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Abstract: Relaxed highest-weight modules play a central role in the study of many
important vertex operator (super)algebras and their associated (logarithmic) conformal
field theories, including the admissible-level affine models. Indeed, their structure and
their (super)characters together form the crucial input data for the standard module
formalism that describes the modular transformations and Grothendieck fusion rules of
such theories. In this article, character formulae are proved for relaxed highest-weight
modules over the simple admissible-level affine vertex operator superalgebras associated
to sl2 and osp(1|2). Moreover, the structures of these modules are specified completely.
This proves several conjectural statements in the literature for sl2, at arbitrary admissible
levels, and for osp(1|2) at level − 5

4 . For other admissible levels, the osp(1|2) results are
believed to be new.

1. Introduction

Relaxed highest-weight modules are a generalisation of the usual highest-weight mod-
ules that are playing an increasingly important role in the representation theory of vertex
operator superalgebras and their associated conformal field theories. The name comes
from the work of Feigin, Semikhatov and Tipunin [1,2] on the implications of the well
known coset construction of the N = 2 superconformal algebras for the representation

theory of the affine Kac–Moody algebra ̂sl2 (see [3–5] for recent progress on this). In
this work, they relax the definition of a highest-weight vector so that it need not be
annihilated by the positive root vector of the horizontal subalgebra. The notion of a
relaxed highest-weight module has since been generalised [6] to infinite-dimensional
Lie superalgebras admitting a conformal grading.

A relaxed highest-weightmodulemay therefore be described as a generalised highest-
weight module obtained by inducing a weight module over the horizontal subalgebra.
The notion is similar to, but more general than, a parabolic highest-weight module
because the space of ground states (equivalently, the module that one induces from) is
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not required to be finite-dimensional nor simple. It seems that such modules were first
considered in the vertex algebra literature in [7], where the simple ones were classified
for the admissible-level affine vertex operator algebras Lk(sl2). They have also appeared
in the physics literature as integral components of the SL2(R) Wess–Zumino–Witten
model [8] and through requiring closure under fusion and cosets in Lk(sl2) conformal
field theories [9–12]. More recently, relaxed highest-weight modules over Lk(sl3) at
admissible levels have also begun to receive attention [13,14].

There are two observations relating to relaxed highest-weight modules which we find
compelling as arguments for their continued study. First, they provide the most natural
setting inwhich to studyweightmodules over vertex operator algebras using Zhu algebra
technology [15]. Second, they are an essential ingredient in many applications of the
standard module formalism [16,17] to the modular properties of logarithmic conformal
field theories. This formalism, which originated in [18,19], identifies a set of standard
modules, which need not be simple, from which all simple modules may be constructed
using resolutions and all Grothendieck fusion rules may be computed using a variant
of the celebrated Verlinde formulae of rational conformal field theory [20,21]. These
standard modules turn out to be relaxed highest-weight modules for admissible-level
Lk(sl2) [22,23], admissible-level Lk(osp(1|2)) [24,25], and the bosonic ghost system
[26]. We expect that this observation will generalise appropriately to higher-rank affine
vertex operator algebras.

One of the main inputs of the standard module formalism is a character formula
for the standard modules. For admissible-level Lk(sl2) and Lk(osp(1|2)), this means
determining the characters of the relaxed highest-weight modules. The characters of the
reducible relaxed Lk(sl2)-modules were first computed in [22,23], but the corresponding
simple Lk(sl2)-characters were only noted to follow from some unproven assertions in
[1,27]. Similarly, the simple L−5/4(osp(1|2))-characters were only conjectured in [24].

This unsatisfactory state of affairs has recently been partially rectified by Adamović
in [28]. There, he explicitly constructs the relaxed highest-weight Lk(sl2)- and Neveu–
Schwarz L−5/4(osp(1|2))-modules using a clever free field realisation that effectively
inverts the quantum hamiltonian reduction, see also [29]. While this construction leads
to straightforward determinations of the characters, it is not obvious that the resulting
modules are generically simple. The simple characters therefore only follow when there
are no coincidences of conformal weights, modulo 1. Note that a similar character
formula had been previously proven for certain critical-level relaxed highest-weight
̂sl2-modules in [30].

A second main input to the standard module formalism, and more widely to con-
structing projective covers for the highest-weight simples, is the determination of the
structure of the non-simple standard modules. This structure is needed to construct the
resolutions that relate the non-standard simples to standards and thereby enable the study
of themodularity of the simplemodules of the theory. Again, these structures were stated
without proof and used extensively in [22–24].

Our aim in thiswork is to rigorously prove the character formulae and structural results
of [22–24] for all admissible levels. Instead of an explicit construction, we develop the
structure theory of “relaxedVermamodules” and their simple quotients over botĥsl2 and
ôsp(1|2), the latter in both its Neveu–Schwarz and Ramond incarnations. The first main
result (see below) is a means to compute the character of an arbitrary simple relaxed
highest-weight module from that of an associated simple (usual) highest-weight module.
When the latter character is known, for example through the Kac–Wakimoto formula for
admissible-level highest-weight modules [31,32], we can thereby deduce the required
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relaxed characters. This is our second main result. The third settles the structures of
the non-simple relaxed modules in terms of non-split short exact sequences. The key
technical tools we use to prove these results are a generalisation of Mathieu’s coherent
families [33] to a relaxed affine setting and a study of a Shapovalov-like form on the
resulting relaxed coherent families.

1.1. Main Results. We divide our conclusions into three main results. The first applies
to general simple relaxed highest-weight ̂sl2- and ôsp(1|2)-modules of fixed level k.
These ̂sl2-modules are denoted bŷEλ;q , where λ is a coset in the quotient of the weight
space of sl2 by its root lattice and q is the eigenvalue of the quadratic Casimir of sl2
on the ground states (see Sect. 3.3). The ôsp(1|2)-modules fall into Neveu–Schwarz

and Ramond sectors and are denoted by ns
̂Eλ;σ and r

̂Eλ;q , respectively. Here, λ is a
coset in the quotient of the weight space of osp(1|2) by its even root lattice and σ is the
eigenvalue of the super-Casimir of osp(1|2) on the even ground states (see Sect. 6.3). In
the Ramond sector, q continues to refer to the sl2-Casimir eigenvalue, now understood
with respect to the usual embedding sl2 ↪→ osp(1|2).

We say that aweight̂sl2- or ôsp(1|2)-module ̂M is stringy if its (non-zero) string func-
tions sν[̂M] are independent of the sl2- or osp(1|2)-weight ν, respectively. An ôsp(1|2)-
module is r-stringy if its string functions only depend on whether the corresponding
osp(1|2)-weight is even or odd. Finally, let̂L+

μ,
ns
̂L+

μ and r
̂L+

μ denote the level-k simple

highest-weight ̂sl2-, Neveu–Schwarz ôsp(1|2)- and Ramond ôsp(1|2)-module whose
highest-weight vector is even with sl2- and osp(1|2)-weight μ, respectively. We can
now state our first main result, combining Theorems 4.7, 4.10 and 4.12 for ̂sl2 with
Proposition 7.2, Theorems 7.3 and 7.4 for ôsp(1|2).
Main Theorem 1.

• The relaxed highest-weight ̂sl2-module ̂Eλ;q is stringy and its string functions are
given by

sν
[

̂Eλ;q
] = lim

m→∞ s−μ−mα

[

̂L+−μ−α

]

, for all ν ∈ λ, (1.1)

where α is the simple root of sl2 and μ denotes any solution of (μ,μ + α) = q,
if

√
1 + 2q /∈ Z, and the maximal such solution (with respect to the real part of its

Dynkin label), if
√
1 + 2q ∈ Z.

• The Neveu–Schwarz relaxed highest-weight ôsp(1|2)-module ns
̂Eλ;σ is stringy. For

σ /∈ Z + 1
2 , its string functions are given by

sν
[ns

̂Eλ;σ
] = lim

m→∞ s−μ−mω

[ns
̂L+−μ−ω

]

, for all ν ∈ λ ∪ (λ + ω), (1.2)

where ω is the (odd) simple root of osp(1|2) and μ = (σ − 1
2 )ω. This identity also

holds for σ ∈ Z + 1
2 when σ > 0. However, when σ < 0, we must replace the string

function on the right-hand side by sμ−mω[nŝL+
μ].

• The Ramond relaxed highest-weight ôsp(1|2)-module r
̂Eλ;q is r-stringy and its string

functions are given by

sν
[r
̂Eλ;q

]

(q) =
{

limm→∞ s−μ−2mω

[

r
̂L+−μ−2ω

]

, for all ν ∈ λ,

limm→∞ s−μ−(2m+1)ω
[

r
̂L+−μ−2ω

]

, for all ν ∈ λ + ω,
(1.3)
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where μ now denotes any solution of (μ,μ + 2ω) = q, if
√
1 + 2q /∈ Z, and the

maximal such solution, if
√
1 + 2q ∈ Z.

Our second main result concerns the specialisation of the first to modules over the
simple admissible-level vertex operator superalgebras Lk(sl2) and Lk(osp(1|2)). For
sl2, the level k is said to be admissible if k + 2 = u

v
, where u ∈ Z�2, v ∈ Z�1 and

gcd{u, v} = 1. Only thêEλ;q with

q = qr,s = (vr − us)2 − v2

2v2
, r = 1, . . . , u − 1 and s = 1, . . . , v − 1 (1.4)

defineLk(sl2)-modules [6,7]. For osp(1|2),k is admissible ifk+3
2 = u

2v , whereu ∈ Z�2,
v ∈ Z�1,

1
2 (u − v) ∈ Z and gcd{ 12 (u − v), v} = 1. Moreover, the ns

̂Eλ;σ and r
̂Eλ;q are

only Lk(osp(1|2))-modules if

σ = σr,s = vr − us

2v
,

r = 1, . . . , u − 1, s = 1, . . . , v − 1, andr − s ∈ 2Z + 1,

and q = qr,s = (vr − us)2 − 4v2

8v2
,

r = 1, . . . , u − 1, s = 1, . . . , v − 1, andr − s ∈ 2Z,

(1.5)

respectively. In both cases, Lk(sl2) and Lk(osp(1|2)), the set of these relaxed modules
is empty if v = 1 (k ∈ Z�0).

Theorems 5.2,8.2 and 8.3 now give the characters of these relaxed Lk(sl2)- and
Lk(osp(1|2))-modules, proving the conjectural formulae of [22–24]. As far as we know,
the formulae for Lk(osp(1|2)) with k admissible and not equal to − 5

4 are new.

Main Theorem 2. We have the following character formulae:

ch
[

̂Eλ;qr,s

]

(z; q) = zλ
χVir

r,s (q)

η(q)2

∑

n∈Z
(zα)n, (1.6a)

ch
[ns

̂Eλ;σr,s

]

(z; q) = zλ
χ N=1

r,s (q)

η(q)2

√

ϑ2(1; q)

2η(q)

∑

n∈Z
(zω)n, (1.6b)

ch
[r
̂Eλ;qr,s

]

(z; q)

= zλ

[

χ N=1
r,s (q)

2η(q)2

√

ϑ3(1; q)

η(q)

∑

n∈Z
(zω)n +

χ N=1
r,s (q)

2η(q)2

√

ϑ4(1; q)

η(q)

∑

n∈Z
(−zω)n

]

. (1.6c)

Here, χVir
r,s , χ N=1

r,s and χ N=1
r,s denote the Virasoro minimal model character (5.11), the

N = 1 superconformal minimal model character (8.12) or (8.16a), and the N = 1
superconformal minimal model supercharacter (8.16b), respectively.

The final main result concerns the structure of the non-simple relaxed Lk(sl2)- and
Lk(osp(1|2))-modules. Up to isomorphism, these are the ̂Eλ;qr,s ,

ns
̂Eλ;σr,s and r

̂Eλ;qr,s

whose coset λ contains μr,s , where

μr,s = 1

2

(

r − 1 − u

v
s
)

α, μr,s = 1

2

(

r − 1 − u

v
s
)

ω and

μr,s = 1

2

(

r − 2 − u

v
s
)

ω, (1.7)
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respectively. With this, the structures are characterised by Theorems 5.1 and 8.1.

Main Theorem 3. We have the following non-split short exact sequences:

0 −→ ̂L+
μr,s

−→̂Eμr,s ;qr,s −→ ŵL+
μu−r,v−s

−→ 0, (1.8a)

0 −→ ns
̂L+

μr,s
−→ ns

̂Eμr,s ;σr,s −→ �wns
̂L+

μu−r,v−s
−→ 0, (1.8b)

0 −→ r
̂L+

μr,s
−→ r

̂Eμr,s ;qr,s −→ wr
̂L+

μu−r,v−s
−→ 0. (1.8c)

Here, w and � denote the conjugation and parity-reversal functors, respectively (see
Sects. 3.3, 6.1 and 6.3).

1.2. Outline. We begin, in Sect. 2, by recalling the definition of relaxed highest-weight
modules over an affine Kac–Moody superalgebra ĝ and introducing the module category
in which we shall work. We then specialise (Sect. 3) to ĝ = ̂sl2, discussing the simple
and certain carefully chosen non-simple weight sl2-modules, before inducing to obtain
the relaxed ̂sl2-modules of interest.

The study of the characters of these modules commences in Sect. 4. First, the notion
of a string function is recalled. We then introduce relaxed coherent families and define
a variant of the Shapovalov form on them. We prove a key result about such forms
(Theorem 4.3) which then allows us to compute the string functions of each relaxed̂sl2-
module in Sect. 4.3. The structure of the non-simple relaxed modules is also discussed
in Sect. 4.5 where we present an extended example to illustrate that this question is
decidedly non-trivial in general. Section 5 then determines structures and computes
characters explicitly when the relaxed ̂sl2-module defines a module over the simple
vertex operator algebra Lk(sl2), for general admissible levels k.

The remainder of the article studies the case ĝ = ôsp(1|2). There are many sim-
ilarities with the ̂sl2 case, with the main difference being the need to study a twisted
(Ramond) sector in addition to the usual (Neveu–Schwarz) sector. Section 6 deals with
the simple and non-simple osp(1|2)-modules and their inductions to relaxed ôsp(1|2)-
modules (Neveu–Schwarz and Ramond), while Sect. 7 outlines the minor differences
required to compute the string functions of the relaxed ôsp(1|2)-modules. The applica-
tion to module characters and structures for the simple admissible-level vertex operator
superalgebra Lk(osp(1|2)) appears in Sect. 8. We conclude with “Appendix A” in which
string functions are studied for Vermamodules over̂sl2 and ôsp(1|2) in order to simplify
the character calculations in Sects. 5 and 8.

2. Relaxed Highest-Weight Modules

We recall here the relaxed highest-weight modules introduced in [1], for ̂sl2, and in [6]
for untwisted affine Kac–Moody algebras (actually, the setting in the latter paper covers
relaxed modules for general conformally graded Lie superalgebras). Given a simple Lie
algebra g with a fixed choice of Cartan subalgebra h, form the associated untwisted
affine Kac–Moody algebra

ĝ = g ⊗ C[t, t−1] ⊕ CK ⊕ CL0, (2.1)

where K is central and L0 acts on xn ≡ x ⊗ tn , x ∈ g and n ∈ Z, as a derivation:
[L0, xn] = −nxn . Let̂h = h ⊕ CK ⊕ CL0. We make the following definitions.
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Definition.

• The relaxed triangular decomposition of an untwisted affine Kac–Moody algebra ĝ
is

ĝ = ĝ< ⊕ ĝ0 ⊕ ĝ> = ĝ< ⊕ ĝ�, (2.2)

where ĝ� = ĝ0 ⊕ ĝ>, ĝ< (̂g>) is the subalgebra of ĝ consisting of the xn with x ∈ g
and n < 0 (n > 0), and ĝ0 is the subalgebra spanned by K , L0 and the x0 with x ∈ g.

• A relaxed highest-weight vector of ĝ is a simultaneous eigenvector of̂h that is anni-
hilated by ĝ>.

• A relaxed highest-weight module of ĝ is a ĝ-module that is generated by a single
relaxed highest-weight vector.

• A relaxed Verma module of ĝ is a ĝ-module isomorphic to ̂RM = U(̂g) ⊗ĝ� M,
where M is some weight ĝ0-module on which K and L0 act as multiplication by
some k and � in C, respectively, extended to a ĝ�-module by letting ĝ> act as 0.

• A ground state of a ĝ-module ̂M is a generalised L0-eigenvectorwhose L0-eigenvalue
is minimal among those of ̂M.

Here, U(̂g•) denotes the universal enveloping algebra of ĝ•, where • may stand for >,
�, 0, �, < or nothing. If • is �, 0, � or nothing, then it will be convenient in what
follows to also consider

Uk (̂g
•) = U([̂g, ĝ]) ∩ U(̂g•)

〈K − k 1〉 . (2.3)

This construction serves to remove L0 as a generator and identify K with a scalarmultiple
of the unit 1 of U(̂g).

As usual, every relaxed highest-weight module may be realised as a quotient of some
relaxed Verma module. However, the relaxed Verma module ̂RM need not be a relaxed
highest-weight module in general. It will be, of course, if M is a simple ĝ0-module.
Obviously, a relaxed highest-weight vector of minimal conformal weight is a ground
state, but the converse is not true in general.

Just as highest-weight modules are typically analysed in the context of the Bernšteı̆n-
Gel’fand-Gel’fand categoryO , it is useful to discuss relaxed highest-weight modules as
objects in a larger category.

Definition. For an untwisted affine Kac–Moody algebra ĝ, the associated relaxed cat-
egory R has, for objects, the ĝ-modules ̂M satisfying the following conditions:

• ̂M is finitely generated.
• The action of h⊕CK ⊂̂h ⊂ ĝ0 on ̂M is semisimple and the generalised simultaneous
eigenspaces of the action of̂h (its weight spaces) are all finite-dimensional.

• The action of ĝ> on ̂M is locally nilpotent: dim(U(̂g>) · v) < ∞ for all v ∈ ̂M.

The morphisms are ĝ-module homomorphisms, as usual.

A relaxed highest-weight module belongs to R if and only if it has finite-dimensional
weight spaces. The same is true for a relaxed Verma module ̂RM and for this, it is
sufficient that M has finite-dimensional weight spaces (with respect to h). Moreover,
every non-zero module in R has a relaxed highest-weight vector. It follows that the
simple objects of R are relaxed highest-weight modules.
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Remark.

• All this generalises to the affine Kac–Moody superalgebras corresponding to g be-
ing simple, basic and classical, as long as one respects the Z2-grading by parity
throughout.

• For convenience, we shall understand throughout that the definition ofweight module
always includes the requirement that its weight spaces are finite-dimensional. When
g is a Lie superalgebra, we shall also insist that weight modules are Z2-graded by
parity.

• We do not insist that L0 acts semisimply on modules inR because we would like to
be able to accommodate non-semisimple actions when g is a Lie superalgebra like
sl(2|1).

3. Relaxed Highest-Weight ̂sl2-Modules

This Sect. 3 introduces the relaxed highest-weightmodules over̂sl2 that we are interested
in. We first recall the classification of simple weight modules over sl2, discussing the
less familiar, but far more numerous, dense modules in detail. Certain non-simple dense
sl2-modules are also introduced for later use. Finally, we induce to obtain relaxed Verma
̂sl2-modules and their (generically) simple quotients.

3.1. Simple Weight sl2-Modules. We recall the classification of simple weight sl2-
modules, recalling that we assume that weight modules have finite-dimensional weight
spaces. For this, we fix a basis {e, h, f } such that

[h, e] = 2e, [e, f ] = h, [h, f ] = −2 f, (3.1)

choose the Cartan subalgebra to be h = Ch, and normalise the quadratic Casimir in
U(sl2) to be

Q = 1

2
h2 + e f + f e. (3.2)

In this basis, the (rescaled) Killing form has non-zero entries

κ(h, h) = 2, κ(e, f ) = κ( f, e) = 1. (3.3)

The bilinear form induced from the Killing form on h∗ will be denoted by (·, ·). The
rescaling normalises this form so that ‖α‖2 = (α, α) = 2.

Let ω ∈ h∗, α = 2ω and ρ = ω denote the fundamental weight, the simple root and
theWeyl vector of sl2, respectively. LetP = Zω andQ = Zα denote the weight and root
lattices of sl2, respectively, while P� = Z�0ω denotes the dominant integral weights.
Finally, we introduce the following useful family of subsets of h∗/Q, parametrised by
q ∈ C:

�(q) = {[λ] ∈ h∗/Q : (μ,μ + 2ρ) = q for some μ ∈ [λ]}. (3.4)

The classification of simple weight sl2-modules is now succinctly stated as follows.
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Proposition 3.1 (see [34, Thm. 3.32]). Every simple weight sl2-module (with finite-
dimensional weight spaces) is isomorphic to precisely one member of one of the following
families:

(1) The finite-dimensional modules Vμ with highest weight μ ∈ P� and lowest weight
−μ.

(2) The highest-weight Verma modules V+
μ with highest weight μ /∈ P�.

(3) The lowest-weight Verma modules V−
μ with lowest weight μ /∈ −P�.

(4) The dense modules R[λ];q with weight support [λ] ∈ h∗/Q and Q-eigenvalue q ∈ C

satisfying [λ] /∈ �(q).

All of these modules have one-dimensional weight spaces.

We recall that a dense module is one whose weight support is a translation of Q.
Whenever it will not cause confusion, we shall drop the brackets distinguishing λ ∈ h∗
from its coset [λ] ∈ h∗/Q, especially with regard to notation for dense modules: thus,
R[λ];q ≡ Rλ;q . Note that Vμ, μ ∈ P�, is left invariant by the functor induced from
the Weyl reflection of sl2, while it exchanges V+

μ with V−−μ and Rλ;q with R−λ;q , for
λ /∈ �(q) and μ /∈ P�.

3.2. Non-Simple Dense sl2-Modules. Fix q ∈ C and consider the family of simple
dense sl2-modules Rλ;q , λ /∈ �(q), given in Proposition 3.1. It is clear that f ∈ sl2
acts injectively on each of these modules, as does e. It follows that we may choose basis
vectors vμ, μ ∈ λ, of Rλ;q so that the sl2-action on Rλ;q is given by

evμ = γμvμ+α, hvμ = (μ, α)vμ, f vμ = vμ−α, γμ = 1

2

[

q − (μ,μ + 2ρ)
]

.

(3.5)

The key observation is that this action is polynomial in μ ∈ h∗. To complete this family
of dense sl2-modules, we shall choose a non-simple dense sl2-module, also denoted by
Rλ;q , to fill each “gap” corresponding to theλ ∈ �(q). Thiswill be done by requiring that
f continues to act injectively. It then follows that (3.5) will also hold for the non-simple
Rλ;q .

To construct these non-simple modules, we recall that dense sl2-modules are easily
obtained by inducing the simple modules of the centraliser of h in U(sl2). Using the
Poincaré-Birkhoff-Witt theorem, it is easy to see that this centraliser is C[h, Q]. Let v

denote a spanning vector of a (necessarily one-dimensional) simple C[h, Q]-module,
so that hv = λ(h)v and Qv = qv, for some λ ∈ h∗ and some q ∈ C. Then, a basis of
the (obviously dense) induced sl2-module is {v, env, f nv : n ∈ Z>0}. Moreover, this
module will be simple if and only if no env is a lowest-weight vector and no f nv is a
highest-weight vector, leading to the condition [λ] /∈ �(q) stated in Proposition 3.1.

If, however, we choose λ ∈ h∗ such that [λ] ∈ �(q), then the induced sl2-module
will be dense and indecomposable, but not simple. The solutions in h∗ of (μ,μ+2ρ) = q
have the form

μ = −ρ ± √

1 + 2q ω (3.6)

and are therefore distinct unless q = −‖ρ‖2 = − 1
2 . If there is precisely one such

solution μ in [λ] ∈ h∗/Q, meaning that
√
1 + 2q /∈ Z \ {0}, then the structure of the
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induced module depends only on whether λ � μ or λ > μ (where the ordering is by
the real part of the Dynkin label). We choose Rλ;q = R[λ];q to be the induced module
obtainedwhen λ > μ. Then,Rλ;q has no lowest-weight vectors and so f acts injectively,
as desired, although e does not.

If there are instead two (distinct) solutions (3.6) in [λ], which requires that√1 + 2q ∈
Z \ {0}, then let μ denote the maximal one (with respect to the ordering used above).
We have, therefore, μ ∈ P�. There are now three different possible structures for the
induced sl2-modules according as to whether λ > μ, λ < −μ or −μ � λ � μ. We
again choose Rλ;q = R[λ];q to be the induced module obtained when λ > μ so that f
acts injectively.

For fixed q ∈ C, the number |�(q)| of (isomorphism classes of) non-simple Rλ;q
is therefore 1 if

√
1 + 2q ∈ Z and is 2 otherwise. We can characterise each of these

non-simples through its unique composition series. If
√
1 + 2q ∈ Z \ {0} and μ ∈ P� is

the maximal solution of (μ,μ + 2ρ) = q, so that λ = [μ], then the composition series
is

0 ⊂ V+−μ−α ⊂ V+
μ ⊂ Rλ;q (3.7)

and its composition factors are V+−μ−α , Vμ and V−
μ+α . If

√
1 + 2q /∈ Z \ {0} and μ is any

solution of (μ,μ + 2ρ) = q, then the composition series for λ = [μ] is instead
0 ⊂ V+

μ ⊂ Rλ;q (3.8)

and the composition factors are V+
μ and V−

μ+α .

Example. (
√
1 + 2q /∈ Z) Suppose we choose q = − 3

8 . Then, (μ,μ + 2ρ) = q if and
only if μ = − 1

2ω or − 3
2ω. As the difference of these solutions is not in Q, it follows

that Rλ;−3/8 is simple for all but two cosets λ ∈ h∗/Q, one for each solution. In other
words, �(− 3

8 ) = {[− 1
2ω], [− 3

2ω]}. The corresponding non-simple dense sl2-modules
are indecomposable with two composition factors each. Moreover, they are completely
characterised by the following short exact sequences:

0 −→ V+−ω/2 −→ R−ω/2;−3/8 −→ V−
3ω/2 −→ 0,

c0 −→ V+−3ω/2 −→ Rω/2;−3/8 −→ V−
ω/2 −→ 0. (3.9)

Example. (
√
1 + 2q ∈ Z \ {0}) By way of contrast, taking q = 0 yields μ = 0 and

−2ω as the solutions of (μ,μ + 2ρ) = q. The difference of these solutions does lie
in Q, hence Rλ;0 is simple for all cosets except λ ∈ �(0) = {[0]}. This exception is
indecomposable, with three composition factors, and is characterised by the following
short exact sequence:

0 −→ V+
0 −→ R0;0 −→ V−

2ω −→ 0. (3.10)

Note that theVermamoduleV+
0 is not simple, havingV+−2ω as a simple proper submodule.

Example. (
√
1 + 2q = 0) The last type of example corresponds to q = − 1

2 , for which
the only solution of (μ,μ + 2ρ) = q is μ = −ρ. Rλ;−1/2 is therefore simple unless
λ ∈ �(− 1

2 ) = {[ρ]}. The non-simple dense module has two composition factors and is
characterised by the following short exact sequence:

0 −→ V+−ρ −→ Rρ;−1/2 −→ V−
ρ −→ 0. (3.11)
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3.3. Relaxed Highest-Weight̂sl2-Modules. Each of the simple sl2-modulesM of Propo-
sition 3.1, and more generally any indecomposable weight sl2-module, may be induced
to a unique relaxed Verma modulêRM of̂sl2, once we fix the eigenvalue k of K , called
the level, and the eigenvalue � of L0, called the conformal weight, onM. It is clear that
̂RM is in categoryR and that its space of ground states is naturally isomorphic toM as
an sl2-module. We shall not specify the level k or conformal weight � explicitly in our
module notation, assuming that it is understood in the given context.

If we take M to be one of the V+
μ, then induction results in a Verma module (with

respect to the standardBorel subalgebra of̂sl2). StartingwithM = V−
μ , we instead obtain

Vermamodules with respect to the Borel obtained from the standard one by applying the
Weyl reflection of sl2.We denote the results bŷV+

μ and̂V−
μ , respectively. Their respective

simple quotients will be denoted by ̂L+
μ and ̂L−

μ . The functor (on sl2-modules) induced

from the Weyl reflection lifts to a functor on ̂sl2-modules called conjugation. We shall
denote this conjugation functor by w so that ŵV+

μ
∼= ̂V−−μ and ŵL+

μ
∼= ̂L−−μ.

If we instead take M = Vμ, so μ ∈ P�, then we arrive at a proper quotient of both
̂V+

μ and ̂V−−μ which we shall denote by ̂Vμ. This is actually a parabolic Verma module

(with respect to the parabolic subalgebrâsl�2 ) and its simple quotient will be denoted by
̂Lμ. BotĥVμ and ̂Lμ are self-conjugate. We note that all of the relaxed Verma modules
̂V+

μ, ̂V
−
μ and ̂Vμ, as well as their simple quotients ̂L+

μ, ̂L
−
μ and ̂Lμ, are highest-weight

modules with respect to the standard or the Weyl-reflected Borel subalgebra of ̂sl2.
The most interesting case is thus that of the relaxed Verma modules ̂Rλ;q that are

induced from the dense sl2-modules Rλ;q . These are not highest-weight with respect to
any Borel. Let̂Iλ;q denote the sum of the submodules of̂Rλ;q that have zero intersection
with the space of ground states and let ̂Eλ;q = ̂Rλ;q

/

̂Iλ;q . The ̂Eλ;q are likewise not
highest-weight with respect to any Borel. However, they are simple for all λ /∈ �(q) as
̂Iλ;q then coincides with the maximal proper submodulêJλ;q of ̂Rλ;q (which is unique
because ̂Rλ;q is cyclic). We shall identify the space of ground states of both ̂Rλ;q and
̂Eλ;q with Rλ;q = ⊕

μ∈λ Cvμ, so that the action of the zero modes e0, h0 and f0 on the

ground states is given by (3.5). We remark that ŵRλ;q ∼= ̂R−λ;q and ŵEλ;q ∼= ̂E−λ;q ,
when λ /∈ �(q), but that these isomorphisms fail for λ ∈ �(q).

Our aim in this paper is to rigorously determine the characters of the simple ̂Eλ;q .
The key to this computation is to consider the result when λ ∈ �(q), that is when these
relaxed highest-weight modules are not simple.

4. Relaxed ̂sl2-Modules and their String Functions

In this section, we study the string functions of the relaxed highest-weight ̂sl2-modules
̂Eλ;q . The aim is to compute them in terms of the “limiting” string functions of certain
associated simple highest-weight modules. This will be achieved by introducing affine
versions of Mathieu’s coherent families [33] and studying analogues of Shapovalov
forms on them.
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4.1. String Functions. Recall that the character of a level-k weight module ̂M over ̂sl2
is given by

ch
[

̂M
]

(z; q) = tr
̂M zh0qL0 =

∑

μ∈h∗,n∈C
dim ̂M(μ, n) zμqn, (4.1)

where q and z are indeterminates and ̂M(μ, n) denotes the weight space of ̂M with
sl2-weight μ ∈ h∗ and conformal weight n. The string function sμ[̂M], μ ∈ h∗, of ̂M is
then the coefficient of zμ in the character:

sμ
[

̂M
]

(q) =
∑

n∈C
dim ̂M(μ, n)qn . (4.2)

We make the following definition.

Definition. A level-k weight module ̂M is said to be stringy if its non-zero string func-
tions sμ[̂M] all coincide.
This means, in particular, that the multiplicities dim ̂M(μ, n) of the weights of ̂M are
independent of μ, provided only that μ is in the weight support of ̂M.

Example. Straightforward examples of stringy ̂sl2-modules are provided by the level-k
relaxed Verma modules ̂Rλ;q , where λ ∈ h∗/Q and q ∈ C (see Sect. 3.3). Indeed, their
characters are easily computed:

ch
[

̂Rλ;q
]

(z; q) = q�+1/8

η(q)3

∑

μ∈λ

zμ �⇒ sμ
[

̂Rλ;q
]

(q)

=

⎧

⎪

⎨

⎪

⎩

q�+1/8

η(q)3
, if μ ∈ λ,

0, otherwise.

(4.3)

Here, η(q) = q1/24
∏∞

i=1(1 − qi ) is Dedekind’s eta function.

Remark. In applications to vertex operator algebras and conformal field theory, it is
common to normalise characters (and thus string functions) by multiplying by q−c/24,
where c = 3k

k+h∨ is the central charge of the theory (and k �= −h∨ = −2). Moreover,
in this case, the Sugawara construction also fixes � as a function of q and k. We shall
make this adjustment when applying our results to relaxedmodules over the affine vertex
operator algebra Lk(sl2) in Sect. 5 below.

We refer to series like string functions as generalised formal power series. There is a
useful partial ordering on generalised formal power series in q defined by

∑

n∈C
anqn �

∑

n∈C
bnqn if an � bn for each n ∈ C. (4.4)

If
(

Sm(q)
)

m∈Z is a sequence of generalised formal power series in q, thenwe say that this
sequence converges to another generalised formal power series S(q) if the coefficients
in their expansions do. More precisely, if we have

Sm(q) =
∑

n∈C
am,nqn and S(q) =

∑

n∈C
anqn, (4.5)
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then we shall write

lim
m→±∞ Sm(q) = S(q) if lim

m→±∞ am,n = an for each n ∈ C. (4.6)

In what follows, we shall find it convenient to denote these limiting generalised formal
power series by S±∞(q). In particular, when ̂M is indecomposable, so its weight support
is a single coset [μ] ∈ h∗/Q, we shall define limiting string functions by

s±∞
[

̂M
]

(q) = lim
m→±∞ sμ+mα

[

̂M
]

(q), (4.7)

whenever the right-hand side exists.

4.2. Coherent Families and Shapovalov Forms. Our first aim is to prove that the relaxed
highest-weight̂sl2-moduleŝEλ;q are stringy. For this, we shall employ two key tools. The
first is Mathieu’s notion of a coherent family [33]. This is a (highly reducible) module
that is parametrised by its central character: for sl2, this is just the eigenvalue q of the
quadratic Casimir. Although there is always more than one coherent family for each
central character, the conventions introduced above (to facilitate the present application)
pick one out uniquely. We shall lift these preferred coherent families to relaxed coherent
families over ̂sl2. These ̂sl2-modules will be crucial for establishing the stringiness of
thêEλ;q .

The coherent families that we shall use for sl2 are the direct sums

Rq =
⊕

λ∈h∗/Q
Rλ;q , q ∈ C. (4.8)

Each of these has a one-dimensional weight space for every weight μ ∈ h∗. Recall that
we chose the Rλ;q in Sect. 3.2 so that the action of f on each Rλ;q would be injective.
The vectors vμ, now with μ ∈ h∗, therefore define a basis of Rq on which the sl2-action
is again given by (3.5). We emphasise that this action is manifestly polynomial in μ.

We introduce two affine versions of the sl2 coherent families of (4.8). These relaxed
coherent families arêsl2-modules and we have one version that decomposes into relaxed
Verma modules and one into their generically simple quotients:

̂Rq =
⊕

λ∈h∗/Q

̂Rλ;q , ̂Eq =
⊕

λ∈h∗/Q

̂Eλ;q . (4.9)

These modules do not share the property of having one-dimensional weight spaces (with
respect to the Cartan subalgebrâh of ̂sl2). However, they do admit a polynomial action
of ̂sl2 and so provide a useful setting for comparing the properties of their summands.

The second tool that we shall need is an analogue of the Shapovalov form on the
relaxed coherent families ̂Rq . To construct this, we first construct such forms on the
relaxed Verma moduleŝRλ;q . Our definition depends on two choices: a cyclic generator
of̂Rλ;q and an adjoint (linear involutive antiautomorphism) ofU(̂sl2). For the generator,
we shall choose a ground state vν , ν ∈ λ. This may be chosen arbitrarily when λ /∈ �(q).
When λ ∈ �(q), we must choose a vν with ν > μ, where μ is the maximal solution in
λ of (μ,μ + 2ρ) = q. For the adjoint, we take the extension to U(̂sl2) of the compact
adjoint of ̂sl2:

e†n = f−n, h†
n = h−n, f †n = e−n, K † = K , L†

0 = L0. (4.10)
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Given these choices, recalling Eq. (2.3) and noting that vν is a simultaneous eigenvector
of K and L0, we define a contravariant bilinear form 〈·, ·〉ν on ̂Rλ;q by

〈vν, vν〉ν = 1 and 〈Uvν, V vν〉ν = 〈vν, U †V vν〉ν, for all U, V ∈ Uk(̂sl2).

(4.11)

We call it a Shapovalov form on̂Rλ;q . Note that the kernel of such a Shapovalov form on
̂Rλ;q coincides with the maximal proper submodulêJλ;q and that this does not depend
on the choices made during the construction.

To check that this form is well defined, note that as h0 and L0 are both self-
adjoint, their simultaneous eigenspaces are orthogonal with respect to 〈·, ·〉ν . Taking
a Poincaré-Birkhoff-Witt ordering such that mode indices increase to the right, we see
that 〈Uvν, V vν〉ν vanishes if U †V belongs to the span Z of the ordered monomials that
either involve a non-zero mode index or have a non-zero sl2-weight. It follows that the
value of the form (4.11) is entirely determined by the projection β : Uk(̂sl2) → C[h, Q]
whose kernel is Z :

〈Uvν, V vν〉ν = β(U †V )

∣

∣

∣

h �→ν(h),Q �→q
. (4.12)

Here, we have identified the image of β with the centraliser of h in U(sl2) (Sect. 3.2).
Fix now q ∈ C. For each λ ∈ h∗/Q, choose a ν ∈ λ that defines a Shapovalov form

〈·, ·〉ν on ̂Rλ;q . The direct sum
⊕

λ∈h∗/Q
〈·, ·〉ν (4.13)

then defines a contravariant bilinear form, which we shall also refer to as a Shapovalov
form, on the relaxed coherent family ̂Rq . This construction clearly depends on the
uncountablymany choices for ν, one for eachλ ∈ h∗/Q. However, the kernel of this form
is independent of these choices. Note that this construction is equivalent to extending the
chosen Shapovalov forms on the ̂Rλ;q to ̂Rq by insisting that vξ and vζ are orthogonal
for all distinct ξ, ζ ∈ h∗ (consistent with h0 being self-adjoint).

We are now almost ready for the key technical result, Lemma 4.2 below. First, how-
ever, recall that when λ /∈ �(q), we havêIλ;q = ̂Jλ;q . When λ ∈ �(q), the following
result will prove to be a useful substitute.

Lemma 4.1. Suppose that λ ∈ �(q) and let μ be the maximal solution in λ of (μ,μ +
2ρ) = q. Then,

̂Iλ;q(μ + mα,� + n) =̂Jλ;q(μ + mα,� + n), (4.14)

for all m > n ∈ Z�0.

Proof. As ̂Iλ;q ⊆ ̂Jλ;q is clear, we suppose that v ∈ ̂Jλ;q(μ + mα,� + n). Because
each ground state vν , with ν > μ, generates ̂Rλ;q , the submodule ̂Mv ⊆ ̂Jλ;q ⊂
̂Rλ;q generated by v has zero intersection with

⊕

ν>μ Cvν . Assume that one of the

other ground states vν , ν � μ, belongs to ̂Mv . Applying Poincaré-Birkhoff-Witt basis
elements (with indices increasing to the right) to v now shows that so must vμ+(m−n)α ,
a contradiction since m > n. Thus, ̂Mv has zero intersection with the space of ground
states

⊕

ν∈λ Cvν and so v ∈̂Iλ;q . ��
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Fix n ∈ Z�0 and define Pn to be the set of all Poincaré-Birkhoff-Witt monomials of

Uk(̂sl
�0
2 ), ordered so that mode indices increase to the right, that satisfy the following

conditions:

• The sl2-weight (ad(h0)-eigenvalue) is −nα.
• The conformal grade (the negative of the sum of the mode indices) is n.
• The exponents of e0 and h0 are zero.

There are clearly only finitely many such monomials. A basis for the weight space
̂Rq(ν,� + n) is then given by the Uvν+nα with U ∈ Pn .

Choose a Shapovalov form on ̂Rq . Then, for each ν ∈ h∗ and n ∈ Z�0, we define
the Shapovalov matrix for ̂Rq(ν,� + n) to be the |Pn| × |Pn| matrix

Aν; n = (〈Uvν+nα, V vν+nα〉ν
)

U,V ∈Pn
. (4.15)

The kernel of this matrix is then the weight space ̂Jλ;q(ν,� + n). If λ /∈ �(q), then
̂Jλ;q = ̂Iλ;q , so the rank of Aν; n is the dimension of ̂Eλ;q(ν,� + n). This, in turn, is
the coefficient of q�+n in the string function sν[̂Eλ;q ](q). If λ ∈ �(q), then Lemma 4.1
gives the same conclusion for all ν > μ + nα.

Lemma 4.2. For each n ∈ Z�0, the rank of the Shapovalov matrix Aν; n is independent
of ν ∈ h∗ for sufficiently large ν.

Proof. Fix n and q ∈ C. Then, the entries of Aν; n are complex polynomials in ν(h) ∈ C,
by (4.12). Let Bν; n denote its reduced row-echelon form over C. If we instead treat ν as
a formal indeterminate, writing An(ν) for the Shapovalov matrix in this case, then we
may instead row-reduce over the field C(ν) of rational functions in ν. Let Bn(ν) denote
the reduced row-echelon form, over C(ν), of An(ν). Then, evaluating ν at ν(h) ∈ C

gives Bn(ν)|ν �→ν(h) = Bν; n , for all but finitely many ν(h) (because row-reduction gives
only finitely many opportunities to divide by zero). Similarly, each non-zero entry of
Bn(ν) will evaluate to a non-zero entry of Bν; n for all but finitely many ν(h). As there
are only finitely many entries, it follows that the number of non-zero rows of Bn(ν) and
Bν; n must agree for all but finitely many values of ν(h) ∈ C. This number for Bn(ν) is
obviously independent of ν(h), so the lemma follows. ��
Remark. The statement of theLemmawould also hold for ν sufficiently small (negative),
except that our construction of Shapovalov forms required us, when λ ∈ �(q), to choose
ν ∈ λ larger than the maximal solution μ.

This Lemma immediately implies our first result on limiting string functions.

Theorem 4.3. For given q ∈ C, the positive limiting string functions s∞
[

̂Eλ;q
]

exist and
are independent of λ ∈ h∗/Q.

4.3. Stringiness of the SimplêEλ;q . Recall that thêEλ;q are simple when λ /∈ �(q), that
is when the space of ground states is simple (as an sl2-module). Our aim here is to show
that the simplêEλ;q are stringy. This uses the following lemmas, the first of which is an
immediate application of the Poincaré-Birkhoff-Witt theorem for ̂sl<2 .

Lemma 4.4. If μ �= ν, then U(̂sl<2 )vμ ∩ U(̂sl<2 )vν = 0 in ̂Rλ;q .
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Lemma 4.5. The action of f0 on ̂Rλ;q is injective. If λ /∈ �(q), then e0 also acts
injectively on ̂Rλ;q .

Proof. We only show the first assertion as the secondmay be proved in a similar fashion,
once we recall that the condition on λ and q implies that the ground states vμ span a
simple sl2-module isomorphic to Rλ;q , hence that e0 does not annihilate any of the vμ.

Let w be an arbitrary non-zero element of ̂Rλ;q , so that w has the form

w =
�
∑

i=1

Uivλ+ni α, (4.16)

for some � ∈ Z>0, U1, . . . , U� ∈ U(̂sl<2 ) \ {0} and n1 < · · · < n� ∈ Z. Since [ f0, Ui ] ∈
U(̂sl<2 ), for each i , and f0 does not annihilate any of the vμ, we see that

f0w =
�
∑

i=1

(

Uivλ+(ni −1)α + [ f0, Ui ]vλ+ni α

) ∈ U1vλ+(n1−1)α +
⊕

m�n1

U(̂sl<2 )vλ+mα.

(4.17)

As U1 �= 0, the term U1vλ+(n1−1)α is non-zero. Moreover, it cannot be cancelled by any
of the other terms, by Lemma 4.4. Thus, f0w �= 0 as desired. ��
Lemma 4.6. If e0 and f0 both act injectively on an indecomposable level-k weight
module ̂M of ̂sl2, then ̂M is stringy.

Proof. Recall that the weight spaces ̂M(μ, n), for μ ∈ h∗ and n ∈ C, are always finite-
dimensional, by definition. As e0 : ̂M(μ, n) → ̂M(μ+α, n) is assumed to act injectively,
we have dim ̂M(μ, n) � dim ̂M(μ + α, n). Similarly, f0 : ̂M(μ + α, n) → ̂M(μ, n)

acting injectively implies that dim ̂M(μ, n) � dim ̂M(μ + α, n). The stringiness of ̂M
now follows because indecomposability implies that the ̂M(μ, n) are zero unless μ

belongs to a unique coset λ ∈ h∗/Q. ��
The desired stringiness result is now easy to prove.

Theorem 4.7. Let q ∈ C and λ /∈ �(q). Then, the simple relaxed highest-weight module
̂Eλ;q is stringy.

Proof. As e0 and f0 both act injectively on the maximal proper submodule ̂Jλ;q ⊂
̂Rλ;q , by Lemma 4.5, it follows that̂Jλ;q is stringy, by Lemma 4.6. But, ̂Rλ;q is stringy
(Sect. 4.1), so we conclude that̂Eλ;q = ̂Rλ;q

/

̂Jλ;q is too. ��

4.4. Computing the String Functions. Theorem 4.7 says that the simplêEλ;q are stringy,
but we do not yet have a means to actually compute their string functions. For this, we
shall combine this result with Theorem 4.3, concluding that the string functions of the
simplêEλ;q coincide with the positive limiting string function of the non-simple ones.
As we shall see, the latter are computable in principle.

Lemma 4.8. Let λ ∈ �(q) and take μ to be the maximal solution in λ of (μ,μ+2ρ) = q.
Then, ̂L−

μ+α is the unique simple quotient of both ̂Rλ;q and̂Eλ;q .
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Proof. Recall from Sect. 3.2 that V−
μ+α is a quotient of Rλ;q . As induction is a tensor

functor, it is right-exact, hencêV−
μ+α is a quotient of̂Rλ;q . It follows that the irreducible

̂L−
μ+α is also a quotient of̂Rλ;q , necessarily by the (unique) maximal proper submodule

̂Jλ;q . This establishes the statement for ̂Rλ;q and that for̂Eλ;q is obtained by noting that

̂Eλ;q
̂Jλ;q

/

̂Iλ;q
∼=

̂Rλ;q
/

̂Iλ;q
̂Jλ;q

/

̂Iλ;q
∼=

̂Rλ;q
̂Jλ;q

∼= ̂L−
μ+α, (4.18)

remembering that̂Eλ;q is cyclic. ��
Proposition 4.9. The limiting string function of̂Eλ;q , λ ∈ �(q), is

s∞
[

̂Eλ;q
]

(q) = s∞
[

̂L−
μ+α

]

(q), (4.19)

where μ is the maximal solution in λ of (μ,μ + 2ρ) = q.

Proof. Choose non-negative integers m and n satisfying m > n. Then, Lemmas 4.1 and
4.8 give

dim̂Eλ;q(μ + mα,� + n) = dim̂Rλ;q(μ + mα,� + n) − dim̂Iλ;q(μ + mα,� + n)

(4.20)

= dim̂Rλ;q(μ + mα,� + n)

− dim̂Jλ;q(μ + mα,� + n) = dim̂L−
μ+α(μ + mα,� + n)

and the desired identity of limiting string functions follows. ��
Remark. Recall that (μ,μ + 2ρ) = q has two solutions μ± ∈ h∗, given in (3.6), that
satisfy μ+ + μ− = −α. When

√
1 + 2q /∈ Z, the cosets λ+ = [μ+] and λ− = [μ−] are

distinct elements of �(q), hence (4.19) applies to both. We must therefore have

s∞
[

̂L−
μ±+α

]

(q) = s∞
[

̂Eλ±;q
]

(q)=s∞
[

̂Eλ∓;q
]

(q)=s∞
[

̂L−
μ∓+α

]

(q)=s∞
[

̂L−−μ±
]

(q),

(4.21)

by Theorem 4.3.

Combining Proposition 4.9 and Eq. (4.21)with Theorems 4.3 and 4.7, we now deduce
the string functions of the simplêEλ;q .

Theorem 4.10. If
√
1 + 2q /∈ Z, then the non-zero string functions of the simple relaxed

highest-weight moduleŝEλ;q , λ /∈ �(q), have the form

sν
[

̂Eλ;q
]

(q) = s∞
[

̂L−
μ+α

]

(q), for all ν ∈ λ, (4.22)

where μ is any solution of (λ, λ + 2ρ) = q. If
√
1 + 2q ∈ Z, then the same is true when

μ is the maximal such solution.

Remark. The irreduciblêsl2-moduleŝL−
ν and̂L+−ν are related by the conjugation func-

tor w. It follows that the positive limiting string function of one must match the nega-
tive limiting string function of the other. We may therefore replace the right-hand side
of (4.22) with the negative limiting string function s−∞[̂L+−μ−α](q). Moreover, when√
1 + 2q /∈ Z, we may instead replace this by s−∞[̂L+

μ](q), by (4.21).
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While Theorem 4.3 assures us that the limiting string functions of the simple highest-
weight̂sl2-modules appearing on the right-hand side of (4.22) actually exist, it is perhaps
comforting and useful to see this directly. One way to approach this is to note, as in
Lemma A.1, that these limiting string functions also exist for Verma modules over ̂sl2.
Indeed, f0 acts injectively on the ground states of ̂L+

ν , ν /∈ P�, so the argument used in
the proof of Lemma 4.5 shows that f0 acts injectively on all of̂L+

ν . The string functions
sξ [̂L+

ν ] therefore increase monotonically as ξ → −∞, while they are bounded above by
the limiting string function of̂V+

ν .

4.5. Stringiness of the Non-SimplêEλ;q . While our first main aim, to compute the char-
acters of the simplêEλ;q , was essentially completed in Theorem 4.10, it is now straight-
forward to also establish the stringiness of the non-simplêEλ;q and thereby determine
their characters. We shall also discuss the structure of these ̂sl2-modules.

Lemma 4.11. Let λ ∈ �(q) and take μ to be the maximal solution in λ of (μ,μ+2ρ) =
q. Then, ̂Eλ;q has a simple submodule isomorphic to ̂L+−μ−α , if

√
1 + 2q ∈ Z, and to

̂L+
μ otherwise.

Proof. Recall from Sect. 3.2 that Rλ;q has a simple submodule isomorphic to V+−μ−α ,
if

√
1 + 2q ∈ Z, and to V+

μ otherwise. Let us assume that
√
1 + 2q /∈ Z for simplicity.

Then, upon inducing to ̂Rλ;q , the ground state vμ becomes a highest-weight vector for
̂sl2, hence it generates a copy of ̂V+

μ (as U(̂sl<2 ) and f0 act freely). Now, the maximal

proper submodule ̂M of̂V+
μ has zero intersection with the space of ground states, hence

̂M ⊂̂Iλ;q . Indeed, the space V+
μ of ground states of̂V+

μ is simple, since μ /∈ P�, and so
̂M = ̂V+

μ ∩̂Iλ;q . Thus,

̂L+
μ

∼=
̂V+

μ

̂M
∼=

̂V+
μ

̂V+
μ ∩̂Iλ;q

↪−→
̂Rλ;q
̂Iλ;q

∼=̂Eλ;q , (4.23)

as required. If
√
1 + 2q ∈ Z, then the argument goes through with −μ − α replacing μ

throughout. ��
Remark. Note that for the special case

√
1 + 2q = 0, we haveμ = −ρ and thus−μ−α

and μ coincide.

Theorem 4.12. If λ ∈ �(q), then, ̂Eλ;q is stringy and its non-zero string functions are
given by (4.22).

Proof. Since f0 acts injectively on̂Iλ;q ⊂ ̂Rλ;q , by Lemma 4.5, we have

sν
[

̂Iλ;q
]

(q) � sν′
[

̂Iλ;q
]

(q) �⇒ sν
[

̂Eλ;q
]

(q) � sν′
[

̂Eλ;q
]

(q), (4.24)

for all ν � ν′. Thus, the string functions of ̂Eλ;q are bounded above and below by
s∞[̂Eλ;q ](q) and s−∞[̂Eλ;q ](q), respectively. Theorem 4.3 shows that the positive limits
exist and we shall shortly see that the negative ones do too.
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Suppose first that
√
1 + 2q ∈ Z and letμ be themaximal solution inλ of (μ,μ+2ρ) =

q. Then, ̂L+−μ−α is a submodule of̂Eλ;q , by Lemma 4.11. Thus, we have

s−∞
[

̂L+−μ−α

]

(q) � s−∞
[

̂Eλ;q
]

(q) � s∞
[

̂Eλ;q
]

(q) = s∞
[

̂L−
μ+α

]

(q), (4.25)

where the last equality is Proposition 4.9. However, s−∞[̂L+−μ−α] = s∞[ŵL+−μ−α] =
s∞[̂L−

μ+α], so the inequalities in (4.25) are actually equalities. It follows that ̂Eλ;q is
stringy with the required string functions.

It remains to consider the case when
√
1 + 2q /∈ Z and so μ is the unique solution in

λ of (μ,μ + 2ρ) = q. Now, Lemma 4.11 gives

s−∞
[

̂L+
μ

]

(q) � s−∞
[

̂Eλ;q
]

(q) � s∞
[

̂Eλ;q
]

(q) = s∞
[

̂L−
μ+α

]

(q) (4.26)

in place of (4.25). However, conjugating and applying (4.21) immediately gives

s−∞
[

̂L+
μ

]

(q) = s∞
[

̂L−−μ

]

(q) = s∞
[

̂L−
μ+α

]

(q). (4.27)

The stringiness is therefore established as before, as is the identification of the string
functions. ��

For later use, we provide a strengthening of Lemma 4.11 in the case where
√
1 + 2q /∈

Z.

Proposition 4.13. Choose q ∈ C so that
√
1 + 2q /∈ Z. Then, for each λ ∈ �(q), we

have an short exact sequence

0 −→ ̂L+
μ −→̂Eλ;q −→ ̂L−

μ+α −→ 0, (4.28)

where μ denotes the (unique) solution of (μ,μ + 2ρ) = q in λ.

Proof. By the proof of Lemma 4.11, we have ̂L+
μ ↪→̂Eλ;q and ̂L+

μ
∼= ̂V+

μ

/(

̂V+
μ ∩̂Iλ;q

)

.
It follows that

̂Eλ;q
̂L+

μ

∼= ̂Eλ;q

/

̂V+
μ

̂V+
μ ∩̂Iλ;q

∼=
̂Rλ;q
̂Iλ;q

/

̂V+
μ +̂Iλ;q
̂Iλ;q

∼=
̂Rλ;q

̂V+
μ +̂Iλ;q

. (4.29)

SincêL−
μ+α is the unique simple quotient of̂Eλ;q and̂Rλ;q , byLemma4.8, the proposition

will follow if we can show that̂V+
μ +̂Iλ;q =̂Jλ;q in ̂Rλ;q .

The inclusion ̂V+
μ +̂Iλ;q ⊆ ̂Jλ;q is clear, so suppose that v ∈ ̂Jλ;q . Without loss

of generality, we may assume that v is a weight vector. Then, there exists m such
that em

0 v ∈ ̂Iλ;q , because the weight spaces of ̂Iλ;q and ̂Jλ;q coincide for sufficiently
large sl2-weights, by Lemma 4.1. Moreover, there exists n such that f n

0 v ∈ ̂V+
μ, by

the Poincaré-Birkhoff-Witt theorem. It follows that the image of v in̂Jλ;q
/(

̂V+
μ +̂Iλ;q

)

generates a finite-dimensional sl2-module. As
√
1 + 2q /∈ Z, we have μ /∈ P by (3.6),

so this is impossible unless the image is 0. It follows that̂Jλ;q = ̂V+
μ +̂Iλ;q as required.

��
We conclude with a cautionary example illustrating that our intuition with respect

to composition factors of relaxed highest-weight modules may need refining when√
1 + 2q ∈ Z.
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Example. Consider the ̂sl2-module ̂R−ρ;−1/2 at level k = −1. Note that
√
1 + 2q = 0

and μ = −ρ. The sl2-module of ground states therefore has exact sequence

0 −→ V+−ρ −→ R−ρ;−1/2 −→ V−
ρ −→ 0, (4.30)

in which both Verma modules are simple. However, the corresponding short sequence

0 −→ ̂L+−ρ −→̂E−ρ;−1/2 −→ ̂L−
ρ −→ 0 (4.31)

of ̂sl2-modules is not exact. The easiest way to see this is to compute the dimensions of
the following weight spaces using the Shapovalov form on̂V+−ρ :

̂L+−ρ(3ρ,� + 1), ̂L+−ρ(ρ,� + 1), ̂L+−ρ(−ρ,� + 1), ̂L+−ρ(−3ρ,� + 1).

(4.32)

Here, we recall that� is the conformalweight of the ground states of̂R−ρ;−1/2. These di-
mensions are 0 (obviously), 0 (because e−1v−ρ is singular in̂V+−ρ), 1 and 2, respectively.
Now, if (4.31) were exact, then we would have

dim̂E−ρ;−1/2(−3ρ,� + 1) = dim̂L+−ρ(−3ρ,� + 1) + dim̂L−
ρ (−3ρ,� + 1)

= dim̂L+−ρ(−3ρ,� + 1) + dim̂L+
ρ(3ρ,� + 1) = 2,

and dim̂E−ρ;−1/2(−ρ,� + 1) = dim̂L+−ρ(−ρ,� + 1) + dim̂L−
ρ (−ρ,� + 1)

= dim̂L+−ρ(−ρ,� + 1) + dim̂L+
ρ(ρ,� + 1) = 1.

(4.33)

However, this is impossible becausêE−ρ;−1/2 is stringy, by Theorem 4.12.
We can isolate an additional composition factor of̂E−ρ;−1/2, beyond ̂L+−ρ and ̂L−

ρ ,

as follows. First, prove that the following relations hold in̂E−ρ;−1/2 (the left-hand sides
are annihilated by all positive modes):

e−1vν−α + (ν − ρ, ρ)h−1vν − 1

2
‖ν − ρ‖2 f−1vν+α = 0, for all ν ∈ −ρ. (4.34)

Second, note that f−1vρ is non-zero in̂E−ρ;−1/2 as themodule it generates contains v−ρ .
Third, use (4.34) to show that e0 f−1vρ is a highest-weight vector in̂E−ρ;−1/2

/

̂L+−ρ . We

conclude that̂Lρ is also a composition factor of̂E−ρ;−1/2.Note however that this analysis
does not rule out the existence of further composition factors. We illustrate the structure
of̂E−ρ;−1/2 in Fig. 1.

5. Application to Admissible-Level Lk(sl2)-Modules

We now apply the results of the previous section to study thêEλ;q that define modules
over the simple affine vertex operator algebra Lk(sl2), where k is an admissible level.
This means that k has the form

k + h∨ = u

v
, u ∈ Z�2, v ∈ Z�1, gcd{u, v} = 1, (5.1)
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Fig. 1. A depiction of the structure of̂E−ρ;−1/2, showing three composition factors (though there could be

more) and arrows indicating thêsl2-action. Black dots denote weights and are labelled by ground states when
appropriate. sl2-weights increase from left to right, while conformal weights increase from top to bottom

where we recall that the dual Coxeter number of sl2 is h∨ = 2. As the conformal
weights of any module over an affine vertex operator algebra are fixed by the Sugawara
construction, we shall set those of the ground states of̂Eλ;q to be

� = �q = q

2(k + h∨)
. (5.2)

ThêEλ;q that define Lk(sl2)-modules are those with [6,7]

q = qr,s = 1

2

(

(

r − u

v
s
)2 − 1

)

= (vr − us)2 − v2

2v2
, r = 1, . . . , u − 1,

s = 1, . . . , v − 1. (5.3)

Note the “Kac table”-type symmetry qu−r,v−s = qr,s indicating coincidences amongst
these relaxedhighest-weightmodules.Moreover,u andv being coprimegives

√

1 + 2qr,s =
∣

∣r − u
v

s
∣

∣ /∈ Z which implies that we have
∣

∣�(qr,s)
∣

∣ = 2. In other words, there are two
distinct cosets λ ∈ h∗/Q, for each r and s (modulo the Kac symmetry), defining non-
simple relaxed highest-weight modules of the form̂Eλ;qr,s . Indeed, theμ ∈ h∗ satisfying
(μ,μ + 2ρ) = qr,s are given by

μ = μr,s =
(

r − 1 − u

v
s
)

ω and μ = μu−r,v−s =
(

−r − 1 +
u

v
s
)

ω, (5.4)

where we recall that ω denotes the fundamental weight of sl2.
The structures of the non-simple relaxed highest-weight modules ̂Eλ;qr,s , with√
1 + 2q /∈ Z, are now immediate consequences of Proposition 4.13. These structures

were previously stated, without proof, in [11] (see Eqs. (4.14) and (4.29)), [22] (see
Eq. (3.14) and the structure diagrams of Sec. 5.1) and [23] (see Eq. (4.3)).

Theorem 5.1. Each admissible-level Lk(sl2)-modulêEμr,s ;qr,s , where r = 1, . . . , u − 1
and s = 1, . . . , v − 1, is a non-split extension of the (conjugate) simple highest-weight
modulêL−

μr,s+α = ̂L−−μu−r,v−s
by the simple highest-weight modulêL+

μr,s
. In other words,

the following sequence is exact:

0 −→ ̂L+
μr,s

−→̂Eμr,s ;qr,s −→ ̂L−−μu−r,v−s
−→ 0. (5.5)
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Remark. Recall that the (non-simple) relaxed highest-weight modulêEμr,s ;qr,s was cho-
sen so that f0 acts injectively. Its conjugate therefore has an injective action of e0 and is
a non-split extension of ̂L+

μu−r,v−s
by ̂L−−μr,s

. In particular, ŵEμr,s ;qr,s is not isomorphic

tôEμu−r,v−s ;qu−r,v−s .

Finally, we turn to the characters of the Lk(sl2)-moduleŝEλ;qr,s , r = 1, . . . , u −1 and
s = 1, . . . , v − 1. Theorems 4.10 and 4.12 allow us to compute their string functions in
terms of the limiting string functions of the ̂L−

μr,s+α . Indeed, Eqs. (4.22) and (4.27) give

sξ
[

̂Eλ;qr,s

]

(q) = s∞
[

̂L−
μr,s+α

]

(q) = s−∞
[

̂L+
μr,s

]

(q), for all ξ ∈ λ, (5.6)

independent of λ ∈ h∗/Q. The rightmost limiting string function can now be computed
from the Kac-Wakimoto character formula [31] because ̂L+

μr,s
is an admissible level-k

highest-weight ̂sl2-module. We write the character in the form [35]

ch
[

̂L+
μr,s

]

(z; q) =
∑

n∈Z

(

ch
[

̂V+
μ2nu+r,s

]

(z; q) − ch
[

̂V+
μ2nu−r,s

]

(z; q)
)

, (5.7)

where the Verma module characters are given in (A.1). It is convenient at this point to
reinstate the convention that characters and string functions are normalised by the factor
q−c/24, where

c = 3k
k + h∨ = 3 − 6v2

uv
(5.8)

is the central charge of Lk(sl2).
Now we can use the computation of the limiting string function for Verma modules

in Proposition A.1:

s−∞
[

̂L+
μr,s

]

(q) =
∑

n∈Z

(

s−∞
[

̂V+
μ2nu+r,s

]

(q) − s−∞
[

̂V+
μ2nu−r,s

]

(q)
)

(5.9)

= 1

η(q)3

∑

n∈Z

(

q�2nu+r,s−c/24+1/8 − q�2nu−r,s−c/24+1/8
)

= 1

η(q)3

∑

n∈Z

(

q�Vir
2nu+r,s−cVir/24+1/24 − q�Vir

2nu−r,s−cVir/24+1/24
)

.

Here, �r,s = �qr,s and the Virasoro conformal weights and central charge are given by
the usual formulae:

�Vir
r,s = (vr − us)2 − (v − u)2

4uv
, cVir = 1 − 6(v − u)2

uv
. (5.10)

Recognising in (5.9) the character

χVir
r,s (q) = q(1−cVir)/24

η(q)

∑

n∈Z

(

q�Vir
2nu+r,s − q�Vir

2nu−r,s

)

(5.11)

of the simple highest-weight Virasoro module of conformal weight �Vir
r,s and central

charge cVir, Eq. (4.22) gives the string functions, and thence the characters, of all the
̂Eλ;qr,s . This proves a character formula for thesemodules that was originally conjectured
in [23].
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Theorem 5.2. The characters of the admissible-level Lk(sl2)-moduleŝEλ;qr,s , with λ ∈
h∗/Q, r = 1, . . . , u − 1 and s = 1, . . . , v − 1, are given by

ch
[

̂Eλ;qr,s

]

(z; q) = χVir
r,s (q)

η(q)2

∑

μ∈λ

zμ. (5.12)

6. Relaxed Highest-Weight ôsp(1|2)-Modules

We now generalise our study of relaxed highest-weight modules over̂sl2 to ôsp(1|2). We
follow a similar strategy as before, but content ourselves with only describing those parts
of the arguments that are not just straightforward generalisations of their ̂sl2 analogues.
The main differences arise because the intended application to modules of admissible-
level vertex operator superalgebras Lk(osp(1|2)) requires us to analyse both the un-
twisted (Neveu–Schwarz) and twisted (Ramond) sectors.

6.1. Simple Weight osp(1|2)-Modules. The simple basic classical Lie superalgebra
osp(1|2) has basis {e, x, h, y, f }, where e, h and f are even while x and y are odd.
As the notation suggests, the even subalgebra of osp(1|2) is isomorphic to sl2 and so the
commutation rules (3.1) continue to hold. The remaining (anti)commutation relations
involving the basis elements may be taken to be

[e, x] = 0, [h, x] = x, [ f, x] = −y,

[e, y] = −x, [h, y] = −y, [ f, y] = 0,

{x, x} = 2e, {x, y} = h, {y, y} = −2 f.

(6.1)

The non-zero entries of the (rescaled) Killing form, in this basis, are

κ(h, h) = 2, κ(e, f ) = κ( f, e) = 1, κ(x, y) = −κ(y, x) = 1. (6.2)

The Cartan subalgebra is chosen to be h = Ch and the quadratic Casimir to be

Q′ = 1

2
h2 + e f + f e − 1

2
xy +

1

2
yx . (6.3)

In U(osp(1|2)), there is also the super-Casimir [36] given by

� = xy − yx +
1

2
. (6.4)

It is not central, but rather commutes with e, h and f , while it anticommutes with x and
y. Note that �2 = 2Q′ + 1

4 .
Let ω ∈ h∗ and α = 2ω denote the fundamental weight and highest root of osp(1|2).

The (odd) simple root is then 1
2α = ω and theWeyl vector is ρ = 1

2ω. Let P = Q = Zω

denote the weight and root lattices, while Q0 = Zα denotes the even root lattice.
P� = Z�0ω again denotes the dominant integral weights. We induce the Killing form
to a bilinear form (·, ·) on h∗, noting that the rescaling again normalises the latter so that
‖α‖2 = 2.

The classification of simple weight osp(1|2)-modules follows a similar pattern to
that of sl2-modules (Proposition 3.1). We recall our assumption (Sect. 2) that weight
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osp(1|2)-modules are Z2-graded by parity. This means that an osp(1|2)-module decom-
poses into the direct sum of an even and an odd subspace, which are both preserved by
the even elements e, h and f but are swapped by the odd elements x and y. There is
an obvious parity-reversal functor � on any category of Z2-graded osp(1|2)-modules
given by exchanging the even and odd subspaces. We note that �-eigenvalues are con-
stant on the even and odd subspaces of a simple osp(1|2)-module, taking values σ and
−σ , respectively, for some σ ∈ C.

Aswedid for sl2, it is convenient to introduce a family of subsets, this timeparametrised
by σ ∈ C:

�′(σ ) =
{

[λ] ∈ h∗/Q0 : ‖μ‖2 = 1
2

(

σ − 1
2

)2
for some μ ∈ [λ]

}

. (6.5)

This facilitates the following classification of simple weight osp(1|2)-modules.

Proposition 6.1 ([24, Thm. 2]).Every simple (Z2-graded) weight osp(1|2)-module (with
finite-dimensional weight spaces) is either isomorphic to a member of one of the follow-
ing families or its parity-reversal is.

(1) The finite-dimensional modules Vμ with even highest weight μ ∈ P� and lowest
weight −μ.

(2) The highest-weight Verma modules V+
μ with even highest weight μ /∈ P�.

(3) The lowest-weight Verma modules V−
μ with even lowest weight μ /∈ −P�.

(4) The dense modules Rλ;σ whose even weight vectors have weights in λ ∈ h∗/Q0 and
�-eigenvalue σ ∈ C, where λ /∈ �′(σ ).

All of these modules have one-dimensional weight spaces.

Note that the weight support of the dense moduleRλ;σ is actually λ∪(λ+ω), the second
Q0-coset corresponding to odd vectors. We parametrise these modules by their even
weight supports because of the obvious isomorphisms Rλ+ω;σ ∼= �Rλ;−σ . As for sl2
(see Sect. 3.1), the Weyl reflection of osp(1|2) defines a functor on osp(1|2)-modules
that exchanges V+

μ with V−−μ.

6.2. Non-Simple Dense osp(1|2)-Modules. The action of e, x , y and f on the simple
dense modules Rλ;σ , λ /∈ �′(σ ), is injective. We shall therefore choose basis vectors
vμ, μ ∈ λ, so that

evμ =β2
μvμ+α, xvμ =βμvμ+ω, hvμ =(μ, α)vμ, yvμ = vμ−ω, f vμ = −vμ−α,

(6.6a)

where

βμ = 1

2

[

(μ, α) − (−1)vμσ +
1

2

]

(6.6b)

and vμ ∈ {0, 1} denotes the parity of vμ. This action is observed to be polynomial in
μ ∈ h∗, up to the parity-dependent sign. This is not a major obstacle to the analysis to
follow becausewe can just restrict to the even and odd subspaceswhenwewish to exploit
this polynomial dependence. Our first task is to define non-simple indecomposables
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Rλ;σ , with λ ∈ �′(σ ), to complete this family. We shall construct them so that y and f
continue to act injectively, hence vμ may be chosen such that (6.6) continues to hold.

We therefore fix σ ∈ C and define indecomposable dense osp(1|2)-modules Rλ;σ ,
with λ ∈ �′(σ ), by inducing from the centraliserC[h, �] of h inU(osp(1|2)) as follows.
Let v be an even eigenvector of h and �, so that hv = λ(h)v and �v = σv for some
λ ∈ h∗ and σ ∈ C satisfying [λ] ∈ �′(σ ). The structure of the osp(1|2)-module
induced from the C[h, �]-module Cv then depends on the relative ordering (by real
parts of Dynkin labels) between λ and the solutions

μ = ±(

σ − 1
2

)

ω (6.7)

of ‖μ‖2 = 1
2

(

σ − 1
2

)2
. We take Rλ;σ = R[λ];σ to be the induced module with λ

larger than all solutions, so that y and f act injectively. It follows that Rλ;σ may have
highest-weight vectors, but no lowest-weight vectors. Indeed, vμ will be an even highest-
weight vector if μ = (

σ − 1
2

)

ω ∈ λ and yvμ will be an odd highest-weight vector if
μ = −(

σ − 1
2

)

ω ∈ λ.

Example. Consider the case σ = 1
2 , so that (6.7) has the unique solution μ = 0. Then,

[λ] = [0] = Q0 and R0;1/2 has two highest-weight vectors: v0 and yv0 = v−ω. Its
(unique) composition series is therefore

0 ⊂ �V+−ω ⊂ V+
0 ⊂ R[0];1/2, (6.8)

with composition factors �V+−ω, V0 and �V−
ω .

This case generalises: both solutions (6.7) belong to the sameQ0-coset if and only if
σ ∈ Z + 1

2 . In this case, take μ ∈ P� to be the maximal solution in λ = [μ] ∈ h∗/Q0.
The composition series ofRλ;σ thus depends on the sign of σ . Specifically, if σ ∈ Z+ 1

2
and σ > 0, then the series is

0 ⊂ �V+−μ−ω ⊂ V+
μ ⊂ Rλ;σ (6.9)

and the composition factors are �V+−μ−ω, Vμ and �V−
μ+ω. However, for σ ∈ Z + 1

2 and
σ < 0, the series is instead

0 ⊂ V+−μ ⊂ �V+
μ−ω ⊂ Rλ;σ , (6.10)

with composition factors V+−μ, �Vμ+ω and V−
μ .

The remaining case corresponds to the two solutions (6.7) belonging to different
Q0-cosets, whence σ /∈ Z + 1

2 . This leads to two inequivalent indecomposable dense
osp(1|2)-modules Rλ±;σ , where λ± = [μ±] = [±(σ − 1

2 )ω]. The composition series
are

0 ⊂ V+
μ+

⊂ Rλ+;σ and 0 ⊂ �V+
μ−−ω ⊂ Rλ−;σ , (6.11)

with respective composition factors V+
μ+
, �V−

μ++ω and �V+
μ−−ω, V

−
μ− .
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6.3. Relaxed Highest-Weight ôsp(1|2)-Modules. As in Sect. 3.3, we may induce an
indecomposable weight osp(1|2)-module to a relaxed Verma ôsp(1|2)-module in cate-
gory R, once we choose eigenvalues k and � for K and L0. These induced modules
are ôsp(1|2)-modules, but are often said to belong to the Neveu–Schwarz sector for his-
torical reasons. Such Neveu–Schwarz modules will be denoted by adding hats and ns
symbols to the osp(1|2)-modules that they were induced from. Thus, we have Verma
modules ns

̂V±
μ , parabolic Vermas ns

̂Vμ and relaxed Vermas ns
̂Rλ;σ . Quotienting each

by the maximal submodule whose intersection with the space of ground states is zero
results in more Neveu–Schwarz modules: nŝL±

μ ,
ns
̂Lμ and ns

̂Eλ;σ (respectively). All are

simple except for the ns
̂Eλ;σ with λ ∈ �′(σ ).

In many applications, those of Sect. 8 for instance, one also needs to consider a
twisted version of ôsp(1|2) in which the indices of xn and yn are required to belong
to Z + 1

2 instead of Z. We shall denote this twisted version by rôsp(1|2) and refer to
its modules as the Ramond sector of ôsp(1|2). Because the zero modes of the Ramond
sector omit x0 and y0, we construct relaxed Verma ôsp(1|2)-modules in the Ramond
sector by inducing indecomposable weight sl2-modules. The notation for the result adds
a hat to the sl2-module being induced, just as in the Neveu–Schwarz sector, but adds an
r symbol instead. Thus, the Ramond sector has Verma modules r

̂V±
μ , parabolic Vermas

r
̂Vμ and relaxed Vermas r

̂Rλ;q . As above, quotienting each by its maximal submodule
whose intersection with the space of ground states is zero gives new Ramond modules:
r
̂L±

μ ,
r
̂Lμ and r

̂Eλ;q (respectively). Again, these modules are all simple except for the
r
̂Eλ;q with λ ∈ �(q).
Finally, the Weyl-reflection functor of osp(1|2) lifts to a conjugation functor on

ôsp(1|2)-modules that we shall (again) denote by w. We have, for example, wns
̂L+

μ
∼=

ns
̂L−−μ and wr

̂L+
μ

∼= r
̂L−−μ. We emphasise that an r label indicates that the module

was induced from an sl2-module (which may otherwise share notation with a similar
osp(1|2)-module) so that its parametrisation must always be understood in the context
of sl2 data.

7. Relaxed ôsp(1|2)-Modules and their (Super) Characters

We now turn to the string functions of the Neveu–Schwarz and Ramond relaxed highest-
weight ôsp(1|2)-modules ns

̂Eλ;σ and r
̂Eλ;q . Their computation will only be outlined

here as many of the details and proofs follow in an almost identical fashion to those
detailed for ̂sl2 in Sect. 4.

7.1. String Functions. The character of a Neveu–Schwarz or Ramond level-k weight
module ̂M over ôsp(1|2) is still given by (4.1) and string functions are likewise defined
by (4.2). We shall also consider the supercharacter of ̂M which is given, at least for
indecomposable weight modules, by inserting (−1)μ into the sum in (4.1), where μ ∈
{0, 1} denotes the parity of the weight vectors in ̂M whose osp(1|2)-weight is μ ∈ h∗.

Example. The character and non-zero string functions of the level-k Neveu–Schwarz
relaxed Verma module ns

̂Rλ;σ , for λ ∈ h∗/Q0 and σ ∈ C, are
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ch
[ns

̂Rλ;σ
]

(z; q) = q�+1/24ϑ2(1; q)

2η(q)4

⎡

⎣

∑

μ∈λ

zμ +
∑

μ∈λ+ω

zμ

⎤

⎦

⇒ sμ
[ns

̂Rλ;σ
]

(q) = q�+1/24ϑ2(1; q)

2η(q)4
, if μ ∈ λ ∪ (λ + ω).

(7.1)

It follows that ns
̂Rλ;σ is stringy. The Ramond relaxed Verma character and non-zero

string functions are, however, given by

ch
[r
̂Rλ;q

]

(z; q) = q�+1/6

2η(q)4
⎡

⎣

∑

μ∈λ

(

ϑ3(1; q) + ϑ4(1; q)
)

zμ +
∑

μ∈λ+ω

(

ϑ3(1; q) − ϑ4(1; q)
)

zμ

⎤

⎦

⇒ sμ
[r
̂Rλ;q

]

(q) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

q�+1/6

2η(q)4

(

ϑ3(1; q) + ϑ4(1; q)
)

, if μ ∈ λ,

q�+1/6

2η(q)4

(

ϑ3(1; q) − ϑ4(1; q)
)

, if μ ∈ λ + ω.

(7.2)

r
̂Rλ;q is therefore not stringy. Here, ϑ j denotes the Jacobi theta functions (with the
conventions of [37, App. B]).

The supercharacters of these relaxed Vermamodules may be obtained from the above
character formulae by replacing, in each, the sum of the two sums by their difference.

The previous Ramond example inspires us to make an alternative definition.

Definition. A level-k Ramond weight module ̂M is said to be r-stringy if its non-zero
string functions sμ[̂M] depend only on whether μ belongs to its even or odd weight
support.

Obviously, the r
̂Rλ;q are r-stringy (as are the ns

̂Rλ;σ ). Given an indecomposable level-k
Ramond weight module ̂M, so that the even and odd weight supports are the Q0-cosets
[μ] and [μ + ω], respectively, for some μ ∈ h∗, we thus have two distinct notions of
limiting string function:

s+±∞
[

̂M
]

(q) = lim
m→±∞ sμ+2mω

[

̂M
]

(q), s−±∞
[

̂M
]

(q) = lim
m→±∞ sμ+(2m+1)ω

[

̂M
]

(q).

(7.3)

We call these the limiting even and odd string functions, respectively.

7.2. Coherent Families and Shapovalov Forms. Recall that in Sect. 6, we defined ns
̂Eλ;σ

(r̂Eλ;q ) to be the quotient of the relaxed Verma module ns
̂Rλ;σ (r̂Rλ;q ) by the maximal

submodule ns
̂Iλ;σ (r̂Iλ;q ) whose intersection with the space of ground states is zero.

There are thus four types of relaxed coherent families to consider:
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ns
̂Rσ =

⊕

λ∈h∗/Q0

ns
̂Rλ;σ , ns

̂Eσ =
⊕

λ∈h∗/Q0

ns
̂Eλ;σ ,

r
̂Rq =

⊕

λ∈h∗/Q

r
̂Rλ;q , r

̂Eq =
⊕

λ∈h∗/Q

r
̂Eλ;q . (7.4)

We let nŝJλ;σ and r
̂Jλ;q denote the maximal proper submodules of ns

̂Rλ;σ and r
̂Rλ;q ,

respectively.
The first task is to construct analogues of Shapovalov forms on ns

̂Rσ and r
̂Rq . For

this, we need an adjoint on U(ôsp(1|2)) and U(rôsp(1|2)). A convenient choice is

e†n = f−n, x†n = iy−n, h†
n = h−n, y†n = −ix−n,

f †n = e−n, K † = K , L†
0 = L0. (7.5)

We emphasise that † is taken to be a linear antiautomorphism, not an antilinear one,
because the Shapovalov forms are intended to be bilinear, not sesquilinear. With this
understood, it is easy to check that † is involutive.

The ground states of ns
̂Rλ;σ form a coherent family over osp(1|2), hence we may

define the Shapovalov form 〈·, ·〉ν by choosing, for each λ ∈ h∗/Q0, a ground state vν ,
as in (6.6), that generates ns

̂Rλ;σ :

〈vν, vν〉ν = 1 and 〈Uvν, V vν〉ν = 〈vν, U †V vν〉ν
= β(U †V )

∣

∣

∣

h �→ν(h),� �→σ
, for all U, V ∈ Uk(ôsp(1|2)). (7.6)

Here, β : Uk(ôsp(1|2)) → C[h, �] is the projection whose kernel is spanned by the
Poincaré-Birkhoff-Witt monomials, ordered so that indices increase, that have a non-
zero index or have non-zero osp(1|2)-weight. In the Ramond case, the coherent family
of ground states is instead over sl2 so the definition of the Shapovalov forms is as in
(4.12) except that the universal enveloping algebra is that of rôsp(1|2). A Shapovalov
form on each affine coherent family ns

̂Rσ or r
̂Rq is then obtained as a direct sum of

forms 〈·, ·〉ν over [ν] ∈ h∗/Q0 or [ν] ∈ h∗/Q, respectively.
Consider now theweight space ns

̂Rσ (ν,�ns
σ +n) of osp(1|2)-weight ν and conformal

weight �ns
σ + n, where n ∈ Z�0. A basis for this space consists of the Uvν+nα in which

U is a Poincaré-Birkhoff-Witt monomial of Uk(ôsp(1|2)�), ordered so that indices
increase, with osp(1|2)-weight −nα and conformal grade n, such that the exponents
of e0, x0 and h0 are all 0. Then, the analogue of Lemma 4.1 shows that the dimension
of ns

̂Eσ (ν,�ns
σ + n) is equal, for sufficiently large ν, to the rank of the matrix whose

entries are the values 〈Uvν+nα, V vν+nα〉ν of the Shapovalov form applied to the basis
elements. A similar construction identifies dim r

̂Eq(ν,�r
q + m), m ∈ 1

2Z�0, with the
rank of the corresponding Shapovalov matrix, again for sufficiently large ν. The proof
of Lemma 4.2 now readily generalises and we arrive at the following result.

Proposition 7.1. For given σ, q ∈ C, the positive limiting string functions s∞[nŝEλ;σ ]
and s±∞[r̂Eλ;q ] all exist and are λ-independent.

We remark that the Ramond results follow by restricting to m ∈ Z�0, for the even
limiting string functions, and to m ∈ Z�0 +

1
2 , for the odd ones.
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7.3. Stringiness of Relaxed Modules. The ôsp(1|2)-analogues of Lemmas 4.4 to 4.6 are
clear. We summarise them along with the analogue of Theorem 4.7 for convenience.

Proposition 7.2. • Both y0 and f0 act injectively on ns
̂Rλ;σ , while f0 acts injectively

on r
̂Rλ;q .

• If λ /∈ �′(σ ), then e0 and x0 also act injectively on ns
̂Rλ;σ and, thus, nŝEλ;σ is stringy.

• If λ /∈ �(q), then e0 also acts injectively on r
̂Rλ;q and, thus, r̂Eλ;q is r-stringy.

To identify these string functions, we employ Proposition 7.1 to identify them with
the positive limiting string functions of the non-simple ns

̂Eλ;σ , λ ∈ �′(σ ), and r
̂Eλ;q ,

λ ∈ �(q). The explicit constructions in Sect. 6.2, combined with the simple quotient
analogues of Lemma 4.8 and Proposition 4.9, now lead to the following conclusions in
the Neveu–Schwarz sector. Their Ramond counterparts follow similarly by adapting the
̂sl2 results to rôsp(1|2).
Theorem 7.3. • If σ /∈ Z + 1

2 , then the non-zero string functions of the simple relaxed
highest-weight modules ns

̂Eλ;σ , λ /∈ �′(σ ), are

sν
[ns

̂Eλ;σ
]

(q) = s∞
[ns

̂L−
μ+ω

]

(q) = s∞
[ns

̂L−
μ

]

(q) for all ν ∈ λ, (7.7a)

where μ is either of μ± = ±(σ − 1
2 )ω. If σ ∈ Z+ 1

2 , then the non-zero string functions
are instead

sν
[ns

̂Eλ;σ
]

(q) =
{

s∞
[

ns
̂L−

μ++ω

]

(q), if σ > 0,

s∞
[

ns
̂L−

μ−
]

(q), if σ < 0.
(7.7b)

• Similarly, the non-zero even and odd string functions of the simple relaxed highest-
weight modules r

̂Eλ;q , λ /∈ �(q), are

s±ν
[r
̂Eλ;q

]

(q) = s±∞
[r
̂L−

μ+α

]

(q), for all ν ∈ λ, (7.8)

where μ now denotes any solution of (μ,μ + 2ρ) = q, if
√
1 + 2q /∈ Z, and the

maximal such solution, if
√
1 + 2q ∈ Z.

It only remains to demonstrate the stringiness of the non-simple ns
̂Eλ;σ and r

̂Eλ;q .
This is straightforward, but a little tedious because the Neveu–Schwarz analogue of
Lemma 4.11 now identifies the simple submodule ̂M ↪→ ns

̂Eλ;σ in terms of four separate
cases tabulated as follows.

̂M μ = (

σ − 1
2

)

ω μ = −(

σ − 1
2

)

ω

σ ∈ Z + 1
2 �̂L+−μ−ω

̂L+−μ

σ /∈ Z + 1
2

̂L+
μ �̂L+

μ+ω

Here, μ denotes the maximal solution of ‖μ‖2 = 1
2

(

σ − 1
2

)2
in λ. The Ramond version

has only two cases, just like ̂sl2: r
̂L+−μ−α ↪→ r

̂Eλ;q , if
√
1 + 2q ∈ Z, and otherwise

r
̂L+

μ ↪→ r
̂Eλ;q . For this sector, μ is the maximal solution of (μ,μ + 2ρ) = q. Applying

the proofmethods of Theorem 4.12 to these six cases, we arrive at the desired conclusion.

Theorem 7.4. • If λ ∈ �′(σ ), then ns
̂Eλ;σ is stringy and its non-zero string functions

are given by (7.7).



Relaxed Highest-Weight Modules I: Rank 1 Cases 655

• Similarly, if λ ∈ �(q), then r
̂Eλ;q is r-stringy and its non-zero string functions are

given by (7.8).

Finally, we present the analogue of Proposition 4.13. Again, the osp(1|2) proof is
virtually identical to the sl2 one.

Proposition 7.5. • Let σ /∈ Z + 1
2 . Then for each λ ∈ �′(σ ), there is a unique solution

μ of ‖μ‖2 = 1
2

(

σ − 1
2

)2
in λ and a short exact sequence of one of the following

forms:

0 −→ ns
̂L+

μ −→ ns
̂Eλ;σ −→ �ns

̂L−
μ+ω −→ 0, if μ = +

(

σ − 1
2

)

ω ∈ λ,

0 −→ �ns
̂L+

μ−ω −→ ns
̂Eλ;σ −→ ns

̂L−
μ −→ 0, if μ = −(

σ − 1
2

)

ω ∈ λ.
(7.9)

• Similarly, let
√
1 + 2q /∈ Z. Then, for each λ ∈ �′(σ ), there is a unique solution μ

of (μ,μ + 2ρ) = q in λ and a short exact sequence

0 −→ r
̂L+

μ −→ r
̂Eλ;q −→ r

̂L−
μ+α −→ 0. (7.10)

8. Application to Admissible-Level Lk(osp(1|2))-Modules

We conclude by applying our results to determine exact sequences and (super)characters
for the ns

̂Eλ;σ and r
̂Eλ;q that define modules over the simple affine vertex operator

superalgebra Lk(osp(1|2)), when k is admissible:

k + h∨ = u

2v
, u ∈ Z�2, v ∈ Z�1,

u − v

2
∈ Z, gcd

{

u − v

2
, v

}

= 1. (8.1)

Note that the dual Coxeter number of osp(1|2) is h∨ = 3
2 . As with the ̂sl2 case, the

Sugawara construction fixes the conformal weights of the ground states of ns
̂Eλ;σ and

r
̂Eλ;q to be

� = �ns
σ = σ 2 − 1/4

4(k + h∨)
and � = �r

q = q − k/4
2(k + h∨)

, (8.2)

respectively.
The relaxed highest-weight Lk(osp(1|2))-modules are classified in [25,38]. Omit-

ting the highest-weight simples, the classification may be presented in terms of two
parameters r = 1, . . . , u − 1 and s = 1, . . . , v − 1, with the module belonging to the
Neveu–Schwarz sector when r − s is odd and to the Ramond sector when r − s is even.
Indeed, the ns

̂Eλ;σ and r
̂Eλ;q are Lk(osp(1|2))-modules when

r − s ∈ 2Z + 1, σ = σr,s = 1

2

(

r − u

v
s
)

and when r − s ∈ 2Z, q = qr,s

= 1

8

(

r − u

v
s
)2 − 1

2
, (8.3)

respectively.We note the “Kac table”-type symmetriesσu−r,v−s = −σr,s and qu−r,v−s =
qr,s . Moreover, as u−v

2 and v are coprime, we have

σr,s − 1

2
= 1

2

(

r − 1 − u

v
s
)

= r − s − 1

2
− (u − v)/2

v
s /∈ Z (8.4)
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in the Neveu–Schwarz sector (r − s odd) and

√

1 + 2qr,s = 1

2

∣

∣

∣r − u

v
s
∣

∣

∣ =
∣

∣

∣

∣

r − s

2
− (u − v)/2

v
s

∣

∣

∣

∣

/∈ Z (8.5)

in the Ramond sector (r − s even). There are therefore two distinct non-simple re-
laxed highest-weight modules ns

̂Eλ;σr,s or r
̂Eλ;qr,s , for each r and s (modulo the Kac

symmetries). In particular, the Neveu–Schwarz solutions to ‖μ‖2 = 1
2

(

σr,s − 1
2

)2
and

the Ramond solutions to (μ,μ + 2ρ) = qr,s are μ = ± 1
2

(

r − 1 − u
v

s
)

ω and μ =
−ρ ± 1

2

(

r − u
v

s
)

ω, respectively. We therefore define

μr,s =

⎧

⎪

⎨

⎪

⎩

1

2

(

r − 1 − u

v
s
)

ω, if r − s is odd,

1

2

(

r − 2 − u

v
s
)

ω, if r − s is even.
(8.6)

Note that −μu−r,v−s = μr,s + ω, if r − s is odd, and −μu−r,v−s = μr,s + α, if r − s is
even.

Proposition 7.5 now gives the osp(1|2) analogues of Theorem 5.1.

Theorem 8.1. 1.
• Each admissible-level Lk(osp(1|2))-module ns

̂Eμr,s ;σr,s , where r = 1, . . . , u − 1 and
s = 1, . . . , v−1 satisfy r −s ∈ 2Z+1, is a non-split extension of a (conjugate) simple
highest-weight module �ns

̂L−
μr,s+ω = �ns

̂L−−μu−r,v−s
by the simple highest-weight

module ns
̂L+

μr,s
. In other words, the following sequence is exact:

0 −→ ns
̂L+

μr,s
−→ ns

̂Eμr,s ;σr,s −→ �ns
̂L−−μu−r,v−s

−→ 0. (8.7a)

• Similarly, each admissible-level (twisted) Lk(osp(1|2))-module r
̂Eμr,s ;qr,s , where r =

1, . . . , u − 1 and s = 1, . . . , v − 1 satisfy r − s ∈ 2Z, is a non-split extension of
a (conjugate) simple highest-weight module r

̂L−
μr,s+α = r

̂L−−μu−r,v−s
by the simple

highest-weight module ns
̂L+

μr,s
. In other words, the following sequence is exact:

0 −→ r
̂L+

μr,s
−→ r

̂Eμr,s ;qr,s −→ r
̂L−−μu−r,v−s

−→ 0. (8.7b)

Remark. TheNeveu–Schwarz exact sequence (8.7a) follows directly from the first exact
sequence of (7.9). If we had instead used the second exact sequence, we would have
instead arrived at

0 −→ �ns
̂L+

μu−r,v−s
−→ ns

̂E−μr,s ;σr,s −→ ns
̂L−−μr,s

−→ 0. (8.8)

However, this is seen to be equivalent to (8.7a) by replacing r by u−r , s by v−s, applying
the parity-reversal functor �, and using the isomorphism �ns

̂Eλ;σ ∼= ns
̂Eλ+ω;−σ (see

Sect. 6.1).

We now turn to the characters and supercharacters of the ns
̂Eλ;σr,s , λ ∈ h∗/Q0 and

r − s odd, and r
̂Eλ;qr,s , λ ∈ h∗/Q and r − s even. The computations are very similar to

that in Sect. 5, reducing the string functions to the negative limiting string functions of
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ns
̂L+

μr,s
and r

̂L+
μr,s

, respectively. Normalising characters and supercharacters by q−c/24,
where

c = k
k + h∨ = 1 − 3v2

uv
(8.9)

is the central charge of Lk(osp(1|2)), Eq. (5.7) still holds [35] when we replace the
Lk(sl2)-modules by their Neveu–Schwarz Lk(osp(1|2)) analogues. Proposition A.2 thus
gives the Neveu–Schwarz string functions:

s−∞
[ns

̂L+
μr,s

]

(q) =
∑

n∈Z

(

s−∞
[ns

̂V+
μ2nu+r,s

]

(q) − s−∞
[ns

̂V+
μ2nu−r,s

]

(q)
)

(8.10)

= ϑ2(1; q)

2η(q)4

∑

n∈Z

(

q�2nu+r,s−c/24+1/24 − q�2nu−r,s−c/24+1/24
)

= ϑ2(1; q)

2η(q)4

∑

n∈Z

(

q�N=1
2nu+r,s−cN=1/24 − q�N=1

2nu−r,s−cN=1/24
)

.

Here, �r,s = �ns
σr,s

and the N = 1 conformal weights and central charge are given by

�N=1
r,s = (vr − us)2 − (v − u)2

8uv
+

1

32

(

1 − (−1)r−s), cN=1 = 3

2
− 3(v − u)2

uv
.

(8.11)

The link to the N = 1 superconformal algebra is made manifest through comparing this
limiting string function with the character

χ N=1
r,s (q) = q−cN=1/24

η(q)

√

ϑ2(1; q)

2η(q)

∑

n∈Z

(

q�N=1
2nu+r,s − q�N=1

2nu−r,s

)

(8.12)

of the simple Ramond highest-weight N = 1 module of conformal weight �N=1
r,s and

central charge cN=1. (Note that r − s odd specifies the Ramond sector of the N = 1
superconformal minimal models.)

We thereby obtain the (super)characters of the Neveu–Schwarz relaxed highest-
weight modules.

Theorem 8.2. The characters of the admissible-level Neveu–Schwarz Lk(osp(1|2))-
modules ns

̂Eλ;σr,s , with λ ∈ h∗/Q0, r = 1, . . . , u−1, s = 1, . . . , v−1 and r−s ∈ 2Z+1,
are given by

ch
[ns

̂Eλ;σr,s

]

(z; q) = χ N=1
r,s (q)

η(q)2

√

ϑ2(1; q)

2η(q)

⎡

⎣

∑

μ∈λ

zμ +
∑

μ∈λ+ω

zμ

⎤

⎦. (8.13)

The supercharacters are given by replacing the sum of the two sums by their difference.

Remark. We mention that (8.12) is technically not the correct character of the simple
Z2-graded Ramond N = 1 module described above because its leading coefficient is
1, whereas almost all Ramond modules have a two-dimensional space of ground states.
More precisely,χ N=1

r,s is the character of the given simple N = 1modulewhenu, v ∈ 2Z,
r = u

2 and s = v
2 . Otherwise, the correct character is obtained by multiplying by 2.



658 K. Kawasetsu, D. Ridout

Another way of looking at this is to note that while (8.12) is indeed the character of
a simple Ramond N = 1 module, this module only admits a consistent Z2-grading by
parity if u, v ∈ 2Z, r = u

2 and s = v
2 . As far as conformal field theory is concerned,

these non-Z2-gradable modules are not acceptable in a consistent space of states because
they cannot be assigned supercharacters.

TheRamond (super)characters are a littlemore subtle to deduce.Happily, theRamond
version of Eq. (5.7) continues to hold. This does not seem to be mentioned in [35], but is
a simple consequence of the existence [24, Eq. (3.24)] of an invertible functor mapping
r
̂V+

μ to ns
̂V+
kω−μ

. The subtlety of the computation arises because one has to take into

account the relative parity of the Verma submodules of r̂V+
μr,s

when determining whether
their limiting even or odd string functions contribute to the limiting even or odd string
function of r̂V+

μr,s
or vice versa. Indeed, we have

μ2nu+r,s − μr,s = nuω and μ2nu−r,s − μr,s = (nu − r)ω, (8.14)

hence, by Proposition A.2, the limiting string functions must satisfy

s±−∞
[r
̂L+

μr,s

]

(q) =
∑

n∈Z

(

s±(−1)nu

−∞
[

̂V+
μ2nu+r,s

]

(q) − s±(−1)nu−r

−∞
[

̂V+
μ2nu−r,s

]

(q)
)

= q−c/24+1/6

2η(q)4

∑

n∈Z

(

q�2nu+r,s
(

ϑ3(1; q) ± (−1)nuϑ4(1; q)
) − q�2nu−r,s

(

ϑ3(1; q) ± (−1)nu−rϑ4(1; q)
)

)

= q(3/2−cN=1)/24
[

ϑ3(1; q)

2η(q)4

∑

n∈Z

(

q�N=1
2nu+r,s − q�N=1

2nu−r,s

)

±ϑ4(1; q)

2η(q)4

∑

n∈Z
(−1)nu

(

q�N=1
2nu+r,s − (−1)rq�N=1

2nu−r,s

)

]

,

(8.15)

where �r,s = �r
qr,s

. Noting that character and supercharacter of the simple Neveu–

Schwarz highest-weight N = 1 module of conformal weight �N=1
r,s and central charge

cN=1 are

χ N=1
r,s (q) = q(3/2−cN=1)/24

η(q)

√

ϑ3(1; q)

η(q)

∑

n∈Z

(

q�N=1
2nu+r,s − q�N=1

2nu−r,s

)

(8.16a)

and χ N=1
r,s (q) = q(3/2−cN=1)/24

η(q)

√

ϑ4(1; q)

η(q)

∑

n∈Z
(−1)nu

(

q�N=1
2nu+r,s − (−1)rq�N=1

2nu−r,s

)

,

(8.16b)

respectively, the result for the Ramond relaxed highest-weight modules follows.

Theorem 8.3. The admissible-level Ramond Lk(osp(1|2))-modules r
̂Eλ;qr,s , with λ ∈

h∗/Q, r = 1, . . . , u − 1, s = 1, . . . , v − 1 and r − s ∈ 2Z, have the following
characters:
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ch
[r
̂Eλ;qr,s

]

(z; q) =
(

χ N=1
r,s (q)

2η(q)2

√

ϑ3(1; q)

η(q)
+

χ N=1
r,s (q)

2η(q)2

√

ϑ4(1; q)

η(q)

)

∑

μ∈λ

zμ (8.17)

+

(

χ N=1
r,s (q)

2η(q)2

√

ϑ3(1; q)

η(q)
− χ N=1

r,s (q)

2η(q)2

√

ϑ4(1; q)

η(q)

)

∑

μ∈λ+ω

zμ.

The supercharacters are given by replacing the sum of the two sums by their difference.

The character formulae of Theorems 8.2 and 8.3 reduce to the formulae conjectured
in [24, Props. 13 and 14] when k = − 5

4 , hence u = 2 and v = 4. In this case, the N = 1
minimal model is trivial, hence the N = 1 characters and supercharacters appearing in
these theorems are all 1.

Remark. The relaxed character formulae (8.13) and (8.17) may be somewhat simplified
by expressing the elements of the cosetsλ andλ+ω explicitly asλ+2nω andλ+(2n+1)ω,
respectively, where n ∈ Z:

ch
[ns

̂Eλ;σr,s

]

(z;q) = zλ
χ N=1

r,s (q)

η(q)2

√

ϑ2(1;q)

2η(q)

∑

n∈Z
(zω)n, (8.18a)

ch
[r
̂Eλ;qr,s

]

(z;q) = zλ

[

χ N=1
r,s (q)

2η(q)2

√

ϑ3(1;q)

η(q)

∑

n∈Z
(zω)n +

χ N=1
r,s (q)

2η(q)2

√

ϑ4(1; q)

η(q)

∑

n∈Z
(−zω)n

]

.

(8.18b)

The corresponding supercharacters are now obtained by replacing each zω by −zω

throughout.
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Appendix A. Limiting String Functions for Verma Modules

In this appendix, we detail the computation of the limiting string function in the case of
Vermamodules. The results should be expanded in the region |q| < 1 in order to recover
(generalised) formal power series in q.

Proposition A.1. The limiting string function of the Verma ̂sl2-module ̂V+
μ exists and is

s−∞
[

̂V+
μ

]

(q) = q�+1/8

η(q)3
, (8.19)

where � is the conformal weight of the ground states of ̂V+
μ and η(q) is Dedekind’s eta

function.
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Proof. Recall that the character of a Verma ̂sl2-module is given by

ch
[

̂V+
μ

]

(z; q) = zμq�

∏∞
i=1(1 − zαqi )(1 − qi )(1 − z−αqi−1)

. (A.1)

As string functions are residues (with respect to zα) of characters, we may write

sν
[

̂V+
μ

]

(q) = Reszα ch
[

̂V+
μ

]

(z; q) z−ν−α

= Reszα
zμ−ν−αq�

∏∞
i=1(1 − zαqi )(1 − qi )(1 − z−αqi−1)

, (A.2)

where we may convert the right-hand side into a generalised formal power series in z
by expanding in the region 1 < |zα| < |q|−1. We extract the factor (1 − z−α) from the
denominator of the above expression and note that what remains has an expansion of
the form

1
∏∞

i=1(1 − zαqi )(1 − qi )(1 − z−αqi )
=

∞
∑

n=0

pn(zα)qn, (A.3)

where each pn is a Laurent polynomial whose maximal and minimal degrees are n and
−n, respectively. (The reader will no doubt recognise (A.3) as the character of the level-k
universal vertex operator algebra of ̂sl2.)

Since the expansion region requires that 1 < |zα|, we may replace (1 − z−α)−1 by
a geometric series, thereby arriving at

sν
[

̂V+
μ

]

(q) = q�
∞
∑

n=0

[

Reszα

∞
∑

m=0

pn(zα)zμ−ν−(m+1)α

]

qn . (A.4)

Here, we have expressed the string function as a (generalised) power series in q. As
the minimal power of zα in pn is −n, the residue gives no contribution unless mα �
μ − ν − nα. It follows that for every fixed order n in the power series, we may choose
ν sufficiently negative so that all contributions to the residue come from m � 0. The
limit of the string function as ν → −∞, ν − μ ∈ Q, will therefore not be affected if
we allow the sum over m to range over all integers. Recognising

∑

m∈Z z−mα = δ(zα)

as a formal delta function and noting that it allows us replace any instance of zβ , with
β ∈ Q, by 1, we obtain the required expression for the limiting string function:

s−∞
[

̂V+
μ

]

(q) = lim
ν→−∞ q�

∞
∑

n=0

[

Reszα

∑

m∈Z
pn(zα)zμ−ν−(m+1)α

]

qn (A.5)

= lim
ν→−∞Reszα

zμ−ν−αq�

∏∞
i=1(1 − zαqi )(1 − qi )(1 − z−αqi )

δ(zα)

= q�

∏∞
i=1(1 − qi )3

.

��
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Proposition A.2. The limiting string function of the Neveu–Schwarz Verma ôsp(1|2)-
module ns

̂V+
μ exists and is

s−∞
[ns

̂V+
μ

]

(q) = q�+1/24ϑ2(1; q)

2η(q)4
, (A.6)

where � is the conformal weight of the ground states of nŝV+
μ and ϑ j denotes the Jacobi

theta functions.
For the Ramond Verma ôsp(1|2)-module r

̂V+
μ, the limiting even and odd string func-

tions exist and are

s±−∞
[r
̂V+

μ

]

(q) = q�+1/6

2η(q)4

(

ϑ3(1; q) ± ϑ4(1; q)
)

, (A.7)

where � now denotes the conformal weight of the ground states of r̂V+
μ.

Proof. The character of a Neveu–Schwarz Verma ôsp(1|2)-module is

ch
[ns

̂V+
μ

]

(z; q) = zμq�
∞
∏

i=1

(1 + zωqi )(1 + z−ωqi−1)

(1 − zαqi )(1 − qi )(1 − z−αqi−1)
. (A.9)

The derivation of (A.6) now mirrors that of (8.19) except that we extract the factor

1 + z−ω

1 − z−α
= 1

1 − z−ω
=

∞
∑

m=0

z−mω. (A.10)

Again, we check that it is permissible to replace this geometric sum by the formal delta
function δ(zω) when considering the limiting string function. The result now follows
using standard identities for theta functions (for which we use the conventions of [37,
App. B]).

The character of a Ramond Verma rôsp(1|2)-module is instead

ch
[r
̂V+

μ

]

(z; q) = zμq�
∞
∏

i=1

(1 + zωqi−1/2)(1 + z−ωqi−1/2)

(1 − zαqi )(1 − qi )(1 − z−αqi−1)
. (A.11)

This time, we can only extract

1

1 − z−α
=

∞
∑

m=0

z−2mω = 1

2

∞
∑

m=0

[

(z−ω)m + (−z−ω)m] (A.12)

which gets replaced by 1
2 (δ(z

ω) + δ(−zω)). The limiting even string function now fol-
lows from the usual manipulations. To get the limiting odd string functions, we multiply
(A.12) by z−ω so that the replacement is instead by 1

2 (δ(z
ω) − δ(−zω)). ��
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