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Abstract: The Ginzburg–Landau model is a phenomenological description of super-
conductivity. A crucial feature of type-II superconductors is the occurrence of vortices,
which appear above a certain value of the strength of the applied magnetic field called
the first critical field. In this paper we estimate this value, when the Ginzburg–Landau
parameter is large, and we characterize the behavior of theMeissner solution, the unique
vortexless configuration that globally minimizes the Ginzburg–Landau energy below the
first critical field. In addition, we show that beyond this value, for a certain range of the
strength of the applied field, there exists a unique Meissner-type solution that locally
minimizes the energy.

1. Introduction

1.1. Problem and background. Superconductors are certain metals and alloys, which,
when cooled down below a critical (typically very low) temperature, lose their resistivity,
which allows permanent currents to circulate without loss of energy. Superconductivity
was discovered by H. Kamerlingh Onnes in 1911. As a phenomenological description
of this phenomenon, Ginzburg and Landau [GL50] introduced in 1950 the Ginzburg–
Landau model of superconductivity, which has been proven to effectively predict the
behavior of superconductors and thatwas subsequently justified as a limit of theBardeen–
Cooper–Schrieffer (BCS) quantum theory [BCS57]. It is a model of great importance in
physics, with Nobel prizes awarded for it to Abrikosov, Ginzburg, and Landau.

The Ginzburg–Landau functional, which models the state of a superconducting sam-
ple in an applied magnetic field, assuming that the temperature is fixed and below the
critical one, is

GLε(u, A) = 1

2

∫
�

|∇Au|2 + 1

2ε2
(1 − |u|2)2 + 1

2

∫
R3

|H − Hex|2.

Here
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• � is a bounded domain of R3, that we assume to be simply connected with C2

boundary.
• u : � → C is called the order parameter. Its modulus squared (the density of Cooper

pairs of superconducting electrons in the BCS quantum theory) indicates the local
state of the superconductor: where |u|2 ≈ 1 the material is in the superconducting
phase, where |u|2 ≈ 0 in the normal phase.

• A : R3 → R
3 is the electromagnetic vector potential of the induced magnetic field

H = curl A.
• ∇A denotes the covariant gradient ∇ − i A.
• Hex : R3 → R

3 is a given external (or applied) magnetic field.
• ε > 0 is the inverse of the Ginzburg–Landau parameter usually denoted κ , a non-
dimensional parameter depending only on the material. We will be interested in the
regime of small ε, corresponding to extreme type-II superconductors.

A key physical feature of this type of superconductors is the occurrence of vortices
(similar to those influidmechanics, but quantized), in the presence of an appliedmagnetic
field. They correspond to the regions where |u| vanishes, and since u is complex-valued
they carry a nonzero integer topological degree. Vortices become co-dimension 2 topo-
logical singularities in the limit ε → 0, and are the crucial objects of interest in the
analysis of the model.

There are three main critical values or critical fields Hc1 , Hc2 , and Hc3 of the strength
of the applied field Hex, for which phase transitions occur.

• Below Hc1 = O(| log ε|), the superconductor is everywhere in its superconducting
phase, i.e. |u| is uniformly close to 1, and the applied field is expelled by the material
due to the occurrence of supercurrents near ∂�. This phenomenon is known as the
Meissner effect.

• At Hc1 , the first vortice(s) appear and the applied field penetrates the superconductor
through the vortice(s).

• Between Hc1 and Hc2 , the superconducting and normal phases coexist in the sample.
As the strength of the applied field increases, so does the number of vortices. The
vortices repel each other, while the external magnetic field confines them inside the
sample.

• At Hc2 = O
(

1
ε2

)
, the superconductivity is lost in the bulk of the sample.

• Between Hc2 and Hc3 , superconductivity persists only near the boundary.

• Above Hc3 = O
(

1
ε2

)
, the applied magnetic field completely penetrates the sample

and the superconductivity is lost, i.e. u = 0.

The Ginzburg–Landau model is known to be a U(1)-gauge theory. This means that all
the meaningful physical quantities are invariant under the gauge transformations

u �→ ueiφ, A �→ A + ∇φ,

where φ is any real-valued function in H2
loc(R

3). The Ginzburg–Landau energy and its
associated free energy

Fε(u, A) = 1

2

∫
�

|∇Au|2 + 1

2ε2
(1 − |u|2)2 + | curl A|2

are gauge invariant, as well as the density of superconducting Cooper pairs |u|2, the
induced magnetic field H , and the vorticity, defined, for any sufficiently regular config-
uration (u, A), as
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μ(u, A) = curl(iu,∇Au) + curl A,

where (·, ·) denotes the scalar product in C identified with R
2 i.e. (a, b) = ab+ab

2 .
This quantity is the gauge-invariant version of the Jacobian determinant of u and is the
analogue of the vorticity of a fluid. For further physics background on the model, we
refer to [Tin96,DG99].

The main purpose of this paper is to give a precise estimate of Hc1 and to characterize
the behavior of global minimizers of GLε below this value in three dimensions. The
analysis of Hc2 or higher applied fields requires completely different techniques. The
interested reader can refer to [GP99,FH10,FK13,FKP13] and references therein.

The first critical field is (rigorously) defined by the fact that below Hc1 global min-
imizers of the Ginzburg–Landau functional do not have vortices, while they do for
applied fields whose strength is higher than Hc1 . In the 2D setting, Sandier and Serfaty
(see [Ser99a,SS00,SS03,SS07]) provided an expansion of the first critical field, up to
an error o(1) as ε → 0, and rigorously characterized the behavior of global minimizers
of the Ginzburg–Landau functional below and near this value. Conversely, in three di-
mensions much less is known. Recently Baldo, Jerrard, Orlandi, and Soner [BJOS13],
via a �-convergence argument, provided the asymptotic leading order value of the first
critical field as ε → 0 (see also [BJOS12] for related results). In short, in a uniform
applied field, i.e. when Hex = hε�e, where hε ≥ 0 and �e ∈ R

3 is a fixed unit vector, they
proved that if (uε, Aε) minimizes GLε(uε, Aε) then there exists a measure μ0 such that

μ(uε, Aε)

| log ε| → μ0 as ε → 0

inweak sense (the precise type of convergence can be found in [BJOS13, Proposition 1]).
Moreover, there exists a constant H∗ such that if limε→0

hε| log ε| < H∗ then μ0 ≡ 0,

while μ0 �≡ 0 if limε→0
hε| log ε| > H∗. This result gives Hc1 up to an error o(| log ε|) as

ε → 0 and agrees with previous work by Alama, Bronsard, and Montero [ABM06] in
the special case when � is a ball. An intermediate situation, when the superconducting
sample is a thin shell, was treated in [Con11].

Before stating our results, let us recall the three dimensional ε-level estimates for the
Ginzburg–Landau functional provided by the author in [Rom19]. These tools will play
a crucial role in this paper.

Theorem 1.1. For any m, n, M > 0 there exist C, ε0 > 0 depending only on m, n, M,

and ∂�, such that, for any ε < ε0, if (uε, Aε) ∈ H1(�,C) × H1(�,R3) is a configu-
ration such that Fε(uε, Aε) ≤ M | log ε|m then there exists a polyhedral 1-dimensional
current νε such that

(1) νε/π is integer multiplicity,
(2) ∂νε = 0 relative to �,
(3) supp(νε) ⊂ Sνε ⊂ � with |Sνε | ≤ C | log ε|−q , where q(m, n) := 3

2 (m + n),

(4)
∫

Sνε

|∇Aε uε|2 + 1

2ε2
(1 − |uε|2)2 + | curl Aε|2 ≥ |νε|(�)

(
log

1

ε
− C log log

1

ε

)
−

C

| log ε|n ,

(5) and for any γ ∈ (0, 1] there exists a constant Cγ depending only on γ and ∂�, such
that

‖μ(uε, Aε) − νε‖C0,γ
T (�)∗ ≤ Cγ

Fε(uε, Aε) + 1

| log ε|qγ
.
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Here and in the rest of the paper, C0,γ
T (�) denotes the space of vector fields � ∈

C0,γ (�) such that�×ν = 0 on ∂�, where ν is the outer unit normal to ∂�. The symbol
∗ denotes its dual space.

1.2. Main results. Throughout this article we assume that Hex ∈ L2
loc(R

3,R3) satisfies
div Hex = 0 in R

3. In particular, we deduce that there exists a vector-potential Aex ∈
H1
loc(R

3,R3) such that

curl Aex = Hex and div Aex = 0 in R
3.

Let hex := ‖Hex‖L2(�,R3). We define H0,ex := h−1
ex Hex and assume that this vector

field is Hölder continuous in � with Hölder exponent β ∈ (0, 1] and Hölder norm
bounded independently of ε. In particular, note that ‖H0,ex‖L2(�,R3) = 1. We also set
A0,ex := h−1

ex Aex.
We remark that the divergence-free assumption on the applied magnetic field is in

accordance with the fact that magnetic monopoles do not exist in Maxwell’s electro-
magnetism theory.

The natural space for the minimization of GLε in three dimensions is H1(�,C) ×
[Aex + Hcurl], where

Hcurl := {A ∈ H1
loc(R

3,R3) | curl A ∈ L2(R3,R3)}.
Let us also introduce the homogeneous Sobolev space Ḣ1(R3,R3), which is defined as
the completion of C∞

0 (R3,R3) with respect to the norm ‖∇( · )‖L2(R3,R3). We observe
that, by Sobolev embedding, there exists a constant C > 0 such that

‖A‖L6(R3,R3) ≤ C‖∇ A‖L2(R3,R3) (1.1)

for any A ∈ Ḣ1(R3,R3). Moreover, by [KS91, Proposition 2.4], we have

Ḣ1(R3,R3) = {A ∈ L6(R3,R3) | ∇ A ∈ L2(R3,R3)}.
It is also convenient to define the subspace

Ḣ1
div=0 := {A ∈ Ḣ1(R3,R3) | div A = 0 in R

3}.
In this subspace, one has

‖A‖Ḣ1
div=0

:= ‖∇ A‖L2(R3,R3) = ‖ curl A‖L2(R3,R3). (1.2)

Let us now define a special vortexless configuration that turns out to be a good
approximation of the so-called Meissner solution, i.e. the vortexless global minimizer
of the Ginzburg–Landau energy below the first critical field, which, as we shall see, is
unique up to a gauge transformation. By recalling that any vector field A ∈ H1(�,R3)

can be decomposed as (see Lemma 2.2)
⎧⎨
⎩

A = curl BA + ∇φA in �

BA × ν = 0 on ∂�

∇φA · ν = A · ν on ∂�
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with BA ∈ {B ∈ H2(�,R3) | div B = 0 in �} and φA ∈ {φ ∈ H2(�) | ∫
�

φA = 0},
we consider the pair (u0, hexA0), where u0 = eihexφA0 and A0 is the unique minimizer
(in a suitable space) of the functional

J (A) = 1

2

∫
�

| curl BA|2 + 1

2

∫
R3

| curl(A − A0,ex )|2.

This special configuration satisfies the following properties:

• GLε(u0, hexA0) = h2
ex J (A0).

• |u0| = 1 and μ(u0, hexA0) = 0 in �.
• H0 = curl A0 satisfies the usually called London equation

curl2(H0 − H0,ex) + H0χ� = 0 in R
3,

where χ� denotes the characteristic function of �.
• The divergence-free vector field B0 = BA0 ∈ C2,β

T (�,R3) satisfies
{−�B0 + B0 = H0,ex in �

B0 × ν = 0 on ∂�.

This vector field is the analog of the function ξ0, considered by Sandier and Serfaty in
the analysis of the first critical field in 2D (see [Ser99a,Ser99b,SS00,SS03,SS07]).
We shall see that B0 plays an important role in our three dimensional analysis.

In addition, this pair allows us to split the Ginzburg–Landau energy of a given config-
uration (u, A). More precisely, by writing u′ = u−1

0 u and A′ = A − hexA0, one can
prove that (see Proposition 3.1)

GLε(u, A) = h2
ex J (A0) + Fε(u

′, A′) + 1

2

∫
R3\�

| curl A′|2−hex

∫
�

μ(u′, A′) ∧ B0+R0,

where R0 = o(1), in particular, when hex is bounded above by a positive power of
| log ε|. Let us emphasize that one of the achievements of this paper is to find the right
pair (u0, hexA0) to split the energy, which then allows to implement (almost) the same
strategies as in 2D.

By combining this splitting with the optimal ε-level estimates of Theorem 1.1, we
find

GLε(u, A) ≥ h2
ex J (A0) +

1

2
|ν′

ε|(�)

(
log

1

ε
− C log log

1

ε

)
− hex

∫
�

ν′
ε ∧ B0 + o(1),

where ν′
ε denotes the 1-current associated to (u′, A′) by Theorem 1.1. By construction

of ν′
ε (see [Rom19, Section 5.2]), we can write

ν′
ε =

∑
i∈Iε

2π�ε
i ,

where the sum is understood in the sense of currents, Iε is a finite set of indices, and �ε
i

is an oriented Lipschitz curve in � with multiplicity 1. Each of these curves, which are
non-necessarily distinct, does not self intersect and is either a loop contained in � or
has two different endpoints on ∂�. We will denote by X the class of Lipschitz curves,
seen as 1-currents, described here.
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Inserting this expression in the previous inequality, allows us to heuristically derive
the leading order of the first critical field:

H0
c1 := 1

2‖B0‖∗
| log ε|,

where

‖B0‖∗ := sup
�∈X

1

|�|(�)

∫
�

� ∧ B0.
1 (1.3)

Wemay now state our first result, that characterizes the behavior of global minimizers
of GLε below H0

c1 . In the 2D setting, an analogous result was proved by Sandier and
Serfaty (see [SS00, Theorem 1]).

Theorem 1.2. There exist constants ε0, K0 > 0 such that for any ε < ε0 and hex ≤
H0

c1 − K0 log | log ε|, the global minimizers (uε, Aε) of GLε in H1(�,C)×[Aex +Hcurl]
are vortexless configurations such that, as ε → 0,

• ‖1 − |uε|‖L∞(�,C) = o(1),
• ‖μ(uε, Aε)‖C0,γ

T (�)∗ = o(1) for any γ ∈ (0, 1], and

• h2
ex J (A0) + o(1) ≤ GLε(uε, Aε) ≤ h2

ex J (A0).

It is important to mention that in the proof of this theorem we use the fact that
solutions of the Ginzburg–Landau equations (see Sect. 2.3), in the Coulomb gauge,
satisfy a clearing-out result proved by Chiron [Chi05]. Roughly speaking, this states that
if the energy of a solution in a ball (with center in �) intersected with � is sufficiently
small, then |u| is uniformly away from 0 in a ball of half radius intersected with �. The
proof given by Chiron relies on monotonicity formulas, and is very much inspired by
previous work by Bethuel, Orlandi, and Smets [BOS04]. The interested reader can refer
to [Riv95,LR99,LR01,BBO01,SS17] for results in the same spirit.

Our second result provides bounds from above and below for the first critical field in
three dimensions.

Theorem 1.3. There exist constants ε0, K0 > 0 such that for any ε < ε0 we have

H0
c1 − K0 log | log ε| ≤ Hc1 .

Moreover, if there exists a multiplicity 1 rectifiable 1-current �1 with ∂�1 = 0 relative
to � such that

‖B0‖∗ = 1

|�1|(�)

∫
�

�1 ∧ B0,

then there exist constants ε1, K1 > 0 such that for any ε < ε1 we have

Hc1 ≤ H0
c1 + K1.

Remark 1.1. In the special case � = B(0, R) and H0,ex = ẑ in B(0, R), ‖B0‖∗ is
achieved by the vertical diameter seen as a 1-current with multiplicity 1 and oriented
in the direction of positive z axis; see Proposition 4.1. In particular, in this case the
hypothesis of this theorem is satisfied by a curve which belongs to X.

1 The notation used here is explained in the preliminaries (see Sect. 2).
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Remark 1.2. These inequalities show that indeed H0
c1 is the leading order of Hc1 as

ε → 0. Of course this agrees with the previously mentioned result by Baldo, Jerrard,
Orlandi, and Soner. The author strongly believes that, as ε → 0,

Hc1 = H0
c1 + O(1).

To prove this result, one needs to avoid the uncertainty of order O(log | log ε|) in the
statement of Theorem 1.2. To accomplish this, it is crucially important to characterize,
near the first critical field, the behavior of the vorticity μ(u, A) of global minimizers of
GLε. We plan to address this problem in future work.

Our next result shows that beyond the first critical field there exists a locally minimiz-
ing vortexless configuration. A similar result was proved by Serfaty in 2D (see [Ser99b,
Theorem 1]).

Theorem 1.4. Let α ∈ (
0, 1

3

)
. There exists ε0 > 0 such that for any ε < ε0 if hex ≤

ε−α then there exists a vortexless configuration (uε, Aε) = (u0u′
ε, hexA0 + A′

ε) ∈
H1(�,C)×[Aex + Ḣ1

div=0], which locally minimizes GLε in H1(�,C)×[Aex + Hcurl]
and satisfies the following properties as ε → 0:

(1) ‖1 − |uε|‖L∞(�,C) = o(1).
(2) h2

ex J (A0) + o(1) ≤ GLε(uε, Aε) ≤ h2
ex J (A0).

(3) The configuration (u′
ε, A′

ε) satisfies

inf
θ∈[0,2π ] ‖u′

ε − eiθ‖H1(�,C) + ‖A′
ε‖Ḣ1

div=0
= o(1).

(4) Up to a gauge transformation, (uε, Aε) converges to (u0, hexA0). More precisely,
we have

inf
θ∈[0,2π ] ‖uε − eiθ u0‖H1(�,C) + ‖Aε − hexA0‖Ḣ1

div=0
= o(1).

Let us point out that in Remark 5.1 we explain why we require α < 1
3 .

Our last result concerns the uniqueness, up to a gauge transformation, of locally
minimizing vortexless configurations.

Theorem 1.5. Let α, c ∈ (0, 1). There exists ε0 > 0 such that, for any ε < ε0, if
hex ≤ ε−α then a configuration (u, A) = (u0u′, hexA0 + A′) which locally minimizes
GLε in H1(�,C) × [Aex + Hcurl] and satisfies |u| ≥ c and Fε(u′, A′) ≤ ε1+δ for some
δ > 0, is unique up to a gauge transformation.

Remark 1.3. The assumption that Fε(u′, A′) ≤ ε1+δ for some δ > 0 plays a crucial
role in the proof of this result. In Proposition A.2, we prove that if α ∈ (

0, 1
4

)
then this

condition is implied by the other assumptions of this theorem provided that GLε(u, A) ≤
GLε(u0, hexA0) = h2

ex J (A0), i.e. uniqueness holds without assuming that Fε(u′, A′) ≤
ε1+δ for some δ > 0 if the Ginzburg–Landau energy of the vortexless local minimizer is
below the energy of (u0, hexA0). We observe that this condition is satisfied by the locally
minimizing solution of Theorem 1.4.

Let us also note that if α ≥ 1
4 then the strategy of the proof of Proposition A.2

fails. For this reason, we are able to guaranty the uniqueness of the locally minimizing
vortexless configuration of Theorem 1.4 only if α < 1

4 .
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Finally, let us emphasize that this uniqueness result allows to conclude that the locally
minimizing configuration of Theorem 1.4 is, indeed, up to a gauge transformation, the
unique global minimizer of the Ginzburg–Landau energy below the first critical field.
Therefore Theorem1.4, in particular, provides a detailed characterization of the behavior
of the Meissner solution.

Thus, we prove that below the first critical field, up to a gauge transformation, the
Meissner solution is the unique global minimizer of GLε. Beyond this value, at least up

to hex = o(ε− 1
3 ), a Meissner-type solution continues to exists as a local minimizer of

the Ginzburg–Landau energy. This solution is unique, up to a gauge transformation, at

least up to hex = o(ε− 1
4 ). Since this branch of vortexless solutions remains stable, in

the process of raising hex vortices should not appear at Hc1 , but rather at a critical value
of hex called the superheating field Hsh, at which the Meissner-type solution becomes
unstable. It is expected that Hsh = O(ε−1). The interested reader can refer to [Xia16]
and references therein for further details.

Outline of the paper. The rest of the paper is organized as follows. In Sect. 2 we in-
troduce some basic quantities and notation, describe two Hodge-type decompositions,
and present some classical results in Ginzburg–Landau theory. In Sect. 3 we define the
approximation of the Meissner solution, split the Ginzburg–Landau energy, and prove
Theorem 1.2. In Sect. 4 we present the proof of Theorem 1.3 and compute ‖B0‖∗ in a
special case. Section 5 contains the proof of Theorem 1.4 and Section 6 the proof of
Theorem 1.5. Appendix A is devoted to prove some improved estimates for locally mini-
mizing configurations, that allow to obtain the uniqueness of the Meissner-type solution
of Theorem 1.4 for α < 1

4 , as a consequence of Theorem 1.5.

2. Preliminaries

2.1. Some definitions and notation. We define the superconducting current of a pair
(u, A) ∈ H1(�,C) × H1(�,R3) as the 1-form

j (u, A) = (iu, dAu) =
3∑

k=1

(iu, ∂ku − i Aku)dxk .

It is related to the vorticity μ(u, A) of a configuration (u, A) through

μ(u, A) = d j (u, A) + d A.

This quantity can be seen as a 1-current, which is defined through its action on 1-forms
by the relation

μ(u, A)(φ) =
∫

�

μ(u, A) ∧ φ.

We recall that the boundary of a 1-current T relative to a set �, is the 0-current ∂T
defined by

∂T (φ) = T (dφ)

for all smooth compactly supported 0-form φ defined in �. In particular, μ(u, A) has
zero boundary relative to �. We denote by |T |(�) the mass of a 1-current T in �.



On the First Critical Field in Three Dimensional Ginzburg–Landau 325

2.2. Hodge-type decompositions. Next, we provide a decomposition of vector fields in
Hcurl.

Lemma 2.1. Every vector field A ∈ Hcurl can be decomposed as

A = curlB + ∇�,

where B, curlB ∈ Ḣ1
div=0 and � ∈ H2

loc(R
3).

Proof. First, let us observe that there exists a function �1 ∈ H2
loc(R

3,R3) such that

��1 = div A ∈ L2
loc(R

3,R3).

Second, we consider the problem

{
curl2 B = curl A ∈ L2(R3,R3)

div B = 0.

By observing that curl2 B = −�B, [KS91, Theorem 1] provides the existence of a
solution B ∈ Ḣ1

div=0 to this problem such that curlB ∈ Ḣ1
div=0.

Finally, by noting that

curl(A − ∇�1 − curlB) = div(A − ∇�1 − curlB) = 0,

we deduce that

A − ∇�1 − curlB = ∇�2

for some harmonic function �2 ∈ H2
loc(R

3,R3). By writing � = �1 + �2, we obtain
the result. ��

We now recall a decomposition of vector fields in H1(�,R3). The proof of this result
can be found in [BBO01, Appendix A].

Lemma 2.2. There exists a constant C = C(�) such that for every A ∈ H1(�,R3)

there exist a unique vector field BA ∈ {B ∈ H2(�,R3) | div B = 0 in �} and a unique
function φA ∈ {φ ∈ H2(�) | ∫

�
φA = 0} satisfying

⎧⎨
⎩

A = curl BA + ∇φA in �

BA × ν = 0 on ∂�

∇φA · ν = A · ν on ∂�.

Moreover,

‖BA‖H2(�,R3) ≤ C‖ curl A‖L2(�,R3) and ‖φA‖H2(�) ≤ C‖A‖H1(�,R3).
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2.3. Ginzburg–Landau equations.

Definition 2.1 (Critical point of GLε). We say that (u, A) ∈ H1(�,C) × [Aex + Hcurl]
is a critical point of GLε if for every smooth configuration (v, B) with B compactly
supported in R

3 we have

d

dt
GLε(u + tv, A + t B)|t=0 = 0.

We now present the Euler-Lagrange equations satisfied by critical points of GLε.
This is a well-known result, but for the sake of completeness we prove it here.

Proposition 2.1 (Ginzburg–Landau equations). If (u, A) ∈ H1(�,C) × [Aex + Hcurl]
is a critical point of GLε then (u, A) satisfies the system of equations

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−(∇A)2u = 1

ε2
u(1 − |u|2) in �

curl(H − Hex) = (iu,∇Au)χ� in R
3

∇Au · ν = 0 on ∂�

[H − Hex] × ν = 0 on ∂�,

(GL)

where χ� is the characteristic function of �, [ · ] denotes the jump across ∂�, ∇Au ·ν =∑3
j=1(∂ j u − i A j u)ν j , and the covariant Laplacian (∇A)2is defined by

(∇A)2u = (div−i A·)∇Au.

Proof. We have

d

dt
GLε(u + tv, A)|t=0 =

∫
�

(∇Au,∇Av) − 1

ε2

∫
�

(u, v)(1 − |u|2).

By noting that

(∇Au,∇Av) = div(∇Au, v) − ((∇A)2u, v),

where (∇Au, v) = ((∂1u − i A1u, v), (∂2u − i A2u, v), (∂3u − i A3u, v)), and by inte-
grating by parts, we obtain

d

dt
GLε(u + tv, A)|t=0 =

∫
∂�

(∇Au · ν, v) −
∫

�

((∇A)2u, v) − 1

ε2

∫
�

(u, v)(1 − |u|2).

Since this is true for any v, we find

−(∇A)2u = 1

ε2
u(1 − |u|2) in � and ∇Au · ν = 0 on ∂�.

On the other hand, we have

d

dt
GLε(u, A + t B)|t=0 = −

∫
�

(i Bu,∇Au) +
∫
R3

(H − Hex) · curl B = 0.

By integration by parts, we get

d

dt
GLε(u, A + t B)|t=0 = −

∫
�

(iu,∇Au) · B +
∫
R3

curl(H − Hex) · B = 0. (2.1)



On the First Critical Field in Three Dimensional Ginzburg–Landau 327

We deduce that

curl(H − Hex) = (iu,∇Au)χ� in R
3.

By testing this equation against Bχ� and integrating by parts, we find
∫

�

(H − Hex) · curl B −
∫

∂�

((H − Hex) × ν) · B −
∫

�

(iu,∇Au) · B = 0.

Now, by testing against BχR3\� and integrating by parts, we get
∫
R3\�

(H − Hex) · curl B +
∫

∂(R3\�)

((H − Hex) × ν) · B = 0.

Thus ∫
∂�

([H − Hex] × ν) · B = 0,

which implies that [H − Hex] × ν = 0 on ∂�. ��
Remark 2.1. By taking B = curl X in (2.1) with X ∈ C∞

0 (�,R3) and integrating by
parts, we find

−
∫

�

(μ(u, A) − H) · X +
∫

�

curl2(H − Hex) · X = 0.

Doing the same with X ∈ C∞
0 (R3\�,R3), we get

∫
R3\�

curl2(H − Hex) · X = 0.

We then deduce that H and μ(u, A) satisfy (in the sense of currents) the London equation

curl2(H − Hex) + Hχ� = μ(u, A)χ�. (2.2)

We will come back to this equation later on.

2.4. Minimization of GLε.

Proposition 2.2. The minimum of GLε over H1(�,C) × [Aex + Hcurl] is achieved.

Proof. Let {(ũn, Ãn)}n be a minimizing sequence for GLε in H1(�,C)×[Aex + Hcurl].
Lemma 2.1 yields a gauge transformed sequence {(un, An)}n such that An ∈ [Aex +
Ḣ1
div=0]. In particular, we have that GLε(ũn, Ãn) = GLε(un, An) and

‖∇(An − Aex)‖L2(R3,R3) = ‖ curl(An − Aex)‖L2(R3,R3).

Using the bound GLε(un, An) ≤ C , where C is independent of n, we find that

‖1 − |un|2‖L2(�,C), ‖∇An un‖L2(�,C3), and ‖ curl(An − Aex)‖L2(R3,R3)

are bounded independently of n. Therefore, by recalling (1.1), we deduce that An − Aex
is bounded in Ḣ1(R3,R3). Because {un}n is bounded in L4(�) we find that {i Anun}n
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is bounded in L2(�,C3). By noting that ∇un = ∇An un + i Anun , we conclude that un

is bounded in H1(�,C).
We may then extract a subsequence, still denoted {(un, An)}n , such that {(un, An −

Aex)}n converges to some (u, A − Aex) weakly in H1(�,C) × Ḣdiv=0 and, by compact
Sobolev embedding, strongly in every Lq(�,C) × Lq(�,R3) for q < 6.

Let us now show that (u, A) is aminimizer ofGLε. By strong L4(�,C) convergence,

lim inf
n

‖1 − |un|2‖L2(�,C) = ‖1 − |u|2‖L2(�,C).

Also, by weak Ḣ1(R3,R3) convergence, we have

lim inf
n

‖ curl(An − Aex)‖L2(R3,R3) = lim inf
n

‖∇(An − Aex)‖L2(R3,R3)

≥ ‖∇(A − Aex)‖L2(R3,R3) = ‖ curl(A − Aex)‖L2(R3,R3).

Moreover, standard arguments show that

lim inf
n

‖∇An un‖2L2(�,C3)
= lim inf

n
‖∇un‖2L2(�,C3)

− 2
∫
�

(∇un, i Anun) + ‖Anun‖L2(�,C3)

≥ ‖∇Au‖L2(�,C3).

Hence

lim inf
n

GLε(uε, Aε) ≥ GLε(u, A).

��

3. Global Minimizers Below H0
c1

3.1. An approximation of the Meissner solution. Next,wefinda configuration (u0, hexA0)

with |u0| = 1 and which satisfies (2.2) with zero right-hand side. As mentioned in the
introduction, this turns out to be a good approximation of the Meissner solution, the
vortexless configuration which minimizes GLε below the first critical field.

Let us consider a configuration of the form (eiφ0 , hexA0) with φ0 ∈ H2(�) and
A0 ∈ A0,ex + Ḣ1

div=0. Observe that, by using Lemma 2.2 and letting u0 := eiφ0 , we have

GLε(u0, hexA0) =1

2

∫
�

|∇φ0 − hex(curl BA0 + ∇φA0 )|2 +
1

2

∫
R3

|hex curl A0 − Hex|2

=1

2

∫
�

|∇(φ0 − hexφA0 )|2 + h2ex| curl BA0 |2 +
h2ex
2

∫
R3

| curl(A0 − A0,ex)|2.

By choosing φ0 = hexφA0 , we obtain

GLε(u0, hexA0) = h2
ex

2

∫
�

| curl BA0 |2 +
h2
ex

2

∫
R3

| curl(A0 − A0,ex)|2 =: h2
ex J (A0).

We let A0 to be the minimizer of J in the space
(

A0,ex + Ḣ1
div=0, ‖ · ‖Ḣ1

div=0

)
, whose

existence and uniqueness follows by noting that J is continuous, coercive, and strictly
convex in this Hilbert space (recall (1.1) and (1.2)). We also let H0 = curl A0 and here
and in the rest of the paper we use the notation B0 := BA0 .
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Let us observe that, by minimality of A0 and Lemma 2.2, we have

J (A0) ≤ J (A0,ex) = 1

2

∫
�

| curl BA0,ex |2 ≤ C
∫

�

| curl A0,ex|2 = C
∫

�

|H0,ex |2 = C.

(3.1)
One can easily check that, for any A ∈ Ḣ1

div=0, we have∫
�

curl B0 · curl BA +
∫
R3

(H0 − H0,ex) · curl A = 0.

Because ∫
�

curl B0 · ∇φA =
∫

�

B0 · curl∇φA −
∫

∂�

(B0 × ν) · ∇φA = 0,

we have ∫
�

curl B0 · A +
∫
R3

(H0 − H0,ex) · curl A = 0. (3.2)

Moreover, Lemma 2.1 implies that this equality also holds for any A ∈ Hcurl.
Let us observe that, for any A ∈ C∞

0 (R3,R3), by integration by parts, we have
∫

�

curl B0 · A +
∫
R3

curl(H0 − H0,ex) · A = 0.

Therefore, A0 satisfies the Euler-Lagrange equation

curl(H0 − H0,ex) + curl B0χ� = 0 in R
3. (3.3)

In addition, it is easy to see that the boundary condition [H0 − H0,ex] × ν = 0 on ∂�

holds.
Arguing as in Remark 2.1, we find

curl2(H0 − H0,ex) + H0χ� = 0 in R
3,

namely (up to multiplying by hex) (2.2) with μ(u0, A0) = 0.
On the other hand, by integration by parts, for any vector field B ∈ C∞

0 (�,R3), we
have ∫

�

B0 · curl B +
∫

�

(H0 − H0,ex) · curl B = 0.

Besides, for any function φ ∈ C∞
0 (�), we have

∫
�

(B0 + (H0 − H0,ex)) · ∇φ = −
∫

�

div(B0 + (H0 − H0,ex))φ = 0.

Then, given any vector field A ∈ C∞
0 (�,R3), by taking B = BA and φ = φA in the

previous equalities, we find∫
�

(B0 + (H0 − H0,ex)) · (curl BA + ∇φA) =
∫

�

(B0 + (H0 − H0,ex)) · A = 0.

Hence, the divergence-free vector field B0 weakly solves the problem{−�B0 + B0 = H0,ex in �

B0 × ν = 0 on ∂�.
(3.4)
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Remark 3.1. Since we assume that ‖H0,ex‖C0,β (�,R3) ≤ C, by standard elliptic regu-

larity theory, we deduce that B0 ∈ C2,β
T (�,R3) with ‖B0‖C2,β

T (�,R3)
≤ C for some

constant independent of ε. In addition, if the applied field is taken to be uniform in �,
i.e. if H0,ex is a fixed unit vector in �, then B0 depends on the domain � only.

3.2. Energy-splitting. Next, by using the approximation of the Meissner solution, we
present a splitting of GLε.

Proposition 3.1. For any (u, A) ∈ H1(�,C) × [Aex + Hcurl], letting u = u0u′ and
A = hexA0 + A′, where (u0, hexA0) is the approximation of the Meissner solution, we
have

GLε(u, A) = h2
ex J (A0)+ Fε(u

′, A′)+ 1

2

∫
R3\�

| curl A′|2−hex

∫
�

μ(u′, A′)∧ B0 + R0,

(3.5)
where Fε(u′, A′) is the free energy of the configuration (u′, A′) ∈ H1(�,C) × Hcurl,
i.e.

Fε(u
′, A′) = 1

2

∫
�

|∇A′u′|2 + 1

2ε2
(1 − |u′|2)2 + | curl A′|2

and

R0 = h2
ex

2

∫
�

(|u|2 − 1)| curl B0|2.

In particular, |R0| ≤ Cεh2
exEε(|u|) 1

2 with Eε(|u|) = 1

2

∫
�

|∇|u||2 + 1

2ε2
(1 − |u|2)2.

Proof. One immediately checks that A′ ∈ Hcurl. Since u′ = u−1
0 u = e−ihexφ0u and

φ0 ∈ H2(�), by Sobolev embedding we deduce that u′ ∈ H1(�,C).
Writing u = u0u′ and A = hexA0 + A′ and plugging them into GLε(u, A), we obtain

GLε(u, A) = 1

2

∫
�

|∇A′u′ − ihex curl B0u′|2 + 1

2ε2
(1 − |u′|2)2

+
1

2

∫
R3

| curl A′ + hex(H0 − H0,ex)|2.

By expanding the square terms, we get

GLε(u, A) = 1

2

∫
�

|∇A′u′|2 + h2
ex| curl B0|2|u′|2 − 2hex(∇A′u′, iu′) · curl B0 +

1

2ε2
(1 − |u′|2)2

+
1

2

∫
R3

| curl A′|2 + h2
ex|H0 − H0,ex|2 + 2hex curl A′ · (H0 − H0,ex).

Observe that, by (3.2), we have
∫
R3

curl A′ · (H0 − H0,ex) = −
∫

�

A′ · curl B0.
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Therefore, grouping terms and writing |u′|2 as 1 + (|u′|2 − 1), we find

GLε(u, A) = h2
ex J (A0) + Fε(u

′, A′) + 1

2

∫
R3\�

| curl A′|2

−hex

∫
�

( j (u′, A′) + A′) · curl B0 + R0.

Then, an integration by parts yields
∫

�

( j (u′, A′) + A′) · curl B0 =
∫

�

μ(u′, A′) ∧ B0 −
∫

∂�

( j (u′, A′) + A′) · (B0 × ν).

By using the boundary condition B0 × ν = 0 on ∂�, we find (3.5). The inequality for
R0 follows directly from the Cauchy-Schwarz inequality. ��
Remark 3.2. Let ϕ ∈ C0,1

T (�) be a 1-form. Observe that, by gauge invariance and by
integration by parts, we have

∫
�

μ(u, A) ∧ ϕ =
∫

�

μ(u′, A′ + hex curl B0) ∧ ϕ

=
∫

�

μ(u′, A′) ∧ ϕ + hex(1 − |u|2) curl B0 · curl ϕ.

Then, the Cauchy-Schwarz inequality yields

‖μ(u, A) − μ(u′, A′)‖C0,1
T (�)∗ ≤ CεhexEε(|u|) 1

2 .

Moreover, arguing as in the proof of the vorticity estimate in Theorem 1.1 for γ ∈ (0, 1)
(see [Rom19, Section 8]), we conclude that, for any γ ∈ (0, 1),

‖μ(u, A) − μ(u′, A′)‖
C0,γ

T (�)∗ ≤ C
(
Fε(u, A) + Fε(u

′, A′)
)1−γ

(εhexEε(|u|) 1
2 )γ .

3.3. Proof of Theorem 1.2.

Proof. Proposition 3.1 yields

GLε(uε, Aε) ≥ h2
ex J (A0) + Fε(u

′
ε, A′

ε) − hex

∫
�

μ(u′
ε, A′

ε) ∧ B0 + o(ε
1
2 ), (3.6)

where (uε, Aε) = (u0u′
ε, hexA0 + A′

ε).
Step 1. Estimating Fε(u′

ε, A′
ε). By minimality, we have

inf
(u,A)∈H1(�,C)×[Aex+Hcurl]

GLε(u, A) ≤ GLε(u0, hexA0) = h2
ex J (A0). (3.7)

On the other hand, by gauge invariance, we get

Fε(u
′
ε, A′

ε) = Fε(uε, Aε − hex curl B0) ≤ 2Fε(uε, Aε) + 2Fε(1, hex curl B0)

≤ 2Fε(uε, Aε) + Ch2
ex,
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which combined with (3.7) and (3.1) implies that Fε(u′
ε, A′

ε) ≤ M | log ε|2. We may
then apply Theorem 1.1 (with n large enough) to obtain

Fε(u
′
ε, A′

ε) − hex

∫
�

μ(u′
ε, A′

ε) ∧ B0 ≥
1

2
|ν′

ε|(�)

(
log

1

ε
− C log log

1

ε

)
− hex

∫
�

ν′
ε ∧ B0 + o(| log ε|−2),

whereC > 0 is a universal constant and ν′
ε denotes the polyhedral 1-dimensional current

associated to the configuration (u′
ε, A′

ε) by Theorem 1.1. By noting that
∫

�

ν′
ε ∧ B0 ≤ |ν′

ε|(�)‖B0‖∗, (3.8)

we find

Fε(u
′
ε, A′

ε) − hex

∫
�

μ(u′
ε, A′

ε) ∧ B0

≥ 1

2
|ν′

ε|(�)

(
log

1

ε
− C log log

1

ε
− 2‖B0‖∗hex

)
+ o(| log ε|−2).

Writing hex = H0
c1 − K0 log | log ε| with H0

c1 = 1

2‖B0‖∗
| log ε|, we get

GLε(uε, Aε) ≥ h2
ex J (A0) +

1

2
|ν′

ε|(�) (2‖B0‖∗K0 − C) log log
1

ε
+ o(| log ε|−2).

Combining with (3.7), we deduce that

o(| log ε|−2) ≥ |ν′
ε|(�) (2‖B0‖∗K0 − C) log log

1

ε
.

Therefore, by letting K0 := (2‖B0‖∗)−1C + 1, we deduce that |ν′
ε|(�) = o(| log ε|−2).

In particular, from the vorticity estimate in Theorem 1.1 and (3.8), we deduce that
hex

∫
�

μ(u′
ε, A′

ε) ∧ B0 = o(| log ε|−1). Therefore, inserting in (3.6) and using (3.7), we
are led to

Fε(u
′
ε, A′

ε) +
1

2

∫
R3\�

| curl A′
ε|2 ≤ o(| log ε|−1). (3.9)

In particular, we deduce that GLε(uε, Aε) = h2
ex J (A0) + o(| log ε|−1).

Let us also observe that, since |ν′
ε|(�) = o(| log ε|−2), from the vorticity estimate in

Theorem 1.1 and Remark 3.2, one immediately deduces that, for any γ ∈ (0, 1],
‖μ(uε, Aε)‖C0,γ

T (�)∗ → 0 as ε → 0. (3.10)

Step 2. Applying a clearing out result. To prove that ‖1−|uε|‖L∞(�,C) → 0 as ε → 0,
we use a clearing out result. Let us define

vε := e−iϕε u′
ε and Xε := A′

ε − ∇ϕε,

where ϕε satisfies {
�ϕε = div A′

ε in �

∇ϕε · ν = A′
ε · ν on ∂�.
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This implies that Xε is in the Coulomb gauge, i.e. it satisfies
{
div Xε = 0 in �

Xε · ν = 0 on ∂�.
(3.11)

Since the configuration (uε, Aε)minimizes GLε in H1(�,C)×[Aex +Hcurl], it satisfies
the Ginzburg–Landau equations (GL). By observing that the configurations (uε, Aε) and
(vε, Xε + hex curl B0) are gauge equivalent in �, we deduce that vε satisfies{

−(∇Xε+hex curl B0)
2vε = 1

ε2
vε(1 − |vε|2) in �

∇Xε+hex curl B0vε · ν = 0 on ∂�.

Expanding the covariant Laplacian, and using (3.11) and curl B0 · ν = 0 on ∂�, which
follows from B0 × ν = 0 on ∂�, one can rewrite this problem in the form

{
−�vε + i | log ε|c(x) · ∇vε + | log ε|2d(x)vε = 1

ε2
vε(1 − |vε|2) in �

∇vε · ν = 0 on ∂�,
(3.12)

where

c(x) := 2(Xε + hex curl B0)

| log ε| and d(x) := |Xε + hex curl B0|2
| log ε|2 .

By Remark 3.1 and by standard elliptic regularity theory for solutions of the Ginzburg–
Landau equations in the Coulomb gauge, we have

‖c‖L∞(�,R3), ‖∇c‖L∞(�,R3×3), ‖d‖L∞(�), ‖∇d‖L∞(�) ≤ �0 (3.13)

for some constant �0 > 0 independent of ε.
In addition, by gauge invariance, we have

F(u′
ε, A′

ε) = Fε(vε, Xε).

Since (vε, Xε) is in the Coulomb gauge, we have

Eε(vε) := Fε(vε, 0) ≤ C Fε(vε, Xε)

for some universal constant C > 0. We define aε(x) = 1− d(x)ε2| log ε|2 and observe
that

Ẽε(vε) := 1

2

∫
�

|∇vε|2 + 1

2ε2
(aε(x) − |vε|2)2 ≤ Eε(vε) + O(ε| log ε|2).

This combined with (3.9), implies that

Ẽε(vε) = o(| log ε|−1). (3.14)

Finally, from (3.11), (3.12), (3.13), and (3.14), we conclude that all the hypotheses of
[Chi05, Theorem 3] are fulfilled, and therefore

‖1 − |uε|‖L∞(�,C) = ‖1 − |vε|‖L∞(�,C) → 0 as ε → 0.

It is worth mentioning that one can also obtain (3.10) from the improved vorticity
estimate in Proposition A.1. The proof is complete. ��
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4. The First Critical Field

Let us recall that, given a fixed ε > 0, the first critical field is defined as the value
Hc1 = Hc1(ε) such that if hex < Hc1 and (uε, Aε) is a minimizer of GLε then |uε| > 0
in �, while if hex > Hc1 and (uε, Aε) minimizes GLε then uε must vanish in �.

Before giving the proof of Theorem 1.3, let us state a well-known result.

Lemma 4.1. Let � be a multiplicity 1 rectifiable 1-current with ∂� = 0 relative to �.
There exist constants C1, ε1 > 0 such that, for any ε < ε1, there exists vε ∈ H1(�,C)

such that

Fε(vε, 0) ≤ π |�|(�)| log ε| + C1

and
‖μ(vε, 0) − 2π�‖C0,1

0 (�)∗ = o(| log ε|−1). (4.1)

We refer the reader to the proof of Theorem 1.1 (ii) in [ABO05, Section 4] for a proof
of this result. It is worth mentioning that the construction of vε relies on the existence of
a map provided in [ABO03, Theorem 5.10]. Let us also point out that, arguing as in the
proof of [JMS04, Proposition 3.2], one can replace the space C0,1

0 (�)∗ by C0,1
T (�)∗ in

the vorticity estimate (4.1). We will use this version of the result in the following proof.

Proof of Theorem 1.3. Theorem 1.2 immediately implies that

H0
c1 − K0 log | log ε| ≤ Hc1 .

It remains to prove that Hc1 ≤ H0
c1 + K1, for some constant K1 sufficiently large. Given

K > 0, let us assume towards a contradiction that hex = H0
c1 +K and (uε, Aε)minimizes

GLε in H1(�,C) × [Aex + Hcurl]2 with |uε| > 0.
Step 1. Estimating GLε(uε, Aε). We write (uε, Aε) = (u0u′

ε, hexA0 + A′
ε), where

(u0, hexA0) is the approximation of the Meissner solution. Since |u′
ε| = |uε| > 0, we

deduce that the 1-dimensional current ν′
ε associated to (u′

ε, A′
ε) by Theorem 1.1 vanishes

identically, and therefore, by taking n large enough, we have

‖μ(u′
ε, A′

ε)‖C0,1
T (�)∗ ≤ C

| log ε|2 .

The energy-splitting (3.5) then yields

GLε(uε, Aε) = h2
ex J (A0) + Fε(u

′
ε, A′

ε) +
1

2

∫
R3\�

| curl A′
ε|2 + o(| log ε|−1)

≥ h2
ex J (A0) + o(| log ε|−1).

But since (uε, Aε) minimizes GLε, we have

GLε(uε, Aε) ≤ GLε(u0, hexA0) = h2
ex J (A0).

Combining these inequalities, we find

GLε(uε, Aε) = h2
ex J (A0) + o(| log ε|−1).

2 This in particular implies that (uε, Aε) satisfies the Ginzburg–Landau equations (GL) and therefore uε

is continuous.
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Step 2. Definition of a vortex configuration.To reach a contradiction, wewill show that
there exists a configuration (uε

1, Aε
1), whose vorticity concentrates along the multiplicity

1 rectifiable 1-current �1 with ∂�1 = 0 relative to � that satisfies

‖B0‖∗ = 1

|�1|(�)

∫
�

�1 ∧ B0, (4.2)

such that if hex ≥ H0
c1 + K then GLε(uε

1, Aε
1) < GLε(uε, Aε), provided K ≥ K1 for

some constant K1 independent of ε.
Lemma 4.1 with � = �1 provides the existence of vε ∈ H1(�,C) such that

Fε(vε, 0) ≤ π |�1|(�)| log ε| + C1 (4.3)

for some constant C1 > 0 independent of ε, and

‖μ(vε, 0) − 2π�1‖C0,1
T (�)∗ = o(| log ε|−1). (4.4)

Now, we let (uε
1, Aε

1) be defined by

uε
1 = u0vε, Aε

1 = hexA0.

Proposition 3.1 yields

GLε(u
ε
1, Aε

1) = h2
ex J (A0) + Fε(vε, 0) − hex

∫
�

μ(vε, 0) ∧ B0 + R0. (4.5)

From (4.2) and (4.4), we get
∫

�

μ(vε, 0) ∧ B0 = 2π‖B0‖∗|�1|(�) + o(| log ε|−1).

Inserting this and (4.3) into (4.5), we are led to

GLε(u
ε
1, Aε

1) ≤ h2ex J (A0) + π |�1|(�)| log ε| + C1 − 2π‖B0‖∗hex|�1|(�) + o(hex| log ε|−1).

Step 3. Contradiction. Writing hex = H0
c1 + K with H0

c1 = 1

2‖B0‖∗
| log ε|, we get

GLε(u
ε
1, Aε

1) ≤ h2ex J (A0) + π |�1|(�)| log ε| + C1 − π |�1|(�) (| log ε| + 2‖B0‖∗K ) + o(1)

= h2ex J (A0) + C1 − 2π‖B0‖∗K |�1|(�) + o(1).

By choosing K1 := (2π‖B0‖∗|�1|(�))−1C1 + 1, we deduce that, for any K ≥ K1,

GLε(u
ε
1, Aε

1) ≤ h2
ex J (A0) − 1 + o(1) < GLε(uε, Aε).

Therefore, provided K ≥ K1, this contradicts the fact that (uε, Aε) globally minimizes
GLε. Thus

Hc1 ≤ H0
c1 + K1.

��
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Remark 4.1. The isoperimetric inequality allows to prove that if � ∈ X has small length

then the ratio

∫
�

� ∧ B0

|�|(�)
is small.

Indeed, if � is a loop contained in � then, by Stokes’ theorem, we have
∫

�

� ∧ B0 =
∫

S�

curl B0,

where S� denotes a surface with least area among those whose boundary is �, i.e. a
solution to the associated Plateau’s problem. By the isoperimetric inequality, we have

∫
S�

| curl B0| ≤ ‖ curl B0‖L∞(�,R3)Area(S�) ≤ C |�|(�)2.

On the other hand, if both different endpoints of � belong to ∂�, we consider the geodesic
connecting the endpoints of � on ∂�, oriented accordingly to the orientation of �. We
then denote by �̃ the loop formed by the union of � and this geodesic. Since B0 × ν = 0
on ∂�, by Stokes’ theorem, we have

∫
�

� ∧ B0 =
∫

S�

curl B0,

where S� denotes a surface with least area among those whose boundary is �̃. Arguing
as above, we conclude that

∫
S�

| curl B0| ≤ ‖ curl B0‖L∞(�,R3)Area(S�) ≤ CLength(�̃)2 ≤ C(∂�)|�|(�)2.

Therefore,

1

|�|(�)

∫
�

|� ∧ B0| ≤ C |�|(�),

from which the assertion follows.
Moreover, this property extends to the class of multiplicity 1 rectifiable 1-currents

� with ∂� = 0 relative to �, since the action of a 1-current in this class on a vector
field can be seen as oriented integration over a countable family of Lipschitz curves in
X. In particular, since ‖B0‖∗ > 0, we deduce that |�1|(�) ≥ C > 0, where �1 is the
1-current that appears in the statement of Theorem 1.3 and C is a constant that depends
on B0 and � only.

Let us now study ‖B0‖∗ in a special case.

Proposition 4.1. Consider the special case � = B(0, R) and H0,ex = ẑ in B(0, R).
Then, if S1 denotes the vertical diameter seen as a 1-current with multiplicity 1 and
oriented in the direction of positive z axis, we have

‖B0‖∗ = 1

|S1|(�)

∫
�

S1 ∧ B0 = 1

2R

∫ R

−R
B0(0, 0, z) · ẑdz = 3

2

(
1 − 1

sinh R

∫ R

0

sinh r

r
dr

)
.

Moreover, S1 is the only curve in X achieving the maximum in (1.3).
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Proof. We use some ideas from [ABM06].

Step 1. Explicit computation of B0. When � = B(0, R) and H0,ex = ẑ in B(0, R), the
solution to (3.4) canbe explicitly computed (see [Lon50]).Byusing spherical coordinates
(r, θ, φ), where r is the Euclidean distance from the origin, θ is the azimuthal angle, and
φ is the polar angle, we have

B0 = − 3R

r2 sinh R

(
cosh r − sinh r

r

)
cosφr̂

− 3R

2r2 sinh R

(
cosh r − 1 + r2

r
sinh r

)
sin φφ̂ − cẑ,

where c = 3

2R sinh R

(
cosh R − 1 + R2

R
sinh R

)
. In particular, we observe that B0

does not depend on the azimuthal angle and therefore it is constant along θ̂ .

Step 2. Dimension reduction. Let � ∈ X with
∫

B(0,R)
� ∧ B0 > 0. We will project it

along the azimuthal angle onto B(0, R)2D,+ := {(x, z) ∈ R
2 | x2 + z2 < R2, x ≥ 0}.

For this, we consider the map q : B(0, R) ⊂ R
3 → B(0, R)2D,+ defined by

q(r, θ, φ) = (r sin φ, r cosφ),

and we let

�2D := q ◦ �.

It is easy to check that ∂�2D = 0 relative to B(0, R)2D,∫
B(0,R)

� ∧ B0 =
∫

B(0,R)2D,+
�2D ∧ B0, and |�2D|(B(0, R)2D,+) ≤ |�|(B(0, R)).

Therefore

1

|�|(�)

∫
B(0,R)

� ∧ B0 ≤ 1

|�2D|(�)

∫
B(0,R)2D,+

�2D ∧ B0.

Even though �2D does not necessarily belong to X , we can decompose

�2D =
∑
i∈I

�i ,

where the sum is understood in the sense of currents, I is a finite set of indices, and
�i ∈ X for all i ∈ I . In particular,∫

B(0,R)2D,+
�2D ∧ B0 ≤

∑
i∈I

|�i |(B(0, R)2D,+)‖B0‖∗ = |�2D|(B(0, R)2D,+)‖B0‖∗.

We deduce that in order to compute ‖B0‖∗ it is enough to consider Lipschitz curves
� ∈ X contained in B(0, R)2D,+ with

∫
B(0,R)

� ∧ B0 > 0. From now on we consider �

of this form.

Step 3. Application of Stokes’ theorem. If � has both endpoints on ∂ B(0, R) ∩
∂ B(0, R)2D,+, we then define �̃ as the loop formed by the union of � and the curve
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lying on ∂ B(0, R) ∩ ∂ B(0, R)2D,+ which connects the endpoints of � oriented accord-
ingly to the orientation of �. Since B0 × ν = 0 on ∂ B(0, R), the Stokes’ theorem yields

∫
B(0,R)2D,+

� ∧ B0 =
∫

B(0,R)2D,+
�̃ ∧ B0 =

∫
S�

curl B0 · ŷ, (4.6)

where S� is the surface enclosed by �̃. Of course if � is a loop contained in B(0, R)2D,+

then the Stokes’ theorem gives
∫

B(0,R)2D,+
� ∧ B0 =

∫
S�

curl B0 · ŷ,

where S� is the surface enclosed by �.
An explicit computation gives

curl B0 · ŷ = 3R

2 sinh R

(
cosh r − sinh r

r

)
sin φ

r
≥ 0 in B(0, R)2D,+. (4.7)

In what follows we use the notation

f (r) := 3R

2 sinh R

(
cosh r − sinh r

r

)
.

Step 4. Estimate for curves with endpoints on ∂ B(0, R) ∩ ∂ B(0, R)2D,+. For a, b ∈
[0, π ] with a < π − b let us define

Sa,b := {(r, φ) | 0 ≤ r ≤ R, a ≤ φ ≤ π − b}.
We let φ1, φ2 be the maximum angles for which S� ⊂ Sφ1,φ2 . From (4.6) and (4.7), we
deduce that

∫
B(0,R)2D,+

� ∧ B0 ≤
∫

Sφ1,φ2

curl B0 · ŷ =
∫ R

0

∫ π−φ2

φ1

f (r) sin φdφdr

= (cosφ1 + cosφ2)

∫ R

0
f (r)dr.

On the other hand, by definition of φ1, φ2, S� intersects the rays {(r, φ1) | 0 ≤ r ≤ R}
and {(r, φ2) | 0 ≤ r ≤ R}. Since the endpoints of � belong to ∂ B(0, R)∩ ∂ B(0, R)2D,+,
a simple geometric argument shows that

|�|(B(0, R)2D,+) ≥ d((R, φ1), (R, φ2)).

The law of cosines yields d((R, φ1), (R, φ2)) = R
√
2(1 − cos(π − φ1 − φ2)). Hence

1

|�|(B(0, R)2D,+)

∫
B(0,R)2D,+

� ∧ B0 ≤ cosφ1 + cosφ2√
2(1 − cos(π − φ1 − φ2))

∫ R
0 f (r)dr

R
.

We now estimate the right-hand side of this inequality. Let us observe that

cosφ1 + cosφ2 = 2 cos

(
φ1 + φ2

2

)
cos

(
φ1 − φ2

2

)
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and

cos(π − φ1 − φ2) = cos(φ1 + φ2) = cos2
(

φ1 + φ2

2

)
− sin2

(
φ1 + φ2

2

)

= 2 cos2
(

φ1 + φ2

2

)
− 1.

Using 0 ≤ φ1+φ2
2 < π

2 , we deduce that

cosφ1 + cosφ2√
2(1 − cos(π − φ1 − φ2))

= cos

(
φ1 − φ2

2

)
≤ 1,

with equality if and only if φ1 = φ2. Therefore

1

|�|(B(0, R)2D,+)

∫
B(0,R)2D,+

� ∧ B0 ≤
∫ R
0 f (r)dr

R
= 3

2

(
1 − 1

sinh R

∫ R

0

sinh r

r
dr

)

= 1

2R

∫
B(0,R)

S1 ∧ B0.

Besides, from the previous computations we easily deduce that the inequality is strict if
� �= S1.

Step 5. Estimate for loops in B(0, R)2D,+. Let us define 0 < r0 < R as the minimum
radius such that

S� ⊂ B(0, r0)
2D,+.

In particular, S� ∩ (∂ B(0, r0) ∩ ∂ B(0, r0)2D,+) �= ∅. We can then use the estimate
provided in the previous step and conclude that

1

|�|(B(0, R)2D,+)

∫
B(0,R)2D,+

� ∧ B0 ≤ 3

2

(
1 − 1

sinh r0

∫ r0

0

sinh r

r
dr

)
.

One can check that the function t → 1

sinh t

∫ t

0

sinh r

r
dr is strictly decreasing in [0,∞)

and therefore

1

|�|(B(0, R)2D,+)

∫
B(0,R)2D,+

� ∧ B0 <
3

2

(
1 − 1

sinh R

∫ R

0

sinh r

r
dr

)
.

This concludes the proof of the proposition. ��

5. A Meissner-Type Solution Beyond the First Critical Field

In this section, we present the proof of Theorem 1.4.
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Proof. Step 1. Existence of a locally minimizing vortexless configuration. Let us
introduce the set

U =
{
(u, A) ∈ H1(�,C) × [Aex + Hcurl] | Fε(u

′, A′) < ε
2
3

}
,

where u′ = u−1
0 u and A′ = A − hexA0. Consider a minimizing sequence {(ũn, Ãn)}n ∈

U . Lemma 2.1 yields a gauge transformed sequence {(un, An)}n ∈ H1(�,C) × [Aex +

Ḣ1
div=0] that, in particular, satisfies Fε(u′

n, A′
n) = Fε(ũ′

n, Ã′
n) < ε

2
3 . Then arguing as

in Proposition 2.2, we deduce that (up to subsequence) {(un, An − Aex)}n converges to
some (u, A − Aex) weakly in H1(�,C) × Ḣ1

div=0. Arguing again as in Proposition 2.2,
we find

Fε(u
′, A′) ≤ lim inf

n
Fε(u

′
n, A′

n) and GLε(u, A) ≤ lim inf
n

GLε(un, An).

Hence, (u, A) ∈ U ∩ H1(�,C) × [Aex + Ḣ1
div=0] minimizes GLε over U .

Let us now prove that (u, A) ∈ U . We consider, for δ = δ(ε) = c1ε
1
3 and ε

sufficiently small, the grid G(bε, R0, δ) associated to (u′, A′) by [Rom19, Lemma 2.1]
with γ = − 2

3 . In particular, using the same notation as in this lemma, we have

|uε| > 5/8 on R1(G(bε, R0, δ)),

I 1ε :=
∫

R1(G(bε,R0,δ))

eε(u
′, A′)dH1 ≤ Cδ−2Fε(u

′, A′) ≤ Cε− 2
3 ε

2
3 ,

I 2ε :=
∫

R2(G(bε,R0,δ))

eε(u
′, A′)dH2 ≤ Cδ−1Fε(u

′, A′) ≤ Cε− 1
3 ε

2
3 , (5.1)

where C is a universal constant.
We claim that if ε is small enough then for each face ω of a cube of the grid,

every connected component of {x ∈ ω | |u′(x)| ≤ 1/2} has degree zero. Assume
towards a contradiction that there exist a face ω and a connected component Sω of
{x ∈ ω | |u′(x)| ≤ 1/2} whose degree dSω = deg(u′/|u′|, ∂Sω) is different from zero.
By [Rom19, Lemma 4.1], a result adapted from [Jer99], we have

|dSω | ≤ C
∫

Sω

|∇A′u′|2,

where C is a universal constant. Combining this with (5.1), we get

|dSω | ≤ C I 2ε ≤ Cε
1
3 ,

and therefore if ε is sufficiently small we reach a contradiction.
We thus deduce that the 1-current ν′

ε , which approximateswell the vorticityμ(u′, A′),
vanishes identically in�. Then, from the proof of Theorem 1.1 (see [Rom19, Section 8]),
we find

‖μ(u′, A′)‖C0,1
T (�)∗ ≤ CδFε(u

′, A′) + Cε(1 + I 1ε + I 2ε ) ≤ C(δ + εδ−2)Fε(u
′, A′).
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Let us now use Proposition 3.1. From the previous inequality and since α < 1
3 , we have∣∣∣∣hex

∫
�

μ(u′, A′) ∧ B0

∣∣∣∣ ≤ Chex(δ + εδ−2)Fε(u
′, A′) ≤ Cε

1
3−α Fε(u

′, A′) = o(ε
2
3 ).

(5.2)
On the other hand

R0 ≤ Cεh2
exEε(|u′|) 1

2 ≤ Cεh2
exFε(u

′, A′)
1
2 ≤ Cε1−2αε

1
3 = o(ε

2
3 ).

The energy-splitting (3.5) then yields

GLε(u, A) = h2
ex J (A0) + Fε(u

′, A′) + 1

2

∫
R3\�

| curl A′|2 + o(ε
2
3 ).

But, since (u0, hexA0) belongs to U , we have

GLε(u, A) ≤ GLε(u0, hexA0) = h2
ex J (A0).

We thus deduce that

Fε(u
′, A′) + 1

2

∫
R3\�

| curl A′|2 = o(ε
2
3 ), (5.3)

and therefore (u, A) ∈ U provided ε is small enough.
Now, since U is open in H1(�,C) × [Aex + Hcurl], the minimizer (u, A) must be a

critical point of GLε and therefore satisfies the Ginzburg–Landau equations (GL). Ar-
guing as in the proof of Theorem 1.2, we deduce that (u, A) is a vortexless configuration
such that

‖1 − |u|‖L∞(�,C) = ‖1 − |u′|‖L∞(�,C) = o(1) as ε → 0.

We note that we have omitted in our notation the dependence on ε of the minimizer
(u, A).

Step 2. Characterization of (u′, A′). From (5.3), we have ‖ curl A′‖2
L2(R3,R3)

= o(ε
2
3 ),

which combined with the fact that A′ = A − hexA0 ∈ Ḣ1
div=0 implies that

‖A′‖2
Ḣ1
div=0

= o(ε
2
3 ).

Observe that ∫
�

|∇u′|2 ≤
∫

�

|∇A′u′|2 + |A′|2|u′|2.

Since ‖1 − |u′|‖L∞(�,C) = o(1) as ε → 0 and ‖A′‖L2(�,R3) ≤ C‖ curl A′‖L2(R3,R3),
we deduce that ∫

�

|∇u′|2 ≤ C

(
Fε(u

′, A′) + 1

2

∫
R3\�

| curl A′|2
)

,

which combined with (5.3), gives∫
�

|∇u′|2 = o(ε
2
3 ). (5.4)
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On the other hand, using the Poincaré-Wirtinger inequality, we have∫
�

|u′ − u′|2 ≤ C
∫

�

|∇u′|2, where u′ = 1

|�|
∫

�

u′. (5.5)

In addition, we have ∫
�

∣∣|u′| − |u′|∣∣2 ≤
∫

�

|u′ − u′|2

and ∫
�

(1 − |u′|)2 ≤
∫

�

(1 − |u′|2)2 ≤ 4ε2Fε(u
′, A′) ≤ 4ε2+

2
3 .

Wededuce that ‖1−|u′|‖L2(�,C) ≤ Cε1+
1
3 . But u′ is a constant, thus u′ = eiθε +O(ε1+

1
3 )

for some θε ∈ [0, 2π ]. By combining with (5.5) and (5.4), we find∫
�

|u′ − eiθε |2 = o(ε
2
3 ). (5.6)

Thus
inf

θ∈[0,2π ] ‖u′ − eiθ‖H1(�,C) → 0 as ε → 0. (5.7)

In particular, by noting that (eiθ , hex curl B0) is gauge equivalent to (1, hex curl B0)

in � for any θ ∈ [0, 2π ], we deduce that (up a gauge transformation) the configura-
tion (u′, A′ + hex curl B0), which is gauge equivalent to (u, A) in �, converges in the
H1(�,C) × H1(�,R3)-norm to (1, hex curl B0).

Step 3. (u, A) globally approaches (u0, hexA0). Observe that, for any θ ∈ [0, 2π ], we
have ∫

�

|u − eiθ u0|2 =
∫

�

|u′u0 − eiθ u0|2 =
∫

�

|u′ − eiθ |2

and ∫
�

|∇(u − eiθ u0)|2 ≤
∫

�

|∇u0|2|u′ − eiθ |2 +
∫

�

|∇u′|2.

From (5.7), we deduce that

inf
θ∈[0,2π ] ‖u − eiθ u0‖L2(�,C) → 0 as ε → 0.

Recall that u0 = eihexφ0 and that A0 satisfies the Euler-Lagrange equation (3.3). Since
curl(H0 − H0,ex) = curl2(A0 − A0,ex) = −�(A0 − A0,ex), standard elliptic regularity
theory implies that φ0 = A0 − curl B0 ∈ L∞(�). Therefore∫

�

|∇u0|2|u′ − eiθ |2 ≤ h2
ex‖∇φ0‖2L∞(�)‖u′ − eiθ‖2L2(�,C)

.

This combined with (5.6) for θ = θε, yields∫
�

|∇u0|2|u′ − eiθε |2 = o(ε−2αε
2
3 ).
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Since α < 1
3 , the right-hand side converges to 0 as ε → 0. Using once again (5.7), we

obtain

inf
θ∈[0,2π ]

∫
�

|∇(u − eiθ u0)|2 → 0 as ε → 0.

Hence

inf
θ∈[0,2π ] ‖u − eiθ u0‖H1(�,C) → 0 as ε → 0.

Besides, we have

‖A − hexA0‖Ḣ1
div=0

= ‖A′‖Ḣ1
div=0

→ 0 as ε → 0.

We have hence shown that, up to a gauge transformation in R
3, the solution (u, A)

converges in the H1(�,C)× Ḣ1
div=0-norm to (u0, hexA0). In addition, up to a (different)

gauge transformation in�, the solution approaches in the H1(�,C)× H1(�,R3)-norm
the configuration (1, hex curl B0). ��
Remark 5.1. The assumption hex ≤ ε−α for α < 1

3 is needed to prove that

∣∣∣∣hex

∫
�

μ(u′, A′) ∧ B0

∣∣∣∣ ≤ o(Fε(u
′, A′));

see (5.2). If α ≥ 1
3 , we are not able to show this, and our strategy to prove that (u, A) ∈ U

then fails.

6. Uniqueness of Locally Minimizing Vortexless Configurations

In this section we prove Theorem 1.5. We follow the same strategy as in [Ser99b,
Section 2].

Proof. First, let us observe that any pair (ṽ, B̃) ∈ H1(�,C) × [Aex + Hcurl] is gauge-
equivalent to a pair (v, B) ∈ H1(�,C) × [Aex + Hcurl] that satisfies

{
div B = 0 in �

B · ν = 0 on ∂�.
(6.1)

Indeed, by letting

v = e−iϕṽ and B := B̃ − ∇ϕ,

where ϕ satisfies

{
�ϕ = div B̃ in �

∇ϕ · ν = B̃ · ν on ∂�

and is extended to a function in H2(R3), we immediately verify that B satisfies (6.1).
We say that (v, B) is in the Coulomb gauge.
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Let us assume towards a contradiction that there are two distinct locally minimiz-
ing vortexless solutions (u j , A j ) = (u0u′

j , hexA0 + A′
j ) to (GL) with (u j , A j ) ∈

H1(�,C) × [Aex + Hcurl], |u j | ≥ c for some c ∈ (0, 1), and

Fε(u
′
j , A′

j ) ≤ Cε1+δ for j = 1, 2,

for some δ > 0. As we shall see, this estimate is crucial to prove the theorem.
By gauge invariance, we may assume that (u′

j , A′
j ) is in the Coulomb gauge for

j = 1, 2. Since |u′
j | = |u j | ≥ c > 0, we can write u′

j = η j eiφ j in � for j = 1, 2.

Note that the functions φ0, φ1, φ2 ∈ H2(�) can be extended to functions in H2(R3).
Therefore, for j = 1, 2, (u j , A j ) is gauge equivalent to (η j , Ã j ) with

Ã j = hex(A0 − ∇φ0) + A′
j − ∇φ j .

Step 1. Estimating ‖ Ã j‖L∞(�,R3). Let us show that, for j = 1, 2, we have

‖ Ã j‖L∞(�,R3) ≤ o(ε−1). (6.2)

By gauge equivalence, (u′
j , hex(A0 −∇φ0)+ A′

j ) solves (GL). We observe that this pair
is in the Coulomb gauge. Then, by standard elliptic regularity theory for solutions of the
Ginzburg–Landau equations in the Coulomb gauge, we have

‖hex curl B0 + A′
j‖L∞(�,R3) ≤ Chex and ‖∇u′

j‖L∞(�,C3) ≤ Cε−1.

Since
‖∇η j‖L∞(�,R3) + ‖∇φ j‖L∞(�,R3) ≤ 2‖∇u′

j‖L∞(�,C3), (6.3)

and hex = o(ε−1), we find

‖ Ã j‖L∞(�,R3) ≤ ‖hex curl B0 + A′
j‖L∞(�,R3) + ‖∇φ j‖L∞(�,R3) ≤ Cε−1. (6.4)

We will now improve this estimate. By gauge equivalence, (η j , Ã j ) solves (GL). In
particular, the second Ginzburg–Landau equation in � reads

curl2( Ã j − Aex) = −η2j Ã j .

This implies that div(η2j Ã j ) = 0 in�. In addition, the boundary condition∇ Ã j
η j ·ν = 0

on ∂�, implies, in particular, that ∇φ j · ν = 0 on ∂�. Therefore, φ j satisfies the elliptic
problem ⎧⎨

⎩
�φ j = 2

η j
∇η j · Ã j in �

∇φ j · ν = 0 on ∂�.

Because η j ≥ c > 0, we deduce that, for any p > 1,

‖�φ j‖L p(�) ≤ C‖ Ã j‖L∞(�,R3)‖∇η j‖L p(�,R3) ≤ Cε−1‖∇η j‖L p(�,R3), (6.5)

where the last inequality is obtained by using (6.4).
On the other hand, since A′

j · ν = 0 on ∂�, we have

‖∇u′
j‖2L2(�,C3)

, ‖A′
j‖2L2(�,R3)

≤ C Fε(u
′
j , A′

j ) ≤ Cε1+δ.
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This implies that
∫

�

|∇η j |2 + η2j |∇φ j |2 =
∫

�

|∇u′
j |2 ≤ Cε1+δ.

In addition, by interpolation, for any p > 1, we have

‖∇η j‖L p(�,R3) ≤ C‖∇η j‖1−
2
p

L∞(�,R3)
‖∇η j‖

2
p

L2(�,R3)
.

Combining the previous two inequalities with (6.3), yields

‖∇η j‖L p(�,R3) ≤ Cε
−1+ 2

p ε
1+δ

p = Cε
3+δ−p

p .

Combining with (6.5) for p = 3 + δ
2 > 3, we find

‖�φ j‖L p(�) ≤ Cε−1ε
δ

6+δ = o(ε−1).

By an elliptic estimate and Sobolev embedding, we then obtain

‖∇φ j‖L∞(�,R3) ≤ o(ε−1).

Thus

‖ Ã j ‖L∞(�,R3) ≤ ‖hex curl B0 + A′
j ‖L∞(�,R3) + ‖∇φ j‖L∞(�,R3) ≤ Chex + o(ε−1) = o(ε−1).

Step 2. Energy estimate. Let us prove that

Y := GLε(η1, Ã1) + GLε(η2, Ã2)

2
− GLε

(
η1 + η2

2
,

Ã1 + Ã2

2

)
> 0.

First, observe that
∫

�

|∇ Ã j
η j |2 =

∫
�

|∇η j |2 + η2j | Ã j |2.

We write Y = Y0 + Y1 + Y2 + Y3 with

Y0 = 1

2

∫
�

|∇η1|2 + |∇η2|2 −
∫

�

∣∣∣∇
(η1 + η2

2

)∣∣∣2 ,

Y1 = 1

2

∫
�

η21| Ã1|2 + η22| Ã2|2 −
∫

�

(η1 + η2

2

)2 ∣∣∣∣∣
Ã1 + Ã2

2

∣∣∣∣∣
2

,

Y2 = 1

2

(
1

4ε2

∫
�

(1 − η21)
2 + (1 − η22)

2
)

− 1

4ε2

∫
�

(
1 −

(η1 + η2

2

)2)2

,

Y3 = 1

2

∫
R3

| curl Ã1 − Hex|2 + | curl Ã2 − Hex|2 −
∫
R3

∣∣∣∣∣curl
(

Ã1 + Ã2

2

)
− Hex

∣∣∣∣∣
2

.

Note that, by convexity, we have Y0, Y3 ≥ 0.
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On the other hand, arguing exactly as in the proof of [Ser99b, Lemma 2.5], we get

Y1 = 1

16

∫
�

|η1 − η2|2| Ã1 + Ã2|2 + 4η21| Ã1 − Ã2|2

−(η1 − η2)( Ã1 − Ã2) ·
(

Ã1(2η1 + 4η2) + Ã2(6η1 + 8η2)
)

and

Y2 ≥ 3

64ε2

∫
�

(η1 − η2)
2.

Let us prove that Y1 + Y2 > 0. We consider three cases.

• If η1 = η2, then

Y1 + Y2 ≥
∫

�

4η21| Ã1 − Ã2|2 > 0.

• If Ã1 = Ã2, then Y1 ≥ 0. Therefore

Y1 + Y2 ≥ Y2 ≥ 3

64ε2

∫
�

(η1 − η2)
2 > 0.

• If η1 �= η2 and Ã1 �= Ã2 then

Y1 ≥ 1

16

∫
�

|η1 − η2|2| Ã1 + Ã2|2 + 4η21

∣∣∣ Ã1 − Ã2

∣∣∣2 − |η1 − η2|| Ã1 − Ã2|(6| Ã1| + 14| Ã2|).

By the Cauchy-Schwarz inequality, we have∫
�

|η1 − η2|| Ã1 − Ã2|(6| Ã1| + 14| Ã2|)
≤ 14(‖ Ã1‖L∞(�,R3) + ‖ Ã2‖L∞(�,R3))‖η1 − η2‖L2(�)‖ Ã1 − Ã2‖L2(�,R3),

which combined with (6.2), yields∫
�

|η1 − η2|| Ã1 − Ã2|(6| Ã1| + 14| Ã2|) ≤ o(ε−1)‖η1 − η2‖L2(�)‖ Ã1 − Ã2‖L2(�,R3).

On the other hand,∫
�

1

4
η21| Ã1 − Ã2|2 + 3

64ε2
(η1 − η2)

2 ≥ 9

32ε
‖η1 − η2‖L2(�)‖ Ã1 − Ã2‖L2(�,R3).

Hence, if ε is small enough then Y1 + Y2 > 0.

We have thus proved that Y > 0.

Step 3. Contradiction. Assume without loss of generality that

GLε(η1, Ã1) ≤ GLε(η2, Ã2).

From the previous step, we have

GLε

(
η1 + η2

2
,

Ã1 + Ã2

2

)
<

GLε(η1, Ã1) + GLε(η2, Ã2)

2
≤ GLε(η2, Ã2).
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A standard argument then shows that, for any t ∈ (0, 1),

GLε

(
tη1 + (1 − t)η2, t Ã1 + (1 − t) Ã2

)
< GLε(η2, Ã2),

contradicting the fact that (η2, Ã2) is a local minimizer of the energy. Hence (η1, Ã1) =
(η2, Ã2). This concludes the proof. ��
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A. Improved Estimates for Locally Minimizing Vortexless Configurations

Proposition A.1. Let (u, A) ∈ H1(�,C) × H1(�,R3) with u continuous and |u| ≥ c
for some c ∈ (0, 1). Then

‖μ(u, A)‖C0,1
T (�,R3)∗ ≤ CεFε(u, A).

Proof. Let ϕ ∈ C0,1
T (�,R3). By integration by parts, we have

∫
�

μ(u, A) ∧ ϕ =
∫

�

( j (u, A) + A) · curl ϕ.

Since |u| ≥ c > 0, we can write u = |u|eiφ . A straightforward computation, shows that

j (u, A) + A = |u|2∇φ + (1 − |u|2)A = (1 − |u|2)(A − ∇φ) + ∇φ.

Observe that, by integration by parts, we have
∫
�

∇φ · curl ϕ = 0. Then, from the
Cauchy-Schwarz inequality, we deduce that
∣∣∣∣
∫
�

( j (u, A) + A) · curl ϕ
∣∣∣∣ ≤

∫
�

(1 − |u|2)|A − ∇φ|| curl ϕ| ≤ C‖ curl ϕ‖L∞(�,R3)εFε(u, A).

Hence

‖μ(u, A)‖C0,1
T (�,R3)∗ ≤ CεFε(u, A).

��
With this estimate at hand, we prove the following result.
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Proposition A.2. Denote (u0, hexA0) the approximation of the Meissner solution. Let
(u, A) = (u0u′, hexA0 + A′) ∈ H1(�,C) × [Aex + Hcurl] with u continuous and
|u| ≥ c for some c ∈ (0, 1). If hex ≤ ε−α for some α ∈ (

0, 1
4

)
and GLε(u, A) ≤

GLε(u0, hexA0) then, for any ε sufficiently small, we have

Fε(u
′, A′) + 1

2

∫
R3\�

| curl A′|2 ≤ Cε1+δ

for some δ ∈ (0, 1).

Proof. Let us first observe that, since GLε(u, A) ≤ GLε(u0, hexA0) = h2
ex J (A0), we

have
Fε(u

′, A′) ≤ Ch2
ex ≤ Cε−2α (A.1)

for some constant C > 0. We will now use Proposition (3.1) to improve this estimate.
By combining (3.5) with GLε(u, A) ≤ GLε(u0, hexA0), we find

Fε(u
′, A′) + 1

2

∫
R3\�

| curl A′|2 ≤ hex

∫
�

μ(u′, A′) ∧ B0 + Cεh2
exEε(|u′|) 1

2 .

From Proposition A.1, Eε(|u′|) ≤ Fε(u′, A′), and (A.1) we deduce that

Fε(u
′, A′) + 1

2

∫
R3\�

| curl A′|2 ≤ CεhexFε(u
′, A′) + Cεh2exFε(u

′, A′) 1
2 ≤ Cεh2exFε(u

′, A′) 1
2 .

(A.2)
Thus

(
Fε(u

′, A′) + 1

2

∫
R3\�

| curl A′|2
) 1

2 ≤ Cεh2
ex.

Combining with hex ≤ ε−α , we find

Fε(u
′, A′) + 1

2

∫
R3\�

| curl A′|2 ≤ Cε1+δ.

with δ = 1 − 4α > 0. ��
As a consequence, from Theorem 1.5, we obtain the uniqueness of the Meissner-type
solution of Theorem 1.4 for α < 1

4 .
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