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Abstract: We consider the quantum affine vertex algebra Vc(glN ) associated with the
rational R-matrix, as defined by Etingof and Kazhdan. We introduce certain subalgebras
Ac(glN ) of the completed double Yangian ˜DYc(glN ) at the level c ∈ C, associated with
the reflection equation, and we employ their structure to construct examples of quasi
Vc(glN )-modules. Finally, we use the quasi module map, together with the explicit
description of the center of Vc(glN ), to obtain formulae for families of central elements
in the completed algebra ˜Ac(glN ).

1. Introduction

In order to describe integrable systems with the boundary conditions, E. K. Sklyanin
introduced in [23] the reflection algebras, a class of algebras associated with R-matrix
R(u) which are defined by the reflection equation

R12(u − v)B1(u)R12(u + v)B2(v) = B2(v)R12(u + v)B1(u)R12(u − v). (1)

We explain the precise meaning of (1) in Sect. 2.2. His approach was motivated by
Cherednik’s treatment of factorized scattering with reflection [1]. Furthermore, Sklyanin
constructed an analogue of the quantum determinant and described the algebraic Bethe
ansatz; see [23]. Later on, different classes of algebras defined via relations of the form
similar to or same as (1) were extensively studied; see, e.g., [11,12,17,19,22].

In this paper, we consider a certain family of reflection algebras associated with the
Yang R-matrix, studied by Molev and Ragoucy [19], which are coideal subalgebras of
the Yangian Y(glN ). We introduce the subalgebra Ac(glN ) of the h-adically completed
double Yangian ˜DYc(glN ) at the level c ∈ C which, roughly speaking, consists of two
reflection algebras. Motivated by the correspondence, indicated in [4], between the S-
locality (see (2.19) below) and the commutation relation for the quantum current which
appeared in work of Reshetikhin and Semenov-Tian-Shansky [22] and which resembles
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the form of the reflection equation, we investigate algebras Ac(glN ) using the theory of
quantum VOAs.

The notion of quantum vertex operator algebra (quantum VOA) was introduced by
Etingof and Kazhdan [4]. Quantum affine VOA can be associated with rational, trigono-
metric and elliptic R-matrix; see [4]. In the rational case, the double Yangian DY(glN )

over C [[h]] can be used to define the quantum VOA structure on its vacuum module
Vc(glN ) at the level c ∈ C . The theory of quantum vertex algebras was further devel-
oped and generalized byLi; see, e.g., [14,15] and references therein. In particular, certain
more general objects, such as h-adic nonlocal vertex algebras and their quasi modules,
were introduced and studied in [15]. The main result of this paper is a construction of
the quasi module map YWc(glN ) on V2c(glN ), so that the vacuum module Wc(glN ) for
the algebra Ac(glN ) acquires a quasi V2c(glN )-module structure.

We use the quasi module map to obtain further information on the algebra Ac(glN ).
In our previous paper [9], coauthored with N. Jing, A. Molev, and F. Yang, the center
z(Vc(glN )) of the quantum VOA Vc(glN ) was described by providing explicit formulae
for its algebraically independent topological generators, thus establishing the quantum
analogue of the Feigin–Frenkel theorem in type A; see [2,3,5]. By considering the
image of the center z(V−N (glN )), with respect to the quasi module map YW−N/2(glN ),
we find explicit formulae for families of central elements in the completed algebra
˜A−N/2(glN ), which are, due to the fusion procedure originated in the work of A. Jucys
[10], parametrized by arbitrary partitions with at most N parts. For c �= −N we obtain
only one family of central elements in˜Ac/2(glN ), which, roughly speaking, coincidewith
the coefficients of the product of two Sklyanin determinants (i.e. with the coefficients
of the product of four quantum determinants); see [19,23]. In the end, we employ these
central elements to obtain invariants of the vacuum module Wc(glN ).

2. Reflection Algebras

In this section, we recall the definition of the double Yangian DY(glN ) over C [[h]]; see
[8]. Next, we follow [19] to introduce a certain class of reflection algebras. We employ
their structure to define subalgebra Ac(glN ) of the h-adically completed double Yangian
˜DYc(glN ) at the level c ∈ C , which will be our main point of interest in this paper.

2.1. Double Yangian for glN . Let N � 2 be an integer and let h be a formal parameter.
Denote by R(u) the Yang R-matrix over C [[h]] defined by

R(u) = 1 − hPu−1, (1.2)

where 1 is the identity and P is the permutation operator inC
N ⊗C

N , P : x⊗y �→ y⊗x .
R-matrix (1.2) satisfies the Yang–Baxter equation

R12(u) R13(u + v) R23(v) = R23(v) R13(u + v) R12(u). (1.3)

Both sides of (1.3) are operators on the triple tensor product (CN )⊗3 and subscripts
indicate the copies of C

N on which R(u) acts, for example, R12(u) = R(u) ⊗ 1 and
R23(v) = 1 ⊗ R(v). Let g(u) be the unique series in 1 + u−1

C [[u−1]] satisfying
g(u + N ) = g(u)(1 − u−2). (1.4)
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The R-matrix R(u) = R12(u) = g(u/h)R(u) possesses the crossing symmetry proper-
ties,

(

R12(u)−1
)t1

R12(u + hN )t1 = 1 and
(

R12(u)−1
)t2

R12(u + hN )t2 = 1, (1.5)

where ti denotes the transposition applied on the tensor factor i = 1, 2; and the unitarity
property

R12(u)R12(−u) = 1, (1.6)

see, e.g., [9, Sect. 2] for more details.
The double YangianDY(glN ) for glN is defined as the associative algebra overC [[h]]

generated by the central element C and the elements t (±r)
i j , where i, j = 1, . . . N and

r = 1, 2, . . ., subject to the following defining relations (see [8]),

R
(

u − v
)

T1(u) T2(v) = T2(v) T1(u) R
(

u − v
)

, (1.7)

R
(

u − v
)

T +
1 (u) T +

2 (v) = T +
2 (v) T +

1 (u) R
(

u − v
)

, (1.8)

R
(

u − v + hC/2
)

T1(u) T +
2 (v) = T +

2 (v) T1(u) R
(

u − v − hC/2
)

. (1.9)

The elements T (u) and T +(u) in EndC
N ⊗ DY(glN )[[u±1]] are defined by

T (u) =
N

∑

i, j=1

ei j ⊗ ti j (u) and T +(u) =
N

∑

i, j=1

ei j ⊗ t+i j (u),

where the ei j are the matrix units, and the series ti j (u) and t+i j (u) are given by

ti j (u) = δi j + h
∞
∑

r=1

t (r)i j u−r and t+i j (u) = δi j − h
∞
∑

r=1

t (−r)
i j ur−1.

We use the subscript to indicate a copy of the matrix in the tensor product algebra
(EndC

N )⊗m ⊗ DY(glN ), so that, for example,

Tk(u) =
N

∑

i, j=1

1⊗(k−1) ⊗ ei j ⊗ 1⊗(m−k) ⊗ ti j (u). (1.10)

In particular, we have m = 2 in defining relations (1.7)–(1.9).
The Yangian Y(glN ) is the subalgebra of DY(glN ) generated by the elements t (r)i j ,

i, j = 1, . . . , N , r = 1, 2, . . .. The dual Yangian Y+(glN ) is the subalgebra of the double
Yangian DY(glN ) generated by the elements t (−r)

i j , i, j = 1, . . . , N , r = 1, 2, . . .. For
any complex number c denote by DYc(glN ) the double Yangian at the level c, i.e. the
quotient of the algebra DY(glN ) by the ideal generated by the element C − c.

Recall that the h-adic topology on an arbitrary C [[h]]-module V is the topology
generated by the basis v + hnV , v ∈ V , n ∈ Z�1. The vacuum module Vc(glN ) at the
level c over the double Yangian is the h-adic completion of the quotient of the algebra
DYc(glN ) by the left ideal generated by all elements t (r)i j , r = 1, 2, . . ., i.e. the h-adic
completion of

DYc(glN )/DYc(glN )
〈

t (r)i j : i, j = 1, . . . , N , r = 1, 2, . . .
〉

. (1.11)

By thePoincaré–Birkhoff–Witt theorem for the doubleYangian, see [9,Theorem2.2], the
vacuummodule Vc(glN ) is isomorphic, as aC [[h]]-module, to the h-adically completed
dual Yangian ̂Y+(glN ).
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2.2. Algebra Ac(glN ). We now proceed as in [19] to introduce the reflection algebras.
Fix nonnegative integer M � N . Let G = (gi j )Ni, j=1 be the diagonal matrix of order N ,

G = diag(ε1, . . . , εN ), (1.12)

where ε1 = · · · = εM = 1 and εM+1 = · · · = εN = −1. Let c be a fixed complex
number. Consider the series

B+(u) =
N

∑

i, j=1

ei j ⊗ b+i j (u) ∈ EndC
N ⊗ ̂Y+(glN )[[u]] and (1.13)

B(u) =
N

∑

i, j=1

ei j ⊗ bi j (u) ∈ EndC
N ⊗ Y(glN )[[u−1]] (1.14)

defined by

B+(u) = T +(u)GT +(−u)−1 and B(u) = T (u + hc)GT (−u)−1. (1.15)

We can write the matrix entries of (1.13) and (1.14) as

b+i j (u) = gi j − h
∞
∑

r=1

b(−r)
i j ur−1 and bi j (u) = gi j + h

∞
∑

r=1

b(r)
i j u

−r

for some elements b(−r)
i j ∈ ̂Y+(glN ) and b(r)

i j ∈ Y(glN ).
Series (1.15) satisfy the unitary condition

B+(u)B+(−u) = 1 and B(u)B(−u − hc) = 1. (1.16)

Furthermore, using (1.7)–(1.9) and R(u)G1R(v)G2 = G2R(v)G1R(u) one can easily
verify that the following reflection relations hold for the elements of the h-adically
completed double Yangian ̂DYc(glN ) at the level c ∈ C :

R(u − v)B+
1 (u)R(u + v)B+

2 (v) = B+
2 (v)R(u + v)B+

1 (u)R(u − v), (1.17)

R(u − v)B1(u)R(u + v + hc)B2(v) = B2(v)R(u + v + hc)B1(u)R(u − v), (1.18)

R(u − v + 3hc/2)B1(u)R(u + v − hc/2)B+
2 (v)

= B+
2 (v)R(u + v + 3hc/2)B1(u)R(u − v − hc/2). (1.19)

As in Sect. 2.1, the subscripts in (1.17)–(1.19) indicate a copy of the matrix in the tensor
product algebra (EndC

N )⊗2 ⊗ ̂DYc(glN ); recall (1.10).
For i, j = 1, . . . , N and r = 1, 2, . . . let A′

c(glN ) be the subalgebra of ̂DYc(glN )

generated by the elements b(−r)
i j and b(r)

i j , let B
′+(glN ) be the subalgebra of the h-adically

completed dual Yangian ̂Y+(glN ) generated by the elements b(−r)
i j and let B′

c(glN ) be

the subalgebra of the Yangian Y(glN ) generated by the elements b(r)
i j .

Remark 2.1. By setting h = 1 in the algebra B′
0(glN ) we obtain the reflection algebra

B(N , N − M) over C , as defined in [19].
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As in [15], for an arbitrary C [[h]]-submodule V of ̂DYc(glN ) we define

[V ] = {

v ∈ ̂DYc(glN ) : hnv ∈ V for some n � 0
}

. (1.20)

Finally, consider the following subalgebras of ̂DYc(glN ):

Ac(glN ) = [A′
c(glN )], Bc(glN ) = [B′

c(glN )] and B+(glN ) = [B′+(glN )].
Clearly, the following inclusions hold:

Ac(glN ) ⊂ ̂DYc(glN ), Bc(glN ) ⊂ Y(glN ) and B+(glN ) ⊂ ̂Y+(glN ).

Moreover, due to [15, Lemma 3.5], the induced topology on Ac(glN ), Bc(glN ) and
B+(glN ) from ̂DYc(glN ) coincides with the h-adic topology on these algebras.

We now introduce some new notation in order to write the more general form of
relations (1.17)–(1.19). For positive integers n,m and the families of variables u =
(u1, . . . , un) and v = (v1, . . . , vm) set

Ri j = Ri j (ui − v j−n) and

Ri j = Ri j (ui + v j−n), i = 1, . . . , n, j = n + 1, . . . , n + m.

Consider the functions with values in the space (EndC
N )⊗n ⊗ (EndC

N )⊗m

R
12
nm(u|v) =

−→
∏

i=1,...,n

←−
∏

j=n+1,...,n+m

Ri j and R
12
nm(u|v) =

−→
∏

i=1,...,n

−→
∏

j=n+1,...,n+m

Ri j

(1.21)

with the arrows indicating the order of the factors. The functions R12
nm(u|v) and R12

nm(u|v)

corresponding to R-matrix (1.2) can be defined analogously. Introduce the series

B+
n(u) =

−→
∏

i=1,...,n

(

B+
i (ui )Ri i+1(ui + ui+1) . . . Rin(ui + un)

)

and (1.22)

Bn(u) =
−→
∏

i=1,...,n

(

Bi (ui )Ri i+1(ui + ui+1 + hc) . . . Rin(ui + un + hc)
)

. (1.23)

For a family of variables u = (u1, . . . , un) and α ∈ C we will often denote the
families (u1 +αh, . . . , un +αh) and (αu1, . . . , αun) by u +αh and αu respectively. We
also adopt the superscript notation for multiple tensor products of the form

(EndC
N )⊗n ⊗ (EndC

N )⊗m ⊗ (EndC
N )⊗k ⊗ Ac(glN ) ⊗ Ac(glN ) ⊗ Ac(glN ).

Expressions like B+14
n (u) or B35

k (w), where w = (w1, . . . , wk), will be understood as
the respective operators B+

n(u) or Bk(w), whose non-identity components belong to
the corresponding tensor factors. In particular, the non-identity components of B35

k (w)

belong to the factors n + m + 1, n + m + 2, . . . , n + m + k and n + m + k + 2. This
notation is employed in the next proposition, which can be proved using (1.17)–(1.19)
and Yang–Baxter equation (1.3).
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Proposition 2.2. For any positive integers n and m the following equalities hold on
(EndC

N )⊗n ⊗ (EndC
N )⊗m ⊗ Ac(glN ):

R12
nm(u|v)B+13

n (u)R12
nm(u|v)B+23

m (v) = B+23
m (v)R12

nm(u|v)B+13
n (u)R12

nm(u|v), (1.24)

R12
nm(u|v)B13

n (u)R12
nm(u + hc|v)B23

m (v) = B23
m (v)R12

nm(u + hc|v)B13
n (u)R12

nm(u|v),

(1.25)

R
12
nm(u + 3hc/2|v)B13

n (u)R
12
nm(u − hc/2|v)B+23

m (v)

= B+23
m (v)R

12
nm(u + 3hc/2|v)B13

n (u)R
12
nm(u − hc/2|v). (1.26)

Our next goal is to derive Proposition 2.4, which will be useful in what follows. First,
note that by applying the transposition t1 on the first and t2 on the second equality in
(1.5) we get

rl
(

R12(u)−1
)

· R12(u + hN ) = 1 and lr
(

R12(u)−1
)

· R12(u + hN ) = 1, (1.27)

where the superscript rl (lr ) in (1.27) indicates that the first tensor factor of R12(u)−1

is applied from the right (left) while the second tensor factor of R12(u)−1 is applied
from the left (right). One can generalize ordered products (1.27) in an obvious way. For
example,

K (n,m) =
←−
∏

i=1,...,n

←−
∏

j=n+1,...,n+m

Ri j (ui + v j−n − hc/2 − hN )−1 (1.28)

satisfies
rl
(

K (n,m)
)

· R12
nm(u − hc/2|v) = 1, (1.29)

where superscript rl in (1.29) indicates that the tensor factors of K (n,m) corresponding
to the first index i = 1, . . . , n in (1.28) are applied from the right in reversed order, while
the tensor factors corresponding to the second index j = n + 1, . . . , n +m in (1.28) are
applied from the left.

Example 2.3. Set Ki j = Ri j (ui +v j−n−hc/2−hN )−1 and Si j = Ri j (ui +v j−n−hc/2).
We briefly explain how to verify (1.29) for n = m = 2; the general case can be proved
analogously. First, due to (1.21) and (1.28), on (EndC

N )⊗2 ⊗ (EndC
N )⊗2 we have

R
12
22(u − hc/2|v) = S13S14S23S24 and K (2,2) = K24K23K14K13.

The element rl
(

K (2,2)
) · R12

22(u − hc/2|v) can be written as

rl(K23) ·
(

rl(K24) ·
(

rl(K13) ·
(

rl(K14) · (S13S14S23S24)
)))

. (1.30)

By the first equality in (1.27) we have

rl(K14) · (S13S14S23S24) = S13
(

rl(K14) · S14
)

S23S24 = S13S23S24.

Next, as before, by the first equality in (1.27) we have

rl(K13) · (S13S23S24) =
(

rl(K13) · S13
)

S23S24 = S23S24.

Hence, (1.30) is equal to rl(K23) ·
(

rl(K24) · (S23S24)
)

.By repeating the same arguments

two more times, we finally obtain rl
(

K (2,2)
) · R12

22(u − hc/2|v) = 1, as required.
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Observe that, due to (1.27), the element

L(n,m) =
←−
∏

i=n+1,...,n+m−1

←−
∏

j=i+1,...,n+m

Ri j (vi−n + v j−n − hN )−1 (1.31)

satisfies
rl
(

L(n,m)
)

· B+23
m (v) = B+

n+1(v1)B
+
n+2(v2) . . . B+

n+m(vm), (1.32)

where, as before, superscript rl in (1.32) indicates that the tensor factors of L(n,m)

corresponding to the first index i = n + 1, . . . , n + m − 1 in (1.31) are applied from
the right in reversed order, while the tensor factors corresponding to the second index
j = i + 1, . . . , n + m in (1.31) are applied from the left. Relation (1.26), together with
(1.29) and (1.32), implies

Proposition 2.4. The following equality holds on (EndC
N )⊗n⊗(EndC

N )⊗m⊗Ac(glN ):

B13
n (u) B+

n+1(v1)B
+
n+2(v2) . . . B+

n+m(vm) = rl
(

L(n,m)
)

·
(

rl
(

K (n,m)
)

·
(

R
12
nm(u + 3hc/2|v)−1B+23

m (v)R
12
nm(u + 3hc/2|v)B13

n (u)R
12
nm(u − hc/2|v)

))

.

(1.33)

Denote by 1 the image of the unit 1 ∈ DYc(glN ) in the quotient (1.11). LetW ′
c(glN )

be the B+(glN )-submodule of Vc(glN ) generated by 1. Introduce the vacuum module
Wc(glN ) over the algebra Ac(glN ) as the h-adic completion of W ′

c(glN ). Observe that
Wc(glN ) is closed under the action of Bc(glN ), so it possesses a structure of an Ac(glN )-
module. Indeed, by applying (1.33) with n = 1 on 1 and using

B(u) 1 = T (u + hc)G T (−u)−1 1 = T (u + hc)G 1 = G 1, (1.34)

we obtain

B1(u1) B
+
2 (v1)B

+
3 (v2) . . . B+

m+1(vm) 1 = rl
(

L(1,m)
)

·
(

rl
(

K (1,m)
)

·
(

R
12
1m(u1 + 3hc/2|v)−1B+23

m (v)R
12
1m(u1+3hc/2|v)G1 R

12
1m(u1−hc/2|v) 1

))

,

(1.35)

so it remains to observe that all coefficients of the right hand side in (1.35) belong to
Wc(glN ).

By the Poincaré–Birkhoff–Witt theorem for the double Yangian, see [9, Theorem
2.2], the C [[h]]-modules W ′

c(glN ) and B+(glN ) are isomorphic. Hence, in particular,
the completionWc(glN ) is topologically free, i.e. separated, torsion-free and h-adically
complete.

3. Quasi Modules for h-Adic Nonlocal Vertex Algebras

In this section, we study h-adic nonlocal vertex algebras and their quasi modules, as
defined by Li [15], and we establish some technical results on their center, which will
be useful in Sect. 4. Next, we recall Etingof–Kazhdan’s definition [4] of quantum VOA
structure on the vacuum module Vc(glN ), c ∈ C . Finally, we construct quasi modules
for the quantum VOA V2c(glN ) on the C [[h]]-moduleWc(glN ).
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3.1. Quasi modules. Let us recall the notion of quasi module for h-adic nonlocal ver-
tex algebra; see [15]. The tensor products in the next two definitions are h-adically
completed.

Definition 3.1. An h-adic nonlocal vertex algebra is a triple (V,Y, 1), where V is a
topologically free C[[h]]-module, 1 is a distinguished element of V (vacuum vector)
and

Y : V ⊗ V → V ((z))[[h]]
v ⊗ w �→ Y (z)(v ⊗ w) = Y (v, z)w =

∑

r∈Z

vrwz−r−1

is a C [[h]]-module map which satisfies the weak associativity property: For any integer
n � 0 and elements u, v, w ∈ V there exists an integer r � 0 such that

(z0 + z2)
rY (v, z0 + z2)Y (w, z2)u−(z0 + z2)

r Y
(

Y (v, z0)w, z2
)

u ∈ hnV [[z±1
0 , z±1

2 ]];
(2.1)

and the following conditions hold:

Y (v, z) 1 ∈ V [[z]], lim
z→0

Y (v, z) 1 = v and Y (1, z)v = v for any v ∈ V .

Definition 3.2. Let (V,Y, 1) be an h-adic nonlocal vertex algebra. Quasi V -module is
a pair (W,YW ), where W is a topologically free C [[h]]-module and

YW (z) : V ⊗ W → W ((z))[[h]]
v ⊗ w �→ YW (z)(v ⊗ w) = YW (v, z)w =

∑

r∈Z

vrwz−r−1

is aC [[h]]-modulemapwhich satisfies the following: For any integern � 0 and elements
u, v ∈ V , w ∈ W there exists a nonzero polynomial p(x1, x2) in C [x1, x2] such that

p(z0 + z2, z2)YW (u, z0 + z2)YW (v, z2)w

−p(z0 + z2, z2)YW
(

Y (u, z0)v, z2
)

w ∈ hnW [[z±1
0 , z±1

2 ]]; (2.2)

and for any w ∈ W we have YW (1, z)w = w.

Let W be a C [[h]]-module. For any a, b ∈ W [[z±1
0 , z±1

1 , . . .]] and n � 0 we will
write

a ∼
hn

b if a − b ∈ hnW [[z±1
0 , z±1

1 , . . .]].

Lemma 3.3. Let V be an h-adic nonlocal vertex algebra and let W be a quasi V -module.
Suppose that the elements a, b ∈ V and w1, w2 ∈ W satisfy

[YW (a, z1),YW (b, z2)]wi = 0 for i = 1, 2. (2.3)

Then, for any integers p, t, n, n � 0, there exist scalars αr,s ∈ C , which do not depend
on i = 1, 2, such that

(apb)twi ∼
hn

∑

r,s∈Z

αr,sar bswi for i = 1, 2. (2.4)
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Proof. Fix integers p, t, n, n � 0. By (2.2), there exist nonzero polynomials pi (x1, x2)
in C [x1, x2], where i = 1, 2, such that

pi (z0 + z2, z2)YW (a, z0 + z2)YW (b, z2)wi ∼
hn

pi (z0 + z2, z2)YW
(

Y (a, z0)b, z2
)

wi .

(2.5)
Consider the left hand side in (2.5). Due to (2.3), there exist an integer l � 0 such that

(z0 + z2)
l zl2YW (a, z0 + z2)YW (b, z2)wi = Xi (z0, z2) + hn Zi (z0, z2), i = 1, 2,

(2.6)

for some Xi (z0, z2) ∈ W [[z0, z2]][h] and Zi (z0, z2) ∈ W ((z0))((z2))[[h]]. Indeed, we
can set l = max {l1, l2, k1, k2}, where li and ki are chosen so that the expression

zli1 z
ki
2 YW (a, z1)YW (b, z2)wi = zli1 z

ki
2 YW (b, z2)YW (a, z1)wi , i = 1, 2,

possesses only nonnegative powers of the variables z1, z2 modulo hn . Equality (2.6)
implies that there exist scalars βr,s ∈ C , which do not depend on i = 1, 2, such that the
coefficient of z−p−1

0 z−t−1
2 in Xi (z0, z2) is equal to
∑

r,s

βr,sar bswi mod hn for i = 1, 2. (2.7)

By combining relations (2.5) and (2.6) we obtain

pi (z0 + z2, z2)Xi (z0, z2) ∼
hn

pi (z0 + z2, z2)(z0 + z2)
l zl2YW

(

Y (a, z0)b, z2
)

wi ,

i = 1, 2. (2.8)

The left hand side in (2.8), as well as Xi (z0, z2), possesses only nonnegative powers
of the variables z0 and z2, while the right hand side in (2.8), as well as the expression
YW

(

Y (a, z0)b, z2
)

wi , belongs to W ((z2))((z0))[[h]]. Hence, we can multiply (2.8) by
the inverse of the polynomial p(z2 + z0, z2) in C((z2))((z0)), thus getting

Xi (z0, z2) ∼
hn

(z0 + z2)
l zl2YW

(

Y (a, z0)b, z2
)

wi , i = 1, 2. (2.9)

Next, we multiply (2.9) by the inverse of the polynomial (z2 + z0)l zl2 in C((z2))((z0)),
which gives us

(

(z2 + z0)
l zl2

)−1 · Xi (z0, z2) ∼
hn

YW
(

Y (a, z0)b, z2
)

wi , i = 1, 2. (2.10)

In particular, the coefficients of z−p−1
0 z−t−1

2 in (2.10) coincide modulo hn . Recall (2.7).
Clearly, there exist scalars αr,s ∈ C , which do not depend on i = 1, 2, such that the
coefficient of z−p−1

0 z−t−1
2 on the left hand side in (2.10) equals
∑

r,s∈Z

αr,sar bswi mod hn for i = 1, 2.

Since the coefficient of z−p−1
0 on the right hand side in (2.10) equals YW (apb, z2

)

wi ,
by taking the coefficient of z−t−1

2 we obtain
∑

r,s∈Z

αr,sar bswi ∼
hn

(apb)twi , i = 1, 2,

as required. �
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As with quantum VOAs in [9], we can introduce the center of an h-adic nonlocal
vertex algebra V in analogy with vertex algebra theory; see, e.g., [7, Chap. 2]. Define
the center of V as the C [[h]]-submodule

z(V ) = {v ∈ V : wrv = 0 for all w ∈ V and r � 0} .

It is worth noting that, in contrast with the vertex algebra theory, the center of an h-adic
nonlocal vertex algebra does not need to be commutative; see [9, Proposition 4.2].

Proposition 3.4. Let V be an h-adic nonlocal vertex algebra and let W be a quasi V -
module. Suppose that the center z(V ) is a commutative associative algebra, with respect
to the product a · b := a−1b for a, b ∈ z(V ). Furthermore, assume that the algebra
z(V ) is topologically generated, with respect to the h-adic topology, by some family
� ⊆ z(V ).

(a) If [YW (a, z1),YW (b, z2)] = 0 for all a, b ∈ �, then

[YW (a, z1),YW (b, z2)] = 0 for all a, b ∈ z(V ). (2.11)

1. (b) If ψ : W → W is a C [[h]]-module map satisfying [YW (a, z), ψ] = 0 for all
a ∈ �, then

[YW (a, z), ψ] = 0 for all a ∈ z(V ). (2.12)

Proof. Let a, b, c be elements of the center z(V ) such that the pairs (a, b), (b, c) and
(a, c) satisfy (2.11). In order to prove (a), it is sufficient to verify that the pair (a ·b, c) =
(a−1b, c) satisfies (2.11). Fixw ∈ W and integers p, t, n, n � 0. Due to our assumption,
the pair (a, b) satisfies (2.11), so Lemma 3.3 implies that there exist scalars αr,s ∈ C

such that

(a · b)t cpw ∼
hn

∑

r,s∈Z

αr,sar bscpw and (a · b)tw ∼
hn

∑

r,s∈Z

αr,sar bsw. (2.13)

Since the pairs (a, c) and (b, c) satisfy (2.11), we have [bs, cp] = [ar , cp] = 0 on W ,
so by relations in (2.13) we have

(a · b)t cpw ∼
hn

∑

r,s∈Z

αr,sar bscpw =
∑

r,s∈Z

αr,sar cpbsw

=
∑

r,s∈Z

αr,scparbsw ∼
hn

cp(a · b)tw.

Hence we proved (a · b)t cpw ∼
hn

cp(a · b)tw. Since n was arbitrary, we conclude that

(a · b)t cpw = cp(a · b)tw.

Finally, since integers p, t and element w ∈ W were arbitrary, this gives us

[YW (a · b, z1),YW (c, z2)] = 0,

as required. Statement (b) can be proved analogously. �
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3.2. Vacuum module Vc(glN ) as a quantum VOA. Let n and m be positive integers. For
the families of variables u = (u1, . . . , un) and v = (v1, . . . , vm) and the variable z
consider the functions with values in (EndC

N )⊗n ⊗ (EndC
N )⊗m

R
12
nm(u|v|z) =

−→
∏

i=1,...,n

←−
∏

j=n+1,...,n+m

Ri j (z + ui − v j−n), (2.14)

R
12
nm(u|v|z) =

−→
∏

i=1,...,n

−→
∏

j=n+1,...,n+m

Ri j (z + ui + v j−n). (2.15)

The functions R12
nm(u|v|z) and R12

nm(u|v|z) corresponding to R-matrix (1.2) can be de-
fined analogously. In (2.14)–(2.15), as well as in the rest of the paper, we use the common
expansion convention: expressions of the form (a1z1+· · ·+anzn)k , where ai ∈ C , ai �= 0
and k < 0, are expanded in negative powers of the variable appearing on the left, e.g.,

(z1 − z2)
−1 =

∑

l�0

zl2
zl+11

∈ C [z−1
1 ][[z2]] and (−z2 + z1)

−1

= −
∑

l�0

zl1
zl+12

∈ C [z−1
2 ][[z1]].

In particular, (2.14)–(2.15) contain only nonnegative powers of the variables ui and
v j−n .

Define the following operators on (EndC
N )⊗n ⊗ Vc(glN ):

T +
n (u|z) = T +

1 (z + u1) . . . T +
n (z + un) and Tn(u|z) = T1(z + u1) . . . Tn(z + un).

Using (1.7)–(1.9), one can easily verify the following equations for the operators on
(EndC

N )⊗n ⊗ (EndC
N )⊗m ⊗ Vc(glN ), originally given in [4], which employ the su-

perscript notation introduced prior to Proposition 2.2.

R12
nm(u|v|z − w)T +13

n (u|z)T +23
m (v|w) = T +23

m (v|w)T +13
n (u|z)R12

nm(u|v|z − w),

(2.16)

R12
nm(u|v|z − w)T 13

n (u|z)T 23
m (v|w) = T 23

m (v|w)T 13
n (u|z)R12

nm(u|v|z − w), (2.17)

R
12
nm(u|v|z − w + h c/2)T 13

n (u|z)T +23
m (v|w)

= T +23
m (v|w)T 13

n (u|z)R 12
nm(u|v|z − w − h c/2). (2.18)

The next theorem, which is due to Etingof and Kazhdan [4], introduces the structure
of quantum VOA on the vacuummodule Vc(glN ). Roughly speaking, quantum VOA, as
defined in [4], is an h-adic nonlocal vertex algebra (V,Y, 1) equipped with the C[[h]]-
module map S(z) : V ⊗V → V ⊗V ⊗C((z)) (with the tensor products being h-adically
completed) satisfying the S-locality: For any integer n � 0 and elements v,w ∈ V there
exists an integer k � 0 such that for any u ∈ V

(z1 − z2)
kY (z1)

(

1 ⊗ Y (z2)
)(

S(z1 − z2)(v ⊗ w) ⊗ u
)

− (z1 − z2)
kY (z2)

(

1 ⊗ Y (z1)
)

(w ⊗ v ⊗ u) ∈ hnV [[z±1
1 , z±1

2 ]]; (2.19)

and several other properties. In this paper, we only use S-locality (2.19) and the under-
lying structure of an h-adic nonlocal vertex algebra on Vc(glN ), so we omit the original
definition of quantum VOA.
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Theorem 3.5. For any c ∈ C there exists a unique structure of quantumVOA onVc(glN )

such that the vacuum vector is 1 ∈ Vc(glN ), the vertex operator map is given by

Y
(

T +
n (u|0) 1, z

) = T +
n (u|z) Tn(u|z + h c/2)−1 (2.20)

and the map S(z) is defined by the relation

S34(z)
(

R
12
nm(u|v|z)−1T +24

m (v|0)R12
nm(u|v|z − hc)T +13

n (u|0)(1 ⊗ 1)
)

= T +13
n (u|0)R12

nm(u|v|z + hc)−1T +24
m (v|0)R12

nm(u|v|z)(1 ⊗ 1) (2.21)

for operators on (EndC
N )⊗n ⊗ (EndC

N )⊗m ⊗ Vc(glN ) ⊗ Vc(glN ).

3.3. Vacuum module Wc(glN ) as a quasi V2c(glN )-module. Consider the operators on
(EndC

N )⊗n ⊗ Wc(glN ) given by

B+
n(u|z) =

−→
∏

i=1,...,n

(

B+
i (z + ui )Ri i+1(2z + ui + ui+1) . . . Rin(2z + ui + un)

)

and

Bn(u|z) =
−→
∏

i=1,...,n

(

Bi (z + ui )Ri i+1(2z + ui + ui+1 + hc) . . . Rin(2z + ui + un + hc)
)

.

The next proposition can be proved by using Proposition 2.2.

Proposition 3.6. Let n and m be positive integers. The following equalities hold for the
operators on (EndC

N )⊗n ⊗ (EndC
N )⊗m ⊗ Wc(glN ):

R12
nm(u|v|z − w)B+13

n (u|z)R12
nm(u|v|z + w)B+23

m (v|w)

= B+23
m (v|w)R12

nm(u|v|z + w)B+13
n (u|z)R12

nm(u|v|z − w), (2.22)

R12
nm(u|v|z − w)B13

n (u|z)R12
nm(u|v|z + w + hc)B23

m (v|w)

= B23
m (v|w)R12

nm(u|v|z + w + hc)B13
n (u|z)R12

nm(u|v|z − w), (2.23)

R
12
nm(u|v|z − w + 3hc/2)B13

n (u|z)R12
nm(u|v|z + w − hc/2)B+23

m (v|w)

= B+23
m (v|w)R

12
nm(u|v|z + w + 3hc/2)B13

n (u|z)R12
nm(u|v|z − w − hc/2). (2.24)

The following theorem is our main result.

Theorem 3.7. For any c ∈ C there exists a unique structure of quasi V2c(glN )-module
on the vacuum module Wc(glN ) such that

YWc(glN )(T
+
n (u|0) 1, z) = B+

n(u|z)Bn(u|z + hc/2)−1. (2.25)

Proof. SetWc = Wc(glN ). We first prove that map (2.25) is well-defined. It is sufficient
to verify that a �→ YWc (a, z) maps the ideal of relations (1.8) to itself since, due to
Poincaré–Birkhoff–Witt theorem for the double Yangian [9, Theorem 2.2], Y+(glN )

is isomorphic to the algebra generated by the elements t (−r)
i j , where r = 1, 2 . . . and
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i, j = 1, . . . , N , subject to (1.8). Set ̂Rk k+1 = Rk k+1(uk − uk+1), where 1 � k < n.
Relation (1.8) implies

̂Rk k+1T
+
n (u|0) 1

= T +
1 (u1) . . . T +

k−1(uk−1)T
+
k+1(uk+1)T

+
k (uk)T

+
k+2(uk+2) . . . T +

n (un) 1 ̂Rk k+1. (2.26)

Set ˜Rz
i j = Ri j (2z + ui + u j ) and ˜Rz+hc

i j = Ri j (2z + ui + u j + 2hc). Due to Yang–Baxter
equation (1.3) and unitarity (1.6), for any indices 1 � j < k < k + 1 < l � n we have

̂Rk k+1˜Rz
jk

˜Rz
j k+1 = ˜Rz

j k+1
˜Rz
jk

̂Rk k+1 and ̂Rk k+1˜Rz
kl

˜Rz
k+1 l = ˜Rz

k+1 l
˜Rz
kl

̂Rk k+1. (2.27)

Relation (2.22), together with (2.27), implies

̂Rk k+1B
+
n(u|z) = B+

n,k↔k+1(u|z)̂Rk k+1, where

B+
n,k↔k+1(u|z) =

−→
∏

i=1,...,k−1

(

B+
i (z + ui )˜R

z
i i+1 . . . ˜Rz

i k−1
˜Rz
i k+1

˜Rz
i k

˜Rz
i k+2 . . . ˜Rz

i n

)

· (B+
k+1(z + uk+1)˜R

z
k+1 k

˜Rz
k+1k+2 . . . ˜Rz

k+1n

) · (

B+
k (z + uk)˜R

z
k k+2 . . . ˜Rz

k n

)

·
−→
∏

i=k+2,...,n

(

B+
i (z + ui )˜R

z
i i+1 . . . ˜Rz

i n

)

. (2.28)

Next, due to Yang–Baxter equation (1.3) and unitarity (1.6) we have

̂Rk k+1(˜R
z+hc
k+1 l )

−1(˜Rz+hc
kl )−1 = (˜Rz+hc

kl )−1(˜Rz+hc
k+1 l )

−1
̂Rk k+1, (2.29)

̂Rk k+1(˜R
z+hc
j k+1)

−1(˜Rz+hc
jk )−1 = (˜Rz+hc

jk )−1(˜Rz+hc
j k+1)

−1
̂Rk k+1 (2.30)

for 1 � j < k < k + 1 < l � n. Relation (2.23), together with (2.29)–(2.30), implies

̂Rk k+1Bn(u|z + hc/2)−1 = Bn,k↔k+1(u|z + hc/2)−1
̂Rk k+1, where

Bn,k↔k+1(u|z + hc/2) =
−→
∏

i=1,...,k−1

(

Bi (z + ui + hc/2)˜Rz+hc
i i+1 . . . ˜Rz+hc

i k−1

· ˜Rz+hc
i k+1

˜Rz+hc
i k

˜Rz+hc
i k+2 . . . ˜Rz+hc

i n

)

·
(

Bk+1(z + uk+1 + hc/2)˜Rz+hc
k+1 k

˜Rz+hc
k+1k+2 . . . ˜Rz+hc

k+1n

)

·
(

Bk(z + uk + hc/2)˜Rz+hc
k k+2 . . . ˜Rz+hc

k n

)

·
−→
∏

i=k+2,...,n

(

Bi (z + ui + hc/2)˜Rz+hc
i i+1 . . . ˜Rz+hc

i n

)

. (2.31)

Finally, by applying the map a �→ YWc (a, z) on the left hand side of (2.26), we
obtain

̂Rk k+1B
+
n(u|z)Bn(u|z + hc/2)−1.

By (2.28) and (2.31) this is equal to

B+
n,k↔k+1(u|z)Bn,k↔k+1(u|z + hc/2)−1

̂Rk k+1. (2.32)
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However, (2.32) coincides with the image of the right hand side in (2.26), with respect
to the map a �→ YWc (a, z), so we conclude that YWc (z) is well-defined.

It is clear that (2.25) determines the map YWc (z) uniquely. Our next goal is to show
that the image of YWc (z) belongs toWc((z))[[h]]. Relation (2.24) implies

R
12
nm(u|v|z + 2hc)B13

n (u|z + hc/2)R
12
nm(u|v|z)B+23

m (v)

= B+23
m (v)R

12
nm(u|v|z + 2hc)B13

n (u|z + hc/2)R
12
nm(u|v|z). (2.33)

Observe that

B13
n (u|z + hc/2)−1 1 = ̂G 1 for ̂G = G1 . . .Gn,

so, by using (1.27) and (2.33) and arguing as in the proof of Equality (1.33) we get

YWc (T
+
n (u|0) 1, z)B+

n+1(v1) . . . B+
n+m(vm) 1

= B+13
n (u|z)B13

n (u|z + hc/2)−1B+
n+1(v1) . . . B+

n+m(vm) 1

= B+13
n (u|z)

(

rl(L) ·
(

rl(K )

·
(

R
12
nm(u|v|z)B+23

m (v)R
12
nm(u|v|z)−1

̂G 1 R
12
nm(u|v|z + 2hc)−1

)))

, (2.34)

where K = R
12
nm(u|v|z + 2hc + hN ) and L = L(n,m) is given by (1.31). Recall that the

R-matrix R(x) belongs to (EndC
N )[x−1][[h]]. Therefore, the right hand side of (2.34)

is a Taylor series in the variables u1, . . . , un, v1, . . . , vm and h such that the coefficient
of each monomial ua11 . . . uann v

b1
1 . . . v

bm
m hb possesses only finitely many negative powers

of the variable z. This implies that the image of YWc (z) belongs toWc((z))[[h]].
The property YWc (1, z) = 1Wc is clear, so it remains to prove (2.2). Consider the

second summand in (2.2). By applying the vertex operator map Y (z0) for the quantum
VOA V2c(glN ), as defined in Theorem 3.5, on the series1

T +13
n (u|0)R12

nm(u|v|z0 + 2hc)−1T +24
m (v|0)(1 ⊗ 1), (2.35)

whose coefficients belong to (EndC
N )⊗n ⊗ (EndC

N )⊗m ⊗ V2c(glN ) ⊗ V2c(glN ), we
get

T +13
n (u|z0)T 13

n (u|z0 + hc)−1R
12
nm(u|v|z0 + 2hc)−1T +23

m (v|0) 1 .

Due to (2.18) at the level 2c and T 13
n (u|z0 + hc)−1 1 = 1 this equals to

T +13
n (u|z0)T +23

m (v|0) 1 R
12
nm(u|v|z0)−1, (2.36)

which is a series with coefficients in (EndC
N )⊗n ⊗ (EndC

N )⊗m ⊗ V2c(glN ). Finally,
by applying the map a �→ YWc (a, z2) on (2.36) we get

B+
n+m(x |z2)Bn+m(x |z2 + hc/2)−1R

12
nm(u|v|z0)−1, (2.37)

where x denotes the n + m variables x = (z0 + u1, . . . , z0 + un, v1, . . . , vm).

1 It is possible (and perhaps more natural) to prove (2.2) by starting from T +13
n (u|0)T +24

m (v|0)(1 ⊗ 1)

instead of (2.35). However, this requires the use of ordered products, as defined in Sect. 2.2, thus making the
calculations seemingly more complicated, even though the proof remains analogous.
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Let us consider the first summand in (2.2). By applying YWc (z0 + z2)(1⊗ YWc (z2))
on (2.35) we obtain

B+13
n (u|z0 + z2)B

13
n (u|z0 + z2 + hc/2)−1

· R12
nm(u|v|z0 + 2hc)−1B+23

m (v|z2)B23
m (v|z2 + hc/2)−1. (2.38)

Using (2.24) we can express B13
n (u|z0 + z2 + hc/2)−1R

12
nm(u|v|z0 + 2hc)−1B+23

m (v|z2)
as

R
12
nm(u|v|z0 + 2z2)B

+23
m (v|z2)

· R12
nm(u|v|z0)−1B13

n (u|z0 + z2 + hc/2)−1R
12
nm(u|v|z0 + 2z2 + 2hc)−1,

so that (2.38) is equal to

B+13
n (u|z0 + z2)R

12
nm(u|v|z0 + 2z2)B

+23
m (v|z2)R12

nm(u|v|z0)−1

· B13
n (u|z0 + z2 + hc/2)−1R

12
nm(u|v|z0 + 2z2 + 2hc)−1B23

m (v|z2 + hc/2)−1.

(2.39)

Finally, we rewrite (2.39) using (2.23), thus getting

B+13
n (u|z0 + z2)R

12
nm(u|v|z0 + 2z2)B

+23
m (v|z2)B23

m (v|z2 + hc/2)−1

· R12
nm(u|v|z0 + 2z2 + 2hc)−1B13

n (u|z0 + z2 + hc/2)−1R
12
nm(u|v|z0)−1. (2.40)

Expressions (2.37) and (2.40) are not equal, even though they do coincide when
viewed as Taylor series in the variables u1, . . . , un, v1, . . . , vm, h whose coefficients
are rational functions in z0, z2. Indeed, due to our expansion convention, the operators
and R-matrices in (2.37), whose arguments contain both the variables z0 and z2, should
be expanded in nonnegative powers of z0, while the same operators and R-matrices
in (2.40) should be expanded in nonnegative powers of z2. Fix an integer k � 0 and
an element w ∈ Wc. Apply both (2.37) and (2.40) on w and denote the resulting
expressions by P(u, v, z0, z2) and S(u, v, z0, z2) respectively. Then, for any choice of
integers a1, . . . , an � 0 and b1, . . . , bm � 0 there exist an integer r � 0 such that the
coefficients of ua11 . . . uann v

b1
1 . . . v

bm
m in

(z0 + z2)
r (z0 + 2z2)

r P(u, v, z0, z2) and (z0 + z2)
r (z0 + 2z2)

r S(u, v, z0, z2)

coincide modulo hk , which implies (2.2). �

The map YWc(glN )(z) satisfies the following “twisted” S-locality property; cf. [13,

16].

Proposition 3.8. For any u, v ∈ V2c(glN ) and integer k � 0 there exists an integer
r � 0 such that for any w ∈ Wc(glN )

(z21 − z22)
r YWc(glN )(z1)

(

1 ⊗ YWc(glN )(z2)
)(

S(z1 − z2)(u ⊗ v) ⊗ w
)

− (z21 − z22)
r YWc(glN )(z2)

(

1 ⊗ YWc(glN )(z1)
)

(v ⊗ u ⊗ w)

∈ hkWc(glN )[[z±1
1 , z±1

2 ]]. (2.41)
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Proof. Set Wc = Wc(glN ). Consider the first summand in (2.41) and set z = z1 − z2.
Notice that the variable z1 appears on the left in z = z1 − z2, so the negative powers
of z should be expanded in negative powers of z1. By applying S(z) at the level 2c, as
defined in (2.21), on the last two tensor factors of the expression

R
12
nm(u|v|z)−1T +24

m (v|0)R12
nm(u|v|z − 2hc)T +13

n (u|0)(1 ⊗ 1), (2.42)

whose coefficients belong to (EndC
N )⊗(n+m) ⊗ V2c(glN )⊗2, we get

T +13
n (u|0)R12

nm(u|v|z + 2hc)−1T +24
m (v|0)R12

nm(u|v|z)(1 ⊗ 1). (2.43)

Next, we apply YWc (z1)(1 ⊗ YWc (z2)) on (2.43), thus getting

B+13
n (u|z1)B13

n (u|z1 + hc/2)−1R
12
nm(u|v|z + 2hc)−1

· B+23
m (v|z2)B23

m (v|z2 + hc/2)−1R
12
nm(u|v|z). (2.44)

We may now proceed as in calculation (2.38)–(2.40) and prove that (2.44) equals

B+13
n (u|z1)R12

nm(u|v|z1 + z2)B
+23
m (v|z2)

· B23
m (v|z2 + hc/2)−1R

12
nm(u|v|z1 + z2 + 2hc)−1B13

n (u|z1 + hc/2)−1. (2.45)

Let us consider the second summand in (2.41). First, by swapping tensor factors
n + m + 1 and n + m + 2 in (2.42) we get

R
12
nm(u|v|z)−1T +23

m (v|0)R12
nm(u|v|z − 2hc)T +14

n (u|0)(1 ⊗ 1).

Next, by applying YWc (z2)(1 ⊗ YWc (z1)) we obtain

R
12
nm(u|v|z)−1B+23

m (v|z2)B23
m (v|z2 + hc/2)−1

· R12
nm(u|v|z − 2hc)B+13

n (u|z1)B13
n (u|z1 + hc/2)−1. (2.46)

We now want to apply relation (2.24) on (2.46). However, the factors

R
12
nm(u|v|z)−1 and R

12
nm(u|v|z − 2hc), where z = z1 − z2, (2.47)

in (2.46) should be expanded in nonnegative powers of z2, while (2.24) requires for
the R-matrices in (2.47) to be expanded in nonnegative powers of z1. Fix an integer
k � 0. For any choice of integers a1, . . . , an � 0 and b1, . . . , bm � 0 there exist an

integer p � 0 such that the coefficients of all monomials u
a′
1

1 . . . u
a′
n

n v
b′
1

1 . . . v
b′
m

m , where
0 � a′

i � ai and 0 � b′
j � b j , in

(z1 − z2)
p R

12
nm(u|v|z1 − z2)

−1 and (z1 − z2)
p R

12
nm(u|v|z1 − z2 − 2hc)

(2.48)

coincide with the corresponding coefficients in

(z1 − z2)
p R

12
nm(u|v| − z2 + z1)

−1 and (z1 − z2)
p R

12
nm(u|v| − z2 + z1 − 2hc)

(2.49)
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modulo hk . Moreover, assume that the integer p is large enough, so that the coefficients

of all monomials u
a′
1

1 . . . u
a′
n

n v
b′
1

1 . . . v
b′
m

m , where 0 � a′
i � ai and 0 � b′

j � b j , in

(z1 + z2)
p R

12
nm(u|v|z1 + z2) and (z1 + z2)

p R
12
nm(u|v|z1 + z2 + 2hc)−1 (2.50)

coincide with the corresponding coefficients in

(z1 + z2)
p R

12
nm(u|v|z2 + z1) and (z1 + z2)

p R
12
nm(u|v|z2 + z1 + 2hc)−1 (2.51)

modulo hk . By using (2.24) and unitarity (1.6) we obtain

B23
m (v|z2 + hc/2)−1R

12
nm(u|v| − z2 + z1 − 2hc)B+13

n (u|z1) = R
12
nm(u|v|z2 + z1)

· B+13
n (u|z1)R12

nm(u|v| − z2 + z1)B
23
m (v|z2 + hc/2)−1R

12
nm(u|v|z2 + z1 + 2hc)−1.

This implies, due to the fact that certain coefficients in (2.48) and (2.50) coincide with
the corresponding coefficients in (2.49) and (2.51) modulo hk , that the product of (2.46)
and (z21 − z22)

2p coincides with

(z21 − z22)
2p R

12
nm(u|v|z)−1B+23

m (v|z2)R12
nm(u|v|z1 + z2)B

+13
n (u|z1)R12

nm(u|v|z)
· B23

m (v|z2 + hc/2)−1R
12
nm(u|v|z1 + z2 + 2hc)−1B13

n (u|z1 + hc/2)−1 (2.52)

modulo hk . Finally, we rewrite (2.52) using (2.22), thus getting

(z21 − z22)
2p B+13

n (u|z1)R12
nm(u|v|z1 + z2)B

+23
m (v|z2)

· B23
m (v|z2 + hc/2)−1R

12
nm(u|v|z1 + z2 + 2hc)−1B13

n (u|z1 + hc/2)−1. (2.53)

Since (2.53) is equal to the product of (z21 − z22)
2p and (2.45), we conclude that (2.41)

holds. �

As with the operator T (z) = Y (T +(0) 1, z), see [4, 2.1.4], the proof of Proposition

3.8 implies that the operatorB(z) = YWc(glN )(T +(0) 1, z) satisfies the (slightlymodified
version of the) quantum current commutation relation from [22]. More precisely, for any
integer n � 0 there exist an integer r � 0 such that

(z21 − z22)
r B1(z1)R12(z1 − z2 + 2hc)−1B2(z2)R12(z1 − z2)

∼
hn

(z21 − z22)
r R12(z1 − z2)

−1B2(z2)R12(z1 − z2 − 2hc)B1(z1).

4. Image of the Center z(V2c(glN ))

In this section, we employ map YWc(gln)(z) to find explicit formulae for families of
central elements in the completed algebra˜Ac(glN ). As a consequence,we obtain families
of invariants of the vacuummoduleWc(gln). Also, we show that the image of the center
z(V2c(glN )), with respect to the map a �→ YWc(gln)(a, z), is commutative.
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4.1. Central elements of the completed algebra ˜A−N/2(glN ). Let Ip for p � 1 denote
the left ideal of the double Yangian DYc(glN ) at the level c ∈ C , generated by all
elements t (r)i j with r � p. As in [9], define the completed double Yangian ˜DYc(glN ) at
the level c as the h-adic completion of the inverse limit lim←− DYc(glN )/Ip. Introduce
the algebra ˜Ac(glN ) as the h-adic completion of the inverse limit

lim←− Ac(glN )/(Ac(glN ) ∩ Ip).

In order to employ certain results from [9], we briefly recall the fusion procedure for
the rational R-matrix originated in [10]; see also [18, Sect. 6.4] for more details. Letμ be
a Young diagram with n boxes, whose length is less than or equal to N , and let U = Uμ

be a standardμ-tableau with entries 1, . . . , n. For k = 1, . . . , n define the contents ck of
U by ck = j − i if k occupies the box (i, j) of U . Denote by eU the primitive idempotent
in the group algebra C [Sn] of the symmetric group Sn , which is associated with U
through the use of the orthonormal Young bases in the irreducible representations of
Sn . The group Sn acts on the space (CN )⊗ n by permuting the tensor factors. Denote
by EU the image of eU with respect to this action. By [10], the consecutive evaluations
u1 = hc1, . . . , un = hcn of the function

R(u1, . . . , un) :=
∏

1�i< j�n

Ri j (ui − u j ),

where the product is taken in the lexicographical order on the pairs (i, j), are well-
defined. Furthermore, the result is proportional to EU , i.e.

R(u1, . . . , un)
∣

∣

u1=hc1

∣

∣

u2=hc2
. . .

∣

∣

un=hcn
= p(μ) EU , (3.1)

where p(μ) denotes the product of all hook lengths of the boxes of μ.
Define the n-tuple uμ = uUμ

by

uμ = (u1, . . . , un), where uk = u + hck for k = 1, . . . , n. (3.2)

It was proved in [9] that all coefficients of the series

T
+
μ(u) = tr1,...,n EUT +

1 (u1) . . . T +
n (un) 1 ∈ V−N (glN )[[u]], (3.3)

where the trace is taken over all n copies of EndC
N in (3.3), belong to the center

z(V−N (glN )). The series T
+
μ(u) does not depend on the choice of the standardμ-tableau

U ; see [21]. The image of the constant term in (3.3), with respect to map (2.25), equals

YW−N/2(glN )(T
+
μ(0), u) = tr1,...,n EU B+

n(uμ)Bn(uμ − hN/4)−1 (3.4)

and belongs to Hom(W−N/2(glN ),W−N/2(glN )((u))[[h]]). All coefficients of series
(3.4),

˜Aμ(u) := tr1,...,n EU B+
n(uμ)Bn(uμ − hN/4)−1 (3.5)

can be also viewed as elements of the completed algebra ˜A−N/2(glN ).
Consider the tensor product

EndC
N ⊗ (EndC

N )⊗n ⊗ ˜A−N/2(glN ), (3.6)
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where the n + 1 copies of EndC
N are now labeled by 0, . . . , n. It will be convenient

to denote the tensor factors EndC
N , (EndC

N )⊗n and ˜A−N/2(glN ) in (3.6) by the
superscripts 0, 1 and 2 respectively, so that, e.g., for the variable u0 and variables (3.2)
we have

R
01
1n(u0|uμ) = R01(u0 + u1) . . . R0n(u0 + un).

The arrow at the top of the symbol will indicate that the products are written in the
opposite order, e.g.,

�R01

1n(u0|uμ) = R0n(u0 + un) . . . R01(u0 + u1).

Lemma 4.1. The following equalities hold on EndC
N ⊗ (EndC

N )⊗n ⊗ ˜DYc(glN ):

EU R
01
1n(u0|uμ) = �R01

1n(u0|uμ)EU , EU R
01
1n(u0|uμ)−1 = �R01

1n(u0|uμ)−1EU , (3.7)

EU R
01
1n(u0|uμ) = �R01

1n(u0|uμ)EU , EU R
01
1n(u0|uμ)−1 = �R01

1n(u0|uμ)−1EU , (3.8)

EU B+12
n (uμ) = �B+12

n (uμ)EU , EU B12
n (uμ − hN/4)−1 = �B12

n (uμ − hN/4)−1EU ,

(3.9)

EUT +12
n (uμ|0) = �T +12

n (uμ|0)EU , EU �T +12
n (−uμ|0)−1 = T +12

n (−uμ|0)−1EU ,

(3.10)

EU �T 12
n (−uμ + hN/4|0) = T 12

n (−uμ + hN/4|0)EU , (3.11)

EUT 12
n (uμ − 3hN/4|0)−1 = �T 12

n (uμ − 3hN/4|0)−1EU , (3.12)

where EU is applied on the tensor factors 1, . . . , n, i.e. EU denotes the operator 1⊗ EU
on EndC

N ⊗ (EndC
N )⊗n.

Proof. The given equalities follow from fusion procedure (3.1) with the use of Yang–
Baxter equation (1.3), unitarity (1.6) and relations (1.7)–(1.9) and (1.24)–(1.26). More
details on the proof can be found in [9, Proof of Theorem 2.4] (for relations (3.7)–(3.8)),
first part of the proof of Theorem 3.7 (for relations (3.9)) and in [6, Proof of Theorem
3.2] (for relations (3.10)–(3.12)). As an illustration, let us prove the first equality in (3.8).
For the variables v = (u + v1, . . . , u + vn) Yang–Baxter equation (1.3) implies

∏

1�i< j�n

Ri j (vi − v j ) · R
01
1n(u0|v) = �R01

1n(u0|v) ·
∏

1�i< j�n

Ri j (vi − v j ), (3.13)

where the products arewritten in the lexicographical order on the pairs (i, j). By applying
consecutive evaluations v1 = hc1, . . . , vn = hcn on (3.13) and using (3.1) we get

EU R
01
1n(u0|uμ) = �R01

1n(u0|uμ)EU , as required. �

The following is ourmain result in this section. Its proof adapts the standard R-matrix

techniques used with RT T relations, see, e.g., [6, Theorem 3.2], to the reflection algebra
setting.

Theorem 4.2. All coefficients of˜Aμ(u) belong to the center of the algebra˜A−N/2(glN ).
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Proof. We first prove that for the variable u0 and variables (3.2) the following equality
holds on EndC

N ⊗ ˜A−N/2(glN ):

B(u0)˜Aμ(u) = ˜Aμ(u)B(u0). (3.14)

By applying B0(u0) on (3.5) and using notation as in (3.6) we get

tr1,...,n EU B0(u0)B
+12
n (uμ)B12

n (uμ − hN/4)−1. (3.15)

As with the proof of (1.33), we employ (1.26) and (1.27) to express (3.15) as

tr1,...,n EU
(

rl
(

R
01
1n(u0 − 3hN/4|uμ)−1

)

·
(

R
01
1n(u0 − 3hN/4|uμ)−1B+12

n (uμ)

R
01
1n(u0 − 3hN/4|uμ)B0(u0)R

01
1n(u0 + hN/4|uμ)B12

n (uμ − hN/4)−1
)

)

.

(3.16)

Since E2
U = EU , the second equality in (3.8) implies

EUK = E2
UK = EU �KEU = EU �KE2

U for K = R
01
1n(u0 − 3hN/4|uμ)−1. (3.17)

By using (3.17) we can write (3.16) as

tr1,...,n EU
(

rl
( �K

)

·
(

E2
U R

01
1n(u0 − 3hN/4|uμ)−1B+12

n (uμ)

R
01
1n(u0 − 3hN/4|uμ)B0(u0)R

01
1n(u0 + hN/4|uμ)B12

n (uμ − hN/4)−1
)

)

.

Due to the cyclic property of the trace, this equals to

tr1,...,n EU R
01
1n(u0 − 3hN/4|uμ)−1B+12

n (uμ)R
01
1n(u0 − 3hN/4|uμ)

B0(u0)R
01
1n(u0 + hN/4|uμ)B12

n (uμ − hN/4)−1EU �KEU . (3.18)

By E2
U = EU and the second equality in (3.7) we have

EU L = E2
U L = EU �LEU = EU �LE2

U = E2
U LEU

= EU LEU for L = R
01
1n(u0 − 3hN/4|uμ)−1.

Therefore, using the cyclic property of the trace and E2
U = EU , we can write (3.18) as

tr1,...,n R
01
1n(u0 − 3hN/4|uμ)−1EU B+12

n (uμ)R
01
1n(u0 − 3hN/4|uμ)

B0(u0)R
01
1n(u0 + hN/4|uμ)B12

n (uμ − hN/4)−1EU �KEU .

Wenowemployfirst equalities in (3.7) and (3.8), togetherwith (3.9), tomove the leftmost
copy of EU to the right, which gives us:

tr1,...,n R
01
1n(u0 − 3hN/4|uμ)−1 �B+12

n (uμ) �R01

1n(u0 − 3hN/4|uμ)

B0(u0)
�R01

1n(u0 + hN/4|uμ) �B12
n (uμ − hN/4)−1E2

U �KEU . (3.19)
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Using (3.17) and E2
U = EU we replace E2

U �KEU with EUK = EU R
01
1n(u0−3hN/4|uμ)−1

in (3.19). Next, we employ the first equalities in (3.7) and (3.8), together with (3.9), to
move the remaining copy of EU to the left, thus getting

tr1,...,n R
01
1n(u0 − 3hN/4|uμ)−1EU B+12

n (uμ)R
01
1n(u0 − 3hN/4|uμ)

B0(u0)R
01
1n(u0 + hN/4|uμ)B12

n (uμ − hN/4)−1R
01
1n(u0 − 3hN/4|uμ)−1.

(3.20)

By applying (1.25) on the last four factors in (3.20) and then by canceling the adjacent

terms R
01
1n(u0 − 3hN/4|uμ)±1 we obtain

tr1,...,n R
01
1n(u0 − 3hN/4|uμ)−1EU B+12

n (uμ)B12
n

(uμ − hN/4)−1R
01
1n(u0 + hN/4|uμ)B0(u0).

In order to prove (3.14), it is sufficient to verify that the expression

tr1,...,n R
01
1n(u0 − 3hN/4|uμ)−1EU B+12

n (uμ)B12
n (uμ − hN/4)−1R

01
1n(u0 + hN/4|uμ)

(3.21)

is equal to ˜Aμ(u). By the property tr1,...,n XY = tr1,...,n Xt1...tn Y t1...tn for

X = R
01
1n(u0 − 3hN/4|uμ)−1EU B+12

n (uμ)B12
n (uμ − hN/4)−1 and

Y = R
01
1n(u0 + hN/4|uμ)

we conclude that (3.21) is equal to

tr1,...,n
(

EU B+12
n (uμ)B12

n (uμ − hN/4)−1
)t1...tn

Z , where

Z =
(

R
01
1n(u0 − 3hN/4|uμ)−1

)t1...tn
R
01
1n(u0 + hN/4|uμ)t1...tn .

Finally, crossing symmetry property (1.5) implies Z = 1, so (3.14) clearly follows.
Consider the tensor product

(EndC
N )⊗n ⊗ EndC

N ⊗ ˜A−N/2(glN ), (3.22)

where the n + 1 copies of EndC
N are now labeled by 1, . . . , n + 1. It will be convenient

to denote the tensor factors (EndC
N )⊗n , EndC

N and ˜A−N/2(glN ) in (3.22) by the
superscripts 1,2 and 3 respectively.2 Our next goal is to prove that for variables (3.2) and
the variable un+1 the following equality holds on EndC

N ⊗ ˜A−N/2(glN ):

B+(un+1)˜Aμ(u) = ˜Aμ(u)B+(un+1). (3.23)

2 We introduce the new labeling because the application of the original labels, as in (3.6), would require
different, more appropriate notation. For example, notice that the R-matrices in the first part of the proof
should be expanded in nonnegative powers of the variable u, while the R-matrices in the following, second
part of the proof should be expanded in nonnegative powers of the variable un+1.



1070 S. Kožić

The proof of (3.23) is analogous to the proof of (3.14), so we only briefly sketch
some details to take care of minor differences. First, by applying B+

n+1(un+1) on (3.5)
and using notation (3.22) we get

tr1,...,n EU B+
n+1(un+1)B

+13
n (uμ)B13

n (uμ − hN/4)−1. (3.24)

As with the proof of (1.33), we employ (1.24) and (1.27) to express (3.24) as

tr1,...,n EU
(

lr
(

R
12
n1(uμ − hN |un+1)−1

)

·
(

R
12
n1(uμ|un+1)B+13

n (uμ)

R
12
n1(uμ|un+1)B+

n+1(un+1)R
12
n1(uμ|un+1)−1B13

n (uμ − hN/4)−1
)

)

. (3.25)

We may now proceed as in the first part of the proof and, using the properties of the
primitive idempotent EU , show that (3.25) is equal to

tr1,...,n R
12
n1(uμ|un+1)EU B+13

n (uμ)R
12
n1(uμ|un+1)

B+
n+1(un+1)R

12
n1(uμ|un+1)−1B13

n (uμ − hN/4)−1R
12
n1(uμ − hN |un+1)−1.

(3.26)

By applying (1.26) to the last four factors in (3.26) and then canceling the adjacent terms

R
12
n1(uμ|un+1)±1 we obtain

tr1,...,n R
12
n1(uμ|un+1)EU B+13

n (uμ)B13
n (uμ − hN/4)−1R

12
n1(uμ − hN |un+1)−1B+

n+1(un+1).

Finally, in order to prove (3.23), it is sufficient to check that the expression

tr1,...,n R
12
n1(uμ|un+1)EU B+13

n (uμ)B13
n (uμ − hN/4)−1R

12
n1(uμ − hN |un+1)−1

is equal to˜Aμ(u). This can be done as in the first part of the proof, by employing crossing
symmetry property (1.5) and unitarity (1.6).

The statement of the theorem now follows from (3.14) and (3.23). �

We now consider two special cases of Theorem 4.2. Denote byμrow

n andμcol
n the row

diagram with n boxes and the column diagram with n boxes respectively. The unique
idempotents corresponding to the standard μrow

n -tableau and μcol
n -tableau coincide with

the images H (n) and A(n) of the symmetrizer and the anti-symmetrizer

h(n) = 1

n!
∑

s∈Sn

s and a(n) = 1

n!
∑

s∈Sn

sgn s · s

under the action of the symmetric groupSn on (CN )⊗n . In this two cases, (3.5) becomes

˜Aμrow
n

(u) = tr1,...,n H
(n)B+

n(u+)Bn(u+ − hN/4)−1,

˜Aμcol
n

(u) = tr1,...,n A(n)B+
n(u−)Bn(u− − hN/4)−1,

where

u± = (u, u ± h, . . . , u ± (n − 1)h). (3.27)
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Note that u+ = uμrow
n

and u− = uμcol
n
; recall (3.2). Consider the series

˜Bμrow
n

(u) = tr1,...,n H
(n) T +

n (u+|0) �T +
n(−u+|0)−1

�T n(−u+ + hN/4|0) Tn(u+ − 3hN/4|0)−1,

˜Bμcol
n

(u) = tr1,...,n A(n) T +
n (u−|0) �T +

n(−u−|0)−1

�T n(−u− + hN/4|0) Tn(u− − 3hN/4|0)−1

in ˜DY−N/2(glN )[[u±1]], where, as before, the arrows indicate that the products are
written in the opposite order, e.g., forw = (w1, . . . , wn)we have �T n(w|0) = Tn(wn) . . .

T1(w1).

Corollary 4.3. Suppose that the matrix G, given by (1.12), is equal to ±I . Then all
coefficients of ˜Bμrow

n
(u) and ˜Bμcol

n
(u) belong to the center of the algebra ˜A−N/2(glN ).

Proof. Let G = ε I for ε ∈ {±1}. For the family of variables w = (w1, . . . , wn) we
have

B+
n(w) = εn T +

n (w|0)
⎛

⎝

∏

1�i< j�n

Ri j (wi + w j )

⎞

⎠ �T +
n(−w|0)−1 and

Bn(w − hN/4) = εn Tn(w − 3hN/4|0)
⎛

⎝

∏

1�i< j�n

Ri j (wi + w j − hN )

⎞

⎠ �T n(−w + hN/4|0)−1,

where the products are taken in the lexicographical order on the pairs (i, j). Indeed, this
easily follows from (1.7) and (1.8). Next, note that for any 1 � i < j � n there exist
functions fH (n) (z) and f A(n) (z) in C [z−1][[h]] satisfying

H (n)Ri j (z) = fH (n) (z)H (n) and A(n)Ri j (z) = f A(n) (z)A(n).

Indeed, this follows from the form of Yang R-matrix (1.2) and the fact that for any
transposition p ∈ Sn we have ph(n) = h(n) and pa(n) = ±a(n).

By combining these observationswith fusion procedure (3.1) and equalities in (3.10)–
(3.12), we conclude that there exist functions θ rown (z) and θcoln (z) in C [z−1][[h]] such
that

˜Aμrow
n

(u) = θ rown (u)˜Bμrow
n

(u) and ˜Aμcol
n

(u) = θcoln (u)˜Bμcol
n

(u). (3.28)

Therefore, all coefficients of ˜Bμrow
n

(u) and ˜Bμcol
n

(u) belong to the algebra ˜A−N/2(glN ).
Finally, (3.28) and Theorem 4.2 imply the statement of the corollary. �


It is worth noting that the functions θ rown (z) and θcoln (z) can be computed explicitly,
in terms of the function g(u) ∈ 1+u−1

C [[u−1]] defined by (1.4); cf. [19, Theorem 3.4].
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4.2. Invariants of the vacuum module W−N/2(glN ). In this section we present some
further consequences of Theorem4.2. Let c be an arbitrary complex number.We can view
Wc(glN ) as a module for the algebra ˜Ac(glN ). Recall (1.12) and define the submodule
of invariants of Wc(glN ) by

z(Wc(glN )) = {

w ∈ Wc(glN ) : B(u)w = Gw
}

.

Clearly, an element w ∈ Wc(glN ) belongs to z(Wc(glN )) if and only if

bi j (u)w = δi jεiw for all i, j = 1, . . . , N , r = 1, 2, . . . .

In particular, (1.34) implies that 1 is an element of z(Wc(glN )). Consider the series

Aμ(u) := ˜Aμ(u) 1 ∈ W−N/2(glN )[[u±1]]. (3.29)

Denote by ̂B+(glN ) the h-adic completion of the algebra B+(glN ). All coefficients of
Aμ(u) can be viewed as elements of ̂B+(glN ).

Corollary 4.4. All coefficients of the seriesAμ(u) belong to the submodule of invariants
z(W−N/2(glN )). All coefficients of Aμ(u) ∈ ̂B+(glN )[[u±1]] pairwise commute.
Proof. Using Theorem 4.2 and (3.29) we get

bi j (v)Aμ(u) = bi j (v)˜Aμ(u) 1 = ˜Aμ(u)bi j (v) 1 = ˜Aμ(u)δi jεi 1

= δi jεi˜Aμ(u) 1 = δi jεiAμ(u)

for any i, j = 1, . . . , N , which proves the first part of the corollary.
Let μ and ν be any two partitions having at most N parts. Using Theorem 4.2 we get

˜Aμ(u)˜Aν(v) 1 = ˜Aμ(u)Aν(v) 1 = Aν(v)˜Aμ(u) 1 = Aν(v)Aμ(u). (3.30)

Since all coefficients of the series˜Aμ(u) and˜Aν(v) commute, we can prove analogously
that˜Aμ(u)˜Aν(v) 1 = Aμ(u)Aν(v),which, together with (3.30), implies [Aμ(u), Aν(v)]
= 0, as required. �


Corollaries 4.3 and 4.4 imply

Corollary 4.5. Let G = ±I . All coefficients of the Taylor series

tr1,...,n H
(n) T +

n (u+|0) �T +
n(−u+|0)−1 1 and tr1,...,n A(n) T +

n (u−|0) �T +
n(−u−|0)−1 1

belong to the submodule of invariants z(W−N/2(glN )).

For any two partitions μ and ν which have at most N parts we have

[˜Aμ(u),˜Aν(v)] = 0 (3.31)

in the algebra ˜A−N/2(glN ). Clearly, (3.31) remains true if we view ˜Aμ(u) and ˜Aν(v) as
operators on W−N/2(glN ). Applying the substitutions u ↔ z1 + u and v ↔ z2 + v we
get

[˜Aμ(z1 + u),˜Aν(z2 + v)] = 0 on W−N/2(glN ). (3.32)

Note that (3.32) can be written as

[YW−N/2(glN )(T
+
μ(u), z1),YW−N/2(glN )(T

+
ν (v), z2)] = 0. (3.33)
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Theorem 4.6. Let a be an element of the center z(V−N (glN )).

(1) For any b ∈ z(V−N (glN )) we have

[YW−N/2(glN )(a, z1),YW−N/2(glN )(b, z2)] = 0. (3.34)

(2) For any x ∈ ˜A−N/2(glN )

[YW−N/2(glN )(a, z), x] = 0 onW−N/2(glN ). (3.35)

Proof. (1) Due to [9, Theorem 4.9], the center z(V−N (glN )) is a commutative associative
algebra with respect to the product given by a · b = a−1b for a, b ∈ z(V−N (glN )). Fur-
thermore, it was proved therein that the algebra z(V−N (glN )) is topologically generated
(with respect to the h-adic topology) by the elements �

(r)
m , where m = 1, . . . , N and

r = 0, 1, . . ., defined by

∞
∑

r=0

�(r)
m ur := h−m

m
∑

k=0

(−1)k
(

N − k

m − k

)

T
+
μcol
k

(u) ∈ z(V−N (glN ))[[u]].

By (3.33) we conclude that (3.34) holds for any two elements a and b which belong to
the family�

(r)
m ,m = 1, . . . , N , r = 0, 1, . . .. Finally, part (a) of Proposition 3.4 implies

that (3.34) holds for any two elements a, b ∈ z(V−N (glN )).
(2) It suffices to observe that, due to Theorem 4.2, Equality (3.35) holds if a = �

(r)
m

for some m = 1, . . . , N and r = 0, 1, . . .. Hence, part (b) of Proposition 3.4 implies
that (3.35) holds for any a ∈ z(V−N (glN )). �


Due to Theorem 4.6, for any a ∈ z(V−N (glN )) and i, j = 1, . . . , N we have

[bi j (u),YW−N/2(glN )(a, z)] = 0 on W−N/2(glN ). (3.36)

Hence, we can construct elements of z(W−N/2(glN )) as follows:

Corollary 4.7. For any a ∈ z(V−N (glN )) and w ∈ z(W−N/2(glN )) all coefficients of
the series YW−N/2(glN )(a, z)w belong to the submodule of invariants z(W−N/2(glN )).

Proof. Set W−N/2 = W−N/2(gN ). By employing (3.36) we get

bi j (u)YW−N/2(a, z)w = YW−N/2(a, z)bi j (u)w

= YW−N/2(a, z)δi jεiw = δi jεi YW−N/2(a, z)w

for any i, j = 1, . . . , N and w ∈ z(W−N/2(glN )), as required. �


4.3. Central elements and invariants at the noncritical level. Let c �= −N/2 be an
arbitrary complex number. It is well known that all coefficients of quantum determinants

qdet T +(u) =
∑

σ∈SN

sgn σ · t+σ(1)1(u) . . . t+σ(N )N (u − (N − 1)h) ∈ ̂Y+(glN )[[u]],

(3.37)

qdet T (u) =
∑

σ∈SN

sgn σ · tσ(1)1(u) . . . tσ(N )N (u − (N − 1)h) ∈ Y(glN )[[u−1]]

(3.38)
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belong to the center of the algebra ˜DY2c(glN ); see, e.g., [9, Proposition 2.8]. Further-
more, if we identify the C [[h]]-modules ̂Y+(glN ) and V2c(glN ), then all coefficients
of qdet T +(u) belong to the center z(V2c(glN )) of the quantum VOA V2c(glN ); see [9,
Proposition 4.10].

Set n = N in (3.27). The following equations in (EndC
N )⊗N ⊗ ˜DY2c(glN )[[u±1]]

hold:

A(N )T +
N (u−|0) = A(N )qdet T +(u) and A(N )TN (u−|0) = A(N )qdet T (u), (3.39)

see [18, Sect. 1] for more details. By applying quasi module map (2.25) on the constant
term of (3.37), which is viewed as an element of the quantum VOA V2c(glN ), and by
employing the first equality in (3.39), we obtain

YWc(glN )(qdet T
+(0), u) = tr1,...,N A(N )B+

N (u−)BN (u− + hc/2)−1. (3.40)

Clearly, (3.40) belongs to Hom(Wc(glN ),Wc(glN )((u))[[h]]). However, we can view
all coefficients of the series

˜Ac(u) := tr1,...,N A(N )B+
N (u−)BN (u− + hc/2)−1 (3.41)

as elements of the algebra ˜Ac(glN ), so that ˜Ac(u) is an element of ˜Ac(glN )[[u±1]].
Proposition 4.8. Let c �= −N/2 be an arbitrary complex number.

(i) All coefficients of ˜Ac(u) belong to the center of the algebra ˜Ac(glN ).
(ii) For any a, b ∈ z(V2c(glN )) we have

[YWc(glN )(a, z1),YWc(glN )(b, z2)] = 0.

(iii) For any a ∈ z(V2c(glN )) and x ∈ ˜Ac(glN ) we have

[YWc(glN )(a, z), x] = 0 onWc(glN ).

(iv) For any a ∈ z(V2c(glN )) and w ∈ z(Wc(glN )) all coefficients of YWc(glN )(a, z)w
belong to the submodule of invariants z(Wc(glN )).

Proof. (i) Recall that u− = (u1, . . . , uN ) = (u, . . . , u− (N −1)h), so the first equality
in (3.39) can be written as

A(N )T +
1 (u1) . . . T +

N (uN ) = A(N )qdet T +(u). (3.42)

We now proceed as follows (cf. [19, Theorem 3.4]):

• Multiply (3.42) from the right by T +
N (uN )−1 . . . T +

1 (u1)−1(qdet T +(u))−1;
• Replace u with −u + (N − 1)h;
• Conjugate the resulting equality by the permutation (1, . . . , N ) �→ (N , . . . , 1).

This gives us

A(N )qdet T +(−u + (N − 1)h)−1 = A(N )T +
1 (−u1)

−1 . . . T +
N (−uN )−1. (3.43)

Starting from the second equality in (3.39), one can similarly prove

A(N )qdet T (−u + (N − 1)h − hc/2) = A(N )TN (−uN − hc/2) . . . T1(−u1 − hc/2).

(3.44)
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By employing (3.39), (3.43) and (3.44) and arguing as in the proof of Corollary 4.3,
we can express ˜Ac(u) as

˜Ac(u) = θc(u) qdet T +(u) (qdet T +(−u + (N − 1)h))−1

· qdet T (−u + (N − 1)h − hc/2) (qdet T (u + 3hc/2))−1 (3.45)

for some function θc(z) in C [z−1][[h]].3 Since the coefficients of quantum determinants
belong to the center of the double Yangian, we conclude by (3.45) that the coefficients
of ˜Ac(u) belong to the center of the algebra ˜Ac(glN ).

(ii)–(iv) By [9, Proposition 4.10], the center z(V2c(glN )) is a commutative associative
algebra with respect to the product given by a · b = a−1b for a, b ∈ z(V2c(glN )). Fur-
thermore, it was proved therein, that the algebra z(V2c(glN )) is topologically generated
(with respect to the h-adic topology) by the elements d0, d1, . . ., which are defined by

qdet T +(u) = 1 − h(d0 + d1u + d2u
2 + · · · ).

Therefore, statements (ii)–(iv) can be verified using Proposition 3.4, in the same way as
their critical level counterparts. �


Consider the series

S+(u) = qdet T +(u) (qdet T +(−u + (N − 1)h))−1 ∈ ̂B+(glN )[[u]],
S(c)(u) = qdet T (u + hc) (qdet T (−u + (N − 1)h))−1 ∈ Bc(glN )[[u−1]].

By part (i) of Proposition 4.8 and (3.45), all coefficients of S+(u)S(c)(u + hc/2)−1

belong to the center of the algebra˜Ac(glN ). Moreover, by applying the given expression
on 1 ∈ Wc(glN ) and employing part (iv) of Proposition 4.8, we see that all coefficients
of the series S+(u) 1 belong to the submodule of invariants z(Wc(glN )).

Remark 4.9. Let h = 1 and c = 0. The series S(0)(u) coincides, modulo the multi-
plicative factor from C(u), with the Sklyanin determinant sdet B(u), whose odd coef-
ficients are algebraically independent and generate the center of the reflection algebra
B(N , N − M); see [19, Theorem 3.4].

4.4. Discussion. In this section, we mainly discuss the classical limit of the algebra
Ac(glN ). In particular, we clarify a somewhat peculiar situation that a quasi module
structure for the quantum VOA of level c is constructed on the vacuum module of level
c/2; recall Theorem 3.7. Also, in Theorem 4.2, certain large families of central elements
are given for the completed algebra ˜Ac(glN ) at the level c = −N/2. However, in view
of the Feigin–Frenkel theorem [5], see also [7] for more details, one would expect such
a construction at the level c = −N . For simplicity we consider the case G = I .

Recall that the affine Lie algebra ̂glN = glN ⊗C [t, t−1]⊕CC is defined by relations

[ei j (z1), ekl(z2)] = (

δ jkeil(z1) − δil ek j (z1)
)

z−1
2 δ

(

z1
z2

)

− C

(

δ jkδil − δi jδkl

N

)

∂

∂z1
z−1
2 δ

(

z1
z2

)

, (3.46)

3 Observe that, in contrast with the proof of Corollary 4.3, we no longer need the assumption G = ±I
because the image of the anti-symmetrizer A(N ) on (C N )⊗N is one-dimensional.



1076 S. Kožić

where i, j, k, l = 1, . . . , N , C is a central element, δ(z) is the delta function

δ(z) =
∑

r∈Z

zr and ei j (z) =
∑

r∈Z

(ei j ⊗ tr ) z−r−1 for all i, j = 1, . . . , N .

Commutation relations (3.46) are equivalent to

[̂ei j (u), êkl(v)] = 2
(

δ jk êil(u) − δil êk j (u)
)

v−1δ

(

u2

v2

)

− 2C

(

δ jkδil − δi jδkl

N

)

∂

∂u
v−1δ

(

u2

v2

)

, (3.47)

where i, j, k, l = 1, . . . , N and

êi j (u) = 2uei j (u
2) ∈ ̂glN ⊗ uC [u±2].

Indeed, by multiplying (3.46) with z1z2, then replacing the variables (z1, z2) with
(u2, v2) and finally, multiplying the expression with 4u−1v−1 we obtain (3.47).

Introduce the elements

t+(u) = 1 − T +(u)

h
and t (u) = T (u) − 1

h

in EndC
N ⊗ DYc(glN )[[u±1]]. As with êi j (u), the series

b
+
(u) :=

N
∑

i, j=1

ei j ⊗ b
+
i j (u) := t+(u) − t+(−u),

b(u) :=
N

∑

i, j=1

ei j ⊗ bi j (u) := t (u) − t (−u)

posses only odd powers of the variable u. Using (1.15) one can easily verify that

B+(u) = 1 − hb
+
(u) mod h2 and B(u) = 1 + hb(u) mod h2.

Let us regard relations (1.17)–(1.19) as Taylor series with respect to the parameter h.
The coefficients of h0 = 1 and h on the left and the right hand sides of these relations
cancel, so that each relation (1.17)–(1.19) can be written in the form h2X = 0 for some
X in (EndC

N )⊗2 ⊗Ac(glN )[[u±1, v±1]]. By considering the matrix entries ei j ⊗ ekl in
the equalities X |h=0 = 0, where X |h=0 denotes the evaluation of X at h = 0, we find

[b+i j (u), b
+
kl(v)] = − 2

(

δilb
+
k j (u) − δ jkb

+
il(u)

)

u−1δ1

(v

u

)

− 2
(

δ jkb
+
il(v) − δilb

+
k j (v)

)

u−1δ0

(v

u

)

, (3.48)

[bi j (u), bkl(v)] =2
(

δilbk j (u) − δ jkbil(u)
)

u−1δ1

(v

u

)

+ 2
(

δ jkbil(v) − δilbk j (v)
)

u−1δ0

(v

u

)

, (3.49)

[bi j (u), b
+
kl(v)] = − 2

(

δilb
+
k j (v) − δ jkb

+
il(v)

)

u−1δ0

(v

u

)



Quasi Modules for the Quantum Affine Vertex Algebra in Type A 1077

− 2
(

δilbk j (u) − δ jkbil(u)
)

u−1δ1

(v

u

)

+ 4c

(

δ jkδil − δi jδkl

N

)

∂

∂v
u−1δ0

(v

u

)

, (3.50)

where

δ0(z) =
∞
∑

r=0

z2r and δ1(z) =
∞
∑

r=0

z2r+1.

Relations (3.48) for i, j, k, l = 1, . . . , N coincide with defining relations for the
algebraU (glN ⊗ t−1

C [t−1]) and relations (3.49) for i, j, k, l = 1, . . . , N coincide with
defining relations for the algebra U (glN ⊗ C [t]). Furthermore, by combining (3.48)–
(3.50) one can show that the series

̂b(u) :=
N

∑

i, j=1

ei j ⊗̂bi j (u) := b
+
(u) + b(u)

satisfies

[̂bi j (u),̂bkl(v)] = 2
(

δ jk̂bil(u) − δil̂bkj (u)
)

v−1δ

(

u2

v2

)

− 4c

(

δ jkδil − δi jδkl

N

)

∂

∂u
v−1δ

(

u2

v2

)

(3.51)

for all i, j, k, l = 1, . . . , N . Finally, notice that (3.51) coincides with defining relations
(3.47) for the affine Lie algebra ̂glN at the level 2c. Therefore, even though the algebra
Ac(glN ) was introduced as a subalgebra of the double Yangian at the level c, it seems
more consistent (with respect to the classical theory) to think of Ac(glN ) as an algebra of
level 2c. Consequently, the corresponding Ac(glN )-module Wc(glN ) may be regarded
as a vacuum module of level 2c.

The underlying vector space of the universal affine vertex algebra Vc(glN ) of level c,
which is associated with the affine Lie algebra ̂glN , coincides withU (glN ⊗ t−1

C [t−1]);
see, e.g., [7] for details. As demonstrated in (3.51), defining relations for ̂glN can be
obtained from (1.17)–(1.19) at h = 0 and, more specifically, defining relations for
U (glN ⊗ t−1

C [t−1]) can be obtained from (1.17) at h = 0. Hence, the explicit formulae
in [2,3] for the invariants of the vacuum module V−N (glN ) at the critical level −N ,
i.e. the formulae for the complete set of Segal–Sugawara vectors for the vertex algebra
V−N (glN ), suggest that the invariants found in Corollary 4.5 might exhaust the whole
submodule of invariants z(W−N/2(glN )).

The classical limit of the dual Yangian Y+(glN ) coincides with the algebraU (glN ⊗
t−1

C [t−1]). In particular, the classical limits of the elements t (−r)
i j are equal to ei j ⊗ t−r

for all i, j = 1, . . . , N and r � 1; see [9, Sect. 2.1] for details. Hence, the classical limit
of the quasi module map YWc/2(glN )(z), as defined in (2.25), maps the elements ei j (u) 1,
where 1 is the vacuum vector in Vc(glN ), to the action of the elements ̂bi j (z + u). In
view of Etingof–Kazhdan’s work [4], where the quantum VOA in type A is obtained
as a formal deformation of the corresponding universal affine vertex algebra, it might
be interesting to further investigate the classical analogue of the quasi module from
Theorem 3.7.
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In the end, it is worth mentioning that the quantum VOA in type A (for the rational
R-matrix) can be also obtained by a coinvariant construction. This was found by Etingof
and Kazhdan in [4, Sect. 3], where they generalized the construction of the affine vertex
operator algebras, which relies on considering conformal blocks on the projective lineP

1

for the Wess–Zumino–Witten model, to the quantum case. Perhaps finding a coinvariant
construction of the quasi module Wc(glN ) might also present an interesting research
direction.
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