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Abstract: We reinterpret the Thouless–Anderson–Palmer approach to mean field spin
glass models as a variational principle in the spirit of the Gibbs variational principle and
the Bragg–Williams approximation. We prove this TAP–Plefka variational principle
rigorously in the case of the spherical Sherrington–Kirkpatrick model.

1. Introduction

There are several approaches in theoretical physics and mathematics to study the
Sherrington–Kirkpatrick (SK) mean field spin glass model [21] and its variants. The
most successful in physics is the replica approach, which with Parisi’s replica symmetry
breaking Ansatz led him to his celebrated formula for the free energy [16]. The math-
ematically rigorous proofs of the formula due to Guerra, Talagrand and Panchenko are
based on a subtle combination of interpolation, recursion, the Ghirlanda–Guerra identi-
ties and an invariance property for the limiting Gibbs measure [14,17,18,25]. A further
approach in the physics literature is the one due to Thouless, Anderson and Palmer (TAP)
and Plefka. It originates in [27] as a diagrammatic expansion of the partition function
of the Ising SK model relating the free energy to the so called TAP free energy, which
is a disorder-dependent function defined on the space of magnetizations of the spins. It
claims that the free energy equals the TAP free energy at magnetizations that solve a
set of mean field equations and satisfy certain convergence conditions, which have not
been completely clarified. Plefka’s condition [19,20] is believed to be necessary, but it
is not clear if it is also sufficient. The high temperature analysis of [27] has been made
rigorous in [1]. The physicist’s TAP approach has been adapted to spherical models in
[11].

In this paper we reinterpret the TAP approach as a variational principle for the free
energy, which states that the free energy equals the maximum of the TAP free energy
taken over magnetizations satisfying appropriate conditions. We make this rigorous in
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the case of the spherical Sherrington–Kirkpatrick model, and show that for this model
Plefka’s condition is the only condition needed to formulate the variational principle.

Let HN (σ ) , σ ∈ R
N , be the 2-spin spherical SK Hamiltonian which is a centered

Gaussian process on R
N with covariance

E
[
HN (σ ) HN

(
σ ′)] = N

(
σ · σ ′)2 , (1.1)

which can be constructed by setting

HN (σ ) = √
N

N∑

i, j=1

Ji jσiσ j (1.2)

for iid standard Gaussian random variables Ji j and σ ∈ R
N . Let E be the uniform

measure on the unit sphere in RN and let

Z N (β, hN ) = E
[
eβHN (σ )+NhN ·σ ] and FN (β, hN ) = 1

N
log Z N (β, hN ) (1.3)

be the partition function and free energy in the presence of an external field hN ∈ R
N .

The TAP free energy for this model is given by [11,27]

HT AP (m) = βHN (m) + Nm · hN +
N

2
log

(
1 − |m|2

)
+ N

β2

2

(
1 − |m|2

)2

for m ∈ R
N with |m| < 1, and Plefka’s condition [19,20] reads

β (m) ≤ 1√
2
,

where

β (m) = β
(
1 − |m|2

)
.

We refer to the approximation

FN (β, hN ) ≈ 1

N
sup

m∈RN :|m|<1,β(m)≤ 1√
2

HT AP (m) (1.4)

as the TAP–Plefka variational principle and prove it in the following form.

Theorem 1. For any β > 0, h ≥ 0 and any sequence h1, h2, . . . with |hN | = h one has
∣∣∣∣
∣∣
FN (β, hN ) − 1

N
sup

m∈RN :|m|<1,β(m)≤ 1√
2

HT AP (m)

∣∣∣∣
∣∣
→ 0 in probability. (1.5)

We also include a solution of the TAP–Plefka variational problem that reduces it from
a random N -dimensional optimization problem to one which is deterministic and one
dimensional.
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Lemma 2. For any β, h, h1, h2, . . ., as in Theorem 1 one has
∣
∣∣∣∣∣

1

N
sup

m∈RN :|m|<1,β(m)≤ 1√
2

HT AP (m) − sup
q∈[0,1]:β(1−q)≤ 1√

2

B (q)

∣
∣∣∣∣∣
→ 0 in probability,

where

B (q) = B (q;β, h) =
√

h2q + 2β2q2 +
1

2
log (1 − q) +

β2

2
(1 − q)2 .

Together, Theorem 1 and Lemma 2 show that

FN (β, hN ) → sup
q∈[0,1]:β(1−q)≤ 1√

2

B (q) . (1.6)

For comparison, the Parisi formula in this context [12,24] states that

FN (β, hN ) → inf
q∈[0,1]P (q) , (1.7)

where

P (q) = 1

2
h2 (1 − q) +

1

2

q

1 − q
+
1

2
log (1 − q) +

1

2
β2

(
1 − q2

)
.

1.1. Discussion.

1.1.1. The TAP–Plefka variational principle TheTAP–Plefka variational principle (1.4)
should be compared to the classical Gibbs variational principle which states that

FN (β, hN ) = 1

N
sup
G

{G (βHN (σ ) + Nσ · hN ) − H (G||E)} , (1.8)

where the supremum is over all probability measures which are absolutely continuous
with respect to E , and H (G||E) is the relative entropy of G with respect to E . The first
term is the internal energy and the second is the entropy.

In the classicalBragg–Williams approximation [8,28, Section4.1.2] in non-disordered
statistical physics one restricts this sup to simple measures G that are parameterized by
a mean magnetization m ∈ R

N ; in the case of ±1 spins one considers measures under
which the spins σi are independent with mean mi . For any m the corresponding measure
gives a lower bound for the free energy, because of the Gibbs variational principle. If
the Bragg–Williams approximation is successful, maximizing over m yields the true
free energy (at least to leading order). If applied to approximate the free energy of the
Curie-Weiss Hamiltonian β

N

∑
i, j σiσ j + h

∑N
i=1 σi one obtains a variational problem

over m ∈ R
N that is equivalent to

1

N
sup

m̄∈[−1,1]

{
βm̄2 + hm̄ − 1 + m̄

2
log

(
1 − m̄

2

)
− 1 − m̄

2
log

(
1 + m̄

2

)}
,
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which also appears in the classical solution of the model via the large deviation rate
function of the binomial distribution, and is thus indeed an accurate approximation.

In the spherical setting a product measure on the spins is not absolutely continuous
with respect to E , but a natural family of measures is provided by exponential tilts of the
uniform distribution given by eλσ ·md E appropriately normalized, for λ = λ (m) chosen
so that the mean magnetization is m. For such a measure the internal energy will be
close to βHN (m) + Nm · hN and the entropy will be close to N

2 log
(
1 − |m|2). Thus

the Bragg–Williams approximation of the free energy is

1

N
sup

m∈RN :|m|<1

{
βHN (m) + Nm · hN +

N

2
log

(
1 − |m|2

)}
,

which is in fact inaccurate, in light of (1.4). However, the TAP–Plefka variational prin-
ciple can be seen as the appropriate modification of the Bragg–Williams approximation
to obtain an accurate approximation for this disordered system, by adding the Onsager

correction term N
2 β2

(
1 − |m|2)2 and restricting the sup to m-s satisfying Plefka’s con-

dition.

1.1.2. The 2-spin model The 2-spin spherical SKmodel, which is themodel we consider
in this paper, is a much simpler model than the other Ising and spherical SK variants. It
is always replica symmetric, for all inverse temperatures β and external field strengths
h, and the Parisi formula can be written as a one parameter variational principle (see
(1.7)). If the external field vanishes (h = 0) an explicit closed form (non-variational)
formula for limN→∞ FN exists, even in low temperature.

Furthermore, the Hamiltonian can be written as HN (σ ) = √
Nσ T SN σ for a ran-

dom matrix SN from the Gaussian orthogonal ensemble, and by the rotational in-
variance of the sphere we can work in the diagonalizing basis of SN , in which case
HN (σ ) = √

N
∑N

i=1 λiσ
2
i where λi are the eigenvalues of SN . Because of this the free

energy can be computed by a random matrix approach, without using the Parisi formula
[4,13,15]. Part of our analysis also relies on random matrix considerations. The result-
ing formulas (1.5) and (1.6) are not related to previously obtained formulas for the free
energy. Our proof is the first rigorous derivation of a TAP variational principle based
on a microcanonical analysis that yields bounds valid for finite N , and where Plefka’s
condition appears naturally.

1.1.3. Previous work in the mathematical literature Recently in [10]ChenandPanchenko
used the Parisi formula to verify a TAP variational principle for mixed Ising SK models
in the thermodynamic limit, that is an equality after taking the limit N → ∞, with a
different condition replacing Plefka’s condition. In [22] Subag constructs for very low
temperatures a decomposition of the Gibbs measure of pure p-spin spherical models
into pure states in a microcanonical fashion, and notices that the log of the weight of
each pure state coincides with its TAP free energy.

Further mathematical results concern the TAP equations. These are a system of non-
linear equations for the quenched mean magnetization which have been interpreted as a
self-consistency property; within our framework it is natural to view the TAP equation
as the critical point equations of the TAP free energy. Bolthausen has developed an it-
erative scheme for solving the TAP equations for the Ising SK model [7] that converges
in the whole conjectured high temperature regime. Talagrand [23] and Chatterjee [9]
showed that in high enough temperature the mean magnetization of the Ising SK Gibbs
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measure satisfies the TAP equations. Auffinger and Jagganath have used the Parisi for-
mula to prove that solutions of the TAP equations describe the magnetization inside
appropriately defined pure states of generic mixed Ising models for all temperatures [3].
Auffinger, Ben Arous & Cerny have studied the (annealed) complexity of TAP solutions
for pure p-spin spherical Hamiltonians [2].

1.2. A word on the proof. The proof of Theorem 1 splits into a proof of a lower bound
and a proof of an upper bound for the partition function Z N (β, hN ). Both are based on
recentering the Hamiltonian around magnetizations m of potential pure states (a similar
recentering has been used by TAP [27], Bolthausen [6] and Subag [22]). In general,
recentering around a given m gives rise to an effective external field for the recentered
Hamiltonian.

The lower bound is presented in Sect. 3 and is proved by considering a recenter-
ing around any magnetization m that satisfies Plefka’s condition. We then restrict the
integral in Z N (β, hN ) to a subset of the sphere which is “centered at m”, namely the
intersection of the sphere with a plane that contains m and is perpendicular to both
m and the effective external field. The mean energy (value of Hamiltonian and exter-
nal field) on this subset is βHN (m) + Nm · hN , cf. the first two terms of HT AP (m).
The log of the measure of the subset is approximately N

2 log
(
1 − |m|2), cf. the third

term of HT AP (m). Finally, the recentered Hamiltonian on this subset turns out to be
a 2-spin Hamiltonian on a lower dimensional sphere without external field at inverse
temperature β (m) = β

(
1 − |m|2). If Plefka’s condition is satisfied this is less than the

critical inverse temperature βc = 1√
2
, and it is therefore natural that using the uniform

measure on the subset as a reference measure the free energy of the recentered Hamilto-
nian is 1

2β (m)2 = 1
2β

2 (1 − |m|)2, cf. the last term of HT AP (m) (the Onsager correc-
tion). In this way we show that the subset contributes approximately exp (HT AP (m))

to Z N (β, h). This shows that HT AP (m) is a lower bound of the free energy for any m
satisfying Plefka’s condition. Note that it also provides a natural interpretation of the
terms in HT AP (m), and of Plefka’s condition as the condition that a pure state should
effectively be in high temperature.

The upper bound is significantly harder and is proved in Sect. 4. It involves the
construction of a low-dimensional subspace of magnetizations MN with the property
that after recentering around any m ∈ MN , the effective external field is again almost
completely contained in MN . We write the integral in Z N (β, hN ) as a double integral
first over MN and then over the perpendicular space M⊥

N . For a fixed m ∈ MN the
integral over the perpendicular space M⊥

N is seen to be related to a partition function
without external field at a higher effective temperature, and is shown to be close to

the exponential of a modified TAP energy, with the Onsager correction β2

2

(
1 − |m|2)2

replaced by a different, not entirely explicit, expression. The integral in Z N (β, hN )

thus reduces to an integral of the exponential of the modified TAP energy over the low-
dimensional spaceMN , and by the Laplace method the log of the integral turns into the
supremum over the modified TAP energy over all m. We then show that if the Hessian at
a critical point of the modified TAP energy is negative semi-definite, as it must be at any
local maximum, then m satisfies Plefka’s condition and furthermore the modified TAP
energy and the original TAP energy HT AP (m) are close. From this the upper bound on
Z N (β, hN ) is seen to follow.

In Sect. 5 we prove Lemma 2. In the next section we fix notation and recall some
basic facts.
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2. Notation and Basic Facts

The letter c denotes a constant that does not depend on N , possibly a different one each
time it is used.

Let (�,A,P) be a probability space with random variables Ji j , i, j ≥ 1 that are iid
standard Gaussians. Define

HN (σ ) = √
N

N∑

i, j=1

Ji, jσiσ j for σ ∈ R
N .

For any λ ∈ R and σ ∈ R
N we have

HN (λσ) = λ2HN (σ ) . (2.1)

Let SN be the N × N matrix given by

(SN )i j = Ji j + J ji

2
.

Note that

HN (σ ) = √
Nσ T SN σ,

and

∇HN (σ ) = 2
√

N SN σ.

For this reason the 2-spin Hamiltonian gradient is linear, i.e.

∇HN (σ1 + σ2) = ∇HN (σ1) + ∇HN (σ2) for all σ1, σ2 ∈ R
N . (2.2)

We will use, especially in the upper bound, that the empirical spectral distribution of
SN converges to the semi-circle law. Let

√
Nθ N

1 < · · · <
√

Nθ N
N be the eigenvalues of

the matrix SN . We have that

1

N

N∑

i=1

δθ N
i

→ μ (x) dx in distribution, P − a.s.,

where

μ (x) = 1

π

√
2 − x21[−√

2,
√
2
]. (2.3)

In addition if we let

θu = inf

{
θ :

∫ θ

−√
2
μ (x) dx = u

}
, (2.4)

then
θ N

i = θ i
N
+ o (1) for i = 1, . . . , N , (2.5)

where the o (1) terms tend to zero P-a.s. uniformly in i (see e.g. Theorem 2.9 [5]).
For instance from the fact the eigenvalue of largest magnitude is of order

√
N one

can deduce that

sup
σ∈RN :|σ |≤1

|HN (σ )| ≤ cN and sup
σ∈RN :|σ |≤1

|∇HN (σ )| ≤ cN , (2.6)
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for all N large enough, almost surely. The latter implies that
∣∣∣HN

(
σ 1

)
− HN

(
σ 2

)∣∣∣ ≤ cN
∣∣∣σ 1 − σ 2

∣∣∣ for all σ i ∈ R
N ,

∣∣∣σ i
∣∣∣ ≤ 1, i = 1, 2. (2.7)

We let E M denote the uniform measure on the unit sphere of RM . When M = N we
drop the superscript and write E . If U is a linear subspace of RN we let EU denote the
uniform measure on the unit sphere of RN intersected with U .

The surface area of the N -dimensional sphere of radius r is 2π
N
2

	
(

N
2

)r N−1, and for any

unit vector v the inner product σ · v has a density under E given by

E [σ · v = dx] = 1√
π

	
( N
2

)

	
( N−1

2

)
(
1 − x2

) N−3
2

dx . (2.8)

More generally, for any linear subspace U ⊂ R
N of dimension M the the projection σ̃

of σ onto U has density

E
[
dσ̃

] = 1

π
M
2

	
( N
2

)

	
( N−M

2

)
(
1 − |σ̃ |2

) N−M−2
2

dσ̃ , (2.9)

with respect to the standard Lebesgue measure on RN restricted to U .

3. Lower Bound

In this section we show the following lower bound for the free energy.

Proposition 3. For β, h, h1, h2, . . . as in Theorem 1 one has

FN (β, hN ) ≥ 1

N
sup

m∈RN :|m|<1,β(m)≤ 1√
2

HT AP (m) + o (1) , (3.1)

where the o (1) term tends to zero P-a.s.

We prove this by noting that the partition function is certainly larger than the integral
of eβHN (σ )+Nσ ·hN over a slice

{
σ : ∣∣σ · m − |m|2∣∣ < ε

}
for any m inside the unit ball

and ε > 0. On this slice we recenter the spins

σ̂ = σ − m,

and use the decomposition

HN (σ ) = HN (m) + ∇HN (m) · σ̂ + HN
(
σ̂
)
, (3.2)

which holds deterministically, to note that the integral over the slice is essentially the
partition function of a 2-spin Hamiltonian on an N − 1-dimensional sphere of radius
1−|m|2 withmean βHN (m) and external field β∇HN (m)+NhN . By further restricting
the integral to a subspace where the external field vanishes the Onsager correction term
1
2β

2
(
1 − |m|2)2 of the TAP free energy arises as the free energy of the partition function

of this recentered Hamiltonian without external field. Plefka’s condition arises as the
condition that the recentered Hamiltonian is in high temperature.

By the second moment method and concentration of measure one can show the
following.
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Lemma 4. It holds that

sup
β∈

[
0, 1√

2

]

∣
∣∣∣
1

N
log E

[
exp (βHN (σ ))

] − β2

2

∣
∣∣∣ → 0, P − a.s. (3.3)

It will be important to consider the partition function restricted to the intersection of
the unit sphere with a hyperplane of dimension N −2 (or N −1). The next lemma shows
that (3.3) remains true uniformly over all such restrictions. Recall that E 〈u,v〉⊥ denotes
the uniform measure on the unit sphere in the subspace 〈u, v〉⊥ perpendicular to u and
v.

Lemma 5. We have

sup
β∈

[
0, 1√

2

]
,u,v∈RN

∣∣∣
∣
1

N
log E 〈u,v〉⊥ [

exp (βHN (σ ))
] − β2

2

∣∣∣
∣ → 0, P-a.s. (3.4)

Proof. Recall that HN (σ ) = √
Nσ T SN σ where SN is a real symmetric matrix. For

any u, v ∈ R
N that are linearly independent, let w1, . . . , wN be an orthonormal basis

such that 〈u, v〉 = 〈wN−1, wN 〉, and let A be the top left (N − 2) × (N − 2) minor of
SN when written in basis w1, . . . , wN . For σ ∈ 〈u, v〉⊥ we have HN (σ ) = √

N σ̃ T Aσ̃

where σ̃ = (σ1, . . . , σN−2) ∈ R
N . Let

√
Na1, . . . ,

√
NaN−2 be the eigenvalues of A.

Then

E 〈u,v〉⊥ [
exp (βHN (σ ))

] = E N−2

[

exp

(

Nβ

N−2∑

i=1

aiσ
2
i

)]

. (3.5)

Let B be the top left (N − 2)× (N − 2) minor of SN when written in the standard basis
and let

√
Nb1, . . . ,

√
NbN−2 be its eigenvalues. Note that HN−2 (σ ) = √

N − 2σ T Bσ

for σ ∈ R
N−2, and by (3.3) with N − 2 in place of N we have

E N−2
[
exp

(√
Nβσ T Bσ

)]
= e

N

(
β2

2 +o(1)

)

, (3.6)

where the o (1) term tends to zero almost surely. Also

E N−2
[
exp

(√
Nβσ T Bσ

)]
= E N−2

[

exp

(

Nβ

N−2∑

i=1

biσ
2
i

)]

. (3.7)

Let θ N
1 , . . . , θ N

N be the eigenvalues of SN . By the eigenvalue interlacing inequality
(see e.g. Exercise 1.3.14 [26])

θ N
i ≤ ai , bi ≤ θ N

i+2 for i = 1, . . . , N − 2,

so by (2.5) we have

sup
i=1,...,N

|ai − bi | → 0 a.s., as N → ∞.

Therefore
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sup
σ∈SN−2

∣∣
∣∣∣
β

N−2∑

i=1

aiσ
2
i − β

N−2∑

i=1

biσ
2
i

∣∣
∣∣∣
→ 0 a.s., as N → ∞,

so from (3.5), (3.6) and (3.7) it follows that

E 〈u,v〉⊥ [
exp (βHN (σ ))

] = eN β2

2 (1+o(1)),

uniformly over all linearly independent u, v, where the o (1) terms tend to zero almost
surely. The above argument but with (N − 1) × (N − 1) minors easily extends this to u
and v that are linearly dependent. This proves (3.4). ��

We can now prove the lower bound Proposition 3.

Proof of Proposition 3. For any m and σ , recenter the spins σ around m by letting
σ̂ = σ − m. Recentering the Hamiltonian (see (3.2)) and the external field one obtains

βHN (σ ) + Nσ · hN = βHN (m) + Nm · hN + Nhm · σ̂ + βHN
(
σ̂
)
, (3.8)

where

hm = β

N
∇HN (m) + hN , (3.9)

is the effective external field after recentering. Note that by our assumption |hN | = h
and (2.6) we have that for N large enough

∣
∣hm

∣
∣ ≤ c, (3.10)

for a constant c depending only on β and h.
Fix an m ∈ R

N with |m| < 1. Let v1, v2 be basis vectors of an arbitrary two
dimensional linear subspace of RN that contains m and hm . For ε > 0 to be fixed later
consider

A = {
σ : σ̂ · vi ∈ (−ε, ε) , i = 1, 2

}
. (3.11)

Note that for σ ∈ A ∣
∣σ̂ · m

∣
∣ ≤ cε and

∣
∣σ̂ · hm

∣
∣ ≤ cε, (3.12)

(the latter constant depends on the one in (3.10)) and

∣
∣σ̂
∣
∣2 = |σ |2 − |m|2 − 2σ̂ · m = 1 − |m|2 + O (ε) . (3.13)

Certainly we have

Z N (β, hN ) ≥ E
[
1A exp (βHN (σ ) + Nσ · hN )

]
.

Rewriting in terms of σ̂ and using (3.8) and the second inequality of (3.12) the right
hand-side can be bounded below by

exp (βHN (m) + Nm · hN − cεN ) E
[
1A exp

(
βHN

(
σ̂
))]

. (3.14)

Let γ σ⊥ be the projection of σ̂ onto the hyperplane 〈v1, v2〉⊥, where σ⊥ is a unit vector
and γ ∈ R is the magnitude of the projection. From (3.11) we have for σ ∈ A

∣∣∣σ̂ − γ σ⊥
∣∣∣ ≤ cε, (3.15)
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so that by (3.13)

γ 2 = 1 − |m|2 + O (ε) . (3.16)

Using (3.15) and (2.6), (2.7) we have

HN
(
σ̂
) = HN

(
γ σ⊥) + O (εN ) ,

and by (2.1), (2.6) and (3.16)

HN

(
γ σ⊥) = γ 2HN

(
σ⊥) =

(
1 − |m|2

)
HN

(
σ⊥) + O (εN ) .

This gives that (3.14) is at least

exp (βHN (m) + Nm · hN − cεN ) E
[
1A exp

(
β
(
1 − |m|2

)
HN

(
σ⊥))] . (3.17)

Now σ⊥ is independent of σ · m, σ · hm under E , and is uniform on the unit sphere
intersected with 〈v1, v2〉⊥. Therefore (3.17) in fact equals

exp (βHN (m) + Nm · hN − cεN ) E [A] E 〈v1,v2〉⊥
[
exp

(
β
(
1 − |m|2

)
HN (σ )

)]
.

Using (2.9) with M = 2 and (3.13) and it holds that

E [A] ≥ Ncε2
(
1 − |m|2 − cε

) N−4
2

,

and setting e.g. ε = 1√
N
this equals

exp

(
N

2
log

(
1 − |m|2

)
+ o (N )

)
.

Thus, Z N is at least

exp
(
βHN (m) + Nm · hN + N

2 log
(
1 − |m|2) + o (N )

)

×E 〈v1,v2〉⊥ [
exp

(
β
(
1 − |m|2) HN (σ )

)]
,

for any m with |m| < 1, where the error term is o (N ) uniformly in m, almost surely.
By Lemma 5 this is in turn at least

exp

(
βHN (m) + Nm · hN +

N

2
log

(
1 − |m|2

)
+ N

β2

2

(
1 − |m|2

)2
+ o (N )

)
,

(3.18)
provided

β
(
1 − |m|2

)
≤ 1√

2
, i.e. β (m) ≤ 1√

2
, (3.19)

where the error term is o (N ) almost surely, uniformly in m that satisfy (3.19). Since
(3.18) equals exp (HT AP (m) + o (N )) the claim (3.1) follows. ��
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4. Upper Bound

In this section we prove the following upper bound on the free energy.

Proposition 6. For β, h, h1, h2, . . . as in Theorem 1 one has

FN (β, hN ) ≤ 1

N
sup

m∈RN :|m|<1,β(m)≤ 1√
2

HT AP (m) + o (1) , (4.1)

where the o (1) term tends to zero P-a.s.

As for the lower bound, our proof is based on considering the Hamiltonian recentered
around certain m-s inside the unit ball. However, for an upper bound we are not free to
simply restrict the integral in the partition function to slices around an m and ignore the
complement. Neither can we further restrict the integral inside the slice to a space where
the effective external field vanishes. Lastly we can not ignore slices for which Plefka’s
condition is not satisfied.

We get around these issues by constructing a low-dimensional subspaceMN of m-s,
such that the recentered Hamiltonian restricted to the space of configurations perpen-
dicular to MN has almost vanishing external field for any m ∈ MN , without further
restriction. Because the dimension ofMN is o (N )we are able to use the Laplacemethod
to upper bound the free energy by a sup of the free energy contribution of each of these
restricted Hamiltonians. Lastly, a coarse-graining of the recentered Hamiltonian gives a
sequence of approximations to the free energy of the restricted Hamiltonians in a form
that allows to show that the supremum must be attained at an m that satisfies Plefka’s
condition.

4.1. Diagonalization. To prove the upper bound Proposition 6 we are obliged to make
stronger use the diagonalized Hamiltonian

N
N∑

i=1

θ N
i σ 2

i , (4.2)

and the semi-circle law. Let

h̃N be the vector hN written in the diagonalizing basis of the matrix SN . (4.3)

By rotational symmetry we have

FN (β, hN ) = 1

N
log E

[

exp

(

Nβ

N∑

i=1

θ N
i σ 2

i + Nh̃N · σ

)]

.

For convenience we also replace the diagonalized Hamiltonian (4.2) by its deterministic
counterpart

H̃N (σ ) = N
N∑

i=1

θi/N σ 2
i ,
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where each random eigenvalue θ N
i is replaced by its deterministic typical position θi/N

(recall (2.4)). The error made is controlled by (2.5), giving

lim
N→∞

1

N
sup

σ :|σ |=1

∣∣∣∣∣
N

N∑

i=1

θ N
i σ 2

i − H̃N (σ )

∣∣∣∣∣
= 0, P − a.s. (4.4)

Let

F̃N (β, hN ) = 1

N
log E

[

exp

(

Nβ

N∑

i=1

θi/N σ 2
i + Nh̃N · σ

)]

and let

H̃T AP (m) = β H̃N (m) + Nm · h̃N +
N

2
log

(
1 − |m|2

)
+ N

β2

2

(
1 − |m|2

)2
. (4.5)

By (4.4) the upper bound Proposition 6 follows from the following deterministic bound.

Proposition 7. For β, h, h1, h2, . . . as in Theorem 1 one has

F̃N (β, hN ) ≤ 1

N
sup

m∈RN :|m|<1,β(m)≤ 1√
2
,

H̃T AP (m) + o (1) . (4.6)

The rest of this section is devoted to the proof of Proposition 7.

4.2. Free energy of coarse-grained Hamiltonian without external field. We will ap-
proximate H̃N (σ ) by a coarse-grained Hamiltonian where the θi/N are replaced by a
bounded number of distinct coefficients. For such a Hamiltonian it will be straight-
forward to bound the free energy using the Laplace method. To this end consider for

each K ≥ 2 equally spaced numbers x1, . . . , xK in
[
−√

2,
√
2
]
, so that,

−√
2 = x1 < x2 < · · · < xK = √

2 − 2
√
2

K
and xk+1 − xk = 2

√
2

K
,

and a partition I1, . . . , IK of {1, . . . , N } given by

Ik = {
i : xk ≤ θi/N < xk+1

}
, k = 1, . . . , K − 1 and IK = {

i : xK ≤ θi/N
}
. (4.7)

Let

σ 2
[k] =

∑

i∈Ik

σ 2
i and μk = |Ik |

N
. (4.8)

The next lemma gives the density of the vector
(
σ 2
[1], . . . σ

2
[K−1]

)
under E .

Lemma 8. The E-distribution of the vector
(
σ 2
[1], . . . σ

2
[K−1]

)
has a density on R

K−1

with respect to Lebesgue measure given by

	

(
N

2

) K∏

k=1

ρ
|Ik |−2

2
k

	
( |Ik |

2

)1Adρ1 . . . dρK−1, (4.9)

where we write ρK = 1−ρ1−· · ·−ρK−1 and A = {ρ1, . . . , ρK−1 ≥ 0, ρ1 + · · · + ρK−1
≤ 1}.
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Proof. One can sample the random variable σ with law E by sampling from the standard

Gaussian distribution onRN and normalizing the result. Therefore
(
σ 2
[1], . . . σ

2
[K−1]

)
has

the same law as (R1, . . . , RK−1) , where

Ri = Xi

X1 + · · · + X K
, i ≤ K ,

the Xi are independent, and Xi has the χ2-distribution with |Ik | degrees of freedom, i.e.

has density 1
2|Ik |/2	(|Ik |/2) x

|Ik |−2
2

i e− xk
2 1{xk≥0}dxk . We now let Z = X1 + · · · + X K and

make the change of variables xi = zρi , i = 1, . . . , K − 1 which has Jacobian zk−1 to
obtain that (R1, . . . , RK−1, Z) has density

1A1{z≥0}

(
∏K

k=1
1

2|Ik |/2	
( |Ik |

2

) (zρi )
|Ik |−2

2 e− zρk
2

)

zK−1dρ1 . . . dρk−1dz

=
⎛

⎝1A
∏K

k=1
ρ

|Ik |−2
2

i

	
( |Ik |

2

)

⎞

⎠
(

1
2N/2 1{z≥0}z

N−2
2 e− z

2 dz
)

dρ1 . . . dρk−1.

Since
∫

1

2N/2 z
N−2
2 e− z

2 dz = 	

(
N

2

)
,

integrating out z to get the marginal of (R1, . . . , RK−1) one obtains (4.9). ��
Wefirst show the following variational principle for the free energy of the coarse-grained
Hamiltonians in the absence of an external field.

Lemma 9. For all C > 0 we have uniformly in 0 < β ≤ C , large enough K and
N ≥ c (K ) that

1
N log E

[
exp

(
Nβ

K∑

k=1
xkσ

2
[k]

)]

= sup
0≤ fk , f1+···+ fK =1

{
β

K∑

k=1
xk fk + 1

2

∑
μk log

fk
μk

}
+ O

(
K 3 log N

N

)
.

(4.10)

Proof. By Lemma 8 the integral E
[
exp

(
Nβ

∑K
k=1 xkσ

2
[k]

)]
equals

	
( N
2

)

∏K
k=1 	

( |Ik |
2

)
∫

[0,1]K−1
1A exp

(

N

{

β

K∑

k=1

xkρk +
K∑

k=1

1

2

(
μk − 2

N

)
log ρk

})

×dρ1 . . . dρK−1. (4.11)

By the Laplace method the integral in (4.11) is at most

exp

(

N

{

sup
0≤ fk , f1+···+ fK =1

{

β

K∑

k=1

xk fk +
1

2

∑(
μk − 2

N

)
log fk

}})

. (4.12)
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To get rid of the nuisance term 2
N we use the following ad-hoc argument. For any

maximizer of the sup the value must exceed −√
2β − 1

2 log K , since one obtains at least
this by setting f1 = · · · = fK = 1

K . Note that μk ≥ c
K 3/2 for all k, K , by (2.3), so

for N ≥ c (K ) also μk − 2
N ≥ c

K 3/2 . Assume now that fk ≤ e−K 2
from some k. Then

β
∑K

k=1 xk fk + 1
2

∑(
μk − 2

N

)
log fk ≤ √

2β − c K 2

K 3/2 < −√
2β − 1

2 log K , for K large
enough. So for K large enough and N ≥ c (K ) any maximizer in the sup above must
satisfy fk ≥ e−K 2

. But for such fk the nuisance term contributes at most K 3

N . Therefore
(4.12) equals

exp

(

N

{

sup
0≤ fk , f1+···+ fK =1

{

β

K∑

k=1

xk fk +
1

2

∑
μk log fk

}

+ O

(
K 3

N

)})

.

Using the bounds 	 (x) � √
2πx (x/e)x for x ≥ 1

2 and 1 ≤ ∏K
k=1 |Ik | ≤ N K , one

sees that 1
N log of the factor multiplying the integral in (4.11) equals

1
N log

	
(

N
2

)

∏K
k=1 	

( |Ik |
2

)

= 1
N log

(
N
2

) N
2

∏K
k=1

( |Ik |
2

) |Ik |
2

+ 1
N log

√
2π N

2
∏K

k=1

√
2π |Ik |

2

+ O
( K

N

)

= − 1
2

∑
μk logμk + O

(
K log N

N

)
.

This completes the proof. ��
The variational problem on the bottom line of (4.10) can be solved. To state the result

let

gK (λ) =
K∑

k=1

μk

λ − xk
. (4.13)

For all β > 0 there is a unique λK (β) > xK such that

gK (λK (β)) = 2β. (4.14)

Let

hK (λ) =
K∑

k=1

μk log (λ − xk) ,

and

FK (β) = βλK (β) − 1

2
− 1

2
log (2β) − 1

2
hK (λK (β)) . (4.15)

The next lemma shows that FK (β) is the supremum in the variational problem from
(4.10).

Lemma 10. For each K and β > 0 we have

sup
0≤ fk , f1+···+ fK =1

{

β

K∑

k=1

xk fk +
1

2

∑
μk log

fk

μk

}

= FK (β) . (4.16)
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Proof. Since the quantity being maximized tends to −∞ if fk → 0 for some k there
must be a global maximum satisfying fk > 0 for all k. Using Lagrange multipliers to
solve the constrained optimization problem one considers

L ( f1, . . . , fk, λ) = β

K∑

k=1

xk fk +
1

2

∑
μk log

fk

μk
+ λ̃

(
K∑

k=1

fk − 1

)

.

If ( f1, . . . , fK ) is a global maximum then there must be a λ̃ such that
(

f1, . . . , fK , λ̃
)

is a critical point of L. The critical point equations of L read

βxk − 1

2

1

fk
+ λ̃ = 0, k = 1, . . . , K , and

K∑

k=1

fk − 1 = 0.

The first K equations are equivalent to

fk = 1

2β

μk

λ − xk
, k = 1, . . . , K , (4.17)

where we reparameterized λ = −βλ̃. Therefore for some λ > xK it holds that

K∑

k=1

fk = 1,

for the fk in (4.17) and these fk maximize (4.16). Inspection of (4.13)–(4.14) reveal that
λ = λK (β) is the unique such λ. When fk take the form in (4.17) then

K∑

k=1

xk fk =
K∑

k=1

xk
1

2β

μk

λ − xk
= 1

2β

(

λ

K∑

k=1

μk

λ − xk
− 1

)

= λ − 1

2β
, (4.18)

and

1

2

∑
μk log

fk

μk
= 1

2

∑
μk log

1

2β

1

λ − xk
= −1

2
log (2β) − 1

2
hK (λ) .

Therefore, the value of the quantity being maximized at the unique maximizer is the
right-hand side of (4.16). ��

Note that Lemmas 9 and 10 show that the free energy of the coarse-grained Hamil-
tonians has no phase transition for any finite K . Also those lemmas and the bound

N∑

i=1

θi/N σ 2
i =

K∑

k=1

xkσ
2
[k] + O

(
K −1

)
, (4.19)

imply thatFK (β) is an approximationof the free energyof theHamiltonian N
∑N

i=1 θi/N

σ 2
i .

Lemma 11. For all C > 0 and K ≥ 2 we have

lim sup
N→∞

sup
β∈[0,C]

∣∣∣
∣∣
1

N
log E N

[

exp

(

βN
N∑

i=1

θi/N σ 2
i

)]

− FK (β)

∣∣∣
∣∣
≤ c

K
. (4.20)
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We now investigate the behavior of FK (β) as K → ∞. Let

g (λ) =
∫ √

2

−√
2

μ (x)

λ − x
dx for λ ≥ √

2. (4.21)

By standard estimates for Riemann sums

lim
K→∞ gK (λ) = g (λ) for λ >

√
2. (4.22)

The integral can be computed explicitly, and in fact

g (λ) = λ −
√

λ2 − 2.

Note that g
(√

2
)

= √
2. If β ≤ 1√

2
there is a unique λ (β) ≥ √

2 such that g (λ (β)) =
2β. In fact

λ (β) = 1√
2

(√
2β +

1√
2β

)
for β ≤ 1√

2
. (4.23)

The convergence (4.22) implies that

lim
K→∞ λK (β) = λ (β) for β <

1√
2
. (4.24)

Also define

h (λ) =
∫ √

2

−√
2
μ (x) log (λ − x) dx for λ ≥ √

2,

which can be computed explicitly as

h (λ) = λ2

2
− 1

2
− λ

√
λ2 − 2

2
+ log

(
λ +

√
λ2 − 2

2

)

. (4.25)

By the convergence of the Riemann sum

lim
K→∞ hK (λ) = h (λ) for λ >

√
2. (4.26)

Define

F (β) = βλ (β) − 1

2
− 1

2
log (2β) − 1

2
h (λ (β)) , β ∈

[
0,

1√
2

]
. (4.27)

Using the identities (4.23) and (4.25), this expression simplifies to

F (β) = β2

2
for β ∈

[
0,

1√
2

]
. (4.28)

Also it follows from (4.24) and (4.26) and the monotonicity of hK (λ) that

lim
K→∞FK (β) = F (β) if β <

1√
2
. (4.29)
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A posteriori it is clear that for β > 1√
2
the function FK (β) converges to the low-

temperature free energy of the Hamiltonian HN (σ )without external field, but this is not
a step in the proof of our main results, but rather a consequence.

In the proof of Proposition 7 at the end of the next section we will use the two
lemmas that now follow to rule out m that do not satisfy Plefka’s condition. First, note
that gK (λ) , λK (β) , hK (λ) and thus FK (β) are all continuous and differentiable. We
have the following identity.

Lemma 12. For all β > 0

F ′
K (β) = λK (β) − 1

2β
. (4.30)

Proof. This follows from thedefinition (4.15) and the equalitiesh
′
K = gK and gK (λ (β))

= 2β. ��

Lemma 13. For all K ≥ 2 there is an ε ∈
(
0, 2

√
2

K

)
such that

λK (β) ≥ √
2 − ε �⇒ β ≤ 1√

2
.

Proof. We may set
√
2 − ε = √

2 − λK

(
1√
2

)
since

λK (β) ≥ λK

(
1√
2

)
�⇒ β ≤ 1√

2
,

and

xK < λK

(
1√
2

)
< λ

(
1√
2

)
= √

2,

where the second inequality follows because gK (λ) < g (λ) forλ ≥ √
2 (see (4.7), (4.8),

(4.21), (4.13)) and gK (λ) is decreasing in λ, implying that the solution to gK (λ) = √
2

must occur for λ <
√
2. ��

Lemma 12 also allows us to strengthen the pointwise convergence (4.29) to uniform
convergence.

Lemma 14. We have

lim
K→∞ sup

β∈
[
0, 1√

2

] |FK (β) − F (β)| = 0. (4.31)

Proof. TheFK (β) are increasing in β (because the left-hand side of (4.16) is) andF (β)

is increasing in β ∈
[
0, 1√

2

]
and uniformly continuous (recall (4.28)). This implies

that the pointwise convergence (4.29) can be strengthened to uniform convergence on[
0, 1√

2
− δ

]
for any δ > 0, i.e.

lim
K→∞ sup

β∈
[
0, 1√

2
−δ

] |FK (β) − F (β)| = 0.
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For any δ > 0 we have

sup
β∈

[
1√
2
−δ, 1√

2

] |F (β) − F (β − δ)| ≤ cδ,

and for any δ ∈
(
0, 1

2
√
2

)
(say) we have uniformly in K that

sup
β∈

[
1√
2
−δ, 1√

2

] |FK (β) − FK (β − δ)| ≤ cδ,

by (4.30) (λK (β) is decreasing in β and λK
( 1
2

)
is bounded by (4.24)). Thus for such δ

also

sup
β∈

[
1√
2
−δ, 1√

2

] |FK (β) − F (β)| ≤ cδ.

Thus

lim
K→∞ sup

β∈
[
0, 1√

2

] |FK (β) − F (β)| ≤ cδ,

for all δ ∈
(
0, 1

2
√
2

)
, so the claim (4.31) follows. ��

4.3. Making the external field after recentering vanish. As for the lower bound, an
important step in the proof of the upper bound is to recenter the Hamiltonian around an
m ∈ R

N which yields an effective external field β 1
N ∇ H̃N (m) + h̃N [cf. (3.8)–(3.9) and

(4.44)]. In this section the main goal is Lemma 17, which constructs a low-dimensional
subspaceMN ⊂ R

N , such that if we recenter around anym ∈ MN the effective external
field is again (almost) contained inMN (so that if we restrict to the space perpendicular
toMN , the effective external field after recentering almost vanishes). Its use will be an
important step in the proof of the upper bound in the next subsection.

The construction in the proof of Lemma 17 will involve taking the span of a vector
(close to) h̃N iterated under the the map 1

N ∇ H̃N . For this the next lemma will be needed,

whose claim (4.32) says says that after applying the map 1
N ∇ H̃N to a vector v ∈ R

N a
large number of times, the resulting vector will be almost completely contained in the
space spanned by the eigenvectors associated to the eigenvalues of largest magnitude.
Let �A denote the projection onto a subspace A ⊂ R

N .

Lemma 15. For any ε > 0, N ≥ 1, v ∈ R
N with vN �= 0 and k ≥ 1 it holds that

∣∣
∣∣�

〈
ei :|θi/N |<√

2−ε
〉 (

1
N ∇ H̃N

)k
v

∣∣
∣∣

∣
∣∣∣
(

1
N ∇ H̃N

)k
v

∣
∣∣∣

≤ √
N |v| v−1

N e−cεk . (4.32)
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Proof. Denote the matrix 1
N ∇ H̃N by D. Note that D is diagonal and Dii = 2θi/N . Thus

for any v ∈ R
N we have

(
Dkv

)

i
= (

2θi/N
)k

vi .

Now for v such that vN �= 0 and i such that
∣∣θi/N

∣∣ <
√
2 − ε we have

∣∣(Dkv
)

i

∣∣
∣∣Dkv

∣∣ =
∣
∣∣
(
2θi/N

)k
vi

∣
∣∣

√∑N
i=1

(
2θi/N

)2k
v2i

≤
∣∣θi/N

∣∣k |v|
√
2

k
vN

≤ v−1
N |v| (1 − cε)k ≤ |v| v−1

N e−cεk .

By taking the square and summing over the atmost N indices i such that
∣∣θi/N

∣∣ <
√
2−ε

the claim (4.32) follows. ��
The next lemma is a weak bound on the proportion of all eigenvalues have magnitude

close to the maximal magnitude.

Lemma 16. For all N ≥ 1 and ε > 0
∣
∣∣
{

i : ∣∣θi/N
∣
∣ ≥ √

2 − ε
}∣∣∣ ≤ cεN . (4.33)

Proof. This follows for instance by noting that θ(i+1)/N − θi/N ≥ cN−1, which is a

consequence of the definition (2.4) of θi/N and the bound
∫ √

2√
2−ε

μ (x) dx ≤ ε supx μ (x)

≤ cε. ��
We now construct the subspacesMN . Recall that 1

N ∇ H̃N is a linear map (cf. (2.2))
and that the standard basis vectors ei are its eigenvectors, so the span of any set of basis
vectors in invariant under 1

N ∇ H̃N .

Lemma 17. Let β, h, h1, h2, . . . be as in Theorem 1. There exists a sequence of linear
spaces M1,M2, . . . such that MN ⊂ R

N ,

dim (MN ) = �N 3/4�, (4.34)

and MN is approximately invariant under the map m → β 1
N ∇ H̃N (m) + h̃N in the

sense that

lim
N→∞ sup

m∈MN ,|m|≤1

∣∣∣∣�
M⊥

N

(
β
1

N
∇ H̃N (m) + h̃N

)∣∣∣∣ = 0. (4.35)

Proof. We will constructMN so that it contains a vector h̄N close to h̃N and is approx-
imately invariant under the map 1

N ∇ H̃N (m). More precisely let

h̄N ,i = h̃N ,i for i ≤ N − 1 and h̄N ,N =
⎧
⎨

⎩

h̃N ,N if
∣∣∣h̃N ,N

∣∣∣ ≥ 1
N ,

1
N if

∣∣∣h̃N ,N

∣∣∣ < 1
N ,

(4.36)

so that
∣∣∣h̄N − h̃N

∣∣∣ ≤ 1

N
and

∣∣h̄N ,N
∣∣ ≥ 1

N
.
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We construct MN so that
h̄N ∈ MN , (4.37)

and MN is almost invariant under 1
N ∇ H̃N in the sense that

lim
N→∞ sup

m∈MN ,|m|≤1

∣∣∣∣�
M⊥

N

(
1

N
∇ H̃N (m)

)∣∣∣∣ = 0. (4.38)

Since
∣∣
∣�M⊥

N h̃N

∣∣
∣ ≤

∣∣
∣�M⊥

N h̄N

∣∣
∣ + 1

N = 1
N and

∣∣
∣∣�

M⊥
N

(
β
1

N
∇ H̃N (m) + h̃N

)∣∣
∣∣ ≤ β

∣∣
∣∣�

M⊥
N

(
1

N
∇ H̃N (m)

)∣∣
∣∣ +

∣∣
∣�M⊥

N h̃N

∣∣
∣ ,

this implies (4.35). Furthermore, it suffices to construct MN so that

dimMN ≤ �N 3/4�, (4.39)

since by adding arbitrary basis vectors ei (which are invariant under 1
N ∇ H̃N ) to the span

ofMN one can ensure dimMN = �N 3/4� while maintaining (4.37) and (4.38).
To ensure (4.38) we will letMN contain the span of a sufficient number of vectors

h̄k
N =

(
1

N
∇ H̃N

)k

h̄N , k ≥ 0,

and basis vectors ei belonging to the eigenvalues θi/N of largest magnitude. Let

ĥk
N = h̄k

N∣∣h̄k
N

∣∣ ,

be normalized vectors and construct

MN =
〈
ĥ0

N , . . . , ĥV −1
N , e j : j ∈ J

〉
,

for

V = √
N (log N )2 ,

and

J =
{

j : ∣∣θ j/N
∣∣ ≥ √

2 − N−1/2
}

.

Clearly, (4.37) holds sinceMN contains ĥ0
N = h̄N /

∣∣h̄N
∣∣. Using Lemma 16 it also holds

that

dimMN ≤ V + |J | ≤ √
N (log N )2 + c

√
N ,

which implies (4.39).
To check (4.38), note that for any m ∈ MN with |m| ≤ 1 we may decompose m as

m =
V −1∑

k=0

αk ĥk
N +

∑

i∈J

γi ei , (4.40)
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for some α0, . . . , αV −1 ∈ R, γi ∈ R, i ∈ J , where we first set set αV −1 = m · ĥV −1
N , to

ensure that
|αV −1| ≤ 1, (4.41)

before picking the other coefficients in the decomposition. Thus

1
N ∇ H̃N (m) = ∑V −1

k=0 αk
1
N ∇ H̃N

(
ĥk

N

)
+
∑

i∈J γi
1
N ∇ H̃N (ei )

= ∑V −1
k=0 αk

∣∣h̄k+1
N

∣∣
∣
∣h̄k

N

∣
∣ ĥk+1

N +
∑

i∈J γi2θi/N ei .

Therefore

�M⊥
N

(
1

N
∇ H̃N (m)

)
= αV −1

∣∣h̄V
N

∣∣
∣
∣∣h̄V −1

N

∣
∣∣
�M⊥

N

(
ĥV

N

)
.

Note that since ‖ 1
N ∇ H̃N ‖ = 2θ0 = 2θ1 = 2

√
2 we have

∣∣h̄V
N

∣∣ ≤ 2
√
2
∣∣∣h̄V −1

N

∣∣∣ and so

using also (4.41)
∣∣∣∣�

M⊥
N
1

N
∇ H̃N (m)

∣∣∣∣ ≤ c
∣∣∣�M⊥

N ĥV
N

∣∣∣ .

The point of (4.36) was to ensure that
∣∣h̄N ,N

∣∣ ≥ 1
N , so that Lemma 15 applies to h̄N .

With ε = N−1/2 it gives that

∣
∣
∣�M⊥

N ĥV
N

∣
∣
∣ =

∣
∣
∣�M⊥

N h̄V
N

∣
∣
∣

∣
∣h̄V

N

∣
∣ ≤

∣∣
∣
∣�

〈
ei :θi/N <

√
2−ε

〉

h̄V
N

∣∣
∣
∣

∣
∣h̄V

N

∣
∣ ≤ c

√
N
∣
∣h̄N

∣
∣ h̄−1

N ,N e−c(log N )2 = o (1) ,

(4.42)
so (4.38) follows. Since we have constructed MN satisfying (4.37), (4.38) and (4.39)
the proof is complete. ��
Wewill need a version of Lemma 11where we integrate over the subspace perpendicular
toMN .

Lemma 18. For any C > 0 and K > 0

lim sup
N→∞

sup
β∈[0,C]

∣∣
∣∣∣
1

N
log EUN

[

exp

(

βN
N∑

i=1

θi/N σ 2
i

)]

− FK (β)

∣∣
∣∣∣
≤ c

K
,

where UN = M⊥
N and MN , N ≥ 1, is the sequence of subspaces from Lemma 17.

Proof. This follows from Lemma 11 similarly to how Lemma 5 follows from Lemma 4.
Let M = �N 3/4�. Consider an orthonormal basis of RN−M such that the space UN
is spanned by the first N − M basis vectors and let A be the (N − M) × (N − M)

minor of the matrix D which in the standard basis is diagonal with Dii = θi/N . The
eigenvalues a1, . . . , aN−M of A satisfy ai = θi/N + o (1) = θi/(N−M) + o (1) by the
eigenvalue interlacing inequality, so that an estimate for EUN [·] follows fromLemma 11
with N − M in place of N . ��
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4.4. Proof of upper bound. We are now ready to complete the proof of the upper bound.

Define amodified TAP free energy by replacing the Onsager correction 1
2β

2
(
1 − |m|2)2

by FK
(
β
(
1 − |m|2)) to obtain

H̃ K
T AP (m) = β H̃N (m) + Nm · h̃N +

N

2
log

(
1 − |m|2

)
+ NFK

(
β
(
1 − |m|2

))
.

We have the following version of the upper bound Proposition 7 with H̃ K
T AP (m) in place

of H̃T AP (m) and without a Plefka condition.

Proposition 19. For all K ≥ 2 and β, h, h1, h2, . . . as in Theorem 1 we have

F̃N (β, hN ) ≤ 1

N
sup

m∈RN :|m|<1
H̃ K

T AP (m) +
c

K
, (4.43)

for large enough N.

Proof. Let MN be the space from Lemma 17 and let

UN = M⊥
N .

Let M = �N 3/4�. For any σ ∈ R
N let m be the projection of σ onto MN and σ̂ =

σ − m ∈ UN . Recentering the Hamiltonian around m [cf. (3.8)–(3.9)] we have that

E
[
exp

(
β H̃N (σ ) + Nh̃N · σ

)]

= E
[
exp

(
Nβ H̃N (m) + Nh̃N · m + N

(
β 1

N ∇ H̃N (m) + h̃N

)
· σ̂ + β H̃N

(
σ̂
))]

.

(4.44)
Lemma 17 implies that

lim
N→∞ sup

m∈MN

sup
σ̂∈M⊥

N ,|σ̂ |≤1

(
β
1

N
∇ H̃N (m) + h̃N

)
· σ̂ = 0,

so the effective external field vanishes and (4.44) is at most

eo(N )E
[
exp

(
Nβ H̃N (m) + Nh̃N · m + β H̃N

(
σ̂
))]

. (4.45)

Note that the the E [·|m]-law of σ̂ is the uniform distribution on sphere in the subspace
UN of radius

√
1 − |m|2. Thus using also (2.1) this equals

E
[
exp

(
Nβ H̃N (m) + Nh̃N · m

)
EUN

[
β
(
1 − |m|2

)
H̃N (σ )

]]
. (4.46)

By Lemma 18 this is at most

E
[
exp

(
Nβ H̃N (m) + Nh̃N · m + FK

(
β
(
1 − |m|2

)))]
eo(N )+ c

K . (4.47)

Using (2.9) the E-integral equals

aN

∫

m:|m|<1

(
1 − |m|2

) N−M−2
2

exp
(

NβHN (m) + Nh̃N · m

+ NFK

(
β
(
1 − |m|2

)))
dm, (4.48)



The TAP–Plefka Variational Principle 1013

where aN = 1

π
N−M
2

	
(

N
2

)

	
(

M
2

) and the integral is M-dimensional against Lebesgue measure

on MN . This equals

aN

∫

m:|m|<1
exp

(
H̃ K

T AP (m) + (M + 2)
∣∣
∣log

(
1 − |m|2

)∣∣
∣
)

dm,

and by the Laplace method is bounded above by

aN exp

(

sup
m:|m|<1

{
H̃ K

T AP (m) + (M + 2)
∣∣∣log

(
1 − |m|2

)∣∣∣
}) ∫

m:|m|<1
dm.

The M-dimensional Lebesgue integral
∫

m:|m|<1 dm is the volume of the unit ball in

dimension M which equals π
M
2

	
(

M
2 +1

) = O (1), and log aN = o (N ), so this is at most

exp

(

o (N ) + sup
m:|m|<1

{
H̃ K

T AP (m) + (M + 2)
∣∣
∣log

(
1 − |m|2

)∣∣
∣
})

. (4.49)

To get rid of the nuisance term involving M + 2, note that there is a δ depending only on
β and h such that the supremum is always achieved for |m| < 1 − δ, since all terms in
the supremum not involving log are bounded by cN . Thus (4.49) is at most

exp

(

o (N ) + sup
m:|m|<1

H̃ K
T AP (m) + cM

)

. (4.50)

This is then also an upper bound for (4.48), which shows that (4.47) and therefore

F̃N (β, hN ) is boundedbyexp
(
supm:|m|<1 H̃ K

T AP (m) + o (N ) + c
K

)
. This implies (4.43).

��
We can now prove the upper bound Proposition 7 for free energy of the diagonal and

deterministic Hamiltonian H̃N (σ ), by showing that the sup in (4.43) is bounded above
by that in (4.6).

Proof of Proposition 7. Fix K ≥ 2. For any N ≥ 1, consider the variational problem

sup
m∈RN :|m|<1

H̃ K
T AP (m) .

Any local maximum m of H̃ K
T AP (m) must satisfy

∇ H̃ K
T AP (m) = 0,

and
∇2 H̃ K

T AP (m) is negative semi-definite. (4.51)

The gradient of H̃ K
T AP is

∇ H̃ K
T AP (m) = β∇ H̃N (m) + Nh̃N − Nm

(
1

1 − |m|2 + 2βF ′
K

(
β
(
1 − |m|2

)))
.
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By Lemma 12 we have for all m that

∇ H̃ K
T AP (m) = β∇ H̃N (m) + Nh̃N − N2βmλK

(
β
(
1 − |m|2

))
.

Thus, the Hessian ∇2 H̃ K
N (m) equals

β∇2 H̃N (m) − N2β IλK

(
β
(
1 − |m|2

))
+ 4β2NmmT λ

′
K

(
β
(
1 − |m|2

))
.

For any local maximum m let

A = 1

2N
∇2 H̃N (m) − IλK

(
β
(
1 − |m|2

))
,

and

B = 2m (m)T λ
′
K

(
β
(
1 − |m|2

))
.

Since B is of rank one, the second largest eigenvalue aN−1 of A is bounded above
by the largest eigenvalue of A + B. The latter matrix is the Hessian at m multiplied
by a positive scalar, so all its eigenvalues are non-positive. Thus aN−1 ≤ 0. Further-
more, 1

2N ∇2 H̃N (m) = 1
N D where D is the diagonal matrix with Dii = θi/N , so the

eigenvalues of A are θi/N − λK
(
β
(
1 − |m|2)). This shows that

λK

(
β
(
1 − |m|2

))
≥ θ1− 1

N
,

at m which are local maxima. Since

θ1−1/N = √
2 + o (1) ,

it follows from Lemma 13 that we must have for such m

β
(
1 − |m|2

)
≤ 1√

2
, that is β (m) ≤ 1√

2
,

(provided N large enough depending on K ), and by Lemma 14

FK

(
β
(
1 − |m|2

))
≤ 1

2
β2

(
1 − |m|2

)2
+ εK ,

where limK→∞ εK = 0. Thus from (4.43) it holds for such N that

F̃N (β, hN ) ≤ 1

N
sup

m∈RN :|m|<1,β(m)≤ 1√
2

H̃T AP (m) + εK +
c

K
.

We have shown that

lim sup
N→∞

⎧
⎨

⎩
1

N
sup

m∈RN :|m|<1,β(m)≤ 1√
2

H̃T AP (m) − F̃N (β, hN )

⎫
⎬

⎭
≤ εK +

c

K
,

for all K ≥ 2. Since the left-hand side is independent of K , it is in fact at most 0. This
implies (4.6). ��

This also completes the proof of the main upper bound Proposition 6. Together with
the lower bound Proposition 3 this proves our main result Theorem 1.
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5. Solution of the TAP–Plefka Variational Problem

In this section we prove Lemma 2. By (2.1) it follows from a result for the maximum of
the Hamiltonian with external field on the unit sphere which we now state.

Lemma 20. For h, h1, h2, . . . as in Theorem 1 we have

sup
σ :|σ |=1

{
β
1

N
HN (σ ) + hN · σ

}
→

√
h2 + 2β2, (5.1)

in probability.

Proof. Wework in the diagonalizing basis of SN and note that the left-hand side of (5.1)
equals

sup
σ :|σ |=1

{

β

N∑

i=1

θi/N σ 2
i + h̃N · σ

}

+ o (1) , (5.2)

where, as in Sect. 4.1, h̃N is the vector hN written in the diagonalizing basis and we
have used (2.5). The case h = 0 then follows trivially since θ1 = √

2, so we assume in
the sequel that h > 0. For any λ >

√
2 let

σi (λ) = 1

2β

(
h̃N

)

i

λ − θi/N
.

Using Lagrange multipliers the maximizer of (5.2) can be shown to be σi = σi (λN )

where λN >
√
2 is the number such that

∑N
i=1 σ 2

i (λN ) = 1. By rotational symmetry

the P-law of
(

h̃N

)

i
is that of a uniform random vector on

{
x ∈ R

N : |x | = h
}
. Using

this one can show that for any λ >
√
2

∣∣∣∣∣

N∑

i=1

σi (λ)2 − h2

2β

1

N

N∑

i=1

1
(
λ − θi/N

)2

∣∣∣∣∣
→ 0, in probability.

Also for λ >
√
2

N∑

i=1

1
(
λ − θi/N

)2 →
∫ √

2

−√
2

μ (x)

(λ − x)2
dx = λ√

λ2 − 2
− 1,

and since for

λ̃ =
√√√√

2

1 −
(
1 + 4β2

h2

)−2 ,

and λ = λ̃ we have λ/
√

λ2 − 2 − 1 = 2β/h2, it follows that

λN → λ̃, in probability.
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Similarly, for any λ >
√
2 we have that

N∑

i=1

θi/N σi (λ)2 → h2

2β

∫ √
2

−√
2

x

(λ − x)2
μ (x) dx = h2

2β2

(
λ2 − 1√
λ2 − 2

− λ

)
,

and

N∑

i=1

(
h̃N

)

i
σi (λ) → h2

2β

∫ √
2

−√
2

μ (x)

λ − x
dx = h2

2β

(
λ −

√
λ2 − 2

)
,

both in probability. This shows that

β

N∑

i=1

θi/N σi (λN )2 + h̃N · σ (λN ) → h2

2β

(
λ̃2 − 1
√

λ̃2 − 2
− λ̃

)

+
h2

2β

(
λ̃ −

√
λ̃2 − 2

)
,

in probability, and the right-hand side simplifies to
√

h2 + 2β2. ��
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