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Abstract: Weprove that the set of quantumcorrelations for a bipartite systemof 5 inputs
and 2 outputs is not closed. Our proof relies on computing the correlation functions of
a graph, which is a concept that we introduce.

1. Introduction

Suppose that two labs, Alice’s and Bob’s, exist in an entangled state and each lab has
a finite set of quantum experiments that they can perform and each experiment has
a finite number of outcomes. The conditional probability that Alice gets outcome a
and Bob gets outcome b given that they perform experiments x and y respectively, is
denoted p(a, b|x, y). Such densities are generally called quantum correlations. If we
assume that each lab has n experiments and each experiment has k outcomes, then
the set of all possible quantum correlations is a convex subset of n2k2-tuples. There
are several, possibly different, mathematical models that could describe the elements in
these sets. The sets from the various models are denoted,Cq(n, k), Cqs(n, k), Cqa(n, k),
and Cqc(n, k), and satisfy

Cq(n, k) ⊆ Cqs(n, k) ⊆ Cqa(n, k) ⊆ Cqc(n, k).

The Tsirelson conjectures [15,16] are concerned with the relationships between the sets
obtained by these various models. Originally, it was not known if these sets were all the
same or were possibly different. A great deal of additional interest developed around
these problems when it was shown that equality of two of these models, Cqa(n, k) =
Cqc(n, k) for all n and k was equivalent to the Connes embedding conjecture [3,4,10],
a major open problem in the theory of operator algebras.
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Recently, Slofstra [14] has shown that the set of quantum correlations Cq(n, k) is not
closed, when the number of experiments and the number of outputs is sufficiently high
(n ∼ 100, k = 8). Since Cqa(n, k) is always closed, his result shows that Cq(n, k) �=
Cqa(n, k), for some values of n and k. His proof relies on a number of deep constructions
in geometric group theory, and the number n is defined somewhat implicitly. So it is
natural to seek simpler proofs and to wonder about the case of small numbers of inputs
and outputs.

In this paperwewill show thatCq(5, 2) is not closed and hence not equal toCqa(5, 2),
by studying the properties of a function that we call the graph correlation function.

Given a graph, we wish to study several functions that measure the least possible
total tracial correlation, when we assign a projection of fixed trace to each vertex and
measure the total correlation between projections that are at adjacent vertices. The goals
of this study are on the one hand to try and shed further light on the conjectures of
Connes and Tsirelson and on the other hand to introduce this new parameter of a graph
and show some of its connections to other problems. We will see that determining where
this correlation function is equal to 0, is equivalent to finding the fractional chromatic
number of the graph, when the algebra is abelian, andMančinska–Roberson’s projective
rank [7,13] of the graph when the algebra is required to be finite dimensional.

We begin with the definitions of the functions that we shall be interested in studying.
Let G = (V, E) be a simple nonempty graph on n vertices with vertex set V and

edges E ⊆ V × V . If we let F(n, 2) denote the free product of n copies of the group of
order 2, then the full group C∗-algebra, C∗(F(n, 2)), is the universal unital C∗-algebra
generated by projections, ev = e2v = e∗

v , v ∈ V . By a tracial state on C∗(F(n, 2)) we
mean a positive unital linear functional, τ : C∗(F(n, 2)) → C, satisfying τ(ab) = τ(ba)

for all a, b ∈ C∗(F(n, 2)). For 0 ≤ t ≤ 1 we set

fqc(t) = inf

{ ∑
(v,w)∈E

τ(evew) : τ is a tracial state on C∗(F(n, 2)),

τ (ev) = t, for all v ∈ V

}
. (1)

Our notation suppresses the dependence of this function on the graph G. Notice that each
edge (v,w) appears twice in E as (v,w) and (w, v). Thus if |E | denotes the cardinality
of the edge set of G, then it is twice the number of actual edges.

Recall that every state τ on C∗(F(n, 2)) has a Gelfand–Naimark–Segal (GNS) rep-
resentation, that is, there exists a Hilbert space H, a unital ∗-homomorphism π :
C∗(F(n, 2)) → B(H), and a unit vector ψ ∈ H such that τ(a) = 〈π(a)ψ,ψ〉 for
all a ∈ C∗(F(n, 2)). We shall call a state τ on C∗(F(n, 2)) finite dimensional provided
that the Hilbert space in the GNS representation is finite dimensional. We shall call a
state abelian if the image of C∗(F(n, 2)) under the GNS representation is commutative.
This latter condition is equivalent to the existence of a probability space (X, μ) and
measurable subsets Xv , such that τ(evew) = μ(Xv ∩ Xw), for all v,w ∈ V .

We set fq(t) (respectively, floc(t)) equal to the infimum in (1) but taken over the set
where τ is restricted to be a finite-dimensional (respectively, abelian) tracial state.

Here is the first relevance of this function.

Proposition 1.1. Let G be a graph on n vertices. Then,

(1)
(
sup{t : floc(t) = 0})−1

is equal to the fractional chromatic number of G,

(2)
(
sup{t : fq(t) = 0})−1

is equal to Mančinska–Roberson’s projective rank [7] of G,
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(3)
(
sup{t : fqc(t) = 0})−1

is equal to the tracial rank [11] of G.

It is well known that the fractional chromatic number gives a lower bound on the
chromatic number,χ(G), of the graph. The twoother rankswere introduced to give lower
bounds on two quantum versions of the chromatic numbers. Mančinska and Roberson
[7] proved that their projective rank is a lower bound on the standard quantum chromatic
number of a graph, χq(G). In [12] several variations of the standard quantum chromatic
number were introduced, including the commuting quantum chromatic number χqc(G),
and in [11] it was shown that the tracial rank of a graph is a lower bound on χqc(G).

Thus, in a certain sense, these functions measure how small one can keep this total
correlation of the traces once one has gone beyond the point where it can be 0.

There are many other reasons for studying these functions. We will show later that
if Connes’ embedding conjecture has an affirmative answer then necessarily, fq(t) =
fqc(t), for all 0 ≤ t ≤ 1 and for every graph. Thus, attempting to compute these
functions may give us some insight into this conjecture. These graphs are also related to
Tsirelson’s conjectures about various models for quantum probability densities.

We will prove that if the set of quantum correlations is closed for |G| = n inputs and
2 outputs, then necessarily the function fq(t) is “piecewise” linear for vertex and edge
transitive graphs. The core of our proof that Cq(5, 2) is not closed is then to show that
for the complete graph on five vertices, the function fq(t) is not piecewise linear.

2. Preliminaries

Recall that a positive operator valued measure (POVM) is a set {Ri }k
i=1 of positive

operators on someHilbert spaceHwith
∑k

i=1 Ri = I . Also a projection valued measure
(PVM) is a set {Pi }k

i=1 of projections on someHilbert spaceHwith
∑k

i=1 Pi = I . Clearly
every PVM is a POVM.

Definition 2.1. The set Cloc(n, k) is the closed convex hull of all product distributions(
p(i, j |v,w)

)
, 1 ≤ v,w ≤ n, 1 ≤ i, j ≤ k given by

p(i, j |v,w) = p1(i |v)p2( j |w),

where for � = 1, 2, p�(i |v) ≥ 0 satisfy
∑k

i=1 p�(i |v) = 1, namely, form a set of k-
outcome probability distributions indexed by 1 ≤ w ≤ n. Elements of Cloc(n, k) are
called classical correlations.

Definition 2.2. An n2k2-tuple,
(

p(i, j |v,w)
)
, 1 ≤ v,w ≤ n, 1 ≤ i, j ≤ k, is called a

quantum correlation if there exist PVMs {Pv,i }k
i=1 and {Qw, j }k

j=1 in finite dimensional
Hilbert spacesHA andHB , respectively, together with a unit vector h ∈ HA ⊗HB such
that

p(i, j |v,w) = 〈(Pv,i ⊗ Qw, j )h, h〉.
The set of all such tuples

(
p(i, j |v,w)

)
arising from all choices of finite dimensional

Hilbert spaces HA,HB , all PVMs and all unit vectors h is called the set of quantum
correlations and is denoted by Cq(n, k).

If we relax Definition 2.2 by removing the restriction of finite dimensionality on the
Hilbert spaces HA and HB , but keeping everything the same, we get a larger set of
correlations called the set of spatial quantum correlations, denoted by Cqs(n, k).



1128 K. Dykema, V. I. Paulsen, J. Prakash

Definition 2.3. An n2k2-tuple,
(

p(i, j |v,w)
)
, 1 ≤ v,w ≤ n, 1 ≤ i, j ≤ k, is called a

commuting quantum correlation if there exist PVMs {Pv,i }k
i=1 and {Qw, j }k

j=1 in a single
(possibly infinite dimensional) Hilbert spaceH satisfying Pv,i Qw, j = Qw, j Pv,i (hence
the name commuting) together with a unit vector h ∈ H such that

p(i, j |v,w) = 〈(Pv,i Qw, j )h, h〉.

The set of all such tuples
(

p(i, j |v,w)
)
arising from all choices of Hilbert spaceH, all

PVMs and all unit vectors h is called the set of commuting quantum correlations denoted
by Cqc(n, k).

Remark 2.4. If we replace PVMs by POVMs in Definitions 2.2 and 2.3 we still get the
same correlation sets. For the r = q case the equivalence can be shown using a Naimark
dilation argument, while the r = qc case is more difficult and a proof can be found in
[12]. This can also be found in Proposition 3.4 of [3], and also as Remark 10 of [4].

Remark 2.5. We have that Cloc(n, k) ⊆ Cq(n, k) ⊆ Cqc(n, k) for all n, k ∈ N and
these are characterized as follows. By Theorem 5.3 in [11], an n2k2-tuple (p(i, j |v,w))

belongs to Cq(n, k) if and only if (p(i, j |v,w)) ∈ Cqc(n, k) and has a realization as
described in Definition 2.3 where the Hilbert space H in its realization is finite dimen-
sional. Similarly, by Remark 5.4 in [11], a tuple (p(i, j |v,w)) belongs to Cloc(n, k) if
and only if (p(i, j |v,w)) ∈ Cqc(n, k) and all the operators in its realization commute.

There are two other sets of probabilistic correlations that we wish to consider.

Definition 2.6. We call an n2k2-tuple,
(

p(i, j |v,w)
)
, 1 ≤ v,w ≤ n, 1 ≤ i, j ≤ k, a

vectorial correlation provided that there is a Hilbert spaceH and vectors xv,i , yw, j , h ∈
H, such that:

• ‖h‖ = 1,
• 〈xv,i , xv, j 〉 = 0,∀v,∀i �= j ,
• 〈yw,i , yw, j 〉 = 0,∀w,∀i �= j ,
• h =∑i xv,i =∑ j yw, j , ∀v,w,
• p(i, j |v,w) = 〈xv,i , yw, j 〉 ≥ 0, ∀v,w, i, j .

We denote the set of all vectorial correlations by Cvect (n, k).

Since all of the inner products appearing in the above definition are real, there is no
generality lost in requiringH to be a real Hilbert space as well.

These correlations have been studied at other places in the literature, see for example
[8]where they are referred to as almost quantum correlations and they are also essentially
the first level of the NPA hierarchy [9].

Definition 2.7. We call an n2k2-tuple,
(

p(i, j |v,w)
)
, 1 ≤ v,w ≤ n, 1 ≤ i, j ≤ k, a

nonsignalling correlation provided that:

• p(i, j |v,w) ≥ 0, ∀v,w, i, j ,
• ∑i, j p(i, j |v,w) = 1,∀v,w,
• ∑ j p(i, j |v,w) =∑ j p(i, j |v,w′), ∀i, v, w,w′,
• ∑i p(i, j |v,w) =∑i p(i, j |v′, w), ∀ j, v, v′, w.
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We let Cns(n, k) denote the set of all such nonsignalling correlations. Finally, given a
nonsignalling correlation, we set

pA(i |v) =
∑

j

p(i, j |v,w), pB( j |w) =
∑

i

p(i, j |v,w),

and refer to these as the marginal densities. Note that these marginal densities make
sense because of the last two properties of a nonsignalling correlation.

All the correlation sets defined above are related in the following way:

Cloc(n, k) ⊆ Cq(n, k) ⊆ Cqs(n, k) ⊆ Cqc(n, k) ⊆ Cvect (n, k) ⊆ Cns(n, k) ⊆ R
n2k2 ,

(2)

for all n, k ∈ N, and they are all convex sets [3,15]. Notice that nonsignalling correlations
are the largest set of tuples that behave like conditional probability densities and have
well-defined marginal densities.

It is known [3,15] that the sets Cloc(n, k), Cqc(n, k), Cvect (n, k) and Cns(n, k) are

all closed sets in Rn2k2 for all n, k ∈ N, while Cq(n, k) and Cqs(n, k) are not closed for
some large values of n, k as shown by Slofstra in [14]. Set Cqa(n, k) = Cq(n, k). Thus,
we have

Cq(n, k) ⊆ Cqs(n, k) ⊆ Cqa(n, k) ⊆ Cqc(n, k).

Note that, from the work of Slofstra in [14], Cq(n, k) and Cqs(n, k) are proper subsets
of Cqa(n, k) for some value of n and k. Whether or not they are different for all values of
n, k is unknown. From the work in [4] and [10] it is known that Cqa(n, k) = Cqc(n, k)

for all n, k ∈ N is equivalent to Connes’ embedding conjecture.

Remark 2.8. For each permutation π of {1, . . . , n}, we have the corresponding affine
self-map βπ of Cns(n, k) given by

βπ : (p(i, j |v,w)
) �→ (

p(i, j |π−1(v), π−1(w))
)
.

These form an action of the group Sn on Cns(n, k). By restriction, they induce actions
on Cr (n, k) for r ∈ {loc, q, qa, qc, vect}. To see that these restrictions are indeed
self-maps, for r = ns, given systems (xv,i ) and (yw, j ) of vectors that realize a given
vectorial correlation p = (p(i, j |v,w)), the systems (xπ−1(v),i ) and (yπ−1(w), j ) of
vectors realize βπ(p). Similarly, for r ∈ {loc, q, qs, qc}, applying permutations to
systems of projections that realize a given p ∈ Cr (n, k) show βπ(p) ∈ Cr (n, k). The
case of r = qa now follows by taking closures.

Remark 2.9. Exactly analogously to the previous remark, we get an action σ �→ γσ of
Sk on Cr (n, k) for each r ∈ {loc, q, qs, qa, qc, vect, ns} given by

γσ : (p(i, j |v,w)
) �→ (

p(σ−1(i), σ−1( j)|v,w)
)
.

We will use this only in the case k = 2, when for the order-two transposition σ : 0 ↔ 1,
we get the reflection R = γσ .
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A correlation
(

p(i, j |v,w)
)
is called synchronous if p(i, j |v, v) = 0 for all 1 ≤

v ≤ n and for all i �= j . For r ∈ {loc, q, qa, qs, qc, vect, ns}, we let Cs
r (n, k) denote

the subset of all synchronous correlations. These synchronous subsets are themselves
convex and they satisfy

Cs
loc(n, k) ⊆ Cs

q(n, k) ⊆ Cs
qs(n, k) ⊆ Cs

qa(n, k) ⊆ Cs
qc(n, k)

⊆ Cs
vect (n, k) ⊆ Cs

ns(n, k), (3)

with all of the containments known to be proper for some values of n, k (see, for example,
[11,12]), except for the case Cs

qa(n, k) ⊆ Cs
qc(n, k), where equality for all values of n

and k is known, by [1] (see also [5]), to be equivalent to Connes’ embedding conjecture.
All of these synchronous subsets are known (see [12]) to be closed sets for all n, k ∈ N,
except Cs

q(n, k) and Cs
qs(n, k).

Remark 2.10. The action β and the reflection R from Remarks 2.8 and 2.9 restrict to
actions on Cs

r (n, k), for each r ∈ {loc, q, qs, qa, qc, vect, ns}.
We now provide some characterization of these synchronous subsets.

Theorem 2.11 (Theorem 5.5, [11]). Let (p(i, j |v,w)) ∈ Cs
qc(n, k) be realized with

PVMs {Pv,i }k
i=1 and {Qw, j }k

j=1 in some B(H) satisfying Pv,i Qw, j = Qw, j Pv,i and

with some unit vector h ∈ H such that p(i, j |v,w) = 〈Pv,i Qw, j h, h
〉
. Then

(1) Pv,i h = Qv,i h, ∀v, i ,
(2) p(i, j |v,w) = 〈(Pv,i Pw, j )h, h〉 = 〈(Qw, j Qv,i )h, h〉 = p( j, i |w, v),
(3) Let A be the C∗-algebra in B(H) generated by the family {Pv,i }v,i and define

τ : A → C by τ(X) = 〈Xh, h〉. Then τ is a tracial state on A and p(i, j |v,w) =
τ(Pv,i Pw, j ).

Conversely, let A be a unital C∗-algebra equipped with a tracial state τ and with
{ev,i }v,i ⊂ Aa family of projections such that

∑k
i=1 ev,i = 1 for allv. Then (p(i, j |v,w))

defined by p(i, j |v,w) = τ(ev,i ew, j ) is an element of Cs
qc(n, m). That is, there exists

a Hilbert space H, a unit vector h ∈ H and mutually commuting PVMs {Pv,i }i and
{Qw, j } j on H such that

p(i, j |v,w) = 〈(Pv,i Qw, j )h, h〉 = 〈(Pv,i Pw, j )h, h〉 = 〈(Qw, j Qv,i )h, h〉.
This theorem and Remark 2.5 lead to the following characterization ofCs

loc(n, k) and
Cs

q(n, k).

Corollary 2.12 (Corollary 5.6, [11]). We have that (p(i, j |v,w)) ∈ Cs
q(n, k) (respec-

tively, Cloc(n, k)) if and only if there exists a finite dimensional (respectively, abelian) C∗-
algebra A with a tracial state τ and with a generating family {ev,i : 1 ≤ v ≤ n, 1 ≤ i ≤
k} ⊆ A of projections such that

∑k
i=1 ev,i = 1 for all v and p(i, j |v,w) = τ(ev,i ew, j )

for all i, j, v, w.

Remark 2.13. In [12], it is shown that if the collection of vectors xv,i , yw, j , h ∈ H as in
Definition 2.6 define a synchronous vectorial correlation, then necessarily, xv,i = yv,i ,
for all v, i .

Theorem 2.14 (Theorem 3.6, [5]). We have that Cs
q(n, k) = Cs

qa(n, k) for all n, k ∈ N.



Non-closure of the Set of Quantum Correlations via Graphs 1131

3. Basic Properties of the Graph Correlation Function

In this section we define the graph correlation functions fr and we prove some basic
facts about their behaviour.

For each t ∈ [0, 1], we consider the slice

r (t) = {(p(i, j |v,w)) ∈ Cs

r (n, 2) : pA(0|v) = pB(0|w) = t, ∀v,w}
of Cs

r (n, 2), where pA and pB are the marginals from Definition 2.7. We observe that
each 
r (t) is nonempty and convex.

Given a graph G = (V, E) on n vertices, we consider the affine function F on
Cns(n, 2) given by

F : (p(i, j |v,w)) �→
∑

(v,w)∈E

p(0, 0|v,w).

For each r ∈ {loc, q, qa, qc, vect, ns} and t ∈ [0, 1], we let
fr (t) = inf{F(p) : p ∈ 
r (t)}. (4)

By Theorem 2.11 and Corollary 2.12 this new definition of fr (t) agrees with the one
defined using Eq. (1) and its variants, when r ∈ {loc, q, qc}. Moreover, the inclusions
(3) imply that

floc(t) ≥ fq(t) = fqa(t) ≥ fqc(t) ≥ fvect (t) ≥ fns(t) ≥ 0. (5)

Notice that for r ∈ {loc, qa, qc, vect, ns}, the setCs
r (n, k) is closed and thus the infimum

in (4) is attained for all 0 ≤ t ≤ 1.

Proposition 3.1. If G = (V, E) is a graph on n vertices, then

fns(t) =
{
0 if 0 ≤ t ≤ 1

2 ,

|E |(2t − 1) if 1
2 ≤ t ≤ 1.

Proof. Since Cs
ns(n, 2) is a closed set, given t ∈ [0, 1] there exists a correlation

(p(i, j |v,w)) ∈ Cs
ns(n, 2) such that pA(0|v) = pB(0|w) = t for all v,w ∈ V and

fns(t) = ∑
(v,w)∈E p(0, 0|v,w). Since pA(0|v) = t ,

∑
i, j p(i, j |v, v) = 1, and using

the fact that the correlation is synchronous, we have

p(0, 0|v, v) = t, p(0, 1|v, v) = p(1, 0|v, v) = 0, p(1, 1|v, v) = 1 − t. (6)

If (v,w) ∈ E , then using the nonsignalling conditions with Eq. (6) we get the equations

p(0, 0|v,w) + p(0, 1|v,w) = p(0, 0|v,w) + p(1, 0|v,w) = t,

p(0, 1|v,w) + p(1, 1|v,w) = p(1, 0|v,w) + p(1, 1|v,w) = 1 − t,

which have the solution,

p(0, 1|v,w) = p(1, 0|v,w) = t − p(0, 0|v,w),

p(1, 1|v,w) = 1 − 2t + p(0, 0|v,w). (7)

Since these are probabilities we must also have

p(0, 0|v,w) ≥ 0, t − p(0, 0|v,w) ≥ 0, 1 − 2t + p(0, 0|v,w) ≥ 0,
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which yields
max{0, 2t − 1} ≤ p(0, 0|v,w) ≤ t. (8)

Furthermore, choosing any values for p(0, 0|v,w) such that (8) and (6) are satisfied
and then assigning the other values of p(i, j |v,w) using (7), we do get an element of
Cs

ns(n, 2). This shows that the choice

p(0, 0|v,w) = max{0, 2t − 1} =
{
0 if 0 ≤ t ≤ 1

2
2t − 1 if 1

2 ≤ t ≤ 1
,

yields an element of Cs
ns(n, 2), whereby the desired value of fns(t) is attained. ��

The following proposition tells that it suffices to describe the functions fr on the
interval

[
0, 1

2

]
.

Proposition 3.2. Let G = (V, E) be a graph on n vertices. Then fr is a convex function
for all r ∈ {loc, q, qa, qc, vect, ns}, and

fr (1 − t) = |E |(1 − 2t) + fr (t), t ∈ [0, 1]. (9)

Proof. By the convexity of Cs
r (n, 2), for each t1, t2, λ ∈ [0, 1], we have

λ
r (t1) + (1 − λ)
r (t2) ⊆ 
r (λt1 + (1 − λ)t2).

Applying F , we have

λF(
r (t1)) + (1 − λ)F(
r (t2)) = F(λ
r (t1) + (1 − λ)
r (t2))

⊆ F(
r (λt1 + (1 − λ)t2)).

Taking infima implies

λ fr (t1) + (1 − λ) fr (t2) = inf(F(λ
r (t1) + (1 − λ)
r (t2))) ≥ fr (λt1 + (1 − λ)t2),

namely, that fr is convex.
To prove (9), we use the reflection map R : Cs

r (n, 2) → Cs
r (n, 2) described in

Remarks 2.9 and 2.10. Using (6) we see that R maps 
s
r (t) onto 
s

r (1− t) and using (7)
we see F ◦ R(p) = |E |(1 − 2t) + F(p) for every p ∈ Cs

r (n, 2). ��
Recall that given a graph, G = (V, E), a graph automorphism is a bijective function

π : V → V such that (v,w) ∈ E if and only if (π(v), π(w)) ∈ E . We let Aut(G)

denote the group of all graph automorphisms of G. A graph is called vertex transitive if
for every v,w ∈ V there is a graph automorphism π with π(v) = w. A graph is called
edge transitive if for every (v,w), (x, y) ∈ E , there is a graph automorphism π with
(π(v), π(w)) = (x, y).

Proposition 3.3. If G = (V, E) is a vertex and edge transitive graph on n vertices, then
for every r ∈ {loc, q, qa, qc, vect, ns} and every t ∈ [0, 1], we have

fr (t) = inf{F(p) : p ∈ 
̃r (t)},
where


̃r (t) = {
p = (p(i, j |v,w)) ∈ 
r (t) : p(0, 0|v,w) = p(0, 0|x, y),

∀ (v,w), (x, y) ∈ E
}
.
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Proof. Using the convexity of 
r (t) and the vertex and edge transitivity of the graph G,
it is not hard to show that the map

p �→ 1

|Aut(G)|
∑

π∈Aut(G)

βπ (p),

where the set map βπ is described in Remark 2.8, maps 
r (t) into 
̃r (t). Since each βπ

leaves the function F invariant, it follows that the above map also leaves F invariant.
But then by Eq. (4) we get fr (t) = inf{F(p) : p ∈ 
̃r (t)}. ��
Remark 3.4. Combining Proposition 3.3with our characterizations of synchronous com-
muting quantum correlations (Theorem 2.11) in terms of traces, we see that for a vertex
and edge transitive graph G = (V, E), we have that fqc(t) = s where s is the smallest
value for which there exists a C∗-algebraAwith a tracial state τ and projections Pv ∈ A
such that τ(Pv) = t, ∀v ∈ V and τ(Pv Pw) = s

|E | , ∀(v,w) ∈ E .

Remark 3.5. Let r ∈ {loc, q, qa, qc, vect, ns} and let (p(i, j |v,w)) ∈ Cs
r (n, 2) be such

that pA(0|v) = pB(0|w) = t for all v,w ∈ V and p(0, 0|v,w) = s
|E | for all (v,w) ∈

E . The synchronous condition implies t = pA(0|v) = p(0, 0|v, v) + p(0, 1|v, v) =
p(0, 0|v, v), so that

p(0, 0|v, v) = t, p(0, 1|v, v) = p(1, 0|v, v) = 0, p(1, 1|v, v) = 1 − t. (10)

If (v,w) ∈ E , then using the nonsignalling conditions of Definition 2.7 with Eq. (10)
we must have

p(0, 0|v,w) = s

|E | , p(0, 1|v,w) = p(1, 0|v,w) = t − s

|E | ,

p(1, 1|v,w) = 1 − 2t +
s

|E | .

Since these are probabilities, we must have

0 ≤ max{0, 2t − 1} ≤ s

|E | ≤ t. (11)

Proposition 3.6. Let G = (V, E) be a vertex and edge transitive graph on n vertices and
let t ∈ [0, 1] be irrational. Suppose that the value of fq(t) is attained in the infimum (4)
defining it. Then there is a nondegenerate interval [r, s] having rational endpoints such
that t ∈ [r, s] and the restriction of fq to [r, s] is linear.

Proof. Since the value fq(t) is attained, there is a finite dimensional C∗-algebra A
generated by projections {Pv : v ∈ V } and equipped with a trace τ : A → C with
τ(Pv) = t for all v ∈ V and such that

fq(t) =
∑

(v,w)∈E

τ(Pv Pw).

SinceA is finite dimensional, we may writeA =⊕m
l=1Mnl and τ = ⊕m

l=1λl trnl , where
λl > 0 with

∑m
l=1 λl = 1, and where trnl : Mnl → C denotes the normalized trace

on matrices, i.e., trnl ([xi, j ]) = 1
nl

∑nl
i=1 xi,i ; moreover, we have Pv = ⊕m

l=1Pv,l for
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projections Pv,l ∈ Mnl . Let Aut(G) denote the group of graph automorphisms of the
graph G and set N = |Aut(G)|. For v ∈ V and 1 ≤ l ≤ m, set

P̃v,l = ⊕π∈Aut(G) Pπ(v),l ∈
⊕

π∈Aut(G)

Mnl =: Al .

Define a trace, τl : Al → C, by

τl
(⊕π∈Aut(G) Xπ

) = 1

N

∑
π∈Aut(G)

trnl (Xπ ).

Given any v,w ∈ V if we fix ρ ∈ Aut(G) such that ρ(v) = w, then

τl(P̃w,l) = 1

N

∑
π∈Aut(G)

trnl (Pπ(w),l) = 1

N

∑
π∈Aut(G)

trnl (Pπρ(v),l) = τl(P̃v,l),

which is some fixed rational number rl . After a permutation we may assume that these
rational numbers rl are arranged in non-decreasing order.

Thus, {P̃v,l : v ∈ V } is a feasible set for the definition of fq(rl) and hence we have
that

fq(rl) ≤
∑

(v,w)∈E

τl(P̃v,l P̃w,l).

Now,we set Ã = ⊕m
l=1Al , and define a normalized trace τ̃ : Ã → C by τ̃ (⊕m

l=1Yl) =∑m
l=1 λlτl(Yl). Define projections P̃v in Ã by P̃v = ⊕m

l=1 P̃v,l . Then we have that

τ̃ (P̃v) =
m∑

l=1

λlτl(P̃v,l) = 1

N

m∑
l=1

∑
π∈Aut(G)

λl trnl (Pπ(v),l) = 1

N

∑
π∈Aut(G)

τ (Pπ(v)) = t,

while a similar calculation shows that
∑

(v,w)∈E τ̃ (P̃v P̃w) = fq(t). Thus,

fq(t) =
∑

(v,w)∈E

m∑
l=1

λlτl(P̃v,l P̃w,l) ≥
m∑

l=1

λl fq(rl).

By Proposition 3.2, fq is a convex function and so we have

fq(t) =
m∑

l=1

λl fq(rl),

and so we must have that fq(rl) =∑(v,w)∈E τl(P̃v,l P̃w,l).
But this is exactly the equality case of Jensen’s inequality, which holds if and only if

either all the points in the convex combination are the same or the function is piecewise
linear on an interval containing the points. Since t is irrational, the points rl cannot all
be same and this forces the function fq to be linear on an interval containing the points
rl . ��

The following is straightforward to prove. See, for example, Proposition 5.2 of [2].
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Lemma 3.7. Let A be a unital C∗-algebra with a faithful tracial state τ . Let A and P
be hermitian elements in A. If AP − P A �= 0, then there exists H = H∗ ∈ A such that,
letting f (t) = τ(A(ei Ht Pe−i Ht )) for t ∈ R, we have f ′(0) > 0.

The following result is not used in the proofs of other results in this paper (however,
see Sect. 5, where a similar argument is used). But it was in a sense the key result for
our proof of Theorem 4.2, because it led us to ask about scalar multiples of the identity
realized as sums of projections, and to find the results [6] of Kruglyak, Rabanovich, and
Samoı̆lenko.

Proposition 3.8. Let G = (V, E) be a graph on n vertices, and assume that τ :
C∗(F(n, 2)) → C is a tracial state (respectively, finite dimensional tracial state) such
that τ(ev) = t for allv ∈ V and fqc(t) (respectively, fq(t)) is equal to

∑
(v,w)∈E τ(evew).

Set pv = ∑
{w : (v,w)∈E} ew. If π : C∗(F(n, 2)) → B(H) is the GNS representation of

τ , then π(ev)π(pv) = π(pv)π(ev).

Proof. Fix v ∈ V . Let π : C∗(F(n, 2)) → B(H) be the GNS representation of τ with
τ(a) = 〈π(a)ψ,ψ〉 for all a ∈ C∗(F(n, 2)) and for some cyclic vector ψ ∈ H. Let
B = π(C∗(F(n, 2))) ⊆ B(H) be the image C∗-algebra. Suppose, for contradiction,
that π(ev) and π(pv) do not commute. Then by Lemma 3.7, there exists H = H∗ ∈ B
(therefore H = π(h), h ∈ C∗(F(n, 2))) such that if

f (t) =
〈
π(ev)(e

i Htπ(pv)e
−i Ht )ψ,ψ

〉
= τ(ev(e

ihtπ(pv)e
−iht )),

then f ′(0) > 0. Fix some small and negative t0 such that f (t0) < f (0).
Define for y ∈ V ,

Fy =
{

π(ev) if y = v,

ei Ht0π(ey)e−i Ht0 if y �= v.

Then each Fy is a projection in B and
〈
Fyψ,ψ

〉 = 〈(ei Ht0π(ey)e
−i Ht0

)
ψ,ψ

〉
= τ

(
eiht0π(ey)e

−iht0
)

= τ(ey) = t.

But for this new set of projections, we have that∑
(x,y)∈E

〈
Fx Fyψ,ψ

〉

=
∑

{w : (v,w)∈E}
〈Fv Fwψ,ψ〉 +

∑
{w : (w,v)∈E}

〈Fw Fvψ,ψ〉

+
∑

{(x,y)∈E : x �=v, y �=v}

〈
Fx Fyψ,ψ

〉 =
〈

Fv

⎛
⎝ ∑

{w : (v,w)∈E}
Fw

⎞
⎠ψ,ψ

〉

+

〈⎛
⎝ ∑

{w : (w,v)∈E}
Fw

⎞
⎠ Fvψ,ψ

〉
+

∑
{(x,y)∈E : x �=v, y �=v}

〈
Fx Fyψ,ψ

〉

= 2Re

〈
π(ev)

⎛
⎝ ∑

{w : (v,w)∈E}
ei Ht0π(ew)e−i Ht0

⎞
⎠ψ,ψ

〉

+
∑

{(x,y)∈E : x �=v, y �=v}

〈(
ei Ht0π(ex )e

−i Ht0
) (

ei Ht0π(ey)e
−i Ht0

)
ψ,ψ

〉
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= 2Re
〈
π(ev)

(
ei Ht0π(pv)e

−i Ht0
)

ψ,ψ
〉
+

∑
{(x,y)∈E :x �=v,y �=v}

τ(eiht0ex eye−iht0)

= 2 f (t0) +
∑

{(x,y)∈E : x �=v, y �=v}
τ(ex ey)

< 2 f (0) +
∑

{(x,y)∈E : x �=v, y �=v}
τ(ex ey)

= τ(ev pv) + τ(pvev) +
∑

{(x,y)∈E : x �=v, y �=v}
τ(ex ey)

=
∑

(x,y)∈E

τ(ex ey) = fqc(t),

where we have used that (v,w) ∈ E if and only if (w, v) ∈ E . This contradicts the
definition of fqc. ��
Theorem 3.9. Let G = (V, E) be a vertex and edge transitive graph on n vertices and
let t ∈ [0, 1]. Then fvect (t) = s, where s is the smallest real number satisfying Eq. (11)
and for which there exists an (n+1)×(n+1) positive semidefinite matrix P = [pi, j ]n

i, j=0
satsifying

• pi, j ≥ 0,∀i, j,
• p0,0 = 1, pi,i = t, 1 ≤ i ≤ n,
• p0, j = p j,0 = t, 1 ≤ j ≤ n
• pi, j = s

|E | ,∀(i, j) ∈ E.

Proof. Fix t ∈ [0, 1] and let fvect (t) = s. Then s must satisfy Eq. (11). SinceCs
vect (n, 2)

is closed, byProposition3.3 there exists (p(i, j |v,w)) ∈ Cs
vect (n, 2) such that pA(0|v) =

pB(0|w) = t for all v,w ∈ V and p(0, 0|v,w) = s
|E | for all (v,w) ∈ E . By Definition

2.6 and Remark 2.13 there exist vectors {h, xv,0, xv,1} ⊆ H in some Hilbert space H
such that

‖h‖ = 1, 〈xv,0, xv,1〉 = 0, h = xv,0 + xv,1, p(i, j |v,w) = 〈xv,i , xw, j 〉.
Set xv = xv,0 and yv = xv,1. Let x0 = h and let P = [pv,w]n

v,w=0 be the Grammian
of vectors {x0, x1, . . . , xn}. Then this matrix is positive semidefinite and satisfies the
properties stated in theorem. Notice that for all v ∈ V we have

〈xv, h〉 = 〈xv,0, xv,0 + xv,1〉 = p(0, 0|v, v) + p(0, 1|v, v) = pA(0|v) = t,

‖xv‖2 = 〈xv,0, xv,0〉 = 〈xv,0, h − xv,1〉 = 〈xv,0, h〉 = t,

and for all (v,w) ∈ E we have

〈xv, xw〉 = 〈xv,0, xw,0〉 = p(0, 0|v,w) = s

|E | .

Conversely, given such a matrix P there are vectors {x0, . . . , xn} such that P is the
Grammian of these vectors. Set h = x0 and yv = x0 − xv for all 1 ≤ v ≤ n and observe
that 〈xv, yv〉 = 〈xv, x0 − xv〉 = p0,v − pv,v = t − t = 0, from which it is easy to
construct a synchronous vectorial correlation. ��
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Proposition 3.10. Let G = (V, E) be a graph on n vertices. Then

fq

(
1

2

)
= fqa

(
1

2

)
= fqc

(
1

2

)
= fvect

(
1

2

)
.

Proof. From the relations (5), it is sufficient to show that fq
( 1
2

) = fvect
( 1
2

)
.

Let (p(i, j |v,w)) ∈ Cs
vect (n, 2) be such that pA(0|v) = pB(0|w) = 1

2 . By Remark
2.13 there exist vectors {xv,0, xv,1, h} ⊂ H such that p(i, j |v,w) = 〈xv,i , xw, j 〉. With-
out loss of generality we may assume that H is a finite-dimensional real Hilbert space,
say of dimension m. Set xv = xv,0 for all v ∈ V . Then 1

2 = pA(0|v) = 〈xv, h〉, and
nonsignalling conditions yield,

p(0, 0|v,w) = p(1, 1|v,w) = 〈xv, xw〉
p(0, 1|v,w) = p(1, 0|v,w) = 1

2
− 〈xv, xw〉.

Define x̃v = 2xv − h for all v ∈ V . It is easy to verify that each x̃v is a unit vector, and

p(i, j |v,w) = 1

4

(
1 + (−1)i+ j 〈̃xv, x̃w〉

)
.

Recall the representation of the Clifford algebra that is determined by a real linear map
H � x �→ C(x) ∈ Md for some d, where each C(x) is self-adjoint and has trace zero
andwhere they satisfyC(x)C(y)+C(y)C(x) = 2〈x, y〉Id . Thus, when x is a unit vector,
C(x) is a symmetry. We let

Pv,i = I + (−1)i C (̃xv)

2
.

Then each Pv,i is a projection and computation shows

trd(Pv,i Pw, j ) = 1

4

(
1 + (−1)i+ j 〈̃xv, x̃w〉

)
= p(i, j |v,w).

Therefore (p(i, j |v,w)) ∈ Cs
q(n, 2) as well and the proposition follows. ��

4. Complete Graphs

In this section, we compute the function fvect explicitly for the complete graph Kn when
n ≥ 3. We shall then compare the function fvect with the function fq for K5 to deduce
that the set Cq(5, 2) is not closed.

Proposition 4.1. For the complete graph Kn on n ≥ 3 vertices, we have that

fvect (t) =

⎧⎪⎨
⎪⎩
0, if 0 ≤ t ≤ 1

n ,

nt (nt − 1), if 1
n ≤ t ≤ n−1

n ,

(n2 − n)(2t − 1), if n−1
n ≤ t ≤ 1.
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Proof. We seek the smallest s for which the (n + 1) × (n + 1) matrix satisfying the
conditions of Theorem 3.9 is positive semidefinite. Applying one step of the Cholesky
algorithm, this is equivalent to the n × n matrix Q = [qi, j ] being positive semidefinite,
where qi,i = t − t2 and qi, j = s

|E | − t2 for i �= j . Let J be the n × n matrix of all 1’s,
then

Q =
(

t − s

|E |
)

I +

(
s

|E | − t2
)

J

which has eigenvalues, {
t − s

|E | , (n − 1)
s

|E | + t − nt2
}

.

Thus, Q is positive semidefinite if and only if

nt2 − t

n − 1
≤ s

|E | ≤ t.

Combining this condition with the constraint in (11) and observing that nt2−t
n−1 ≤ t for

0 ≤ t ≤ 1, we arrive at

max

{
0,

nt2 − t

n − 1

}
≤ s

|E | , when 0 ≤ t ≤ 1

2
,

max

{
2t − 1,

nt2 − t

n − 1

}
≤ s

|E | , when
1

2
≤ t ≤ 1.

Simplifying this proves the proposition. ��
Theorem 4.2. The synchronous correlation set Cs

q(5, 2) is not closed.

Proof. Consider the complete graph G = K5 on five vertices. By Proposition 4.1 we
know that

fvect (t) =

⎧⎪⎨
⎪⎩
0, if 0 ≤ t ≤ 1

5 ,

5t (5t − 1), if 1
5 ≤ t ≤ 4

5 ,

20(2t − 1), if 4
5 ≤ t ≤ 1.

Notice that fvect (t) is quadratic in t on the interval
[ 1
5 ,

4
5

]
. We show that fq(t) =

fvect (t) = 5t (5t − 1) for all rational t ∈
[√

5−1
2
√
5

,
√
5+1

2
√
5

]
⊂ [ 1

5 ,
4
5

]
. This will imply

that fq cannot be linear on any nondegenerate subinterval of
[√

5−1
2
√
5

,
√
5+1

2
√
5

]
, so that, by

Proposition 3.6, it will follow that the value of fq(t) is not attained for any irrational t
in that interval. In this case, Cs

q(5, 2) cannot be closed.

From (5), we have fq(t) ≥ fvect (t) = 5t (5t − 1) when t ∈ [ 15 , 4
5 ]. Suppose

t ∈
[√

5−1
2
√
5

,
√
5+1

2
√
5

]
and t is rational. We will show fq(t) ≤ 5t (5t − 1). Since 5t ∈[

5−√
5

2 , 5+
√
5

2

]
∩ Q, by Theorem 6 in [6], it follows that there exist five projections

P1, . . . , P5 ∈ Mk for some natural number k, such that P1 + · · · + P5 = 5tIk . Define

P̃i = Pi ⊕ Pi+1 ⊕ · · · ⊕ Pi+4 ∈ Mk ⊕ Mk ⊕ · · · ⊕ Mk ⊆ M5k .
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Clearly
∑5

j=1 P̃j = 5tI5k , and also notice that if tr5k denotes the normalized trace on
M5k , then

tr5k(P̃i ) = 1

5k
Tr(P̃i ) = 1

5k

5∑
j=1

Tr(Pj ) = 1

5k
Tr

⎛
⎝ 5∑

j=1

Pj

⎞
⎠ = 1

5k
(5tk) = t.

Therefore, we have five projections P̃1, . . . , P̃5 ∈ M5k such that tr5k(P̃i ) = t , for all
1 ≤ i ≤ 5, and

∑5
j=1 P̃j = 5tI5k . Squaring the sum,we get

∑
i �= j P̃i P̃j = 5t (5t−1)I5k ,

which, upon taking the normalized trace, yields

∑
i �= j

tr5k(P̃i P̃j ) = 5t (5t − 1).

This implies fq(t) = 5t (5t − 1) for all t ∈
[√

5−1
2
√
5

,
√
5+1

2
√
5

]
∩ Q, completing the

proof. ��
Remark 4.3. Examining the above proof, we can write down an explicit element of
Cqa(5, 2) that is not an element of Cq(5, 2). Indeed, let t be an irrational element of the

interval
[√

5−1
2
√
5

,
√
5+1

2
√
5

]
. Working with the complete graph K5, since fqa(t) = fq(t) =

5t (5t − 1), by Proposition 3.3 and since 
̃qa(t) is closed, there exists

p = (p(i, j |v,w)) ∈ 
̃qa(t) ⊆ Cqa(5, 2)

such that pA(0|v) = pB(0|w) = t for all v,w ∈ V and p(0, 0|v,w) = t
4 (5t − 1) for

all v,w ∈ V with v �= w. Now using Remark 3.5, we calculate: if v = w, then

p(0, 0|v,w) = t, p(0, 1|v,w) = p(1, 0|v,w) = 0, p(1, 1|v,w) = 1 − t,

while if v �= w, then

p(0, 0|v,w) = 1

4
t (5t − 1), p(0, 1|v,w) = p(1, 0|v,w) = 5

4
t (1 − t),

p(1, 1|v,w) = 1

4
(1 − t)(4 − 5t).

However, since the value fq(t) is not attained in the infimum defining it, we have
p /∈ Cq(5, 2).

Corollary 4.4. The sets Cq(5, 2)and Cqs(5, 2)are not closed, and Cqs(5, 2) �= Cqa(5, 2).

Proof. It is easily seen that if Cq(5, 2) were closed then necessarily the subset of syn-
chronous quantum correlations would be closed. Hence, Cq(5, 2) is not closed.

Similar reasoning shows that ifCqs(5, 2)were closed, thenCs
qs(5, 2)would be closed.

But Theorem 3.10 of [5] shows thatCs
qs(5, 2) = Cs

q(5, 2), and soCqs(5, 2) is not closed.
The last claim follows from the fact that Cqa(5, 2) is closed. ��
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5. Signed Games Whose Synchronous Quantum Values are Not Attained

There is a significant body of research studying the I3322 game, which is a 3 input and
2 output game, with the goal of showing that its quantum value is not attained. See [2]
for references to some of the literature on this game.

We now show how to turn our examples of non-closure of quantum correlation sets
into a collection of signed games, with 5 inputs and 2 outputs, whose synchronous
quantum values are not attained.

Consider a game G with n ≥ 5 inputs I and 2 outputs {0, 1}. Alice and Bob are
rewarded with +1 if when they receive the same input they both reply with 0, and
penalized with −1, if when they receive different inputs they respond with 0. All other
cases have no effect on the game. Assume that the n input pairs (x, x) all are received
with the probability 1−t

n and that the n2 − n input pairs (x, y), x �= y are all received
with probability t

n2−n
where 0 < t < 1.

If p(i, j |x, y) represents the conditional probability density p(i, j |x, y) that Alice
replies with i when receiving x and that Bob replies with j when receiving y, where
i, j ∈ {0, 1} and 1 ≤ x, y ≤ n, then the expected value is

E(p) = 1 − t

n

n∑
x=1

p(0, 0|x, x) − t

n2 − n

∑
x �=y

p(0, 0|x, y).

Set A = 1−t
n and B = t

n2−n
.

We will now show that for certain values of t the supremum of this expected value
over all synchronous quantum strategies is not attained. By Corollary 2.12, a density
arises from a synchronous quantum strategy if and only if it has the form

p(i, j |x, y) = τ(Ex,i Ey, j ),

where Ex,i are projections in a finite dimensional C*-algebra satisfying Ex,0 + Ex,1 = I
and τ is a tracial state on that algebra. Thus, we are trying to compute the supremum of
the quantity

A
n∑

x=1

τ(Ex,0) − B
∑
x �=y

τ(Ex,0Ey,0) (12)

over all such algebras and traces. Arguing like in the proof of Proposition 3.8, one
easily shows that if the supremum of this quantity is attained for a family (Ex,i )x,i of
projections, then the self-adjoint element

∑
x Ex,0 must lie in the center of the algebraA

generated by the family. If Q is a minimal projection of this center, then the renormalized
restriction of τ to QAQ is a tracial state that together with the projections QEx,i forms
an instance over which we are taking the supremum. Then the value of (12) is an
appropriate convex combination of these instances, so all must yield the same value.
Thus by considering one of theseminimal projections, wemaywithout loss of generality
assume

∑
x Ex,0 = λI for some scalar λ and that the algebra A generated by the

collection of Ex,0 has trivial center, namely, is a matrix algebra Mp(C) for some integer
p ≥ 1. Since this algebra has a unique tracial state, and this trace takes rational values on
all projections, we see that this value of λ must be rational. Moreover, the quantity (12)
becomes
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A
n∑

x=1

τ(Ex,0) − B

⎛
⎝ ∑

1≤x,y≤n

τ(Ex,0Ey,0) −
∑
x=y

τ(Ex,0Ey,0)

⎞
⎠ = (A + B)λ − Bλ2.

Since B > 0, the maximum value of the right-hand expression occurs at the unique
value

λ = λ∗ := A + B

2B
= 1 − n

2
+

n − 2

2t
. (13)

For specificity, let us take n = 5. Recall that, by Theorem 6 of [6], for all rational

λ ∈
[√

5−1
2
√
5

,
√
5+1

2
√
5

]
, there exist projections (Ex,0)

5
x=1 on a finite dimensional Hilbert

space such that
∑5

x=1 Ex,0 = λI . Choosing t so that the optimizing value λ∗ belongs
to that interval, we see that the supremum of the quantity (12) is equal to

(A + B)λ∗ − B(λ∗)2 = (A + B)2

4B
.

However, when t is irrational then λ∗ is irrational and, as remarked above, this value
cannot be realized as the quantity (12) for finite dimensional projections Ex,0 and a trace
τ . Thus, for such values of t , the synchronous quantum value of this signed game is not
attained.
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