of an interior point uses the
existence of local energy Leray solutions in R

3. This case has been treated in [31] and
hence we do not repeat the argument.We concentrate on the second case of the boundary
regularity. Note however that the analysis of the interior point is parallel to the analysis
of a boundary point, so it is easy to adapt the arguments below to the case x0 ∈ R

3
+. The

strategy proceeds in three steps: (i) prove that a properly rescaled sequence of solutions
converges to a local energy solution of the Navier–Stokes equations which is zero at final
time and has initial data in L2

uloc(R
3
+), (ii) prove a Liouville theorem for such solutions
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using a backward uniqueness result for parabolic equations, (iii) conclude the proof.
The key ingredient of the proof is the ε-regularity theorem, Theorem 3. Here, we focus
on Step (i). Step (ii) has been extensively developed by Seregin and his coauthors in
[8,9,29,30,33] to name a few and is almost identical in R

3
+ and R

3. The details for R3
+

are given in [5], so we will just sketch the argument for Step (ii). As we just explained,
we assume that x0 ∈ ∂R3

+ in the following lines. Without loss of generality we even
assume x0 = 0.

Step (i): rescaling and passing to the limit. For all k ∈ N, for S > 0 to be determined

later, let λk :=
√

T−tk
S . For all S > 0, we introduce the rescaled functions v(k) defined

as follows
u(k)(y, s) := λku(λk y, T + λ2ks), (7.2)

for all (y, s) ∈ R
3
+ × (−S,∞). Let us emphasize that by definition v(k) depends on

S, although we do not keep track of this dependence in the notation. Since the scaling
is the one leaving invariant the Navier–Stokes equations, v(k) is still a weak solution
to the Navier–Stokes equations, though on the domain R

3
+ × (−S,∞). Moreover, the

blow-up time being the time at which the first singularity appears, u is smooth on
QT = R

3
+ × (0, T ). Hence, for all k ∈ N, u(k) is smooth on R

3
+ × (−S, 0). It is clear

that u(k) is a local energy solution in the sense of Definition 1.1 on R
3
+ × (−S, 0) with

initial data u(·, tk). By invariance of the L3(R3
+) norm under the Navier–Stokes scaling,

we get that
‖u(k)(·,−S)‖L3(R3

+)
= ‖u(·, tk)‖L3(R3

+)
≤ M, (7.3)

where C is the constant in (7.1). Therefore, there exists u−S ∈ L3(R3
+) such that up to

a subsequence (still denoted the same)

u(k)(·,−S) ⇀ u−S (7.4)

weakly in L3(R3
+). Using Corollary 5.9, we see that there exists S > 0 such that u(k)

is uniformly bounded in the local energy norm on the time interval (−S, 0). Therefore,
there exists a constant 0 < A < ∞ such that for all k ∈ N, for all s ∈ (−S, 0),

sup
η∈Z3

+

∫
�(η)

|u(k)(·, s)|2 +
∫ 0

−S

∫
�(η)

|∇u(k)|2 +
(∫ 0

−S

∫
�(η)

|u(k)|3
) 2

3

≤ A.

It is nowa standard procedure (seeSect. 5) to see thatu(k) converges (up to a subsequence)
weakly star in L∞(−S, 0; L2

loc(R
3
+)), weakly in L2(−S, 0; H1

loc(R
3
+)) and strongly in

L3
loc(R

3
+×(−S, 0)) to u, a functionwhich satisfies all the axioms inDefinition 1.1 except

one: it is unclear that the strong continuity (1.4) in L2
loc(R

3
+) at initial time holds. The

convergence (1.4), though, is essential to transfer the decay of the initial data in L2
uloc to

the solution, as explained in Sect. 4. The mere weak continuity to the initial data is not
enough for this purpose. Hence the argument has to be modified in the way discovered
by Seregin [31].

Following [31], we decompose u(k) into u(k) = v(k)+w(k), wherew(k) is the solution
to the linear Stokes problem⎧⎪⎪⎨

⎪⎪⎩
∂tw

(k) − �w(k) + ∇q(k) = 0, ∇ · w(k) = 0 in (−S, 0) × R
3
+,

w(k) = 0 on (−S, 0) × ∂R3
+,

w(k)(·,−S) = u(·, tk) in R3
+,

(7.5)
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and v(k) is the solution to the perturbed Navier–Stokes system driven by w(k) with zero
initial data⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂tv
(k) + (v(k) + w(k)) · ∇(v(k) + w(k)) − �v(k) + ∇ p(k) = 0,

∇ · v(k) = 0 in (−S, 0) × R
3
+,

v(k) = 0 on (−S, 0) × ∂R3
+,

v(k)(·,−S) = 0 in R3
+.

(7.6)
Since the initial data for w(k) belongs to L3

σ (R3
+), the existence, uniqueness and a priori

bounds for (7.5) are well-known in the half-space R
3
+. The results of [7] enable to

check Assumption (A) in [13] for the Stokes semigroup in R
3
+. Hence, there exists a

unique solution w(k) ∈ C0([−S, 0]; L3(R3
+))∩ L5(R3

+ × (−S, 0)) such that there exists
a constant C(M) < ∞ (M is the constant in (7.1)), for all S > 0,

‖w(k)‖L∞(−S,0;L3(R3
+))

+ ‖w(k)‖L5(R3
+×(−S,0)) ≤ C(M). (7.7)

The uniformity in S > 0 of the constant C(M) is due to the fact that the norms in the
left hand side of (7.7) are invariant under the Navier–Stokes scaling. Notice moreover
that w(k) is smooth, so that it is uniformly bounded in k in the local energy norm, i.e.
for all S > 0, there exists a constant C(S) > 0 such that for all k ∈ N ,

sup
η∈Z3

+, s∈(0,S)

∫
�(η)

|w(k)(·, s)|2 + sup
η∈Z3

+

∫ s

0

∫
�(η)

|∇w(k)|2 ≤ C(S).

As for v(k), a small modification of the a priori estimate carried out in the proof of
Proposition 5.7 enables to show that (see display (5.15)) there exists a constant C such
that for all k ∈ N, for all s ∈ (−S, 0],

Ek(s) ≤ C(s + S)
1
24 (1 + Ek(s) + Ek(s)

3), (7.8)

where

Ek(s) := sup
η∈Z3

+, s′∈(0,s)

∫
�(η)

|v(k)(·, s′)|2 + sup
η∈Z3

+

∫ s

0

∫
�(η)

|∇v(k)|2.

From (7.8), we deduce on the one hand that there exists S (uniform in k) such that Ek(0)
is uniformly bounded in k, and on the other hand Ek(s) → 0 when s → −S. We fix
now S as above. It follows now that (up to a subsequence) w(k) converges weakly star

in L∞(−S, 0; L3(R3
+)), weakly in L5(R3

+ × (−S, 0)), weakly in L2(−S, 0; H1
loc(R

3
+))

and strongly in L3
loc(R

3
+ × (−S, 0)) to a function w ∈ C0([−S, 0]; L3(R3

+)) ∩ L5(R3
+ ×

(−S, 0)) solving the Stokes system (7.5) with u−S defined in (7.4) as initial data. More-
over, v(k) being uniformly bounded in the local energy norm, v(k) converges (up to

a subsequence) weakly star in L∞(−S, 0; L2
loc(R

3
+)), weakly in L2(−S, 0; H1

loc(R
3
+)),

strongly in L3
loc(R

3
+ × (−S, 0)) and strongly in C0([δ, 0]; L

9
8
loc(R

3
+)), for all δ > −S to

a local energy solution v of (7.6) with w(k) replaced by w. Notice that for all x0 ∈ R
3
+,

passing to the limit on k in∫
�(x0)

|v(k)(·, s′)|2 ≤ Ek(s) ≤ C(s + S)
1
24 ,
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with C uniform in k, where the last inequality is due to (7.8), yields∫
�(x0)

|v(·, s′)|2 ≤ lim inf
k

∫
�(x0)

|v(k)(·, s′)|2 ≤ C(s + S)
1
24 .

Therefore, v(·, s) converges strongly to 0 in L2
loc(R

3
+) when s → −S. To put it in

a nutshell, ū defined by ū = v + w is a local energy weak solution with initial data
u−S ∈ L3(R3

+) ⊆ L2(R3
+) in the sense of Definition 1.1. Theorem 2 now implies that

sup
s∈(−S,0)

sup
η∈Z3

+

∫
�(η)

|ϑRū(·, s)|2 +
∫ 0

−S

∫
�(η)

|ϑR∇ū|2

+

(∫ 0

−S

∫
�(η)

|ϑRū|3
) 2

3

+

(∫ 0

δ

∫
�(η)

|ϑR p̄| 32
) 2

3 R→∞−→ 0,

(7.9)

for all δ > −S. Estimate (7.9) is the key point of the proof and the main contribution of
our work for the case of R3

+.
It remains to prove that ū vanishes at final time, i.e. ū(·, 0) = 0. This is standard

and could have been done directly without relying on the decomposition of u(k) into
v(k) + w(k). We first remark that (7.1) implies that

‖u(·, T )‖L3(R3
+)

≤ M, (7.10)

where M is the constant in (7.1). Indeed, up to a subsequence u(·, tk) converges weakly
in L3(R3

+) to ũ ∈ L3(R3
+) and(∫

R
3
+

|̃u|3
) 1

3 ≤ lim inf
k→∞

(∫
R
3
+

|u(·, tk)|3
) 1

3 ≤ M.

We show now that ũ = u(·, T ). Indeed the global in time weak Leray solution u satisfies
the following weak continuity property: for all ϕ ∈ C∞

c (R3
+)

3,∫
R
3
+

u(·, tk) · ϕ −→
∫
R
3
+

u(·, T ) · ϕ, k → ∞. (7.11)

Therefore, for all ϕ ∈ C∞
c (R3

+)
3,∣∣∣∣

∫
R
3
+

(u(·, T ) − ũ) · ϕ

∣∣∣∣
≤
∣∣∣∣
∫
R
3
+

(u(·, T ) − u(·, tk)) · ϕ

∣∣∣∣ +
∣∣∣∣
∫
R
3
+

(u(·, tk) − ũ) · ϕ

∣∣∣∣ k→∞−→ 0,

where the first term goes to zero by the continuity property (7.11), and the second term
goes to zero thanks to the weak convergence in L3(R3

+). This concludes the proof of
(7.10). The second observation is that due to the strong convergence of u(k) to ū in

C0([δ, 0]; L
9
8
loc(R

3
+)) for all δ > −S, we have in particular, for all a > 0∫
B(0,a)∩R3

+

|u(k)(y, 0)|dy k→∞−→
∫
B(0,a)∩R3

+

|ū(y, 0)|dy. (7.12)
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Let a > 0. We thus infer from

1

a2

∫
B(0,a)∩R3

+

|u(k)(y, 0)|dy ≤
(∫

B(0,λka)∩R3
+

|u(x, T )|3dx
) 1

3

that 1
a2
∫
B(0,a)∩R3

+
|ū(y, 0)|dy = 0, where we used (7.12) to pass to the limit in the left

hand side, while we used (7.10) to pass to the limit in the right hand side.
Step (ii): Liouville-type result. The goal of this section is to show that ū = 0 in R

3
+ ×

(−S, 0). We just emphasize the main steps of the proof. The arguments have already
been written in details for the half-space in [5, end of Section 5]. They are not very
different from the arguments in [8,31].

First, we show that ū = 0 in (R3
+\B(0, 2R))× (−S, 0) for some large R. The key for

this is the decay estimate (7.9). From this we know that ū is smooth R3
+\B(0, R) thanks

to the ε-regularity theorem, Theorem 3 above. This gives bounds in L∞((R3
+\B(0, R))×

(−S, 0)) on ū and its first-order spatial derivatives (in fact on derivatives at any order,
but this is not needed). This in turn, allows to apply the backward uniqueness theorem
[8, Theorem 5.1] on the vorticity ω = ∇ × ū, noticing in addition that

|∂tω − �ω| ≤ C(|∇ω| + |ω|) (7.13)

andω(·, 0) = 0.Hence,ω = 0 on (R3
+\B(0, 2R))×(−S, 0). Fix now s ∈ (−S, 0). From

∇ · ū = 0 and ω = 0 outside B(0, 2R), we know that �ū(·, s) = 0. Hence, ū(·, s) is
analytic onR3

+\B(0, 2R).Moreover, we already know that ū(·, s) vanishes on ∂R3
+. As in

[5], we easily get that ∂3ū(·, s) = 0 on ∂R3
+\B(0, 2R), and for all k ∈ N, ∇k ū(·, s) = 0

on ∂R3
+\B(0, 2R). So we can extend ū(·, s) by symmetry onR3\B(0, 2R). Since ū(·, s)

is analytic and vanishes at any order on ∂R3
+\B(0, 2R), we get by unique continuation

that ū(·, s) = 0 on R3\B(0, 2R) for almost every s ∈ (−S, 0).
The second step consists in showing that ū is zero everywhere on R

3
+ × (−S, 0).

This follows from localizing in the ball B(0, 4R) ∩R
3
+. Let D be a smooth C∞ domain

such that B(0, 3R) ∩ R
3
+ ⊆ D ⊆ B(0, 4R) ∩ R

3
+. Then ū solves the Navier–Stokes

equations with no-slip boundary condition on ∂D since we know that ū vanishes outside
D. For almost all s0 ∈ (−S, 0), ∇ū(·, s0) ∈ L2(D), so that by the classical theory of
the Navier–Stokes equations, ∂t ū, ∇2ū and ∇ p̄ belong to L2(D × (s0, s0 + δ0)), for
some δ0 > 0. Regularity for linear systems then implies bounds on ∇k ū for k = 0, 1
in L∞(B(0, 4R) ∩ R

3
+) × (s0 + κ, s0 + δ0 − κ), for some tiny κ > 0. Hence, because

of the previous bounds and noticing furthermore that (7.13) holds and that ω = 0 on
(B(0, 4R)\B(0, 2R))∩R

3
+×(s0+κ, s0+δ0−κ), we can apply unique continuation across

spatial boundaries [8, Theorem 4.1] to getω = 0 on B(0, 4R)∩R
3
+×(s0 +κ, s0 +δ0−κ).

This being true for almost every s0 ∈ (−S, 0), we eventually get ω = 0.
It remains to conclude that ū = 0. For almost every s ∈ (−S, 0), ω(·, s) = 0 so that

�ū(·, s) = 0 in D. Moreover, ū(·, s) = 0 on ∂D. Therefore, ū(·, s) = 0 in D, hence in
R
3
+, which concludes the proof of Step (ii).

Step (iii): end of the proof. We claim that there exists ρ∗ > 0 such that

1

ρ2∗

∫ 0

−ρ2∗

∫
B(0,ρ∗)∩R3

+

(
|u|3 + |p| 32

)
dxdt < ε∗, (7.14)

where ε∗ > 0 is the constant given by the ε-regularity theorem, Theorem 3. Our goal
in this step is to prove this claim. From Step (ii) we know that ū = 0 on R3

+ × (δ, 0] for
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δ ∈ (−S, 0). This fact combined with the strong convergence of u(k) to ū in L3
loc(R

3
+ ×

(−S, 0)) gives that for k sufficiently large, for all ρ <
√
S,

1

(λkρ)2

∫ 0

−(λkρ)2

∫
B(0,λkρ)∩R3

+

|u|3dxdt = 1

ρ2

∫ 0

−ρ2

∫
B(0,ρ)∩R3

+

|u(k)|3dyds <
ε∗
3

.

The pressure part is slightly more difficult to handle. Indeed, we do have bounds on
spatial derivatives of the pressure, thanks to results of Sect. 2. What we are lacking are
bounds on time derivatives of the pressure in order to get strong convergence of the

pressure in L
3
2
loc(R

3
+ × (−S, 0)). The point is whether this is true or not, we do not need

the pressure to converge strongly. Based on the work of Sect. 2, we can decompose the
pressure p(k) associated to u(k) into a local part, which will be controlled by the local
L3 norm of u, and a linear and a nonlocal part, for which the scale invariant quantity in
(7.14) will be small. According to (2.18), we decompose p(k) as follows

p(k) = p(k)
li + pu

(k)⊗u(k)

loc + pu
(k)⊗u(k)

nonloc .

From the semigroup estimates [26, Proposition 5.3], we immediately get that

‖p(k)
li (·, s)‖L∞(B(0,1)×(−S,0)) ≤ C(S + s)−

3
4 ‖u(k)(·,−S)‖L2

uloc(R
3
+)

≤ C(S + s)−
3
4 ‖u(k)(·,−S)‖L3(R3

+)
,

so that for all δ > −S, there is a constant C(δ, S) < ∞, uniform in k, such that
‖p(k)

li (·, s)‖L∞(R3
+×(−δ,0)) ≤ C(δ, S). From Proposition 2.3, we readily have the follo-

wing L∞ bound: there is a constant C(S) < ∞, uniform in k, such that

‖pu(k)⊗u(k)

nonloc ‖L∞(B(0,1)×(−S,0)) ≤ C(S).

Therefore, for all ρ < min(1,
√
S),

1

(λkρ)2

∫ 0

−(λkρ)2

∫
B(0,λkρ)∩R3

+

|pli (·, s)| 32 + |pu⊗u
nonloc|

3
2 dxdt

≤ 1

ρ2

∫ 0

−ρ2

∫
B(0,ρ)∩R3

+

|p(k)
li (·, s)| 32 + |pu(k)⊗u(k)

nonloc | 32 dyds ≤ Cρ3 ρ→0−→ 0.

It remains to handle the local part of the pressure. For this we proceed slightly differently
than in the proof of Proposition 2.2. Indeed (this idea is taken from [5, display (5.5)])

we estimate χ2
4
u(k) · ∇u(k) in the slightly energy subcritical space L

12
11 (R3

+ × (−S, 0))

instead of L
3
2 (−S, 0; L 9

8 (R3
+)). We have

∫ 0

−S

(∫
R
3
+

|χ2
4
u(k) · ∇u(k)| 1211 dy

) 11
12

ds

≤ C‖∇u(k)‖
3
2

L2(−S,0;L2
uloc(R

3
+))

‖u(k)‖
3
4

L∞(−S,0;L2
uloc(R

3
+))

‖u(k)‖
1
4
L3(B(0,5)×(−S,0))

.
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Hence, reproducing the estimates of the proof of Proposition 2.2, we obtain for all
ρ < min(1,

√
S)

1

ρ2

∫ 0

−ρ2

∫
B(0,ρ)∩R3

+

|pu(k)⊗u(k)

loc | 32 dyds ≤ C‖u(k)‖
1
4
L3(B(0,5)×(−S,0))

, (7.15)

with C uniform in k. The right hand side of (7.15) goes to 0 when k → ∞. In the end,
we get that for ρ sufficiently small and k sufficiently large, we have

1

(λkρ)2

∫ 0

−(λkρ)2

∫
B(0,λkρ)∩R3

+

|u|3 + |pli (·, s)| 32 + |pu⊗u
loc | 32 + |pu⊗u

nonloc|
3
2 dxdt < ε∗,

(7.16)

which proves the claim. By (7.14) and Theorem 3, we conclude that u is smooth in
B(0, ρ∗) ∩ R

3
+ × (−ρ2∗, 0). ��

Appendix A: Auxiliary Tools

A.1 The Leray projector in the half-space. In this appendix, we consider the case of
arbitrary dimension d ≥ 2. Using the formulas of [26], we have for all f, g ∈ C∞

c (Rd
+),(

P∇ · ( f ⊗ g)
)′
(z′, zd) = ∇′ · ( f ′ ⊗ g) + ∂d( fd g) − ∇′( fd gd)

+
∇′

2(−�′) 1
2

∫ ∞

0
[P(|zd − yd |) + P(zd + yd)]∇′ ⊗ ∇′ · ( f ′ ⊗ g′)(z′, yd)dyd

+
(−�′) 1

2 ∇′

2

∫ ∞

0
[P(|zd − yd |) + P(zd + yd)] fd gd(z

′, yd)dyd

− ∇′

2

∫ zd

0
P(zd − yd)∇′ · ( fd g

′ + f ′gd)(z′, yd)dyd

+
∇′

2

∫ ∞

zd
P(yd − zd)∇′ · ( fd g

′ + f ′gd)(z′, yd)dyd

+
∇′

2

∫ ∞

0
P(zd + yd)∇′ · ( fd g

′ + f ′gd)(z′, yd)dyd
(A.1)

for the tangential component and(
P∇ · ( f ⊗ g)

)
d(z

′, zd) = −∇′ · ( fd g
′)

+
1

2

∫ zd

0
[P(zd − yd) + P(zd + yd)]

(∇′ ⊗ ∇′ · ( f ′ ⊗ g′) + �′( fd gd)
)
(z′, yd)dyd

− 1

2

∫ ∞

zd
[P(yd − zd) − P(zd + yd)]

(∇′ ⊗ ∇′ · ( f ′ ⊗ g′) + �′( fd gd)
)
(z′, yd)dyd

+
(−�′) 1

2

2

∫ ∞

0
[P(|zd − yd |) + P(zd + yd)]∇′ · ( fd g

′ + f ′gd)(z′, yd)dyd
(A.2)
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for the vertical component. Here P(·) = e−(−�′)
1
2 · denotes as usual the Poisson semi-

group. Hence, it appears that the operator P∇· can be decomposed as the sum of the
following two types of terms:

∂α(v ⊗ w) (type A)

for some α ∈ {1, . . . d − 1}, and

m0(D
′)∇′ ⊗ ∇′

∫ ∞

0
[P(|zd − yd |) + P(zd + yd)] v ⊗ wdyd , (type B)

where m0(D′) is a (tangential) Fourier multiplier homogeneous of order 0, which may

be a matrix. We have used in particular the formula −∇′·∇′

(−�′)
1
2

= (−�′) 1
2 to see that every

term in (A.1) can be put in this form.
We show the following lemma on the estimate of the nonlocal terms (type B) in the

Helmholtz–Leray projection.

Lemma A.1. For any v, w ∈ L2
uloc(R

d
+), we have the following decomposition(

m0(D
′)∇′ ⊗ ∇′

∫ ∞

0
[P(|zd − yd |) + P(zd + yd)] (1 − χ2

4
)v ⊗ w(·, yd)dyd

)
(z′)

= B1(z
′, zd) + ∇′ ⊗ ∇′B2(z

′, zd).

Moreover, both B1 and B2 belong to L∞((0,∞); L1
uloc(R

d−1)) and we have the follow-
ing bound:

‖B1(·, zd)‖L1
uloc,z′ (R

d−1) + ‖B2(·, zd)‖L1
uloc,z′ (R

d−1)

≤ C‖v‖L2
uloc(R

d
+)‖w‖L2

uloc(R
d
+)

for almost every zd ∈ (0,∞) with a constant C(d) < ∞.

Remark A.2. In the paper [26, Proposition 6.3] we have introduced another decomposi-
tion of the terms (type B) of the Helmholtz–Leray projection. Above, we have suggested
another decomposition, which based on a splitting of the integral in the vertical variable
(see proof below), rather than on splitting of low and high frequencies as in [26]. Notice
that here this rough splitting is enough, since we are only considering the large scales,
while in the aforementioned paper, we were considering both small and large scales.

Proof of Lemma A.1. Below m0(D′) stands for a tangential Fourier multiplier homoge-
neous of order 0 which may change from line to line. Let us first concentrate on the part
involving P(zd + yd). The part involving P(|zd − yd |) will be sketched below. So first
we aim at estimating(

m0(D
′)∇′ ⊗ ∇′

∫ ∞

0
P(zd + yd)(1 − χ2

4
)v ⊗ w(·, yd)dyd

)
(z′)

=
(
m0(D

′)∇′ ⊗ ∇′
∫ ∞

1
P(zd + yd)(1 − χ2

4
)v ⊗ w(·, yd)dyd

)
(z′)

+∇′ ⊗ ∇′
(∫ 1

0
m0(D

′)P(zd + yd)(1 − χ2
4
)v ⊗ w(·, yd)dyd

)
(z′)

=: B1(z
′, zd) + ∇′ ⊗ ∇′B2(z

′, zd).
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In order to take care of the singularity near ∞ and yd = 0, we handle differently B1 and
B2. Let γ ∈ (0, 1). For B1, the idea is to put the derivatives on the Poisson kernel. This
gives,

B1(z
′, zd) =

(∫ ∞

1
m0(D

′)∇′ ⊗ ∇′P(zd + yd)(1 − χ2
4
)v ⊗ w(·, yd)dyd

)
(z′),

with γ ∈ (0, 1) fixed. We remark that for almost all yd ∈ (1,∞),

‖m0(D
′)∇′ ⊗ ∇′P(zd + yd)(1 − χ2

4
)v ⊗ w(·, yd)‖L1

uloc,z′ (R
d−1)

≤ C‖m0(D
′)∇′ ⊗ ∇′P(zd + yd)‖L1

z′ (R
d−1)‖v ⊗ w(·, yd)‖L1

uloc,z′ (R
d−1)

≤ C

(zd + yd)2
‖v(·, yd)‖L2

uloc,z′ (R
d−1)‖w(·, yd)‖L2

uloc,z′ (R
d−1).

We have also used the fact that for any tangential Fourier multiplier mα(D′) homoge-
neous of order α > −2, for all (y′, yd) ∈ R

d
+, the kernel P(y′, yd) associated to the

Poisson semigroup P(yd) satisfies the bound

|mα(D′)P(y′, yd)| ≤ Cyd
(yd + |y′|)d+α

,

with a constant C(d) < ∞. This bound on fractional derivatives of the Poisson kernel
is probably well-known. It can be easily proved by using Lemma 3.1 in [26]. Thus, for
almost every zd ∈ (0,∞)∥∥∥∥

∫ ∞

1
m0(D

′)∇′ ⊗ ∇′P(zd + yd)(1 − χ2
4
)v ⊗ w(·, yd)dyd

∥∥∥∥
L1
uloc,z′ (R

d−1)

≤ C

1 + zd
‖v‖L2

uloc(R
d
+)‖w‖L2

uloc(R
d
+).

As far as B2 is concerned, we have

B2(z
′, zd , s) =

(∫ 1

0
m0(D

′)P(zd + yd)(1 − χ2
4
)v ⊗ w(·, yd)dyd

)
(z′).

We have for almost all yd ∈ (0, 1),

‖m0(D
′)P(zd + yd)(1 − χ2

4
)v ⊗ w(·, yd)‖L1

uloc,z′ (R
d−1)

≤ C‖m0(D
′)P(zd + yd)‖L1

z′ (R
d−1)‖(1 − χ2

4
)v ⊗ w(z′, yd)‖L1

uloc,z′ (R
d−1)

≤ C‖v(·, yd)‖L2
uloc,z′ (R

d−1)‖w(·, yd)‖L2
uloc,z′ (R

d−1).

In the end, for almost every zd ∈ (0,∞),∥∥∥∥
∫ 1

0
m0(D

′)P(zd + yd)(1 − χ2
4
)v ⊗ w(z′, yd)dyd

∥∥∥∥
L1
uloc,z′ (R

d−1)

≤ C‖v‖L2
uloc(R

d
+)‖w‖L2

uloc(R
d
+).
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We outline now how to deal with the part involving P(|zd − yd |). It is handled in a
similar way as the part involving P(zd + yd). We split the integral in yd into∫ zd−1

0
. . . +

∫ zd

zd−1
. . . +

∫ zd+1

zd
. . . +

∫ ∞

zd+1
. . . (A.3)

and we deal with the first and the fourth integral similarly to B1, while the second and
the third are handled as B2. This concludes the proof of the lemma. ��

A.2. A commutator lemma for the Helmholtz–Leray projection. The following lemma
is probably well-known, even in the half-space, but we could not find a reference. We
state and prove it for the sake of completeness.

Lemma A.3. Let a ∈ W 1,∞(Rd
+;R) a Lipschitz function. Then, for all 1 < p < ∞, the

commutator [a,P] := aP−P(a·) is bounded from L p(Rd
+) to Lq(Rd

+) with
1
q = 1

p − 1
d .

Moreover, for p, q and f as above,

‖[a,P] f ‖Lq (Rd
+) ≤ C‖∇a‖L∞‖ f ‖L p(Rd

+).

Proof. Let f ∈ L p(Rd
+). By writing f and a f as

f = P f + ∇P, a f = P(a f ) + ∇Q,

we see that p and q solve the following Neumann problems on Rd
+:{ − �P = ∇ · f in Rd

+,

∂d P = fd on ∂Rd
+

and { − �Q = ∇ · (a f ) in Rd
+,

∂d Q = a fd on ∂Rd
+.

Hence, we can use the Neumann function N for the half-space to represent P and Q.
This gives, for all x ∈ R

d
+

P(x) =
∫
R
d
+

N (x ′ − z′, xd , zd)∇ · f (z′, zd)dz′dzd ,

and

Q(x) =
∫
R
d
+

N (x ′ − z′, xd , zd)∇ · (a f )(z′, zd)dz′dzd .

Hence,

a∇P − ∇Q = −
∫
R
d
+

∇2N (x − z′, xd , zd)(a(x) − a(z)) f (z)dz.

This yields the result by classical estimates on singular integral, since |∇2N (x − z′, xd ,
zd)(a(x) − a(z))| ≤ C‖∇a‖L∞|x − z|−d+1. ��
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A.3. Characterization of Lp
uloc,σ (R3

+).

Lemma A.4. Let 1 < p < ∞. Let ϑR be the cut-off used in Theorem 2. Then

Lp
uloc,σ (R3

+)

= { f ∈ L p
uloc(R

3
+)

3 | div f =0 in R3
+, f3=0 on ∂R3

+, lim
R→∞ ‖ϑR f ‖L p

uloc(R
3
+)

=0
}
.

(A.4)

Proof. The inclusion ⊆ is trivial in (A.4). It suffices to show the inverse inclusion. The
argument is almost parallel to the whole space case proved in Kikuchi-Seregin [21]. Let
f ∈ L p

uloc(R
3
+)

3 be such that

div f = 0 in R3
+, f3 = 0 on ∂R3

+, lim
R→∞ ‖ϑR f ‖L p

uloc(R
3
+)

= 0.

Let {Bj } be the collection of open cubes in R
3
+ such that |Bj | = 1, R3

+ = ∪ j B j , and
any Bj0 intersects with at most 10 numbers of the other Bj . Let {ϕ j } be the partition

of unity subordinate to {Bj }: ϕ j ∈ C∞
0 (R3

+), suppϕ j ∩ R
3
+ ⊆ Bj , and

∑
j ϕ j = 1 in

R
3
+. Let χL ∈ C∞

0 (R3), L � 1, be a cut-off such that χL = 1 for |x | ≤ L , χL = 1 for

|x | ≥ 2L , and ‖∇kχL‖L∞ ≤ CkL−k for each k. Let v j
L ∈ W 1,p

0 (Bj )
3 be the solution to

the divergence problem

∇ · v
j
L = ϕ j f · ∇χL −

∫
Bj

ϕ j f · ∇χLdx in Bj , (A.5)

satisfying

‖v j
L‖W 1,p(Bj )

≤ C‖ϕ j f · ∇χL −
∫
Bj

ϕ j f · ∇χLdx‖L p(Bj )

≤ C

L
‖ f ‖L p(Bj ).

Here, C is independent of L and j . Set

vL =
∑
j

v
j
L ,

which satisfies

∇ · vL = f · ∇χL in R3
+, vL |∂R3

+
= 0, supp vL is compact in R

3
+,

and

‖vL‖L p
uloc(R

3
+)

≤ C sup
j

‖v j
L‖L p(Bj ) ≤ C

L
‖ f ‖L p(Bj ).

Finally, we set

uL = χL f − vL ,

which satisfies ∇ · uL = 0 in R3
+ and uL ,3 = 0 on ∂R3

+ in the sense of generalized trace,
and the support of uL is compact, i.e., uL ∈ L p

σ (R3
+). It is easy to see that
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lim
L→∞ ‖ f − uL‖L p

uloc(R
3
+)

≤ lim
L→∞

(‖(1 − χL) f ‖L p
uloc(R

3
+)
+ ‖vL‖L p

uloc(R
3
+)

) = 0.

Finally, since L p
σ (R3

+) is the closure of C
∞
0,σ (R3

+) in L p(R3
+)

3 ↪→ L p
uloc(R

3
+)

3, we con-
clude that the right-hand side of (A.4) is included in its left-hand side. The proof is
complete. ��
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