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Abstract: The Ginzburg-Landau model is a phenomenological description of super-
conductivity. A crucial feature of type-II superconductors is the occurrence of vortices,
which appear above a certain value of the strength of the applied magnetic field called
the first critical field. In this paper we estimate this value, when the Ginzburg—Landau
parameter is large, and we characterize the behavior of the Meissner solution, the unique
vortexless configuration that globally minimizes the Ginzburg—Landau energy below the
first critical field. In addition, we show that beyond this value, for a certain range of the
strength of the applied field, there exists a unique Meissner-type solution that locally
minimizes the energy.

1. Introduction

1.1. Problem and background. Superconductors are certain metals and alloys, which,
when cooled down below a critical (typically very low) temperature, lose their resistivity,
which allows permanent currents to circulate without loss of energy. Superconductivity
was discovered by H. Kamerlingh Onnes in 1911. As a phenomenological description
of this phenomenon, Ginzburg and Landau [GL50] introduced in 1950 the Ginzburg—
Landau model of superconductivity, which has been proven to effectively predict the
behavior of superconductors and that was subsequently justified as a limit of the Bardeen—
Cooper—Schrieffer (BCS) quantum theory [BCS57]. It is a model of great importance in
physics, with Nobel prizes awarded for it to Abrikosov, Ginzburg, and Landau.

The Ginzburg-Landau functional, which models the state of a superconducting sam-
ple in an applied magnetic field, assuming that the temperature is fixed and below the
critical one, is

GLo A) = = [ [Vaul + = (1 = P2+~ [ 1H = HaP
Sua _2 Q Al/l 282 u 2 R3 ex .
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e Q is a bounded domain of R3, that we assume to be simply connected with C?
boundary.

e u: Q — Ciscalled the order parameter. Its modulus squared (the density of Cooper
pairs of superconducting electrons in the BCS quantum theory) indicates the local
state of the superconductor: where |u|> 2 1 the material is in the superconducting
phase, where |u|?> & 0 in the normal phase.

e A :R3 — R3is the electromagnetic vector potential of the induced magnetic field
H = curl A.

e V4 denotes the covariant gradient V — i A.

e H. :R? — R3is a given external (or applied) magnetic field.

e ¢ > 0 is the inverse of the Ginzburg—Landau parameter usually denoted «, a non-
dimensional parameter depending only on the material. We will be interested in the
regime of small ¢, corresponding to extreme type-II superconductors.

A key physical feature of this type of superconductors is the occurrence of vortices
(similar to those in fluid mechanics, but quantized), in the presence of an applied magnetic
field. They correspond to the regions where |u| vanishes, and since u is complex-valued
they carry a nonzero integer topological degree. Vortices become co-dimension 2 topo-
logical singularities in the limit ¢ — 0, and are the crucial objects of interest in the
analysis of the model.

There are three main critical values or critical fields H,,, H.,, and H,, of the strength
of the applied field Hex, for which phase transitions occur.

e Below H,, = O(|logel), the superconductor is everywhere in its superconducting
phase, i.e. || is uniformly close to 1, and the applied field is expelled by the material
due to the occurrence of supercurrents near 9€2. This phenomenon is known as the
Meissner effect.

e At H,,,the first vortice(s) appear and the applied field penetrates the superconductor
through the vortice(s).

e Between H., and H,,, the superconducting and normal phases coexist in the sample.
As the strength of the applied field increases, so does the number of vortices. The
vortices repel each other, while the external magnetic field confines them inside the
sample.

e AtH,=0 (slz), the superconductivity is lost in the bulk of the sample.

e Between H., and H,,, superconductivity persists only near the boundary.

e Above H,, = O (slz), the applied magnetic field completely penetrates the sample
and the superconductivity is lost, i.e. u = 0.

The Ginzburg-Landau model is known to be a U(1)-gauge theory. This means that all

the meaningful physical quantities are invariant under the gauge transformations

U uei¢, Ar—> A+ Vo,

where ¢ is any real-valued function in HI%C (R3). The Ginzburg—Landau energy and its
associated free energy

F( A —l \V/ 2 1 _ 2\2 2
e(u, A) = IVaul” + 5= (1 — [u|*)" + | curl Al
2 Q 2¢

are gauge invariant, as well as the density of superconducting Cooper pairs |u|?, the
induced magnetic field H, and the vorticity, defined, for any sufficiently regular config-
uration (u, A), as
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u(u, A) = curl(iu, Vau) + curl A,

where (-, -) denotes the scalar product in C identified with R? i.e. (a,b) = “b”’b

This quantity is the gauge-invariant version of the Jacobian determinant of u and is the
analogue of the vorticity of a fluid. For further physics background on the model, we
refer to [Tin96,DG99].

The main purpose of this paper is to give a precise estimate of H., and to characterize
the behavior of global minimizers of GL, below this value in three dimensions. The
analysis of H., or higher applied fields requires completely different techniques. The
interested reader can refer to [GP99,FH10,FK13,FKP13] and references therein.

The first critical field is (rigorously) defined by the fact that below H,, global min-
imizers of the Ginzburg—Landau functional do not have vortices, while they do for
applied fields whose strength is higher than H,,. In the 2D setting, Sandier and Serfaty
(see [Ser99a,SS00,SS03,SS07]) provided an expansion of the first critical field, up to
an error o(1) as ¢ — 0, and rigorously characterized the behavior of global minimizers
of the Ginzburg—Landau functional below and near this value. Conversely, in three di-
mensions much less is known. Recently Baldo, Jerrard, Orlandi, and Soner [BJOS13],
via a ['-convergence argument, provided the asymptotic leading order value of the first
critical field as ¢ — 0 (see also [BJOS12] for related results). In short, in a uniform
applied field, i.e. when Hex = hge, where h, > 0 and ¢ € R? is a fixed unit vector, they
proved that if (u., A¢) minimizes G L. (ug, Ag) then there exists a measure (g such that

I’L(MSs AE)

— o ase — 0
|log &l

in weak sense (the precise type of convergence can be found in [BJOS13, Proposition 1]).
Moreover, there exists a constant H* such that if lim,_,¢ “gﬁ < H* then g = 0,

while pg # 0 if limg_ o “fﬁ > H*. This result gives H,, up to an error o(|loge|) as
& — 0 and agrees with previous work by Alama, Bronsard, and Montero [ABMO06] in
the special case when €2 is a ball. An intermediate situation, when the superconducting
sample is a thin shell, was treated in [Conl11].

Before stating our results, let us recall the three dimensional e-level estimates for the
Ginzburg-Landau functional provided by the author in [Rom19]. These tools will play
a crucial role in this paper.

Theorem 1.1. For any m,n, M > 0 there exist C, gy > 0 depending only on m,n, M,
and 0%, such that, for any ¢ < &g, if (ug, Ag) € HI(Q, C) x HI(Q, IR3) is a configu-
ration such that Fg(ug, As) < M|loge|™ then there exists a polyhedral 1-dimensional
current vg such that

(1) ve /7 is integer multiplicity,

(2) dve = O relative to 2,

(3) supp(ve) C Sy, C Qwith |S,,| < C|loge|~4, where q(m, n) := 3 (m +n),

2 1 22 2 1 1
(4) IVauel™ + o= (1 — |ug|)” + | curl Ag|” = [v,|(€2) ( log — — Cloglog — ) —
Sve ’ 2¢e & e

| log el

(5) and for any y € (0, 1] there exists a constant C,, depending only on y and 02, such
that

Fe(ug, Ag) +1

_ <
litue, Ae) = vell ety e = & — 10y
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Here and in the rest of the paper, C(T)’V(Q) denotes the space of vector fields ® €
cor (£2) such that ® x v = 0 on 9€2, where v is the outer unit normal to 9€2. The symbol
* denotes its dual space.

1.2. Main results. Throughout this article we assume that Hex € L]2Oc (R3, R3) satisfies
div Hex = 0 in R3. In particular, we deduce that there exists a vector-potential Aex €

H! (R? R?) such that
curl Aex = Hox and  div Aex = 0 in R.

Let hex 1= | Hex Il 2 (2 m3y- We define Hpex 1= h;(l H.x and assume that this vector
field is Holder continuous in € with Holder exponent § € (0, 1] and Holder norm
bounded independently of ¢. In particular, note that || Ho,ex [l 12(q.g3) = 1. We also set
Agex = hgl Aex.

We remark that the divergence-free assumption on the applied magnetic field is in
accordance with the fact that magnetic monopoles do not exist in Maxwell’s electro-
magnetism theory.

The natural space for the minimization of G L in three dimensions is H 1(Q,C) x
[Aex + Heyr], where

Hewt i={A € HL (R*,R%) | curl A € L*(R3, R?)}.

Let us also introduce the homogeneous Sobolev space H'(R3, R3), which is defined as
the completion of C§° (R3, R?) with respect to the norm [|V(-) |l 2R3 r3). We observe
that, by Sobolev embedding, there exists a constant C > 0 such that

Al Ls w3 r3) < CIVAlL2®R3 R3) (1.1)
forany A € H! (R3, R3). Moreover, by [KS91, Proposition 2.4], we have
H'(R3 R ={A e LR R | VA € L>(R3, RY)).
It is also convenient to define the subspace
Hiyo=1{A € H' (R} R% | divA = 0in R’}
In this subspace, one has
1Al = IVAl2s z5) = Il curl All 2ges 29)- (12)

Let us now define a special vortexless configuration that turns out to be a good
approximation of the so-called Meissner solution, i.e. the vortexless global minimizer
of the Ginzburg—Landau energy below the first critical field, which, as we shall see, is
unique up to a gauge transformation. By recalling that any vector field A € H'(Q, R?)
can be decomposed as (see Lemma 2.2)

A=curl B + V¢4 inQ
Byxv=0 on 02
Voa-v=A-v on 92
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with By € {B € H*(Q,R%) | divB = 0in Q} and ¢4 € {¢p € H*(Q) | [, pa = O},
we consider the pair (uq, hex Ag), Where ug = eex®49 and Ao is the unique minimizer
(in a suitable space) of the functional

1 1
J(A) = —/ |curl B4|* + —/ |curl(A — Ag.ex)|*.
2 Q 2 R3

This special configuration satisfies the following properties:

o GLe(uo, hexAo) = h, J (Ao).
lug| = 1 and w(ug, hexAg) = 0 in Q.
Hy = curl Ay satisfies the usually called London equation

curl>(Hy — Hy ex) + Hoxg =0 in R,

where xq denotes the characteristic function of 2.
e The divergence-free vector field By = By, € C%ﬂ (22, R3) satisfies

—AByg+ By = Hpex 1n2
By xv=0 on 0%2.
This vector field is the analog of the function &, considered by Sandier and Serfaty in
the analysis of the first critical field in 2D (see [Ser99a, Ser99b,SS00,SS03,SS07]).
We shall see that By plays an important role in our three dimensional analysis.

In addition, this pair allows us to split the Ginzburg-Landau energy of a given config-
uration (u, A). More precisely, by writing u’ = ualu and A’ = A — hexAg, one can
prove that (see Proposition 3.1)

1
GLe(u, A) = h2 J(Ag) + Fe(u', A') + = / | curl A/|2—hex/ w(', A) A Bo+Ry,
2 Jrih\@ Q

where Ryp = o(l), in particular, when & is bounded above by a positive power of
| log ¢|. Let us emphasize that one of the achievements of this paper is to find the right
pair (uo, hex Ap) to split the energy, which then allows to implement (almost) the same
strategies as in 2D.

By combining this splitting with the optimal e-level estimates of Theorem 1.1, we
find

1 1 1
GL.(u, A) > thJ(AO) + 5|vé|(§2) <log — — Cloglog —) — heX/ v, A By +o(1),
& & Q

where v, denotes the 1-current associated to (#’, A”) by Theorem 1.1. By construction
of v/ (see [Rom19, Section 5.2]), we can write

v, = ZerFf,

i€l

where the sum is understood in the sense of currents, /; is a finite set of indices, and Ff
is an oriented Lipschitz curve in €2 with multiplicity 1. Each of these curves, which are
non-necessarily distinct, does not self intersect and is either a loop contained in €2 or
has two different endpoints on d€2. We will denote by X the class of Lipschitz curves,
seen as 1-currents, described here.
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Inserting this expression in the previous inequality, allows us to heuristically derive
the leading order of the first critical field:

0.

1
= ——|loge|,
0 2|Bolls

where

1

| Bollx := sup / I A By.! (1.3)

" rex ITI®) Jo

‘We may now state our first result, that characterizes the behavior of global minimizers

of GL, below HCO]. In the 2D setting, an analogous result was proved by Sandier and
Serfaty (see [SS00, Theorem 1]).

Theorem 1.2. There exist constants g, Ko > 0 such that for any ¢ < &9 and hex <
HY — Kolog |loge|, the global minimizers (ug, Ag) of GLg in H' (R, C) X [Aex + Heu]
are vortexless configurations such that, as ¢ — 0,

o |1 —luellliLo,c) = o(D),
o lntue, Ac)li oy g = o(1) forany'y € (0. 1], and

o hZ J(Ag)+0(1) < GLe(ug, As) < h2 J(A).

It is important to mention that in the proof of this theorem we use the fact that
solutions of the Ginzburg-Landau equations (see Sect. 2.3), in the Coulomb gauge,
satisfy a clearing-out result proved by Chiron [Chi05]. Roughly speaking, this states that
if the energy of a solution in a ball (with center in Q) intersected with  is sufficiently
small, then |u| is uniformly away from O in a ball of half radius intersected with €2. The
proof given by Chiron relies on monotonicity formulas, and is very much inspired by
previous work by Bethuel, Orlandi, and Smets [BOS04]. The interested reader can refer
to [Riv95,LR99,L.LR0O1,BBOO01,SS17] for results in the same spirit.

Our second result provides bounds from above and below for the first critical field in
three dimensions.

Theorem 1.3. There exist constants €y, Ko > 0 such that for any ¢ < gg we have
HY — Kolog|loge| < H,.

Moreover, if there exists a multiplicity 1 rectifiable 1-current Ty with dT'1 = 0 relative
to 2 such that

1
Il Boll =—/ Ty A Bo,
TN Jg

then there exist constants €1, K1 > 0 such that for any ¢ < &1 we have
H,, < HY + K.

Remark 1.1. In the special case Q@ = B(0, R) and Hyex = Z in B(0, R), || Boll« is
achieved by the vertical diameter seen as a 1-current with multiplicity 1 and oriented
in the direction of positive z axis; see Proposition 4.1. In particular, in this case the
hypothesis of this theorem is satisfied by a curve which belongs to X.

1 The notation used here is explained in the preliminaries (see Sect. 2).
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Remark 1.2. These inequalities show that indeed HCO1 is the leading order of H., as
& — 0. Of course this agrees with the previously mentioned result by Baldo, Jerrard,
Orlandi, and Soner. The author strongly believes that, as ¢ — 0,

He, = H) +0(1).

To prove this result, one needs to avoid the uncertainty of order O(log|logel) in the
statement of Theorem 1.2. To accomplish this, it is crucially important to characterize,
near the first critical field, the behavior of the vorticity u(u, A) of global minimizers of
G L. We plan to address this problem in future work.

Our next result shows that beyond the first critical field there exists a locally minimiz-
ing vortexless configuration. A similar result was proved by Serfaty in 2D (see [Ser99b,
Theorem 1]).

Theorem 1.4. Let o € (O, %) There exists ¢y > 0 such that for any ¢ < &g if hex <
€~ then there exists a vortexless configuration (g, Ag) = (uoul, hexAog + AL) €
HY(Q, C) x [Aex + H,_ol, which locally minimizes G Lg in H' (R, C) X [Aex + Heurl]
and satisfies the following properties as ¢ — 0:

(1) 11 = luelllL=@,c) = o(D).
(2) B2, J(Ag) +0(1) < GL,(ue, Ag) < h2,J(Ag).
(3) The configuration (u,, A},) satisfies

. i AT _

pnt = @, + 1Ay, = o).

(4) Up to a gauge transformation, (ug, Ag) converges to (ug, hex Ag). More precisely,
we have

inf  flue. — efu | +||Ag — hex Aol 11 =o(1).
pint e —uoll 10,0+ 1A — hexAoll iy, = 0(1)

Let us point out that in Remark 5.1 we explain why we require o < %
Our last result concerns the uniqueness, up to a gauge transformation, of locally
minimizing vortexless configurations.

Theorem 1.5. Let o, ¢ € (0, 1). There exists g > 0 such that, for any ¢ < &g, if
hex < &% then a configuration (u, A) = (uou’, hexAg + A") which locally minimizes
GL, in HY(Q, C) x [Aex + Heun] and satisfies |u| > ¢ and F.(u’, A") < £'*® for some
8 > 0, is unique up to a gauge transformation.

Remark 1.3. The assumption that Fe(u', A') < €'*° for some § > 0 plays a crucial
role in the proof of this result. In Proposition A.2, we prove that if ¢ € (O, 41'1) then this
condition is implied by the other assumptions of this theorem provided that GL;(u, A) <
GLg(ug, hexAg) = thJ(Ao), i.e. uniqueness holds without assuming that Fo(u’', A") <
&' for some 8 > 0 if the Ginzburg—Landau energy of the vortexless local minimizer is
below the energy of (ug, hex Ag). We observe that this condition is satisfied by the locally
minimizing solution of Theorem 1.4.

Let us also note that if @« > }T then the strategy of the proof of Proposition A.2
fails. For this reason, we are able to guaranty the uniqueness of the locally minimizing
vortexless configuration of Theorem 1.4 only if o < %.
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Finally, let us emphasize that this uniqueness result allows to conclude that the locally
minimizing configuration of Theorem 1.4 is, indeed, up to a gauge transformation, the
unique global minimizer of the Ginzburg—Landau energy below the first critical field.
Therefore Theorem 1.4, in particular, provides a detailed characterization of the behavior
of the Meissner solution.

Thus, we prove that below the first critical field, up to a gauge transformation, the
Meissner solution is the unique global minimizer of G L. Beyond this value, at least up

to hex = 0(e™3), a Meissner-type solution continues to exists as a local minimizer of
the Ginzburg-Landau energy. This solution is unique, up to a gauge transformation, at

least up to hex = 0(8_%). Since this branch of vortexless solutions remains stable, in
the process of raising hex vortices should not appear at H,,, but rather at a critical value
of hex called the superheating field Hgp, at which the Meissner-type solution becomes
unstable. It is expected that Hg, = O(e™"). The interested reader can refer to [Xial6]
and references therein for further details.

Outline of the paper. The rest of the paper is organized as follows. In Sect. 2 we in-
troduce some basic quantities and notation, describe two Hodge-type decompositions,
and present some classical results in Ginzburg—Landau theory. In Sect. 3 we define the
approximation of the Meissner solution, split the Ginzburg-Landau energy, and prove
Theorem 1.2. In Sect. 4 we present the proof of Theorem 1.3 and compute || By||« in a
special case. Section 5 contains the proof of Theorem 1.4 and Section 6 the proof of
Theorem 1.5. Appendix A is devoted to prove some improved estimates for locally mini-
mizing configurations, that allow to obtain the uniqueness of the Meissner-type solution

of Theorem 1.4 for o < %, as a consequence of Theorem 1.5.

2. Preliminaries

2.1. Some definitions and notation. We define the superconducting current of a pair
(u, A) € HY(Q, C) x H'(Q, R?) as the 1-form

3

J A) = (i, dau) =Y (i, u — i Agu)dxy.
k=1

It is related to the vorticity wu(u, A) of a configuration (u, A) through
wu(u, A) =dj(u, A) +dA.

This quantity can be seen as a 1-current, which is defined through its action on 1-forms
by the relation

e, A) (@) = /Qw, A) Ao,

We recall that the boundary of a 1-current T relative to a set ®, is the O-current 97
defined by

T (¢) =T (d¢)

for all smooth compactly supported O-form ¢ defined in ®. In particular, p(u, A) has
zero boundary relative to 2. We denote by |7 |(®) the mass of a 1-current 7 in ®.
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2.2. Hodge-type decompositions. Next, we provide a decomposition of vector fields in
Heyn.

Lemma 2.1. Every vector field A € Heyy can be decomposed as
A=curl B+ Vo,
oc(R?).

71
where B, curl B € Hy,,_ and ® € H}

Proof. First, let us observe that there exists a function ®; € HIZOC(R3, R3) such that
AD| =divA e L} (R} RY).
Second, we consider the problem

curl? B = curl A € L2(R3, R?)
divB = 0.

By observing that cur> B = —AB, [KS91, Theorem l] provides the existence of a
solution BB € H _o to this problem such that curl B € Hd
Finally, by n0t1ng that

iv=0"

curl(A — V& —curl B) = div(A — V& —curl B) =0,
we deduce that
A—-—Vo| —curl B=Vd,

for some harmonic function ®, € H, (]R3 R3) By writing ® = @& + $;, we obtain

the result. O

loc

We now recall a decomposition of vector fields in H' (€2, R?). The proof of this result
can be found in [BBOOI1, Appendix A].

Lemma 2.2. There exists a constant C = C () such that for every A € H (2, R?)
there exist a unique vector field By € {B € H*(Q,R?) | div B = 0in Q} and a unique
function ¢ € {¢ € H*(Q) | [ pa = O} satisfying

A=curl B + Vg4 in Q
Baxv=0 on 02
Vog-v=A-v on 9€2.

Moreover,

||BA||H2(Q,R3) <C| Cur1A||L2(Q,R3) and ||¢A||1-12(Q) = C||A||H1(Q,R3)-
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2.3. Ginzburg—Landau equations.

Definition 2.1 (Critical point of GL,). We say that (u, A) € H ! (2, C) x [Aex + Heynl]
is a critical point of GL; if for every smooth configuration (v, B) with B compactly
supported in R3 we have

d
EGLS(M +tv, A+tB)|;=0 = 0.

We now present the Euler-Lagrange equations satisfied by critical points of GL;.
This is a well-known result, but for the sake of completeness we prove it here.

Proposition 2.1 (Ginzburg-Landau equations). If (#, A) € H 1(Q,C) x [Aex + Heur]
is a critical point of G L, then (u, A) satisfies the system of equations

1
—(Va)’u = —u(l — [u]*) inQ
&

curl(H — Hey) = (iu, Vau)xo inR3 (GL)
Vau-v=>0 on 092
[H—Hex]lxv=0 on 092,

where xq is the characteristic function of Q, [ - | denotes the jump across 02, Vau-v =
Zj-:l (0ju —iAju)vj, and the covariant Laplacian (Va)?is defined by

(V) u = (div—iA-)Vau.
Proof. We have

d

1
GLo(u+1v, A>|,:o=f(vAu,vAv>——zf(u,v><1—|u|2).
dt Q ec Jao

By noting that
(Vau, Vav) = div(Vau, v) — (Va)u, v),

where (Vau,v) = ((0ju —iAju, v), (dou — iAsu, v), (03u — i Asu, v)), and by inte-
grating by parts, we obtain

d 1
S GLe(u+1v, Al—o= | (Vau-v,v)— f (V) 2u, v) — — f (. v)(1 = ).
dt Fre Q e Ja
Since this is true for any v, we find
1
—(Va)’u = u(l —u*)inQ and Vau-v=00n0dQ.
€
On the other hand, we have
d
—GL;(u, A+tB)|;=9 = —/ (i Bu, Vau) +/ (H — Hg) - curl B = 0.
dt Q R3
By integration by parts, we get

d
L GL.(u, A+1B)|i—g = —/ (iu, Vau) - B +/ cutl(H — Ho) - B =0. (2.1)
dt Q R3
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‘We deduce that
curl(H — Hey) = (iu, Vau)xo in R3.

By testing this equation against B xq and integrating by parts, we find

/(H—Hex)-curlB—/ ((H—Hex)xv)-B—/(iu,VAu)-Bzo.
Q I Q

Now, by testing against B xg3\q, and integrating by parts, we get

/ (H—Hex)-curlB+/ ((H — Hex) X v) - B=0.
R3\Q IR3\Q)
Thus

/ ([H — Hex] xv) - B =0,

9

which implies that [H — Hex] x v =00n 0. O

Remark 2.1. By taking B = curl X in (2.1) with X € C{°(<2, R3) and integrating by
parts, we find

—/ (u(u, Ay — H) - X+/ curl’>(H — Hey) - X = 0.
Q Q
Doing the same with X € C§° R3\Q2, R3), we get
/ curl?(H — Hey) - X = 0.
RI\Q
We then deduce that H and 11 (u, A) satisfy (in the sense of currents) the London equation

curl*(H — Hex) + H xo = n(u, A)xq. (2.2)

We will come back to this equation later on.

2.4. Minimization of GL,.
Proposition 2.2. The minimum of GL, over H L@, C) x [Aex + Heur] is achieved.

Proof. Let {(ut,, Al bea minimizing sequence for GL; in H' (2, C) X [Aex + Heurl].
Lemma 2.1 yields a gauge transformed sequence {(u,, A,)}, such that A, € [Aex +
Hdliv=0]' In particular, we have that GL. (i1, A,) = GL¢(up, A,) and

IV(An — Ae) | 23 r3) = Ilcurl(Ay — Aex) [l L2(r3 R3)-
Using the bound GL,(u,, A,) < C, where C is independent of n, we find that
- |un|2||L2(Q,<c)a ||VA,,un||L2(Q,<C3)» and | curl(4, — Aex)||L2(R3,R3)

are bounded independently of n. Therefore, by recalling (1.1), we deduce that A, — Aex
is bounded in H'(R?, R3). Because {u,}, is bounded in L*(£2) we find that {i A, up,}n
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is bounded in LQ(Q, CH. By noting that Vu,, = V4,u, +iA,u,, we conclude that u,
is bounded in H!($2, C).

We may then extract a subsequence, still denoted {(un, An)}y, such that {(u,, Ay —
Aex)}n converges to some (i, A — Aex) weakly in H! (2,0C) x Hdlv o and, by compact
Sobolev embedding, strongly in every L4 (2, C) x L4(2, R3) for g < 6.

Let us now show that (u, A) is aminimizer of G L. By strong LY, 0) convergence,

iminf |1 —fun"ll2@.0) = I = ul"ll2@,0)-
Also, by weak H! (R3,R3) convergence, we have
limninf llcurl(Ap — Aex)ll 2R3 R3) = lin%inf IV(An — Ae)ll 2R3 R3)

> V(A - Aex)||L2(R3’]R3) = || curl(A — Aex)||L2(R3,R3)-

Moreover, standard arguments show that

L 2 L
llmnmf Va,un HLZ(Q,(C3) = llmnmf Vun ”L2(§2 C3) / Vup,iApup) + | Apup ||L2(Q ©3)

= ||VA“||L2(Q,(C3)-
Hence

liminf GL,(ug, Ag) = GL¢(u, A).
n

3. Global Minimizers Below H (?1

3.1. Anapproximation of the Meissner solution. Next, we find a configuration (uq, hex Ao)
with |ug| = 1 and which satisfies (2.2) with zero right-hand side. As mentioned in the
introduction, this turns out to be a good approximation of the Meissner solution, the
vortexless configuration which minimizes G L, below the first critical field.

Let us consider a configuration of the form (€%, hex Ag) with ¢g € H 2(SZ) and
Ap € Apex + Hdlv o- Observe that, by using Lemma 2.2 and letting u¢ := = ¢!% we have

1
GLeg(ug, hexAo) :E ./Q Vo — hex (curl By + V¢Ao)|2 + 5 /]R2 |hex curl Ag — Hex|2

1 h2
== / IV (0 — hexpag)|* + h2ylcurl By, |* + -2 / | curl(Ag — Ag el
2 Jo 2 Jp3

By choosing ¢g = hex¢4,, we obtain

hZ h2
GL,(ug, hexAg) = % | curl By |? + ? /3 |curl(Ag — Ag.ex)|> =: h2, J (Ap).
Q RR-

We let Ag to be the minimizer of J in the space (Ao,ex +H dw o Il - ”I-'IC{- 0), whose

existence and uniqueness follows by noting that J is continuous, coercive, and strictly
convex in this Hilbert space (recall (1.1) and (1.2)). We also let Hy = curl Ag and here
and in the rest of the paper we use the notation By := Bj,.
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Let us observe that, by minimality of Ag and Lemma 2.2, we have

1
J(Ag) = I (Aoe) = 5 / lcurl By, P < C / Jcurl Ag.ex2 = € / |Ho.er? = C.
Q Q

Q
) (3.1
One can easily check that, for any A € Hdliv:()’ we have
f curl By - curl B4 +/ (Hp — Hpex) - curl A = 0.
Q R3
Because
/ curl By - Voua :/ Bo - curl Vs —/ (Bp xv) - Vg =0,
Q Q 9
we have
/ curl By - A +/ (Hp — Hpex) - curl A = 0. (3.2)
Q R3
Moreover, Lemma 2.1 implies that this equality also holds for any A € Hcyy.
Let us observe that, for any A € C8°(R3, R?), by integration by parts, we have
/ curl By - A +f curl(Hyo — Hoex) - A = 0.
Q R3
Therefore, Ay satisfies the Euler-Lagrange equation
curl(Hy — Hoex) +curl Boxg =0 in R (3.3)

In addition, it is easy to see that the boundary condition [Hy — Hpex] X v = 0 on 92
holds.
Arguing as in Remark 2.1, we find

Cuﬂz(Ho — Hpex) + Hoxo =0 in R3,
namely (up to multiplying by %ex) (2.2) with w(ug, Ag) = 0.

On the other hand, by integration by parts, for any vector field B € C§°(2, R3), we
have

/ By - curl B +/ (Hp — Hpex) - curl B = 0.
Q Q

Besides, for any function ¢ € CgO(Q), we have
/ (Bo+ (Ho — Hpex)) - Vo = —/ div(Bo + (Hy — Hop,ex))¢ = 0.
Q Q

Then, given any vector field A € C3°(L, R3), by taking B = B4 and ¢ = ¢4 in the
previous equalities, we find

/ (Bo + (Ho — Ho,ex)) - (curl By + Vopu) = / (Bo+ (Hyo — Ho,ex)) - A = 0.
Q Q
Hence, the divergence-free vector field By weakly solves the problem

{ —ABy+ By = Hpex inQ 3.4)

Boxv=0 on 0L2.
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Remark 3.1. Since we assume that ||Ho ex | co.6 (@ r3) < C, by standard elliptic regu-
larity theory, we deduce that By € C%’ﬂ(Q, R3) with ||B()||C2.,3(Q R3) <
7@,

constant independent of ¢. In addition, if the applied field is taken to be uniform in €2,
i.e. if Hyex is a fixed unit vector in 2, then By depends on the domain Q2 only.

C for some

3.2. Energy-splitting. Next, by using the approximation of the Meissner solution, we
present a splitting of GL,.

Proposition 3.1. For any (u, A) € H! (2,C) x [Aex + Heurl, letting u = uou’ and

A = hexAg + A', where (ug, hex Ag) is the approximation of the Meissner solution, we
have

1
GL,(u, A) =hZXJ(A0)+Fg(u’,A’)+—f | curl A’|2—hexf w(u', A') A By+ Ry,

2 Jri\@ Q

(3.5
where F,(u', A') is the free energy of the configuration (u', A') € H'(Q, C) x Heu,
ie.
1 l 1 72 1 71252 72
Fo,A) = = | [Vad/ P+ —(1 — || + | curl A/|
2 Q 282

and

h2
Ry = ﬂ/(|u|2—1)|cur130|2.
2 Ja

1 1
In particular, |Ro| < Ceh? E(jul)? with Ee(|u]) = 5/ IV |ul|* + ﬁ(l — u»H>.
Q £

Proof. One immediately checks that A" € Heyn. Since u’ = ug Yy = e~thesdoy and

¢o € H2(Q), by Sobolev embedding we deduce that u’ € HY(Q, ).
Writing u = ugu’ and A = hex Ag+ A’ and plugging them into G L, (u, A), we obtain

1 / . 72 1 712\2
GL:(u,A) = = | |Vau —ihecurl Bou'|” + — (1 — |u'|%)
2 Q 282
1
+-f |curl A’ + hex (Hy — Ho ex)|*.
2 R3
By expanding the square terms, we get
1 1
GL,(u, A) = 3 / IVaru' 12+ h2 | curl Bo|?|u'|> — 2hex (Varud, iu') - curl By + 2—2(1 — u'1?)?
Q &
1
+5 /ﬂ§3 [curl A% + h2 |Ho — Ho.ex|* + 2hex curl A" - (Hy — Ho ex)-

Observe that, by (3.2), we have

/ curl A - (Hy — Hpex) = —/ A’ - curl By.
R3 Q
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Therefore, grouping terms and writing |u’|% as 1 + (Ju’|> — 1), we find

1
GL(u, A) = h2 J(Ag) + Fe(u', A") + -/ |curl A’)?
2 Jri\@

e [ G A+ A -curl B+ Ro
Q
Then, an integration by parts yields
/(j(u’, A’)+A') - curl By = f p(', A" A By —/ (', A)+A') - (By x v).
Q Q a0

By using the boundary condition By x v = 0 on 9€2, we find (3.5). The inequality for
Ry follows directly from the Cauchy-Schwarz inequality. O

Remark 3.2. Let ¢ € C 2’1(9) be a 1-form. Observe that, by gauge invariance and by
integration by parts, we have

/ w(u, Ay A = / (', A"+ hex curl By) A ¢
Q Q
= / w', A') A @ + hex (1 — |u|?) curl By - curl ¢.
Q
Then, the Cauchy-Schwarz inequality yields

1
”H’(uv A) - M(M/, A/)Hc%l(g)* S CSheXEé‘(luDj'

Moreover, arguing as in the proof of the vorticity estimate in Theorem 1.1 for y € (0, 1)
(see [Rom19, Section 8]), we conclude that, for any y € (0, 1),

— 1
e, 4) = @', Al s g < € (Folats A) + Fo's A))' ™7 (ehex Ec((ul)2)

3.3. Proof of Theorem 1.2.

Proof. Proposition 3.1 yields
1
GLg(ug, Ag) > hng(Ao) + Fe(uy, A}) — hex ,/slz p(uy, Ay) A By +o(e2),  (3.6)
where (ug, Ag) = (uou,, hex Ao + A}).
Step 1. Estimating F; (), A,,). By minimality, we have

inf GLe(u, A) < GLe(uo, hexAo) = hiJ(Ag).  (3.7)
(u,A)eH"(2,C) X [Acx+Heur ]

On the other hand, by gauge invariance, we get
Fs(u:;a A:;) = Fe(ug, Ag — hex curl Bg) < 2F¢(ug, Ag) + 2F¢ (1, hex curl By)
< 2F,(ue, Ae) + Ch

ex?
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which combined with (3.7) and (3.1) implies that Fy(u,, A,) < M| log¢|>. We may
then apply Theorem 1.1 (with n large enough) to obtain

Fe(uy, A}) — hex/ (g, A,) A By >
Q

1 1 1
§|v;|(52) <log — — Cloglog —) - hex/ vl A By +o(|loge|™2),
& 3 Q

where C > 01is auniversal constant and v, denotes the polyhedral 1-dimensional current
associated to the configuration (u, A%) by Theorem 1.1. By noting that

/QVQ/\Bof LI Boll-, (3.8)
we find

Fulul, ALY — ey / s, ALY A By
Q

=

1 1
Vel (€2) (10gg — Cloglog P 2||BO||*hex) +o(|logs| ).

| =

Writing hex = HY, — Ko log | log &| with H?

= | log €|, we get
2[|Boll«

1 1 _
GLe(ue, Ae) > h3 J (Ag) + EIVQI(Q) (2|Boll«Ko — C) loglog z +0(|loge| ).
Combining with (3.7), we deduce that
_ 1
o(|loge|™) = [V1(2) 2] BollxKo — C) loglog .

Therefore, by letting K¢ := (2||Bol+)~'C + 1, we deduce that |v.[(R2) = o(|log e|~2).
In particular, from the vorticity estimate in Theorem 1.1 and (3.8), we deduce that
hex fQ w(ul, AL) A By = o(|log e|™1). Therefore, inserting in (3.6) and using (3.7), we
are led to |
Fe(ul, AL) + -/ |curl ALI> < o(|loge|™h). (3.9)
2 Jr3\@

In particular, we deduce that G L (u,, A;) = thJ(AO) +o(|loge|™").

Let us also observe that, since [v,|(2) = o(|log ¢| ~2), from the vorticity estimate in
Theorem 1.1 and Remark 3.2, one immediately deduces that, for any y € (0, 1],

ll e (ute, As)llcr]{,y(m* — 0 ase — 0. (3.10)

Step 2. Applying a clearing out result. To prove that ||1 — |u; ||| L~ @,c) — Oase — 0,
we use a clearing out result. Let us define

ve :=e '"%u, and X, := A, — Vg,
where ¢, satisfies

Ag, =divA, inQ
Vg -v=A,-v ondQ.
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This implies that X, is in the Coulomb gauge, i.e. it satisfies

@3.11)

divX, =0 inQ
X.-v=0 onoQ.

Since the configuration (u,, A¢) minimizes G L, in H' (2, C) x [Aex + Heurl], it satisfies
the Ginzburg—Landau equations (GL). By observing that the configurations (u,, A,) and
(ve, X + hex curl Bp) are gauge equivalent in €2, we deduce that v, satisfies

1 .
{—(vxﬁhexcurm{,)zva = Su (= [ul) in®
VX‘g+hex curl ByVe -V = 0 on 0%2.

Expanding the covariant Laplacian, and using (3.11) and curl By - v = 0 on 92, which
follows from By x v = 0 on 0€2, one can rewrite this problem in the form

1
—Ave +i[logelc(x) - Voe + [loge[?d (x)ve = —ve(1 — ve[*)  inQ
e (3.12)
Ve -v=20 on 0%,
where
2(X¢ + hex curl By) | X, + hex curl Bg|?

= d d =
<o oge| and A0 logel?

By Remark 3.1 and by standard elliptic regularity theory for solutions of the Ginzburg—
Landau equations in the Coulomb gauge, we have

el oo m3ys Vel Lo (@ r3x3)s 1]l L (@), IVl L) < Ao (3.13)

for some constant Ay > 0 independent of €.
In addition, by gauge invariance, we have

F(u;a A;) = F:(vg, Xo).
Since (v, X,) is in the Coulomb gauge, we have
E¢(vg) := Fe(vg, 0) < CFe(ve, X¢)

for some universal constant C > 0. We define a.(x) = 1 — d(x)£2| log e;|2 and observe
that

> o l 2 L _ 242 2
Ec(ve) = [Vue|” + 2(as(x) [ve|)” < Ec(ve) + O(e|logel”).
2 Q 2¢e
This combined with (3.9), implies that

E¢(ve) = o(|loge| ™). (3.14)

Finally, from (3.11), (3.12), (3.13), and (3.14), we conclude that all the hypotheses of
[ChiO5, Theorem 3] are fulfilled, and therefore

11— JuelllLo@,c) = 11 = JvelllLe@,c) — 0 ase — 0.

It is worth mentioning that one can also obtain (3.10) from the improved vorticity
estimate in Proposition A.1. The proof is complete. 0O



334 C. Roman

4. The First Critical Field

Let us recall that, given a fixed ¢ > 0, the first critical field is defined as the value

H., = H, (¢) such thatif hex < H, and (u, A;) is a minimizer of G L, then |ug| > 0

in 2, while if hex > H,, and (4., A¢) minimizes G L, then u, must vanish in Q.
Before giving the proof of Theorem 1.3, let us state a well-known result.

Lemma 4.1. Let I" be a multiplicity 1 rectifiable 1-current with 0T' = 0 relative to Q.
There exist constants C1, €1 > 0 such that, for any ¢ < €1, there exists v, € H! (2,0
such that

Fe(ve, 0) < |I|()|loge| + Cy

and

= o(|loge|™). 4.1)

”M(Ué?v O) - ZJTF”Cgl(Q)*

We refer the reader to the proof of Theorem 1.1 (ii) in [ABOOS, Section 4] for a proof
of this result. It is worth mentioning that the construction of v, relies on the existence of
a map provided in [ABOO3, Theorem 5.10]. Let us also point out that, arguing as in the

proof of [JMS04, Proposition 3.2], one can replace the space Cg’l(Q)* by C%l(Q)* in
the vorticity estimate (4.1). We will use this version of the result in the following proof.

Proof of Theorem 1.3. Theorem 1.2 immediately implies that
HY — Kolog|loge| < H,.

It remains to prove that H;, < HL.OI + K1, for some constant K sufficiently large. Given
K > 0, letus assume towards a contradiction that ey = HCO1 +K and (u., A;) minimizes
GL, in HY(Q, C) X [Aex + Heun]* with |ug| > 0.

Step 1. Estimating G L. (u., A;). We write (1, As) = (uoul, hexAo + Al,), where
(10, hex Ap) is the approximation of the Meissner solution. Since |ul,| = |us| > 0, we
deduce that the 1-dimensional current v} associated to (u},, A,) by Theorem 1.1 vanishes
identically, and therefore, by taking n large enough, we have

/ /
Il (ug, Ag)"cgvl(gz)* < W-

The energy-splitting (3.5) then yields

2
> h2 J(Ag) +o(|loge|™h).

1 _
GLe(ug, Ag) = h2 J(Ag) + Fe(ul, AL) + = /3 |curl AL|? + o(|loge| ™)
R3\Q

But since (#¢, A¢) minimizes G L., we have
GLe(tte, Ae) < GLe (10, hex Ag) = hi J (Ag).
Combining these inequalities, we find
GLe(ue, Ae) = hy J (Ag) +0(| loge| ™).

2 This in particular implies that (ug, Ag) satisfies the Ginzburg—Landau equations (GL) and therefore u,
is continuous.
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Step 2. Definition of a vortex configuration. To reach a contradiction, we will show that
there exists a configuration (4§, A7), whose vorticity concentrates along the multiplicity
1 rectifiable 1-current I'y with 9I"; = O relative to 2 that satisfies

1
Il By =—/ Ty A Bo, 4.2)
TN Jo

such that if iex > H® + K then GL:(u§, A}) < GLg(ug, Ag), provided K > K for

=
some constant K independent of ¢.

Lemma 4.1 with I' = I'y provides the existence of v, € H 1(Q, ©) such that
Fe(ve, 0) < 7 |I"1[(€2)] log e| + Cy (4.3)
for some constant C1 > 0 independent of &, and

114 (vg, 0) — 27yl o = o(|loge|™"). (4.4)

(€2)*
Now, we let (u], A]) be defined by
ui = uove, A = hexAo.
Proposition 3.1 yields
GLS(”? Ai) = hng(Ao) + Fe(ve, 0) — hex / w(ve, 0) A By + Ro. 4.5)
Q
From (4.2) and (4.4), we get

/M(vg,O)/\Bo=2JT||BOII*IF1|(Q)+0(I10g€|_1)~
Q

Inserting this and (4.3) into (4.5), we are led to

GLe (S, AS) < hieJ (Ag) + |1 |(R)] loge| + C1 — 27| Bolxhex|T11(R2) + o(hex| loge| ™).

— 'ex

Step 3. Contradiction. Writing hex = HCOl + K with Hg =

1
|logg|, we get
2| Boll«

GLe(uf, AS) < hgJ(Ag) + 7T ()] loge| + C — |T1(R) (| loge| + 2| Boll«K) +o(1)
= hgxJ (Ag) + C1 — 2 || Boll« K [T'1 () + o(1).

By choosing K| := (27r||Bo||*|F1|(Q))_1C1 + 1, we deduce that, for any K > K1,
GL. (5, AS) < h2 J(Ag) — 1 +0(1) < GLe(ug, Ag).

Therefore, provided K > K1, this contradicts the fact that (u., A;) globally minimizes
GL. Thus

H, < H) + K.
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Remark 4.1. The isoperimetric inequality allows to prove that if ' € X has small length

fQ I' A By
IT1(£2)
Indeed, if T is a loop contained in <2 then, by Stokes’ theorem, we have

/F/\B():/ curl By,
Q Sr

where Sr denotes a surface with least area among those whose boundary is T, i.e. a
solution to the associated Plateau’s problem. By the isoperimetric inequality, we have

then the ratio is small.

/ | curl Byl < | curl Byl (q r3)Area(Sr) < C|F|(Q)2.
Sr

On the other hand, if both different endpoints of " belong to 9$2, we consider the geodesic
connecting the endpoints of T on 0%, oriented accordingly to the orientation of T'. We
then denote by T" the loop formed by the union of T and this geodesic. Since By x v = 0
on 02, by Stokes’ theorem, we have

fFABOZf curl By,
Q Sr

where St denotes a surface with least area among those whose boundary is T'. Arguing
as above, we conclude that

/ | curl Bo| < || curl Bol| (g g3 Area(Sr) < CLength(I)? < C(32)|T[(R2)%.
Sr

Therefore,

1
[(€2)

/ IT'A Bo| = CIT[(£2),
Q

from which the assertion follows.

Moreover, this property extends to the class of multiplicity 1 rectifiable 1-currents
I with o' = 0 relative to 2, since the action of a 1-current in this class on a vector
field can be seen as oriented integration over a countable family of Lipschitz curves in
X. In particular, since || Byllx > 0, we deduce that |T'1|(2) > C > 0, where I'y is the
1-current that appears in the statement of Theorem 1.3 and C is a constant that depends
on By and Q2 only.

Let us now study || By ||+« in a special case.

Proposition 4.1. Consider the special case @ = B(0, R) and Hyex = Z in B(0, R).
Then, if S1 denotes the vertical diameter seen as a 1-current with multiplicity 1 and
oriented in the direction of positive z axis, we have

1Bolls = ——— /S/\B 1/RB(oo yozdz =2 (1 ! /Rsmhrd
= = — , 0, . = — — — ril.
O = s1@ Jo 1 O TR J_ g PO TS T iR Sy

Moreover, Sy is the only curve in X achieving the maximum in (1.3).
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Proof. We use some ideas from [ABMO06].

Step 1. Explicit computation of By. When Q = B(0, R) and Hp x = Z in B(0, R), the
solution to (3.4) can be explicitly computed (see [Lon50]). By using spherical coordinates
(r, 0, ¢), where r is the Euclidean distance from the origin, 6 is the azimuthal angle, and
¢ is the polar angle, we have

B 3R h sinh r o
= —————|coshr — cos ¢r
0 r2sinh R r
3R h 1+72 inh in ¢ 43 ~
—————— | coshr — sinh 7 | sin —cz,
2r2sinh R r ¢
3 1+R? . .
where ¢ = —— | cosh R — sinh R ). In particular, we observe that By
2R sinh R

does not depend on the azimuthal angle and therefore it is constant along 6.

Step 2. Dimension reduction. Let I € X with [ o) ' A Bo > 0. We will project it

along the azimuthal angle onto B(0, R)?D+ = {(x,2) € R? | x2+z22 < R? x> 0}.
For this, we consider the map ¢ : B(0, R) C R3 — B(0, R)2P-* defined by

q(r,0,¢) = (rsing, rcos ),
and we let
I'pi=gqol.

It is easy to check that dT»p = 0 relative to B(0, R)?P,
/ I A By = / [ap A Bo, and |Tap|(B(O, R?®*) < |TI(B(O, R)).
B(0,R) B(O,R)ZD’+

Therefore
1
F'ABy< ———
IT1(€2) JB(o,Rr) [T2p1(£2) J (o, R)20-+

Even though I'>p does not necessarily belong to X, we can decompose

['op = Zri,

iel

I'p A By.

where the sum is understood in the sense of currents, / is a finite set of indices, and
I'; € X foralli € I. In particular,

f Top A By < ) ITil(BO, R)*®*)|| Byl = Tap|(BO, R)*™ )| Bolls.
B(0,R)*P+ icl

We deduce that in order to compute || By|| it is enough to consider Lipschitz curves
" € X contained in B(0, R)?P-* with fB(O # I' A Bo > 0. From now on we consider I
of this form.

Step 3. Application of Stokes’ theorem. If I has both endpoints on dB(0, R) N
dB(0, R)*P*, we then define T as the loop formed by the union of I' and the curve
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lying on d B(0, R) N 3 B(0, R)?P-* which connects the endpoints of I' oriented accord-
ingly to the orientation of I'. Since By x v = 0 on d B(0, R), the Stokes’ theorem yields

/ F/\B():/ f‘/\B():/ CU.I'IBO')A/, (46)
B(0,R)2D-+ B(0,R)?D:+ Sr

where St is the surface enclosed by [. Of courseif I'is a loop contained in B(0, R)*P-*
then the Stokes’ theorem gives

f FAB():/ curl By - ¥,
B(0,R)2D:+ St

where Sr is the surface enclosed by I'.
An explicit computation gives

curl By - y =

A
(coshr _m r) S 0 i BO. R, @7

2sinh R r r

In what follows we use the notation
3R h sinh r
coshr — .
2sinh R r

Step 4. Estimate for curves with endpoints on 3 B(0, R) N dB(0, R)*P*. Fora, b e
[0, ] with a < m — b let us define

fr) =

Sap :={r,¢)|0=r =R, a<¢p =m—Db}.

We let ¢1, ¢, be the maximum angles for which Sy C Sy, ¢,. From (4.6) and (4.7), we
deduce that

R pr—¢
/ I'ABy < / curl By - y = / / f(r)sinpdpdr
B(0,R)2D-+ So1.¢7 0 é1

R
= (cos ¢y + cos ¢2)/ f@rdr.
0

On the other hand, by definition of ¢1, ¢», St intersects the rays {(r, ¢1) | 0 < r < R}
and {(r, ¢2) | 0 < r < R}. Since the endpoints of I" belong to d B(0, R) N9 B(0, R)*P+,
a simple geometric argument shows that

IT|(B(0, R)*™™*) = d((R. ¢1). (R, $2)).
The law of cosines yields d((R, ¢1), (R, ¢2)) = R/2(1 — cos(;m — ¢1 — ¢2)). Hence

1 O A By < COS 1 + cos ¢ fOR f(r)dr'
IT|(B(0, R)?P-*) Jp(o, gy2o.+ V2(1 —cos(m — ¢1 — ¢2)) R

We now estimate the right-hand side of this inequality. Let us observe that

CoS 1 + cos ¢ = 2 cos (¢1 +¢2> cos <¢l — ¢2)

2 2
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and

cos(r — $1 — $2) = cos(d + o) = cos® <¢_1 ;m) — sin? (—@ : ¢2>

= 2cos? (m) —1.

Using 0 < @ < Z, we deduce that

COS (1 + COs ¢ — cos <¢1 ¢2) <1
V2(1 —cos(w — ¢1 — ¢2)) 2 '

with equality if and only if ¢; = ¢». Therefore

1 "B <fo f(r)drzg L] /Rsinhrdr
IT[(B(0, R)?P-+) B(0, R)2D-+ 2 sinh R Jy r

1

= — S1 A Bp.
2R Jo.R)

Besides, from the previous computations we easily deduce that the inequality is strict if
' #58;.

Step 5. Estimate for loops in B(0, R)?P-*. Let us define 0 < ry < R as the minimum
radius such that

Sr C B(0, ro)*P.

In particular, St N (8 B(0, rg) N 9B(0, o)) # (). We can then use the estimate
provided in the previous step and conclude that

1 3 1 "0 ginh r
2D, + r'na BO <= 1 - N dr ).
ICI(B(O, R)=P-*) Jp(o,r)20-+ 2 sinhrg Jo  r

1 sinh
One can check that the function t — — 7 / r dr is strictly decreasing in [0, c0)
sin r

and therefore

1 3 1 sinh r
T RO RID FANBy<-=[1—— dr ).
|F|(B(O» R) ) B(O,R)ZD-“' 2 sinh R 0 r

This concludes the proof of the proposition. O

5. A Meissner-Type Solution Beyond the First Critical Field

In this section, we present the proof of Theorem 1.4.
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Proof. Step 1. Existence of a locally minimizing vortexless configuration. Let us
introduce the set

U = | 4) € H'(@,C) x [Aex + Heunl | Fo', A) < €3},

where u’ = ualu and A’ = A — hexAg. Consider a minimizing sequence {(ii,,, An)}n €
U.Lemma 2.1 yields a gauge transformed sequence {(u,, Ap)}n € H' (R, C) x [Aex +
H} _o] that, in particular, satisfies F(u},, A,) = F.(il,,, Al) < e3. Then arguing as
in Proposition 2.2, we deduce that (up to subsequence) {(u,, Ay — Aex)}n converges to
some (1, A — Aex) weakly in H! (2,0C) x Hdliv=0' Arguing again as in Proposition 2.2,
we find

F.(u', A') <liminf Fo(u/,, A}) and GL,(u, A) < liminf GLg(uy, Ap).
n n

Hence, (u, A) € UN HY(Q,C) x [Aex + H}

iv—o] minimizes G L. over U.

Let us now prove that (u, A) € U. We consider, for § = §(¢) = cla% and ¢
sufficiently small, the grid &(b., Ry, §) associated to (u’, A’) by [Rom19, Lemma 2.1]
with y = —%. In particular, using the same notation as in this lemma, we have

|u8| > 5/8 Onml(®(b87R058))a
)= / ecu', ANdH' < C52F,(u', A') < Ce~3e3,
R1(B(be, Ro.9))

2= / o', AVdH?: < C5~'Fo(u!, A') < Ce3¢3, (5.1)

&

9R2(& (be, Ro,9))

where C is a universal constant.

We claim that if ¢ is small enough then for each face w of a cube of the grid,
every connected component of {x € w | |u'(x)|] < 1/2} has degree zero. Assume
towards a contradiction that there exist a face w and a connected component S,, of
{x € w||u'(x)] < 1/2} whose degree ds, = deg(u’/|u’|, 3S,,) is different from zero.
By [Rom19, Lemma 4.1], a result adapted from [Jer99], we have

s =C [ 1V,
Sw
where C is a universal constant. Combining this with (5.1), we get
1
|ds,| < CI? < Ce3,
and therefore if ¢ is sufficiently small we reach a contradiction.
We thus deduce that the 1-current v/, which approximates well the vorticity (', A”),

vanishes identically in Q. Then, from the proof of Theorem 1.1 (see [Rom19, Section 8]),
we find

I, A’)||C3,1(Q)* < CSF.(u', A+ Ce(1+ 1} +12) < C(5 + e85 2 Fo(u/, A").
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1

Let us now use Proposition 3.1. From the previous inequality and since ¢ < 3, we have

-2 / / l—o{ / / 2
< Chex(8 + 88 D) Fo(u', A') < Ce3 “F,(u', A') = 0(¢7).
(5.2)

ex / u(u', A’ A By
Q

On the other hand
2 e 2 / ni 1-2a 1 _ 2
Ry < Ceh Ec(|u'])2 < Cehi Fe(u',A)? <Ce g3 =o0(e3).

The energy-splitting (3.5) then yields

1
GL.(u, A) = h2 J(Ag) + Fe(u', A") + -f lcurl A'12 + o(e 7).
2 Jrih\@

But, since (1, hex Ag) belongs to U, we have
GLe(u, A) < GL¢(up. hexAg) = hz J (Ag).

‘We thus deduce that
/ / 1 72 2
Fo(u,A)+ - |curl A'|© = o(e3), (5.3)
2 R3\§2

and therefore (1, A) € U provided ¢ is small enough.

Now, since U is open in H! (2, C) x [Aex + Heyrt], the minimizer (#, A) must be a
critical point of G L, and therefore satisfies the Ginzburg-Landau equations (GL). Ar-
guing as in the proof of Theorem 1.2, we deduce that (1, A) is a vortexless configuration
such that

I = lulllL=@,c) = I = [W'[llL=0,c) = o(1) ase — 0.

‘We note that we have omitted in our notation the dependence on ¢ of the minimizer
(u, A).

Step 2. Characterization of (u’, A’). From (5.3), we have || curl A/||i2(R3’R3) = 0(8%),

which combined with the fact that A’ = A — hexAg € H},_, implies that
2
A =o(e3).
1A, =oh)

Observe that

fWu’st Vi P+ | APl P
Q Q

Since [|[1 — |u'[[[L=(@.c) = o(1) as & — 0 and [|A"|| 2@ g3) < Cllcurl A’[| 2R3 g3

we deduce that
1
/ IVu'|* < C <Fe(u/, A+ —/ | curl A’|2> ,
Q 2 RA\Q

which combined with (5.3), gives

/Q|Vu/|2 = o(e?). (5.4)
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On the other hand, using the Poincaré-Wirtinger inequality, we have

1
/Iu/—g’|2§C/ |Vu'|?, whereg/z—/ . (5.5)
Q Q 2] Jo

In addition, we have
2
f||u’|—|g/|| 5/  — w2
Q Q

/(1 —u'])? < / (= [u|)? < 462 Fo(u/, A) < 4673,
Q Q

and

We deduce that || 1 —|u'|l| 12(q.c) < Cel*5 . But u'isaconstant, thus u’ = €% +0 (el*3)
for some 6, € [0, 27]. By combining with (5.5) and (5.4), we find

/ ' — el% 2 = o(e3). (5.6)
Q
Thus

inf  ||u’ — e’ — 0 ase — 0. 5.7
. l lm1 @, (5.7)

In particular, by noting that (€'?, hey curl By) is gauge equivalent to (1, hex curl By)
in Q for any 6 € [0, 2], we deduce that (up a gauge transformation) the configura-
tion (u’, A’ + hex curl By), which is gauge equivalent to (u, A) in €2, converges in the
H'(Q,C) x H'($2, R?)-norm to (1, hex curl By).

Step 3. (1, A) globally approaches (ug, fex Ap). Observe that, for any 6 € [0, 2], we

have
/ i — e 2 :/ ' — e 2 :/ ' — €2
Q Q Q

f|V<u—e"9uo>|Zs/ |Vuo|2|u’—e"9|2+/ Vil
Q Q Q

From (5.7), we deduce that

and

. 10
inf  |lu—e"ugpll;2 —- 0 ase — 0.
st l 2.0

Recall that g = e/ex?0 and that A satisfies the Euler-Lagrange equation (3.3). Since
curl(Hy — Hoex) = curl2(Ag — Ag.ex) = —A(Ao — Ag,ex), standard elliptic regularity
theory implies that 9 = Ag — curl By € L*°(2). Therefore

[ V0P = e < B IV g0l g = g
This combined with (5.6) for 6 = 6, yields

. 2
f [Vuol|u' — €% |? = o(s72%&5).
Q
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Since o < %, the right-hand side converges to 0 as ¢ — 0. Using once again (5.7), we
obtain

inf / IV(u — e"euo)|2 — 0 ase — 0.
0€[0,27] Jo

Hence

. 0
inf Jlu—eé"Yu i — 0 ase — 0.
il l om0

Besides, we have

A — hex Aol 5 = ||A'| = — 0 ase — 0.
l ex OHHdliv: l ||Hdliv:0

0

We have hence shown that, up to a gauge transformation in IR3, the solution (u, A)
converges in the H 1(Q,C) x Hd]ivzo—norm to (1o, hex Ao). In addition, up to a (different)
gauge transformation in €2, the solution approaches in the H' (2, C) x H'(2, R*)-norm
the configuration (1, hex curl By). O

Remark 5.1. The assumption hex < ™% fora < % is needed to prove that

< o(F:(u', A));

ek / (', A A By
Q

see (5.2). Ifa > %, we are not able to show this, and our strategy to prove that (u, A) € U
then fails.

6. Uniqueness of Locally Minimizing Vortexless Configurations

In this section we prove Theorem 1.5. We follow the same strategy as in [Ser99b,
Section 2].

Proof. First, let us observe that any pair (v, B) € H'(Q2, C) x [Aex + Heurl] is gauge-
equivalent to a pair (v, B) € HY(Q,C) x [Aex + Heyr] that satisfies

B-v=0 onoQ. 6.1)

{ divB=0 inQ
Indeed, by letting
v=e¢"% and B:= B — Vg,

where ¢ satisfies
Ag =divB inQ
Vo-v=B-v onaiQ

and is extended to a function in H2(R3), we immediately verify that B satisfies (6.1).
We say that (v, B) is in the Coulomb gauge.
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Let us assume towards a contradiction that there are two distinct locally minimiz-
ing vortexless solutions (uj, A;) = (uou’j,heon + A/j) to (GL) with (u;, A;) €

HY(Q,C) x [Aex + Heurl, |uj| > c for some ¢ € (0, 1), and
Fo(u;, A) < Ce'° for j =1,2,

for some § > 0. As we shall see, this estimate is crucial to prove the theorem.
By gauge invariance, we may assume that (u’j, A’j) is in the Coulomb gauge for

j = 1,2. Since |u’j| = |uj| = ¢ > 0, we can write u’J = njei¢f inQforj =1,2.
Note that the functions ¢o, ¢1, $» € H>(2) can be extended to functions in H 2(R3).
Therefore, for j =1, 2, (uj, A;) is gauge equivalent to (1, A;) with

Aj = hex(Ag — Vo) + A} — V¢b;.
Step 1. Estimating || A || g g3). Let us show that, for j = 1,2, we have

”Aﬁ“j”Loc(QqR% < 0(6‘_1). (62)

By gauge equivalence, (u’j, hex(Aog — Vo) + A/j) solves (GL). We observe that this pair
is in the Coulomb gauge. Then, by standard elliptic regularity theory for solutions of the
Ginzburg-Landau equations in the Coulomb gauge, we have

lhex curl By + A'jl| oo g3y < Chex and || Vit || oo c3) < Ce™

Since
VN1l oo r) + 1V | Lo r3) < 201Vl g, c3): (6.3)

and hex = o(e™ 1), we find
||A] “LOO(Q,R3) < ||]’lex curl B() + Alj ||L°°(Q,R3) + ||V¢>] ||L°°(Q,R3 < CS_l . (64)

We will now improve this estimate. By gauge equivalence, (7;, A j) solves (GL). In
particular, the second Ginzburg—Landau equation in €2 reads

curl’(Aj — Aey) = —njA;.
This implies that div(n?

on 0€2, implies, in particular, that V¢ ; - v = 0 on 9€2. Therefore, ¢; satisfies the elliptic
problem

A ;) = 0in €. In addition, the boundary condition V A v=20

2
Ad)j:Fan'Aj in
J
Vgij-v=0 on 9€2.

Because n; > ¢ > 0, we deduce that, for any p > 1,

1A llLr@) < CIA; I Loz IVl p@ry < Ce IVjllr@rsy. (6.5

where the last inequality is obtained by using (6.4).
On the other hand, since A/j -v =0 on 02, we have
/2
V112,

2 1
@0y 1451172 sy < CFe(uf, A} < Ce™.
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This implies that
/|Vn,~|2+n§|V¢,|2=/ Vi < Ce'*.
Q ' Q

In addition, by interpolation, for any p > 1, we have
1-2 2
||V77] ”LI’(Q’R3) E C||V77] ||Loop(Q’R3) ||V77] ||[]‘2(Q,R3)'
Combining the previous two inequalities with (6.3), yields

1+8 3+5—p

_1+2
IVl r s < Ce™ Trer =Ce 7

Combining with (6.5) for p = 3+ 3§ > 3, we find

1AQllLr) < Ce leon = o(e™h).
By an elliptic estimate and Sobolev embedding, we then obtain
V@il Lo ry) < o(e™h).
Thus
A1l Lo m3) < lhex curl By + Al o3 + IVl 1o r3) < Chex +o(e ™ =o™h.

Step 2. Energy estimate. Let us prove that

GL.(n1, A\) +GL.(, A +1m A+ A
Y e e(m 1)2 e(m 2)_GL6<7712772’ 12 2)>0

First, observe that

/QIVA_,.WIZ=fQ|V'7jI2+n§IAjI2-

We write Y = Yy + Y| + Y + Y3 with

1 N +mn2
=3 [ onPe it - [ v(232)

2 /o o 2

1 x x m+m\2 Al + A,
Y1=—fn%|A1|2+n§|Az|2—f( )

2 /s o\ 2 2

1/1 1 n+n2\2\ >
Vo=~ (— 1—“+1—“——/ 1—( ) :

A1+A2
curl — — Hex

2

’

2

2
1 ~ -

Y3:—/ |cur1A1—Hex|2+|cur1A2—Hex|2—/
2 R3

R3

Note that, by convexity, we have Yy, Y3 > 0.



346 C. Roman

On the other hand, arguing exactly as in the proof of [Ser99b, Lemma 2.5], we get
1 - ~ -
= —/ I — mP|A + Ao? + 4nf| Ay — A
16 Jo
—(n = ) (A1 = A2) - (A1@n1 +4m2) + Aa(6m1 +8n2) )
and

Y2_642/(171—772)

Let us prove that Y1 + Y» > 0. We consider three cases.

e Ifny = ny, then
2% P2
YI+Y, > / 4n1lA1 — Az]” > 0.
Q
e IfA; = Ay, then Y| > 0. Therefore
Y+, > 7Y —m)?>0.
1+Y > 2_642/(771 n2)
o Ifn; #mand A| # A, then
Nz e [ mPlA s P+ &) = f = il = Zal(GlA) + 1412,
By the Cauchy-Schwarz inequality, we have
[ im = mallds = Al + 141D
Q
< (A1l =@z + A2l L@z It = 2]l 20y A1 = A2ll 20, p3).
which combined with (6.2), yields
/Q It — n2llAr — Aa|(61A1 |+ 14]A2)) < o(e™ D Int — m2ll 2o 1AL — A2ll 20 m3)-

On the other hand,

/12|A A|2+3( )2>9|| 2 1AT — Azl
94771 1 2 64e2 n —n = 3 nm —mili2lial 211 L2(Q,R3)-

Hence, if ¢ is small enough then Y1 + Y> > 0.

We have thus proved that Y > 0.

Step 3. Contradiction. Assume without loss of generality that

GL:(n1, A1) < GL:(n2, A2).

From the previous step, we have

< GL:(n2, A2).

nm+m A+ A GL:(n1, A1) + GLs (12, Ar)
GLe\=™5 % | = 2
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A standard argument then shows that, for any ¢ € (0, 1),
GLe (rm+ (1= 0n, 1Ay + (1 = DA2) < GLe(n2, A,

contradicting the fact that (1, Az) is a local minimizer of the energy. Hence (1, Al) =
(2, A2). This concludes the proof. O
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A. Improved Estimates for Locally Minimizing Vortexless Configurations

Proposition A.1. Let (u, A) € HYQ, C) x HY (2, R?) with u continuous and lul > c
for some ¢ € (0, 1). Then

”/,L(M, A)||C(7)~'I(Q,R3)* < CSFS(M, A)

Proof. Letg € C 2’1(9, RR3). By integration by parts, we have

/,u(u,A)/\go=/(j(u,A)+A)-curlq).
Q Q

Since |u| > ¢ > 0, we can write u = |u|e’?. A straightforward computation, shows that
J, A+ A=[uPVe+ (1 —u)A = (1 - [ul>)(A - Vo) + V¢

Observe that, by integration by parts, we have fQ V¢ - curlgp = 0. Then, from the
Cauchy-Schwarz inequality, we deduce that

‘/Q(j(u,AHA)-curlw' < /Qa — [uP)|A — Vgl curl g| < C| curl ¢ ;oo (g 3)8 Fe 1, A).

Hence

”M(uv A)”Cgvl(QJR?;)* S CEFE(M, A)

With this estimate at hand, we prove the following result.
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Proposition A.2. Denote (uq, hex Ag) the approximation of the Meissner solution. Let
(u, A) = (uou', hexAo + A € HY(Q, C) x [Aex + Heun] with u continuous and
lu| > c for some ¢ € (0,1). If hex < €7% for some a € (0, %) and GL(u, A) <
G L (ug, hexAo) then, for any ¢ sufficiently small, we have

1
F.(u', A+ 5/ [curl A')2 < Cel*?
R3\Q

for some 6 € (0, 1).

Proof. Let us first observe that, since GL.(u, A) < GL(ug, hexAg) = hng(Ao), we
have
Fe/',A") < Ch% < Ce™™ (A.1)

for some constant C > 0. We will now use Proposition (3.1) to improve this estimate.
By combining (3.5) with GL;(u, A) < GL.(uq, hexAo), we find

1
Fo(, A)) + -/ lcurl A')2 < hex/ (', A’ A By + Ceh2 Ec(lu/])?.
2 Jr3\@ Q

From Proposition A.1, E.(Ju’]) < F.(u’, A’), and (A.1) we deduce that

1 1 1
Fou', A+ 3 / . leurl A')? < Cehex Fe(u', A") + Cehl Fo(u', A2 < Ceh2 Fe(u', A')2.
ROA\Q

(A.2)
Thus

1

1 2
(Fs(u’,A’)+§/ |cur1A’|2> < Ceh2,.

R3\Q

Combining with hex < e7%, we find

1
F.(u', A+ 5/ |curl A'|> < Ce'*3.
R3\Q

withd =1—4a >0. O

As a consequence, from Theorem 1.5, we obtain the uniqueness of the Meissner-type
solution of Theorem 1.4 for o < 4—1‘.
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