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Abstract: We construct the Green–Schwarz terms of six-dimensional supergravity the-
ories on spacetimes with non-trivial topology and gauge bundle. We prove the cancel-
lation of all global gauge and gravitational anomalies for theories with gauge groups
given by products of U (n), SU (n) and Sp(n) factors, as well as for E8. For other gauge
groups, anomaly cancellation is equivalent to the triviality of a certain 7-dimensional
spin topological field theory. We show in the case of a finite Abelian gauge group that
there are residual global anomalies imposing constraints on the 6d supergravity. These
constraints are compatible with the known F-theory models. Interestingly, our construc-
tion requires that the gravitational anomaly coefficient of the 6d supergravity theory is
a characteristic element of the lattice of string charges, a fact true in six-dimensional
F-theory compactifications but that until now was lacking a low-energy explanation. We
also discover a new anomaly coefficient associated with a torsion characteristic class in
theories with a disconnected gauge group.
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1. Introduction and Summary

Supergravity theories in six dimension contain anomalous chiral fermions and self-dual
fields. Anomaly cancellation imposes strong constraints on the allowed field content
of these theories. The constraints coming from local anomaly cancellation are well-
understood, see for instance [1]. The constraints imposed by global anomaly cancellation
are more elusive: global gauge anomaly cancellation has been used in [2,3] to derive
constraints on the anomaly coefficients of the theory, but little is known beyond these
results. The present work is a step toward a more systematic understanding of global
anomalies in 6d supergravity.

The local anomalies of 6d supergravity theories are canceled through a generalization
of the Green–Schwarz mechanism. The degree 8 anomaly polynomial A8 of the theory
is required to factorize as

A8 = 1

2
Y ∧ Y (1.1)

where Y is a 4-form valued in the Lie algebra �R of Abelian gauge group of the chiral
two-form gauge potentials. Moreover, ∧ denotes the wedge product of forms tensored
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with the inner product in�R. The Bianchi identity of the field strength H of the self-dual
2-forms is modified to

d H = Y, (1.2)

and a Green–Schwarz term

1

2

∫
B ∧ Y (1.3)

is added to the action. The standard lore described above is satisfactory for flat spacetimes
with trivial gauge bundles, but cannot accommodate non-trivial topologies. For instance
the chiral bosonic fields can be described by a 2-form only locally.

In order to obtain a more general definition of the Green–Schwarz terms, it is useful
to understand better the anomaly they are supposed to cancel. The anomalies of a d-
dimensional field theory F are best pictured as a field theory in dimension d + 1, the
anomaly field theory A [4]. For the case of interest to us, A is invertible [5], which
implies in particular that its partition function is non-vanishing and that its state space
has dimension 1. The partition function F(M) of F on a d-dimensional (Euclidean)
spacetime M , instead of being a complex number, is an element of A(M), the one-
dimensional Hilbert space/Hermitian line associated by the anomaly field theory to M .
F(M) can be seen as a complex number only in a non-canonical way, by picking an
isomorphism A(M) � C. Moreover, if a global symmetry of the background data acts
non-trivially onA(M),F(M)will transform by a phase:F has an anomaly with respect
to the global symmetry [6].

We can now understand conceptually the nature of the Green–Schwarz terms. An
exponentiated Green–Schwarz term is a vector in A(M)†, the Hilbert space complex
conjugate to A(M) [7]. Adding the Green–Schwarz term to the action amounts to ten-
soring the partition function with the exponentiated Green–Schwarz term to obtain an
element ofA(M) ⊗A(M)†. The new partition function now takes its value in a Hilbert
space canonically isomorphic to C, on which all the symmetries obviously act triv-
ially: the anomalies have been canceled. Implementing the Green–Schwarz mechanism
therefore decomposes into two steps:

1. Identify the anomaly field theory A of the field theory F whose anomalies have to
be canceled.

2. Construct from the field theory data a vector in A(M)† for every spacetime M . In
order to be able to recast this vector as a Green–Schwarz term, it should take the
form of the exponential of an action depending locally on the fields of the theory.
The Lagrangian of this action is then the Green–Schwarz term to be added to the
original action. It is crucial that this vector is constructed from the field theory data,
as other constraints such as supersymmetry do not allow us to modify the field
content of the theory.

Returning toour original problem in six-dimensional supergravity theories, the anoma-
lies are due to chiral fermions and self-dual fields. Accordingly, the anomaly field theory
A is a product of certain Dai–Freed theories [8,9], whose partition functions are given
by eta invariants of Dirac operators. These theories are difficult to work with, partly
because they lack an action principle in terms of fields.

Equations (1.2) and (1.3) however suggest the following picture. Recall that given a
classical action in dimension d, there is always a “prequantum” invertible field theory
[10] associated to it, whose partition function is the exponentiated action and whose
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state space on a d − 1-dimensional manifold M is the space of boundary values of
the action on d-dimensional manifolds U such that ∂U = M . The latter is generally a
Hermitian line non-canonically isomorphic to C. Under (small) gauge transformations,
(1.3) transforms like the boundary value of a Chern–Simons theory with action

1

2

∫
A ∧ Y, (1.4)

where A is a degree 3 Abelian gauge field with field strength Y . This suggests that
the exponentiated Green–Schwarz term should be a vector in the state space of the
prequantum Chern–Simons theory defined by the action (1.4). But problems arise when
considering large gauge transformations. (1.4) is a Chern–Simons action at half-integer
level, so the exponentiated action is not gauge invariant: it can transform by a sign under
large gauge transformations.

Fortunately, one can make sense, under certain circumstances, of Chern–Simons
theories at half-integer level. In dimension 3, the spin Chern–Simons theories [11–14]
have half-integer level and are well-defined on spinmanifolds. They play a central role in
the effective description of the quantum Hall effect. Their generalizations in dimension
4k + 3, the Wu Chern–Simons theories, have been defined and studied recently in [15].
We show indeed that (1.3) can be given a precise meaning for topologically non-trivial
fields, and that it defines a vector in a Wu Chern–Simons theory. Because of a certain
shift in the background field, we call this theory the shifted Wu Chern–Simons (sWCS)
theory. Wu Chern–Simons theories require spacetimes endowed with Wu structures,
which are higher degree relatives of spin structures. The existence of a Wu structure
does not impose constraints on the spacetime in the dimensions of interest to us, and
we show that the dependence on the choice of Wu structure drops out thanks to the
aforementioned shift. The Green–Schwarz term can therefore really be defined from the
6d supergravity data only.

An interesting feature of the Green–Schwarz mechanism in dimension 6 is that the
2-forms involved are themselves anomalous. This implies additional constraints on the
Green–Schwarz term. First, it has to be gauge invariant under the gauge transformation
of the anomalous fields (here the self-dual 2-forms). Second, its variation under the non-
anomalous fields’ gauge transformations has to be independent of the anomalous fields.
We discuss the reasons for these constraints in more detail in Sect. 7. Nontrivially, our
construction automatically satisfies these extra constraints.

If the Green–Schwarz term is to cancel the anomaly, we need the shifted Wu Chern–
Simons theory to be isomorphic to the complex conjugate of the 6d supergravity anomaly
field theory. We show that they are isomorphic up to a bordism invariant of �

spin
7 (BG)

where G is here the vectormultiplet gauge group of the 6-dimensional supergravity
theory. It can be any compact Lie group, possibly disconnected. We show that for G
a product of U (n), SU (n) and Sp(n) factors or G = E8, �

spin
7 (BG) vanishes and the

two theories coincide, ensuring the cancellation of all anomalies, local and global. More
generally, the product of the anomaly field theory and the shifted Wu-Chern–Simons
theory is a 7-dimensional spin topological field theory Ztop whose partition function is a

homomorphism�
spin
7 (BG) → U (1). It seems that the computation of�spin

7 (BG) has to
be performedgauge group by gauge group, a rather daunting task. There are gauge groups
for which�

spin
7 (BG) �= 0. Indeed, a principal O(n)-bundle P overRP7 with non-trivial

first Stiefel–Whitney class provides an example, as
∫

w1(P)7 = 1 is a bordism invariant.
Anomaly cancellation using theGreen–Schwarz termwe constructwill onlywork if Ztop
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is trivial. Unfortunately, we do not know effective techniques for computing the partition
function of Ztop. Finding such effective computational techniques remains an important
open problem for the future.

Non-trivial bordism groups also arise when G is finite Abelian. In this case, we can
compute the difference between the partition functions of the anomaly field theories
of two supergravity theories differing by their matter representations. Computing the
partition functions of the associated shifted Wu Chern–Simons theories seems like a
difficult task, but we do find constraints imposed by global anomaly cancellation on the
difference of the matter representation. Encouragingly, these constraints are satisfied
in known supergravity theories obtained through F-theory.1 An important finding of
the present paper is therefore that global anomaly cancellation imposes constraints on
6-dimensional supergravity theories beyond the currently known ones.

Along theway, we discover a new anomaly coefficient in theories with a disconnected
gauge group. In the standard construction, the anomaly coefficients parametrize the 4-
form Y factorizing the degree 8 anomaly polynomial of the theory and acting as a string
charge source. When putting the theory on a topologically non-trivial manifold, this
4-form should be promoted to a degree 4 differential cocycle, the 4-form being the field
strength of an Abelian degree 3 gauge field. There can exist non-equivalent differential
cocycles that nevertheless share the same field strength. In particular, this is the case
for differential cocycles whose topological classes differ by a torsion cohomology class.
For a disconnected gauge group, there is precisely a degree 4 torsion characteristic class
that can be added to the differential cocycle lifting Y . The coefficient of this torsion
characteristic class is a new anomaly coefficient, valued in the lattice of string charges
�. Because it is associated to a torsion class, it does not appear in Y , which is why it
has not been noticed until now.

Our construction has other interesting implications for six-dimensional supergravity
theories. The field strength of the background field appearing in the Wu Chern–Simons
theory is Y , as defined in (1.1). Y is parametrized by the anomaly coefficients of the
six-dimensional supergravity theory (see (2.10)), and the consistency of our construc-
tion imposes constraints on these anomaly coefficients. As far as the gauge anomaly
coefficients are concerned, we recover the strongest constraints obtained in [3]. More
interestingly, we find that the gravitational anomaly coefficient has to be a characteris-
tic element of the string charge lattice of the 6d supergravity theory. This constraint is
always satisfied in F-theory, but it was unclear until now whether it could arise from
low-energy considerations. This constraint excludes 6d supergravity theories that other-
wise look perfectly consistent, see the discussion in Sect. 7.5. Similarly, the consistency
of the construction requires the string charge lattice� of the 6-dimensional supergravity
theory to be unimodular, a fact derived previously using reduction to two dimensions
[16].

Finally, we should end with some words of caution. First, 6d supergravity theories
admit self-dual string defects. Tadpole cancellation require the inclusion of such defects
in most backgrounds. Our results about anomaly cancellation are conditional on the
worldsheet anomalies on the self-dual strings cancelling against anomaly inflow from
the supergravity. In the present paper, we simply assume that the cancellation occurs,
but conceivably it could lead to further constraints on the supergravity theory or its
backgrounds. The anomaly inflow on string defects has been studied in six-dimensional
superconformal field theories in [17–20].

1 It is claimed in the literature that all the six-dimensional supergravity theories realizable in string theory
admit a construction in F-theory, see for instance p. 77 in [1].
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Second, when extrapolating an Abelian gauge theory from flat spacetimes to mani-
folds of arbitrary topology, one has to choose a generalized cohomology theory describ-
ing the topologically non-trivial configurations of the gauge fields. The gauge fields
are then modeled as cocycle representatives of classes in the corresponding differential
cohomology theory [21,22]. The relevant generalized cohomology theory is not nec-
essarily the familiar ordinary (integral) cohomology. For example, the topology of the
Ramond–Ramond gauge fields of type II string theory are well-known to be described
by K-theory [23,24]. A similar choice arises for six-dimensional supergravity theories.
In the present work, we make the assumption that the self-dual fields in the gravitational
and tensor multiplets are described by (ordinary) differential cohomology. However, the
anomaly field theory is expressed in terms of an eta invariant, which can be seen as the
integral of a certain KO class. This fact may make the Green–Schwarz anomaly cancel-
lation mechanismmore natural when the self-dual fields are differential KO classes. The
2-form Kalb–Ramond field involved in the Green–Schwarz mechanism in type I super-
gravity is indeed differential KO-valued [21]. (This is a special case of the differential
K-theoretic formulation of RR fields for orientifolds. See, for example, [25].) It would
be very interesting to understand whether global anomaly cancellation conditions on the
field content depend on the choice of generalized cohomology theory used to model the
2-form gauge potentials.
[26] summarizes the present paper.

The paper is organized as follows. In Sect. 2, we review six-dimensional supergravity
and the cancellation of local anomalies through the Green–Schwarz mechanism. We
then review some basic facts about anomalies and determine the anomaly field theory
associated to a bare six-dimensional supergravity theory, before the inclusion of the
Green–Schwarz terms. In Sect. 3, we present a model for the self-dual 2-form gauge
fields and their source Y that accommodates fields with non-trivial topology. Section 4
is devoted to the construction of the Wu Chern–Simons theory as a field theory functor
on spacetimes endowed with a Wu structure. In Sect. 5, we show how the background
field of the Wu Chern–Simons theory can be constructed from the 6d supergravity
data, yielding the shifted Wu Chern–Simons field theory, whose state space will host
the exponentiated Green–Schwarz term. We show in particular that the identification
is such that the dependence on the underlying Wu structure drops out. We construct
the exponentiated Green–Schwarz term as a vector in the state space of the shifted
Wu Chern–Simons theory in Sect. 6. We discuss in Sect. 7 the implications of our
construction for 6d supergravity, in particular the constraints it imposes on the anomaly
coefficients. We also investigate the case where G is finite Abelian, extracting anomaly
cancellation constraints and comparing themwith F-theorymodels.AppendixB explains
how to refine characteristic classes to differential cocycles by making universal choices
on classifying spaces. Appendix C reviews (certain generalizations of) the generalized
cohomology theory known as E-theory and their cochain models, which play a central
role in the definition of the Wu Chern–Simons theories. Appendix D contains a proof
of the gluing axioms for the Wu Chern–Simons theory of interest to us. Appendix E
contains the computation of �

spin
7 (BG) for a few gauge groups G. Finally, we compute

in Appendix F certain eta invariants associated to principal bundles of finite Abelian
groups on Lens spaces.
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2. Preliminaries

2.1. Six-dimensional supergravity theories. We briefly introduce N = (1, 0) 6d super-
gravities. We refer the reader to standard reviews like [1,27] for details. We will use the
same notations as in Section 2 of [3]. In this section, we follow the standard approach
and model all the gauge fields by differential forms. We will present a better model
accounting for topologically non-trivial field configurations in Sect. 3.

Field content. The spacetime is a six-dimensional spin manifold. For six-dimensional
N = (1, 0) theories, the R-symmetry is SU (2) = Sp(1). As the spinor representation
is quaternionic in dimension 6, a symplectic Majorana–Weyl condition can be imposed
on the fermions forming R-symmetry doublets. The N = (1, 0) supermultiplets in six-
dimensions are the following.

• The gravitational multiplet (gμν, ψ
+
μ, B+

μν). gμν is the metric tensor, ψ+
μ is the grav-

itino, a spin 3/2 symplectic Majorana–Weyl fermion, and B+
μν is a self-dual 2-form

gauge field.
• The tensor multiplet (B−

μν, χ
−, φ). B−

μν is an anti self-dual 2-form gauge field, χ−
is a negative chirality spin 1/2 symplectic Majorana–Weyl fermion, and φ is a real
scalar.

• The vector multiplet (Aμ, λ+). Aμ is a gauge field associated to a gauge group G,
and λ+ is a positive chirality spin 1/2 adjoint-valued symplectic Majorana–Weyl
fermion.

• The hypermultiplet (ψ−, 4φ). ψ− is a negative chirality spin 1/2 Weyl fermion and
a singlet under the R-symmetry, 4φ represents a pair of complex bosons or four real
bosons. In general the hypermultiplets take value in a quaternionic representation
of the gauge group.

• The half-hypermultiplet (ψ−
R

, 2φ). The half-hypermultiplet can be constructed only
if it is valued in a quaternionic representation of G. Starting from a hypermultiplet,
a symplectic Majorana condition can be applied to ψ−, yielding a negative chirality
spin 1/2 symplectic Majorana–Weyl fermion. A corresponding reality condition
can be applied to the pair of complex bosons, yielding a pair of real bosons. We
emphasize however, that those are degrees of freedom per complex dimension of
the original representation R. As the latter is quaternionic, those degrees of freedom
can only come in pairs: there is no such thing as a single half-hypermultiplet.
We remark that a hypermultiplet valued in a representation S of G can always
be seen as a half-hypermultiplet valued in the representation S ⊕ S∗, where S∗ is
the representation complex conjugate to S. For practical purpose, we can therefore
assume that the matter content is composed of a half-hypermultiplet valued in a
certain quaternionic representation R of the gauge group G.

Gauge group. The vector multiplets contain gauge fields, so 6d supergravity theories
generically have a gauge sector based on a compact Lie group G. We always have

1 → G1 → G → π0(G) → 1 (2.1)

where G1 is the connected component of the identity element. This in turn has the form

G1 ∼= (G̃ss × Ga)/�, (2.2)

where G̃ss = ∏
i G̃i is a semi-simple simply connected compact Lie group with simple

factors G̃i and Ga � U (1)r is a compact connected Abelian group. Writing Z for the
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center of G̃ss, � is a finite subgroup of Z × Ga intersecting 1× Ga trivially. The gauge
Lie algebra has a corresponding decomposition

g = gss ⊕ ga =
⊕

i

gi ⊕
⊕

I

u(1)I . (2.3)

Self-dual fields. The gravitationalmultiplet contains a self-dual 2-formfield,while the T
tensor multiplets contain each an anti self-dual 2-form field. We can picture the fluxes of
the (anti) self-dual fields as taking value in a self-dual lattice � of signature (1, T ) [16].
(A priori, the lattice� is just an integral lattice. The argument of Seiberg and Taylor that
it is unimodular is based on global anomalies. Independently of their logic, we will show
that our construction of the Green–Schwarz term likewise requires � to be unimodular.)
The self-dual fields can then be gathered into a 2-form gauge potential B valued in
�R := � ⊗ R. The self-dual field strength H is a �R-valued 3-form. (The self-duality
constraint depends on the value of tensor-multiplet scalars. These scalars are constrained
to lie on one component of the hyperboloid in �R of vectors of length-squared one. The
component of H orthogonal to the hyperboloid must be self-dual and the component
tangent to the hyperboloid must be anti-self-dual.) The vacuum expectation values of
the scalars in the tensor multiplet determine an involution θ of �R, and the self-duality
condition reads

∗H = θ H, (2.4)

where ∗ is the Hodge star operator.
The theory contains instantonic self-dual strings charged under the self-dual and anti

self-dual 2-form fields. The lattice � can alternatively be pictured as the lattice of string
charges. The Seiberg–Taylor result about the unimodularity of � is the completeness
hypothesis [28,29] for string charges.

Green–Schwarz mechanism. A generalization [30–33] of the Green–Schwarz mecha-
nism [34] is necessary to cancel anomalies. We refer to the (anomalous) supergravity
theory obtained before the addition of the Green–Schwarz term as the “bare supergrav-
ity.” In order for anomaly cancellation to be possible, the degree 8 anomaly polynomial
A8 of the bare theory has to factorize as the square of a degree 4�R-valued polynomialY :

A8 = 1

2
Y ∧ Y, (2.5)

where∧ is the wedge product tensored with the pairing on�R determined by the pairing
on �. (We discuss Y in more detail shortly.) Then the Bianchi identity of H is modified
to

d H = Y, (2.6)

and the following factor is included in the path integral

exp2π i

(
1

2

∫
B ∧ Y

)
, (2.7)

where the use of the pairing of �R is again implicit. This factor can be interpreted as
coming from a Green–Schwarz term
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2π i
1

2

∫
B ∧ Y, (2.8)

added to the action. An obvious problem with the expression (2.8) is that it uses the
differential form model for Abelian gauge fields, which captures only the topologically
trivial sector.Wewill remedy this in Sect. 3, where wewill develop a differential cocycle
model for the self-dual fields and the background curvature Y .

There is however a much more serious problem, due to the factor 1
2 in (2.8). The

standard way of defining Green–Schwarz terms in dimension d is as boundary values of
d+1-dimensional Chern–Simons term: their gauge variation coincides with the variation
of a Chern–Simons term on a d + 1-dimensional manifold bounded by the spacetime. In
the case of (2.8), the Chern–Simons term would read up to signs

2π i
1

2

∫
U

A ∧ Y, (2.9)

where U is a 7-dimensional manifold bounded by the 6-dimensional spacetime and A
is the degree 3 Abelian gauge field associated to the field strength Y . The problem is
the following. The factor 1

2 means that we are dealing with a higher Abelian Chern–
Simons theory at a half-integer level, which is not gauge invariant under large gauge
transformations. Concretely, this means that even if we could make sense of (2.8) for
topologically non-trivial gauge field configurations, the phase that (2.8) transform by
under a large gauge transformation is defined only up to a sign. Therefore there is no
way that (2.8) can cancel all global gauge anomalies.

It is known how to make sense of half-integer level Chern–Simons theories on spin
3-manifolds: those are the so-called spin Chern–Simons theories [11–14] that play a
central role in the quantum Hall effect. Their higher-dimensional generalization have
recently been studied in [15] and the results of that paper will play a central role in the
construction of the Green–Schwarz terms in the present paper.

Anomaly coefficients. Y has the general form

Y = 1

4
ap1 −

∑
i

bi c
i
2 +

1

2

∑
I J

bI J cI
1cJ

1 (2.10)

where a, bi , bI J ∈ �R are the anomaly coefficients of the theory. Writing R for the
curvature of the tangent bundle and trvec for the trace in the vector representation of
the orthogonal group, p1 := 1

8π2 trvecR2 is the Chern–Weil representative of the first
Pontryagin class of the tangent bundle, i.e. the first Pontryagin form. Writing F =
(Fi , F I ) for the curvature of the gauge bundle, cI

1 := 1
2π F I is the first Chern form

associated to the I th U (1) component of Ga, and ci
2 := 1

8π2 tr(Fi )2 is the second Chern

form associated to the i th simple component of G̃ss. tr is normalized so that the dual
pairing on the weight space gives length squared 2 to the long roots.

Assuming that the 6d supergravity theory can be defined on any spin spacetime with
an arbitrary gauge bundle, it was shown in [3] that

a, bi ,
1

2
bI I , bI J ∈ �. (2.11)

These constraints supersede the ones previously derived in [2,16].
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As far as we know, all the known string theory realizations of 6d supergravities can
be implemented in F-theory. In F-theory models, � is the degree 2 homology lattice of
the (four-dimensional) base of the elliptic fibration, and a is the homology class of the
canonical divisor of the base. This implies (via the adjunction formula) [3] that a is a
characteristic element of �, i.e. that it satisfies

(a, x) = (x, x) mod 2 ∀ x ∈ �. (2.12)

One naturally wonders whether all consistent six-dimensional supergravities must be
such that a is a characteristic element, but thus far, such a condition has not been derived
from the low energy point of view: in fact, there are 6d supergravity theories satisfying
all known low energy consistency conditions but violating (2.12). An example was given
in Section 5 of [3], involving 244 neutral hypermultiplets, no gauge symmetry, a single
tensor multiplet, � = Z

2 with bilinear form
(
0 1
1 0

)
(2.13)

and a = (4, 1).
In this paper we will show that our construction of the Green–Schwarz term requires

(2.12). Therefore, unless amore general construction of theGreen–Schwarz terms exists,
we establish (2.12) as a low energy constraint to be satisfied by any 6d supergravity
theory.

2.2. Some facts about anomalies.

Generalities. Local and global anomalies of the partition function of a d-dimensional
quantum field theory can be described by a geometric invariant of d + 1-dimensional
manifolds. This geometric invariant assigns a number mod 1 (or a phase after exponen-
tiation) to any d + 1-manifold endowed with all the structures necessary to define the
d-dimensional quantum field theory (metric, principal bundles, connections on principal
bundles, spin structure, etc…). The invariant is generally geometric rather than topolog-
ical because it depends on geometric structures, such as metrics or connections. In the
case of chiral fermionic theories in even dimension, the geometric invariant is essentially
the eta invariant of a suitable Dirac operator [35].

One can extract concrete data from the geometric invariant by evaluating it on certain
closed d+1-dimensional manifoldsU . For instance, the phases that the partition function
transforms by under an anomalous symmetry transformation is given by the value of
the geometric invariant on twisted doubles [36], which are constructed as follows. Take
the d-dimensional spacetime M , and find (if possible) a d + 1-dimensional manifold N
that bounds it. Then construct U by gluing N to −N (N with the opposite orientation)
along M , using the symmetry transformation to identify the two copies M , including
their topological/geometrical structures.

One is often interested in the nature of the partition function obtained by integrat-
ing out the anomalous fields as a function of the background values of bosonic non-
anomalous fields, such as the scalar fields, the vector-multiplet gauge fields or themetric.
Generally, the partition function is a section of a line bundle with connection over this
bosonic moduli space. The partition function of the full theory, obtained by integrating
the partition function above over the bosonic moduli space, is well-defined only when
this line bundle with connection is geometrically trivial, i.e. admits a global trivialization
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given by the connection. Given the geometric invariant describing the anomaly, one can
compute the holonomies of the anomaly connection by evaluating it on mapping tori
in a limit where the size of the base circle is large (the “adiabatic limit”) [35,37]. The
vanishing of the invariant on all such mapping tori is equivalent to the anomaly bundle
being geometrically trivial.

The anomaly geometric invariants are often quite hard to compute, but when the
d +1-dimensional manifold U is the boundary of a d +2-dimensional manifold W , they
can generally be expressed as the sum S(W ) of integrals of top forms on W and of
additive topological invariants of W . (We will present examples below.) W , likeU , must
carry all the structures necessary to define the d-dimensional QFT and the structures on
W must reduce to the structures on U upon restriction to the boundary. Whether there
are some U ’s that are not the boundaries of some W ’s is determined by the bordism
group of manifolds endowed with the appropriate structures. These groups are known
in the simplest cases, but are generally hard to compute.

It is common to guess or construct the anomaly geometric invariant ofU as a function
S(W ) defined on d+2-dimensionalmanifolds bounded byU .We then have the following
consistency condition. In order for the invariant on U to be well-defined mod 1, S(W )

has to be an integer whenever W is a closed d + 2-dimensional manifold. This follows
by a standard argument, which for instance leads to the quantization of the level in the
3d Chern–Simons action. Even if this consistency condition is satisfied, the geometric
invariant is then fully determined only if the relevant bordism group vanishes. In general,
it is defined only up to a bordism invariant.

Anomaly field theories. The picture of anomalies presented above can be refined by
promoting the geometric invariant to be the partition function of a d + 1-dimensional
(usually invertible) quantum field theory, the anomaly field theory [4]. The partition
function of the anomalous quantum field theory is then valued in the state space of the
anomaly field theory; the anomalous action of the symmetries on the partition function
is given by their action on the state space of the anomaly field theory. As an extended
field theory, the anomaly field theory also accounts for Hamiltonian anomalies and their
analogues associated to higher codimension submanifolds [6,38].

In this context, the Green–Schwarz anomaly cancellation can be understood as fol-
lows. The partition function of the bare 6d supergravity theory is an element of the state
space of its invertible anomaly field theory, which is a Hermitian line L . Constructing
an exponentiated Green–Schwarz term cancelling the anomaly amounts to construct-
ing a vector in the conjugate Hermitian line L†. The tensor product of the partition
function with the exponentiated Green–Schwarz term is then canonically a complex
number. Moreover, symmetries act trivially on the tensor product L ⊗ L†, showing that
the anomalies have been canceled. The idea that the exponentiated Green–Schwarz term
should be an element of a suitable Hermitian line appeared already in [7], prior to the
concept of anomaly field theory.

We now review examples of anomalous field theories and their associated geomet-
ric invariant/anomaly field theory. As above, the anomalous field theory is (d + 1)-
dimensional, U is a d + 1-dimensional closed manifold and W is a d + 2-dimensional
manifold whose boundary is U .

Complex Weyl fermions. In the case of complex Weyl (i.e. chiral) fermions in even
dimension valued in a certain representation R of the gauge symmetry, the geometric
invariant computing the anomaly is the modified eta invariant of the Dirac operator in
dimension d + 1 [35] valued in the same representation R, which reads
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1

2π i
ln AnWf,R(U ) = ξR(U ) = ηR + h R

2
, (2.14)

where ηR is the ordinary eta invariant and h R is the dimension of the space of zero
modes of the Dirac operator on U . In the case that U and its gauge bundle extends to a
(d + 2)-dimensional manifold W , the Atiyah–Patodi–Singer (APS) theorem [39] allows
one to reexpress the modified eta invariant on U in terms of data on W as follows:

ξR(U ) =
∫

W
IR − index(D(W )

R ), (2.15)

where IR is the index density of the Dirac operator D(W )
R on W (the one appearing in

the local anomaly formula), and index(D(W )
R ) its index with APS boundary conditions.

We see that, modulo 1, we have

ξR(U ) =
∫

W
IR mod 1. (2.16)

This means that if we have a system of complex fermions whose local anomaly vanishes
and all relevant d + 1-dimensional manifolds U together with their gauge bundles are
boundaries, then there are no global anomalies.

The corresponding anomaly field theory is the Dai–Freed theory [8], which admits
the modified eta invariant as its partition function. See Section 9 of [9] for a construction
of this theory using stable homotopy theory.

Majorana–Weyl fermions. As far as even dimensions are concerned,we can haveLorenz
signature Majorana–Weyl fermions in dimensions 8� + 2. (This case is not relevant to
the present considerations, we include it for completeness.) As the spinor representation
is real, we can impose a reality condition on any fermion valued in a real representation
R. In Euclidean signature, the spinor representation is complex, leading to a factor 1

2 in
the formula for the geometric invariant:

1

2π i
ln AnMWf,R(U ) = 1

2
ξR(U ). (2.17)

We can still use the APS theorem (2.15), but as the term involving the index is now a
priori a half-integer, we can’t immediately express ξR(U )/2 as the integral of the local
index density on W as in (2.16).

However on W , i.e. in dimension 8� + 4, the spinor representation is quaternionic,
so the Dirac operator is quaternionic and the index in (2.15) is necessarily even. So in
fact, just as in the case of complex fermions, the index term does not contribute, and the
global anomaly reduces to the local anomaly when U bounds.

The anomaly field theory associated to Majorana fermions is a real version of the
Dai–Freed theory, which is constructed in Section 9 of [9].

Symplectic Majorana–Weyl fermions. The case of symplecticMajorana–Weyl fermions
is very similar. In even dimensions, we can have Lorentz signature symplecticMajorana–
Weyl fermions in dimensions 8� + 6. As the spinor representation is quaternionic, we
can impose a reality condition on any fermion valued in a quaternionic representation
R. The fermions satisfying such a reality condition are symplectic Majorana fermions.
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(In Euclidean signature, the spinor representation is complex.) The relevant geometric
invariant is

1

2π i
ln AnSMWf,R(U ) = 1

2
ξR(U ). (2.18)

On W , i.e. in dimension 8�, the spinor representation is real, so the Dirac operator on
W (being twisted by a quaternionic representation), is quaternionic. The index in (2.15)
is necessarily even and again does not contribute. The global anomaly reduces to the
local anomaly when U bounds.

Similarly to the case of Majorana fermions, the anomaly field theory associated to
symplectic Majorana fermions is a symplectic version of the Dai–Freed theory [9].

Self-dual fields. For a degree 2� self-dual field in dimension 4�+ 2 that does not couple
to an Abelian degree 2� + 1 gauge field, the anomaly geometric invariant is 1

4ξσ , where
ξσ is the modified eta invariant of the 4� + 3-dimensional signature Dirac operator [35].
When the 4� + 3-dimensional manifold U bounds, we can rewrite

1

2π i
ln AnSD0(U ) = 1

4
ξσ (U ) = 1

8

(∫
W

LT W − σW

)
, (2.19)

wherewe used the fact that the index of the signatureDirac operator on W is the signature
σW of the wedge product pairing on the lattice H2�+2

DR,Z
(W, ∂W ), consisting of relative

de Rham cohomology classes with integral periods. (2.19) is well-defined because on a
closed 4� + 4-dimensional manifold Z , the L-genus LT Z integrates to the signature and
the right-hand side vanishes. Here we make use of Novikov’s additivity of signature to
identify the sum of the signatures of two manifolds with a common boundary with the
signature of the closed manifold obtained by gluing them.

Embedding of self-dual field theories in non-chiral theories were studied in [40–42],
with an action of the form:

− 1

2g2

∫
M

(d B − q A) ∧ ∗(d B − q A) + iπp
∫

M
A ∧ d B (2.20)

on a 4� + 2-dimensional manifold M . In this model, the degree 2� Abelian gauge field
B couples to an Abelian degree 2� + 1 gauge fields in two different ways. First, A is
a source for B, which carries an integer charge q. Second, A and B couple through a
Green–Schwarz-like term, with an integer coefficient p. The action can be rewritten

− i

g2

∫
M

(
(d B)− ∧ (d B)+ + q A− A+ + (πg2 p + q)A+

∧(d B)− + (πg2 p − q)A− ∧ (d B)+
)

, (2.21)

where the + and − superscripts denote the self-dual and anti self-dual part of 2� + 1-
forms, respectively. At the special value g2 = −q/(πp) of the gauge coupling, the
dependence of the partition function on A+ drops out, allowing to study the dependence
of the self-dual field field partition function on A−. It was shown in [40,42] that the
self-dual field has a gauge anomaly proportional to k = pq.

For k �= 0, the anomaly geometric invariant on U is the sum of ξσ (U )/4 and of the
Arf invariant of a certain quadratic refinement q of the linking pairing on the degree
2� + 2 torsion cohomology [43]:
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1

2π i
ln AnSDk(U ) = 1

4
ξσ (U ) − kArf(q), (2.22)

see Sect. 4 for amore detailed discussion of the quadratic refinement and itsArf invariant.
If U bounds, (2.22) can be written more simply as

1

2π i
ln AnSDk(U ) = 1

8

(∫
W

LT W − σW

)
− k

(
1

2

∫
W

Y 2
W − 1

8
σW

)
, (2.23)

where LT W is the Hirzebruch L-genus of the tangent bundle of W . YW is the field
strength of the extension of the gauge field A fromU to W , with the following important
subtlety. The periods of YW on W are integral or half-integral, depending on the value
of the degree 2�+2Wu class ν(T W ). The Wu class is a certain Z2-valued characteristic
class that can be expressed in terms of the Stiefel–Whitney classes, see Sect. A. It has
the crucial property that on a closed manifold Z of dimension 4� + 4, x ∪ x = x ∪ ν

for all x ∈ H2�+2(Z;Z2). This implies in particular that if YZ has periods as above,
F ∧ F = F ∧ 2YZ mod 2 for F ∈ �2�+2

Z
(Z), a 2� + 2 differential form on Z with

integral periods. The relation above of course passes to de Rham cohomology, which
means that [2YZ ]dR is a characteristic element of H2�+2

dR,Z
(Z), the lattice of de Rham

cohomology classes with integral periods.
Consistency requires that the right-hand side of (2.23) is an integer when W = Z ,

a closed 4� + 4-dimensional manifold. We already explained why this is true for the
first term. For the second term, this is due to the fact that the norm square of any
characteristic element of a unimodular lattice is equal to the signature modulo 8 (see for
instance Remark 2.3 in [44]).

Torus-valued self-dual fields. Consider now self-dual fields valued in a torus. We can
describe the torus by means of a lattice � as � ⊗Z R/�. The number of self-dual fields
and the number of anti self-dual fields in encoded in the signature of the lattice�, which
is (1, T ) in the case of 6d supergravity theories. We can generalize the action (2.20) by
assuming that the wedge products involve the pairing on � ⊗ R, yielding real-valued
forms.

Setting p = q = 1, the natural generalization of (2.23) to the torus case reads:

1

2π i
ln AnSDgen(U ) = sgn(�)

8

(∫
W

LT W − σW

)
−

(
1

2

∫
W

Y 2
W − t

)
, (2.24)

where sgn(�) is the signature of� and t denotes a topological invariant not contributing
to the local anomaly, such that second term is well-defined (i.e. independent of W ).

(2.24) suggests that the anomaly field theory for a torus-valued self-dual field is the
product of two distinct field theories. The first one is the product of sgn(�) copies of a
“quarter Dai–Freed theory for the signature Dirac operator”, described in more detail in
Section 4.5 of [45]. t must be identified to determine the second quantum field theory. In
the present paper,wewill construct this theory in the case of interest for 6d supergravities,
where � is a self-dual lattice.

2.3. Anomalies of six-dimensional supergravities. We now turn to six-dimensional su-
pergravity theories. Consistency requires that they are anomaly-free, and a version of the
Green–Schwarz mechanism [30–32,34] plays a central role in the cancellation of local
anomalies.While the cancellation of certain global gauge anomalies has been considered
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[2,46,47], no systematic study of global anomaly cancellation has yet been performed.
This paper is a first step in that direction.

We remark that in the bare theory, the self-dual fields have no gauge anomaly, so their
anomaly is described by the first term of (2.24). The anomaly of a bare 6d supergravity
is therefore described by the following geometric invariant.

1

2π i
ln An�,G,R(U ) = 1

2
ξR′(U ) +

sgn(�)

4
ξσ (U ). (2.25)

The first term is the modified eta invariant associated to the Dirac operator on U coupled
to the virtual Spin(7) × G-representation

R′ = ((VecSpin(7) � 1) ⊗ 1) � (T − 1)(1 ⊗ 1) ⊕ (1 ⊗ AdG) � (1 ⊗ R),

(2.26)

where 1, Vec and Ad denotes the trivial, vector and adjoint representations. The sum-
mands in R′ are due respectively to the chiral fermions in the gravitational multi-
plet (the gravitino), in the tensor multiplets, in the vector multiplets and in the half-
hypermultiplets. (T − 1)(1 ⊗ 1) denotes the direct sum of T − 1 copies of the trivial
representation. The anomaly field theory of the bare six-dimensional supergravity theory
is the Dai–Freed theory having (2.25) as partition function.

We now focus on the case where the 7-manifold U bounds and find a formula for the
anomaly of the bare theory. (Let us make clear that here and in the following, when we
say that “a 7-dimensional manifold bounds”, we really mean that a 7-dimensional spin
manifold endowed with a principal G-bundle P bounds an 8-dimensional spin manifold
over which P extends. Or in short, that the class of the pair (U, P) in the bordism group
�

spin
7 (BG) is trivial.) The anomaly of the bare self-dual fields is given by the first term

on the right-hand side of (2.24). We should add to this term the anomalies of the chiral
fermions, which as we saw can be expressed purely in terms of the integrals of local
index densities on W . In the present paper, we will assume that it is possible to cancel
local anomalies, as the associated constraints are well known (see for instance [1]). In
particular, this implies that the total local index density factorizes as 1

2Y 2
W for some YW .

We immediately deduce that the global anomaly of the bare theory associated to U is
given by the following geometric invariant:

1

2π i
ln Anbare(U ) = 1

2

∫
W

YW ∧ YW − σH4(W,∂W ;�)

8
(2.27)

wherewe used themultiplicative property of the signaturewith respect to tensor products
to obtain sgn(�)σW = σH4(W,∂W ;�).

Global anomalies can cancel only if

t = σH4(W,∂W ;�)

8
. (2.28)

Therefore, in order to cancel global anomalies associated to 7-dimensional manifolds U
that bound, we need to construct a Green–Schwarz term that induces the anomaly

1

2π i
ln AnGS(U ) = −1

2

∫
W

YW ∧ YW +
σH4(W,∂W ;�)

8
. (2.29)

In order to study the anomaly on 7-dimensional manifolds that do not bound, we
would need to study the particular sum of modified eta invariants associated to the field
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content of the bare theory.We do not know a good way to handle this problem. However,
we will be able to rewrite AnGS(U ) in a purely 7-dimensional form, which makes sense
on 7-dimensional manifolds U that do not bound. We will also be able to construct
explicitly Green–Schwarz terms with anomaly AnGS(U ). As long as the anomaly of
the bare 6d supergravity is equal to −AnGS(U ), our construction successfully cancels
all global anomalies. This is the case for instance when all 7-dimensional manifolds
bound, which as we show in Appendix E, occurs for a number of gauge groups G. In
the remaining cases, we will see that the Green–Schwarz terms may fail to cancel all
anomalies, leading to new non-trivial constraints on the supergravity theory.

3. A Model for the Self-Dual Fields and Their Sources

In this section, we develop a model for the system composed of the self-dual fields and
of the effective degree 3 Abelian gauge field appearing in the Green–Schwarz terms.
We need to go beyond the usual model in terms of differential forms in order to include
situations where the fields are topologically non-trivial. We therefore first review the
differential cohomology model for gauge fields [48,49], see also Section 2 of [22]. We
generalize it slightly to accommodate torus-valued gauge fields with shifted quantization
laws.

3.1. Lattice valued differential cochains with shifts. Let � be a lattice of dimension n,
and let �R := � ⊗ R � R

n be the corresponding real vector space. �R/� � U (1)n is
a torus.

Differential cochains. Let us write C p(M;�) and C p(M;�R) for the groups of degree
p smooth cochains valued in � or �R. Let �p(M;�R) be the group of smooth differ-
ential p-forms with value in �R. Define the group of degree p differential �R-valued
cochains to be

Č p(M;�R) = C p(M;�R) × C p−1(M;�R) × �p(M;�R). (3.1)

The group law is just the addition component by component. Note that that we took
chains valued in �R rather than � in the first factor; this is necessary to accommodate
the shift in the quantization of the periods of the differential cocycles, as we will see. We
write elements of Č p(M;�R) with carons: č = (a, h, ω). We will refer to [č]ch := a
as the “characteristic” of the differential cochain č. We refer to [č]hol := h as the
“connection” or “holonomy” of the differential cochain č. Finally, we refer to [č]fs := ω

the “curvature” or “fieldstrength” of the differential cochain č.

Differential. We define a differential by

dč = (da, ω − a − dh, dω), d2 = 0. (3.2)

The degree p differential cochains č such that dč = 0 are called differential cocycles.
They form a group written Ž p(M;�R).
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Shift and Quantization. Let ν̂ be any degree p �R-valued cochain. We say that a differ-
ential cochain č ∈ Ž p(M;�R) is shifted by ν̂ if [č]ch = ν̂ modulo �.2 The differential
cochains shifted by ν̂ form a subset Č p

ν (M;�) ⊂ Č p(M;�R) where ν is the projection
of ν̂ to the set of �R/�-valued cochains. We call the Abelian group Č p

0 (M;�) the
group of unshifted integral-quantized differential cochains. Then Č p

ν (M;�) is a torsor
for Č p

0 (M;�). The kernel of the differential restricted to Č p
0 (M;�) is the group of

unshifted differential cocycles Ž p
0 (M;�)while the kernel restricted to Ž p

ν (M;�) is the
group of shifted differential cocycles.

Differential cohomology. Č p
ν (M;�) contains differential cocycles if and only if ν is

itself a cocycle, which we assume now. Let us define the following equivalence relation
on differential cocycles. Any two degree p differential cocycles are equivalent if they
differ by the differential of an unshifted degree p −1 differential cochain with vanishing
curvature:

x̌ � x̌ + d y̌, y̌ = (b, g, 0), b ∈ C p−1(M;�), g ∈ C p−2(M;�R). (3.3)

Cocycles with different shifts can never be equivalent. Equivalence classes of cocycles in
Č p

ν (M;�) are degree p differential cohomology classes shifted by ν,written Ȟ p
ν (M;�).

Ȟ p
ν (M;�) is a torsor on Ȟ p

0 (M;�) if ν is exact. The usual short exact sequences
satisfied by differential cohomology groups apply; see for instance [22].

Cup product. Recall that the lattice � is endowed with a pairing � × � → Z. A cup
product on the groups of differential cochains can be defined as follows [48,49]:

∪ : Č p(M;�) × Čq(M;�) → Č p+q(M;Z)

č1 ∪ č2 = (a1 ∪ a2, (−1)dega1a1 ∪ h2 + h1 ∪ ω2 + H∧∪ (ω1, ω2), ω1 ∧ ω2)

(3.4)

Č p+q(M;Z) is the group of Z-valued differential cochains. The cup products on the
right-hand side are the ones associated to the pairing on �R. ∧ is the wedge product of
�R-valued forms. Thewedge product is homotopically equivalent to the cup product, and
H∧∪ is any choice of equivalence, i.e. a degree −1 homomorphism from �•(M;�R) ×
�•(M;�R) to C•(M;R) satisfying3

d H∧∪ (ω1, ω2)+H∧∪ (dω1, ω2)+(−1)degω1 H∧∪ (ω1, dω2)=ω1 ∧ ω2 − ω1 ∪ ω2. (3.5)

The first term on the right-hand side involves first taking the wedge product and seeing
the resulting form as a cochain. The second term is the cup product between ω1 and ω2,
seen as cochains. One can show that the cup product on differential cocycles satisfies
the familiar relation

d(č1 ∪ č1) = dč1 ∪ c2 + (−1)degč1 č1 ∪ dč2, (3.6)

2 Later in the text we will use the notation ν to denote the Wu class of a manifold and ν̂ will denote an
integral cocycle representative. We hope this does not cause confusion.

3 It is shown in [48] how a homotopy H∧∪ can be constructed canonically, provided one uses a cubical model
for singular cohomology, rather than the more familiar simplicial model. Using a non-canonical homotopy
is not a problem, as long as it is used consistently. Note in particular that since H∧∪ is a homomorphism it
vanishes if one of its arguments vanishes. This fact will be used quite frequently in computations below.
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which ensures that (3.4) passes to a cup product in differential cohomology. The property
(3.5) of the homotopy is crucial for (3.6) to hold on the connection components of the
differential cocycles.

Physical interpretation. Physically, we should think of degree p unshifted differential
cocycles as representatives of degree p−1 Abelian gauge potentials. The curvature/field
strength of the differential cocycle corresponds to the physical field strength of the gauge
field. The exponential of the connection computes the holonomies of the gauge field
along p − 1-dimensional cycles (Wilson lines/surfaces), and the characteristic contains
information about the fluxes of the gauge field, including torsion fluxes undetectable
from the field strength.Differential cohomology classes correspond to gauge equivalence
classes of gauge fields. Abelian gauge fields with shifted quantization law are modeled
as shifted differential cocycles in the formalism above.

The shift is really determined by the cocycle ν, and not by its cohomology class.
In a physical setup, we can often characterize the shifted quantization of the fluxes by
a U(1)-valued cohomology class. (For instance, the fluxes of the M-theory C-field are
shifted by 1

2w4.) As there is no canonical way of picking a canonical cocycle repre-
sentative of a cohomology class, and that moreover such a choice has to be made on
every possible spacetime, this may sound like a serious problem. We are however often
(always?) interested in gauge fields whose periods are shifted by the periods of a U (1)-
valued characteristic class. A characteristic class is the pullback of a cohomology class
on a classifying space. We can choose (non-canonically) a “universal” cocycle on the
classifying space, and then shift our cocycles by the pull-back of the universal cocycle
through the classifying map. There is no canonical way to pick a classifying map either,
but as explained in Appendix B, the classifying map can be taken to be part of the gauge
data.

Integration. The R/Z-valued integral of a degree p differential cochain č ∈ Č p(M)

over a p − 1-dimensional manifold is defined as the mod 1 reduction of the integral of
the degree p − 1 real cochain [č]hol over M [48]. This integration map is a special case
of a general construction valid for families [49].

3.2. Model. In the presence of a GS term, the gauge invariant field strength H of the
self-dual fields is modified to

H = d B + A, (3.7)

where d A = Y and Y is 4-form appearing in the factorization of the local anomaly. The
Green–Schwarz term

2π i
1

2

∫
M

B ∧ Y (3.8)

is then added to the action on the 6d spacetime M . As before, ∧ is the wedge product
tensored with the pairing on �R, yielding a real-valued differential form. Similarly, the
cup products below always include the lattice pairing. There are several puzzles with
(3.8) that we start addressing below.
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Y as a differential cocycle. Y is in general not exact on M , so we cannot model Y and
A as differential forms such that Y = d A. This problem is easy to solve. We promote
Y to a differential cocycle Y̌ . In fact, there is a universal way of constructing such a
differential cocycle from the metric on M and the gauge connection. This is explained
in detail in Appendix B, where the notation is also defined. The idea is the following. In
addition to the gauge connection for the vectormultiplet gauge group and to the metric,
we include in the gauge data a classifying map γ from the spacetime into a classifying
space BWḠ (whose precise definition is given in Appendix B) classifying the topology
of the spacetime and of the vectormultiplet gauge bundle, as well as a choice of Wu
structure (see below). A “universal” differential cocycle Y̌U is chosen on BWḠ, and we
take Y̌ = γ ∗(Y̌U). This trades the choice of an arbitrary differential cocycle lifting Y on
M for the choice of a classifying map γ , which as we will see will be convenient.

We then identify Y with the field strength [Y̌ ]fs of Y̌ and A with its connection [Y̌ ]hol.
Assuming for a moment that Y̌ is an unshifted differential cocycle, we can pick a gauge
representative for which the characteristic y = [Y̌ ]ch vanishes on a sufficiently small
patch, in which case the differential cocycle condition ensures that d A = Y on the
local patch. But now A makes sense globally. As we will see momentarily, Y̌ is actually
shifted, but the choice of Wu structure contained in the classifying map γ provides a
closely-related unshifted differential cocycle X̌ , towhich the interpretation above applies
straightforwardly.

Shift. Recall that the degree 4 Wu class is a Z2-valued characteristic class given in
terms of the Stiefel–Whitney class by w4 + w2

2 on oriented manifolds. The differential
cocycle Y̌ constructed from the metric and gauge connection is shifted by 1

2ν ⊗a, where
ν := γ ∗(νU) is a cocycle representative of the degree 4Wu class pulled back from BWḠ,
and a is the gravitational anomaly coefficient in (2.10).

The degree 4 Wu class vanishes on manifolds of dimension 7 and fewer, so ν is
a trivializable cocycle. As a consequence y and Y have integral periods. However, ν

does not necessarily vanish as a cocycle, so Y̌ is genuinely shifted, in the sense that
its characteristic cocycle y is half-integer-valued. (It always takes integer values when
evaluated on cycles, but may take half-integer values on chains.)

Wu structure. A Wu structure (discussed in more detail in Appendix A) is a certain
higher degree generalization of a spin structure. It can essentially be seen as a choice
of trivialization η of the Wu cocycle ν. Although the GS terms to be constructed are
independent of any choice of Wu structure, it is necessary to make such a choices in
intermediary steps of the construction.

A choice of Wu structure is included in the data of the classifying map γ to BWḠ.
Indeed, as explained in Appendix A, we pick a trivialization ηU of the Wu cocycle νU
on BWḠ. Its pullback η through the classifying map trivializes the Wu cocycle ν. In
Appendix A, we also picked an integral lift ηZ,U of ηU. On M , we have the pulled
back cochain ηZ := γ ∗(ηZ,U). ηZ plays a central role in our construction of the Green–
Schwarz terms.

Associated unshifted differential cocycle. Given this data, we can construct an unshifted
differential cocycle X̌ from Y̌ as follows. Let us define η� := ηZ ⊗ a, where a is the
gravitational anomaly coefficient in (2.10). Define the flat differential cocycle ν̌ :=
(dη�,−η�, 0), and then set
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X̌ = Y̌ − 1

2
ν̌, (3.9)

which is unshifted by definition. The differential cohomology class of X̌ does depend
on the choice of Wu structure through the classifying map. Note that the field strength
of X coincides with the field strength of Y : the distinction between X̌ and Y̌ affects only
the Wilson observables and the torsion fluxes.

Charge cancellation. Recall that Y carries a string charge, given by the homology class
in H2(M;�) Poincaré dual to the cohomology class of Y in H4(M;�). Like any charge,
the total string charge has to vanish on a compact spacetime. So if Y is topologically
non-trivial, with charge c ∈ H2(M;�), there must be self-dual strings defects whose
worldsheet � wrap a cycle representing −c, so that the total string charge vanishes.

In the following, we will effectively assume that Y is topologically trivial. More
precisely, although we will always write M for simplicity, we actually work on M − �

on which Y is trivializable. As this manifold is non-compact, integration by parts should
generate boundary terms. However, if anomalies cancel, a necessary condition is that
such boundary contributions to anomaly computations cancel through inflow against
the worldsheet anomalies of the strings on �. We will not examine the self-dual string
worldsheet anomalies in the present paper, and we will simply assume that they cancel
the boundary terms in anomaly computations. This gap is certainly worth filling in.

Self-dual fields. On M −�, Y is trivializable. In the differential cocycle language, there
is a differential cochain Ȟ = (h, B, H) on M − � such that

d Ȟ = Y̌ , (3.10)

or in components

dh = y, H − h − d B = A, d H = Y. (3.11)

We will interpret Ȟ as representing the self-dual 2-form gauge fields (or “B-fields”) of
the theory. While Ȟ is ill-defined on �, we do not expect the self-dual 2-forms fields to
be well-defined on � either, due to the fact that � is a source.

As Y̌ is a shifted differential cocycle, Ȟ is a shifted differential cochain, with shift
given by the �R/�-valued cochain 1

2η ⊗ a. 1
2η ⊗ a trivializes the shift 1

2ν ⊗ a of Y̌ ,

and is therefore compatible with d Ȟ = Y̌ . We can construct the differential cochain
η̌ = (η�, 0, 0), satisfying dη̌ = ν̌. We then obtain a natural trivialization of X̌ :

F̌ = Ȟ − 1

2
η̌, d F̌ = X̌ . (3.12)

F̌ will be useful to define the Green–Schwarz terms in Eqs. (6.2) and (6.3).

Gauge transformations. There are gauge transformations associated to thedata (Ȟ , Y̌ , η̌)

we defined above. As explained in Appendix B, a subgroup of such transformations is
induced by diffeomorphisms, vectormultiplet gauge transformations, B-fields gauge
transformations, and changes of the classifying map γ . Those are the transformations
under which our constructions should be invariant. Nevertheless, it will be convenient
to require that our constructions are invariant under the following larger group of trans-
formations.

We describe four classes of generators in this group.
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1. Pullbacks by diffeomorphisms: Suppose f : M → M is a diffeomorphism. f acts
on the data above by

Ȟ �→ f ∗ Ȟ , Y̌ �→ f ∗Y̌ , η̌ �→ f ∗η̌. (3.13)

This simply means that our constructions may use the data (Ȟ , Y̌ , η̌) but should
otherwise be covariant.

2. B-field gauge transformations: Ȟ can be shifted by the differential of a flat cochain,
leaving Y̌ and η̌ invariant:

Y̌ �→ Y̌ ,

Ȟ �→ Ȟ + dW̌ ,

η̌ �→ η̌,

(3.14)

where W̌ = (w, W, 0) ∈ Č2
0 (M;�). In components:

h �→ h + dw, B �→ B − w − dW, H �→ H. (3.15)

These transformations include the small B-field gauge transformations discussed
in the physical literature (w = 0), but also account for large gauge transformations
(w �= 0).

3. Gauge transformations of Y̌ : Y̌ can be shifted by the differential of a flat cochain.
Compatibility with (3.10) then requires Ȟ to be shifted by the same flat cochain:

Y̌ �→ Y̌ + dV̌ ,

Ȟ �→ Ȟ + V̌ ,

η̌ �→ η̌,

(3.16)

where V̌ = (v, V, 0) ∈ Č3
0(M;�). In components:

y �→ y + dv, A �→ A − v − dV, Y �→ Y,

h �→ h + v, B �→ B + V, H �→ H.
(3.17)

The small gauge transformations are those with v = 0.We show in Appendix B that
a subgroup of these transformations results from diffeomorphisms and vectormulti-
plet gauge transformations. The transformations above encode the famous fact that,
in the Green–Schwarz mechanism, the B-field transforms under vector-multiplet
gauge transformations and diffeomorphisms.

4. Changes of shift: η� can be shifted by an arbitrary �-valued cochain ρ, thereby
changing the (trivial) representing cocycle representative of the Wu class. The un-
shifted differential cocycles X̌ and F̌ are invariant under such transformations, and
we can easily deduce the transformation of Y̌ and Ȟ :

Y̌ �→ Y̌ +
1

2
dρ̌,

Ȟ �→ Ȟ +
1

2
ρ̌,

η̌ �→ η̌ + ρ̌,

(3.18)
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where ρ̌ = (ρ, 0, 0). In components:

η �→ η + ρ, y �→ y +
1

2
dρ, A �→ A − 1

2
ρ, Y �→ Y,

h �→ h +
1

2
ρ, B �→ B, H �→ H,

(3.19)

X̌ and F̌ are obviously invariant under changes of shift. Diffeomorphisms generally
do not preserve the Wu cocycle, and therefore induce a change of shift transforma-
tion, as explained in Appendix B.

Local degrees of freedom. We should check that the model above has the correct local
degrees of freedom. For this purpose, we can assume that all the fields are topologically
trivial, so we would like to match the degrees of freedom of the system above with those
of a pair of differential forms (H, Y ) of degree (3, 4) satisfying d H = Y .

The shifting differential cocycle η̌ does not contain any degree of freedom. This
means that we are free to consider the unshifted differential cocycles (X̌ , F̌) instead
of (Y̌ , Ȟ), or equivalently to assume that (Y̌ , Ȟ) are unshifted. We work locally on a
small open set, on which all the cocycles are topologically trivial. As Y̌ is topologically
trivial, it can be put into the form Y̌ = (0, A, Y ) by a gauge transformation. Here A is
a real cochain coming from a smooth differential form satisfying d A = Y . The gauge
symmetry implies that A is defined only up to shifts by exact forms. Thereforewe recover
the degrees of freedom of a closed 4-form, Y , while A does not contain any local degree
of freedom.

Assume that Ȟ is “topologically trivial” as well, which we take to mean that h = 0
after a suitable gauge transformation. The second equation of (3.11) then reads H−d B =
A, which is exactly (3.7). As A is fixed by a choice of vectormultiplet connection and
metric (seeAppendixB for details), the coexact part of H is fixed. The remaining degrees
of freedom correspond to the exact part of H . Altogether, we see that we reproduce the
degrees of freedom of a pair of differential forms (H, Y ) satisfying d H = Y , as required.

The degree 2 case. The formalism above is valid in any degree. Let us look at the
case where Y̌ has degree 2, where a straightforward geometric interpretation exists.
(See Example 2.7 in [49].) Degree 2 differential cohomology classes are in bijection
with isomorphism classes of line bundles with connection. Y̌ therefore describes a line
bundle L with connection.

In this case, � is simply a finite set of points on the surface M . The fact that Y̌ is
trivializable over M − � means that L|M−� is trivializable.

How can we interpret Ȟ? The differential cohomology of degree 1 over a manifold
coincides with the U (1)-valued functions over this manifold, with the isomorphism
given explicitly by the exponential of the connection. So the space of all Ȟ modulo the
corresponding gauge transformations is a torsor over the group ofU (1)-valued functions
over M − �. We can think of it as the space of sections of L over M − �. Therefore,
the data (Y̌ , Ȟ) correspond to a line bundle L over M and a section of L over M − �.
See also Example 2.25 in [21].

In the context of interest to us, Y̌ and Ȟ have respectively degrees 4 and 3. By analogy
with the degree 2 case, degree 3 differential cohomology classes are in bijection with
isomorphism classes of gerbes with connections, and degree 4 differential cohomology
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classes are in bijection with isomorphism classes of 2-gerbes with connection. The
previous statement can indeed be taken as a definition of Abelian gerbes and 2-gerbes. Ȟ
can therefore be interpreted as defining a section of the Abelian 2-gerbe with connection
associated to Y̌ over M − �.

A model in differential KO-theory?. We should remark here that six-dimensional su-
pergravity theories are usually defined on R

5,1, where the differential form model for
gauge fields is sufficient. In order to generalize such theories to topologically non-trivial
manifolds, one has to choose a generalized cohomology theory whose differential ver-
sion governs the gauge fields and the self-dual fields. See for instance [21,22,50] for a
discussion. In our model, we chose to model the self-dual gauge fields by cochains in
the model of ordinary differential cohomology. This is natural if we see them as chiral
Abelian gauge fields. However, the cancellation of global anomalies through the Green–
Schwarz mechanism in type I string theory [21] requires the B-field to be modeled as
a differential KO-theory cochain. We will see that we can prove global anomaly can-
cellation only up to a certain bordism invariant. Unfortunately, the bordism invariant
seems to be difficult to compute for the case of an arbitrary compact Lie group G with
quaternionic representation. It would be very interesting to learn if this difficulty could
be overcome bymodeling the 6-dimensional self-dual fields using a different differential
generalized cohomology theory, such as differential KO-theory.

4. Construction of the Wu Chern–Simons Field Theory

We construct in the present section a 7-dimensional field theory on manifolds with
Wu structure endowed with an unshifted degree 4 differential cocycle X̌ . We will see in
Sect. 5 that its partition function is a geometric invariant of 7-dimensional manifolds that
coincides with the invariant (2.29) expected to be associated with the Green–Schwarz
terms, after a suitable identification of the relation between the differential cocycles
X̌ and Y̌ . The Green–Schwarz terms themselves will then be constructed in Sect. 6 as
vectors in the state space of this field theory.

While we usually consider spin manifolds in the present paper, no spin condition is
assumed in this section. The word “manifold” will refer to a smooth compact oriented
manifold, possibly with boundary, endowed with a Wu structure. We write (M, X̌) for a
manifold endowedwith a degree 4 unshifted differential cocycle X̌ . Accordingly, instead
of equipping the 6- and 7-dimensional manifolds with classifying maps into BWḠ, they
only have classifying maps into BWSO , see Appendix A.

We will assume that � is a unimodular (i.e. self-dual) lattice, because this is actually
a constraint on 6d supergravity theories [16] and it simplifies the construction of the Wu
Chern–Simons field theory. At the end of Sect. (4.6), we will discuss the modifications
needed when � is not unimodular and explain that they result in the Wu Chern–Simons
theory not being invertible. As this impairs the construction of theGreen–Schwarz terms,
our construction rederives the unimodularity of � as a consistency constraint on the 6d
supergravity theory.

4.1. Linking pairing. Let U be a 7-manifold, possibly with boundary ∂U . The torsion
subgroup H4

tors(U, ∂U ;�) ⊂ H4(U, ∂U ;�) of the degree 4 relative cohomology of
(U, ∂U ) valued in � carries a R/Z-valued pairing, defined as follows. Let x1 and x2 be
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cocycle representatives for classes [x1], [x2] ∈ H4
tors(U, ∂U ;�). Suppose x2 has order

k. Then there is a cochain y such that dy = kx2. Define

L̃(x1, x2) := 1

k

∫
U

x1 ∪ y mod 1. (4.1)

L̃ passes to a well-defined pairing on the cohomology, the linking pairing.
One can also define an R/Z-valued pairing on the subgroup Ȟ4

flat(U, ∂U ;�) ⊂
Ȟ4(U, ∂U ;�) of flat relative differential cohomology classes on U valued on � as
follows. Let X̌1 = (x1, A1, 0) and X̌2 = (x2, A2, 0) be flat differential cocycles and
define

L(X̌1, X̌2) :=
∫

U
x1 ∪ A2 =

∫
U

X̌1 ∪ X̌2. (4.2)

The pairing L passes to a well-defined pairing on the flat differential cohomology and is
closely related to the linkingpairing. Indeed,wehave ahomomorphism Ȟ4

flat(U, ∂U ;�) →
H4
tors(U, ∂U ;�) sending a flat differential cocycle X̌ = (x, A, 0) to the cohomology

class [x]. (Note that [x] is torsion because the cocycle condition forces x = −d A in
the absence of curvature.) Proposition 4.8 of [15] shows that L is the pull-back of the
linking pairing L̃ through the homomorphism above.

4.2. The action.

Motivation. The first step toward defining a d-dimensional Chern–Simons action is to
specify a d +1-dimensional integral characteristic class. For instance, the standard (level
1) 3-dimensional Chern–Simons theory for a semi-simple gauge group is associated to
the second Chern Class c2. Then, on d-dimensional manifolds that bound, the Chern–
Simons action can be defined as the integral of the associated characteristic form on a
bounding d + 1-dimensional manifold (which is TrF2 in the 3-dimensional case).

We are interested in constructing a Chern–Simons action associated to 1
2 (x ∪ x),

where x is the characteristic of the differential cocycle X̌ , seen as a characteristic class
associated to the 8-dimensional manifold (Z , X̌). An immediate problem is that 12 (x ∪x)

is not an integral class: in general it has half-integer periods. To remedy this, we modify
the characteristic class to

1

2
x ∪ (x + ν�) (4.3)

where ν� = νZ ⊗ a. νZ is a suitable lift of the Wu class to H4(Z;�) whose construc-
tion will be explained soon. The properties of the Wu class will ensure that (4.3) has
integral periods, removing the obstruction to constructing a Chern–Simons action. (As
an aside, note that we cannot construct νZ by pulling back the cocycle νZ,U described
in Appendix A. Being an 8-dimensional manifold, Z does not necessarily admit a Wu
structure and a classifying map into BWSO .)
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Lagrangian. Let nowU be a 7-manifold. Our next aim is to construct the Chern–Simons
Lagrangian on U . This can be achieved by refining the characteristic class (4.3) to a de-
gree 8 differential cohomology class. The connection part of this differential cohomology
class is a degree 7 R-valued cochain. We take the Chern–Simons Lagrangian to be its
reduction modulo 1, because integer shifts of the Chern–Simons action are physically
irrelevant. Equivalently, we can construct the Chern–Simons action by integrating the
differential cocycle over U : by definition, this integral is the integral of the connection
modulo 1.

U admits a classifyingmap into BWḠ, and therefore comes equippedwith aZ-valued
cochain ηZ. Pick a characteristic element ã of � and define η� := ηZ ⊗ ã. The reason
why ã has to be a characteristic element will be explained momentarily. We construct
the trivializable differential cocycle

ν̌ := (dη�,−η�, 0) = d(η�, 0, 0) ∈ Ž4
0(M;�). (4.4)

Let X̌ = (x, A, X) be an unshifted differential cocycle of degree 4 on U and define
the following degree seven R/Z-valued cocycle, to be thought of as a Lagrangian for
the field theory to be defined:

l(X̌) := 1

2
[X̌ ∪ (X̌ + ν̌)]hol (4.5)

= 1

2
x ∪ (A − η�) +

1

2
A ∪ X +

1

2
H∪∧ (X, X) mod 1,

where [. . .]hol denotes as usual the connection part and we used the definition of the cup
product of differential cochains on the second line. Note that although ν̌ is a trivializable
differential cocycle 1

2 X̌ ∪ (X̌ + ν̌) is not equivalent to 1
2 X̌ ∪ X̌ , because of the factor 1/2.

Action. As explained in [15] (see (4.2)–(4.6) there), integrating (4.5) over a closed 7-
fold U does not yield a gauge invariant action. The reason for this is that x appears in
the Lagrangian with a prefactor 1

2 . Under large gauge transformations, which shift x by
integer cocycles, the integrated Lagrangian generally changes by a half-integer, which
might change the sign of the exponentiated action. The latter is therefore not invariant
under large gauge transformations of X̌ .

One should rather proceed as follows. Let us write x2 for the mod 2 reduction of the
�-valued cochain x . The pair l̄(X̌) := (l(X̌), x2) defines a cocycle in a cochainmodel for
a generalized cohomology theory called E-theory, see Appendix C. The lattice element
ã ∈ � enters the definition of a certain twist of the E-theory, and consistency requires
it to be a characteristic element of �.4 A more conceptual reason for why ã should
be a characteristic element will be presented later. n-dimensional manifolds with Wu
structures, such asU for n = 7, comewith an integrationmap sending degree n E-theory
cochains toR/Z. We write it

∫ E
U,ω

, where we wrote explicitly the dependence on theWu
structure ω. The action is defined by

4 ν⊗ ã appears as a twist in the E-theory differential (C.8). This twist by a characteristic element is required
in order for the E-theory integration map on Wu manifolds to be well-defined. The construction appears in
Appendix D of [15], and the characteristic property, hidden in α̃, is required to make (D.28) commute there.
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Sω(U ; X̌) :=
∫ E

U,ω

(l(X̌), x2), (4.6)

and is gauge invariant, as proven in Proposition 4.2 of [15].
The integrationmap alsomakes sense onmanifolds with boundary, although as usual,

the result then depends on the cocycle (l(X̌), x2) through its boundary values, not just
on its E-theory class. See the discussion in Sect. 4.3.

The action as a quadratic refinement. In the following computation, we use freely the
calculus of E-cochains described in Appendix C (see also Appendix D of [15]). Let X̌
be as before and let Ž = (z, Z , 0) be a flat relative degree 4 differential cocycle on
(U, ∂U ). U carries a Wu structure ω. The action has the following quadratic property:

Sω(U ; X̌ + Ž)

=
∫ E

U,ω

l̄(X̌ + Ž)

=
∫ E

U,ω

(
l(X̌ + Ž), (x)2 + (z)2

)

=
∫ E

U,ω

(
l(X̌) + l(Ž) +

1

2
(x ∪ Z + z ∪ A + Z ∪ X), (x)2 + (z)2

)

=
∫ E

U,ω

(
l(X̌) + l(Ž) +

1

2
(x ∪ Z + Z ∪ x − d(Z ∪ A)), (x)2 + (z)2

)

=
∫ E

U,ω

(
l(X̌) + l(Ž) + x ∪ Z +

1

2
x ∪1 z − 1

2
d(Z ∪ A − x ∪1 Z), (x)2 + (z)2

)

= Sω(U ; X̌) +
∫

U
X̌ ∪ Ž + Sω(U ; Ž). (4.7)

In this derivation, we use respectively the explicit expression (4.5) of the Lagrangian,
the fact that X̌ is a closed differential cocycle, the expression (C.2) of the commutator
for the cup product in terms of higher cup products, the definition (C.6) of the sum of
E-cochains, and the fact that

∫ E
U,ω

is a group homomorphism. We have been able to drop

the exact term on the 5th line because the cocycle Ž is relative to the boundary. A term
1
2 x ∪1 z was absorbed when decomposing the E-cochain on the 5th line into a sum of E-

cochains according to (C.6). In fact, we know from Proposition 4.7 in [15] that Sω(U ; Ž)

is a quadratic refinement q of the pairing L when restricted to flat differential cocycles.
(I.e. it satisfies the additional relation Sω(U ; n Ž) = n2Sω(U ; Ž).) The relation derived
above, is however valid for arbitrary differential cocycles X̌ .

The action on boundaries of 8-manifolds. Suppose that U is the boundary of an 8-
manifold W . In general theWu class ν(W ) of W is not trivial, and W does not admit aWu
structure. Let us pick an integral lift νZ of the Z2-cocycle ν(W ), such that νZ|U = dηZ.
Extend as well ηZ arbitrarily to W as a real cocycle. We can arrange so that the real
cocycle λ′′ := −dηZ + νZ is smooth and represented by a differential form. Is then λ′′
is a differential form lifting the Wu class of W and vanishing on U . By construction, λ′′
records the choice of Wu structure ω on U that was encoded in ηZ.
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Construct ν� := νZ⊗ã,η� := ηZ⊗ã,λ′ = λ′′⊗ã, where ã is the given characteristic
element of �. We have a relative differential cocycle ν̌ = (ν�,−η�, λ′). Assume as
well that X̌ extends to a differential cocyle X̌W = (xW , AW , XW ) on W . Note that the
characteristic of 1

2 X̌W ∪(X̌W +ν̌) represents the characteristic class (4.3). Proposition 4.6

of [15] shows that the action is given by the integral of the curvature of 1
2 X̌W ∪ (X̌W + ν̌)

over W :

Sω(U ; X̌) = 1

2

∫
W

XW ∧ (XW + λ′) mod 1. (4.8)

(4.8) expresses the action in terms of an integral of ordinary differential forms over W ,
rather than an integral in E-theory over U .

We see here clearly why ã should be a characteristic element of �: this ensures
that on a closed manifold Z , λ′ is a characteristic element of the lattice H4

dR(Z;�) ⊂
H4
dR(Z;�R) composed of de Rham cohomology classes with integral periods. This is

necessary for the right-hand side of (4.8) to vanish modulo 1 on Z , and therefore for
(4.8) to be independent of the choice of bounding manifold W .

4.3. Prequantum theory. We can construct out of the action S an invertible quantum
field theory, the prequantum theory WCSPQω . We only sketch this construction here, see
Section 5.2 of [15] for the details.

Partition function. Let (U, X̌) be a 7-dimensional manifold endowed with a degree 4
differential cocycle and a Wu structure ω. The partition function of the prequantum
theory on (U, X̌) is the exponentiated action:

WCSPQω (U ; X̌) = exp2π i Sω(U ; X̌). (4.9)

Prequantum state space. Let (M, X̌) be a 6-dimensional manifold endowed with a
degree 4 differential cocycle. Up to a caveat to be described soon, the state space
WCSPQω (M; X̌) is a hermitian line satisfying the following properties. Each cocycle
representative X̌ defines a trivialization of WCSPQω (M; X̌). The relation between the
trivializations associated to X̌1 and X̌2 is given by the value of the partition function
above on a cylinder M × I with X̌1 at one end and X̌2 at the other end. Concretely, with
I = [0, 1], we pick a smooth function from ρ : I → I , ρ(0) = 0, ρ(1) = 1 that is con-
stant near 0 and 1. We also pick a (necessarily discontinuous) function ρ̃ : I → {0, 1}
such that ρ̃(0) = 0, ρ̃(1) = 1. Then, if X̌2 = X̌1 + dW̌ with W̌ = (w, W, 0), construct
the following differential cocycle on M × I :

X̌12 = X̌1 + dWI , WI = (ρ̃w, ρW, 0), (4.10)

where the pullbacks of X̌1, w, W from M to M× I are implicit. X̌12 interpolates between
X̌1 and X̌2 on a cylinder and the associated trivializations differ by exp2π iWCSPQω (M ×
I ; X̌12).

If we restrict ourselves to spin manifolds (which is all we will need for applications
to supergravity), we can use the following fact to obtain a more intuitive picture of the
state space of the prequantum theory. Any spin 6-manifold M endowed with a degree
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4 differential cocycle X̌ can be seen as the boundary of a 7-manifold U endowed with
a differential cocycle X̌U extending X̌ . In other words, the bordism groups �

Spin
6 (pt)

and �
Spin
6 (K (Z, 4)) vanish (see Stong’s appendix in [51] for a proof of this second

fact). Then the state space of the prequantum theory on (M, X̌) is the vector space of
complex-valued functions f on extensions (U, X̌U ) such that

f (U2, X̌U2)/ f (U1, X̌U1) = exp2π i Sω(U12; X̌U12) (4.11)

whenever (U12, X̌U12) is obtained from (U1, X̌U1) and (U2, X̌U2) by flipping the orien-
tation of U1 and gluing it to U2 along M .

Torsion anomaly. For the picture above to be consistent, the partition function on the
torus M × S1 (corresponding to a cylinder from a cocycle representative to itself, i.e. to
the identity gauge transformation) should be 1. If this condition is not satisfied, there is
an anomaly and the state space is simply the zero Hilbert space. This torsion anomaly
provides constraints on the set of Wu structures.

We see that if X̌1 = X̌2, then dW̌ = 0, so X̌12 on M × S1 is the sum of the pullback
of X̌1 and of a flat differential cocycle Ž . Ž is obtained by pushing forward dWI from
M × I to M × S1, which is possible because dWI |M×{0} = dWI |M×{1}. While dWI is
obviously exact, Ž is in general not exact on M × S1.

We therefore set U = M × S1, X̌ a differential cocycle on U pulled back from M
and Ž = (z, Z , 0) as above. We compute

Sω(U ; X̌ + Ž) − Sω(U ; X̌) = Sω(U ; Ž) +
∫

U
X̌ ∪ Ž = qω(z) +

∫
U

x ∪ Z , (4.12)

where we used (4.7), as well as the fact that the action evaluated on flat cocycles is the
pullback of a quadratic refinement qω of the linking pairing. z is of the form θ ∪z′, where
θ is a cocycle generating H1(S1;Z) and [z′] ∈ H3

tors(M;�). The classes represented
by such z’s form a subgroup

T := H3
tors(M;�) ∪ θ ⊂ H4

tors(M;�) (4.13)

isotropic with respect to the linking pairing. Quadratic refinements are linear on isotropic
subgroups, which shows that both terms in the right-hand side of (4.12) are linear in Ž .
Nevertheless, (4.12) clearly cannot vanish for arbitrary X̌ : the first term on the right-hand
side depends on z = −d Z only, while the second term depends on Z . We can have a
cancellation for all Ž only if x = dv for v some real cocycle, i.e. x is torsion. In this
case the second term on the right-hand side of (4.12) can be rewritten

−
∫

U
v ∪ z = −L̃(x, z). (4.14)

We write x0 ∈ H4
tors(M;�) for the class making the right-hand side of (4.12) vanish.

As qω(z) is valued in {0, 1/2} ⊂ R/Z, x0 is 2-torsion at most (and therefore the sign
is immaterial). It is also not difficult to check that on flat cocycles z = z′ ⊗ α, with
z′ ∈ H4

tors(M;Z) and α ∈ �, we have

qω(z) = qZ,ω(z′) · (α, α) (4.15)
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where qZ,ω is the quadratic refinement associated to the action for the lattice � = Z.
This implies that x0 has necessarily the form x0 = x ′

0⊗γ , where x0 ∈ H4
tors(M;Z2) and

γ is the unique characteristic element of �/2�. (The unimodularity of � ensures the
uniqueness of γ .) x ′

0 is completely determined by the restriction of q on T . Analogues
of this anomaly have been discussed in various contexts [15,42,52–54].

We now show that the torsion anomaly x0 vanishes for a suitable choice of Wu
structure. By definition, qω is the Z2-character L̃(x0, •) on T . As the order 2 part of
T is mapped injectively into H4(M × S1;�/2�) under the reduction mod 2, we can
use Poincaré duality on M × S1 to find a class δ ⊗ γ ∈ H3(M × S1;�/2�), δ ∈
H3(M × S1;Z2) such that for all z = z′ ⊗ α ∈ T , we have

L̃(x0, z) = 〈z2 ∪ (δ ⊗ γ ), [M × S1]〉 = 〈z′
2 ∪ δ, [M × S1]〉(α, γ ). (4.16)

Here, z′
2 is the reduction mod 2 of z′. Given the form of z, δ can be chosen to be the

pullback of a class δ′ ∈ H3(M;Z2). Recall now that Wu structures on M form a torsor
for H3(M;Z2). Let us shift the Wu structure on M by δ′. This induces a change of Wu
structure on M × S1 from ω to ω′ = ω + δ. Proposition 4.5 of [15] shows that

qω′(z) = qω(z) − 〈z2 ∪ (δ ⊗ γ ), [M × S1]〉. (4.17)

In order words, qω′ vanishes on T and therefore the torsion anomaly x0 associated to the
Wu structure ω′ vanishes. Note that this procedure does not determine the Wu structure
uniquely, due to some freedom in constructing δ. We will call good the Wu structures
on 6-manifolds that have a vanishing associated torsion anomaly. All the Wu structures
used in the present paper from now on will be good.

4.4. Bordism category. The prequantum theory satisfies the gluing axioms, and there-
fore is a field theory functor, only with respect to a suitable bordism category CPQ. This
is the bordism category whose objects are the 6-dimensional manifolds (M, X̌) such
that X̌ lies in the torsion class determined by anomaly cancellation. The reason is that
given a 7-manifold with a cut along a 6-manifold, the corresponding prequantum ampli-
tude/partition function cannot be factored through the cut if the state space associated
to the cut is the zero Hilbert space.

The Wu Chern–Simons theory to be constructed next can be defined on 6-manifolds
endowed with arbitrary Wu structures. The subtlety mentioned above then requires cer-
tain restrictions onmorphisms. To simplify the discussion a bit, wewill rather use the fact
that in the supergravity context, the Wu structure can be freely chosen, and restrict the
definition of the Wu Chern–Simons theory to 6-manifolds carrying good Wu structures.

The Wu Chern–Simons theory is a functor from a bordism category CWC S defined
as follows.

• The objects of CWC S are 6-dimensional closed smooth oriented manifolds endowed
with a good Wu structure, a trivializable degree 4 differential cocycle X̌ and a
classifying map into BWSO .

• The morphisms of CWC S are 7-dimensional compact smooth oriented manifolds
with boundary, endowed with a Wu structure, a degree 4 differential cocycle X̌ and
a classifying map into BWSO . Of course, on the boundary, the inducedWu structure
should be good, X̌ should be trivializable and the classifying maps must match.



992 S. Monnier, G. W. Moore

4.5. Wu Chern–Simons theory: the partition function.

Definition. The quantum field theories we define below are akin to Dijkgraaf–Witten
(DW) theories, in the sense that their configuration space of dynamical fields is finite.
The path integral therefore reduces to a finite sum. However, unlike in DW theories, it
cannot be interpreted as the gauging of a finite symmetry.

Let U be a morphism in CWCS. The path integral defining the WCS theory on U is
essentially a gauss sum for the quadratic refinement qω. Recall that qω is the quadratic
refinement of the linking pairing L̃ on H4

tors(U, ∂U ;�) defined by the action Sω. If
∂U �= ∅, L̃ has a non-trivial radical R(U ) in H4

tors(U, ∂U ;�), i.e. there are 0 �= x ∈
H4
tors(U, ∂U ;�) such that L̃(x, y) = 0 for all y ∈ H4

tors(U, ∂U ;�). This is at first sight
worrisome, because if q is not tame, i.e. if it does not vanish on R(U ), then its associated
Gauss sum vanishes [44], which would mean that the WCS theory is not invertible. As
our aim is eventually to compare the WCS theory with the anomaly field theory of the
six-dimensional supergravity, this would be a problem. Fortunately, the constraint that
the Wu structure is good precisely ensures that q vanishes on R(U ), as we now show.

The classes in R(U )have representatives supportedon a tubular neighborhoodR×∂U
of the boundary, and take the form θ ∪ x ′, where θ generates H1

compact(R;Z) and x ′ ∈
H3
tors(∂U ;�). It is a general fact [44] that the restriction of a quadratic refinement to

the radical of the associated pairing is a 1
2Z/Z-valued character. In the case of qω,

this character is given by L̃(x0, •), by the very definition of the torsion anomaly. As
the Wu structure on ∂U is assumed to be good, x0 = 0 and qω is tame. Tame quadratic
refinements have an Arf invariant, which is the complex argument of the (non-vanishing)
associated Gauss sum:

Arf(qω) = arg

⎛
⎝ ∑

z∈H4(U,∂U ;�)

exp2π iqω(z)

⎞
⎠ . (4.18)

If the quadratic refinement were not tame, the Gauss sum would vanish and there would
be no associated Arf invariant.

We now define the partition function of theWuChern–Simons theory on 7-manifolds
as follows:

WCSω(U ; X̌) := N (U )
∑

[z]∈H4
tors(U,∂U ;�)

exp2π i
(

Sω(U ; X̌) − Sω(U ; Ž)
)

,

= exp2π i(Sω(U ; X̌) − Arf(qω)).

(4.19)

The normalization factor N (U ) is given by

N (U ) := 1√
|H4

tors(U, ∂U ;�)||R(U )|
. (4.20)

It coincides with the modulus of the Gauss sum of qω [44], which is why it disappears
on the second line of (4.19). The normalization ensures that WCS satisfies the relevant
gluing relations, proven in Appendix D. The partition function is invariant under equiv-
alences of differential cocycles acting on X̌ and leaving its boundary value constant. On
a closed 7-manifold, it depends only on the differential cohomology class of X̌ .
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The partition function when U is a boundary of an 8-dimensional manifold. U is as-
sumed here to be closed. Suppose that X̌ extends as X̌W to an 8-manifold W such that
∂W = U . We know that the action, and therefore the first factor in the partition function,
takes the form (4.8). Then standard arguments, detailed for instance in [55], allow us to
express the Arf invariant in terms of data on W :

Arf(qω) = 1

8

(
σH4(W,U ;�) −

∫
W

λ′2
)

, (4.21)

where λ′ is the relative differential form on W defined above (4.8). We therefore obtain:

WCSω(U ; X̌) = exp
2π i

8

(
4

∫
W

XW ∧ (XW + λ′) +
∫

W
λ′2 − σH4(W,U ;�)

)

= exp2π i

(∫
W

1

2
(X ′

W )2 − σH4(W,U ;�)

8

)
(4.22)

where we defined X ′
W = 1

2λ
′ + XW .

Dependence on the Wu structure. It is also interesting to understand how the partition
function WCSω(U ; X̌) depends on the Wu structure ω of U . A change in Wu structure
ω → ω′ is described by an element δ ∈ H3(U, ∂U ;Z2). Then Proposition 4.5 of [15]
says that

Sω′(U ; X̌) = Sω(U ; X̌) − 〈x2 ∪ δ�/2�, [U, ∂U ]〉, (4.23)

wherewe recall that x2 is themod 2 reduction of the characteristic x of X̌ . δ�/2� = δ⊗γ ,
where γ ∈ �/2� is the unique characteristic element of �/2�, satisfying (α, α) =
(α, γ ) for all α ∈ �/2�. The quadratic refinement q changes therefore by

qω′(x) = qω(x) − 〈x2 ∪ δ�/2�, [U, ∂U ]〉. (4.24)

Writingβ for theBockstein homomorphism from H3(U, ∂U ;�/2�) to H4(U, ∂U ;�),
we can rewrite the second term in terms of the linking pairing

qω′(x) = qω(x) − L̃(x, β(δ�/2�)). (4.25)

The corresponding Arf invariant transforms as (see Proposition 1.13 of [44])

Arf(qω′) = Arf(qω) − qω(β(δ�/2�)). (4.26)

Pick an integral lift δ� of δ�/2�. Define �̌ = (dδ�,−δ�, 0). Then, by the construction
of the Bockstein homomorphism β associated to the short exact sequence of groups

�
2·→ � → �/2�, �̌/2 has a characteristic whose cohomology class is β(δ�/2�). We

have q(β(δ�/2�)) = S(U ; �̌/2) and L̃(x, β(δ�/2�)) = L(X̌ , �̌/2). We can now write

Sω′(U ; X̌) − Arf(qω′) = Sω(U ; X̌) − Arf(qω) + L(X̌ , �̌/2) + Sω(U ; �̌/2)

= Sω(U ; X̌ + �̌/2) − Arf(qω) mod 1, (4.27)

where we used the fact that 2L(X̌ , �̌/2) = 0 mod 1. It follows that

WCSω′(U ; X̌) = WCSω(U ; X̌ + �̌/2). (4.28)
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A change ofWu structure can therefore be absorbed by a (torsion) shift of the background
field X̌ .

Note that spin Chern–Simons theories have a very similar dependence on the spin
structure [14].

4.6. Wu Chern–Simons theory: the state space. We define the state spaceWCSω(M; X̌)

on a 6-manifold (M, X̌) as follows:

WCSω(M; X̌) := WCSPQω (M; X̌) ⊗ WCSPQω (M; 0̌) (4.29)

where 0̌ is the zero differential cocycle on M . The justification for this definition is that it
is designed so that the resulting theory satisfies the gluing laws for the bordism category
CWCS. The proof of the gluing laws appears in Appendix D. Note that the state space of
WCS is always 1-dimensional, as is required for an invertible field theory.

Note that we could have written (4.29) analogously to the partition function (4.19),
summing over torsion classes:

WCSω(M; X̌) := WCSPQω (M; X̌) ⊗
⊕

[z]∈H4
tors(M;�)

WCSPQω (M; Ž), (4.30)

where as in (4.19), Ž is a differential cocycle lifting the torsion class [z]. Indeed, the
torsion anomaly discussed in Sect. 4.3 ensures that WCSPQω (M; Ž) is the zero Hilbert
space unless Ž represents the trivial torsion class.

4.7. Further remarks. We can now discuss what would happen had we not imposed the
constraint that � is unimodular. If � is not unimodular, the constraints imposed by the
torsion anomaly are looser and there is a non-trivial subgroup K of H4

tors(M;�) such
that WCSPQω (M; Ž) is a Hermitian line if Ž lifts an element in K , see Propositions 5.2
and 4.13 in [15]. To satisfy the gluing relations, the state space has to be defined using
(4.30) [15]. Its dimension is therefore higher than 1 and theWCS theory is not invertible.
This shows that with � non-unimodular, there is no way to relate the WCS theory to the
anomaly field theory of the 6d supergravity and the construction of the Green–Schwarz
term is doomed. In this sense, our construction of the Green–Schwarz term identifies the
unimodularity of � as a consistency condition on the 6d supergravity theory. This fact
was previously derived in [16] using compactification to 2 dimensions.

Note also that the form of the partition function and of the state space shows thatWCS
is the product of two theories. The first factor, depending on the background field X̌ ,
is nothing but a standard prequantum Wu Chern–Simons theory. We expect the second
factor, whose partition function yields the Arf invariant, to coincides with the “quantum”
WCS theory, obtained from the WCS theory by promoting the background gauge field
to a dynamical field. As the theory is Gaussian, it can be computed exactly as a sum over
the critical points of the action, which are the flat gauge fields. Now we saw that on flat
gauge fields, the action depends only on the torsion class of the characteristic of the cor-
responding differential cocycle. This suggests that the full path integral, after a suitable
normalization, should reduce to a simple sum over the torsion group H4

tors(M;�), as in
(4.19) and (4.30). We did not check these claims formally, however, and the discussion
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above ignores the potential contribution of the 1-loop determinants associated to the
fixed points.

If the conjectural relation above holds, the structure of WCS is reminiscent of the
spin Chern–Simons theories used to model the fractional quantum Hall effect (see for
instance Section 7 of [14]), with X̌ playing the role of the Maxwell field and Ž being a
statistical Chern–Simons field.

5. The Shifted Wu Chern–Simons Theory and Its Relation to the Anomaly Field
Theory

Consider a closed Riemannian spin 7-manifold U with principal G-bundle that bounds,
i.e. such that U = ∂W with all the structures extending to W . From the discussion in
Appendix B, we obtain differential cocycles Y̌U , Y̌W on U and W respectively, such that
Y̌W extends Y̌U . We see that the phase of the partition function of theWu Chern–Simons
theory in (4.22) coincides with our expectation for the anomaly of the 6d supergravity
(2.27) upon setting X ′

W = YW , or equivalently

XW = YW − 1

2
λ′. (5.1)

Equivalently, it coincides with minus the anomaly (2.29) expected for the Green–
Schwarz terms.

At the level of differential cocycles, (5.1) reads X̌W = Y̌W − 1
2 ν̌W , which restricts to

U as

X̌ = Y̌ − 1

2
ν̌. (5.2)

Write λ̂ for the integral degree 4 characteristic cocycle pulled back from the cocycle
λ̂BSpin on the classifying space of spin bundles, as defined in Appendix B.2. Y̌ is a
differential cocycle shifted by 1

2 λ̂⊗a mod 1, where a is the gravitational anomaly coef-
ficient of the 6d supergravity appearing in (2.10). On spin manifolds, the characteristic
class λ reduces modulo 2 tow4, which coincides with theWu class. Moreover, we chose
λ̂BSpin to coincide with the universal Wu cocycle modulo 2, see Appendix B.2. This
means that the characteristic x of X̌ is an integer-valued cocycle, provided a = ã mod-
ulo 2, that is, provided that a is a characteristic element of�. This is an interesting result,
because while a is always a characteristic element in F-theory compactifications, it was
not clear until now whether or why this condition was required from the low energy
supergravity point of view. Note also that we are free to choose ã to be any characteristic
element of �: a natural choice is obviously ã = a if a is a characteristic element of �.

Thus, when a is a characteristic element of �, we can use (5.2) as a background field
for the Wu Chern–Simons theory constructed in Sect. 4. Writing WCS† for the field
theory complex conjugate to WCS, we define

WCSs(N ; Y̌ ) := WCS†
(

N ; Y̌ − 1

2
ν̌

)
, (5.3)

where N is here either a 6- or a 7-dimensional spin manifold endowed with a differential
cocycle Y̌ shifted by 1

2 λ̂ ⊗ a. To make sense of the right-hand side, we choose an
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arbitrary good Wu structure on N . Choosing a different Wu structure shifts ν̌ by a 2-
torsion differential cocycle, ensuring through (4.28) that the left-hand side is independent
of the Wu structure.

WCSs is therefore a field theory functor from a bordism category CWCSs into the
category of Hilbert spaces, where CWCSs is defined as follows.

• The objects in CWCSs are 6-dimensional smooth closed oriented spin Riemannian
manifolds M endowed with a principal G-bundle and a classifying map into BWḠ.
As explained in Appendix B, this data yields a degree 4 differential cocycle Y̌ shifted
by 1

2 λ̂ ⊗ a. Y̌ is required to be trivializable. Recall from the discussion in Sect. 3.2
that in this context, “trivializable” really means trivializable on the complement of
the possible string sources.

• The morphisms in CWCSs are 7-dimensional smooth spin compact Riemannian man-
ifoldsU endowedwith a principal G-bundle and a classifyingmap into BWḠ. Again
the construction of Appendix B yields a degree 4 differential cocycle Y̌ .

The comparison of (2.27) and (4.22) show that on 7-manifolds that bound, WCSs

coincides with the complex conjugate of the anomaly field theory. Moreover, we defined
CWCSs precisely so that it coincides with the domain of the anomaly field theory.

This means that for gauge groups such that every spin 7-manifold endowed with a
principal G-bundle bounds, or more precisely such that�spin

7 (BG) = 0, the two theories
coincide. In Appendix E, we show that this is the case for G = U (n), SU (n), Sp(n),
products of such groups and for G = E8.

As we will see in Sect. 7.2, there are cases where the two theories do not coincide
on certain 7-manifolds that do not bound.

6. The Green–Schwarz Term

We will construct the Green–Schwarz term of the 6d supergravity on a manifold M as
an element of the state space of the shifted Wu Chern–Simons theory WCSs:

GST(M; Y̌ , Ȟ) ∈ WCSs
(

M; Y̌
)

. (6.1)

As mentioned in the previous section, the shifted Wu Chern–Simons theory coincides
with the complex conjugate of the anomalyfield theory for groups such that�spin

7 (BG) =
0. For such groups, all anomalies are canceled by the Green–Schwarz terms. When
�

spin
7 (BG) �= 0, the anomalies might not completely cancel and there are residual

constraints from global anomaly cancellation, see the discussion in Sect. 7.2.
Let us define the Green–Schwarz term on M by

GST(M, Y̌ , Ȟ) := exp − 2π i
∫ E

M,ω

gst(M, Y̌ , Ȟ), (6.2)

gst(M, Y̌ , Ȟ) =
(
1

2

[(
Ȟ − 1

2
η̌

)
∪

(
Y̌ +

1

2
ν̌

)]
hol

, h2 − 1

2
η

)

=
(
1

2
[F̌ ∪ (X̌ + ν̌)]hol, f2

)
. (6.3)

Here
[(

Ȟ − 1
2 η̌

)
∪

(
Y̌ + 1

2 ν̌
)]

hol
is projected to a cocycle valued inR/Z so that gst(M,

Y̌ , Ȟ) is a degree 6 E-cochain, and as before,
∫ E

M,ω
denotes the integration in E-theory.
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For this integration map to exist, aWu structureω has to be chosen on M . η̌ = (η�, 0, 0)
and ν̌ = (dη�,−η�, 0) are differential cochains constructed from theWu structure as in
Sect. 3.2. X̌ := Y̌ − 1

2 ν̌ is an unshifted differential cocycle, and F̌ := Ȟ− 1
2 η̌ an unshifted

differential cochain trivializing X̌ , see (3.12). We first prove that GST(M; Y̌ , Ȟ) is
independent of the choice of Wu structure on M , and then prove (6.1).

In the computations below we write X̌ = (x, A, X), F̌ = ( f, C, F). It will also be
important to bear in mind that x is integrally quantized.

Independence from the Wu structure. We proceed as in Sect. 4.5. Let δ ∈ H3(M;Z2)

be the class describing a change of Wu structure ω → ω′ and δ�/2� = δ ⊗ γ ∈
H3(M;�/2�). Under the change of Wu structure, the integral lift ν� changes by a lift
δ� of δ�/2�. If �̌ := (dδ�,−δ�, 0), then ν̌ changes to ν̌ + �̌ under the change of Wu
structure. The construction of the integration map in Appendix D of [15] implies that
given a top E-cochain s = (s, y),

∫ E

M,ω′
(s, y) =

∫ E

M,ω

(s, y) +
1

2

∫
M

y ∪ δ�/2�. (6.4)

(6.4) is a direct consequence of the construction of the Brown–Comenetz dual of the
E-theory spectrum in [15], see (D.22) there. Note that if y = 0, the integration reduces
to the ordinary integration of the cochain s, and the dependence on the Wu structure
disappears, as it should. We can now compute (all equations are understood modulo Z):

1

2π i
ln GSTω′(M, Y̌ , Ȟ)

= −
∫ E

M,ω′

(
1

2
[F̌ ∪ (X̌ + ν̌ + �̌)]hol, f2

)

= −
∫ E

M,ω

((
1

2
[F̌ ∪ (X̌ + ν̌)]hol, f2

)
�

(
1

2
[F̌ ∪ �̌]hol, 0

))

− 1

2

∫
M

f2 ∪ δ�/2�

= 1

2π i
ln GSTω(M, Y̌ , Ȟ) +

1

2

∫
M

f ∪ δ� − 1

2

∫
M

f2 ∪ δ�/2�

= 1

2π i
ln GSTω(M, Y̌ , Ȟ) mod 1. (6.5)

This proves that the Green–Schwarz term is independent of the choice of Wu structure
on M .

Proof of (6.1). We will compare the gauge transformation of GST(M, Y̌ , Ȟ) with the
gauge transformation of WCSs(N ; Y̌N ) for N a 7-manifold admitting M as its boundary
and Y̌N a degree 4 differential cocycle shifted by 1

2ν ⊗ a and restricting to Y̌ on M .

The idea is that WCSs(N ; Y̌N ) is a vector in the Hermitian line WCSs(M; Y̌ ). Any
choice of cocycle Y̌ determines a trivialization of this Hermitian line, and the gauge
transformations of Y̌ relate the trivializations. If the gauge transformations act similarly
on GST(M, Y̌ , Ȟ) and WCSs(N ; Y̌N ), it means that the Hermitian lines they belong to
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are canonically isomorphic. (Recall the construction of the state space of the prequantum
theory, i.e. of WCSs(M; Y̌ ), in Sect. 4.3.)

If M does not bound, we use the same reasoning by taking N to be a 7-manifold
admitting M as one of its boundary component, and by considering gauge transformation
restricting trivially to the other components. WCSs(N ; Y̌N ) is then a tensor product
WCSs(M; Y̌ ) ⊗ WCSs(∂ N − M; Y̌∂ N−M ), and the gauge transformations restricting
trivially to ∂ N − M correspond to changes of trivialization of the first factor.

Note that both the Green–Schwarz term and the shifted Wu Chern–Simons theory
are trivially invariant under pullbacks through diffeomorphisms and under changes of
shifts (the transformations 1. and 4. in Sect. 3.2). We will therefore investigate only the
B-field gauge transformations (3.14) and the gauge transformations of Y̌ given in (3.16).

Let us start by the B-field gauge transformations (3.14) with gauge parameter W̌ =
(w, W, 0) ∈ Č2

0 (M;�). Now, WCSs(N ; Y̌N ), being independent of Ȟ , is obviously
invariant. Let us compute the gauge transformation of GST(M, Y̌ , Ȟ). It is useful to
keep in mind during the computations that all the cochains written in small caps (except
for y and h, which do not appear) are integer-valued and that the integral is considered
modulo Z.5

�W̌

(
1

2π i
ln GST(M; Y̌ , Ȟ)

)

= −
∫ E

M,ω

(
1

2
[(F̌ + dW̌ ) ∪ (X̌ + ν̌)]hol, f2 + dw2

)

+
∫ E

M,ω

(
1

2
[F̌ ∪ (X̌ + ν̌)]hol, f2

)

= −
∫ E

M,ω

((
1

2
[(F̌ + dW̌ ) ∪ (X̌ + ν̌)]hol, f2 + dw2

)

�
(
1

2
[F̌ ∪ (X̌ + ν̌)], f2

))

= −
∫ E

M,ω

(
1

2
[dW̌ ∪ (X̌ + ν̌)]hol + 1

2
dw ∪ f, dw2

)

= −
∫ E

M,ω

(
1

2
[dW̌ ∪ (X̌ + ν̌)]hol + 1

2
(dw ∪ f + w ∪ ν� + dw ∪ dw), 0

)

= −
∫

M

1

2
(−dw ∪ (A − η�) + (−w − dW ) ∪ X + dw ∪ f

+ w ∪ ν�)

= −
∫

M

1

2
(−w ∪ x + dw ∪ η� + dw ∪ f + w ∪ ν�)

= 0 mod 1. (6.6)

In the second equality, we used the fact that the E-theory integral is a group homomor-
phism with respect to the group law � (C.6) on E-cochains. In the third equality, we

5 Also, in this equation w2 is the reduction modulo two of some integral cochain w and it is not the second
Stiefel–Whitney class! In the similar computations below v2 will similarly be the reduction of an integral
cochain v and will not refer to the second Wu class!
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perform the subtraction using (C.7). We then perform a gauge transformation, by sub-
tracting an E-cochain d(0, w2), exact with respect to the differential (C.8). In the fifth
equality, we compute explicitly the connection of the differential cocycle in the bracket.
We also use the fact that

∫ E
M,ω

(s, 0) = ∫
M s to obtain an ordinary integral. In the sixth

equality, we use the closedness of X̌ and drop exact terms. Finally, by integrating by
parts we see that the remaining terms vanish modulo 1. This shows that GST(M; Y̌ , Ȟ)

and WCSs(N ; Y̌N ) are both invariant under the gauge transformations (3.14).
Let us now compute the transformation of GST(M; Y̌ , Ȟ) under (3.16), with gauge

parameter V̌ = (v, V, 0) ∈ Č3
0(M;�).

�V̌

(
1

2π i
ln GST(M; Y̌ , Ȟ)

)

= −
∫ E

M,ω

(
1

2
[(F̌ + V̌ ) ∪ (X̌ + dV̌ + ν̌)]hol, f2 + v2

)

+
∫ E

M,ω

(
1

2
[F̌ ∪ (X̌ + ν̌)]hol, f2

)

= −
∫ E

M,ω

(
1

2
[F̌ ∪ dV̌ + V̌ ∪ (X̌ + ν̌) + V̌ ∪ dV̌ ]hol

+
1

2
(dv ∪1 f + v ∪ f ), v2

)

= −
∫ E

M,ω

(
1

2
(− f ∪ (−v − dV ) − v ∪ (A − η�) + V ∪ X

− v ∪ (−v − dV ) + dv ∪1 f + v ∪ f ), v2

)

=
∫ E

M,ω

(
1

2
(−v ∪1 x − x ∪ V + v ∪ A − V ∪ X + v ∪ η�

− v ∪ v − v ∪ dV ), v2

)
mod 1, (6.7)

where we used the same kind of manipulations as in (6.6). We also used the fact that

v ∪ f + f ∪ v = −dv ∪1 f + v ∪1 x + d(v ∪1 f ) (6.8)

by the definition of Steenrod’s higher cup products ∪i , see [56] and Appendix C.
We now compare (6.7) to the variation of WCSs(N ; Y̌N ) under (3.16). To simplify

the notation, we do not distinguish between cochains / differential forms on N and their
restrictions to M = ∂ N . Similarly, we still write ω for the Wu structure on N restricting
to the Wu structure on M , using Eqs. (4.5) and (4.6) for the case that the 7-manifold is
N with ∂ N = M , we have

�V̌

(
1

2π i
lnWCSs(N ; Y̌ )

)

=
∫ E

N ,ω

(
1

2
[(X̌ + dV̌ ) ∪ (X̌ + dV̌ + ν̌)]hol, x2 + dv2

)
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−
∫ E

N ,ω

(
1

2
[X̌ ∪ (X̌ + ν̌)]hol, x2

)

=
∫ E

N ,ω

(
1

2
(x ∪ (−v − dV ) + dv ∪ (A − η�) + (−v − dV ) ∪ X

+ dv ∪ (−v − dV ) + dv ∪1 x), dv2

)

=
∫ E

N ,ω

(
1

2
d(v ∪ A + v ∪1 x − V ∪ X − x ∪ V + v ∪ η�

− v ∪ dV − v ∪ v) +
1

2
(−v ∪ dv + v ∪ ν̂�), dv2

)

=
∫ E

M,ω

(
1

2
(v ∪ A + v ∪1 x − V ∪ X − x ∪ V + v ∪ η�

− v ∪ dV − v ∪ v), v2

)
mod 1, (6.9)

where in the third equality we used d(v ∪1 x) = dv ∪1 x + v ∪ x − x ∪ v and, in the last
line, we used the fact that the integrated E-cochain is exact to reexpress is as the integral
of an E-cochain on M .

Let us now compare (6.9) and (6.7), recalling that cup products of lower case cochains
are integral, and therefore that their sign is irrelevant. We see that WCSs(N ; Y̌ ) and
GST(M; Y̌ , Ȟ) transform by the same phases under the gauge transformations (3.16).
Together with the fact proven above that they are both invariant under the gauge trans-
formations (3.14), we deduce that (6.1) holds.

7. Implications for Six-Dimensional Supergravity Theories

7.1. Anomaly cancellation. Let us start by discussing in broad terms the constraints
imposed by global anomaly cancellation.

Assume first that G is such that all 7-dimensional spin manifolds endowed with a
principal G-bundle bound, i.e. that the spin bordism group�

spin
7 (BG) vanishes. Thenwe

know that the shifted Wu Chern–Simons theory WCSs coincides with the complex con-
jugate of the anomaly field theory of the six-dimensional supergravity. For a 6-manifold
(M, Y̌ ), (WCSs)†(M; Y̌ ) is the hermitian line in which the partition function of the
bare supergravity is valued. We constructed an exponentiated Green–Schwarz term,
written GST(M; Y̌ , Ȟ) as an element of WCSs(M; Y̌ ). “Adding the Green–Schwarz
term to the action” or more precisely multiplying the exponentiated action by the ex-
ponentiated Green–Schwarz term therefore ensures that the partition function of the
anomalous fields in the full theory is a complex number, rather than an element of a
general hermitian line. Moreover, if symmetries act non-trivially on the bare partition
function, i.e. have a non trivial action on (WCSs)†(M; Y̌ ), they necessarily act trivially
on (WCSs)†(M; Y̌ ) ⊗ (WCSs)(M; Y̌ ), in which the total partition function takes value.
This ensures the cancellation of all anomalies, local and global.

Whether there exist non-bounding spin 7-manifolds with a G-bundle depends on G.
We show in Appendix E that no such manifolds exist for G = SU (n), U (n), Sp(n) and
products of such groups, as well as for G = E8. However, we also show that when
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G is a finite Abelian group, then �
spin
7 (BG) �= 0. Another related example of a gauge

group with non-trivial associated bordism group is O(n). Indeed, RP7 with a principal
O(n) gauge bundle P with non-trivial first Stiefel–Whitney class is a non-bounding
7-manifold. Indeed, the bordism invariant

∫
RP7 w1(P)7 is non-zero.

7.2. Anomaly cancellation for theories with finite Abelian gauge groups. We now show
that there are cases where the anomaly field theory differs from the shifted Wu Chern–
Simons theory on non-bounding 7-manifolds. In such cases, the Green–Schwarz terms
do not cancel all anomalies, and there are residual constraints imposed by global anomaly
cancellation.

The general idea is the following. Suppose we have two theories with the same
tensormultiplet lattice �, and the same vectormultiplet gauge group G but different
matter representations R(1) and R(2) of G. Assume R(1) and R(2) are such that

ch(R(1)) = ch(R(2)) (7.1)

or, equivalently

dimR(1) = dimR(2)

TrR(1) F2 = TrR(2) F2

TrR(1) F4 = TrR(2) F4.

(7.2)

Then there is a “relative anomaly field theory” computing the anomaly difference be-
tween the two theories. We see from (2.25) that on a 7-dimensional manifold M , its
partition function is given explicitly by

exp[π i(ξR(1) (U ) − ξR(2) (U ))], (7.3)

where ξR is the modified eta invariant of the Dirac operator on U coupled to the vector
bundle induced by the matter representation R. It is considerably simpler than the “abso-
lute” anomaly field theory. We can then compare the anomaly difference to the anomaly
difference associated to the corresponding Green–Schwarz terms. If these differences
are not equal, it is impossible that anomalies cancels for both supergravity theories with
matter in R(1) and R(2).

It is in general extremely difficult to compute explicitly the exponentiated eta invariant
(7.3). However, when G = Zn andU is a certain lens space, we can use results presented
in [57] to compute (7.3) explicitly, see Appendix F. More precisely, picture the elements
of Zn by nth roots of unity and write ρs : z → zs , s = 0, . . . , n − 1 for the distinct
complex one-dimensional representations of Zn . The unitary representation π = ρ⊕4

1
of Zn on C4 has no fixed point on the 7-dimensional unit sphere S7, and the quotient is
a spin 7-dimensional lens space U . Take the quaternionic matter representation to be of
the form Rs = ρs ⊕ ρ−s . Then, as explained in Appendix F,

ξRs (U )= 1

360 · n
(−11 + 10n2 + n4 − 60ns + 60s2 − 30n2s2+60ns3 − 30s4).

(7.4)

Recall that constructing the differential cocycle Y̌ from the supergravity data is a
subtle problem, explained in detail in Appendix B. In the most straightforward (and
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naive) construction, in which the characteristic of the universal differential cocycle on
the classifying space is (B.7), Y̌ and the associatedGreen–Schwarz terms are independent
of the matter representation. Clearly, given the obvious dependence of (7.4) on s, this
means that global anomalies cannot cancel for every choice of matter representation.
Determining exactly whichmatter representations are allowedwould require to compute
explicitly the shifted Wu Chern–Simons partition function, which looks like a hard
problem. We can however describe the difference between the representations of two
otherwise consistent 6d supergravity theories.

For this, consider two supergravity theories with matter representations

R(i) =
⊕

x (i)
s Rs, i = 1, 2, (7.5)

where by x R, we mean R⊕x . We assume that they are made anomaly-free by the Green–
Schwarz term associated to the “naive” Y̌ of Appendix B. Let us write�xs = x (2)

s −x (1)
s .

Given that the number of hypermultiplet is fixed by local anomaly cancellation, we have
the relation

∑n−1
s=0 �xs = 0. As the Green–Schwarz terms are independent of s, (7.4)

also says that

n−1∑
s=0

�xs p(n, s) = 0 mod 2, (7.6)

where

p(n, s) = 1

12n
(−2ns + 2s2 − n2s2 + 2ns3 − s4). (7.7)

For low values of n, we can write down the constraints more explicitly:

n = 2 : 1

16
�x1 = 0 mod 1

n = 3 : 1
9
(�x1 + �x2) = 0 mod 1

n = 4 : 1

32
(5�x1 + 8�x2 + 5�x3) = 0 mod 1

n = 5 : 1
5
(�x1 + 2�x2 + 2�x3 + �x4) = 0 mod 1

n = 6 : 1

144
(35�x1 + 80�x2 + 99�x3 + 80�x4 + 35�x5) = 0 mod 1

. . .

(7.8)

We can compare these constraints to the observed �xs among known F-theory models
with finite cyclic gauge group. It turns out that F-theorymodels satisfy similar, but looser
constraints:6

6 The models in question are all obtained through the Higgising of hypermultiplets of charge > 1 in F-
theory models with gauge group U (1) [58]. We thank Andrew Turner and Wati Taylor for checking that the
constraints (7.9) are satisfied in these models.
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n = 2 : 1
4
�x1 = 0 mod 1

n = 3 : 1
3
(�x1 + �x2) = 0 mod 1

n = 4 : 1
4
(5�x1 + 8�x2 + 5�x3) = 0 mod 1

n = 5 : No apparent constraint
n = 6 : 1

12
(35�x1 + 80�x2 + 99�x3 + 80�x4 + 35�x5) = 0 mod 1

. . . (7.9)

We can either deduce that some of these F-theory models are inconsistent, or that the
construction of the Green–Schwarz term out of the naive Y̌ is incorrect.

The second option is of course the most plausible. In fact, when constructing Y̌ out
of the gauge data, the only constraint we have is that its field strength Y coincides with
(2.10). This means that one is free to add a torsion differential cocycle to Y̌ . There is
indeed a degree 4 torsion class on U (see Appendices B and E.7). We can add a corre-
sponding differential cocycle representative to Y̌ , multiplied by a new�-valued anomaly
coefficient bT that can be adjusted to cancel anomalies. This introduces a dependence
on the representation Rs in Y̌ , and therefore in the shifted WCS theory. Computing ex-
plicitly this dependence looks like a hard problem, but the quadratic property (4.7) of
the WCS action guarantees that the partition function of the shifted WCS theory will
change by multiples of 1

2n . (A quadratic refinement on Zn generically takes value in
Z2n .) If we read the constraints (7.8) modulo 1/2n rather than modulo 1, we get exactly
the F-theory constraints (7.9).

This shows that the most general construction of Y̌ makes anomaly cancellation
possible on U for all known F-theory models, although obviously this is still quite far
from a full proof of the anomaly cancellation.

Let us also recall that the anomaly coefficients can be interpreted as measuring the
string charges produced by the background geometry. The new anomaly coefficient is
associated to a charge that is always torsion. It leaves no imprint on the 4-form field
strength Y of Y̌ , which is why it is completely invisible in the standard framework.

We should note that the formulae from [57] apply to more general space forms,
including those for nonabelian finite groups, so the above analysis could be considerably
extended to many other examples. If F-theory models with nonabelian π0(G) are of
interest this exercise would be worth pursuing.

7.3. Setting the quantum integrand. We saw that the partition function of the shifted
Wu Chern–Simons theory WCSs coincides with the partition function of the anomaly
field theory on any 7-manifold U that bounds. The tensor product of the shifted Wu
Chern–Simons theoryWCSs and the anomaly field theory is therefore a spin topological
field theory T , whose partition function is a spin bordism invariant, i.e. a homomorphism
T7 : �

spin
7 (BG) → R/Z. As discussed in Sect. 7.1, global anomalies cancel whenever

T7 is the trivial homomorphism.
When T7 is trivial, the spin topological field theory T is isomorphic to the trivial field

theory. Isomorphisms of field theories are natural isomorphisms of the corresponding
field theory functors, whose data can be summarized by an isomorphism ιM : T (M) � C
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for each 6-manifold M , subject to the standard naturality property ιM1 = ιM2 ◦ T (U ),
for any bordismU from M1 to M2. The fact that T (N ) = 1 for any bordism N from ∅ to
itself guarantees that such a collection of isomorphism {ιM } always exists. Nevertheless,
T might not be canonically isomorphic to the trivial field theory,i.e. there may not be a
preferred collection of isomorphisms {ιM }.

Let us investigate to which extent {ιM } is canonical. Assume that T7 is trivial, i.e.
that T7(U ) = 0 for all closed 7-manifolds U , and consider T (M) for M a 6-manifold.
If M bounds, M = ∂ N , then T (N ) is a vector in T (M) that is independent of the
choice of N . This means there is a canonical isomorphism from T (M) to C. But the
same cannot be said if M represents a non-trivial class in �

spin
6 (BG). There is a priori

no canonical way of identifying T (M) with C. (Although, depending on the details of
the theories involved, such a canonical identification might exist.) This means that while
T is isomorphic to the trivial theory, it is not canonically so. A choice of isomorphism
involves choices of isomorphisms T (M) � C for all bordism classes [M] in�

spin
6 (BG).

In terms of the 6d supergravity theory, this means that although all anomalies vanish,
there is no canonical way of identifying its partition function on M with a complex
number. To see the supergravity theory as an ordinary field theory with complex-valued
partition functions, as opposed to a relative field theory valued in T , we need to pick an
isomorphism of T with the trivial theory. This means choosing the phases of the partition
function on representatives M of each bordism class in �

spin
6 (BG). Different choices

yield different anomaly-free supergravity theories. The need to make these choices is
an example of a general phenomenon known as “setting the quantum integrand” of the
supergravity theory [5,40].

As an example, suppose the vectormultiplet gauge group is G = U (1). In this case
[59]

�
spin
6 (BU (1)) = �

spin
6 (K (Z, 2)) ∼= �

spinc

4 (pt) ∼= Z ⊕ Z. (7.10)

The independent bordism invariants canbe taken tobe
∫

M c1(M)3 and
∫

M c1(M)p1(T M).
Therefore, in this case, the setting simply involves two theta angles associated to these two
invariants. It would be interesting to see if these topological terms can be independently
supersymmetrized, and whether they have a natural home in F-theory compactifications.

If �
spin
6 (BG) is pure torsion, the choices involved in setting the quantum integrand

are discrete. For instance if �
spin
6 (BG) � Z2, generated by [M], then the partition

function on M � M is fixed, and the only choice to be made is a choice of square root,
determining the partition function on M . A similar situation in dimension 2 is described
in [60].

7.4. Consistency constraints on the Green–Schwarz term. There is a priori a puzzle
about the Green–Schwarz mechanism in dimension six. Recall that in the original
Green–Schwarz mechanism for 10-dimensional type I supergravity, the B-field is non-
anomalous. The standard picture is that we perform the path integral over the anomalous
fields (which are chiral fermions only) to obtain an anomalous partition function. We
then check that its anomaly cancels against the variation of the exponentiated Green–
Schwarz term. If this is the case, we can perform the path integral over the remaining
bosonic fields.

In dimension 6, the situation is complicated by the fact that the self-dual fields en-
tering the Green–Schwarz terms are themselves anomalous. The Green–Schwarz terms
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therefore cannot be taken out of the path integral over anomalous fields: they are part of
the integrand. Nevertheless, it is sufficient that their anomalous variation can be taken
out of the path integral. We deduce from this discussion two consistency constraints on
the Green–Schwarz terms:

1. They should be gauge invariant under the gauge transformations of the anomalous
fields, in order for the path integral over the anomalous fields to make sense. In
our case, those are the B-field gauge transformations (3.14). (6.6) shows that the
Green–Schwarz term we constructed is indeed invariant.

2. Their gauge variation under the gauge transformations of the non-anomalous fields
should be independent of the anomalous fields, so that the variation can be taken out
of the path integral and cancel the variation of the path integral itself. In our case,
those are the transformations (3.16) (i.e. the transformations induced by diffeomor-
phisms and vectormultiplet gauge transformations). (6.7) shows that the variation
of our Green–Schwarz term depends only on non-anomalous fields, as required.

It is non-trivial that these two consistency conditions are automatically satisfied by our
construction.

7.5. Constraints on the anomaly coefficients. An interesting aspect of the construction
of the Green–Schwarz terms is that its consistency provides constraints on the anomaly
coefficients a, bi and bI J in (2.10).

We already explained that the identification (5.3) of Y̌ with the background field of
the Wu Chern–Simons theory requires a to be a characteristic element of the lattice �.
In this case, we can assume ã = a; see the discussion in Sect. 5. Writing x and y for the
characteristics of X̌ and Y̌ respectively we have

x +
1

2
ν� = y = 1

2
λ ⊗ a + v, (7.11)

where

v = −
∑

i

bi c
i
2 +

1

2

∑
I J

bI J cI
1 ∪ cJ

1 . (7.12)

As both ν� and λ are integral lifts of the Wu class, we deduce that v is an integral
cocycle. The same constraint was inferred in [3] from the fact that background charge
represented by y has to be canceled by string instantons. By consideringU = CP3×S1,
W = CP3 × D2 and suitable bundles over CP3, we can recover the constraints of [3]
on the anomaly coefficients bi and bI J . As explained there, bi and bI J can be seen as the
coefficients of an element b in H4(BG1;�R), where G1 is the connected component
of the identity of G. The constraints of [3] read

1

2
b ∈ H4

free(BG1;Z) ⊗ � ⊂ H4(BG1;�R). (7.13)

They imply

bi ,
1

2
bI I , bI J ∈ �, (7.14)
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but are generally stronger. See Section 3.3 of [3] for the detailed argument. These con-
straints include the ones derived in [2] from considerations of global gauge anomaly
cancellation.

An interesting point is that the appearance in the construction of Y̌ of torsion char-
acteristic classes (see Appendix B.2) suggests that b should be pictured as an element
of H4(BG;Z) ⊗ � � H4(BG;�) rather than H4

free(BG1;Z) ⊗ �. (Indeed, [3] fo-
cused on the case where G is connected, in which case H4(BG;�) � H4(BG1;�) �
H4
free(BG1;Z) ⊗ �.) The generalized condition on the anomaly coefficients therefore

reads

1

2
b ∈ H4(BG;�), (7.15)

showing at the same time that the fundamental object encoding the gauge anomaly
coefficients is 1

2b and not b. (The factor 1
2 now matters as 2-torsion may be present in

H4(BG;�).)
As we explained above, the consistency of the Green–Schwarz terms’ construction

requires that a is a characteristic element of �. This property is automatically satisfied
in F-theory constructions of 6d supergravity theories (see Section 4.1 of [3] for the
argument), but up to now it was unclear how it should arise from the point of view of the
6d supergravity. In Section 5 of [3], we gave an example of a 6d supergravity theory that
looks completely consistent, except for the fact that a is not characteristic. It consists of
a single tensor multiplet, a string lattice � = Z

2 with pairing
(
0 1
1 0

)
(7.16)

with a = (4, 1), no gauge symmetry and 244 neutral hypermultiplets. This theory cannot
be realized in F-theory since a = (4, 1) is not a characteristic element of this lattice.
Therefore, the Green–Schwarz term cannot be constructed using the methods of the
present paper. This suggests that the supergravity above is inconsistent.

7.6. Summary. We summarize the discussion above with two propositions. As already
mentioned, a tacit assumption is that string defects are included wherever they are nec-
essary to satisfy the tadpole condition, and that their worldsheet anomalies cancel the
boundary contributions to the anomaly of the supergravity theory through the anomaly
inflow mechanism.

Proposition 7.1. Let S be a 6-dimensional supergravity theory with gauge group G,
string charge lattice � and anomaly coefficients (a, b, bT = 0), where bT is the torsion
anomaly coefficient in (B.9). Let A8 be the degree 8 anomaly polynomial of the theory
and Y the degree 4 form (2.10). Assume that:

1. A8 = 1
2Y ∧ Y ;

2. � is unimodular;
3. b ∈ 2H4(BG1;�);
4. a ∈ � is a characteristic element;
5. �

Spin
7 (BG) = 0.

Then all anomalies of S, local and global, cancel.
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Proposition 7.2. Consider the same assumptions as in Proposition 7.1 except for 5. and
allowing bT �= 0. Write A for the anomaly field theory of S. Then:

1. There is a 7-dimensional topological field theory

T := A ⊗ WCSs (7.17)

which reduces on 7-manifolds to a homomorphism T7 : �
Spin
7 (BG) → U (1).

2. The anomalies of S cancel if and only if T7 is the trivial homomorphism.
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A. Spin Structures and Wu Structures

Recall that a spin structure can be defined as follows. The second Stiefel–Whitney
class w2 can be seen as a homotopy class of maps from the classifying space of the
n-dimensional special orthogonal group BSO(n) into the Eilenberg–MacLane space
K (2,Z2). BSpin(n) can be constructed as the homotopy fiber of this map. (See for
instance [61].) A spin structure on a manifold M is then a lift of the classifying map of
the tangent bundle from BSO(n) up to BSpin(n).

Wu structures are defined completely analogously, see for instance Appendix C of
[15]. We specialize here to the degree 4 case of interest to us. The degree 4 Wu class
on a n-dimensional oriented manifold is ν = w4 + w2

2, and can accordingly be seen
as a homotopy class of maps from BSO(n) into K (4,Z2). BWSO(n) is defined as the
homotopy fiber of thismap. BWSO(n) is the classifying space of n-dimensional oriented
bundles endowed with a degree 4 Wu structure. A Wu structure on M is a lift of the
classifying map of the tangent bundle from BSO(n) up to BWSO(n).

Manifolds of dimension n strictly lower than 8 always admit Wu structures of degree
4. Indeed, ν is defined by ν ∪ x = Sq4(x), where x has degree n −4. As Sqp vanishes on
classes of degree strictly smaller than p, ν vanishes on manifolds of dimension strictly
smaller than 8, so those manifolds admit Wu structures. When they exist, Wu structures
of degree 4 on M are classified by H3(M;Z2).

It will be useful to us to pick a particular cocycle representative νU of ν on BSO(n),
which canbepulled back to BSpin(n) and BWSO(n).On BWSO(n), ν = 0bydefinition
so νU is trivializable.We pick such a trivialization ηU. The pull back of ηU to themanifold
M encodes the Wu structure on M . In addition, we lift the Z2-valued cochain ηU to a
Z-valued cochain ηZ,U, and then define νZ,U := dηZ,U. We make these choices for
each n, in a way compatible with the maps BSO(n) → BSO(n + 1), BSpin(n) →
BSpin(n + 1), BWSO((n) → BWSO((n + 1).

We can define in a completely similar way the classifying space BWSpin(n) of spin
manifolds endowed with a Wu structure, which is the homotopy fiber of the map from
BSpin(n) to K (4,Z2) defined by theWu class. There is obviously amap BWSpin(n) →
BWSO(n), corresponding to forgetting the spin structure, and the universal cochains ηU,
νU, ηZ,U and νZ,U defined above pull back to BWSpin(n). To simplify the notation, we
will denote these pullbacks by the same letters.
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B. Differential Cocycles from Characteristic Classes

In this appendix, we explain how to associate a differential cocycle to a characteristic
class of a principal bundle with connection, modulo certain universal choices on clas-
sifying spaces. This discussion is adapted from [62] and generalized to accommodate
non-integral characteristic classes. Unlike in the main text, we are careful about dis-
tinguishing cocycles from the associated cohomology classes in the present appendix:
cocycles carry a hat, while cohomology classes do not.

B.1. Generalities.

Differential cocycle on the classifying space. Let us fix a compact Lie group Ḡ with Lie
algebra ḡ. As in the main text, � is a lattice and �R := � ⊗ R is the associated vector
space. Let yU ∈ H2p(BḠ;�R) be a �R-valued characteristic class of Ḡ and let ρ be
the associated �R-valued invariant polynomial on the Lie algebra ḡ. (The subscript U is
used henceforth for “universal” quantities defined on the classifying space.) We also fix
a connection θU on a differentiable model of EḠ. We write YU := ρ(θU) for the Chern–
Weil characteristic form obtained by applying ρ to θU. YU refines the cohomology class
yU to a differential form representative.

By choosing a real cocycle ŷU representing the class yU, as well as a real cocycle ÂU

satisfying d ÂU = YU − ŷU, we obtain a differential cocycle

Y̌U = (ŷU, ÂU, YU) (B.1)

refining further YU. Importantly, the differential cohomology class of Y̌U does depend
on the choice of cocycle ŷU. Y̌U is a differential cocycle shifted by ŷU mod 1, and is an
unshifted differential cocycle only if ŷU is an integral cocycle.

Gauge data on a manifold. Given a manifold M , the gauge data on M consists of a
principal Ḡ-bundle P̄ , a connection θ on P̄ and a classifying map γ : P̄ → EḠ.
The gauge equivalences are the isomorphisms of principal Ḡ-bundles preserving the
connections (but not necessarily preserving the classifyingmaps). The gauge equivalence
classes coincide with the gauge equivalence classes of the more familiar model where
the gauge data is given only by the pair (P̄, θ). We write ρ(θ) for the Chern–Weil
characteristic form constructed from θ and ρ.

Relative Chern–Simons term. Let P̄ → M be a principal Ḡ-bundle over a manifold M .
Recall that the relative Chern–Simons form τρ(θ1, θ2) between two connections θ1 and
θ2 on P̄ is defined as follows. A linear path from θ1 to θ2 defines a connection � on the
principal bundle P̄ × [0, 1] → M × [0, 1], and

τρ(θ2, θ1) :=
∫

[0,1]
ρ(�). (B.2)

As ρ(�) is closed, the Stokes theorem implies

τρ(θ3, θ2) + τρ(θ2, θ1) = τρ(θ3, θ1). (B.3)
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Differential cocycle associated to the gauge data. We can now associate to any triple
(P̄, θ, γ ) a differential cocycle on M

Y̌ = Y̌ (θ, γ ) = (γ̄ ∗ ŷU, τρ(θ, γ ∗(θU)) + γ̄ ∗ ÂU, ρ(θ)). (B.4)

Here, γ̄ is the map from M into BḠ induced from γ .

B.2. The case of 6-dimensional supergravity. In the case of interest to us, Ḡ = Spin(n)×
G, where G is the gauge vectormultiplet group of the 6d supergravity theory, and
n = 6, 7, 8 depending on the manifold we are interested in. P̄ is the product of the
spin lift of the frame bundle of spacetime with the gauge bundle P . θ is the connection
on P̄ given by the product of the gauge connection with the Levi–Civita connection
determined by the Riemannian metric on spacetime.

For n = 8, γ is a classifying map into BḠ = BSpin(d) × BG. However, recall that
in order to define the shifted Wu Chern–Simons theory, we need a choice of Wu class
on manifolds of dimension 6 and 7, although eventually nothing depends this choice.
Therefore, for n = 6, 7, γ is a classifying map to BWḠ := BWSpin(d) × BG. This lift
is also necessary in order to be able to pullback to M the cochain ηU trivializing the Wu
cocycle νU, as the latter is non-trivial on BSpin(d). Of course, any such classifying map
γ also determines a classifying map to BḠ, which we write γ as well for simplicity.

Our aim is to associate to the data (P, θ, γ ) a differential cocycle Y̌ whose field
strength Y coincides with the expression (2.10) factoring the local anomaly polynomial.
The construction of the previous section is exactly what we need.

Naive construction. Recall that Spin(d) has an integral characteristic class λBSpin
whose associated characteristic form coincides with half the first Pontryagin form. In
addition, G has integral characteristic classes ci

2,BG , cI
1,BG corresponding to the sec-

ond and first Chern classes of the elementary factors in the decomposition (2.2). These
classes pullback to BWḠ, and we denote the pullbacks with the same symbols. A natural
choice for the characteristic yU would be

1

2
aλBSpin −

∑
i

bi c
i
2,BG +

1

2

∑
I J

bI J cI
1,BGcJ

1,BG , (B.5)

where a, bi , bI J ∈ �R are the anomaly coefficients of the supergravity theory and we
see the resulting characteristic class as �R-valued. The associated Chern–Weil form on
M is given by (2.10):

Y = ρ(θ) = 1

4
ap1 −

∑
i

bi c
i
2 +

1

2

∑
I J

bI J cI
1cJ

1 , (B.6)

as required.
We now need to construct the differential refinement (B.1). We assume that a Z2-

valued cocycle representative ν̂ of the degree 4 Wu class on B O(d) has been chosen,
see Sect. A. λBSpin lifts w4 = ν, so we pick an integral cocycle representative λ̂BSpin

lifting ν̂.We also pick integral cocycle representatives ĉi
2,BG , ĉ

I
1,BG . All of these cocycles

obviously pull back to BWḠ. We then set

ŷU := 1

2
aλ̂BSpin −

∑
i

bi ĉ
i
2,BG +

1

2

∑
I J

bI J ĉI
1,BGĉJ

1,BG . (B.7)
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We pick a universal connection θU on EWḠ, the total space of the universal bundle over
BWḠ, and we set YU := ρ(θU). We then fix AU in (B.1) to be an arbitrary solution to the
flatness constraint d AU = YU − yU. By the arguments above, we now obtain for each
triplet (P̄, θ, γ ) a differential cocycle Y̌ on M whose curvature is Y . By construction,
Y̌ is a differential cocycle shifted by

1

2
γ̄ ∗(λ̂BSpin) ⊗ a = 1

2
γ̄ ∗(ν̂) ⊗ a mod �. (B.8)

Problem with the naive construction. We show in Sect. 7.2 that for some finite gauge
groups G, the Green–Schwarz terms cannot cancel all possible global anomalies, and
therefore global anomaly cancellation imposes constraints on the matter content. If Y̌ is
constructed as above, these constraints are violated by theories obtained from F-theory
compactifications, suggesting that either these F-theory compactifications are somehow
inconsistent, or that the naive construction of Y̌ above is incorrect.

A generalized construction of Y̌ . We should remember at this point that the lift from
Y to Y̌ involves picking a cocycle ŷU. Adding to ŷU in (B.7) a cocycle representing a
degree 4 torsion characteristic class on BWḠ preserves the fact that Y̌ lifts Y . So we
should generalize (B.7) to

ŷU := 1

2
aλ̂BSpin −

∑
i

bi ĉ
i
2,BG +

1

2

∑
I J

bI J ĉI
1,BGĉJ

1,BG + t̂4,BG, (B.9)

t̂4,BG =
∑

k

bT
k t̂ k

4,BG, (B.10)

where t̂4,BG represents a class in H4
tors(BG;�). On the second line, t̂ k

4,BG are cocycles

representing degree 4 Z-valued torsion classes on BG, and bT
k ∈ � are new anomaly

coefficients. Determining the relevant torsion class t̂4,BG in any given theory would
require to compare explicitly the shifted WCS theory to the anomaly field theory and
adjusting it to cancel anomalies, something we are not currently able to do.

It is also hard to characterize in full generality the available choices for t̂4,BG without
specifying G. However, it turns out that for any group G, there is a natural torsion
characteristic class of degree four. We construct it below and denote it by u2

2,BG . When
G is connected this class vanishes. Adding (the pullback of) a representing cocycle
û2
2,BG to ŷU restores the compatibility with F-theory in the examples we inspected, as

we discuss in Sect. 7.2.
We now define the characteristic class u2

2,BG and the new form of ŷU. Suppose
first that G � Zn . As discussed in Appendix E.7, BZn can be pictured as an infinite
dimensional lens space. Its integral cohomology is Zn in even degree (except in degree
0) and 0 in odd degree. As a ring, it is generated by a class u2,BZn in degree 2.

For any compact Lie group G, there is a map G → (G/G1)
ab onto the Abelianized

group of components of G. (Recall that G1 is the connected component of the identity
element of G.) As G is assumed to be compact, (G/G1)

ab is a finite group, and therefore
a direct sum of cyclic groups. There is therefore a degree 2 torsion class u2,BG on BG
obtained by pulling back from B(G/G1)

ab the sum of the classes u2,BZn for each cyclic
component Zn of (G/G1)

ab. This is a universal choice available for all compact Lie
groups G.
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We pick a universal cocycle representative û2,BG and take t̂4,BG = bT û2
2,BG , bT ∈ �

in (B.9):

ŷU := 1

2
aλ̂BSpin −

∑
i

bi ĉ
i
2,BG +

1

2

∑
I J

bI J ĉI
1,BGĉJ

1,BG + bT û2
2,BG . (B.11)

An interesting point to note is that the gauge groups for whichwe have been able to prove
the cancellation of all anomalies through the vanishing of the corresponding bordism
group (see Appendix E) are all connected, and therefore have a vanishing u2,BG .

We then proceed as before. We choose ÂU such that Y̌U := (ŷU, ÂU, YU) is a differ-
ential cocycle. Then given any manifold M endowed with the gauge data (P, θ, γ ), we
obtain a differential cocycle Y̌ on M given by (B.4) and whose field strength coincides
with Y .

The gauge transformations of Y̌ . The construction above allows us to characterize the
transformation of Y̌ , Ȟ and η̌, as defined in Sect. 3.2, under a change of the gauge data
(P̄, θ, γ ). In order to study the most general transformation of the gauge data, it is best
to decompose it into two transformations:

1. a transformation given by an automorphism f of P̄ , under which

θ → f ∗(θ), (B.12)

together with a covariant change of the classifying map: γ → γ ◦ f ;
2. a change of the classifying map γ . (Of course, γ has to stay a classifying map, so

in particular its homotopy class cannot change.)

The natural transformation to make is a combination of the two types of transformations
above, pulling back the connection by an automorphism while keeping the classifying
map constant. The transformation of Y̌ , Ȟ and η̌ under such transformations are easily
deduced from their transformations under the two types of elementary transformations
above.

Under the first transformation, we have

Y̌ �→ f̄ ∗Y̌ , Ȟ �→ f̄ ∗ Ȟ , η̌ �→ f̄ ∗(η̌), (B.13)

which is a transformation of the first type listed in Sect. 3.2.
The effect of a change of classifying map is slightly more tricky to analyse. It will

be useful to define η�,U := ηU ⊗ a, η̌U = (η�,U, 0, 0). Then X̌U := Y̌U − 1
2dη̌U is an

unshifted differential cocycle on BWḠ, and the pullback of X̌U through the classifying
map is the differential cocycle (3.9) on M .Wewrite in components X̌U = (x̂U, ĈU, XU),
with

x̂U = ŷU − 1

2
dη�,U, ĈU = ÂU +

1

2
η�,U, XU = YU. (B.14)

Under a change of classifying map γ → γ ′, we have

X̌ �→ X̌ + ((γ̄ ′∗ − γ̄ ∗)x̂U, τρ(γ ∗(θU), γ ′∗(θU)) + (γ̄ ′∗ − γ̄ ∗)ĈU, 0). (B.15)

As γ ′ and γ are homotopic by hypothesis,�x̂ := (γ̄ ′∗ − γ̄ ∗)x̂U is exact. We show below
that integrating�Ĉ := τρ(γ ∗(θU), γ ′∗(θU))+(γ̄ ′∗−γ̄ ∗)ĈU on any closed cycle� ⊂ M
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yields an element of �, so we have �Ĉ = −v − dV , where v and V are respectively
�-valued and �R-valued cochains. We also show that d�Ĉ = −�x̂ = dv. This shows
that (B.15) is a gauge transformation

X̌ �→ X̌ + dV̌ , V̌ = (v, V, 0). (B.16)

We also have η̌ �→ η̌ + ρ̌, with ρ̌ := (γ̄ ′∗ − γ̄ ∗)η̌. Therefore

Y̌ �→ Y̌ + dV̌ +
1

2
dρ̌, (B.17)

and we see that the transformation of Y̌ is a combination of a gauge transformation and
a change of shift, according to the terminology of Sect. 3.2. We now easily deduce the
transformation of Ȟ under a change of classifying map:

Ȟ �→ Ȟ + V̌ +
1

2
ρ̌. (B.18)

Equations (B.13) and (B.18) determine the transformation of the B-field Ȟ under
diffeomorphisms and vectormultiplet gauge transformations.

Technical details. We now prove the two claims we used in deriving (B.16). By the
definition (B.2) of τρ , we have

dτρ(γ ∗(θU), γ ′∗(θU)) = γ ∗(XU) − γ ′∗(XU). (B.19)

Combining it with the second term in d�ĈU and using the fact that X̌U is a differential
cocycle, we get

d�ĈU = (γ ′∗ − γ ∗)(dĈU − XU) = −(γ ′∗ − γ ∗)x̂U = −�x̂U. (B.20)

To prove the second claim, we pick a homotopy � from γ to γ ′, and see it as a map
from M × I into the classifying space. Let � ⊂ M be a degree 3 cycle. Using again the
definition of τρ and integration by parts, we can write∫

�

�Ĉ =
∫

�×I

(
−�∗ XU + d�∗ĈU

)
=

∫
�×I

�∗ x̂U. (B.21)

The right-hand side is �-valued because x̂ is a �-valued cocycle.

C. E-Theory Calculus

Higher cup products. Let M be an oriented manifold, possibly with boundary. One can
associate to any homomorphism �1 × �2 → �3 of Abelian groups higher cousins of
the cup product for each non-negative integer i :

∪i : C p(M;�1) × Cq(M;�2) → C p+q−i (M;�3). (C.1)

The usual cup product is ∪0, and formally ∪i = 0 for i < 0. The higher cup products
are defined in [56] and satisfy ([56], Theorem 5.1)

d(u ∪i v) − du ∪i v − (−1)pu ∪i dv = (−1)p+q−i u ∪i−1 v + (−1)pq+p+qv ∪i−1 u,

(C.2)

where u and v are respectively cochains of degree p and q. (C.2) equates the failure of
∪i−1 to be graded symmetric to the failure of the Leibniz rule for the product ∪i . In
the present work, we will mostly be interested in the higher products of integer-valued
cochains modulo 2, in which case the signs can be dropped.
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The cochain model. A degree p E-cochain on M is a pair

s̄ = (s, y) ∈ C̄ p(M;�) := C p(M;R/Z) × C p−3(M;�/2�). (C.3)

Note that this assumes that � is unimodular. If not, �/2� should be replaced by the
group �(2), defined as the quotient of �/2� by the radical of the induced Z/2Z-valued
pairing [15]. The pairing on �/2� induces a cup product

∪ : C•(M;�/2�) ⊗ C•(M;�/2�) → C•(M;Z2). (C.4)

We will often compose this cup product with the embedding 1
2 : Z2 → R/Z. More

concretely, given y1, y2 ∈ C•(M;�/2�), we can lift them to�-valued cochain, perform
the cup product of�-valued cochain to obtain aZ-valued cochain, see it as a real-valued
cochain, divide it by 2 and reduce it modulo Z to obtain

1

2
y1 ∪ y2 ∈ C•(M;R/Z). (C.5)

The same construction can be applied to the higher cup products.
We now define a non-commutative “addition” on E-cochains by

(s1, y1) � (s2, y2) =
(

s1 + s2 +
1

2
dy1 ∪p−5 y2 +

1

2
y1 ∪p−6 y2, y1 + y2

)
. (C.6)

The opposite of (s, y) is

�(s, y) =
(

−s +
1

2
dy ∪p−5 y +

1

2
y ∪p−6 y, y

)
. (C.7)

We also define a differential

d(s, y) =
(

ds + y ∪p−6 dy +
1

2
y ∪p−7 y +

1

2
y ∪ ν̂�/2�, dy

)
. (C.8)

ν̂�/2� is the cocyle ν̂ ⊗ γ , where ν̂ is the Z2-valued Wu cocycle on M pulled back from
the classifying space, and γ is the unique characteristic element of the pairing on�/2�,
i.e. such that (x, x) = (x, γ ) [15]. It is useful to note that in the main text, we lifted
ν̂ to an integral cocycle and tensored it with a characteristic element of � to obtain a
�-valued cocycle ν̂�. The reduction to�/2� of any such ν̂� necessarily coincides with
ν̂�/2�.

In Appendix D of [15], it was shown that:

1. � is associative and forms a group law;
2. d is distributive with respect to �;
3. d2 = 0;
4. Exact cochains form a normal subgroup of the cochain group;
5. The quotient of the degree p closed cochains by the exact cochains is an Abelian

group E[�/2�, 3]p(M).
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6. E[�/2�, 3]• is a generalized cohomology theory, fitting into the following long
exact sequence:

. . .H p(M;R/Z)

i→ E[�/2�, 3]p(M)
j→ H p−3(M;�/2�) (C.9)

Sq4→ H p+1(M;R/Z)
i→ E[�/2�, 3]p+1(M)

j→ H p−2(M;�/2�) . . .

where i and j are the maps induced from the inclusion into the first component and
the projection onto the second component at the level of cocycles. E[�/2�, 3]•
is a natural generalization of a certain generalized cohomology, named E-theory
[12,63]. For this reason, we will also call “E-theory” the generalized cohomology
theory E[�/2�, 3]• in the present work. See [15] for a discussion of the relations
between these generalized cohomology theories.

Integration. If U is a p-dimensional manifold endowed with a degree 4 Wu structure
ω, with ∂U = M , there are integration maps over U and M [15], given respectively by
group homomorphisms

IEU,ω : E[�/2�, 3]p(U, ∂U ) → R/Z (C.10)

IEM,ωM
: E[�/2�, 3]p−1(M) → R/Z, (C.11)

where ωM is the Wu structure induced on M . These integration maps are canonical up
to universal choices on classifying spaces. They lift to integration maps on the space of
relative cocycles on U and of cocycles on M .

For our purpose however, we need to extend them to functions on the cochain groups
∫ E

U,ω

: C̄ p(U ;�) → R/Z (C.12)

∫ E

M,ω

: C̄ p−1(M;�) → R/Z. (C.13)

This extension is analogous to the choice of a particular cycle representative of the
fundamental homology class in ordinary cohomology, and necessarily involves some
arbitrariness.

This extension is possible and described in Appendix D of [15]. We record here the
following properties of the integration map.

1. While
∫ E

M,ω
is a group homomorphism,

∫ E
U,ω

is not. This detail is not important
to us, as one can show that the homomorphism property holds on E-cocycles, and
in the present paper we only integrate cochains on M and cocycles on U (with
p = 7). Therefore, for all practical purposes, we will consider

∫ E
U,ω

to be a group
homomorphism as well.

2. There is a relation akin to Stokes’ theorem between
∫ E

U,ω
and

∫ E
M,ω

. Given an E-
cochain x̄ on M , extending to an E-cochain x̄ ′ on U , we have

∫ E

M,ω

x̄ =
∫ E

U,ω

dx̄ ′, (C.14)

where d is the differential (C.8).
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3.
∫ E

U,ω
is a group homomorphism on E-cochains of the form (s, 0). It determines

therefore a cycle representative of the fundamental R/Z-valued homology class of
U . This cycle can be use to define an integration

∫
U on R/Z-valued cochains on U

and we have
∫ E

U,ω

(s, 0) =
∫

U
s. (C.15)

4. An interesting fact is that we always have

2
∫ E

U,ω

(s, y) =
∫ E

U,ω

(s, y) � (s, y) =
∫

U
2s +

∫
U

1

2
y ∪ ν̂�/2� mod 1, (C.16)

so up to an ordinary integral
∫

U
1
2 y ∪ ν̂�/2�, all the subtleties in the E-theory

integration translate into signs (after exponentiation).
5. Define f (y) := ∫ E

U,ω
(0, y) for y ∈ C p−3(M;�/2�). We have

∫ E

U,ω

(s, y) =
∫

U
s + f (y). (C.17)

If y1, y2 ∈ C p−3(M;�/2�) is closed, use the homomorphism property of
∫ E

U,ω
to

check that

f (y1 + y2) − f (y1) − f (y2) =
∫

U
y1 ∪p−6 y2 (C.18)

so f is a quadratic refinement of the pairing defined by the right-hand side. This
property still holds when y1 and y2 are arbitrary cochains, but the pairing of the
right-hand side then has additional terms.

Properties 3–5 also hold for
∫ E

M,ωM
.

D. Proof of the Gluing Axioms of the Shifted Wu Chern–Simons Theory

In this appendix, we prove that the Wu Chern–Simons theory WCS is a field theory
functor. Its domain is the bordism category CWCS defined in Sect. 4.4.

WCS is multiplicative on disjoint unions, and transforms by complex conjugation
under changes of orientation. To show that WCS is a field theory functor, we only need
to show that the gluing axioms hold (see for instance Proposition 5.1 of [15] for a proof
of this claim). The latter are formulated as follows. Let U be a 7-manifold, possibly
with boundary, M a codimension 1 closed submanifold disjoint from the boundary, and
UM the manifold obtained by cutting U along M . There is a surjective gluing map
g : UM → U identifying the two boundary components of UM created by the cut.
Let X̌U be a �-valued differential cocycle on U , X̌UM := g∗(X̌U ) and X̌ M := X̌U |M .
X̌ M , by the assumption that (M, X̌ M ) is an object of CWCS, is a trivializable differential
cocycle. By the same assumption, the Wu structure induced on M is good. The gluing
axioms state that there is a canonical isomorphism

TrWCS(M;X̌ M )
WCS(UM ; X̌UM ) � WCS(U ; X̌U ). (D.1)
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The trace should be understood as follows. Write X̌∂U := X̌U |∂U and X̌∂UM :=
X̌UM |∂UM . WCS(U ; X̌U ) is a vector in WCS(∂U ; X̌∂U ), while WCS(UM ; X̌UM ) is a
vector in

WCS(∂UM ; X̌∂UM ) � WCS(∂U ; X̌∂U ) ⊗ WCS(M; X̌ M ) ⊗ (WCS(M; X̌ M ))†,

(D.2)

where we use the decomposition ∂UM � ∂U � M � −M and ()† denotes complex
conjugation. TrWCS(M;X̌ M )

is simply the canonical pairing between WCS(M; X̌ M ) and

(WCS(M; X̌ M ))†.
Let us prove (D.1). We first remark that the partition functions of WCS always have

norm 1. As the trace is taken in a 1-dimensional state space, the norm of each side are
both equal to 1. It remains to study the phase.

Using the property of the trace with respect to tensor products, we can write the left
hand side of (D.1)

TrWCSPQ(M;X̌ M )
WCSPQ(UM ; X̌UM ) ⊗∑

z∈H4
tors(UM ,∂UM ;�)

TrWCSPQ(M;0̌)WCSPQ(UM ; ŽUM ), (D.3)

where ŽUM is any differential cocycle representative of z vanishing on M , and 0̌ is the
zero differential cocycle on M . We can use the fact that the prequantum theory satisfies
the gluing relation to obtain

WCSPQ(U ; X̌U ) ⊗
∑

z∈H4
tors(UM ,∂UM ;�)

WCSPQ(U ; ŽU ), (D.4)

where ŽU is the differential cocycle obtained by pushing forward ŽUM through the
gluing map. (This is possible because ŽUM vanishes on M .) Now we need to replace the
sum over H4

tors(UM , ∂UM ;�) by a sum over H4
tors(U, ∂U ;�) to obtain the right hand

side of (D.1).
Let us write g∗ : H4

tors(UM , ∂UM ;�) → H4
tors(U, ∂U ;�) for the pushforward

through the gluing map, at the level of torsion cohomology. The value of the action on
ŽU and ŽUM coincide. We can therefore replace the sum in (D.4) by a sum over im(g∗),
up to a prefactor given by the order of ker(g∗). We do not care about this prefactor
because we already showed that (D.1) holds in norm.

To see that the sum over im(g∗) can be replaced by a sum over H4
tors(U, ∂U ;�),

we need to understand a bit better the structure of im(g∗). We remark that we have
H4
tors(M × I, ∂(M × I );�) � H3

tors(M;�). We have therefore a homomorphism

H3
tors(M;�)

h→ H4
tors(U, ∂U ;�), (D.5)

obtained by identifying a tubular neighborhood of M with a cylinder M × I . The classes
in the image of h are represented by cocycles supported in the tubular neighborhood.
This makes it clear that im(h) is an isotropic subgroup of H4

tors(U, ∂U ;�) with respect
to the linking pairing. Recall that q is the quadratic refinement of the linking pairing
such that q(x) = S(X̌) for any flat differential coycle X̌ lifting the torsion class x . The
isotropy of im(h) implies that q restricts to a character of im(h). On the other hand, any
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class in im(g∗) can be represented by a cocycle vanishing in a tubular neighborhood of
M ⊂ U . We deduce that im(h) and im(g∗) are orthogonal with respect to the linking
pairing L̃ . Moreover, any class in H4

tors(U, ∂U ;�) that does not belong to im(g∗) is
represented in the tubular neighborhood of M by a non-trivial cocycle pulled back from
M , and cannot be orthogonal to im(h).

By the very definition of the torsion anomaly and the fact that it vanishes, we also
have that q(y) = 0 for any y ∈ im(h). Now if x ∈ H4

tors(U, ∂U ;�), then

q(x + y) − q(x) = L̃(x, y), (D.6)

and q(x + y) − q(x) is a character that is non-trivial whenever x /∈ im(g∗). This shows
that the sum in (D.4) can be replaced by a sum over H4

tors(U, ∂U ;�), and therefore
proves the gluing axioms for WCS.

E. Computations of Certain Bordism Groups

Weidentified the anomalyfield theory of the bare 6d supergravity theory as the shiftedWu
Chern–Simons theory only up to a bordism invariant. The anomaly field theory coincides
with the shiftedWu Chern–Simons theory if the relevant bordism group vanishes. In this
Appendix, we compute the relevant cobordism group for certain compact groups G that
might show up as vectormultiplet gauge groups in 6d supergravity theories. Note that
very similar computations appeared in the recent paper [64], which contains also more
details about the Atiyah–Hirzebruch spectral sequence.

The bordism group of interest is �
spin
7 (BG), where G is the gauge group of the 6d

supergravity theory. G is a priori any compact Lie group. We compute this bordism
group using the Atiyah–Hirzebruch spectral sequence (AHSS):

E2
p,q = Hp(BG,�

spin
q (pt.)) ⇒ �

Spin
p+q (BG). (E.1)

Recall also that the spin bordism group of the point reads

�
spin• (pt.) =

(
0 1 2 3 4 5 6 7 8
Z Z2 Z2 0 Z 0 0 0 Z

2 . . .

)
. (E.2)

Surprisingly, the integral homology of BG is far from being known for all compact Lie
groups. The computations below cover all the cases for which it is known, as far as we
are aware of.

E.1. U (1). The integral homology of BU (1) = CP∞ is Z in even degrees and zero in
odd degrees. The second page of the AHSS is

8 Z
2 0 Z

2 0 Z
2 0 Z

2 0 Z
2

7 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0
4 Z 0 Z 0 Z 0 Z 0 Z

3 0 0 0 0 0 0 0 0 0
2 Z2 0 Z2 0 Z2 0 Z2 0 Z2

1 Z2 0 Z2 0 Z2 0 Z2 0 Z2

0 Z 0 Z 0 Z 0 Z 0 Z

q/p 0 1 2 3 4 5 6 7 8

(E.3)
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The only non-vanishing term relevant to the computation of�Spin
7 (BU (1)) is E2

6,1 =
Z2, generated by the dual of ρ2(c31) = w3

2. ρ2 is here the reduction mod 2. (Note that the
characteristic classes are characteristic classes on BU (1), or equivalently characteristic
classes of the U (1) bundle. They have nothing to do with the characteristic classes of
the spacetime, so in particular, w2 �= 0.)

There is a sequence

E2
8,0 E2

6,1 E2
4,2

d2
8,0 d2

6,1
(E.4)

where E2
8,0 = Z, generated by the dual of c41, and E2

4,2 = Z2, generated by the dual of

ρ2(c21). The second differential d2
p,q of the AHSS coincides at q = 0 and q = 1 with the

dual of the second Steenrod square composed with reduction mod 2 and with the dual
of the second Steenrod square, respectively [65]:7

d2
p,0 = (Sq2)∗ ◦ ρ2, d2

p,1 = (Sq2)∗. (E.5)

Equivalently, (d2
p,0)

∗ = ε◦Sq2,where ε : H p(BU (1);Z2) → Hom(Hp(BU (1),Z),Z2)

is given by the evaluation of representing cocycles on representing cycles.
We can now compute, using ρ2(c1) = w2 and the known action of the Steenrod

squares on the Stiefel–Whitney classes:

Sq2(w2
2) = 2w3

2 + w2
3 = 0 (E.6)

which means that d2
6,1 = 0. We also have

Sq2(w3
2) = w4

2 = ρ2(c
4
1). (E.7)

c41 generates a non-trivial Z2 character of H8(BU (1),Z), so (d2
8,0)

∗ �= 0. This means

that d2
8,0 �= 0, hence is surjective, meaning that E2

6,1 is killed on the second page.
We deduce that

�
spin
7 (BU (1)) = 0. (E.8)

E.2. U (2) and SU (2). The integral cohomology of BU (2) is the freely generated ring
on the generators c1 in degree 2 and c2 in degree 4 (the first two Chern classes) [66]. We
therefore have the following homology

H•(BU (2);Z)

=
⎛
⎜⎝

0 1 2 3 4 5 6 7 8
Z 0 Z 0 Z

2 0 Z
2 0 Z

3

1 − c∗
1 − (c21)

∗, c∗
2 0 (c31)

∗, (c1c2)∗ − (c41)
∗, (c21c2)∗, (c22)∗

. . .

⎞
⎟⎠

(E.9)

where the first line is the degree, the second line the homology groups and the third line
the (additive) generators, expressed as the duals of products of Chern classes.

7 We use the perfect pairing of homology and cohomology with Z2 coefficients to define the dual.
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The second page of the AHSS looks therefore very similar to (E.3), except that the
groups are squared for p = 4, 6, and cubed for p = 8. We see that the only possible
contribution to the 7-dimensional bordism group is again from E2

6,1 = Z
2
2, generated by

the duals of w3
2 and of ρ2(c2c1) = w4w2. We already know that w3

2 gets killed, and we
compute

Sq2(w4) = w2w4 + w6 = w2w4, (E.10)

becausew6 = ρ2(c3) vanishes on BU (2). The dual ofw4w2 is therefore not in the kernel
of d6,1, and gets killed on the second page. Therefore the bordism group vanishes:

�
spin
7 (BU (2)) = 0. (E.11)

Note that in the SU (2) case, c1 = 0, so E2
6,1 = 0 showing that �spin

7 (BSU (2)) = 0.

E.3. U (n) and SU (n), n ≥ 3. The integral cohomology ring of BU (n) is obtained from
the one of BU (2) by adding a generator ck in degree 2k, k ≤ n, the higher Chern classes
[66]. Using ρ2(ck) = w2k , we have

E2
6,1 = spanZ2

(
(w3

2)
∗, (w2w4)

∗, (w6)
∗) . (E.12)

We now have

Sq2(w3
2) = w4

2 = ρ2(c
4
1) (E.13)

Sq2(w2w4) = w2w6 = ρ2(c1c3) (E.14)

Sq2(w6) = w2w6 = ρ2(c1c3) (E.15)

Sq2(w4) = w2w4 + w6. (E.16)

Again we see that d2
8,0 has image generated by (w3

2)
∗ and (w2w4)

∗ + (w6)
∗. However,

we also have d2
6,1((w6)

∗) = d2
6,1((w2w4)

∗) = (w4)
∗ + . . . �= 0, so the bordism group

vanishes:

�
spin
7 (BU (n)) = 0. (E.17)

In the SU (n) case, c1, and therefore w2 vanish. E2
6,1 is generated by (w6)

∗, but as
before d2

6,1((w6)
∗) �= 0, so we have again �

spin
7 (BSU (n)) = 0.

E.4. Sp(n). The cohomology of BSp(n) is described in [67], p.137. It is generated as
a ring by the symplectic Pontryagin classes qi ∈ H4i (BSp(n);Z), i = 1, . . . , n.

From this structure, we can directly see that there is no obstruction on the second
page of the AHSS, and we readily have

�
spin
7 (BSp(n)) = 0. (E.18)

E.5. Arbitrary products of U (n), SU (n) and Sp(n) factors. As the cohomologies/homo-
logies of BU (n) and BSp(n) have no torsion, the Künneth formula shows that the
arguments above can be applied factor by factor, hence that the bordism group of 7-
manifold endowedwith an arbitrary product ofU (n), SU (n) and Sp(n) factors vanishes.
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E.6. E8. B E8 and K (Z, 4) are homotopically equivalent in degrees less than 16, so
�

spin
7 (B E8) � �

spin
7 (K (Z, 4)). The homology of K (Z, 4) is given by [68]

H•(K (Z, 4);Z) =
(
0 1 2 3 4 5 6 7 8
Z 0 0 0 Z 0 Z2 0 Z

. . .

)
. (E.19)

H•(K (Z, 4);Z2) =
(

0 1 2 3 4 5 6 7 8
Z2 0 0 0 Z2 0 Z2 Z2 Z2

. . .

)
. (E.20)

We write ι for the generator of H4(K (Z, 4);Z) � Z. The second page of the AHSS is

8 Z
2 0 0 0 Z

2 0 0 Z
2
2 Z

2

7 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0
4 Z 0 0 0 Z 0 Z2 0 Z

3 0 0 0 0 0 0 0 0 0
2 Z2 0 0 0 Z2 0 Z2 Z2 Z2

1 Z2 0 0 0 Z2 0 Z2 Z2 Z2

0 Z 0 0 0 Z 0 Z2 0 Z

q/p 0 1 2 3 4 5 6 7 8

(E.21)

There is a single potential obstruction in E2
6,1 � H6(K (Z, 4);Z2), with generator the

dual of Sq2ι. This generator is therefore not in the kernel of d2
6,1 and is killed by the

spectral sequence. We deduce that

�
spin
7 (B E8) = 0. (E.22)

Note that �
spin
p (B E8), p = 1, . . . , 11 was computed in Stong’s appendix to [51], but

the present derivation of �
spin
7 (B E8) is more straightforward.

E.7. Finite Abelian groups. Consider now the case where G is a finite Abelian group.
Any such group is a product of Zn factors, so we simply focus here on the case G = Zn .

BZn is the Eilenberg–MacLane space K (Zn, 1), which can be seen as an infinite
dimensional lens space. Its integral cohomology is generated as a ring by a single element
of order n in degree 2. Its integral homology has a generator of order n in each odd degree.
The homology with coefficients inZ2 is zero if n is odd orZ2 in odd degrees if n is even.

If n is odd, it is easy to see that no cancellation can occur in theAHSS andwe conclude
that �spin

7 (BZn), n odd. is an extension of Zn by Zn (so in particular is non-zero).
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If n is even, the second page of the AHSS is:

8 Z
2

Z
2
n 0 Z

2
n 0 Z

2
n 0 Z

2
n 0

7 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0
4 Z Zn 0 Zn 0 Zn 0 Zn 0
3 0 0 0 0 0 0 0 0 0
2 Z2 Z2 Z2 Z2 Z2 Z2 Z2 Z2 Z2

1 Z2 Z2 Z2 Z2 Z2 Z2 Z2 Z2 Z2

0 Z Zn 0 Zn 0 Zn 0 Zn 0
q/p 0 1 2 3 4 5 6 7 8

(E.23)

Writing u1 for the degree 1 generator of the Z2-valued cohomology and un = (u1)
n for

the generator in degree n, we have Sqk(un) = (n
k

)
un+k , where

(n
k

)
are the mod 2 binomial

coefficients [69].
We have potential contributions from E2

7,0, E2
6,1, E2

5,2 and E2
3,4. They all survive to

the third page. E2
7,0 can potentially get killed on the third page, while E2

3,4 could get

killed on the fourth page. E2
6,1, E2

5,2 survive through the whole spectral sequence.

We immediately see that Sq2(u5) = 0, so d7,0 : E2
7,0 → E2

5,1 vanishes. E2
7,0 therefore

survives the second page. We deduce that �
Spin
7 (BZn) is non-zero as well when n is

even, although we cannot compute it exactly.
We note that �spin

7 (BZ2) = Z16 has been computed using different methods in [70]
(see Table 1 there).

E.8. Summary. When the gauge group G is an arbitrary product of SU (n), Sp(n) and
U (1) factors, the bordism group of 7-dimensional spin manifolds endowed with a prin-
cipal G-bundle vanishes. The same is true for E8.

The AHSS computation is inconclusive for SO(3) and it only gets worse for higher
rank orthogonal groups. We have not been able to find a computation of the integral
homology of BG for the other compact simple Lie groups in the literature.

For Abelian finite groups, we found non-vanishing spin bordism groups. This sug-
gests way of constructing non-trivial bordism classes for disconnected Lie groups: find
an embedding of Zn ⊂ G that passes to a non-trivial homomorphism into the group of
components G/G0. We can push forward �

Spin
7 (BZn) into �

Spin
7 (BG) and potentially

get non-trivial bordism classes. For instance, when n is odd, using the standard embed-
ding ofZ2 ⊂ O(n)with image diag(±1, 1, . . . , 1), u1 is sent tow1 and we can construct
non-trivial bordism classes in �

Spin
7 (B O(n)) involving non-orientable bundles.

F. Eta Invariants for Finite Abelian Gauge Groups

Eta invariants associated to the covering S2k−1 → S2k+1/G forG = Zn canbe computed
explicitly ([57], Theorem 1.8.5). In the present section, we describe this computation,
which is used in Sect. 7.2 to compute the partition function of the relative anomaly
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field theory associated to two different matter representations. Analogous computations
appeared recently in [64].

Let G = Zn and let τ : G → U (k) be a complex representation of G inducing a free
action of G on the unit sphere S2k−1 ⊂ C

k . Let U := S2k−1/τ(G) be the corresponding
Lens space. U comes endowed with a metric inherited from the round metric on the
sphere. A square root

√
det(τ ) of the determinant representation of τ determines a spin

structure on U . Pick a (virtual) representation R of G. Consistent with our previous
notation, R should be thought of as the matter representation in the case of interest to
us. We will write R both for the representation vector space and for the representation
map. R determines a vector bundle V over U by quotienting S2k−1 × R by the action
of G. Then the modified eta invariant of the Dirac operator on U coupled to V is given
by ([57], Theorem 1.8.5):

ξR(U ) = 1

|G|
∑

g∈G−{1}
Tr(R(g))

√
det(τ (g))

det(τ (g) − I )
. (F.1)

We see Zn as realized as the multiplicative group of nth roots of 1. Let us write ρs
for the representation of Zn in C sending z ∈ Zn to zs . We take k = 4 and

τ = ρ⊕4
1 , (F.2)

so that

det(τ (z)) = z4 (F.3)

has a natural square root
√
det(τ (z)) = z2. (F.4)

U is therefore spin, with a given spin structure. Similarly,

det(τ (z) − I ) = (z − 1)4, (F.5)

so if we write z = e
2π i
n j then

√
det(τ (z))

det(τ (z) − I )
= 1

16(sin(π
n j))4

. (F.6)

In the case of interest to us, the representation R must be quaternionic, so that we must
take R to be a (virtual) direct sum of representations of the form

Rs := ρs ⊕ ρ−s . (F.7)

Taking the difference of two such representations, we obtain

ξRs1�Rs2
(U ) = f (s1) − f (s2) (F.8)

where

f (s) = 1

8n

n−1∑
j=1

cos( 2πn js)

(sin π
n j)4

. (F.9)
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A contour integral argument using g(z) = cot(πnz) cos(2πsz)
(sin π z)4

shows that we can rewrite
this expression as a polynomial

f (s) = 1

8 · 45 · n
(−11 + 10n2 + n4 − 60ns + 60s2 − 30n2s2 + 60ns3 − 30s4)

(F.10)

for −1 ≤ s ≤ n + 1. Note that

f (s + n) = f (s) − 1

3
s(s2 − 1) (F.11)

so f (s) mod Z descends to a function on Zn .
The fact that we get a polynomial in s can be derived from applying the APS index

theorem to a suitable line bundle over a suitable disk bundle over CP3.
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