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Abstract: We use the dispersive properties of the linear Schrodinger equation to prove
local well-posedness results for the Boltzmann equation and the related Boltzmann
hierarchy, set in the spatial domain R? for d > 2. The proofs are based on the use of the
(inverse) Wigner transform along with the spacetime Fourier transform. The norms for
the initial data f are weighted versions of the Sobolev spaces L% HY witha € ( %, oo).
Our main results are local well-posedness for the Boltzmann equation for cutoff Maxwell
molecules and hard spheres, as well as local well-posedness for the Boltzmann hierarchy
for cutoff Maxwell molecules (but not hard spheres); the latter result holds without any
factorization assumption for the initial data.

1. Introduction

Boltzmann’s equation is an evolutionary partial differential equation (PDE) which de-
scribes the behavior of a dilute gas of identical particles in a specific scaling limit.
The equation describes the time evolution of a density function f (¢, x, v) > 0, where
x, v € RY are the position and velocity of a typical particle.

The Cauchy problem for Boltzmann’s equation is one of the fundamental mathemat-
ical problems in kinetic theory and it may be written in the following form:

(0 +v-Vy) f(t,x,v) = O(f, /H, x,v) e))
f©O,x,v) = folx,v) 2)

where the collision operator Q is defined as follows:

O(f. )t x, v>=/ / doodvb <|U_U2|,w. v—vz)
R4 Jgd-1 v — vy (3)
X (f(tvx’ U*)f(t,x, U;) - f(t,x, U)f(t,_x, vz)) .
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The collision kernel b is a function which depends on the physical interaction between
particles; pre-collisional and post-collisional velocities are related by the following in-
volutive transformation, for v, vy € R4 and fixed w € S9!

vV =v+(w- (v —v))w
v, =12 — (w- (V2 — V) w.

The most general known solutions of Boltzmann’s equation are the renormalized
solutions of [7], which exist globally in time for arbitrary data fy having finite mass,
second moments and entropy:

/ folx, v) (1 o+ xP? + log(1 + folx, v))) dxdv < +oo. (4)
R4 x R4

However, renormalized solutions have many limitations; for instance, they are not known
to solve the Boltzmann equation in the usual distributional sense (which makes them
difficult to manipulate), nor are they known to be unique, nor are they known to con-
serve energy. A different and very fruitful line of investigation considers solutions close
to an equilibrium distribution of fixed temperature, see e.g. [1,8,13,14,22,23]. These
solutions exist globally in time and enjoy uniqueness and continuous dependence in
appropriate functional spaces; however, the theory only applies in a small neighborhood
of equilibrium.

In the paper at hand, we investigate the local theory of well-posedness, and will leave
questions addressing global well-posedness for future work. In particular, we intend to
prove existence, uniqueness and continuous dependence of solutions, locally in time and
for large data, with regularity as low as possible. See [2,3, 16] for some existing theories
of local solutions for Boltzmann’s equation. We especially refer to Remark 1 of of [2],
which provides (in the case of Grad cut-off) a large data local well-posedness result which
parallels our Theorem 2.2 when o > % in d = 3.! Our main intention, however, is not
to investigate optimal regularity spaces for solving Boltzmann’s equation. Rather, we
intend to demonstrate the close connection between Boltzmann’s equation and nonlinear
Schrodinger equations (NLS) in the density matrix formulation; this connection has been
recognized implicitly for some time, but we wish to make it quite explicit, and to the best
of our knowledge, this is the first time such an explicit connection has been established.”
The local well-posedness theory for NLS is by now very mature and it is our hope
that some tools which have been useful for NLS will turn out to be applicable to the
corresponding problem for Boltzmann’s equation. If the theory can be made precise
enough, it may turn out to be useful for such problems as global well-posedness or the
derivation of Boltzmann’s equation from deterministic particle systems.

Besides providing a new approach to proving local well-posedness for Boltzmann’s
equation, we will also prove new results concerning the Boltzmann hierarchy for at least
some collision kernels. The Boltzmann hierarchy is an infinite hierarchy of coupled PDE
which describes a gas of infinitely many particles, possibly accounting for correlations
between particles. For some class of collisional kernels, the Boltzmann hierarchy ap-
pears in the derivation of Boltzmann’s equation from classical system of many particles.

1 We are able to prove a conditional local well-posedness result when f{ is in a weighted version of L% HY
with o > % (here conditional means that uniqueness only holds assuming some auxiliary estimate satisfied

by the constructed solution). It is conceivable that the uniqueness is unconditional when « > %, cf. [2], but
we do not pursue this issue.

2 We emphasize that we do not make use of any semiclassical limit.
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Roughly speaking, the marginals f,i,k ) (t),1 <k < N, of the N-particle probability den-

sity fn (which solves Liouville’s equation from classical mechanics), satisfy a system
of N coupled linear PDEs referred to as a BBGKY Hierarchy. Deriving the BBGKY
hierarchy from first principles is in itself a nontrivial task in the case of hard spheres
(we note that the hard sphere Boltzmann hierarchy is not treated in the present work,
due to technical challenges). The Boltzmann hierarchy (for a given interparticle poten-
tial) is obtained from the BBGKY hierarchy in a suitable limit as N — oo, under the
Boltzmann—Grad scaling (i.e. gas particles have a finite, non-zero mean free propagation
time). We refer the reader to [12,19-21], and references therein, for further details. The
Boltzmann hierarchy and Boltzmann equation are connected by the fact that the Boltz-
mann hierarchy admits a class of factorized solutions with each factor being a solution
to the Boltzmann equation.

The classical local well-posedness result for the Boltzmann hierarchy is due to Lan-
ford [19], who assumes L°° bounds on the initial data. Our results establish local well-
posedness in a functional setting much different than Lanford’s; in particular, we can
work with spaces that do not embed locally into L°° in any variable. Unfortunately, we
cannot report any new results concerning the Boltzmann hierarchy for hard spheres; this
is the topic of ongoing research.

Remark. An important aspect of the Boltzmann hierarchy is that typical results one
can expect to prove depend strongly on whether the marginals f®,k =1,2,3, ..., are
assumed to be true marginals of some underlying exchangeable distribution (cf. de Finetti
theorems). Under such assumptions, one can usually expect to prove optimal regularity
results, but the situation is quite different without de Finetti type assumptions. We note
that, for finite N in the Boltzmann—Grad limit, it is usually very hard to make optimal
use of exchangeability of particles (but see [4,20] for results in this direction). Hence,
it is of interest to find local well-posedness results for the Boltzmann hierarchy that do
not rely on exchangeability. In the work at hand, we do not rely on exchangeability in
our treatment of the Boltzmann hierarchy.

The idea at the heart of our proofs is to take the inverse Wigner transform of Boltz-
mann’s equation (resp. the Boltzmann hierarchy). The transport operator

(0 +v - Vy)

is transformed into the linear Schrodinger operator

1
(iar *3 (A — Ax/)) ,

and the nonlinear operator Q(f, f) becomes a new operator B(y, y). This provides
us with the possibility to prove a bilinear estimate of a similar type as the one proved
by Klainerman and Machedon [18]. Subsequently, we can employ an iteration method
inspired by the one developed in [6]; these methods were originally devised for proving
the local well-posedness of the Gross—Pitaevskii hierarchy. In this paper, we implement
them at the level of the transformed Boltzmann equation, as well as at the level of
the transformed Boltzmann hierarchy.> The main point that we make here is that the
transformed Boltzmann equation is closely related to a nonlinear Schrédinger equation,

3 In which case we also use the boardgame combinatorial argument as presented by Klainerman and
Machedon [18], which is a reformulation of the combinatorial methods of Erdds, Schlein and Yau [9-11].
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and the transformed Boltzmann hierarchy is closely related to the Gross—Pitaevskii
hierarchy, with nonlinearities capturing the information about the interaction between
particles encoded in the Boltzmann collision kernels. Based on this point of view, we
develop tools and employ techniques for local well-posedness inspired by tools and
techniques that have been recently introduced in the context of the Gross—Pitaevskii
hierarchy.

Organization of the paper. Section 2 provides a detailed description of the main results
proven in this paper, using the Wigner transform. Section 3 gives the proof of a crucial
proposition which is used to prove all our results, and constitutes the main technical
contribution of the paper. Section 4 is devoted to the proof of local well-posedness for
the Boltzmann equation; this result extends to cutoff Maxwell molecules, hard spheres,
and variable hard sphere models. Section 5 gives a brief outline of the proof of local well-
posedness for the Boltzmann hierarchy, including the case of cutoff Maxwell molecules
(but not hard spheres).

2. Main Results

2.1. Notation and preliminaries. Given a function f(x,v) € L? , we define its inverse
Wigner transform y (x, x) € Li .+ by the following formula:

+x’ X ,
y(x,x') = /Rl f (x 2x ,v) VD gy, (5)
The inverse of the inverse Wigner transform is the usual Wigner transform, namely:
1 y Y\ —ivy
V) = —— +o,x— 2 Ydy. 6
Fx,v) (2n)d/Rd”(x 2" 2>e Y ©)

All of our main results will be stated in terms of y; in particular, if we say f(¢) satisfies
Boltzmann’s equation, we mean that y (¢) solves the Duhamel formula associated with
the inverse Wigner transform of the Boltzmann equation.

Remark. Note that if y (x, x’) = y (x/, x) forall x, x’ € R¥, then f is everywhere real-
valued; the converse also holds. In particular, it is easy to check on the inverse Wigner
side that f is real-valued. It is much less simple to determine whether f is non-negative,
and this is an issue we do not address in the present work.

Throughout the paper, we will assume that 0 < b € L%o for some A € [0, 1], where

we have defined
b ()]
bl = sup AL

ueRd, weSd-1 L+ |M|A

(7
We will require the Fourier transform of the collision kernel, which is written

b (£) =f b <|u|,a)- i) e E gy (8)
Rd |ue]

Note that b® is a tempered distribution in general. Special cases include b = 1 with
A = 0 (Maxwell molecules with angular cut-off), b = [w - u], with A = 1 (hard
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spheres), and 0 < A < 1 for variable hard sphere models. Not all results will apply for
the full range A € [0, 1].

We introduce the weighted Sobolev spaces which define our functional setting. Let
7 denote the Fourier transform of y:

y(E &N = / e E oI E L (v Ydxdx!. 9)
R4 x R4

Then, for any «, 8,k > 0, and any o > 0,

1
ly @) | ason = ”(s v e g e (10)
L
Note that this norm is equivalent to the following norm for the classical densities:
Ex a
H (20)f 27 (1 = A0 flx,v) (1
L2

X,v

Remark. We emphasize that we can allow k = 0 for some of our results, e.g. the case
of cutoff Maxwell molecules. We always require « > 0 in the case of hard spheres.

2.2. Warm-up: free transport. We present a few brief remarks on the free transport
equation before turning to our main results. The main point we wish to make is that if
f(t, x, v) solves the equation

@r+v-Vy) f=0 (12)

then the inverse Wigner transform y (7, x, x’) satisfies the following linear Schrédinger
equation:

1
(i8,+§(Ax —AX/)> y(t, x,x")=0. (13)
We emphasize that this correspondence does not rely on any semiclassical limit.

Example 2.1. If y(t,x,x) = eF =) for some k € RY, then y solves (13) and
f(t, x,v) = cd(v — k) solves (12).

Example 2.2. I y (1, x, x') = |t| el (¥P=')/2) then y solves (13) and f(Z, x, v) =
c8(x — vt) solves (12).

Example 2.3. If f(t,x,v) = 8(x — vt)é(v — vp), for a fixed vy € R4, then f solves
(12); moreover, the classical state (position and velocity) is known exactly. In any case,
y exists as a distribution; for any u(z, x, x') € CP(R x R? x RY) we have

/ v, x, xu(t, x, x")dtdxdx'
RxR4 xR4 (14)
= c/ 21Ny (¢ vt + 7, vot — z)dzdt.
RxR4
Equivalently, y (¢, x, x") = § (J%x, — vot) €0 =) If yg = 0 then y obviously solves
(13); by a Galilean shift, y solves (13) for arbitrary vy € R4, Therefore, the “fundamental
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solution” for (12) transforms into a solution of (13) under the inverse Wigner transform.
We conclude that any classical state (evolving under free transport) can be represented
by a distribution y (¢, x, x”) (evolving via a linear Schrodinger equatlon) Let us also
point out that the inverse Wigner transform regarded as a map f € Lx sV E Lx ,
is an isometric isomorphism; and, these spaces are preserved by either (12) or (13)
respectively. Hence the equivalence of (12) and (13) is reflected at the L? level of
regularity.

Remark. If ¢ (¢, x) solves the Schrodinger equation
1
<18,+ A >¢(t x)=0 (15)

then the function y (¢, x, x') = ¢ (¢, x)¢ (¢, x’) solves (13) and the Wigner transform f
solves (12) (though f in this case need not be non-negative).

We now prove the equivalence of (12) and (13) at the L? level of regularity. (The
same result holds if f, y are tempered distributions, and the proof is the same.)

Lemma 2.1. Suppose
felLl ([o, T1, LR x R;f)) (16)

and let
y e L' (10,71, L2(R{ x RY)) (17)

denote the inverse Wigner transform of f. Then f solves
@ +v-Vy) f=0 (18)

in the sense of distributions, if and only if y solves
: 1 '
18,+§(AX—AX/) y(t,x,x)=0 (19)

in the sense of distributions.

Proof. Assume that
@ +v-Vy) f=g. (20)

Using the definition of the inverse Wigner transform we have
x+x' . ,
10y (1, x, x') =/ iof <t, ,v) iV =) g
R4 2

+x’ . ,
— /]Rd i(—v-Vif+g) (t, z 2x ,v) VT gy,

21
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Let us focus on the transport term, v - V. f. We have

+x/ . ,
/ i(—v~fo)<t,x x,v)e”"(x_x)dv
R4 2
/
——i/ v (Vs + V) |:f< x-;x ’v>:|eiv-(xx’)dv
X +x /
/ (Vy +V, )|: (t, 3 >] ive' V=) gy
+x
=—(Vi+Vy)- / (t,x 2x )lvel“(x ) gy
x+x’
— (V4 V) / -

1 + : ’
:_E(Vx"'vx’)'(vx_vx’)/ f(tax a ,U) elv.(xix)dv
R4

(22)

Vi iv~(x7x’)dv

2

1 ¢ ; ,
=—5-a0 ) 1 (r, S ,v> gy
1
= _E (Ay = Ay) (2, x, x/)-

Therefore,

1 +x/ . ,
i+~ (Ay — Ay) y@mxszf o, 255 ) e e=gy,  (23)
2 R4 2

But g vanishes identically if and only if its inverse Wigner transform vanishes identically.
Therefore, y solves (13) if and only if f solves (12). O

2.3. The main result for the Boltzmann equation. 1t is possible to compute explicitly
the equation satisfied by y if the Wigner transform f is smooth with rapid decay and
satisfies Boltzmann’s equation, (1); see Corollaries A.3 and A.4 in “Appendix A”. The
result is as follows:

1
(iaz +5 (Ax— Ax’)) y(@) =B (y@),y(®) (24)

B(y1,v2) = B+(Vl, 2) — B~ (y1,v2) (25)
B~ (1, y)(x,x") = 22dnd ./sd ]dw/Rddz (%)

x+x zx+x z
X”( 2 %

(26)

+ no_ i to (2
B0 ) = 33 [ dw/Rddzb )

1 R
X Y1 (x — EPw(x —x') — a)4(Z) ,x!




434 T. Chen, R. Denlinger, N. Pavlovi¢

+1Pa,(x —x)+ Rw(z))
2 4

Ry(2) x+x'

x+x 1 ,
X 12 +§Pw(x—x)+

2 4 7 2
1 , R, (2)
3 w(X—x)—T> (27)
where we define
P,(x) = (w-x)w (28)
Ry(x) = (I —=2P,) (x) (29)

and I[(x) = x. Solutions of Boltzmann’s equation (in the y formulation) are understood
using Duhamel’s formula:

1. t 1.
y(t) = e2"8y(0) — i / 2 UTIAL B(y (1)), y (11))dt . (30)
0

Here AL = Ay — Ay,

Remark. At first glance it may appear that Boltzmann equation is more complicated in
the y formulation than in the classical formulation. However, in some sense it is actually
simpler. This is most readily seen when b = 1, in which case b® becomes a -function
concentrated at z = 0. Then the collision integral B(y, y) involves only an angular
integration over w € S?=1, whereas the classical collision integral Q(f, f) contains an
angular integration as well as an integral over vy € RY.

We are now ready to state our first main result.

Theorem 2.2. Suppose A € [0,1], @ € (45, 00), B € (d,0), k € (0,00), and
additionally % € (max(0,2A — 1), 2]; fix any 1 € (0, 00). Consider the Boltzmann
equation (24) with b € LY. For any y, € H%P-2% there exists a unique solution y (t)

of Boltzmann’s equation on a small time interval [0, T] such that

[y Ol s owse] oo < 00 31)

and
1B @, y Ol gapasillyy < o0 (32)

both hold, and y(0) = yog. Moreover, for some r € [0, 1) we have the following: if
lvoll ge.p.oxe < M then for all small enough T depending only on a, B, «, o, A and M,
there holds:

1
Tj(lir) t o, pB,0,k— ] + B t’ t 0K =
1y Ol e M||Ltdm 1B (v @), y )l greso. M||Lt1€[m
< C(M,a, B.0,1c,1) x T2 |lygl prasoc (33)

IfA € [0, %) then we may take . = 0 and k € [0, 0o) and the same results hold, with
the same restrictions on a, B, o.

Remark. If A = 0 it is possible to optimize the proof of Theorem 2.2 and obtain the

same result, with A = 0, for any « € [0, oo),% € (0,2],and o, B € (d%l 00). We omit

the details.
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2.4. Comparison with a nonlinear Schrodinger equation. The direct comparison be-
tween nonlinear Schrodinger equations, e.g.

(i3 +A) g = %|plp (34)

and Boltzmann’s equation is typically not meaningful because Boltzmann’s equation
allows a richer set of scaling symmetries. In particular, for Boltzmann’s equation it is
possible to scale x and v independently by making an appropriate choice of timescale
and correctly accounting for the form of the collision kernel b.*

Nevertheless, an interesting informal comparison can be drawn in the case of a con-
stant collision kernel, b = cst. (i.e. Maxwell molecules). Indeed, up to a linear change of
variables, the Wigner transform is simply a Fourier transform in v; then, as is well-known
by Bobylev’s formula, the dimension of the collision integral is reduced from 2d — 1
to d — 1 (but only in the case of Maxwell molecules). Moreover the remaining integral
over w € S~! occurs on a compact set (modulo scaling by the factor |x — x’|), so the
formal algebraic structure is very much like that of a power nonlinearity. (Of course B*
features important convolutive structure which is absent from NLS; however, we are
not necessarily bound to exploit the convolution, nor does this aspect play a role in our
proof.)

In the case of the loss term B~ (again assuming b = cst.), the analogy is quite
dramatic.’ Indeed in that case we have from (26) the result

/

_ . X+Xx
B~ (y,y) =ipy

5 ) y(x,x) (35)

where p, (x) = y(x, x) is the spatial density. On the other hand, for ¢ a solution of
cubic NLS (34), the corresponding density matrix y (¢, x, x') = ¢(t, x)@(t, x’) solves

(0 +Ax)y = £BNLs(v. ¥) (36)
where AL = Ay — A, and
Bais(y. ) (x, x') = [py. v] (x, X)) = (0, () = py (X)) ¥ (x, ) (37)
and py (x) = y(x, x) as before.
The analogy extends even more deeply for b = cst., since we directly transfer tech-
niques from [6,18] which have been previously used to solve equations like (36) via

bilinear Strichartz estimates. Indeed, the key analytical® estimates from [6,18] imply
that for any nice enough data yy(x, x’),

H (VO)* (Vi) BaLs (E”Ai Yo, €18+ Vo)‘

L2 L2

teR™x x/

< C (VO (V) w72 (38)

wheneverd > 2 and o > d%l. The estimate (38) is false when 0 < o < d%l by scaling
(even if yo = |po) (@ol|), whereas the borderline estimate o = % (= 1) is true when

4 This fact does not contradict the correspondence under the Wigner transform, because general kinetic
symmetries will destroy the factorized structure y = |¢) (¢|.

5 For simplicity, we will ignore the distinction between B~ (y1, y2) and B~ (y2, ¥1)-
6 Analytical, as opposed to combinatorial.
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d = 3 by [18]. As a direct consequence of (38), using the methods of [6], one deduces
local well-posedness of (36) for the norm

[V Tyl iz + ][V (T 3 {24y (39)

172
LyLiv

whenever
[V (V) o 2 < o0 (40)

and o > %. Note that the exponent % is critical for the proof, and one draws no
conclusion about the solvability of (36) when « € (d%z d%l) (nor is it clear to us what
the threshold for fully general (non-physical) solutions of (36) should be, e.g. if yp is
non-Hermitian).

In the case of Boltzmann’s equation with b = cst., we obtain by Proposition 3.1 (and
the remarks immediately thereafter) the estimates

H <D+>Ol (D_>0t B:I: (eitAiyO’ eiZAiyO)‘

2
2 < C|(Dy)* (D_)* )/OHLiX/ (41)

where Dy = V,+Vyand D_ = V, —V,/,, wheneverd > 2 and o > d%l. The estimate
(41) is false when 0 < o < d%l by scaling (nor is improvement possible in this case
by decoupling the exponents for (D) and (D_) from each other). We conclude that if

b = cst. then Boltzmann’s equation is locally well-posed in the space

D (D y @) 2+ | (P (D)0 [e 25y 1)) p, @
whenever
[(D)* (D) ol 2 <0 (43)
and o > %.

The proof of (41) (for both B* and B™) is structurally identical to the proof of (38)
givenin [ 18], with only small changes where needed. Such a direct functional comparison
between NLS and Boltzmann is only possible thanks to the Wigner transform. Moreover,
it suggests a way to quantify the role of dispersive effects for Boltzmann’s equation
(with a constant collision kernel), by comparison with the corresponding NLS problem.
Indeed, despite incredible strides in kinetic theory, many fundamental questions remain
completely open even in the simplest possible case, b = cst.

Remark. The most natural way to generalize the strategy of [6,18] is to draw from
the theory of X*” spaces (which are robust enough to approach “optimal” results in
principle); however, this does not seem to lead in a straightforward way to improvements
of the regularity for local well-posedness of (36).

Remark. Note that when o = o, = % the homogeneous version of the norm (43)
defines a scale invariant space (x +— Ax, v — v/u, arbitrary A, © > 0) for Boltzmann’s
equation with b = cst. We refer the reader to [3] for existence only with a Maxwell-
molecule-type kernel, given small data in the scaling critical space Liyv (Ri X ]R%) when
d = 2. Also, o, = % is the scaling critical regularity for the cubic NLS (34); it is
likewise scaling critical for (36) when (x, x") — (Ax, Ax’), but no fully general LWP
theorem seems to be known for (36) when o ~ «.
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2.5. The main result for the Boltzmann hierarchy. We now turn to the Boltzmann hierar-
chy. The Boltzmann hierarchy is an infinite sequence of coupled PDEs describing the evo-
lution of densities f(k) (t,x1, ..., x¢,v1,...,v) fork e N={1, 2,3, ...}. The densi-
ties f ) are assumed to be symmetric with respect to interchange of particle indices. The
Boltzmann hierarchy arises as an intermediate equation in the derivation of Boltzmann’s
equation from an underlying Hamiltonian evolution of many particles, [12,17,19]. We
use the notation X; = (x1,...,x) and, fori < j, X;.; = (x;, Xj+1, ..., X;), and sim-
ilarly for Vi and V;.;. For each k € N, the kth equation of the Boltzmann hierarchy is
written:

(0 + Vi - V) fO @, Xi, Vi) = Crn 9D @, Xy, Vo) (44)

where the collision operator C, is split into gain and loss parts:

k k
Crnt [0 =3 Ch f9 =37 Cr fE0. (45)

i=1 i=1

The gain term is written

Chon F& V@, X, Vi)

Uk+1 — Vi
=/ dvpyidwb <|Uk+l —vi|,w- —)
R x§d-1 [Vks1 — Vi

X PO (1 X0, o Xi e Xk X, UL, s UF, L Uk, V) (46)
where .
v = v + Py (Vg1 — v;) @7
Vpy1 = Vkil — Po (V1 — ;)
Similarly for the loss term we have
— k+1
C,',k+1f( )(tv Xi» Vi)
Vk+1 — Vj
= / dvgr1dab <|Uk+1 —vi|,w- —)
RA xS~ [Vk+1 — Vil
Xf<k+])(t,.x[,...,xi,...,xk,xi,vl,...,Ui,...,vk,vk+]). (48)

Note carefully that the collision operators C Z—Lk +1 involve the evaluation of f k+1) along
the hypersurface xx4+1 = x;.

In exactly the same manner as for the Boltzmann equation, we define the Wigner
tranform and its inverse for multiple particles:

vy O, Xi, X)) =/ f® <r,
]de

Y Ye\
/dk y® <t, X; + 7" Xy — 7") e~ ViYiegy, . (50)
R

/
M, Vk) ein'(Xk*X,'()de (49)

FO@, X, Vi) =

(27T)dk
The Fourier transform of y ) is written
POE, . EE L ED

= /efi Zf:lxi'gie*i Zf:]x,-"%'/y(k)(xk’ X))dXidX),. (1)
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Let us define the weighted Sobolev spaces H,f’ﬁ’g”( fora, B,k > 0ando > O:

[y ®ox xp

Hf’ﬁ'a',(
k NL
| Tt =g et} .
| i=1 .
X];(k)(sh"wé/ﬁé{v"wé]ﬁ) L2

PN L /4

These norms are equivalent (up to a factor like C¥) to the following norms for classical
densities:

k 1 a
[ {<2vi>ﬂ T (1 - Ax,-)z} AC R ] (53)
i=l

2
LXk,Vk

IfT = {y®}, and & > 0 then we further define

Tl apon =D & YO X VO 4o - (54)
H; HEP
keN

Note that y € H*#9« if and only if I' = {y®k}k€N € Hg’ﬂ’g"‘ for some (arbitrary)
& >0.

The inverse Wigner transform of the Boltzmann hierarchy is: (see Propositions A.1
and A.2 in “Appendix A”)

. 1
<laz +5 (B - sz)> y O, X, Xp) = Beay ™D @ Xe, X)) (55)
k
By ®V = Z (B:kny(kﬂ) - B;k+17/(k+1)> (56)

i=1

B v V@ Xe, Xp)

i fo (2
= dzbe (=
22dyd /;d—l do /15@1 . (2)

. (57)
x yp&+D (t, Xi:i—1y, Xi — 7 X+,

Xi +x!
2

Z
+ -,
4

li
’ R Xi+X 2
Xiio1y Xi 1 Xislykeo 5 - - Z)
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B oy ™V, Xi, X))

i N
= | do| azbe (-)
22dpd /S\d—l w/Rd ¢ 2

1 Ry, (2)
x 3 &+D (t, X1:i—1)s Xi — EPw(xi —x)) — wT X(i+1)ks
xi+x] 1 . Ru() (58)
T + iPw(xi —)CI-) + T,
1 Ry (2)
X/l:(i—l)’ X;+ Epw(xi — X))+ —w4 ) X£i+l):k’
xi+x, 1 , R,(2)
12 L — EPw(xi —x;) — w4 )

Solutions of the Boltzmann hierarchy are understood using Duhamel’s formula: for all
k eN,

N ro *)
y® (1) = e2i18E () — f =AY By KD 1y (59)
0

Here Ag;) =Ax, — AXL' We further define BI' = {Bk+1y(k+1)}keN.
We are ready to state our second main result.

Theorem 2.3. Suppose b € LY with A € [0,3), a € (%, 00), B € (d, ), k €

[0, 00), and é € (0, 2]. Assume I'g = iyék)]k N € Hgl’ﬁ’a"( where & € (0, 1), and
€

further assume that the functions J/ék) are symmetric under particle interchange. Then

there exists T > 0 and 0 < & < & such that there exists a unique solution T'(t)

of the Boltzmann hierarchy (55) for t € [0, T with ||1"(t)||L90 pepox < 00 and
10,71 ey
||BF(t)||L1 e < 00, and I'(0) = I'g. Moreover; the following estimate holds:
1e[0,717 %,

r Box + ||BIC Box < C || B0, 60
l ”Lfé[o,T]ng o + || ”Ltls[O,T]ng o < C|| 0||H§1 o (60)

where C depends on T, d, &1, &, o, B, 0, k.

Remark. If A = 0 it is possible to optimize the proof of Theorem 2.3 and obtain the
same result for any « € [0, 00), % € (0,2],and o, B € (d%l, oo). We omit the details.

2.6. Interpretation of the Boltzmann hierarchy. Extending Theorem 2.3 to the full range
A € [0, 1] would require revising the boardgame argument as presented in [18] to be
compatible with time-dependent weights, as in Theorem 2.2. Unfortunately this seems to
be technically out of reach at the present time; indeed, it seems to be an interesting open
question to determine whether the hard sphere Boltzmann hierarchy is in fact locally

well-posed for data I'(0) € Hg’ﬁ "7 with a suitable choice of parameters.

Since we cannot (at present) extend our well-posedness result to the hard sphere
Boltzmann hierarchy (A = 1), the reader will rightfully question why we study the
Boltzmann hierarchy at all. After all, the hard sphere interaction is the only interaction
with Grad cut-off that is physically relevant (and all our results assume the Grad cut-off).
In particular, at present, we have nothing to offer in the context of Lanford’s theorem, even
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at the level of the Boltzmann hierarchy. Nevertheless, the Boltzmann hierarchy always
has an interpretation in the context of statistical solutions of the Boltzmann equation. (See
[5]for a formal discussion of statistical solutions.) Under suitable regularity assumptions,
if r; is a statistical solution of Boltzmann’s equation, then

FO@) = / 1 ds, () 61)

is a solution of the Boltzmann hierarchy (for any interaction, physical or not). Conversely,
suppose the functions f®)(r) (assumed smooth and growing at most exponentially in k),
which solve the Boltzmann hierarchy, define the joint distribution of some exchangeable
sequence of random variables (x1, vy), (x2, v2), .... In that case, the Hewitt-Savage
theorem guarantees the existence of a unique underlying 7; which must be a statistical
solution of Boltzmann’s equation [15].

3. The Key Proposition

The proofs of Theorems 2.2 and 2.3 will rely on the following proposition:

Proposition 3.1. Suppose A € [0,1], « € (4}, 00), B € (d,o0), and 1 €

(max(0,2A — 1), 2]. Then for any r € [0, 1) such that L > max(0,2A — 1+ 8)f0ra

small § > O we have forallky > k > 0,any 1 <i <k, andany y(k+]) € H,f:’lga'(o the

following estimates:

+
HBI k+1

L - !
|: 2! ’(Axk+1 AX,Hl)yo(k+l)i|

L[zHa./S,a,K

= Ca,B,0,r) bl (1 + (ko — k)" 2r> H

(62)

01/317»(0 .

Moreover, if A € [0 l) o € (d;l ) B € (d, ), and% € (0, 2], then for any

£ 2 2 £
ko >k >0, any 1 <i <k, and any y(k+]) € H,fir’f "7 the following estimates hold:

1.
+ (A =By, ) Gt D)
nguk+1 [e ( k*‘)?b

< C(a, B,0) [Ibll

LzHa,‘irrK

(63)

aﬂako .

Remark. Note that the second part of Proposition 3.1 formally follows from the first part
by setting r = 0. In fact we will only prove the first part since the second part follows
after trivial changes to the proof.

Remark. If A = 0 it is possible to optimize the proof of Proposition 3.1 and obtain (63)

for any kg > « > 0, l € (0,2],and o, B € ( 21, ).Weomitthedetails.

Proof of Proposition 3.1.

Loss term. Consider a typical part of the loss term, e.g. B . +1y(k”):
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- (k+1) N N sz
Bl’kﬂy (t: X6 X0 = 22dyd /;d—l de /Rd dzb” (5)

I /
K+l Z X1+x; 2 z X1 +Xx; Z
xy! )<t»x1—ZaX2:k,

+2.x) sz,——->. (64)

2 4" 4 2 4

We will fix some initial data yo(kH) (Xis1, X ,/( 1) and consider the following function:
Ax,. —Ay
Bl |e [ 3it(Bxe Xk+1) “””] (t, Xx, Xp). (65)

The spacetime Fourier transform of a function F (¢, X, X ,’() is

F(r, &1, & & &)
= /dthkdX,’cefme*i imi % =i Yic Y5, Xx, Xp). (66)

St (A =By ) (k1)

The spacetime Fourier transform of e Xt Y is, up to a constant depend-

ing on k,

k+1 k+1
70 B 8 gﬂw<r+ 2]& }:@|> (67)
We also have

_ yit(A k+1
(Blk+1 |:e2 (Xk” Xk+l (+):|> (T, &1, oo Er & &

2
n+n 1|, n+n
—cst. | dndn's |t + = — & -
cs / ndn (f & — 7 251 3
+1mF—1WF+1§:u&F—EW>
2 2 A i
2<i<k
| =& +& +n—1| —&E +&+n—n
xb , W - ; -
2 | =& +& +n—1]|

R n+n n+n
o <§1 ) o Een g - E gL n/). (69)

The constant is uniformly bounded in k. Now we simply bound the collision kernel b
using ||b||L3<> to yield:
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_ Sit| A —Ay k+1 -
(Bl k+1[ 2! ( Her Xk+1)y()(+)]> (T7§1’~--7‘§k’$i’-‘~7§]2)

S Wiy [ dnan' (e = &)+ - )"

( 1
xé| T+ =
2

712

1

n+n'
2

n+n
2

& — 51

Lo 1, 1 2 a2
whnlP =SS 30 (&P — 1817

2<i<k

. n+n n+n 77
x [Pyt (& - B - sz,...,s,i,n/> . (69)
We want to estimate the following integral, for suitable «, 8, x, o > 0:
I (a, B, k,0) = /dtdél ...dékd§{ . ..d&,;
£ 2 2 2
X l_[ {(gl + é:l/) ¢ (El - 51/) 'B eZK(S,‘*S[.)” }
i=1
~2
[y o

To start, observe that

1@ oe.0) S 1Dl f dvdg ... dedg| ... dEldmdn|diad)

k

[T {6+ 6Pt — g etomed? |

i=1

x <_ )+ =) ) ((51 — &)+ - ’7/2>A>
) (r +l et 2
2 2

771+?7/1

& — >

1 /
251—

1 » L2 1 2 2
+ImlP =Sl + 5 Y2 &P = 1g1)

2<i<k
2 /2
1 m+n, L, m+n,
sleez|e =22 _ e
X (T 2’%’1 > 251 >

+ImlP =S|+ 5 Y (& - 1€

2<i<k
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(k+1 n + 1 "
yo(+)<$1_715527~..,§k7n17§]/_ 1’52/""’512777/1>‘

(k1 2+ 1 2 + 15
)/0(+)<$1_ 29527"'95167’7215{_—21559"-15119]7/2 .

2 2

Let ko > «, then multiply and divide the integrand by the following factor:

2 <€1+§f—ﬂj—ﬂ}>a(§1 g\ eoler=8)”

(71)
j=1 x <nj + n}>a <nj - n}>ﬂ e“°('7-f*"-f>

Q=

Then group terms together and apply Cauchy—Schwarz pointwise under the integral
sign. We obtain two different terms that are equal due to symmetry under re-labeling
coordinates; hence,

17 5 Ibli7 /drd&l .. d&dE] ... dg[dndn|dnydy)

e+ &)™ e = &) (I — &0 + (o — )"

X
2 2 2 2
(&1 +& —m —n)) " (&1 — &) ﬂ(m +m) " (m =) ?
o2 (61817
X 1 1
e2k0(61=61) @ p260(n1—n})®
2 2
1 n -+ L, m+n
slr+z|e = XM _ e
x (T 2 |5 2 2[5 2

w3 ImlP =S+ 5 Y2 &P - 1g1)

2<i<k
1 r;2+77/2 7)2+772
x8[r+= g — — -
( ) &1 ) 51 )

1 > Ly, 1 2 72
+= - = += E |5 — &
5 [n2] 5 |75 5 2<i<k(|’§z| 1§;17)
1

x (E1+ & —mo — b} (&1 — £])F FolEr=E)7
x (1 + n/2>2a (nz — b )2/3 20 (ma—n5)

< T1 {6 - 5/>2ﬁezm<sf—sz>’f}

al—

2<i<k
K+l n2 + 1 :
%*(a——;if L EL M E — 5,q%w9
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The integral completely factorizes in the following way:

I~ < /dtdél...dfkdéi...délé (/dmdn’l..) (/dnzdn/z..)
< ( sup /drndrﬁ > X /dtdé] .. d&dE] ... dE] <fdn2dr)’2...).
7,§.8]

Finally we are able to conclude that if the following integral,

1
dndn's |+ =
/’7"(72

2 2

/ !/

n+n
2

n+n

& — >

51—

1
2

1 2 1 72 1 2 72
AP =SS 0 (EP - 1E)

2<i<k
&)™ (le =& + o — o))

(&0 +8 —n— )+ (g — )%

al—

X

o~ 20— (51-5]) (72)

is bounded uniformly with respect to 7, &1, . .., &, E{, el S,i, then the following esti-
mate holds:

1.
[t

L2HP P

-C (k+1)

= ((X, /37 o, K, KO) ”b”Lzo y() Hoz,ﬂ,(r,/(o . (73)
k+1
Let us make the change of variables w = %’7/, 7 = "_T"/ in (72); then, up to a
constant, the integral becomes:
1 1 1 1
/dwdzB (f+ 5 16— wl® — il w|® + E|w+z|2 = 5w —z)?
1 2 72
w3 2 (sl - 1)
2<i<k
2 2A

1+ (I - )" + 204)

X T . (74)
(614 & — 20 200G ()2 (222
This is the same as:
k
K = | dwdzs : 12— 1E17) — (81— & -2
= [ dwdzs |+ (161 —1§7) = (61 — & —22) -w
i=1
2 124
1+ 6™ (6 — &) + 20*)

X (75)

: .
(61 +&] — 2] 20lE—EDT (2u)2 (27)2
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Hence, one way to parametrize the integral is to let z € RY be arbitrary and let w range
over a codimension one hyperplane in R?; the hyperplane is determined by 7, &, £/, z.
We have:

_ A 24 2
KS/ dz (51 £ +(22) 1 /' dS(w) (& -;fl) a6
RO gy — ] — 2] 20— a7 ()26 P (61 + & — 2w 2w)*

where d S(w) is the induced surface measure on a hyperplane P C R?, given explicitly
by

P:{weRd

k
SN (1 |é{|2)—(51—5{—2z)'w=0}' 7

i=1

In order to show the uniform boundedness of K withrespectto 7, &1, ..., &, &}, ..., &,
it suffices to prove the uniform boundedness of the following three quantities with respect
to W e RY:

(W>2(Jl
I = ds _ 78
1 pcw;fiipp:dlfp ) W0 ) 79
1
L = d7——————— 79
? /Rd ZIW—ZI(Z)M*2A 7
( >2A
I = f dz . (80)
Rd e2(ko—K)(W a W —z| (z >2f3

Note that in the expression for /1, P is an arbitrary hyperplane of codimension one in
R,

We begin with I3; clearly the integral over the set |z — W| < 1 is uniformly bounded
in W if 8 > A. Therefore it suffices to bound the following integral:

W)2A
I = / dz (1 ) . (81)
R Q20— (W)T (W — 7) (7)2F
We have the following inequality:
1
PO > 1 42 — ) (W)7 (82)

> (ko — k)" (W)@
where 0 < r < 1. Since % > max (0, (2A — 1)), we can always find an r € [0, 1) such
that § > max(0, (2A — 1)). For any such value of r, we have:

(W)

(W —2) () ®3)

I < (ko — k)™ ’/ dz
d

Splitting the integral into the regions |z| < %|W|, |z| > 2|W]|, and %|W| <|z| <2|W|,
d+1 1

we are able to show that /3 S (ko — «)~" uniformly in W as long as 8 > 5=,

max(0, (2A — 1)), and r € [0, 1) is such that ~ > max(0, (24 — 1)).

>
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Let us turn to I»; clearly, the integral over the set |z — W| < 1 is uniformly bounded
in W if B > A. Therefore, it suffices to bound the following integral uniformly in W':

; 1
I, = /Rd dZ(W EEERCTETE (84)

For any A € [0, 1], this integral is automatically bounded, uniformly in W, if § > d—;z

Finally we turn to /;:

20
I = sup / dS(w)L. (85)
P ( )

2 2
PCRY:dim P=d—1 W —w)™ (w)™

We consider separately the regions |w| < %|W|, |lw| > 2|W]|, and %|W| < |w| £2|W];

we find that the integral is uniformly bounded in W and P as long as o > %.

To summarize, as long as o > %, B >d, % > max(0, 2A — 1)),and r € [0, 1)
is chosen such that g > max(0, (2A — 1)), then for all kg > « > O:

_ it|Ax,  —Ay k+1
”Bz il [ ( k1 X"“)VO( + )i|

L2HZPox
k+1
= C@ Booun) bl (14 ®o =07 3) |1 oy 86
k+]
Gain term. Consider a typical part of the gain term, e.g. B y &+
BY k1Y (kH)(f X X)
d d b‘”
ZZdJTd /Sd 1 w/;gd ¢
e+l ()
xy kD) <l Xp — EP (X1 — X}) — w4 » X2k,
xi+x; 1 R
%+—Pw(x1 i+ Re@
1 (2)
x} + 5 Polx —x)+ ”4 , XD
xp+xp 1 Ry (2)
T—EPw(xl—xi)— ‘”4 : (87)

The spacetime Fourier transform of the function

Bi':k+] [ 2! (AXkH A k ) (k+l)} (t kaxk) (88)
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is the following, up to a constant:

fs . do [ andridnar;

1 2 1 712 1 2 1 72 1 2 "2
X8 TSI = S+ Sl = Sl S Z (& 17 — 1&17)

2<i<k

N2 + ) 1 1
X8 ( =&+ + ——2 — —P,(m — n}) + = Pu(n2 — 1)
2 2 2
m+n, 1 ;o1 ,
S| —& +n + + =P, —n) — =P, (2 —
( & +m 2 2 w (M1 —17) 5 Fo (m2 —n3)
| —n1+n) +n2— 15l Ro(=n1+ny+nm2 —n3)
xb 5 W - —
| —n1+n] +m —nl
A (k+1
)P0 (11, v B 1 Ee e EL ) - (89)

This is bounded by ||b/| Ly times the following integral:

/Sd_l dwfdmdn/ldnzdné ((m — ) +(m— 77/2>A)

x 8 r+§|771| —§|77/1| +§|772| —§|77/2| *3 Z(|§i| — 1§19

2<i<k
m+n, 1 1
x 8 (—51 it = = S Pe(n — ) + 5 Poln2 — 1)
m+n; 1 1
5| & +m+ 24+ = Py(m — ) — = Po(n2 — 1))
2 2 2
k+1
‘ p ) 7]11%_27-~~s§k»772777/1a§£1~-~a§]€177/2) . (90)
Introduce the change of variables w; = %’fl, 71 = '“%",1, wy = '72;—'7/2, 2 = '72;_'7/2
Then (90) becomes
/ do / dwydzidwdz; ((22)" + (22))
d—
1 1 1 1
X 8 (r + §|w1 +271)° — E'wl —al+ §|w2 +20)> — Elwz — )?
1
+3 2 (&P —1g1) ©1)

2<i<k
X 8 (=& +wy +z1 +wy — Py(z1 — 22))
x 8 (=& +wi — 21 + w2 + Py(21 — 22))

k+1
‘ ke ) w1+Z],§27-~,§k7w2+22,w]_ZI,§£,~~,§]£,W2—Z2)‘~
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21+22

Introduce yet another change of variables r; = "“;wz, 51 =250 = 2382 5 =
5% Then (91) becomes
/ da)/drldsldrzdsz ((2(r2+s2))A +20r —Sz))A)
Sd—l
1 , 1 2
X 8 r+§|r1+sl+r2+sz| —§|r1+s1 —ry — 8|
o + 2 + 527
—|r—s14rm —s2|"—=|r1—s1 — 12 +s
Sl —sitrn—5 Sl —si—r+s
1 92
3 2 (ER—1gP ©2)
2<i<k
X 8 (=& +2r1 + 1+ Ry(52))
X 8 (—E{ +2ry —rp — Rw(sz))
X ‘?ékﬂ) (ri+s1+ra+s2,8, ..., 8,11 —s1+r2— 52,
ry+si —rz—sz,éé,...,é‘,é,rl — 851 —r2+s2)|.
Replace 1 with % throughout:
/ da)/drldsldrgdsz ((2(r2+s2))A +(2(r —sz))A)
Sd—l
) +1‘r1+ +r+ ’ l”+ ’
x8[t+—=|— R p— —ry —
22s1r252 22s1r232
+1‘r1 N )2 1‘r1 . ’2
— = =S+ =5 —=|=—s1—1r+s
5132 1+r2— 82 713 1 — 1+
1 2 2
3 2 (&P —1E7 (93)
2<i<k
X 8 (=&1 +711 +1r2+ Ry(s2))
x 8 (—&[ +r1 —r2 — Ry(s2))
A (k ri Tl
x [Pyt (5 +s1+ra+s2,86,. .., 6, 5 TSt -5,
ry , ;N
3+s1 —rz—sz,$2,...,5k,3—s1 —r2+sz> .

Finally perform the change of variables {1 = r| + 12, £ = 1] — 12!

/ dw[dClds“zdSldSz ((El —o+2)4 4 (0 -0 — 252>A)
Sd—l

13 : 3 2
x4 t+—£—g—2+s + 52 ———Q+£+s1—sz
2] 4 4 2| 4 4
13 2 3 2
+—£—§—2—S1—S2 ———€—1+£—51+SQ
2| 4 4 2| 4 4
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1
+5 2 &P —1E1)
2<i<k
X8 (=&1 + &1+ Ry(52))
8 (—&1 + 02 — Ru(s2))
~ (k+1) (351 & 351 &
2 —_ =

— +851+82,82,...,8k, —— — — — 81 — 82,
2 2 3 §

_ 3 3
i*‘ﬁ"‘sl_527%.5""’512’_3_14-%_S1+S2>" (94)

Now we can integrate out the variables {1, ¢ to obtain:

[ o fasas ([ssdes—&)' + (-4t e -5l)')

1 3 —&F 1 3 —g |
x§ 1:+—s1+2s§+M ——s1—2sg+M
2 4 2 4
1 3 (2 3g — & |
+= —s1—2sL M - = —s1+2szl+ i
2 4 2 4
1 2 2
+5 Zum — I€/1%)
2<i<k
3 3& — &/
)/O(kH) (s1+2s2|+ 51— El 62, ..., &, —s1—2s2l+¥,

s1—2s§+35‘ 51 O 31— El)' (95)

where s) = P,,(s2) and s = (I — P,,) (s2).
We want to estimate the following integral, for suitable «, 8, k, 0 > 0:

I*(a, B, k,0) = /drdél ... dEdE| ... dE]
Tt - -

1; _A ~
X <Btk+1 |:e2”<AXk+l AXk+1)y0(k+l):|)

Reasoning as for the loss term, if we can show that the following integral
/ dw f dsldS2
§d—1
( 1
x6|t+ =
2

2
(96)

3t — & | 3¢ — & |

S1 +2s§ +

‘S1 — ZSJ +
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2 2

3% - &

— = s+ 255 + 2L >
2‘ S1FeR 4

38 — &
4

1
= |51 — 255 +
2‘ 51 82

+ Y (EP - 15D
2<i<k

24

el e =7 ((ash e — 1) st v - )

"\ 2 2B "\ 2a
<2s1+%) <4s§+gl—g{) (—2s1+¥> (—dst +& — )7

1
I \o 1
o200 ashse1=81)" 2 —ast+ti—8])°

1 1 1
2K<<sl—s:>ﬁ—(4s§+a—s{) —(—4sé+sl—s:>“)
xXe

7
is bounded uniformly in 7, &, ..., &, &{, ..., &, then we will have the following esti-
mate:

1 —_ !
]
L2H! 7"
k+l
=c@pok o) by |1 - 9
k+1

Before proceeding further, we must eliminate the most dangerous contribution in
(97), which is the following exponential factor:

Q—

1
2% ((gl —&) 4 _(4s§+gl —s]’)" —(—4s3+£1-&]) )
e . 99)

We will show that this factor is in fact bounded by 1, as long as o > % Indeed foro > %

we have:

Q=

6= 60)7 — (asd + 61— &1)° — (st + — &)
<o) (@ -] — (@)
< (((& (. sf%}zy’ e -sp) - {@ - )
<0. (100)

We now deal with the other exponential factors in (97), namely:

1
3

e—Z(KO—K)<4SQ +61 —§f> e—Z(KO —K)<—4s2l+51 —Sl’) . (101)

Al—

Since % > max(0, 2A — 1), we can always find r € [0, 1) such that § > max (0, 2A —
1 +4) for a small § > 0. Since ¢* > 1 +u 2 u" for u > 0, we find that if x < ko then
(101) is bounded above by the following quantity:

(ko — )"
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. I , — max(0,2A—1+6) n , —max(0,2A—1+6)
X min <4s2+§1 —§1> ,<—4sz +& —§1> .
(102)
The integral (97) is now bounded by the following integral, if § > 0 is sufficiently

small depending on A, o and r: (note that this follows from the previous paragraph by
considering separately 0 < A < % and % <A<

(ko — k)" /Sd_l dwfdsldsz

|k
X 8 (r *3 Z (IE,-I2 - IE,-/|2> + (451 — R (&1 + &) -Sz)

i=1

1-6 —
sl e - e (sd s =) (st e -6 )

) £1+€ 2B £\ 22 28 (103)

<2s + 8 1) (4s§ +8 —g{) <—2s1 + %) (—dst+& — &)
This is in turn equivalent to the following integral:
(ko —Kk)~"
2 1-§ 1—8
6 - & ((4s vE—8]) o+ (st e —g) )
/ dw/dsz 37

§d-1 |4s5 | <4sg +& — El/> <—4sj‘ +& — %-1/)2}‘5 (104)

(&1 +¢]) 2
x /pds(sl) £1+E]\ 2 £1+E]\ ¥
<2S1 + Tl> <—2S1 + Tl>

where P C R is the following codimension one hyperplane:

P:{sleRd

1 k
T3 ) <|5i|2 - IS{IZ) + (451 — Ry(E1 +£))) - 52 = 0} . (105)

i=1

Therefore we only need to show the boundedness of the following three quantities
uniformly in &1, &{, 7

7\ 2
L=  sup / ds(s) ,(i:’ i — (106)
PCRA:dim P=d—17 P <2S+@> (_2S+¥>
(&1 — 5{)2/3
L= d / d (107)
2 /8de w o s s (4s” vE — S{)2571+6 <_4SJ_ +E — g{)Zﬁ
(e — &)
_ d / d . (108)
/SH “ Jp S|4s|(4s” +& — &P (—ast v g —g] P
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Let us first consider the integral I5; in what follows we will assume that § > %
Clearly, I is equivalent to the following quantity:

L < / dow / ds (e — &) (109)
Tsir  r g (s g — g (s e — )
Setting W = & — &/, this gives:
()2 (110)

I 5/ d / d .
2 o w - S|S|<SH+W>2,3_1+5 <SJ_+W)2/3

Moreover, since the integral for |s| < 1 is obviously uniformly bounded in W, we may
instead bound the following integral:

w)2p
L 5/ dw/ ds éﬁ—>l+6 55
Se-1 R (s) <s|| + W) <sJ- + W)

(111)

Since |s!| < |s| we have:

1’</ da)/ ds (w)*? (112)
2 Jsmr e sl (s 4 WP (s WP

Therefore, for all large enough |W|,

1, </ da)/ ds (W)
2 oot S (Y (s WP (5L )2

ds! ds*t
_ d 28 (113)
/Sd—l @ (W) (/ <5H>(5H +W>2’3_1+5> <-/ <sJ- + W>2ﬁ)
< /S do(wy¥ (<W>—1 (W) 1og <W>> ((W“)d_l_zﬁ) :

L

The integral over s+ is estimated by a trivial computation, whereas the integral over s/
may be estimated by considering separately the regions |s!| < %|W|, Isl| > 2|W|, and
Wl Isl < 21wy,

We find that 1] obeys the following estimate:

2-2p-5 d—1-28
IS / dor (W) =130 (W) (w!) : (114)
§d—1

Then we have 1 1
2B—1+56 2B—1+56
(W)2ﬂ—1+%5§<wl\>’3 " +<W¢>ﬂ e (115)

Hence, I; < 1)) + 1) where

2-28-8 d—2+18
L= / dw<WJ‘> <W”> ? (116)
Sd—l
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I = /SLH dw(WL)l_%‘s (W”)d_l_zﬁ. (117)

Then for any § sufficiently small and 8 sufficiently large (8 > d is easily sufficient for
small §), both 1) and ;" may be bounded using dyadic decompositions in the angular
parameter w, as follows: neglecting additive constants,

By [ do{w) 7 ()
=1 o2 hwi<wi<2=kwi
= (118)
< Zz—k—l x (27542 (2k+1)d—2+%6 < 00
S Oo/ dw<WL>l_%8<W”>d_l_2ﬁ
=1 Yo W g Wl <2k W (119)

o
1
5 szkfl X (2k+1)1775 < 0.
k=1

The factor of (27¥)4=2 in I} comes from the Jacobian for spherical coordinates in R4,

Let us now consider the integral I3, and assume 8 > ‘%. Clearly, I3 is equivalent to

the following quantity:

I 5/ da)/ ds (512,3_ Ei)zﬁ 2p—1+5 (120)
si=t IR s| sl + & — &) (st + & — )

Setting W = & — &/, this gives:

< (w)*
3 S dw ds T T (121)
§d-1 R s (sl + W) (sL + W)

Moreover, since the integral for |s| < 1 is obviously uniformly bounded in W, we may
instead bound the following integral:

(W)
I / dw/ ds . (122)
3 i R (sI+ WP (st + WP
Since |s!l| < |s| we have:
(W)
I < / da)/ ds ——. (123)
st Jre () s+ WP (s L+ WP
Therefore, for all large enough |W|,
(W)*
I dw
3 ./Sd ' /Rd \|+W) (L+W>2ﬂ—1+8

ds! dst
Y Y Y L a5 (124)
oo (f <s"><s"+w>2ﬂ> (f <sL+W>2"‘”>
28 e 128 |\d-28
5/@71 do (W) <(W) <w ) log (W) <W> .
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As before, the integral over s is estimated by a trivial computation, whereas the integral

over sl may be estimated by considering separately the regions |s/| < %|W|, sl >
2|W|,and 3|W| < |s| < 2|W|.
We find that /5 obeys the following estimate:

1-28 d—2p—5
1 Sf dw<W>2’3‘“%5<Wl> <W”> . (125)
§d—1
Then we have | 1
28—1+18 2B—1+48
<W>2ﬂ71+%6 §<W”> B=1+3 +<WL> B—1+3 _ (126)
Hence I < I + I} where
1-28 d—1-1s
% =/ dw(WL> <W”) ’ (127)
sd—1
1s d—2B-3
15”:/ da)(WJ‘>2 <W”> . (128)
§d—1

Then for any sufficiently small § and 8 > d, both I3 and I;” may be bounded using dyadic
decompositions in the angular parameter w, as follows: neglecting additive constants,

00 _ 11
B sof)

i1 o2 il w <2k jwil|

- (129)

< Zz—k—l x (27K)d=2 (2k+l)d—l—%6 < 00
k=1
00 1 28—

gy | ol (w7

o e Wl < wil <2k

(130)

27k=1  (2F1)29 < oo,

K

<

o~
Il
R

The factor of (27%)4=2 in I3 comes from the Jacobian for spherical coordinates in R4,
We finally turn to I, which is clearly bounded by the following quantity:

2u
Iy < sup sup /dS(s) (S)za(w>
P

— (131)
WeRd PCRY:dim P=d—1 (s + W)

The integrals over P N {|s| < W[}, PN {ls| > 2|W[},and PN{F|W]| < |s| < 2|W[}
are each easily bounded uniformly in W as long as o > "2;1.

To summarize, as long as o > %, B > d, and max(0,24 — 1) < % < 2, then
for r € [0, 1) such that g > max(0,2A — 1 +§) for a small § > 0 we have for any
ko > « > 0 the following estimate:

l' _— !
B [62”(%” Axk“)yékm}

LiH "o (132)

-1 k+1
=< C(av IBa o, r) ”b”LZO (KO - K) 2! )/Cf " )H H“’ﬂ'”'KU .
k+1
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4. Proof of Theorem 2.2

Formally speaking, solutions of Boltzmann’s equation are factorized solutions of the
Boltzmann hierarchy, i.e. y® = y® We use the notation

AP = Ay, — Ay, (133)
Ar =AY, (134)

Thenif By = Zi‘: 1 (B;:k 1~ Big +1), the Boltzmann hierarchy in integral form reads
as follows:

(9] 4 . (k)
y® (1) = 21185, B () — f 2l =AY By 6D () ayy (135)
0

Let us assume y® = @k for all k € N and consider the Boltzmann hierarchy for
k=1,2:

t
p(0 = by o) =i [ B () (136)

@ roy. @
(y®y) (1) =" (y @) () —i /O eH A By () (rdnr. (137)

Now we apply the operator B, to the second equation, thereby obtaining the following
system:

p(0) = edrsy o) =i [ B0y (557) (an (138)
0
B2 (v%2) ()
i A® ! 1 @
= B, (e2"%+ (y®%) (0) —i/ By |e2' TR By (y®3) (1) | dry. (139)
(#= (=) o) =i ] (=) @]

Letusobservethat B(y1, y2) = B2(y1®y2). Thereforeif wedefine £ (¢) = B (y (¢), y (1))
then we obtain the following system of equations for the pair (y, ¢):

t
y() =¥y (0) —i / e 0=A (1) (140)
0
¢y = B (e384 (0), 1184y (0))
! Fit—1m)A Fi—tmA
+(=i) [ B (XA (1), A1) ) dn
0
t
+(=i) / B (37T, X WAy () ) dn. (141
0

We will solve this simultaneous system of equations for (y(#), £(¢)) on a small time
interval [0, T'] by Picard iteration, using the following norm:

1, O = T2 |y )l s [ ee + MNE@N g | - (142)
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Here we have fixed some r € [0, 1) as in the statement of Proposition 3.1. The key result
we will use is that Proposition 3.1 implies the following bilinear estimates:

1. 1.
” B (ejltAiVO,l, e2!ths Vo,z) ‘

L2Ha@pow (143)
= C (14 o= k07™) 101 | sy 1702] oo -

To set up the fixed point iteration, we fix the initial data yo € H*# %% and define the
map ® = (P, Do) (v, ¢) as follows:

(@107, )] () = e2"B%yy — i /0 A L () (144)
(@207, )] (1) = B (37850, 318510
v [ (b masy (), HO8 ) iy
0
+ (=) /0 B (dOs g, HOAy )) dn. (145
We wish to solve the equation (y, ¢) = ®(y, ¢).

First, using (144) and the fact that the propagator e preserves the space H%A7x
along with the embedding H*#-7%0 ¢ H%P.9¥1 for k) > k1 > 0, we easily obtain:

H[®1 s O] O o s ||L<;o < ol oo + |1 | gapowe—s “Llr‘ (146)

LitAs

We now turn to ;. We begin by estimating the first term on the right hand side of
(145). We will use a dyadic decomposition in time:

|13 (% 34 )]

H®.B.oKk—ht L%w

[es]
1 1.
— FitA+ FitAt
Z N _ H B (e Yo, € 70 a,B,0,k—rt dt
02\ T<t<27mT H

> [

Now apply the Cauchy—Schwarz inequality, followed by (143). We implicitly assume
AT < 1, which is acceptable because we only want to address small times 7" in any case.

1; 1;
I3 (et etrsem)]

1. 1.
| B (215 y0, €21t )| s
m—1T ¢ <—mT Ha.B.ok—22 T

HoB.ok—ht L%-

1. 1.
B (efltAiyO’ eiltAiyO>

M

L2 Ha,ﬂ,n,x—lz_m_l T
m i

()’
0
1
3 C
—m— 2
(2 '7) ————— 10
0 (A2=m=1T)?2

M

m

o
< cnrrradn (Z 2‘5’"“")> 1yol e po -

m=0
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‘We now estimate the second term on the right hand side of (145); the third term is handled
similarly. We will employ a dyadic decomposition in # — #; and apply Cauchy—Schwarz
and (143) as before.

t
H ‘ [ B ey . b))
0

& T
<> f dn / di
=00 HA2-M=1T <t<p|42-MT

1. .
x | B (A8 1), 3Oy )|

0o LT
< Z/ dty
m=0 0

x| B (318 1)), 3 0As g 1) |

o 1 T
=3 (z—m—lr)2/0 dn

=0

HeB.ok—ht LIT

Ho.B.o.k—At

/ dt
H+2=m=1T <t <t +2-mT

HoB.ok—n(t+27m=1T)

3

x || B (e30mmBsy 1), OAs g 1 )|

BLok—A(t —m—1
llea,ﬁ)‘(— (11 +2 T)
lr

=Y () e ()

3
o

T
« / dty 1y ()| gepeonsnn 12 gepon—in
0

00
< C)»_%FT%(I_F) (Z 2—ém(1—r)>

m=0

X [y Ol e | oo 1S Ol apse | 1y -

We can finally conclude the following estimate for ®;:

o0
@20 ] Oll goponon |1 < Cr~ 4o (Z 2*’"“‘”)
! (147)

m=0
X (1901 poe + 117 Ol gepnsose | o 18Ol gesosse | 1)
1

Combining (146) and (147), and defining C;, , = b Yoo 2-2m0=7) we ob-

tain:
1= 11—
I, O < T2 ol gesion + Cor T2 19013 0.0

Li—
+ T2, Ol + Cor 1 DI
By a completely analogous argument, we obtain the following continuity bound:
@ (y1, S1) — P(y2, 22
1 p—
= (13077 +4C0, (10 D1+ 12, 21D ) 101, 60 = (2, @211

(148)

(149)
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Combining (148) and (149), and applying the Banach fixed point theorem, we conclude
the existence and uniqueness of a solution to the fixed point equation (y, ¢) = ®(y, ¢)
once T is chosen sufficiently small depending only on || yo|| g«.5.0.« . This gives us unique-
ness under the assumption that || (y, ¢)|| is small, but in fact for any solution we can apply
(148) and a standard continuity argument to conclude that ||(y, ¢)|| is necessarily small
if T is small, as long as it is finite for some positive 7. The estimate (33) follows directly
from (148).

Finally, we remark that if A € [0, %) then we may take r = 0, so that C, , loses its
dependence on X; hence, we are allowed to take A = 0 and we can permitany « € [0, 00).
The rest of the proof proceeds in exactly the same manner.

5. Proof of Theorem 2.3

Theorem 2.3 follows from Proposition 3.1 combined with the arguments of Chen and
Pavlovi¢ [6], which in turn rely on the combinatorial arguments of Erdoés and Schlein-
Yau [9-11], in the boardgame representation given by Klainerman and Machedon [18].
We outline the proof here for the reader’s convenience.

To begin, we point out that the Boltzmann hierarchy may be written in vector integral
form as follows:

. t .
() =e%lmir(0)—i/ e21=1As pr (1) dry (150)
0

where AT = {(Axk - Axi) y® }k N and BI" = {Bk+1)/(k+l) }keN' We can apply B
¢ €
to both sides to yield a closed equation for BI:

1A ! 1 A
BF(t):B[ef”AiF(O)] —i/ B[ei’(”t')AiBF(tl)] dry. (151)
0

Letting © = BI', we conclude that the pair (I', E) satisfies the following system of
equations:

. ro .
ND =e%”Air(0)—i/ 2= 5y ayy (152)
0
. t ) .
2(1) = B[e%’mir(O)] —i/ B[e%“’—’lmia(tl)] dn (153)
0

and this system is equivalent to the original Boltzmann hierarchy.

Since (153) is a closed equation for E, we proceed in two steps. First we solve (153)
on a small time interval [0, T'] by Picard iteration; then, we establish that the right-hand
side of (152) is indeed well-defined in the correct functional space. The proof proceeds
by iterating the Duhamel formula (153), k times for the kth component, and applying
the combinatorial methods of Erdos, Schlein, and Yau [9-11], expressed in boardgame
form by Klainerman and Machedon [18]. Then we conclude by applying Proposition 3.1
inductively to bound all the terms (which are now O(C k) in number instead of (even
more than) O(k!) due to the combinatorial methods of [9-11]). The precise details are
written out in [6] for the interested reader.
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Remark. Notethatif A > 5 L then the combinatorial methods of [9-11], and the reformu-
lation in terms of a boardgame argument [ 18], all still apply at the formal level. However,
the termwise estimates of [6] no longer apply uniformly across general re-ordering of
collision times. This is simply not an issue when A < % since no time-dependent loss of
weight is required in that case. Most likely, if LWP holds at all for the hard sphere Boltz-
mann hierarchy for the spaces we consider, then completely new estimates (different
from Proposition 3.1) will be required.
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Appendix A. Inverse Wigner Transform of the Boltzmann Equation and Boltzmann
Hierarchy

We begin with the Boltzmann hierarchy.

Proposition A.1. Ler f & € L' ([0, T1, LR x R4)) and let y ® denote the inverse
Wigner transform of f%. Then if

(3 + Vi - Vx,) fO = g® (154)

holds in the sense of distributions, then we have

) 1 ®) /
i+ (Axc = Ax) ) v ® e X X))

:i/ g(k)< Xt X v>erk‘<Xk—Xi>dvk
RIk 2

in the sense of distributions.

(155)

Proof. We have

X +X /
ia,y“‘)(z,xk,x,;):i/ (a,f“‘))( —k V) ¢ EXD gy
Rdk

X + X, ; ,
_ i/ (—Vk ) Vka(k) +g(k)) (t, %, Vk> e Vk-(Xk—Xk)de'
Rdk

Consider the transport term alone.

X +X ,
i/ (—Vk . kaf(k)> < B — Y ) e Ve Xi=Xp gy,

X +X /
=—i / Vk ' (ka + VX,’{) |:f(k) < kT Vi ):| th'(kaXk)de

X + X, . ,
- / (Vx, + V) [f(k’ (r, Sk o v)} Ci Ve Ve X XD gy
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X+ X, . ,
= —(ka+Vx;>-/f‘k> (r% vk)ivke'vk'<xk—"k>dvk
Xi+ X! Vx. — Vx . ,
= —(Vy, +VX,’() . / f(k) (t, k 5 k’ Vk) k . kele‘(Xk*Xk)de

Vx, — Vx; X+ X, . ,
= —(ka + VX]/C) . % / f(k) < kT V ) ele'(Xk—Xk)de

1

Therefore,
) 1 ) /
i+ (B — Ax) ) v P X X)) =

(156)
— l/ g(k) ( Xk + X Vv ) ein-(Xk—X]/()de.
Rk 2

O

Proposition A.2. Let %D (Xi,1, Viy1) be a Schwartz function, and let y ¥V denote
its inverse Wigner transform. Then

l/ f(k+1)<Xk+X Vk) Vi (Xk=XD g,

(&}
22d7td /Sd I /Rd dzb
/

z xX1+x,  z z X1 +x,  z
X y(k+l) <x1 - Z’ X22k’ : ) ! + Z’xi + - X/Z;k’ 1 ! - _> (157)

and
f o D (Xk + X Y ) o Ve X=X gy

w
22d7rd /;d 1 dw A;d de

Ry (2)
(k+1) _ —P 0l@)
Xy <x > (x1 —x)) — FRRERCCE
xp+xp 1 R, (2)
T+§ (X1 — X]) + w4 ,
1 (z)
xi+§Pw(x1—xi)+ ‘”4 , Xhps

— 5 Pu(x1 —x)) — 1 (158)

xp+xp 1 .. Ry
2 2 ’
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Proof. Consider the loss term.

. _ Xk + X/ V. _ v/
! /Cl,k+1f(k+]) (Tk Vk) ! e X=X gy

() — v
= i/de+1dwb <Ivk+1 —vi|,w- L)

[vk+1 — V1]
. , X+ X, x;+x
x e Ve Xk=X}) pktD) k. ! L Vi, vkat
2 2
1 / Vi+l — V]
=i——— | dVis1dY;1dwb <|Uk+] -l o ——m—
(2 )dk+D T Vker — 1]

x ein'(Xk—X;/()e—inH'YkH

Xy(k+l) Xk+X,/{+Yk X1+ X+ Vet Xk+X]/<—Yk X1+ X] — Vel
2 ’ 2 ’ 2 ’ 2

ksl — V1
/dvldvk+1dy1dyk+1dwb (|Uk+1 —vil,w- +—)

=i
(2m)% [Vk+1 — V1]
% eivr(xl—xi—yl)e—ivkn Vk+l
Xy(kH) x1+x{+y1 x1+x;+yk+1
’ 2:ks ’
2 2
x1+xi—y1 , x1+xi—yk+1
2 ’ 2:k> 2 :

Use the change of variables u; = %(U]H_l +vy1), Uup = %(U]H.l — vy).
X+ X, . /
i/kaHf(kH) (—k 5 k. Vk) e Ve X=X gy,

o1 1
=isi /dulduzdy1dyk+1da)b (2|u2|, - W)

x e M@ =X[=V1=Yke1) 2 (X1 =X = Y1+Yk41)

I /
y y(k“) (xl +Xx+ ) » X1+ X] + Vet
B SR CT e —
Xi+Xx] =y y x1+xi—yk+1
0 Sy 2 L R
2 P2k 2

Now let w = x| — X] — Y1 — Yk+1, 2 = X1 — X] — V1 + Vks1.

. _ X+ X, vy
l/CLk+1f(k+]) (—2 k Vk) Ve X=X gy

1 u . )
:lwfduldusz)dZdwb <2|M2|,(,() ﬁ) etz
g uz
!/
(k+1) w+z x1+x1 w—7z
X X1 — ’X' s T~ T T
Y ( 1 4 2:k D) 4
w+z X1+x] w—z
o Uy HEH w2y
4 ) 4
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Recall that
Boe) = / b<|u|,w-i) 1 (159)
Rd |ue

Then we have

Xk + X/ . /
l/cl_,k+l f<k+1) <Tkv Vk) ele(Xk_Xk)de

Now the gain term.

X+ X, : /
i/CT,k+1f(k+1) ( : 2 £, Vk) Ve X=X gy,

. Vk+1 — V1 Vo (X — X
:l/de+1da)b <|Uk+l —vi|,w- —> ele (Xk—X})
[Vk+1 — Vil

I / /
ey (X1 HX Xow+ Xy xi+xp %
X f( ) < 5 > ) 5 vi, Vo, v

—i;fdv dYsrdob ([ve — vil, @ -~V
(zﬂ)d(k+l) k+1 k+1 k+1 11, |Uk+1 _ U1|

x e Vk'(Xk—X//()e—i Vo Yo o =i 01+ P (Va1 =01)) Y1 =i (Vs = Poo (V1 =01)) - Yier1

D) <x1 +xp+y1 Xox+ Xhp + You X1 +X] + Vil

2 ’ 2 ’ 2 ’
xi+x;—y1 Xox+ X5, — Yo X +X] — ykat
2 ’ 2 ’ 2
. Uk+1 — V1
= Z—M/dvldvk+1dy1dyk+1dwb <|Uk+1 -], @- —)
(2m) [vg+1 — v1]
x e V1 1=x]) =i (V1 Po (Va1 =01)) V1 p =1 (V1 = Poo (V41 =01)) Vi1
X)/(kH) x1+x{+y1 - x1+x;+yk+]
2 b K 2 9
x1+xi—y1 , x1+xi—yk+1
2 ’ 2:k> 2 N

1 1
Letuj = 5(vke1 +v1), u2 = 5 (Vg+1 — v1)-

X+ X, . ’
i/CT,ka(k“) (% Vk) ¢! Ve X=X gy,

o1 s
=idd /du1du2dy1dyk+1da)b <2|u2|, - w)

w1 =X =Y1= Y1) p =it (X1 =X] = R (y1—Yk41))



Boltzmann’s Equation and the Wigner Transform 463

/ /
xy(k“) (x1+xl+y1 » X1 +X) + Vit
2 b K 2 b
X1+HX] = Y1 o, XX = Vel
2 4 2:k> 2 °

Let w = x| — X — Y1 — Yk+1, 2 = X1 — X] — Ro (V1 — Yis1)-

X+ X, . /
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We now turn to the Boltzmann equation. Here it suffices to notice that a solution f of
the Boltzmann equation is just a factorized solution of the Boltzmann hierarchy, i.e.
f® = £®k Using Propositions A.1 and A.2, we obtain:

Corollary A.3. Let f € L' ([0, T1, L*(R? x Rd)) and let y denote the inverse Wigner
transform of f. Then if

@r+v-Vy) f=¢g (160)
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holds in the sense of distributions, then we have

1 +x’ . p
i+~ (Ay — Ay) y:i/ ofn, 255 y) ey (161)
2 R4 2

in the sense of distributions.

Corollary A 4. Let f(x, v) be a Schwartz function, and let y denote its inverse Wigner
transform. Then

. x+x' iv-(x—x")
i| O 1) S v)e dv

_ 1 be (2
_22dndfsd_ldw/wdzb (2)
1

R 1 R
X {y (x— EPw(x—x’) — w4(z),x’+§Pw(x—x’)+ w4(z)>
x+x’ 1 R,(2) x+x" 1 R, (2)
xy< 5 +§Pw(x—x’)+ w4 o —EPw(x—x’)— w4
z ., z x+x 7z x+x' 2
- — =, x4+ = + -, —— . 162
7’<x 4" 4)”( 2 T4 2 4)} (162)
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