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Abstract: We study the embeddings of the simple admissible affine vertex algebras
Vk(sl(2)) and Vk(osp(1, 2)), k /∈ Z≥0, into the tensor product of rational Virasoro and
N = 1 Neveu–Schwarz vertex algebra with lattice vertex algebras. By using these real-
izations we construct a family of weight, logarithmic, andWhittaker ̂sl(2) and ̂osp(1, 2)-
modules. As an application, we construct all irreducible degenerate Whittaker modules
for Vk(sl(2)).
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1. Introduction

Let V k(g) denotes the universal affine vertex algebra of level k associated to a simple
finite-dimensional Lie super algebra g. Let J k(g) be the maximal ideal in V k(g) and
Vk(g) = V k(g)/J k(g) its simple quotient. The representation theory of Vk(g) depends
on the structure of the maximal ideal J k(g). One sees that a V k(g)-module M is a
module for the simple vertex algebra Vk(g) if and only if J k(g).M = 0. Such approach
can be applied for a construction and classification of modules in the category O and
in the category of weight modules (cf. [10,24,25,32,57,59]). But it seems that for a
construction of logarithmic, indecomposable andWhittaker modules one needs different
methods.

In this paper, we explore the possibility that a simple affine vertex algebra can be
realized as a vertex subalgebra of the tensor product:

Vk(g) ⊂ W (g) ⊗ �g(0) (1)

where W (g) is a W-algebra associated to g and �g(0) is a lattice type vertex algebra.
This can be treated as an inverse of the quantum Hamiltonian reduction (cf. [62]).

In this moment we cannot prove that such inclusion exists in general, but we present
a proof of (1) in the cases g = sl(2) and g = osp(1, 2). Let us describe our results
in more detail. Let V Vir (dp,p′ , 0) and V ns(cp,q , 0) denote the universal Virasoro and

N = 1 Neveu–Schwarz vertex algebras with central charges: dp,p′ = 1 − 6(p−p′)2
pp′

and cp,q = 3/2 − 3(p−q)2

pq . Their simple quotients are denoted by LV ir (dp,p′ , 0) and

Lns(cp,q , 0). Let �(0) = M(1) ⊗ C[Zc] and �1/2(0) = M(1) ⊗ C[Z c
2 ] be the vertex

algebras of lattice type associated to the lattice of L = Zc + Zd, with products

〈c, c〉 = 〈d, d〉 = 0, 〈c, d〉 = 2.

Let F be the fermionic vertex algebra of central charge c = 1/2 associated to a neutral
fermion field.
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We prove:

Theorem 1.1. There are non-trivial homomorphisms of simple admissible affine vertex
algebras:

1. �1 : Vk(sl(2)) → LV ir (dp,p′ , 0) ⊗ �(0) where k + 2 = p
p′ such that p, p′ ≥ 2,

(p, p′) = 1,
2. �2 : Vk(osp(1, 2)) → Lns(cp,q , 0) ⊗ F ⊗ �1/2(0), where k + 3/2 = p

2q , such that

p, q ∈ Z, p, q ≥ 2, ( p−q
2 , q) = 1.

Let us discuss some application of previous theorem in the case Vk(sl(2)):

• We show in Sect. 7 that all relaxed highest weight modules for the admissible vertex
algebra Vk(sl(2)) have the form

LV ir (dp,p′ , h) ⊗ �(−1)(λ)

where LV ir (dp,p′ , h) is an irreducible LV ir (dp,p′ , 0)-module and�(−1)(λ) is aweight
�(0)-module. These modules were first detected in [10] by using the theory of Zhu’s
algebras. We also show that the character of LV ir (dp,p′ , h) ⊗ �−1(λ) coincides with
the Creutzig–Ridout character formula presented in [32] and proved recently in [45].

We should also say that a similar realization of irreducible relaxed highest weight
modules were presented in [5, Section 9] in the case of critical level for A(1)

1 and in [6,

Corollary 7] in the case of affine Lie algebra A(1)
2 at level k = − 3/2.

• We prove in Sect. 8 that a family of degenerate Whittaker modules for Vk(sl(2)) have
the form

LV ir (dp,p′ , h) ⊗ �λ

where�λ is aWhittaker�(0)-modules. This result is the final step in the classification
and realization of Whittaker A(1)

1 -modules (all other Whittaker A(1)
1 -modules were

realized in [9]). But our present result implies that affine admissible vertex algebra
Vk(sl(2)) admits a family of Whittaker modules. One can expect a similar result in
general.

• In Sect. 9 we present a vertex-algebraic construction of logarithmic modules by using
the methods from [13] and the expressions for screening operators from [38, Section
5]. We prove that the admissible vertex algebra Vk(sl(2)), for arbitrary admissible

k /∈ Z≥0, admits logarithmic modules ˜M�,±
r,s (λ) of nilpotent rank two (cf. Corollar-

ies 9.6, 9.7). These logarithmic modules were previously constructed only for levels
k = − 1/2 and k = − 4/3 (cf. [13,42,51,56]).

• Wepresent inSect. 10 a realizationof the simple affinevertex algebraWk′(spo(2, 3), fθ )
with central charge c = − 3/2. It is realized on the tensor product of the simple super-
triplet vertex algebra SW (1) (introduced by the author and Milas [11]) and a rank one
lattice vertex algebra. As a consequence, we give a direct proof that the parafermion
vertex algebra K (sl(2),− 2

3 ) is a Z2-orbifold of a super-singlet vertex algebra, also
introduced in [11].

We should mention that a different approach based on the extension theory was
recently presented in [26].
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Some applications in the case Vk(osp(1, 2)) will be presented in our forthcoming
paper [8]. Let us note here that we have the following realization at the critical level. We
introduce a vertex algebra V ns

cri t which is freely generated by Gcrit and T , such that T
is central and the following λ-bracket relation holds:

[Gcri
λ Gcri ] = 2T − λ2.

We prove:

Theorem 1.2. Let k = − 3/2. There is non-trivial homomorphism of vertex algebras:

� : V k(osp(1, 2)) → V ns
cri t ⊗ F ⊗ �1/2(0)

such that T is a central element of V k(osp(1, 2)).

In Remarks 7, 8 and 12 we discuss how one prove irreducibility of modules of the
type

• LV ir (dp,p′ , h) ⊗ �(−1)(λ) for Vk(sl(2)),

• LR(cp,q , h)± ⊗ M± ⊗ �
1/2
(−1)(λ) for Vk(osp(1, 2)),

by using new results on characters of relaxed highest weight modules from [45].
In our forthcoming papers we plan to investigate a higher rank generalizations of the

result discussed above.

2. Preliminaries

In the paper, we assume that the reader is familiar with basic concepts in the vertex
algebra theory such as modules and intertwining operators. In this section, we recall the
definition of the logarithmic modules for vertex operator algebras and construction of
logarithmic modules. We also recall how we can extend vertex operator algebra V by its
module M and get extended vertex algebra V = V ⊕ M , and construct V-modules. This
construction is important for the construction of logarithmic modules for affine vertex
algebra Vk(sl(2)) in Sect. 9.

2.1. Logarithmic modules. Let us recall the definition of the logarithmic module of a
vertex operator algebra. More informations on the theory of logarithmic modules for
vertex operator algebras can be found in the papers [16,29,43,52,54].

Let (V,Y, 1, ω) be a vertex operator algebra, and (M,YM ) be its weak module. Then
the components of the field

YM (ω, z) =
∑

n∈Z

L(n)z−n−2

defines on M the structure of a module for the Virasoro algebra.

Definition 2.1. A weak module (M,YM ) for the vertex operator algebra (V,Y, 1, ω) is
called a logarithmic module if it admits the following decomposition

M =
∐

r∈C

Mr , Mr = {v ∈ M | (L(0) − r)k = 0 for some k ∈ Z>0}.
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If M is a logarithmic module, we say that it has a nilpotent rank m ∈ Z≥1 if

(L(0) − Lss(0))
m = 0, (L(0) − Lss(0))

m−1 �= 0,

where Lss(0) is the semisimple part of L(0).

Now we shall recall the construction of logarithmic modules from [13]. Let v ∈ V
such that

[vn, vm] = 0 ∀n,m ∈ Z, (2)

L(n)v = δn,0v ∀ n ∈ Z≥0, (3)

so that v is of conformal weight one.
Define


(v, z) = zv0 exp

( ∞
∑

n=1

vn

−n
(−x)−n

)

.

The following result was proved in [13, Theorems 2.1 and 2.2].

Theorem 2.2. [13] Assume that V is a vertex operator algebra and that v ∈ V satisfies
conditions (2) and (3). Let V be the vertex subalgebra of V such that V ⊆ KerV v0.

1. Assume that (M,YM ) is a weak V -module. Define the pair (˜M,˜Y
˜M ) such that

˜M = M as a vector space,
˜Y
˜M (a, x) = YM (
(v, x)a, x) for a ∈ V .

Then (˜M,˜Y
˜M ) is a weak V -module.

2. Assume that (M,YM ) is a V -module such that L(0) acts semisimply on M. Then
(˜M,˜Y

˜M ) is logarithmic V -module if and only if v0 does not act semisimply on M.
On ˜M we have:

˜L(0) = L(0) + v0.

2.2. Extended vertex algebra V = V ⊕ M. Let (V,YV , 1, ω) be a vertex operator
algebra and (M,YM ) a V -module having integral weights with respect to L(0), where
L(n) = ωn+1. Let V = V ⊕ M . Define

YV (v1 + w1, z)(v2 + w2) = YV (v1, z)v2 + YM (v1, z)w2 + ezL(−1)YM (v2,−z)w1,

where v1, v2 ∈ V , w1, w2 ∈ M . Then by [48] (V,YV , 1, ω) is a vertex operator algebra.
The following lemma gives a method for a construction of a family of V-modules.

Lemma 2.3. [15] Assume that (M2,YM2) and (M3,YM3) be V -modules, and let Y(·, z)
be an intertwining operator of type

( M3
M M2

)

with integral powers of z. Then (M2 ⊕
M3,YM2⊕M3) is a V-module, where the vertex operator is given by

YM2⊕M3(v + w)(w2 + w3) = YM2(v, z)w2 + YM3(v, z)w3 + Y(w, z)w2

for v ∈ V , w ∈ M, wi ∈ Mi , i = 1, 2.

Remark 1. Note that the vertex operator algebra V is not simple, and that the module
M2 ⊕ M3 is also not simple. Moreover, the module structure on M2 ⊕ M3 is, in general,
not unique.
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2.3. Fusion rules for the minimal Virasoro vertex operator algebras. Now we review
some results on Virasoro vertex operator algebras, their fusion rules and intertwining
operators. More details can be found in [41,65].

Let V Vir (c, 0) be the universal Virasoro vertex operator algebra of central charge c,
and let LV ir (c, 0) be it simple quotient (cf. [41]). Let

dp,p′ = 1 − 6
(p − p′)2

pp′ , p, p′ ∈ Z≥2, (p, p′) = 1.

The Virasoro vertex algebra LV ir (dp,p′ , 0) is rational (cf. [65]) and its irreducible mod-
ules are {LV ir (dp,p′ , h) | h ∈ Sp,p′ } where

Sp,p′ = {hr,sp,p′ = (sp − rp′)2 − (p − p′)2

4pp′ | 1 ≤ r ≤ p − 1, 1 ≤ s ≤ p′ − 1}.

Let us denote the highest weight vector in LV ir (dp,p′ , hr,sp,p′) by vr,s .

The fusion rules for LV ir (dp,p′ , 0)-modules are

LV ir (dp,p′ , hr,sp,p′) � LV ir (dp,p′ , hr
′,s′
p,p′)

=
∑

r ′′,s′′

[

(r ′′, s′′)
(r, s) (r ′, s′)

]

(p,p′)
LV ir (dp,p′ , hr

′′,s′′
p,p′ ),

where the fusion coefficient

[

(r ′′, s′′)
(r, s) (r ′, s′)

]

(p,p′)
is equal to the dimension of the vector

space of all intertwining operators of the type

( LV ir (dp,p′ , hr
′′,s′′
p,p′ )

LV ir (dp,p′ , hr,sp,p′) LV ir (dp,p′ , hr
′,s′
p,p′)

)

.

The fusion coefficient

[

(r ′′, s′′)
(r, s) (r ′, s′)

]

(p,p′)
is 0 or 1. For explicit formula see [65], [30,

Section 7].
Let Y(·, z) be a non-trivial intertwining operator of type

(

LV ir (dp,p′ , h3)

LV ir (dp,p′ , h1) LV ir (dp,p′ , h2)

)

, (hi ∈ Sp,p′).

Then, for every v ∈ LV ir (dp,p′ , h1) we have

Y(v, z) =
∑

r∈
+Z

vr z
−r−1

where 
 = h1 + h2 − h3. Let vhi be the highest weight vector in LV ir (dp,p′ , hi ),
i = 1, 2, 3. Then one can show that

(vh1)
−1vh2 = Cvh3 , (vh1)
+nvh2 = 0

where C �= 0, n ∈ Z≥0.
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3. Wakimoto Modules for ̂sl(2)

In this section, we first recall the construction of the Wakimoto modules for ̂sl(2) (cf.
[34,64]). Then, by using the embedding of the Weyl vertex algebra into a lattice vertex
algebra (also called FMS bosonization) we show that the universal affine vertex algebra
V k(sl(2)) can be embedded into the tensor product of a Virasoro vertex algebra with a
vertex algebra �(0) of a lattice type. This result is stated in Proposition 3.1, which is a
vertex-algebraic interpretation of the result of Semikhatov from [61].

3.1. Weyl vertex algebra W. Recall that the Weyl algebraWeyl is an associative algebra
with generators a(n), a∗(n) (n ∈ Z) and relations

[a(n), a∗(m)] = δn+m,0, [a(n), a(m)] = [a∗(m), a∗(n)] = 0 (n,m ∈ Z). (4)

Let W denotes the simpleWeyl–module generated by the cyclic vector 1 such that

a(n)1 = a∗(n + 1)1 = 0 (n ≥ 0).

As a vector space W ∼= C[a(−n), a∗(−m) | n > 0, m ≥ 0]. There is a unique vertex
algebra (W,Y, 1) where the vertex operator map is Y : W → End(W )[[z, z−1]] such
that

Y (a(−1)1, z) = a(z), Y (a∗(0)1, z) = a∗(z),
a(z) =

∑

n∈Z

a(n)z−n−1, a∗(z) =
∑

n∈Z

a∗(n)z−n .

3.2. The Heisenberg vertex algebra Mδ(κ, 0). Let h = Cδ be the 1-dimensional com-
mutative Lie algebra with a symmetric bilinear form defined by (δ, δ) = 1, and̂h =
h⊗C[t, t−1]+Cc be its affinization. Set δ(n) = δ⊗ tn . Let Mδ(κ, 0) denotes the simple
̂h-module of level κ �= 0 generated by the vector 1 such that δ(n)1 = 0 ∀n ≥ 0. As a
vector space Mδ(κ, 0) = C[δ(n) | n ≤ −1].

There is a unique vertex algebra (Mδ(κ, 0),Y, 1) generated by the Heisenberg field
Y (δ(−1)1, z) = δ(z) =∑n∈Z

δ(n)z−n−1 such that

[δ(n), δ(m)] = κnδn+m,0 (n,m ∈ Z).

Vector ω = ( 12κ δ(−1)2 + aδ(−2)
)

1 is a conformal vector of central charge 1 − 12a2
κ

.

For r ∈ C, let Mδ(κ, r) denotes the irreducible Mδ(κ, 0)-module generated by the
highest weight vector vr such that

δ(n)vr = rδn,0vr (n ≥ 0).

We can consider lattice Dr = Z( rδ
κ

) and the generalized lattice vertex algebra VDr :=
Mδ(κ, 0) ⊗ C[Dr ] (cf. [33]). We have:

Mδ(κ, r) = Mδ(κ, 0).e
rδ
κ .

Then, the restriction of the vertex operator Y (e
rδ
κ , z) on Mδ(κ, 0) can be considered

as a map Mδ(κ, 0) → Mδ(κ, r)[[z, z−1]].
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3.3. The Wakimoto module Wk,μ. Assume that k �= −2 and μ ∈ C. Let

Wk,μ = W ⊗ Mδ(2(k + 2), μ).

Then, Wk,0 has the structure of a vertex algebra and Wk,μ is a Wk,0-module.
Let V k(sl(2)) be the universal vertex algebra of level k associated to the affine Lie

algebra ̂sl(2). There is a injective homomorphism of vertex algebras � : V k(sl(2)) →
Wk,0 generated by

e(z) = a(z);
h(z) = −2 : a∗(z)a(z) : +δ(z);
f (z) = − : a∗(z)2a(z) : +k∂za∗(z) + a∗(z)δ(z).

The screening operator is Q = Resz : a(z)Y (e− 1
k+2 δ

, z) := (a(−1)e− 1
k+2 δ

)0 (cf. [34]).

3.4. Bosonization. Let H be the lattice

H = Zα + Zβ, 〈α, α〉 = −〈β, β〉 = 1, 〈α, β〉 = 0,

and VH = Mα,β(1)⊗C[L] the associated lattice vertex algebra, where Mα,β(1) denotes
the Heisenberg vertex algebra generated by α and β.

The Weyl vertex algebra W can be realized as a subalgebra of VH generated by

a = eα+β, a∗ = −α(−1)e−α−β.

This gives a realization of the universal affine vertex algebra Vk(sl(2)) as a subalgebra
of VH ⊗ Mδ(2(k + 2), 0) generated by

e = eα+β, (5)

h = −2β(−1) + δ(−1) (6)

f =
[

(k + 1)(α(−1)2 − α(−2)) + (k + 2)α(−1)β(−1) − α(−1)δ(−1)
]

e−α−β.

(7)

Screening operators are (cf. [34, Section 7]):

Q = Resz(Y (eα+β− 1
k+2 δ

, z), ˜Q = ReszY (e−(k+2)(α+β)+δ, z). (8)

3.5. Embedding of V k(sl(2)) into vertex algebra V V ir (dk, 0) ⊗ �(0). We shall first
define new generators of the Heisenberg vertex algebra Mα,β(1) ⊗ Mδ(2(k + 2)). Let

γ = α + β − 1
k+2δ, μ = −β + 1

2δ, ν = − k
2α − k+2

2 β + 1
2δ.

Then

〈γ, γ 〉 = 2

k + 2
, 〈μ,μ〉 = −〈ν, ν〉 = k

2
,

and all other products are zero. For our calculation, it is useful to notice that

α = ν + k+2
2 γ,
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β = − k+2
2 γ + 2

kμ − k+2
k ν,

δ = −(k + 2)γ + 2(k+2)
k μ − 2(k+2)

k ν.

Let M(1) := Mμ,ν(1) be the Heisenberg vertex algebra generated by μ and ν.
Consider the rank one lattice Zc ⊂ M(1) where c = 2

k (μ − ν). Then

�(0) := M(1) ⊗ C[Zc]
has the structure of a vertex algebra. Some properties of�(0)will be discussed in Sect. 4.

Let Mγ ( 2
k+2 ) be the Heisenberg vertex algebra generated by γ .

We obtain the following expression for the generators of V k(sl(2)):

e = e
2
k (μ−ν)

, (9)

h = 2μ(−1) (10)

f =
[

1
4 (k + 2)2γ (−1)2 − 1

2 (k + 1)(k + 2)γ (−2)

−ν(−1)2 − (k + 1)ν(−2)
]

e− 2
k (μ−ν)

. (11)

Set

ω(k) =
(

k + 2

4
γ (−1)2 − k + 1

2
γ (−2)

)

1.

Then

f =
[

(k + 2)ω(k) − ν(−1)2 − (k + 1)ν(−2)
]

e− 2
k (μ−ν)

.

Note that ω(k) generates the universal Virasoro vertex algebra V Vir (dk, 0) where dk =
1−6 (k+1)2

(k+2) ,which is realized as a subalgebra of theHeisenbergvertex algebraMγ ( 2
k+2 , 0).

As usual we set L(n) = ωn+1 and denote the Virasoro field by L(z) = ∑n∈Z

L(n)z−n−2.
We get the following result:

Proposition 3.1. [61] Let ω be the conformal vector in V V ir (dk, 0). There is a injective
homomorphism of vertex algebras

� : V k(sl(2)) → V Vir (dk, 0) ⊗ �(0) ⊂ Mγ ( 2
k+2 , 0) ⊗ �(0)

such that

e �→ e
2
k (μ−ν)

, (12)

h �→ 2μ(−1), (13)

f �→
[

(k + 2)ω − ν(−1)2 − (k + 1)ν(−2)
]

e− 2
k (μ−ν)

. (14)

Remark 2. The realization in Proposition 3.1 had first obtained by Semikhatov [61] using
slightly different notations.
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A critical level version of this proposition was obtained in [9]. Let MT (0) =
C[T (−n), n ≥ 2] be the commutative vertex algebra generated by the commutative
field

T (z) =
∑

n≤−2

T (n)z−n−2.

Proposition 3.2. Let k = − 2. There is a injective homomorphism of vertex algebras

� : V k(sl(2)) → MT (0) ⊗ �(0)

such that

e �→ e
2
k (μ−ν)

, (15)

h �→ 2μ(−1), (16)

f �→
[

T (−2) − ν(−1)2 − (k + 1)ν(−2)
]

e− 2
k (μ−ν)

. (17)

4. Some �(0)-Modules

In this section we study vertex algebra�(0)which is associated to an isotropic rank two
lattice L = Zc + Zd.

Lattice L is realized as L = Zc + Zd ⊂ M(1), where c = α + β = 2
k (μ − ν), and

d = μ + ν. Then

〈c, c〉 = 〈d, d〉 = 0, 〈c, d〉 = 2.

The vertex algebra�(0) = M(1)⊗C[Zc] is generated by c(−1), d(−1), u = ec, u−1 =
e−c. Its representation theory was studied in [27].

4.1. Weight �(0)-modules and their characters. Let us recall some steps in the con-
struction of �(0)-modules. LetA be the associative algebra generated by d, enc, where
n ∈ Z and relations

[d, enc] = 2nenc, encemc = e(n+m)c, (n,m ∈ Z).

(We use the convention e0 = 1). By using results from [27, Section 4] we see that for
any A-module U and any r ∈ Z, there exists a unique �(0)-module structure on the
vector space

Lr (U ) = U ⊗ M(1)

such that c(0) ≡ r Id on Lr (U ). Moreover Lr (U ) is irreducible �(0)-module if and
only if U is irreducible A-module. By using this method one can construct the weight
�(0)-modules from [27]. (see Proposition 4.1).

In the present paper we shall need the following simple current extension of �(0):

�1/2(0) = M(1) ⊗ C[Z c
2 ] = �(0) ⊕ �(0)e

c
2 .

�1/2(0) is again the vertex algebra of the same type and it is generated by c(−1), d(−1),
u1/2 = ec/2, u−1/2 = e−c/2. Note that g = exp[π iμ(0)] is an automorphism of order
two of the vertex algebra �1/2(0) and that g = Id on �(0).
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In order to construct �1/2(0)-modules, we need to consider a slightly larger asso-
ciative algebra. Let A1/2 be the associative algebra generated by d, enc, n ∈ 1

2Z, and
relations

[d, enc] = 2nenc, encemc = e(n+m)c (n,m ∈ 1

2
Z).

For any A1/2-module U ′ and any r ∈ Z, there exists a unique (g-twisted) �1/2(0)-
module structure on the vector space

Lr (U
′) = U ′ ⊗ M(1)

such that c(0) ≡ r Id on Lr (U ′). Module Lr (U ′) is untwisted if r is even and g-twisted
if r is odd. We omit details, since arguments are completely analogous to those of [27].
In this way we get a realization of a family of irreducible modules for the vertex algebras
�(0) and �1/2(0).

Proposition 4.1. 1. [27] For every r ∈ Z and λ ∈ C, �(r)(λ) := �(0)erμ+λc is an
irreducible �(0)-module on which c(0) acts as rId.

2. Assume that r ∈ Z is even (resp. odd) and λ ∈ C. Then �
1/2
(r) (λ) := �1/2(0)erμ+λc

is an irreducible untwisted (resp. g-twisted) �1/2(0)-module on which c(0) acts as
rId.

As usual for a vector V is a vertex algebra V we define


(v, z) = zv0 exp

( ∞
∑

n=1

vn

−n
(−z)−n

)

.

The following lemma follows from [49, Proposition 3.4].

Lemma 4.2. For �, r ∈ Z we have

(�(�+r)(λ),Y�(�+r)(λ)(·, z)) ∼= (�(r)(λ),Y�(r)(λ)(
(�μ, z)·, z)).
We also have the following important observation which essentially follows from the

analysis of �(−1)(λ) as a module for the Heisenberg–Virasoro vertex algebra at level
zero [21].1

Lemma 4.3. The operator ec0 acts injectively on �(−1)(λ).

Let k ∈ C. Now we shall fix the Heisenberg and the Virasoro vector in �(0), and
calculate the character of the weight �(0)-modules.

Vector

ω�(0) = 1

2
c(−1)d(−1) − 1

2
d(−2) +

k

4
c(−2) (18)

is a Virasoro vector in the vertex algebra�(0) of central charge c = 6k+2. The Virasoro
field is L(z) =∑n∈Z

L(n)z−n−2.
Define the Heisenberg vector h = 2μ = k

2c + d and the corresponding field h(z) =
∑

n∈Z
h(n)z−n−2. Then [h(n), h(m)] = 2kδn+m,0.

1 It was proved in [21] that �(−1)(λ) is a direct sum of irreducible modules for the Heisenberg–Virasoro
vertex algebra at level zero, and ec0 is a homomorphismwhich acts non-trivially on each irreducible component.
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Definition 4.4. AmoduleM for the vertex algebra�(0) (resp.�1/2(0) ) is calledweight
if the operators L(0) and h(0) act semisimply on M .

Assume thatM is a weight module for the vertex algebra�(0) (resp.�1/2(0)) having
finite-dimensional weight spaces for (L(0), h(0)). Then we can define the character of
M :

ch[M](q, z) = TrMqL(0)−c/24zh(0).

Proposition 4.5. 1. For every λ ∈ C, �(−1)(λ) is a Z≥0-graded weight �(0)-module
with character

ch[�(−1)(λ)](q, z) = z−k+2λδ(z2)

η(τ )2
.

2. For every λ ∈ C, �1/2
(−1)(λ) is a Z≥0-graded weight �1/2(0)-module with character

ch[�1/2
(−1)(λ)](q, z) = z−k+2λδ(z)

η(τ )2

where δ(z) =∑�∈Z
z�, η(τ) = q1/24

∏

n≥1(1 − qn).

Proof. Set M = �(−1)(λ). First we notice that M is a Z≥0-graded M =⊕∞
m=0 M(m)

such that

M(0) ∼= spanC{e−μ+(λ+ j)c | j ∈ Z},
L(0)|M(0) ≡ k

4
Id, h(0)e−μ+(λ+ j)c = (−k + 2(λ + j))e−μ+(λ+ j)c.

Now we have

ch[�(−1)(λ)](q, z) = Tr�(−1)(λ)q
L(0)−c/24zh(0)

= q− k
4− 1

12 q
k
4

z−k+2λδ(z2)
∏∞

n=1(1 − qn)2
= z−k+2λδ(z2)

η(τ )2
.

This proves the assertion (1). The proof of (2) is analogous. ��

4.2. Whittaker �(0)-modules. The construction of Whittaker modules for the vertex
algebra �(0)-modules were presented in [9, Section 11]. We considered A-module Uλ

generated by vector v1 such that

encv1 = λnv1 (n ∈ Z).

Note that as a vector space Uλ
∼= C[d] with the free action of d. Then we proved that

�λ = Uλ ⊗ M(1) has that structure of an irreducible Whittaker �(0)-module with the
Whittaker vector wλ = 1 ⊗ v1.

Similarly, we can construct Whittaker modules for the vertex algebra �1/2(0). Con-
sider A1/2-module U 1/2

λ = C[d(0)]v2 such that

encv2 = λnv2 (n ∈ 1
2Z).

Then U 1/2
λ ⊗ M(1) has the structure of an irreducible g-twisted �1/2(0)-module.
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Proposition 4.6. 1. [9, Theorem 11.1] For every λ ∈ C\{0} there is an irreducible
�(0)-module �λ so that c(0) acts on �λ as −Id and that �λ is generated by cyclic
vector wλ satisfying

ec0wλ = λwλ, e−c
0 wλ = 1

λ
wλ.

As a vector space, �λ = M(1) ⊗ C[d(0)].
2. For everyλ ∈ C\{0}�λ has the structure of an irreducible g-twisted�1/2(0)-module

generated by cyclic vector wλ such that

ec/20 wλ = √
λwλ, e−c/2

0 wλ = 1√
λ

wλ.

Remark 3. Note that in [9, Theorem 11.1], the operator ec0 is denoted by a(0).

Remark 4. The operator L̄(0) acts semi-simply on�λ. But the action of h(0) is not diago-
nalizable. This can be easily seen from the action of h(0) on top component�λ(0) ∼= Uλ:

h(0) ≡ k

2
c(0) + d(0) = −k

2
+ d(0)

which is not diagonalizable.

5. Realization of the Admissible Affine Vertex Algebra Vk(sl(2))

In this section, we use the realization from Proposition 3.1 and get a realization of the
admissible affine vertex algebra Vk(sl(2)).

Assume now that k is admissible and k /∈ Z. Then

k + 2 = p′

p
, dk = 1 − 6

(p − p′)2

pp′ = dp,p′ .

Let LV ir (dp,p′ , 0) be the simple rational vertex operator algebra of central charge dp,p′
(cf. Sect. 2.3).

Let now ϕ = p′γ . Since 〈ϕ, ϕ〉 = 2p′2
k+2 = 2pp′, we set Mϕ(2pp′, 0) = Mγ ( 2

k+2 , 0)
and

ω(k) =
(

1

4pp′ ϕ(−1)2 +
p − p′

2pp′ ϕ(−2)

)

1.

The universal vertex algebra V Vir (dp,p′ , 0) is not simple and it contains a non-trivial
ideal generated by singular vector�V ir

p,p′ of conformal weight (p−1)(p′−1). Moveover,

LV ir (dp,p′ , 0) = V Vir (dp,p′ , 0)

U (V ir).�V ir
p,p′

is a simple vertex algebra (minimal model). The singular vector�V ir
p,p′ can be constructed

in the free–field realization using screening operators.
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Proposition 5.1. [58,63] There exist a unique, up to a scalar factor, V ir-homomorphism

�V ir
p,p′ : Mϕ(2pp′, 0).e− p′−1

p′ ϕ → Mϕ(2pp′, 0)

e
− p′−1

p′ ϕ �→ �V ir
p,p′ .

There is a cycle
p′−1 andanon-trivial scalar cp−1 such that�V ir
p,p′ canbebe represented

as

1

cp′−1

∫


p′−1

Y (e
ϕ

p′ , z1) · · · Y (e
ϕ

p′ , z p′−1)dz1 · · · dz p′−1.

Then ωp,p′ = ω(k) +U (V ir).�V ir
p,p′ is the conformal vector in LV ir (dp,p′ , 0).

Theuniversal affinevertex algebraV k(sl(2)) also contains a non-trivialmaximal ideal
generated by ̂sl(2)-singular vector �

sl(2)
k of conformal weight p(p′ − 1). Moreover,

Vk(sl(2)) = V k(sl2)

U (̂sl(2)).�sl(2)
k

is a simple, admissible vertex algebra. Let ωsug denotes the Sugawara Virasoro vector

in Vk(sl(2)) od central charge 3k
k+2 . The singular vector �

sl(2)
k can be also constructed

using screening operators. The proof was presented in [59, Theorem 3.1] for ̂sl(2) and
in [23, Proposition 6.14] in a more general setting (see also [24] for some applications).

Proposition 5.2. [23,59]There exist a unique, up toa scalar factor, ̂sl(2)-homomorphism

�
sl(2)
k : Wk,2(p′−1) → Wk,0

e
− p′−1

p′ ϕ+(p′−1)(α+β) �→ �
sl2
k .

By [59, Theorem 3.1] �
sl(2)
k can be represent as

1

cp′−1

∫


p′−1

U (z1) · · ·U (z p′−1)dz1 · · · dz p′−1,

whereU (z) = Y (a(−1)e− δ
k+2 , z) and the cycle
p′−1 is as in Proposition 5.1. But, since

U (z) = Y (e
ϕ

p′ , z), we get the following consequence:

Corollary 5.3. �
sl(2)
k can be extended to a ̂sl(2)-homomorphism

Mϕ(2pp′, 0).e− p′−1
p′ ϕ ⊗ �(0) → Mϕ(2pp′, 0) ⊗ �(0)

such that �sl(2)
k = �V ir

p,p′ ⊗ Id and �
sl2
k = �V ir

p,p′ ⊗ e(p′−1)c.
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Example 5.4. Let us illustrate the above analysis in the simplest case p′ = 2. Then
we have that k + 2 = 2

p where p is odd natural number, p ≥ 3. Moreover, we have
〈ϕ, ϕ〉 = 4p. The construction of the Virasoro singular vectors was obtained in [14] by
using lattice vertex algebras.

The singular vector in V k(sl(2)) is given by

Qe
δ

k+2 = (a(−1)e− δ
k+2 )0e

δ
k+2

= Sp−1(α + β − δ

k + 2
)a(−1)1

= Sp−1

(ϕ

2

)

eα+β

= Qe− ϕ
2 ⊗ eα+β = �V ir

p,2 ⊗ ec.

Here, Sn(γ ) denotes the n-th Schur polynomial in (γ (−1), γ (−2), . . . ). In particular,
Qe− ϕ

2 = Sp−1(
ϕ
2 ) is a singular vector in V Vir (dp,2, 0) ⊂ Mϕ(4p) (cf. [14]).

Finally, we get the realization of Vk(sl(2)):

Theorem 5.5. There exist a non-trivial ̂sl(2)-homomorphism

� : Vk(sl(2)) → LV ir (dp,p′ , 0) ⊗ �(0)

defined by the relations (12)–(14). Moreover,

�(ωsug) = ωp,p′ +
1

k
μ(−1)2 − 1

k
ν(−1)2 − ν(−2) (19)

= ωp,p′ +
1

2
c(−1)d(−1) − 1

2
d(−2) +

k

4
c(−2). (20)

Proof. We have constructed homomorphism � : V k(sl(2)) → V Vir (dp,p′ , 0) ⊗ �(0)

and showed in Corollary 5.3 that �(�
sl(2)
k ) = �V ir

p,p′ ⊗ e(p′−1)c. The claim follows. ��

In what follows, we identify ωsug with �(ωsug) and denote the Sugawara Virasoro
field by

Lsug(z) =
∑

n∈Z

Lsug(n)z−n−2, Lsug(n) = (ωsug)n+1.

Remark 5. Note that �(ωsug) = ωp,p′ + ω�(0), where ω�(0) is a Virasoro vector in the
vertex algebra �(0) of central charge 6k + 2 given by (18). In particular, we have

csug = 3k

k + 2
= dp,p′ + 6k + 2.
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6. Realization of Ordinary Vk(sl(2))-Modules and Their Intertwining Operators

In this section, we present a realization of irreducible, ordinary Vk(sl(2))-modules,
i.e., the Vk(g)-modules having finite-dimensional Lsug(0)-eigenspaces. It was proved in
[30], that the category of ordinary Vk(sl(2))-modules at the admissible level, denoted
by Ok,ord , form a braided tensor category with the tensor product bifunctor �P(1).

In this section, we show that the intertwining operators among ordinary Vk(g)-
modules can be constructed from the intertwining operators for the minimal Virasoro
vertex algebra.

Recall [10] that the set

{Ls := L A1((k + 1 − s)�0 + (s − 1)�1) | s = 1, . . . , p′ − 1}
provides all irreducible, ordinary Vk(g)-modules.

Proposition 6.1. Let s ∈ Z, 1 ≤ s ≤ p′ − 1. We have

Ls ∼= Vk(sl(2)).(v1,s ⊗ e
s−1
2 c) ⊂ LV ir (dp,p′ , h1,sp,p′) ⊗ �1/2(0).

Proof. Since LV ir (dp,p′ , h1,sp,p′) ⊗ �1/2(0) is a Vk(sl(2))-module, it suffices to show

that ws = v1,s ⊗ e
s−1
2 c is a singular vector for ̂sl(2). For n ≥ 0 we have:

e(n)ws = f (n + 2)ws = 0, h(n)ws = (s − 1)δn,0ws .

It remains to prove that f (1)ws = 0. Since

(ws)1 f = (k + 2)(v1,s)1ωp,p′ ⊗ e
s−1
2 c−c − v1,s ⊗ e

s−1
2 c

1 (ν(−1)2 + (k + 1)ν(−2))e−c

=
(

(k + 2)h1,sp,p′ − (s − 1)2

4
+

(k + 1)(s − 1)

2

)

v1,s ⊗ e
s−1
2 c−c = 0, (21)

we get f (1)ws = −[(ws)−1, f (1)]1 = (ws)1 f = 0. The proof follows. ��
The following fusion rules result was proved in [30]:

Ls1 �P(1) Ls2 =
p′−1
⊕

s3=1

Ns3
s1,s2Ls3 , (22)

where the fusion coefficient is

Ns3
s1,s2 :=

⎧

⎪

⎨

⎪

⎩

1 if |s2 − s1| + 1 ≤ s3 ≤ min{s1 + s2 + 1, 2p′ − s1 − s2 − 1}
s1 + s2 + s3 odd

0 otherwise
.

Moreover, Ns3
s1,s2 =

[

(1, s3)
(1, s1) (1, s2)

]

(p,p′)
coincides with the fusion coefficient for

the Virasoro minimal models (cf. Sect. 2.3):

LV ir (dp,p′ , h1,s1p,p′) �P(1) L
V ir (dp,p′ , h1,s2p,p′) =

p′−1
⊕

s3=1

Ns3
s1,s2L

V ir (dp,p′ , h1,s3p,p′).



Realizations of Simple Affine Vertex Algebras 1041

By using our realization we can construct all intertwining operators appearing in the
fusion rules (22) as follows. Let Y1(·, z) be a non-trivial intertwining operator of the
type

( LV ir (dp,p′ , h1,s3p,p′)

LV ir (dp,p′ , h1,s1p,p′) LV ir (dp,p′ , h1,s2p,p′)

)

for the Virasoro vertex operator algebra LV ir (dp,p′ , 0). We can tensor it with the vertex
operator map Y�1/2(0)(·, z) for the vertex algebra �1/2(0), and obtain the intertwining
operator Y = Y1 ⊗ Y�1/2(0) of type

( LV ir (dp,p′ , h1,s3p,p′) ⊗ �1/2(0)

LV ir (dp,p′ , h1,s1p,p′) ⊗ �1/2(0) LV ir (dp,p′ , h1,s2p,p′) ⊗ �1/2(0)

)

(23)

in the category of Vk(sl(2))-modules. Intertwining operator corresponding to the fusion
rules (22) can be obtained by restricting the above intertwining operators.

Proposition 6.2. Assume that Ns3
s1,s2 = 1. Then there is a non-trivial intertwining oper-

ator of type

( Ls3

Ls1 Ls2

)

,

realizead as a restriction of the intertwining operator (23).

Proof. Note that Lsi = Vk(sl(2)).wsi , where wsi = v1,si ⊗ e
si−1
2 c, i = 1, 2, 3. By re-

strictingY(·, z) onLs1⊗Ls2 , we get a non-trivial intertwining operator of type
( Ms3Ls1 Ls2

)

,

where Ms3 = Vk(sl(2)).vs3 ⊗ e
s1+s2−2

2 c. Note that s1 + s2 − s3 − 1 ∈ 2Z≥0. Then

e(−1)
s1+s2−s3−1

2 ws3 = e
s1+s2−s3−1

2 c
−1

(

vs3 ⊗ e
s3−1
2 c
)

= vs3 ⊗ e
s1+s2−2

2 c.

This shows that Ms3 ⊆ Ls3 , and since Ls3 is irreducible, we have that Ls3 = Ms3 . Thus,

we have constructed a non-trivial intertwining operator of type
( Ls3Ls1 Ls2

)

. The proof

follows. ��

7. Explicit Realization of Relaxed Highest Weight Vk(sl(2))-Modules

We say that a Z≥0-graded V k(sl(2))-module M = ⊕∞
m=0 M(m) is a relaxed highest

weight module if the following conditions hold:

• Each graded component M(m) is an eigespace for Lsug(0);
• M = V k(sl(2)).M(0);
• M(0) is an irreducible weight sl(2)-modulewhich is neither highest nor lowest weight
sl(2)-module.
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The subspace M(0) is usually called the top component of M(0) (although it has lowest
conformal weight with respect to Lsug(0)).

By using the classification of irreducible Vk(sl(2))-modules from [10] (see also [59]),
we conclude that any irreducible Z≥0-graded Vk(sl(2))-module belongs to one of the
following series:

1. The ordinary modules Ls (cf. Proposition 6.1) with lowest conformal weight h1,sp,p′ +
s−1
2 .

2. The Z≥0 graded Vk(sl(2))-modules D±
r,s , 1 ≤ r ≤ p − 1, 1 ≤ s ≤ p′ − 1, where

• D+
r,s is an irreducible Z≥0-graded Vk(sl(2))-module such that D+

r,s(0) is an irre-
ducible highest weight sl(2)-module with highest weight μr,s = (s − 1 − (k +
2)r)ω1, where ω1 is the fundamental weight for sl(2).

• D−
r,s is an irreducible Z≥0-graded Vk(sl(2))-module such that D−

r,s(0) is an irre-
ducible lowest weight sl(2)-module with lowest weight −μr,s .

3. Relaxed highest weight modules M = ⊕∞
m=0 M(m), such that the top component

M(0) has conformal weight hr,sp,p′ + k/4.

In this section we construct a family of relaxed highest weight modules for Vk(sl(2)).
These modules also appeared in [25,32,35,39,57,59,60]. In this section, we shall ex-
plicitly construct these modules and see from the realization that their characters are
given by the Creutzig–Ridout character formulas [32] (see also [45]).

7.1. Realization of relaxed Vk(sl(2))-modules. For every λ ∈ C and r, s ∈ Z, 0 < r <

p, 0 < s < p′ we define the LV ir (dp,p′ , 0) ⊗ �(0)-module

Eλ
r,s = LV ir (dp,p′ , hr,sp,p′) ⊗ �−1(λ) = LV ir (dp,p′ , hr,sp,p′) ⊗ �(0).e−μ+λ 2

k (μ−ν).

Let � ∈ Z and π� be the (spectral flow) automorphism of Vk(sl(2)) defined by

π�(e(n)) = e(n + �), π�( f (n)) = f (n − �), π�(h(n)) = h(n) + �kδn,0.

By using the realization of Vk(sl(2)) one can see that the spectral-flow automorphism
π� can be realized as the lattice element e�μ acting on �(0)-modules:

Proposition 7.1. We have: π�(Eλ
r,s) = LV ir (dp,p′ , hr,sp,p′) ⊗ ��−1(λ).

Proof. Using [5, Proposition 2.1] we get that if (M,YM (·, z)) is a Vk(sl(2))-module
then

(π�(M),Yπ�(M))(·, z)) := (M,YM (
(�h
2 , z)·, z)).

Using Lemma 4.2 we get

(��−1(λ),Y��−1(·, z)) = (�−1(λ),Y�−1(λ)(
(�μ, z)·, z))

which implies π�(Eλ
r,s) = LV ir (dp,p′ , hr,sp,p′) ⊗ ��−1(λ). The proof follows. ��
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Let

Eλ
r,s = vr,s ⊗ e−μ+λ 2

k (μ−ν) = vr,s ⊗ eβ−δ/2+λ(α+β).

Then Eλ
r,s is a primary vector with conformal weight k/4 + hr,sp,p′ , i.e.

Lsug(n)Eλ
r,s = (k/4 + hr,sp,p′)δn,0E

λ
r,s, (n ≥ 0). (24)

The sl(2) action on these vectors is as follows:

e(0)Eλ
r,s = Eλ+1

r,s , (25)

h(0)Eλ
r,s = (−k + 2λ)Eλ

r,s, (26)

f (0)Eλ
r,s =
(

(k + 2)hr,sp,p′ − λ2 + λ(k + 1))
)

Eλ−1
r,s

=
(

(sp − rp′)2

4p2
− (λ − p′ − p

2p
)2
)

Eλ−1
r,s . (27)

Remark 6. Note that f (0)Eλ
r,s = 0 iff λ = λ±

r,s where λ±
r,s = p′−p

2p ± sp−rp′
2p . It is also

important to notice that λ+r,s = s−1
2 − r−1

2 (k + 2), λ−
r,s = λ+p−r,p′−s .

If λ = λ+r,s , then Eλ
r,s is an indecomposable Z≥0-graded Vk(sl(2))-module which

appears in the non-split extension

0 → D−
p−r,p′−s → Eλ

r,s → D+
r,s → 0 (28)

where D±
r,s are irreducible Vk(sl(2))-modules described above. This extension was also

constructed in [32] (see [32, Section 4] and their formula (4.3)). In Sect. 9, we shall see
that indecomposable modules Eλ

r,s appear in the construction of logarithmic modules.

Assume that λ /∈ λ±
r,s + Z.

Theorem 7.2. We have:

1. Eλ
r,s is Z≥0-graded Vk(sl(2))-module.

2. The top component is Eλ
r,s(0) = spanC{Eλ+ j

r,s | j ∈ Z} and it has conformal weight
k/4 + hr,sp,p′ . If λ /∈ (λ±

r,s + Z), then Eλ
r,s(0) is an irreducible sl(2)-module.

3. The character of Eλ
r,s is given by

ch[Eλ
r,s](q, z) = z−k+2λχr,s(q)

δ(z2)

η(τ )2
,

where χr,s(q) = ch[LV ir (dp,p′ , hr,sp,p′)](q), δ(z2) = ∑�∈Z
z2�, η(τ) = q1/24

∏

n≥1
(1 − qn).

Proof. By using (24) we see that Eλ
r,s is Z≥0-graded, and by (25)–(27) we get that the

top component Eλ
r,s(0) is an irreducible sl(2)-module. This proves assertions (1) and

(2). Recall that csug = 3k
k+2 = dp,p′ + 2 + 6k (see Remark 5). Using Proposition 4.5 our

explicit realization gives the following character formula:
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ch[Eλ
r,s](q, z) = TrEλ

r,s
qLsug(0)−csug/24zh(0)

= TrLV ir (dp,p′ ,h
r,s
p,p′ )

qL(0)−dp,p′/24ch�(−1)(λ)(q, z)

= ch[LV ir (dp,p′ , hr,sp,p′)](q) · z
−k+2λδ(z2)

η(τ )2
.

The proof follows. ��

7.2. Irreducibility of relaxed Vk(sl(2))-modules. Wewill now discuss the irreducibility
of relaxed Vk(sl(2))-modules Eλ

r,s . We shall present a proof of irreducibility in generic
cases (cf. Proposition 7.4) which uses our realization and the representation theory of
the vertex operator algebra Vk(sl(2)).

Lemma 7.3. Assume that M =⊕n∈Z≥0
M(n) is an irreducible Z≥0-graded Vk(sl(2))-

module such that M(0) is an irreducible, infinite-dimensional weight sl(2)-module. Then
M is isomorphic to a subquotient of Eλ

r,s for certain 1 ≤ r ≤ p′ − 1, 1 ≤ s ≤ p − 1,
λ ∈ C and

Lsug(0) ≡ (hr,sp,p′ + k/4)Id on M(0).

Proof. If M(0) is an irreducible highest (resp. lowest) weight module for sl(2), then
the classification of irreducible Vk(sl(2))-modules gives that M ∼= D+

r,s (resp. M ∼=
D−

p−r,p′−s .). By Remark 6, M can be realized as a submodule or a quotient of the

indecomposable module Eλ
r,s . If M is an irreducible relaxed Vk(sl(2))-module, then

M(0) ∼= Eλ
r,s(0) for certain r, s, λ, and therefore M is isomorphic to a (quotient) of Eλ

r,s .
The proof follows. ��
Remark 7. Modules Eλ

r,s are irreducible for λ /∈ λ±
r,s + Z. This follows from the fact that

they have the same characters as irreducible quotients of relaxed Verma modules pre-
sented by Creutzig and Ridout [32].We should mention that a new proof of irreducibility
of a large family of relaxed highest weight modules is presented in new paper [45] using
Mathieu’ s coherent families.2 Sato [60] presented a proof of irreducibility of certain
typical modules for the N = 2 superconformal algebra which are related to the relaxed
̂sl(2)-modules via the anti Kazama–Suzuki mapping [2,39].

Proposition 7.4. Let r0, s0 such that 1 ≤ r0 ≤ p′ − 1, 1 ≤ s0 ≤ p − 1 and λ /∈
(λ±

r0,s0 + Z). Assume that

h − hr0,s0p,p′ /∈ Z>0 ∀h ∈ Sp,p′ . (29)

Then Eλ
r0,s0 is an irreducible Vk(sl(2))-module. In particular, Eλ

r0,s0 is irreducible if h
r0,s0
p,p′

is maximal in the set Sp,p′ .

Proof. Assume that Eλ
r0,s0 is reducible. By Lemma 4.3 the operator e(0) = ec0 acts

injectively on the module Eλ
r0,s0 , and therefore there are no submodules of Eλ

r0,s0 with

2 Talk presented by K. Kawasetsu at the conference Affine, vertex andW-algebras, Rome, December 11–15,
2017.
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finite-dimensional Lsug(0)-eigenspaces. Since the top component Eλ
r0,s0(0) is an irre-

ducible sl(2)-module, we conclude that Eλ
r0,s0 has a non-trivial Z≥0-graded irreducible

subquotient M =⊕∞
m=0 M(m), such that dim M(0) = ∞. By Lemma 7.3, the confor-

mal weight of M(0) is h + k/4, such that

h ∈ Sp,p′ , h > hr0,s0p,p′ , h − hr0,s0p,p′ ∈ Z>0.

This contradicts the choice of (r0, s0). The claim holds. ��
Remark 8. Anew result on characters of irreducible relaxedVk(sl(2)) from [45,Theorem
5.2] directly implies that Eλ

r,s is irreducible for all 1 ≤ r ≤ p′ − 1, 1 ≤ s ≤ p − 1 and
λ /∈ (λ±

r,s + Z).

7.3. Realization of the intertwining operators among relaxed modules. We will now
compare our realization with conjectural fusion rules from [32].

Note that in the realization we have π�(Eλ
r,s) = LV ir (dp,p′ , hr,sp,p′) ⊗ ��−1(λ) (cf.

Proposition 7.1). One can show that if

[

(r ′′, s′′)
(r, s) (r ′, s′)

]

(p,p′)
= 1, we can realize the

intertwining operator of the following type

(

π�+�′−1(Eλ+λ′
r ′′,s′′)

π�(Eλ
r,s) π�′(Eλ′

r ′,s′)

)

. (30)

• There is a small difference between notation in [32] where relaxed modules were
denoted by Eμ,
r,s , where 
r,s = hr,sp,p′ . Precise relation is Eλ

r,s = E2λ−k,
r,s .

• Based on the Grothendieck fusion rules [32, Propositions 13 and 18] and [26, Propo-
sition 2.17], it is conjectured that the following fusion rules holds in the category of
weight Vk(sl(2))-modules:

π�(Eμ,
r,s ) � π�′(Eμ′,
r,s )

=
∑

r ′′,s′′

[

(r ′′, s′′)
(r, s) (r ′, s′)

]

(p,p′)

(

π�+�′+1(Eμ+μ′−k,
r ′′,s′′ ) + π�+�′−1(Eμ+μ′+k,
r ′′,s′′ )
)

+
∑

r ′′,s′′

(

[

(r ′′, s′′)
(r, s) (r ′, s′ − 1)

]

(p,p′)

+

[

(r ′′, s′′)
(r, s) (r ′, s′ + 1)

]

(p,p′)

)

π�+�′(Eμ+μ′,
r ′′,s′′ ). (31)

In free field realization, we can only construct an intertwining operator of the type
(30) which is in the terminology of [32]:

(

π�+�′−1(Eμ+μ′+k,
r ′′,s′′ )

π�(Eμ,
r,s ) π�′(Eμ′,
r,s )

)

.

The construction of other three type of intertwining operators is still an open problem.
We should mention that the cases of the collapsing levels k = − 1/2 and k = − 4/3

are very interesting, since then Vk(sl(2)) is related with the triplet vertex algebrasW (p)
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for p = 2, 3 (cf. [4,55]). The fusion rules for these vertex algebras are also related to
the (conjectural) fusion rules for the singlet vertex algebraM(p) (cf. [17,28]). By [32],
the fusion rules for k = − 1/2 are

π�(Eμ,−1/8) � π�′(Eμ′,−1/8)

= π�+�′−1(Eμ+μ′−1/2,−1/8) + π�+�′+1(Eμ+μ′+1/2,−1/8). (32)

In our forthcoming paper [20], we shall study the fusion rules (32).

8. Whittaker Modules for Vk(sl(2))

In this section, we extend result from [9] and construct all degenerateWhittaker modules
at an arbitrary admissible level. As a consequence, we will see that admissible affine
vertex algebra Vk(sl(2)) contains Z≥0-graded modules of the Whittaker type.

Let us first recall some notation from [9].
For a (λ, μ) ∈ C

2, let˜Wh
̂sl2(λ, μ, k) denotes the universal Whittaker module at

level k which is generated by the Whittaker vector wλ,μ,k satisfying

e(n)wλ,μ,k = δn,0λwλ,μ,k (n ∈ Z≥0), (33)

f (m)wλ,μ,k = δm,1μwλ,μ,k (m ∈ Z≥1). (34)

If μ · λ �= 0, then the Whittaker module is called non-degenerate. It was proved
in [9] that at the non-critical level the universal non-degenerate Whittaker module is
automatically irreducible.

But in the degenerate case when μ = 0,˜Wh
ŝl(2)

(λ, 0, k) is reducible and it contains
a non-trivial submodule

M
ŝl(2)

(λ, 0, k, a) :=˜Wh
ŝl(2)

(λ, 0, k)/U (̂sl(2)).(Lsug(0) − a)wλ,μ,k (a ∈ C).

Let Wh
ŝl(2)

(λ, 0, k, a) be the simple quotient of M
ŝl(2)

(λ, 0, k, a).
We have the following result.

Theorem 8.1. For all k, h, λ ∈ C, λ �= 0 we have:

Wh
ŝl(2)

(λ, 0, k, h + k/4) ∼= LV ir (dk, h) ⊗ �λ.

Proof. The proof will use [9, Lemma 10.2] which says that �λ is an irreducible ̂b1-
module, wherêb1 is a Lie subalgebra of ̂sl(2) generated by e(n), h(n), n ∈ Z.

On LV ir (dk, h) we have the weight decomposition:

LV ir (dk, h) =
⊕

m∈Z≥0

LV ir (dk, h)h+m, LV ir (dk, h)h+m

= {v ∈ LV ir (dk, h) |L(0)v = (h + m)v}.
Let vh be the highest weight vector in LV ir (dk, h), and define w̃λ,0,k = vh ⊗ wλ.

Since

e(n)w̃λ,0,k = δn,0λwλ,0,k (n ∈ Z≥0), (35)

f (m)w̃λ,0,k = 0 (m ∈ Z≥1), (36)

Lsug(n)w̃λ,0,k = δn,0(h + k/4)wλ,0,k (n ∈ Z≥0) (37)
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we conclude that ̂W = U (̂sl(2)).w̃λ,0,k is a certain quotient of Mŝl(2)
(λ, 0, k, h + k/4).

Let us first prove that ̂W = LV ir (dk, h) ⊗ �λ. It suffices to prove that for every
m ∈ Z≥0 we have that

v ⊗ w ∈ ̂W ∀v ∈ LV ir (dk, h)h+m, ∀w ∈ �λ. (38)

For m = 0, the claim follows by using the irreducibility of �λ as âb1-module. Assume
now that v′ ⊗ w ∈ ̂W for all v′ ∈ LV ir (dk, h)h+m′ such that m′ < m and all w ∈ �λ.
Let v ∈ LV ir (dk, h)h+m . It suffices to consider homogeneous vectors

v = L(−n0)L(−n1) · · · L(−ns)vh, n0 ≥ · · · ≥ ns ≥ 1, n0 + · · · + ns = m.

Then by inductive assumption we have that L(−n1) · · · L(−ns)vh ⊗ w ∈ ̂W for all
w ∈ �λ. By using the formulae for the action of f (m), m ∈ Z, we get

f (−n0)(L(−n1) · · · L(−ns)vh ⊗ wλ) = AL(−n0)L(−n1) · · · L(−ns)vh ⊗ wλ + z

where A �= 0 and

z =
∑

i

vi ⊗ wi , vi ∈ LV ir (dk, h)h+m′
i
, m′

i < m, wi ∈ �λ.

By using inductive assumption we get that z ∈ ̂W , and therefore v ⊗ wλ ∈ ̂W . Using
the fact that �λ is an irreduciblêb1-module, we get that v ⊗ w ∈ ̂W or every w ∈ �λ.
The claim (38) now follows by induction.

Now the irreducibility result will be a consequence of the following claim:

v ⊗ w is cyclic vector in LV ir (dk, h) ⊗ �λ ∀v

∈ LV ir (dk, h)h+m, m ∈ Z≥0, ∀w ∈ �λ. (39)

For m = 0, the claim (39) follows by using irreducibility of �λ as âb1-module and
(38). Assume now that v ∈ LV ir (dk, h)h+m for m > 0. Then there is m0, 0 < m0 ≤ m
so that L(m0)v �= 0 and L(m0)v ∈ LV ir (ck, h)h+m−m0 . Since

f (m0)(v ⊗ wλ) = (k + 2)λL(m0)v ⊗ wλ,

by induction we have that L(m0)v ⊗ wλ is a cyclic vector. So v ⊗ wλ is also cyclic. By
using again the irreducibility of �λ aŝb1-module, we see that v ⊗ w is cyclic for all
w ∈ �λ. The proof follows. ��

As a consequence, we shall describe the structure of simple Whittaker module
Wh
̂sl2(λ, 0, k, a) at admissible levels, and show that thesemodules are Vk(sl2)-modules.

Theorem 8.2. Assume that k is admissible, non-integral, and λ �= 0. Then we have:

1. Wh
ŝl(2)

(λ, 0, k, a) ∼= LV ir (dp,p′ , hr,sp,p′) ⊗ �λ, where a = hr,sp,p′ + k/4.
2. The set

{Wh
ŝl(2)

(λ, 0, k, h + k/4) | h ∈ Sp,p′ }

provides all irreducible Z≥0-graded Vk(sl(2))-modules which are Whittaker ̂sl(2)-
modules.
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Proof. Since LV ir (dp,p′ , h) for h ∈ Sp,p′ is a LV ir (dp,p′ , 0)-module, we conclude
that LV ir (dp,p′ , h) ⊗ �λ is a LV ir (dp,p′ , 0) ⊗ �(0)-module and therefore a Vk(sl(2))-
module.

Assume thatWh
ŝl(2)

(λ, 0, k, h + k/4) is a Vk(sl(2))-module. We proved in Theorem

8.1 that Wh
ŝl(2)

(λ, 0, k, h + k/4) ∼= LV ir (dp,p′ , h) ⊗ �λ for certain h ∈ C and that

Lsug(0) acts on lowest weight component as h+ k
4 . By using description of Zhu’s algebra

for Vk(sl(2)) (cf. [10,59]) we see that L(0) must act on lowest component as h · Id for
h ∈ Sp,p′ . Therefore, Wh

ŝl(2)
(λ, 0, k, h + k/4) ∼= LV ir (dp,p′ , h) ⊗ �λ for h ∈ Sp,p′ .

The proof follows. ��

9. Screening Operators and Logarithmic Modules for Vk(sl(2))

This section gives a vertex-algebraic interpretation of the construction of logarithmic
modules from [38, Section 5]. By using the embedding of Vk(sl(2)) in the vertex algebra
LV ir (dp,p′ , 0) ⊗ �(0) ⊂ LV ir (dp,p′ , 0) ⊗ VL , we are able to use methods [13] to
construct logarithmic modules for admissible affine vertex algebra Vk(sl(2)). Formula
for the screening operator S appeared in [38]. In the case k = − 4

3 , the construction of
logarithmic modules reconstructs modules from [13, Section 8] and [42].

Note that the basic definitions and constructions related with logarithmic modules
were discussed in Sect. 2.

9.1. Screening operators. First we notice that LV ir (dp,p′ , h2,1p,p′) is an irreducible

LV ir (dp,p′ , 0)-module generated by lowest weight vector v2,1 of conformal weight

h2,1 := h2,1p,p′ = 3p′ − 2p

4p
= 3

4
k + 1.

Let us now consider LV ir (cp,p′ , 0) ⊗ �(0)-module

M2,1 = LV ir (dp,p′ , 0) ⊗ �(0).(v2,1 ⊗ eν) = LV ir (dp,p′ , h2,1p,p′) ⊗ �(1)(− k
2 ).

Note that M2,1 has integral weights with respect to Lsug(0). Using construction from
[49], which was reviewed in Sect. 2.2, we have the extended vertex algebra

V = LV ir (dp,p′ , 0) ⊗ �(0)
⊕

M2,1.

Note also

L(−2)v2,1 = 1

k + 2
L(−1)2v2,1.

[L(n), (v2,1)m] = ((h2,1 − 1)(n + 1) − m)(v2,1)m+n (m, n ∈ Z).

[L(−2), (v2,1)−1] = (2 − h2,1)(v2,1)−3

[L(−2), (v2,1)0] = (1 − h2,1)(v2,1)−2

[L(−2), (v2,1)1] = −h2,1(v2,1)−1

Let s = v2,1 ⊗ eν . By using formula (19) we get

Lsug(n)s = δn,0s (n ≥ 0).
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Therefore

S = s0 = ReszY (s, z)

commute with the action of the Virasoro algebra Lsug(n), n ∈ Z.

We want to see that S commutes with ̂sl(2)-action. The arguments for claim were
essentially presented in [38]. The following lemma can be proved by direct calculation
in lattice vertex algebras.

Lemma 9.1. [38]We have

s2 f = 2(k + 1)v2,1 ⊗ eν− 2
k (μ−ν)

s1 f = kL(−1)v2,1 ⊗ eν− 2
k (μ−ν) + (k + 2)v2,1 ⊗ ν(−1)eν− 2

k (μ−ν)

s0 f = S f = 0.

Proposition 9.2. [38]We have:

[S, ̂sl(2)] = 0,

i.e., S is a scrrening operator.

Proof. Since

sne = snh = 0 (n ≥ 0),

we get [S, e(n)] = [S, h(n)] = 0.
By using Lemma 9.1 we get [S, f (n)] = (S f )(n) = 0. The claim follows. ��

9.2. Construction of logarithmic modules for Vk(sl(2)).

Lemma 9.3. Assume that � ∈ Z, 1 ≤ s ≤ p′ − 1, 1 ≤ r ≤ p − 2 and

λ ≡ λ+r,s = 1

2
(s − 1 − (k + 2)(r − 1)) mod(Z). (40)

Then we have:

1. M�,+
r,s (λ) = LV ir (dp,p′ , hr,sp,p′) ⊗ �(�)(λ)

⊕

LV ir (dp,p′ , hr+1,sp,p′ ) ⊗ �(�+1)(− k
2 + λ)

is a V-module.
2. S2 = 0 on M�,+

r,s (λ).
3. Let λ = λ+r,s − 1. Then

S(vr,s ⊗ e�μ+λc) = Cvr+1,s ⊗ e(�+1)μ+(λ−k/2)c,

where C �= 0. In particular, S �= 0 onM�,+
r,s (λ).
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Proof. In general, LV ir (dp,p′ , hr,sp,p′)⊗�(�)(λ) is a Z-graded module whose conformal

weights are congruent mod(Z) to hr,sp,p′ + 1
4 (k�

2 + 4(� + 1)λ). By direct calculation we
see that

hr+1,sp,p′ +
1

4
((� + 1)2k + 4(� + 2)(λ − k

2
)) ≡ hr,sp,p′ +

1

4
(�2k + 4(� + 1)λ) mod(Z)

if and only if (40) holds. Therefore, we conclude LV ir (dp,p′ , hr,sp,p′) ⊗ �(�)(λ) and

LV ir (dp,p′ , hr,s+1p,p′ )⊗�(�+1)(− k
2 +λ) have conformal weights congruent mod(Z) if and

only if (40) holds.
Let Y1(·, z) be the non-trivial intertwining operator of type

( LV ir (dp,p′ , hr+1,sp,p′ )

LV ir (dp,p′ , h2,1p,p′) LV ir (dp,p′ , hr,sp,p′)

)

.

Then

Y1(v, z) =
∑

r∈Z+


vr z
−r−1 (v ∈ LV ir (cp,p′ , h2,1p,p′))

where


 = h2,1p,p′ + hr,sp,p′ − hr+1,sp,p′ = 1

2
((s − 1) − (r − 1)(k + 2)) = λ+r,s .

In particular, we have

(v2,1)
−1vr,s = C2vr+1,s (C2 �= 0), (v2,1)
+nvr,s = 0 (n ∈ Z≥0).

Let Y2(·, z) be the non-trivial intertwining operator of type

(

�(�+1)(− k
2 + λ)

�(1)(− k
2 ) �(�)(λ)

)

.

Then

Y2(v, z) =
∑

r∈Z−λ

vr z
−r−1 (v ∈ �(1)(− k

2 ) = �(0).eν).

In particular, we have

eν−λ−1e
�μ+λc = C1e

(�+1)μ+(λ−k/2)c (C1 �= 0)

eν−λ−n−1e
�μ+λc �= 0, eν−λ+ne

�μ+λc = 0 (n ∈ Z≥0).

We conclude that there is an non-trivial intertwining operator Y = Y1 ⊗ Y2 of type

( LV ir (cp,p′ , hr+1,sp,p′ ) ⊗ �(�+1)(− k
2 + λ)

LV ir (cp,p′ , h2,1p,p′) ⊗ �(1)(− k
2 ) LV ir (cp,p′ , hr,sp,p′) ⊗ �(�)(λ)

)

with integral powers of z. Now, the assertion (1) follows by applying Lemma 2.3.

By construction we have S2 = 0 on ˜M�,+
r,s (λ), so (2) holds.
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For λ = λ+r,s − 1 we have

Svr,s ⊗ e�μ+λc = (v2,1)
−1vr,s ⊗ eν−λ−1e
�μ+λc

= C1 · C2vr+1,s ⊗ e(�+1)μ+(λ−k/2)c �= 0. (41)

The proof follows. ��
By using the Virasoro intertwining operator of type

( LV ir (dp,p′ , hr−1,s
p,p′ )

LV ir (dp,p′ , h2,1p,p′) LV ir (dp,p′ , hr,sp,p′)

)

and an analogous proof to that of Lemma 9.3 we get:

Lemma 9.4. Assume that � ∈ Z, 1 ≤ s ≤ p′ − 1, 2 ≤ r ≤ p − 1 and

λ ≡ λ−
r,s = −1

2
(s + 1 − (k + 2)(r + 1)) mod(Z). (42)

Then we have:

1. M�,−
r,s (λ) = LV ir (dp,p′ , hr,sp,p′) ⊗ �(�)(λ)

⊕

LV ir (dp,p′ , hr−1,s
p,p′ ) ⊗ �(�+1)(− k

2 + λ)

is a V-module.
2. S2 = 0 on M�,−

r,s (λ).
3. Let λ = λ−

r,s − 1. Then

S(vr,s ⊗ e�μ+λc) = Cvr−1,s ⊗ e(�+1)μ+(λ−k/2)c,

where C �= 0.

The next result shows that at a non-integral admissible levels, logarithmic modules
always exist. By applying Theorem 2.2 and taking v = s we get:

Proposition 9.5. Assume that (M,YM) is any V-module. Then
(˜M,˜YM(·, z)) := (M,YM(
(s, z)·, z))

is a Vk(sl(2))-module such that

˜Lsug(0) = Lsug(0) + S.

In particular, ˜V is a logarithmic Vk(sl(2))-module of ˜Lsug(0) nilpotent rank two.

Proof. First claim follows directly by applying Theorem 2.2.
The assertion (1) follows from the following observations:

• Lsug(0) acts semi-simply on V , and ˜Lsug(0) − Lsug(0) = S on ˜V .
• By construction S(LV ir (dp,p′ , 0) ⊗ �(0)) ⊂ M2,1, S(M2,1) = 0, so S2 = 0 on V .
Since Sν(−1)1 = k

2v2,1 ⊗ eν �= 0 we have

(˜Lsug(0) − Lsug(0)) �= 0, (˜Lsug(0) − Lsug(0))
2 = 0 on ˜V .

��
Using Lemma 9.3 we obtain:
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Corollary 9.6. Assume that � ∈ Z, 1 ≤ s ≤ p′ − 1, 1 ≤ r ≤ p − 2 and λ = λ+r,s . Then
we have:

1. ˜M�,+
r,s (λ) is a logarithmic Vk(sl(2))-module of ˜Lsug(0) nilpotent rank two,

2. The logarithmic module ˜M�,+
r,s (λ) appears in the following non-split extension of

weight Vk(sl(2))-modules:

0 → LV ir (dp,p′ , hr+1,sp,p′ ) ⊗ �(�+1)

(

−k

2
+ λ

)

→ ˜M�,+
r,s (λ)

→ LV ir (dp,p′ , hr,sp,p′) ⊗ �(�)(λ) → 0.

Proof. Lemma 9.3 gives that S �= 0 and S2 = 0 on M�
r,s(λ).

This implies that

(˜Lsug(0) − Lsug(0)) �= 0, (˜Lsug(0) − Lsug(0))
2 = 0 on ˜M�,+

r,s (λ),

which proves the assertion (1).

Note that LV ir (dp,p′ , hr+1,sp,p′ )⊗�(�+1)(− k
2 +λ) is a submodule of ˜M�,+

r,s (λ) on which
S acts trivially.
Therefore, LV ir (dp,p′ , hr+1,sp,p′ ) ⊗ �(�+1)(− k

2 + λ) is a weight submodule. The quotient

module is isomorphic to the weight module LV ir (dp,p′ , hr,sp,p′) ⊗ �(�)(λ).

Since ˜M�,+
r,s (λ) is non-weight module by (1), we have that the sequence in (2) does

not split. The proof follows. ��
Similarly, using Lemma 9.4 we obtain:

Corollary 9.7. Assume that � ∈ Z, 1 ≤ s ≤ p′ − 1, 2 ≤ r ≤ p − 1 and λ = λ−
r,s . Then

we have:

1. ˜M�,−
r,s (λ) is a logarithmic Vk(sl(2))-module of ˜Lsug(0) nilpotent rank two,

2. The logarithmic module ˜M�,−
r,s (λ) appears in the following non-split extension of

weight Vk(sl(2))-modules:

0 → LV ir (dp,p′ , hr−1,s
p,p′ ) ⊗ �(�+1)

(

−k

2
+ λ

)

→ ˜M�,−
r,s (λ)

→ LV ir (dp,p′ , hr,sp,p′) ⊗ �(�)(λ) → 0.

10. A Realization of the N = 3 Superconformal Vertex Algebra Wk′(spo(2, 3), fθ )
for k′ = − 1/3

The cases k ∈ {−1/2,−4/3} were already studied in the literature. In these cases
the quantum Hamiltonian reduction maps Vk(sl(2)) to the trivial vertex algebra, and
therefore the affine vertex algebra Vk(sl(2) is realizead as a vertex subalgebra of �(0).
In the case k = − 1/2, Vk(sl(2)) admits a realization as a subalgebra of the Weyl vertex
algebra and it is also related with the triplet vertex algebra W(2) with central charge
c = − 2 (cf. [37,55]). In [4], the author related V−4/3(sl(2)) with the triplet vertex
algebra W(3) at central charge c = − 7.
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Let k = − 2/3. Then Vk(sl(2)) is realized as a subalgebra of LV ir (d3,4, 0) ⊗ �(0).
But LV ir (d3,4, 0) is exactly the even subalgebra of the fermionic vertex superalgebra
F = LV ir (d3,4, 0) ⊕ LV ir (d3,4,

1
2 ) generated by the odd field �(z) = ∑m∈Z

�(m +
1
2 )z

−m−1 (see Sect. 11). The Virasoro vector is ωF = 1
2�(− 3

2 )�(− 1
2 )1. Let γ = 2

k ν,
ϕ = 2

kμ. Then

〈γ, γ 〉 = −〈ϕ, ϕ〉 = 3.

Let D = Zγ . Then VD = Mγ (1) ⊗ C[D] is the lattice vertex superalgebra, where
Mγ (1) is the Heisenberg vertex algebra generated by γ and C[D] the group algebra of
the lattice D. The screening operator S is then expressed as

S = Resz : �(z)eν(z) := Resz : �(z)e− 1
3 γ (z) : .

Define also

Q = Resz : �(z)eγ (z) : .

We have:

Proposition 10.1. [11]

1. SW (1) ∼= KerF⊗VD S is isomorphic to the N = 1 super-triplet vertex algebra at
central charge c = − 5/2 strongly generated by

X = e−γ , H = QX, Y = Q2X, ̂X = �(−1/2)X, ̂H = Q̂X , ̂Y = Q2
̂X

and superconformal vector τ = 1√
3

(

�(− 1
2 )γ (−1) + 2�(− 3

2 )
)

1 and corresponding
conformal vector

ωN=1 = 1

2
τ0τ = 1

6

(

γ (−1)2 + 2γ (−2)
)

1 +
1

2
�

(

−3

2

)

�

(

−1

2

)

1.

2. SM(1) ∼= KerF⊗Mγ (1)S is isomorphic to the N = 1 super singlet vertex algebra at
central charge c = − 5/2 strongly generated by τ, ωN=1, H, ̂H.

Consider the lattice vertex algebra F−3 = VZϕ . We shall now see that the admissible
affine vertex algebra V−2/3(sl(2)) is a vertex subalgebra of SW (1) ⊗ F−3. Note that
γ (0)−ϕ(0) acts semisimply on SW (1)⊗ F−3 and we have the following vertex algebra

U = {v ∈ SW (1) ⊗ F−3| (γ (0) − ϕ(0))v = 0}.
Following [44], we identify the N = 3 superconformal vertex algebra with affine

W -algebraWk′(spo(2, 3), fθ ). By applying results on conformal embeddings from [19,
Theorem 6.8 (12)], we see that the vertex algebra Wk′(spo(2, 3), fθ ) for k′ = − 1/3 is
isomorphic to the simple current extension of V−2/3(sl(2)):

Wk′(spo(2, 3), fθ ) = L A1

(

−2

3
�0

)

⊕

L A1

(

−8

3
�0 + 2�1

)

.

Theorem 10.2. We have:

1. U ∼= Wk′(spo(2, 3), fθ ) for k′ = −1/3.
2. Com(Mh(1),Wk′(spo(2, 3), fθ )) ∼= SM(1).
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3. Ker(sl(2),− 2
3 )

∼= SM(1)
0
, where SM(1)

0
is even subalgebra of the supersinglet

vertex algebra SM(1).

Proof. Since

Y = Q2X =
(

−6�

(

−3

2

)

�

(

−1

2

)

+ γ (−1)2 − γ (−2)

)

eγ

= −9
(

(k + 2)ωF − ν(−1)2 − (k + 1)ν(−2)
)

eγ (k = − 2/3)

we have that

e = X ⊗ eϕ = eϕ−γ ,

h = −2

3
ϕ,

f = −1

9
Y ⊗ e−ϕ = −1

9
Q2e−ϕ−γ ,

ωsug = ωN=1 − 1

6
ϕ(−1)21.

This implies thatV−2/3(sl(2)) is a vertex subalgebra of U . Therefore, U is aV−2/3(sl(2))-
module which is 1

2Z≥0-graded U =⊕m∈ 1
2Z≥0

Um with respect to Lsug(0). One directly

sees that U1/2 = {0} and that U3/2 = spanC{̂X ⊗ e−ϕ, τ,̂Y ⊗ e−ϕ}. Then U3/2 gener-
ates a V−2/3(sl(2))-module isomorphic to LA1(− 8

3�0 + 2�1). Since U is completely
reducible as V−2/3(sl(2))-module we easily conclude that

U ∼= L A1

(

−2

3
�0

)

⊕

L A1

(

−8

3
�0 + 2�1

)

.

Since U is simple and the extension of V−2/3(sl(2)) by its simple current module
LA1(− 8

3�0 + 2�1) is unique, we get the assertion (1). Assertion (2) follows from

Com(Mh(1),Wk′(spo(2, 3), fθ )) = {v ∈ SW (1) ⊗ F−3 | ϕ(n)v = (γ (0)

−ϕ(0))v = 0, n ≥ 0} ∼= KerSW (1)γ (0) = SM(1).

(3) easily follows from (2). ��

11. Realization of Vk(osp(1, 2))

A free field realization of ̂osp(1, 2) of the Wakimoto type was presented in [36]. In
this section, we study an explicit realization of affine vertex algebras associated to

̂osp(1, 2)which generalize realizations for ̂sl(2) from previous sections. Since the quan-
tum Hamiltonian reduction of V k(osp(1, 2)) is the N = 1 Neveu–Schwarz vertex al-

gebra V ns(ck, 0) where ck = 3
2 − 12 (k+1)2

2k+3 (cf. [44, Section 8.2]), one can expect that
inverse of the quantum Hamoltonian reduction (assuming that it should exist) gives a
realization of the form V ns(ck, 0)⊗F , whereF is a certain vertex algebra of free-fields.
In this section, we show that forF one can take the tensor product of the fermionic vertex
algebra F at central charge 1/2 and the lattice type vertex algebra �1/2(0) introduced
in Sect. 4.
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11.1. Affine vertex algebra Vk(osp(1, 2)). Recall that g = osp(1, 2) is the simple com-
plexLie superalgebrawith basis {e, f, h, x, y} such that the evenpartg0 = spanC{e, f, h}
and the odd part g1 = spanC{x, y}. The anti-commutation relations are given by

[e, f ] = h, [h, e] = 2e, [h, f ] = −2 f

[h, x] = x, [e, x] = 0, [ f, x] = −y

[h, y] = −y, [e, y] = − x [ f, y] = 0

{x, x} = 2e, {x, y} = h, {y, y} = −2 f.

Choose the non-degenerate super-symmetric bilinear form (·, ·) on g such that non-trivial
products are given by

(e, f ) = ( f, e) = 1, (h, h) = 2, (x, y) = −(y, x) = 2.

Let ĝ = g ⊗ C[t, t−1] + CK be the associated affine Lie superalgebra, and V k(g)
(resp. Vk(g)) the associated universal (resp. simple) affine vertex algebra. As usually,
we identify x ∈ g with x(−1)1.

11.2. Clifford vertex algebras. Consider the Clifford algebra Cl with generators �i (r),
r ∈ 1

2 + Z, i = 1, · · · , n and relations

{�i (r),� j (s)} = δr+s,0δi, j , (r, s ∈ 1
2 + Z, 1 ≤ i, j ≤ n).

Then the fields

�i (z) =
∑

m∈Z

�i (m + 1
2 )z

−m−1 (i = 1, . . . , n)

generate on Fn = ∧(�i (−n − 1/2) | n ∈ Z≥0) a unique structure of the vertex super-
algebra with conformal vector

ωFn =
n
∑

i=1

1

2
�i (− 3

2 )�i (− 1
2 )1

of central charge n/2. Let F = F1. Then F is a vertex operator superalgebra of central
charge c = d3,4 = 1/2. Moreover F = Feven ⊕ Fodd and

Feven = LV ir (d3,4, 0), Feven = LV ir (d3,4, 1/2).

Let σ be the canonical automorphism of F of order two. The vertex algebra F has pre-
cisely two irreducible σ -twisted modules M±. Twisted modules can be also constructed
explicitly as an exterior algebra

M± =
∧

(�(−n) | n ∈ Z>0)

which is an irreducible module for twisted Clifford algebra CLtw with generators �(r),
r ∈ Z, and relations

{�(r),� j (s)} = δr+s,0, (r, s ∈ Z).

�(0) acts on top component of M± as ± 1√
2
Id.
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As a LV ir (d3,4, 0)-module, we have that M± ∼= LV ir (d3,4,
1
16 ).

Note also that the character of M± is given by

ch[M±](q) = f2(τ )√
2

= q
1
24

∞
∏

n=1

(1 + qn) (43)

where f2(τ ) = √
2q

1
24
∏∞

n=1(1 + qn) is the Weber function.

11.3. The general case. Let V ns(cp,q , 0) be the universal N = 1Neveu–Schwarz vertex

superalgebra with central charge cp,q = 3
2 (1 − 2(p−q)2

pq ). Let Lns(cp,q , 0) be its simple
quotient. If

p, q ∈ Z, p, q ≥ 2,

(

p − q

2
, q

)

= 1, (44)

then Lns(cp,q , 0) is called a minimal N = 1 Neveu–Schwarz vertex operator superal-
gebra. It is a rational vertex operator superalgebra [1].

Proposition 11.1. Let p, q ∈ Z, p, q �= 0. We have:

1. Assume that p, q, p+q �= 0. The Virasoro vertex operator algebra V V ir (dp, p+q
2

, 0)⊗
V Vir (d p+q

2 ,q , 0) is conformally embedded in V ns(cp,q , 0) ⊗ F and ωp,q + ωF =
ωp, p+q

2
+ ω p+q

2 ,q where

ω p+q
2 ,q = p

p + q
ωp,q + i

√
pq

p + q
G(− 3

2 )�

(

−1

2

)

1 +
2q − p

p + q
ωF

ωp, p+q
2

= q

p + q
ωp,q − i

√
pq

p + q
G(− 3

2 )�

(

−1

2

)

1 +
2p − q

p + q
ωF

2. Assume that p + q = 0. Then

tp,q := 1

2

(

−ωp,q − G

(

−3

2

)

�

(

−1

2

)

1 + 3ωF

)

∈ Lns(cp,q , 0) ⊗ F

is a commutative vector in the vertex algebra Lns( 272 , 0)⊗ F. The vertex subalgebra
generated by tp,q is isomorphic to the commutative vertex algebra MT (0).

3. Assume that p, q satisfy condition (44). Then the rational Virasoro vertex operator
algebra LV ir (dp, p+q

2
, 0)⊗LV ir (d p+q

2 ,q , 0) is conformally embedded in L
ns(cp,q , 0)⊗

F.

Proof. Assertions (1) follows by direct calculation. One can also directly show that
T = tp,q is a commutative vector in Lns( 272 , 0) ⊗ F . Let 〈T 〉 be the vertex subalgebra
generated by T . By using fact that vectors

L(−n1) · · · L(−nr )1 (n1 ≥ · · · nr ≥ 2)

are linearly independent in Lns( 272 , 0) and expression for T one can easily show that the
vectors

T (−n1) · · · T (−nr )1 (n1 ≥ · · · nr ≥ 2)

provide a basis of 〈T 〉. So 〈T 〉 ∼= MT (0).
Assertion (3) was proved in [3] (see also [47,50]). ��
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Theorem 11.2. Assume that k + 3
2 = p

2q �= 0. There exists a non-trivial vertex superal-
gebra homomorphism

� : V k(osp(1, 2)) → V ns(cp,q , 0) ⊗ F ⊗ �1/2(0)

such that

e �→ e
2
k (μ−ν)

,

h �→ 2μ(−1),

f �→
[

�p,q − ν(−1)2 − (k + 1)ν(−2)
]

e− 2
k (μ−ν)

x �→ √
2�

(

−1

2

)

e
1
k (μ−ν)

y �→ √
2

[

−
√−2k − 3

2
G(−3/2) + �

(

−1

2

)

ν(−1) +
2k + 1

2
�

(

−3

2

)

]

e− 1
k (μ−ν)

,

where �p,q = (k + 2)ω p+q
2 ,q if k �= −2 and �p,q = tp,q if k = − 2.

The proof of Theorem 11.2 will be presented in Sect. 12.

Theorem 11.3. Assume that k + 3
2 = p

2q �= 0 and that p, q satisfy condition (44).

1. There exists a non-trivial vertex superalgebra homomorphism

� : Vk(osp(1, 2)) → Lns(cp,q , 0) ⊗ F ⊗ �1/2(0)

such that

e �→ e
2
k (μ−ν)

,

h �→ 2μ(−1),

f �→
[

(k + 2)ω p+q
2 ,q − ν(−1)2 − (k + 1)ν(−2)

]

e− 2
k (μ−ν)

x �→ √
2�

(

−1

2

)

e
1
k (μ−ν)

y �→ √
2

[

−
√−2k − 3

2
G(−3/2) + �

(

−1

2

)

ν(−1) +
2k + 1

2
�

(

−3

2

)

]

e− 1
k (μ−ν)

,

2. ωp, p+q
2

∈ Com(Vk(sl(2)), Vk(osp(1, 2)).

Proof. 1. Using Theorem 11.2 we get a homomorphism ˜� : V k(osp(1, 2)) →
Lns(cp,q , 0) ⊗ F ⊗ �1/2(0). Then Proposition 11.1 implies that ω p+q

2 ,q generates
a subalgebra of Lns(cp,q , 0) ⊗ F isomorphic to the minimal Virasoro vertex alge-
bra LV ir (d p+q

2 ,q , 0). Therefore, Theorem 5.5 gives that e, f, h generate the simple
admissible affine vertex algebra Vk(sl(2)).
At admissible level k, the vertex algebra V k(osp(1, 2)) contains a unique singular
vector, i.e., the maximal ideal of V k(osp(1, 2)) is simple. So we have two possibili-
ties:

Im(˜�) = V k(osp(1, 2)) or Im(˜�) = Vk(osp(1, 2)).
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But, if Im(˜�) = V k(osp(1, 2)), then the subalgebra generated by the embedding
sl(2) into osp(1, 2) must be universal affine vertex algebra V k(sl(2)). A contradic-
tion. So Im(˜�) = Vk(osp(1, 2)), and first assertion holds.

2. By using relation

x(−1)y − ωsl2
sug − 1

2
h(−2) = − p

q
ωp, p+q

2

we see that ωp, p+q
2

∈ Vk(osp(1, 2)). Since Vk(sl(2)) ⊂ LV ir (d p+q
2 ,q , 0) ⊗ �(0) we

get that ωp, p+q
2

commutes with the action of Vk(sl(2)). The claim (2) follows. ��
Remark 9. T. Creutzig and A. Linshaw studied the cosetCom(Vk(sl(2)), Vk(osp(1, 2)),
and proved in [31, Theorem 8.2] that if k is admissible, then the coset is isomorphic to a
minimal Virasoro vertex algebra. This can be also directly proved from Theorem 11.3.

11.4. Realization of V k(osp(1, 2)) at the critical level. Let M(0) = C[b(−n) |n ≥ 1]
be the commutative vertex algebra generated by the field b(z) =∑n≤−1 b(n)z−n−1.

Let NScri the infinite-dimensional Lie superalgebra with generators

C, T (n),Gcri
(

n +
1

2

)

(n ∈ Z)

such that T (n),C are in the center and

{Gcri (r),Gcri (s)} = 2T (r + s) +
r2 − 1

4

3
δr+s,0C (r, s ∈ 1

2 + Z).

Let V ns
cri be the universal vertex superalgebra associated to NScri such that C acts as

scalarC = − 3. V ns
cri is freely generated by odd fieldG

cri (z) =∑n∈Z
Gcri (n+ 3

2 )z
−n−2

and even vector T (z) =∑nZ
T (n)z−n−2 such that T is in central and that the following

λ-bracket relation holds:

[Gcri
λ Gcri ] = 2T − λ2.

V ns
cri can by realized as the vertex subalgebra of F2 ⊗ M(0) generated by

Gcri = b(−1)�2

(

−1

2

)

+ �2

(

−3

2

)

, T = 1

2
(b(−1)2 + b(−2)).

By direct calculation we get that

ω1,2 = T (−2) + Gcri
(

−3

2

)

�

(

−1

2

)

+ 2ωF

is a Virasoro vector of central charge c1,2 = −2.
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Theorem 11.4. 1. Assume that k = − 3/2. There exists a non-trivial homomorphism

� : V k(osp(1, 2)) → V ns
cri ⊗ F ⊗ �1/2(0)

such that

e �→ e
2
k (μ−ν)

,

h �→ 2μ(−1),

f �→
[

(k + 2)ω1,2 − ν(−1)2 − (k + 1)ν(−2)
]

e− 2
k (μ−ν)

x �→ √
2�

(

−1

2

)

e
1
k (μ−ν)

y �→ √
2

[

− i

2
Gcri
(

−3

2

)

+ �

(

−1

2

)

ν(−1) +
2k + 1

2
�

(

−3

2

)]

e− 1
k (μ−ν)

.

2. T = 1
2G

cri (− 1
2 )G

cri (− 3
2 )1 is a central element of V k(osp(1, 2)).

Remark 10. In the same way as in [44, Section 8.2] one can show that for k = − 3
2 :

Wk(osp(1, 2), fθ ) ∼= V ns
cri .

T. Arakawa proved in [22] that when g is a Lie algebra and f nilpotent element, then

Z(W−h∨
(g, f )) = Z(V−h∨

(g)).

We believe that the results from [22] hold for g = osp(1, 2), which would prove the
following:

• Z(V k(osp(1, 2))) ∼= Z(V ns
cri )

∼= MT (0);
• the homomorphism � from Theorem 11.4 is injective.

12. Proof of Theorem 11.2

We shall first prove an important technical lemma.

Lemma 12.1. Let ȳ = [� (− 1
2

)

ν(−1) + 2k+1
2 �(− 3

2 )
]

e− 1
k (μ−ν). We have:

1. ȳ(2)ȳ = − 1
4 (2k + 1)(4k + 5)e− 2

k (μ−ν)
,

2. ȳ(1)ȳ = (2k+1)(4k+5)
4k (μ(−1) − ν(−1))e− 2

k (μ−ν) = − (2k+1)(4k+5)
8 De− 2

k (μ−ν)
,

3. ȳ(0)ȳ =
(

2k+1
4 �(− 3

2 )�(− 1
2 ) + ν(−1)2 + (k + 1)ν(−2) − (2k+1)(4k+5)

4 S2
(

ν−μ
k

)

)

e− 2
k (μ−ν)

,

where S2(γ ) = 1
2 (γ (−1)2 + γ (−2)).
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Proof. Let τ =
√

−2
k

(

�(− 1
2 )ν(−1) + (k + 1)�(− 3

2 )
)

1, br = e
r
k (μ−ν). Then τ gener-

ates a N = 1 superconformal vertex algebra of central charge c = 3
2k (4(k + 1)2 + k).

We have

ω = 1

2
τ 0τ = − 1

k

(

ν(−1)2 + (k + 1)ν(−2)
)

+ ω f er .

ȳ(p) =
√

−k

2
(τ−1b

−)p =
√

−k

2

∞
∑

j=0

τ−1− j b
−1
p+ j + b−1

−1− j+pτ j .

By applying formulas

τnb
−1 = −1

2

√−2

k
δn,0�

(

−1

2

)

b−1 (n ≥ 0),

τ jτ−1b
−1 = 0 ( j ≥ 3),

τ2τ−1b
−1 =
(

4(k + 1)2 + k

k
− 2k + 3

2k

)

b−1 = 8(k + 1)2 − 3

2k
b−1

τ1τ−1b
−1 = 2

k
ν(−1)b−1

τ0τ−1b
−1 = −2

k

(

ν(−1)2 + kν(−2)
)

b−1 + �

(

−3

2

)

�

(

−1

2

)

b−1

−1

k
ν(−2)b−1 − 2k + 1

2k
�

(

−3

2

)

�

(

−1

2

)

b−1

= −2

k

(

ν(−1)2 +
2k + 1

2
ν(−2)

)

b−1 − 1

2k
�

(

−3

2

)

�

(

−1

2

)

b−1

we get

ȳ(2)ȳ = −k

2

(

b−1
−1τ2τ−1b

−1 + b−1
0 τ1τ−1b

−1 + b−1
1 τ0τ−1b

−1
)

= −k

2

(

4(k + 1)2 + k

k
− 2k + 3

2k
+
1

k
− k + 1

k

)

b−2

= −1

4
(2k + 1)(4k + 5)b−2.

ȳ(1)ȳ = −k

2

(

b−1
−2τ2τ−1b

−1 + b−1
−1τ1τ−1b

−1 + b−1
0 τ0τ−1b

−1
)

= −k

2
(−8(k + 1)2 − 3

2k2
(μ(−1) − ν(−1))b−2

+
2

k
ν(−1)b−2 − 1

k2
(μ(−1) − ν(−1))b−2

+
k + 1

k2
(μ(−1) − ν(−1))b−2 − 2

k
ν(−1)b−2)

= (4k + 5)(2k + 1)

4k
(μ(−1) − ν(−1))b−2 = − (2k + 1)(4k + 5)

8
De− 2

k (μ−ν)
.

ȳ(0)ȳ = −k

2

(

b−1
−3τ2τ−1b

−1 + b−1
−2τ1τ−1b

−1 + b−1
−1τ0τ−1b

−1 + τ−1b
−1
0 τ−1b

−1
)
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= −k

2

(

8(k + 1)2 − 3

2k
S2

(

ν − μ

k

)

b−2 − 2

k2
ν(−1)(μ(−1) − ν(−1))b−2

+
1

k
S2

(

ν − μ

k

)

b−2 − 2

k

(

ν(−1)2 +
2k + 1

2
ν(−2)

)

b−2

− 1

2k
�

(

−3

2

)

�

(

−1

2

)

b−2

−k + 1

k
S2

(

ν − μ

k

)

b−2 +
2

k2
ν(−1)(μ(−1) − ν(−1))b−2

−1

k

(

ν(−2) + k�

(

−3

2

)

�

(

−1

2

)

b−2
))

= − (2k + 1)(4k + 5)

4
S2

(

ν − μ

k

)

b−2 +
2k + 1

4
�

(

−3

2

)

�

(

−1

2

)

b−2

+(ν(−1)2 + (k + 1)ν(−2))b−2.

The proof follows. ��

12.1. Proof of Theorem 11.2. First we notice that cp,q = − 3
2

(4k+5)(2k+1)
2k+3 .

Assume that k �= −2. Since

e, f, h ∈ V Vir (d p+q
2 ,q , 0) ⊗ �(0) ⊂ V ns(cp,q , 0) ⊗ F ⊗ �1/2(0),

then Proposition 3.1 implies that vectors e, f, h generate a vertex subalgebra of
V ns(cp,q , 0) ⊗ F ⊗ �1/2(0) isomorphic to V k(sl(2)). In the case k = − 2, vector �p,q
generates a commutative vertex algebra isomorphic to MT (0), and therefore Proposi-
tion 3.2 implies that e, f, h generate a quotient of V k(sl(2)).

Next, we need to prove that for n ≥ 0 the following relations hold:

h(n)x = δn,0x, e(n)x = 0, x(n) f = δn,0y (45)

h(n)y = −δn,0y, e(n)y = −δn,0x, f (n)y=0 (46)

x(n)x = 2δn,0e, y(n)y = −2δn,0y, x(0)y = h, x(1)y = 2k1. (47)

Let us first prove that x(n) f = δn,0y for n ≥ 0. Clearly x(n) f = 0 for n ≥ 2. We
have:

x(1) f = √
2

(

�

(

3

2

)

�p,q +
2k + 1

4
�

(

−1

2

))

e− 1
k (μ−ν)

= √
2

(

−2k + 1

4
�

(

3

2

)

�

(

−3

2

)

�

(

−1

2

)

+
2k + 1

4
�

(

−1

2

))

e− 1
k (μ−ν)=0,

x(0) f = √
2

(

�

(

1

2

)

�p,q +
2k + 1

4
�

(

−3

2

))

e− 1
k (μ−ν)

+
√
2�

(

3

2

)

�p,q
1

k
(μ − ν)(−1)e− 1

k (μ−ν)

+
√
2
2k + 1

4
�

(

−1

2

)

1

k
(μ − ν)(−1)e− 1

k (μ−ν)+
√
2�

(

−1

2

)

ν(−1)e− 1
k (μ−ν)
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= √
2

[

−
√−2k − 3

2
G(−3/2) + �

(

−1

2

)

ν(−1)

+
2k + 1

2
�

(

−3

2

)]

e− 1
k (μ−ν) = y.

By using an easy calculation we get:

x(1)y = 2

(

2k + 1

2
− 1

2

)

1 = 2k1,

x(0)y = 2k
1

k
(μ − ν)(−1) + 2ν(−1) = 2μ(−1) = h,

e(0)y = δn,0x,

x(n)x = 2δn,0e.

Finally, we will check relation y(n)y = −2δn,0. Clearly, y(n)y = 0 for n ≥ 3. For the
cases n = 0, 1, 2 we need to use Lemma 12.1. We have:

y(2)y = (−1

2
(2k + 1)(4k + 5) − 2k + 3

3
cp,q)e

− 2
k (μ−ν) = 0,

y(1)y =
(

(2k + 1)(4k + 5)

2k
+
2k + 3

3k
cp,q

)

(μ(−1) − ν(−1))e− 2
k (μ−ν) = 0,

y(0)y =
(

− (2k + 1)(4k + 5)

4
− 2k + 3

3
cp,q

)

S2

(

ν − μ

k

)

e− 2
k (μ−ν)

+

(

−(2k + 3)ωp,q + (2k + 1)ωF − i
√
2k + 3G

(

−3

2

)

�

(

−1

2

))

e− 2
k (μ−ν)

+
(

2(ν(−1)2 + (k + 1)ν(−2))
)

e− 2
k (μ−ν)

= −2
(

(k + 2)ωp, p+q
2

− (ν(−1)2 + (k + 1)ν(−2))
)

e− 2
k (μ−ν) = −2 f.

In this way we have checked relations (45)–(47). This finishes the proof of Theorem. ��

13. Example: Weight and Whitaker Modules for k = − 5/4

As we have seen in previous sections (see also [7,9,21]) for the analysis of weight,
Whittaker and logarithmic modules, the explicit free-field realization is very useful.

The realization of Vk(osp(1, 2)) is simpler in the cases when Lns(cp,q , 0) is a 1-
dimensional vertex algebra, and therefore Vk(osp(1, 2)) can be realizaed on the vertex
algebra F ⊗ �1/2(0). This happens only in the cases k = − 1

2 and k = − 5
4 . In the case

k = − 1
2 , Vk(osp(1, 2)) can be realized on the tensor product of the Weyl vertex algebra

W with the fermionic vertex algebra F of central chargce c = 1/2. But this is essentially
known in the literature, as a special case of the realization of V−1/2(osp(1, 2n)) (cf. [37]).

In this section,we specialize our realization to the case k = −5/4.Weget a realization
of the vertex algebra Vk(osp(1, 2), which was investigated by D. Ridout, J. Snadden and
S. Wood [57] by using different methods. It is also important to notice that the vertex
algebra Vk(osp(1, 2)) is a simple current extension of Vk(sl(2)):

V− 5
4
(osp(1, 2)) = LA1

(

−5

4
�0

)

+ L A1

(

−9

4
�0 + �1

)

,
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which can be also proved from our realization. Then k + 3
2 = p

2q for p = 2, q = 4. Since
cp,q = 0, we have that Lns(cp,q , 0) is a 1-dimensional vertex algebra.

Remark 11. Note that k = −h∨/6 − 1 is a collapsing level for g = osp(1, 2) [18]. In
this case we have the realization inside the free field algebra F ⊗ �1/2(0) without any
W-algebra.

We have the following realization of Vk(osp(2, 1)).

Corollary 13.1. Assume that k = − 5
4 .

1. There exists a non-trivial vertex superalgebra homomorphism

� : Vk(osp(1, 2)) → F ⊗ �1/2(0)

such that

e �→ e
2
k (μ−ν)

,

h �→ 2μ(−1),

f �→
[

(k + 2)ω3,4 − ν(−1)2 − (k + 1)ν(−2)
]

e− 2
k (μ−ν)

x �→ √
2�

(

−1

2

)

e
1
k (μ−ν)

y �→ √
2

[

�

(

−1

2

)

ν(−1) +
2k + 1

2
�

(

−3

2

)]

e− 1
k (μ−ν)

,

where ω3,4 = 1
2�(− 3

2 )�(− 1
2 )1.

2. Assume that U (resp. U tw) is any untwisted (resp. g-twisted) �1/2(0)-module. Then
• F ⊗U and M± ⊗Utw are untwisted Vk(osp(1, 2))-modules.
• F ⊗Utw and M± ⊗U are Ramond twisted Vk(osp(1, 2))-modules.

A classification of irreducible untwisted and twisted Vk(osp(2, 1))-modules were
obtained [57, Theorem 9] by using Zhu’s algebra approach. All representations can be
constructed using our free-field realization.Maybemost interesting examples are relaxed
highest weight Vk(osp(2, 1))-modules. We shall consider here only Neveu–Schwarz
sector, i.e, non-twisted Vk(osp(2, 1))-modules.

Consider the σ ⊗ g-twisted module F ⊗ �1/2(0)-module Fλ := M± ⊗ �
(1/2)
(−1) (λ)

for λ ∈ C. Then Fλ is an untwisted Vk(osp(1, 2))-module. As in Sect. 7 we define

Eλ
1,2 = 1± ⊗ e−μ+λ 2

k (μ−ν). Then the action of osp(1, 2) is given by

e(0)Eλ
1,2 = Eλ+1

1,2 ,

h(0)Eλ
1,2 = (−k + 2λ)Eλ

1,2,

f (0)Eλ
1,2 =
(

1

16
−
(

λ +
1

8

)2
)

Eλ−1
1,2 =

(

3

8
+ λ

)(

1

8
− λ

)

Eλ−1
1,2

x(0)Eλ
1,2 = ±E

λ+ 1
2

1,2

y(0)Eλ
1,2 = ∓

(

3

8
+ λ

)

E
λ− 1

2
1,2 .
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Moreover, we have

Lsug(n)Eλ
1,2 = −1

4
δn,0E

λ
1,2 (n ≥ 0).

Theorem 13.2. Assume that λ /∈ 1
8 + 1

2Z. Then Fλ is an irreducible Z≥0-graded
Vk(osp(1, 2))-module whose character is

ch[Fλ](q, z) = TrFλqLsug(0)−c/24zh(0) = z2λ−k f2(τ )δ(z)√
2η(τ)2

,

where f2(τ ) = √
2q

1
24
∏∞

n=1(1 + qn). (In the terminology of [57], Fλ corresponds to
C�,0 where � = 2λ + 5

4 ).

Proof. Note first that Fλ is Z≥0-graded and that its lowest component is Fλ(0) =
spanC{Eλ+i

1,2 , i ∈ 1
2Z}. The osp(1, 2)-action obtained above implies that Fλ(0) is

irreducible forλ /∈ 1
8 +

1
2Z. By using realization,we see that as Vk(sl(2))-modulewe have

Fλ = Eλ
1,2 ⊕Eλ+1/2

1,2 , where Er
1,2 = LV ir (d3,4,

1
16 )⊗�−1(r). By Proposition 7.4, Er

1,2 is

irreducible for r /∈ 1
8 + 1

2Z. Therefore, Fλ is a direct sum of two irreducible Vk(sl(2))-
modules, which easily gives irreducibility result since Vk(osp(1, 2)) is a simple current
extension of Vk(sl(2)). The character formula follows directly from the realization,
character formula for �

1/2
(−1)(λ) (cf. Proposition 4.5) and (43):

ch[Fλ](q, z) = ch[M](q)ch[�1/2
(−1)(λ)](q) = z2λ−k f2(τ )δ(z)√

2η(τ)2
. (48)

��
We also have the following result on the irreducibility of some Whittaker modules.

Corollary 13.3. We have: M± ⊗ �λ is irreducible Vk(osp(1, 2))-module.

Proof. M±⊗�λ is a Vk(osp(1, 2))-module byCorollary 13.1 (2). The irreducibility fol-
lows from the fact that M± ⊗�λ is, as a Vk(sl(2))-module, isomorphic to theWhittaker
module LV ir (d3,4,

1
16 ) ⊗ �λ, which is irreducible. ��

Remark 12. A generalization of modules constructed above is as follows. Let LR(c,h)±
be the irreducible Ramond twisted modules for the simple N = 1 Neveu–Schwarz
vertex algebra Lns(c, 0) (cf. [12,40,53]). For an arbitrary admissible level k, we have
the following family of Z≥0-graded relaxed and Whittaker Vk(osp(1, 2))-modules:

LR(cp,q , h)± ⊗ M± ⊗ �
1/2
(−1)(λ), LR(cp,q , h)± ⊗ M± ⊗ �λ.

The irreducibility of modules LR(cp,q , h)± ⊗ M± ⊗ �
1/2
−1 (λ) can be proved by using

character formulas for irreducible relaxed ̂osp(1, 2)-modules from [45, Theorem 8.2].
Let h = 
r,s be given by formula (8.11) in [45]. Using Proposition 4.5, we see that

the character of the module LR(cp,q , h)± ⊗ M± ⊗ �
1/2
(−1)(λ) is given by
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ch[LR(cp,q , h)±](q)ch[M±](q)ch[�1/2
(−1)(λ)](q, z)

= ch[LR(cp,q , h)±](q) f2(τ )
z2λ−k

√
2η(τ)2

δ(z),

which coincides with the character of the admissible relaxed Vk(osp(1, 2))-module
NSE2λ−k,qr,s in [45, Theorem 8.2].
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