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Abstract: We explore a one parameter ζ -deformation of the quantum-mechanical Sine-
Gordon and Double-Well potentials which we call the Double Sine-Gordon (DSG) and
the Tilted DoubleWell (TDW), respectively. In these systems, for positive integer values
of ζ , the lowest ζ states turn out to be exactly solvable for DSG—a feature known as
Quasi-Exact-Solvability (QES)—and solvable to all orders in perturbation theory for
TDW. For DSG such states do not show any instanton-like dependence on the coupling
constant, although the action has real saddles. On the other hand, although it has no
real saddles, the TDW admits all-orders perturbative states that are not normalizable,
and hence, requires a non-perturbative energy shift. Both of these puzzles are solved by
including complex saddles.We show that the convergence is dictated by the quantization
of the hidden topological angle. Further, we argue that the QES systems can be linked
to the exact cancellation of real and complex non-perturbative saddles to all orders in
the semi-classical expansion. We also show that the entire resurgence structure remains
encoded in the analytic properties of the ζ -deformation, even though exactly at integer
values of ζ the mechanism of resurgence is obscured by the lack of ambiguity in both the
Borel sum of the perturbation theory as well as the non-perturbative contributions. In this
way, all of the characteristics of resurgence remains even when its role seems to vanish,
much like the lingering grin of the Cheshire Cat.We also show that the perturbative series
is Self-resurgent—a feature by which there is a one-to-one relation between the early
terms of the perturbative expansion and the late terms of the same expansion—which
is intimately connected with the Dunne–Ünsal relation. We explicitly verify that this is
indeed the case.

Contents

1. Introduction and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 836
1.1 The fermions and the ζ -deformed systems . . . . . . . . . . . . . . . 839
1.2 The nature of the perturbation expansion . . . . . . . . . . . . . . . . 840

http://crossmark.crossref.org/dialog/?doi=10.1007/s00220-018-3281-y&domain=pdf
http://orcid.org/0000-0002-7768-926X


836 C. Kozçaz, T. Sulejmanpasic, Y. Tanizaki, M. Ünsal

1.3 The role of complex saddles in the semiclassical analysis . . . . . . . 843
1.4 Supersymmetry and quasi-exact solvability . . . . . . . . . . . . . . 844
1.5 Two puzzles of QES . . . . . . . . . . . . . . . . . . . . . . . . . . . 844
1.6 Cheshire Cat resurgence . . . . . . . . . . . . . . . . . . . . . . . . . 845
1.7 Self-resurgence and the Dunne–Ünsal relation . . . . . . . . . . . . . 846

2. Resolving Puzzle 1: The Double Sine-Gordon system . . . . . . . . . . . 848
2.1 Quasi-exact solvability for ζ ∈ N

+ . . . . . . . . . . . . . . . . . . . 849
2.1.1 Exact solutions for ζ = 1, 2, 3, and 4. . . . . . . . . . . . . . . . 851
2.1.2 General ζ ∈ N

+ case and Ince-polynomials. . . . . . . . . . . . . 853
2.2 Complex saddles and the role of the hidden topological angle . . . . . 853
2.3 The general ζ -deformed theory . . . . . . . . . . . . . . . . . . . . . 855

2.3.1 Exactly solvablity from perturbation theory for ζ ∈ N
+. . . . . . . 855

2.3.2 Asymptotic corrections from the Bender–Wu analysis. . . . . . . 855
2.4 Self-resurgence and the Dunne–Ünsal relation . . . . . . . . . . . . . 856

3. Resolving Puzzle 2: Tilted Double-Well . . . . . . . . . . . . . . . . . . . 859
3.1 Pseudo-QES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 859

3.1.1 ζ = 1, 2, 3, 4 perturbatively exact solutions. . . . . . . . . . . . . 860
3.2 Complex saddles and the role of the hidden topological angle . . . . . 863
3.3 Bender–Wu method for the ζ -deformed theory . . . . . . . . . . . . . 864

3.3.1 All orders perturbation theory. . . . . . . . . . . . . . . . . . . . 864
3.3.2 Self-resurgence and the Dunne–Ünsal relation. . . . . . . . . . . 866

4. Connection to Quantum Field Theory . . . . . . . . . . . . . . . . . . . . 869
5. Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . 870
A. Tables for Perturbative Coefficients . . . . . . . . . . . . . . . . . . . . . 872
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 875

1. Introduction and Results

For many quantum systems, perturbation theory is widely employed successfully to
obtain approximate results. Following the immense success of the perturbative treat-
ment ofQuantumElectrodynamics,which resulted in aNobel Prize shared byTomonaga,
Schwinger, and Feynman in 1965, perturbation theory and Feynman diagrams became
firmly associated withQuantum Field Theory. Indeed, concepts such as the renormaliza-
tion group, Bjorken scaling, running couplings, and asymptotic freedom are just some of
the concepts intimately tied to the utility and indispensability of the perturbation theory.

Nevertheless, already as early as 1952, Dyson gave a physical argument that analytic
continuation of the electric charge e2 → −e2 would cause an instability, effectively
indicating that in Quantum Electrodynamics—the simplest and most accurately verified
quantumfield theorymanifested in nature—the radius of convergence of the perturbative
expansion is zero [1]. Since then it has become clear that this is a generic feature of both
quantummechanical as well as field theory systems, with a typical divergence rate being
factorial. It is for this reason that perturbation theory fails to define a quantumfield theory,
or even, indeed, quantum mechanics.

Perhaps unsurprisingly, while the successes of perturbation theory are commonly
praised and a matter of textbook knowledge, its apparent deficits deeply rooted in its
structure are more often than not either overlooked or tacitly ignored. While this point of
view is sometimes necessary and sometimes useful, it turns a blind eye to the beautiful
and intricate structure hidden in the perturbative expansion and its stubborn insistence
on diverging. The question then is what is the meaning, if any, of such series.
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A celebrated way to make sense of factorially diverging series is to tame them by a
special transformation—the Borel transform, which renders the series convergent. The
Laplace transform of this sum gives rise to another function—the Borel sum—which
has the same asymptotic expansion as the original series but assigns a finite value to
it. If this can be done in a unique way, the series is said to be Borel summable. Still
the Borel transform often has singularities in generic cases which may render the Borel
sum ambiguous. The goal of resurgence theory is to describe the global nature of the
solution by analyzing these singularities and ambiguities they may cause [2–6]. For
instance, if those singularities lie on the positive real axis, we might have to avoid these
poles by going around them in the complex plane. Different deformations introduce
imaginary ambiguities for physical observables, e.g. for energy levels. At first, we might
be tempted to abandon this prescription due to this kind of pathological results once and
for all. Nevertheless, remarkably and perhaps surprisingly, the pathology of perturbation
theory turns out to be inextricably linked to the non-perturbative physics [7–16]. In other
words, the ambiguity caused by the divergence and non-Borel summability of the small
coupling expansion serves as a placeholder, much like a pattern of a jigsaw puzzle,
stitching perturbative and non-perturbative contributions in such a way to eliminate all
ambiguities. The study, analysis and understanding of such phenomena are known as
resurgence theory.

The resurgence theory developed by Écalle [2] (in the context of non-linear differ-
ential equations) is proficient enough to encode the subtle information around different
saddles by replacing the conventional perturbation serieswith transseries. The transseries
not only consist of a power series in the coupling constant, but also include non-analytic
terms relevant to instanton contributions and the integration over their quasi-moduli. The
power of resurgence theory lies in the possibility that it may provide a consistent manner
to take into account the presence of all saddle points under certain physical requirements.
More concretely, it connects the perturbative fluctuations around different saddles via
intricate relations with each other and respects the monodromy properties of the under-
lying quantum system. There has been an ever growing set of physical systems where
resurgence theory resolves some puzzles and reveals surprises related to semi-classical
analysis, such as the semi-classical interpretation and the role of renormalon-like sin-
gularities [17–22], the relation between perturbation theories among different saddles
[9,23–26], stabilization of center symmetry in super Yang–Mills theory [27,28], Borel
summability of N = 2 super Yang–Mills [17,18,29], the meaning and limits of the
Bogomolny–Zinn-Justin prescription [30,31], the vanishing gluon condensate in SUSY
gauge theories [30], the role of multi-instantons inN = 1 [30,32] andN = 2 [31] quan-
tum mechanics, role of “instantons” and complex solutions in the Gross–Witten theory
[33], as well as an abundance of work ranging from quantum mechanics to general
quantum field theory to string theory [10,14,16,34–52].

In this work, we aim to solve yet another puzzle related to systems for which a part
of the spectrum can be solved at isolated points in the parameter space. Such special
systems, pioneered by Turbiner, are dubbedQuasi-Exactly Solvable (QES) systems [53–
55], and as a rule they never have essential singularities of the type e−1/g . Perturbation
theory in QES for the relevant part of the spectrum systems is convergent. However,
such systems often have real non-trivial saddles for which it seems impossible to argue
that they do not contribute, in contradiction with the absence of contributions of the type
e−1/g . Furthermore, related set of systems, which we call pseudo-QES systems, have
a completely convergent perturbation expansions even though they cannot be solved
exactly.
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In both QES and pseudo-QES systems we could rightfully argue that there is no
need of Borel summation, since the perturbation series is convergent and therefore well-
defined. A trivial example of this situation is already given by the ground state of SUSY
Quantum Mechanics [56], which is zero to all orders of perturbation theory. Because
of this the Borel plane is free from singularities, rendering the perturbation expansion
trivially unambiguous. Hence, one may be tempted to conclude that perturbative and
non-perturbative effects are completely disconnected. While this statement is not in
contradictionwith resurgence, itwould appear that the role of resurgence in these systems
is trivial, as the different sectors appear to be independent from each other and no
cancellation among them is required. We will argue the situation is more subtle, and
that resurgence governs the interplay between different sectors encoded in the analytical
properties of all the various contributions. So, much like the grin of the mythological
Cheshire cat, resurgent properties linger even when its main role seems to vanish. For
this reason we call this property Cheshire Cat resurgence.1

Finally, we discuss a remarkable property of the perturbative expansion of the energy
levels in these systems: self-resurgence. Namely, because the crucial contribution to the
energy is coming from a complex saddle, which generically gives a complex contribution
to the energy (except when the hidden topological angle is quantized). It is well known
that large-order coefficients of perturbative expansion around the perturbative vacuum
are determined by the lower-order terms of the perturbation expansion around a com-
plex saddle, such as instanton-anti-instanton saddle. On the other hand, the lower-order
terms of perturbative corrections around the complex saddle solution can be directly
connected to the early terms of the perturbative expansion around the trivial vacuum via
the generalization of Dunne–Ünsal relation [10] to these system, as shown in this work.
By transitivity, we are therefore able to establish a one-to-one relation between the early
terms of the perturbation expansion and the late–asymptotic terms of the same series. It
is possible that this remarkable property of the perturbation series is connected to the
work of Dingle2 [57] where self-resurgence appears in expansions of functions which
are themselves resurgence functions.

In this work, we address the following questions to shed more light on the resurgent
structure of perturbation theory and to better understand the relevance of the resurgence
theory in quantum systems. We consider the following questions:

• When does an all-order convergent perturbation expansion converges? When does it
give an exact answer?

• What is the role of non-perturbative complex saddles and quantization of hidden topo-
logical angles in path integrals and in connection to the convergence of perturbation
expansions?

Addressing these questions allows us to explore the connections between various
approaches to quantum mechanical systems including

(1) The nature of perturbation theory: convergent vs. asymptotic,
(2) The nature of complex saddles: quantized vs. unquantized hidden topological angles

(associated with the saddles of holomorphized path integrals),
(3) Supersymmetry and QES vs. non-solvability,3

(4) Resurgence in disguise vs. explicit resurgence.

1 Many thanks to Thomas Schäfer pointing out the analogy.
2 We are thankful to M.V. Berry for sharing the early manuscript with us.
3 Algebraically non-solvable systems may potentially be solvable in the sense of a resurgent-transseries.
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We demonstrate that these properties are intimately related: the left and right of the vs. in
four categories are interconnected.Quite possibly, these connections transcends quantum
mechanics and generalize to QFT. In particular, we expect that the quantization of the
hidden topological angle implies convergence of perturbation theory for some states,
even in QFT. See Sect. 4.

We study a one-parameter, ζ , family of quantum mechanical systems. Varying ζ

will allow us to interpolate between a purely bosonic theory and quantum mechanical
systems with fermions. The integer values of ζ are particularly interesting since we
recover the simplest supersymmetric quantum mechanics when ζ = 1, and for other
positive integer values of ζ the lowest ζ eigenstates are algebraically solvable. As soon
as ζ differs from an integer value, the system ceases to be solvable, and its perturbation
expansion diverges. For this one-parameter family of quantum systems, the ones with
convergent perturbation expansion consist of a measure-zero subset, and live as limits
of generic values of ζ . In other words, resurgence theory connects the perturbative and
non-perturbative sectors and guarantees that the observable is well defined in terms of
the trans-series for any generic value of ζ . All these relations survive the special values
of ζ as well, where resurgence cancellation seemingly disappear, a phenomenon which
we dubbed Cheshire Cat resurgence.

This work also unifies various approaches to understand quantum mechanical sys-
tems parametrized by ζ , including studies of the perturbation theory via the Bender–Wu
method4 [58–60], the semi-classical analysis and holomorphization of path integral
within Picard–Lefschetz theory [15,30], supersymmetric quantum mechanics [61,62]
and quasi-exact solvability [63,64], and resurgence theory applied to quantum mechan-
ics [9,10,65]. In the course of exploring these connections, we also resolve some old
standing puzzles in the literature related to the topics mentioned above. For various
known aspects, we give new streamlined arguments. In the remainder of the Introduc-
tion we will introduce the two models we study and review the main conclusions of the
paper.

The paper is organized as follows: In the rest of this section we discuss our setup, our
main results and two puzzles related to the QES systems. Sections 2 and 3 are dedicated
to the detailed resolution of these two puzzles: Cheshire Cat resurgence and the self-
resurgence properties in DSG and TDW systems, respectively. In Sect. 4 we discuss
possible connections and parallels with QFT, while in Sect. 5 we give conclusions and
summary.

1.1. The fermions and the ζ -deformed systems. The main outcome of this work is most
simply described by considering the Euclidean bosonic Lagrangians of the type,

LE
ζ = 1

g

(
1

2
ẋ2 + V (x)

)
V (x) = 1

2

(
W ′(x)

)2 + 1

2
ζgW ′′(x), (1.1)

where W (x) is auxiliary potential, V (x) is the potential, g is the coupling, and ζ is a
deformation parameter whose consequence we explore. We say that the theory is purely
bosonic when ζ = 0. The ζ = ±1 cases are Fermi–Bose sectors (or spin up/down sec-
tors) of supersymmetric quantum mechanics, where W (x) is called the super-potential.

4 The mathematica package BenderWu developed in [58] was used throughout this work. An up to date
version can be freely obtained from theWolfram package repository at http://library.wolfram.com/infocenter/
MathSource/9479/.

http://library.wolfram.com/infocenter/MathSource/9479/
http://library.wolfram.com/infocenter/MathSource/9479/
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We further assume that there are instanton solutions in the purely bosonic theory, but
this assumption can be dropped for generalization.

Quantum mechanics defined by the Lagrangian (1.2) has a formal similarity with
some quantum field theories, such as adjoint QCD. To motivate this, let us consider a
quantum mechanical systems with one bosonic and N f Grassmann valued fields:

LE = 1

g

(
1

2
ẋ2 +

1

2

(
W ′(x)

)2)+1
2
i(ψ i ψ̇i−ψ̇ iψi )+

1

2
W ′′(x)[ψ i , ψi ], i = 1, . . . , N f .

(1.2)
Because of the fermion flavor symmetry of (1.2), this quantum system is decomposed
into superselection sectors defined by fermion number k with degeneracy

(N f
k

)
:

H =
N f⊕
k=0

H(N f ,k). (1.3)

The Hamiltonian for level k is

H(N f ,k) = g

2

p2

2
+

1

2g

(
W ′(x)

)2 + 1

2
(2k − N f )W

′′(x), k = 0, . . . , N f . (1.4)

We nowfind that ζ in (1.2) is a generalization of 2k−N f , and the 1
2ζgW

′′(x) term should
be viewed as a fermion loop effect. The graded decomposition (1.3) is a generalization
of the Bose–Fermi paired Hamiltonians of supersymmetric system.

Although it is not a priori clear how the ideas around QES systems (related to integer
values of ζ inLagrangians in (1.2)) generalize toQFT, theway such systems are presented
in (1.2) has an obvious generalization to QFT. In fact, the Lagrangian (1.2) is inspired
from the multi-fermion quantum field theory. For example, consider a non-linear sigma
model in 2d and add to it a fermionic super-partner, and then continue adding N f
fermionic flavors [19,20]. Alternatively, consider adding adjoint representation fermions
to 4d Yang–Mills, which becomes supersymmetric at N f = 1, and some multi-flavor
theory for N f ≥ 2. There is by now evidence that these QFTs are special in some ways,
and carry over some of the interesting aspects of supersymmetric theory [66,67]. See
Sect. 4 for a summary.

The QM systems with Lagrangians (1.2) also appear in other contexts. For example,

• Bosonic coordinate x(t) and one Grassmann valued coordinate ψ(t), with a defor-
mation of the Yukawa term by the parameter ζ [68].

• Bosonic coordinate x(t), and W ′′(x(t)) (“magnetic field”) coupled to spin in Bloch
representation, via an abelian Berry phase term [15]. ζ acquires an interpretation as
analytic continuation of the spin quantum number.

See Ref. [15] for a more detailed discussion.

1.2. The nature of the perturbation expansion. In general, the perturbative expansion
in powers of coupling constant g is a divergent asymptotic expansion because of the
factorial growth of coefficients. According to resurgence, the asymptotic nature of the
perturbative series is caused by the existence of the other saddles of the action (see, e.g.,
[11–13] for examples of one-dimensional integrals). A way to make sense out of diver-
gent asymptotic expansion is the lateral Borel sum, i.e, directional Laplace integration
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Fig. 1. For integer ζ , perturbation theory for lowest ζ states is convergent (e.g. ζ = 1 is the supersymmetric
case), but others are divergent. For non-integer ζ , perturbation theory for all states is asymptotic. The energy
bands of the DSG system describe dependence of energy levels on the topological θ angle

of the Borel transform. The Borel sum assigns a holomorphic function on a Stokes sector
to the asymptotic series. At least in one-dimensional integrals, the geometric realization
of Borel resummation is the integration over the Lefschetz thimbles, see for example
[14]. This procedure identifies higher order terms of the perturbative series around the
perturbative vacuum with low order terms of the asymptotic expansion around another
saddle.

In the case of quantum mechanics, Plancks constant h̄ or the coupling g is an expan-
sion parameter and takes positive values. In many examples, the Borel transform has
a singularity on the positive real axis, which causes an imaginary ambiguity in the
Borel sum. Bogomolny and Zinn-Justin illustrated that the ambiguity is canceled by
an instanton–anti-instanton contribution [7,8], and this motivates that resurgence works
also for quantum mechanics. This was originally demonstrated for the leading asymp-
totic growth, but its generalization to all orders is given in [9,10]. There is a proposal to
give a geometric interpretation of this Bogomolny–Zinn-Justin prescription in terms of
Lefschetz thimbles, see the discussion in Section 4 of [15] and [16].

In order to tell our story more concretely, we will use two exemplary Hamiltonian

H = g

2
p2 +

1

2g

(
W ′(x)2 + ζgW ′′(x)

)
, (1.5)

with

W (x) = −ω cos x, Double Sine Gordon (DSG)

W (x) = x3

3
− ω2

4
x, Tilted Double Well (TDW) (1.6)

for general values of ζ . However, we believe our findings generalize to all potentials
discussed [64] straightforwardly, as well as to all of the Quasi-Exactly solvable systems
[53–55].
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Let Epert.(ν, g, ζ ) denote perturbative expansion of the energy for the level number
ν with (ν = 0 is the ground state)

Epert.(ν, g, ζ ) =
∞∑
n=0

an(ν, ζ ) gn = a0(ν, ζ ) + a1(ν, ζ ) g + a2(ν, ζ ) g2 + · · · . (1.7)

By examining the large-orders of perturbation theory with the method of Bender andWu
[59,60] generalized in [58] to arbitrary potentials, we find that the large-order behavior
of the expansion coefficients for a level ν behaves as5

an(ν, ζ ) ∼ −M
2π

1

ν!
1

(2A2)ζ−2ν−1

1

�(1 + ν − ζ )

(n − ζ + 2ν)!
(Sb)n−ζ+2ν+1

×
(
b0(ν, ζ ) +

Sb b1(ν, ζ )

n − ζ + 2ν
+

S2b b2(ν, ζ )

(n − ζ + 2ν)(n − ζ + 2ν − 1)
+ · · ·

)
, (1.8)

where

A,M = 2, Sb = 2SI = 2 × 2 = 4 DSG,

A,M = 1, Sb = 2SI = 2 × 1

6
= 1

3
TDW. (1.9)

Here, SI is the instanton action, Sb = 2SI is the complex-bion action, A is the coefficient
defined by (note that we set the natural frequency ω to unity)

A = lim
t→±∞ ẋ I (t)e

|t |, (1.10)

where xI (t) is the instanton solution, andM comes from themultiplicity of the complex-
bion solution.6 At this stage,bi (ν, ζ ) just describes correction terms,which can in general
depend on ζ . Shortly we will see that bi (ν, ζ ) is related to perturbation theory around
the complex saddles in an interesting way shortly.

Equation (1.8) deserves multiple comments. It indeed exhibits the generic n!
(2SI )n

growth, but there is a curious 1
�(1+ν−ζ )

pre-factor which makes things rather interesting:

(1a) For ζ ∈ N
+, the leading asymptotic part of the perturbative expansion vanishes

for level numbers ν ≤ |ζ − 1|. By using an exact Bender–Wu analysis, we also
demonstrate that the perturbative expansion for those ζ levels is convergent. The
natural question is what is special for this class of theories?

(1b) For ζ /∈ N
+, the perturbative expansion for all levels is asymptotic. They are

asymptotic in an expected manner ∼ n!
(2SI )n

. This is the generic behavior.

For ζ = 1, the theory is supersymmetric and perturbative expansion for the ground
state ν = 0 vanishes. However, perturbation theory for higher states yields asymptotic
expansions. For ζ ∈ N

+ deformed theories, more states have convergent perturbation
series. See Fig. 1 which summarizes these findings.

5 We determined this growth in two independent ways. By using complex instanton/bion calculus, and
assuming resurgence cancellation of the imaginary parts, this behavior is required. On the other hand we
explicitly computed the perturbative coefficients via the BenderWu analysis, in excellent agreement with the
instanton/bion calculus. The relation of the asymptotic growth to instantons and bions is the reason that the
factors M, A and Sb , characterizing the nature of the complex-bion appear. This will be discussed in detail
in the rest of the paper.

6 In other words, while there is only one complex solution contributing to the double well potential, for the
double sine-Gordon there are two complex bion solutions.
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1.3. The role of complex saddles in the semiclassical analysis. InRef. [15], it was argued
that a consistent semi-classical analysis requires the inclusion of complex saddles in the
semi-classical expansion. This requires that the real coordinate x(t) is promoted to the
complex coordinate z(t) = x(t) + iy(t), and that the path integral is performed over
complex integration cycles passing through the saddles. The saddles are, in general,
solutions to the holomorphic Newton’s equation in the inverted potential. In this way,
complex saddle solutions are found contributing to the ground state energy. Because of
their complex nature and their relationship to instanton–anti-instanton, they are called
complex bions.7

The leading non-perturbative contribution of complex bion [CB]± (or equivalently
instanton–anti-instanton [II]±) saddle to the energy level ν is given by,

En.p.
± (ν, g, ζ ) = [CB]± = [II]± = − 1

2π

M
ν!

( g

2A2

)ζ−2ν−1
�(ζ − ν)e±iπ(ζ−ν)

× e−Sb/g (b0(ν, ζ ) + b1(ν, ζ ) g + · · · ) , (1.11)

where A and Sb are defined in (1.9). The phase of e±iπ(ζ−ν) is the phase associated
with the complex saddle and its descent manifold, and is called the hidden topological
angle (HTA) [15,30]. The sum

∑
n∈N bn(ν, ζ ) gn ≡ Pfluc(ν, g, ζ ) denotes perturbative

fluctuations around the complex saddle contributions to level ν. The HTA of the complex
bion solution turns out to be extremely important for resolving some outstanding puzzles
stemming from the QES solutions.

The imaginary ambiguous parts of the complex bion amplitude can be found by using
the reflection formula �(ζ − ν)sin π(ζ − ν) = π

�(1−ζ+ν)
for the Gamma-function:

Im En.p.
± (ν, g, ζ ) = ∓1

2

M
ν!

( g

2A2

)ζ−2ν−1

1

�(1 + ν − ζ )
e−Sb/g (b0(ν, ζ ) + b1(ν, ζ ) g + · · · ) (1.12)

Just like the Bender–Wu large order result (1.8), there is again intriguing structure
associated with this formula which distinguishes ζ ∈ N

+ due to the curious factor
1

�(1+ν−ζ )
in (1.12):

(2a) For ζ ∈ N
+, for which the hidden topological angle is quantized, the imaginary

ambiguity in the energy disappears. What is again special for this class of theories?
(2b) For ζ /∈ N

+, the Borel sum of (1.8) is ambiguous and has an imaginary ambiguity.
This ambiguitymust be exactly canceled by the imaginary part of the complex-bion
contribution in (1.12), as the energy spectrum must be real.

We also note that there exists a real bion configuration for the DSG system, but there
is no such configuration for the TDW. The real bion is a real saddle, and hence, it does
not possess an HTA. The real bion contribution to energy level ν is given by:

En.p.(ν, g, ζ ) = [RB] = [II] = −M
2π

(−1)ν

ν!
( g

2A2

)ζ−2ν−1
�(ζ − ν)

× e−Sb/g (b0(ν, ζ ) + b1(ν, ζ ) g + · · · ) (1.13)

7 The complex bion is an exact solution in the ζ -deformed theory. For small ζg, It can approximately be
described as an instanton-anti-instanton correlated pair integrated over its quasi-zero mode Lefschetz thimble.
We will use both instanton language and bion language interchangeably (see the discussion in [15]).
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Note that for the ground state the real bion always reduces the energy,while for the excited
states non-perturbative contribution alternates as (−1)ν . Also note that the multiplicity
M of the real bion is again M = 2, just like that of the complex bion.

1.4. Supersymmetry and quasi-exact solvability. Both the quantization of the hidden
topological angle as well as convergence of perturbation expansions for ζ ∈ N

+ sug-
gest that there must be something very special about these QM systems. In particular,
these systems must realize some generalization of supersymmetric quantum mechanics.
Indeed, this turns out to be the case.

For eitherW (x) given in (1.6) as well as a very large-class ofW (x) studied in [64], we
believe that the perturbation expansions for the lowest lying ζ states are always conver-
gent for ζ ∈ N

+. The question then is whether there is a non-vanishing non-perturbative
contribution or not? This is equivalent to the question of dynamical supersymmetry
breaking in the ζ = 1 system:

• When e+W (x) is normalizable, the first ζ states of the ζ -deformed theory are alge-
braically solvable with the following wave functions,

	i (x) = Pi (ξ(x))e+W (x), i = 0, 1, . . . , ζ − 1, (1.14)

where Pi is a set of polynomials in the natural variable ξ(x) of the problem. For
ζ = 1, this means that supersymmetry is unbroken.

• When e+W (x) is non-normalizable, non-vanishing non-perturbative contributionmust
exist. The reason is that this solution is generated by perturbation theory, so it is
an exact all-orders perturbative answer. However, since this state does not belong
to the Hilbert space due to its non-normalizability, the true energy must be non-
perturbatively shifted to amend it. The situation is entirely parallel in the case the
supersymmetric limit when ζ = 1, in which case the supersymmetry is dynamically
broken by non-perturbative effects [56].

In both cases, the perturbative expansion for the first ζ ∈ N
+ states converges.

1.5. Two puzzles of QES. At this point, we wish to point out that our work also explains
a puzzle emanating from the literature of the QES systems8:

(Puzzle 1) For the DSG, the lowest ζ states are algebraically solvable. The exact energy
expressions are algebraic in the coupling constant, g. At the same time,
this system has obvious real instanton type saddles (what we called real
bion). This would potentially give a non-algebraic contribution e−Sb/g to
the energy. From the exact solutions it can be explicitly seen that no such
non-perturbative terms appear.

(Puzzle 2) For the TDW, the lowest ζ states are not algebraically solvable. These are
not QES systems, but their perturbative expansions converge. Since the all-
order perturbative result does not belong to the Hilbert space (i.e. is not
normalizable), there must exist a non-perturbative shift in energy of the form
e−Sb/g , but there are no such real saddles for such a system.

8 We would like to thank Edward Shuryak and Sasha Turbiner for drawing our attention to these puzzles.
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We show that the resolution of these puzzles are given by the realization that apart
from the real saddle contributions, there exists another contribution, the complex bion:
Puzzle 1 is solved because non-perturbative contributions coming from real and complex
bions exactly cancel for the lowest ζ states; see Sect. 2. Puzzle 2 is solved because there
exist complex bions contributing to the energy level ν, and no real non-perturbative
saddle to compensate it; see Sect. 3. This provides further evidence that complex paths
and saddles are integral to the semi-classical expansion.

We also find that the convergence of perturbative expansions at these special points
in the parameter space is insufficient in order to judge whether perturbation theory gives
an exact answer, and that cancellation between contributions of real and complex non-
perturbative saddles gives a condition for perturbation theory being exact. To employ
the power of resurgence, such systems must be studied as integer limits of ζ . This type
of resurgence we call the Cheshire Cat resurgence, and discuss it next.

(The Cheshire Cat, artist credit: Roman Sulejmanpasic)

1.6. Cheshire Cat resurgence. 9 In our examples, the perturbation series is convergent
for ζ ∈ N

+. As convergent series implies no ambiguity, it would seem that the role of
resurgence in such systems is trivial as no cancellation between sectors is required, so
we could not know whether complex bions contribute. We shall nevertheless see that
convergence of perturbation theory does not hold under a tiny deformation of the theory,
such as extension of ζ ∈ N

+ to generic ζ ∈ R. Once this is done, the entire structure
of resurgence is reestablished. All the relations obtained by resurgence survive even in
the limit of convergent perturbation series. We will call it the Cheshire Cat resurgence,
whose distinguishing features is that from time to time its body disappears, while its
iconic grin remains.

For ζ /∈ N
+, by using the Bender–Wu analysis, we can do left/right resummation

of perturbation theory, and prove that the ambiguity in the Borel sum S±Epert.(ν, g, ζ )

cancels exactly the ambiguity in the complex bion amplitude, [CB]±. Namely, at leading
order, we obtain

Im
[
S±Epert.(ν, g, ζ ) + [CB]±(ν, g, ζ )

]
= 0. (1.15)

For ζ ∈ N
+, the perturbative expansion converges, and the complex bion amplitude

becomes ambiguity free:

ImS±Epert.(ν, g, ζ ) = 0

Im [CB]±(ν, g, ζ ) = 0. (1.16)

9 We are thankful to Roman Sulejmanpasic for the artwork.
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By using this relation, we find that the convergence of the perturbative expansion corre-
sponds to the quantization of the hidden topological angle to θHTA ∈ π(Z− 0). In order
to extract the non-perturbative information from resurgence at ζ ∈ N

+, let us look more
closely at their behaviors as a function of ζ . For ζ → N

+, we find that the imaginary
part of the complex bion amplitude and the large-orders of the perturbation expansion
behave as (for example, for ground state, setting ν = 0 in (1.12) and (1.8))

Im En.p.
± (ν = 0, g, ζ ) = ∓1

2

( g

2A2

)ζ−1 1

�(1 − ζ )
e−Sb/g

(
b0(0, ζ ) + b1(0, ζ ) g + b2(0, ζ ) g2 + · · ·

)
,

an(ν = 0, ζ ) = −M
2π

1

(2A2)ζ−1

1

�(1 − ζ )

(n − ζ )!
(Sb)n−ζ+1

×
(
b0(0, ζ ) +

(Sb)b1(0, ζ )

n − ζ
+

(Sb)2b2(0, ζ )

(n − ζ )(n − ζ − 1)
+ · · ·

)
.

(1.17)

Despite the fact that both expressions become zero in the ζ → N
+ limit due to the

overall 1
�(1−ζ )

factor, and the resurgent cancellation seems to disappear, the footprint
of resurgence is still present in the theory. This may also be viewed as analyticity in ζ ;
if resurgent cancellation works infinitesimal away from ζ ∈ N

+, its remnant must be
present even in the limit.

By employing Cheshire Cat resurgence we can justify our claim that the complex
bion gives a contribution to the semiclassical analysis even when ζ ∈ N

+. This claim is
the essential ingredient to solve the puzzles in QES literatures.

1.7. Self-resurgence and the Dunne–Ünsal relation. In this section we discuss another
remarkable feature of the systems we study. Namely since in both systems we study
the ambiguity of non-perturbative contribution is given by a complex saddle point—the
complex bion in the cases we study—the perturbative corrections to this saddle will have
a one-to-one correspondence with the corrections to the leading asymptotic growth of
the perturbative expansion. Although we focus on the DSG and the TDW systems, it is
worth noting that the arguments presented here are generally applicable to any system for
which a complex saddle contributes to the energy shift, and for which the Dunne–Ünsal
relation holds.

To show the self-resurgent properties, note that the coefficients bi of the large order
expansion (1.8) correspond to the perturbative corrections around the complex bion
solution via the resurgent cancellation (1.15), i.e.

Im En.p.
± (ν, g, ζ ) = (. . . )e−Sb/gIm(e±iζπ )Pfluc(ν, g, ζ ) (1.18)

wherePfluc(ν, g, ζ ) is the perturbative expansion around the complex saddle, normalized
so that Pfluc(ν, 0, ζ ) = 1. We write a formal expansion of this object as

Pfluc(ν, g, ζ ) =
∞∑
i=0

bi (ν, ζ ) gi , (1.19)

where b0 = 1. On the one hand the form of the large order growth (1.8) is fixed by
the requirement that the ambiguity resulting from the complex bion is cancelled by
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the Borel summation of the perturbation theory. On the other hand, Dunne and one of
us (MÜ) showed [9] that the perturbative expansion around non-trivial saddles can be
related to the perturbative expansion around the trivial vacuum in a constructive way.
By writing an analogous formula for the systems we study, we are able to relate the
perturbative expansion around the trivial vacuum to the expansion around the complex
saddle. These two facts then seem to imply that the perturbative expansion around it
both dictates and is dictated by (respectively) the late and early terms of the perturbation
theory around the trivial vacuum. However, if this is the case it means that the early
terms of the perturbative series, “echoing” on the non-perturbative “mountain”, dictate
late terms of of the same series. For this reason it is appropriate to call this phenomenon
echo-resurgence or self-resurgence.

Let us see in more detail how this works. The formal power-expansion of the energy
in coupling g of the energy level ν is given by

Epert.(ν, g, ζ ) = a0(ν, ζ ) + a1(ν, ζ )g + a2(ν, ζ )g2 + · · · . (1.20)

Now the natural generalization of the Dunne–Ünsal relation for an arbitrary complex
bion is

Pfluc(ν, g, ζ ) = ∂Epert.

∂ν
exp

[
Sb

∫ g

0

dg

g2

(
∂Epert.

∂ν
− a′

0(ν, ζ ) − a′
1(ν, ζ )g

)]
. (1.21)

Writing

∂Epert.

∂ν
=

∞∑
n=0

a′
n(ν, ζ ) gn, (1.22)

where the prime indicates differentiation with respect to ν. We see that

Pfluc(ν, g, ζ ) =
(
1 +

∞∑
n=1

a′
n(ν, ζ ) gn

)
eSb

∑∞
n=1

1
n a

′
n+1(ν,ζ ) gn (1.23)

= (1 + a′
1(ν, ζ ) g + a′

2(ν, ζ ) g2 + a′
3(ν, ζ ) g3 + · · · )

× exp

[
Sb

(
a′
2(ν, ζ ) g +

a′
3(ν, ζ ) g2

2
+
a′
4(ν, ζ ) g3

3
+ · · ·

)]
. (1.24)

Equivalently, we can write bi (ν, ζ )’s in terms of derivatives of ai (ν, ζ )’s,

b0(ν, ζ ) = 1,

b1(ν, ζ ) = a′
1(ν, ζ ) + Sb a

′
2(ν, ζ ),

b2(ν, ζ ) = a′
2(ν, ζ ) + Sb a

′
1(ν, ζ )a′

2(ν, ζ ) +
1

2
S2b a

′
2(ν, ζ )2 +

1

2
Sb a

′
3(ν, ζ ),

b3(ν, ζ ) = a′
3(ν, ζ ) + Sb

(
a′
2(ν, ζ )2 +

1

2
a′
1(ν, ζ )a3(ν, ζ ) +

1

3
a′
4(ν, ζ )

)

+
1

2
S2b

(
a′
1(ν, ζ )a′

2(ν, ζ )2 + a′
2(ν, ζ )a′

3(ν, ζ )
)
+
1

6
S3b a

′
2(ν, ζ )3. (1.25)
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By plugging in (1.8) we see that the large order corrections of the perturbative expan-
sion are given by

an(ν, ζ ) = −M
2π

1

ν!
1

(2A2)ζ−2ν−1

1

�(1 + ν − ζ )

(n − ζ + 2ν)!
(Sb)n−ζ+2ν+1 (1.26)

×
[
1 +

Sb (a′
1(ν, ζ ) + Sb a′

2(ν, ζ ))

n − ζ
+

+
S2b

(
a′
2(ν, ζ )+Sb a′

1(ν, ζ )a′
2(ν, ζ )+ 1

2 S
2
b a

′
2(ν, ζ )2+ 1

2 Sb a
′
3(ν, ζ )

)
(n − ζ )(n − ζ − 1)

+ · · ·
]

.

(1.27)
What we have obtain is nothing short of remarkable! Indeed the above expression relates
the asymptotic coefficients of the perturbative expansion an , with n � 1, to the deriva-
tives ∂νan(ν, ζ ) = a′

n(ν, ζ ) with n = 1, 2, 3, . . .. For this reason, we say that if the
Dunne–Ünsal relation holds for a system in which complex saddles contribute, the per-
turbative series of the energy is self-resurgent.

We take an opportunity now to comment on the possible interpretation of this self-
resurgence formula as being related to Dingle’s self-resurgence formula (seeM.V. Berry
[57])which is a general property of resurgent functionswhich are themselves functions of
resurgent functions. Namely, it is likely10 that the self-resurgent properties of the systems
we study imply that the energy is not simply a resurgent function of two independent
arguments ν and g, but that they are related in some way. Indeed in [9], the energy is
written as E(ν(g), g), where part of the dependence on g is placed into a functional
dependence on ν. On the other hand, here we obtained the self-resurgent formula by
the utilization of the Dunne–Ünsal relation, a formula which is only known for systems
who’s WKB Riemann sheet is topologically a torus [23]. If by virtue of [57] the self-
resurgent property is a general property of eigenvalue problems, thismaygive insight into
what the generalization of the Dunne–Ünsal relation for higher genus WKB Reimann
surfaces is.

2. Resolving Puzzle 1: The Double Sine-Gordon system

In this section, we provide the resolution of the Puzzle 1 that is described in Sect.
1.5. A subset of the lowest energy eigenstates of the Double Sine-Gordon (DSG) are
exactly solvable, and the corresponding energy eigenvalues are known to be algebraic
in coupling constant g. On the other hand, according to the textbook semi-classical
analysis, the system posses real instantons, what we call real bions (because these are
really correlated two-instanton eventswith a characteristic size parametrically larger than
an instanton.) They should introduce non-algebraic e−Sb/g contributions to the energy
eigenvalues. The presence of complex bions, in addition to the real bions, lies in the
heart of the solution to the apparent discrepancy. The complex bion contribution cancels
precisely the one coming from real bions. The concrete relation of this QM system with
quantum field theory is described in Sect. 4.

Here we consider the DSG system and analyze it in detail. The Hamiltonian is

H = −g

2

∂2

∂x2
+

1

2g

(
W ′(x)2 − ζgW ′′(x)

)
, (2.1)

10 TS would like to thank M.V. Berry for drawing our attention to this possibility.
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Fig. 2. An illustration of the exactly solvable states. The blue-shaded rectangles represent bands by changing
the θ (i.e. Bloch) angle, whose width is non-perturbative and not exactly solvable for any ζ . However, it is
possible to solve either for the energy of the top or of the bottom of the band when ζ is an odd or an even
integer respectively. Note that ζ = 1 case is a supersymmetric limit, and the bottom of the band corresponds

to the supersymmetric ground state given by ψ0 = e−W (x) = e
ω
g cos(x

√
g)

(color figure online)

W (x) = −ω cos x,

V (x) = ω2

2g
sin2 x − ζ

ω

2
cos x, (2.2)

where ω is the curvature at x = 0 to leading order in the expansion parameter g and ζ

is an a priori free parameter. The Schrödinger equation reads

−g
ψ ′′(x)

2
+ V (x)ψ(x) = Eψ(x). (2.3)

Since the potential is periodic, thewave-function can haveBloch periodicityψ(x+2π) =
ψ(x)eiθ . By changing the θ -angle we can scan the band of the potential. Below, we
examine this class of potentials by using the methods outlined in the Introduction for
the general values of ζ .

First, recall that for the ζ = 1 case the above system reduces to the well known case
of supersymmetric quantum mechanics, with the ground state energy E0 = 0 and the
ground state wave-function

ψ0 = e−W (x)/g = e
ω
g cos(x

√
g)

. (2.4)

This solution determines the bottom of the lowest-lying band, or the ground state at
θ = 0. What is much less appreciated is that for any ζ ∈ N

+, it is always possible
to find either the bottom or the top of the first ζ bands (see Fig. 2) analytically. The
method which allows one to determine these edges of the band goes under the name of
Quasi-Exact Solvability (QES). We discuss this next.

2.1. Quasi-exact solvability for ζ ∈ N
+. The definition of the QES is that a finite part of

the spectrum is algebraically exactly solvable (see [63] for a recent review of QES). Let
us denote by H0 the finite-dimensional subspace spanned by those eigenstates, which
are algebraically solved if a certain boundary condition is imposed.
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The method of QES relies on rewriting the eigenvalue problem by a suitably chosen
Ansatz of the wave-function

ψ(x) = u(x)e−W (x)/g. (2.5)

The Schrödinger equation for ψ then turns into the eigenvalue equation for u(x), of the
form

ĥu = Eu, (2.6)

where ĥ is a second order differential operator given by

ĥ = ω

[
− g

2ω

d2

dx2
+ sin x

d

dx
− ζ − 1

2
cos x

]
. (2.7)

Note that we can set ω = 1. To reinstate it in the result we simply need to replace the
coupling g → g/ω and the energy E → ωE .

In order to turn the Hamiltonian operator into a matrix eigenvalue equation in the
subspaceH0, it is useful to introduce differential operators which form a representation
of SU (2) algebra,

J+ = e−i x
(
j − i

d

dx

)
, J− = eix

(
j + i

d

dx

)
, J3 = i

d

dx
, (2.8)

with a Casimir (J+ J− + J− J+)/2 + J 23 = j ( j + 1). The eigenfunctions of J3 are um =
Ne−imx , withm = − j,− j+1, . . . , j and they form amultiplet in the 2 j+1 dimensional
representation of SU (2).H0 is the span of um , and exact solutions will be decomposable
within this subspace.

The Hamiltonian ĥ given in (2.7) can be expressed in terms of generators (2.8)

ĥ = g

2
J 23 − 1

2
(J+ + J−) = −g

2

d2

dx2
+ sin x

d

dx
− j cos x, (2.9)

provided we identify j = ζ−1
2 . For J±, J3 to be generators of the SU (2) algebra, j must

be either a non-negative integer or a non-negative half-integer, we see that ζ must be a
positive integer.

Now note that there exists an abstract scalar product invariant under the action of the
SU (2) group in question11 and under which the states um are orthogonal, i.e. (um, us) =
δms (see [69]). To determine the norm of um we note that the action of J± is given by

J±um = √
( j ∓ m)( j ± m + 1)um±1. (2.10)

Choosing u− j ≡ ei j x , (u− j , u− j ) ≡ 1 by definition, we can construct all um by a
successive action of J+. This gives

um =
√

(2 j)!
( j − m)!( j + m)! e

−imx , m = − j,− j + 1, . . . , j. (2.11)

11 Note that J± are not Hermitian conjugates of each other under the naive L2 norm. We can, instead,
introduce the invariant norm under the SU (2) group, so that it automatically makes the generators Ja invariant
as it must follow that

(u, v) = (Uu,Uv) = (u, v) + ta(i J au, v) + ta(u, i J av) + o((ta)2) ⇒ (Jau, v) = (u, Jav),

where wrote U = ei J
a ta , where Ja are generators of SU (2), and ta are parameters of the transformation.
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This fact naturally splits the Hilbert space H into a subspace invariant under the ĥ
and the rest. Note that this SU (2) group is not a symmetry of the underlying theory, i.e.
Hamiltonian is not invariant under the action of this SU (2). This is clear from the form
of the operator ĥ, given by (2.9), which is clearly not SU (2) invariant. Rather the space
spanned by um is invariant under the action of ĥ, which allows for an algebraic solution
of one part of the spectrum. Indeed in this subspace the operator ĥ attains a (tridiagonal)
matrix form

ĥ0 = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g(− j)2 −√
2 j 0 0 . . .

−√
2 j g(− j + 1)2 −√

2(2 j − 1) 0 . . .

0 −√
2(2 j − 1) g(− j + 2)2

. . .

0 0
. . .

. . .

.

.

.

.

.

. gm2 −√
( j − m)( j + m + 1)

−√
( j − m)( j + m + 1) g(m + 1)2

. . .

g( j − 1)2 −√
2 j

−√
2 j g j2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(2.12)
where the subscript on ĥ implies the restriction of the total Hilbert space to the subspace
H0 invariant under the action of the SU (2) group generated by J3, J±. As we will only
be concerned by this subspace, we will drop the subscript 0 in what follows.

2.1.1. Exact solutions for ζ = 1, 2, 3, and 4. Let us explicitly consider H0 and ĥ for
the cases ζ = 1, 2, 3, 4.

ζ = 1 (Supersymmetric) case: One exactly solvable state. This is the supersymmetric
case, and it evidently requires j = 0, so that the only solvable state is u(x) =const. This
is precisely the supersymmetric ground state. The Hamiltonian action onH0 is

ĥ = 0, (2.13)

with eigenvalues and eigenfunctions

E0 = 0, ψ0 = e
1
g cos x

. (2.14)

Notice that the wave-function is periodic, so it corresponds to the Bloch angle θ = 0.

ζ = 2 case: Two exactly solvable states. In this case j = 1/2 and we have the Hamil-
tonian acting on H0

ĥ =
( g

8 − 1
2− 1

2
g
8

)
, (2.15)

with eigenvalues and eigenfunctions

E0 = −1

2
+
g

8
; ψ0 = cos(

x

2
) e

1
g cos x

,

E1 = +
1

2
+
g

8
; ψ1 = sin(

x

2
) e

1
g cos x

. (2.16)

Notice that these wave-functions obey anti-periodic boundary condition, so that the
Bloch angle is given by θ = π .
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ζ = 3 case: Three exactly solvable states. If ζ = 3 then j = 1. The Hamiltonian is:

ĥ =
⎛
⎜⎝

g
2 − 1√

2
0

− 1√
2

0 − 1√
2

0 − 1√
2

g
2

⎞
⎟⎠ , (2.17)

with eigenvalues and eigenfunctions

E0 = 1

4

(
g −

√
g2 + 16

)
; ψ0 =

(
2 cos x +

g +
√
g2 + 16

2

)
e

1
g cos x

,

E1 = g

2
; ψ1 =

(
sin x

)
e

1
g cos x

,

E2 = 1

4

(
g +

√
g2 + 16

)
; ψ2 =

(
2 cos x +

g − √
g2 + 16

2

)
e

1
g cos x

. (2.18)

Just like in the case when ζ = 1, the all the wave-functions we found are periodic,
therefore the Bloch angle is θ = 0 again.

ζ = 4 case: Four exactly solvable states. If ζ = 4 then j = 3/2. The Hamiltonian is:

ĥ =

⎛
⎜⎜⎜⎝

9g
8 −

√
3
2 0 0

−
√
3
2

g
8 −1 0

0 −1 g
8 −

√
3
2

0 0 −
√
3
2

9g
8

⎞
⎟⎟⎟⎠ , (2.19)

with eigenvalues and eigenfunctions

E0 = −1

2
+
5

8
g −

√
4 + 2g + g2

2
; ψ0 =

(
cos(

3x

2
) +

√
g2 + 2g + 4 + g + 1√

3
cos(

x

2
)

)
e

1
g cos x

,

E1 = +
1

2
+
5

8
g −

√
4 − 2g + g2

2
; ψ1 =

(
sin(

3x

2
) +

√
g2 − 2g + 4 + g − 1√

3
sin(

x

2
)

)
e

1
g cos x

,

E2 = −1

2
+
5

8
g +

√
4 + 2g + g2

2
; ψ2 =

(
cos(

3x

2
) +

−√
g2 + 2g + 4 + g + 1√

3
cos(

x

2
)

)
e

1
g cos x

,

E3 = +
1

2
+
5

8
g +

√
4 − 2g + g2

2
; ψ3 =

(
sin(

3x

2
) +

−√
g2 − 2g + 4 + g − 1√

3
sin(

x

2
)

)
e

1
g cos x

.

(2.20)

As in the case of ζ = 2, wave-functions obey the anti-periodic boundary condition.
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2.1.2. General ζ ∈ N
+ case and Ince-polynomials. For general ζ ∈ N

+ theory, the first
ζ level are algebraically solvable, corresponding to j = ζ−1

2 representation of SU (2).
The 2 j + 1 = ζ solutions are of the form

ψi (x) = P(ζ−1)
i (cos(x/2), sin(x/2))e

1
g cos x

, i = 0, 1, . . . , ζ − 1 (2.21)

where P(ζ−1)
i (cos(x/2), sin(x/2)) is an (ζ − 1)th order polynomial with trigonomet-

ric arguments, cos(x/2) and sin(x/2). These are called Ince-polynomials (see, e.g.,
Sec. 28.31 of Ref. [70]). The wave-functions for the exactly soluble subset obey the
boundary conditions:

ψi (x + 2π) = (−1)ζ−1 ψi (x) (2.22)

• ζ -odd: In this case, the exactly solvable subset obey periodic boundary conditions
(2.22). See Fig. 2. This corresponds to the topological θ -angle zero, θ = 0. Note that
for the ν = 0 band, this corresponds to the bottom of the band, while top of the band
corresponds to θ = π . The bottom of the ν = 1 band also corresponds to θ = π

and is again not algebraically solvable, but the top of the ν = 1 band correspond to
θ = 0 and is algebraically solvable. This pattern continues for all odd-ζ values.

• ζ -even: In this case, the exactly solvable subset obey anti-periodic boundary condi-
tions (2.22). See Fig. 2. This corresponds to setting topological theta angle to θ = π .
Note that for the ν = 0 band, this corresponds to the top of the band. Note that the
bottom of the ν = 1 band also corresponds to θ = π and it is also algebraically
solvable. The rest of neither bands is exactly solvable. This pattern continues for all
even-ζ values.

2.2. Complex saddles and the role of the hidden topological angle. There is a long-
standing puzzle in the literature of the QES systems. Because of its algebraic nature,
the exact solutions in QES systems have no non-perturbative contributions of the form
e−Sb/g . On the other hand, there is a real non-perturbative saddle in the DSG system,
which we refer to as the real bion [RB] [15]. This real saddle interpolates from x =
0 to x = 2π , which may be interpreted as the exact version of instanton-instanton
[II] correlated event. There is no reason why this object would not contribute to the
semiclassical analysis. Indeed such paths must be present, as only they couple to the
Bloch θ angle. If such paths did not contribute, the Bloch bands would not exists. Why
does this contribution disappear in the exact energy expression? To our best knowledge,
the resolution of this puzzle is not known in the QES literature.

The explanation of the abovementioned puzzle is very similar to that of the instanton–
anti-instanton contributions in a supersymmetric theory [15]. In other words, for the case
of ζ = 1 supersymmetric theory, the vacuum energy is zero to all orders in the pertur-
bation theory. Contributions of the real bion renders the ground-state energy negative at
θ = 0, which clashes with the supersymmetry algebra. In [15], a complex multivalued
saddle is found and called the complex bion,whose contribution to vacuumenergy is pos-
itive,Ecb ∼ −e±iπe−Sb/g , and it cancels the real-bion contributionErb ∼ −e−Sb/g

exactly. This is the first hint for building up Picard–Lefschetz theory for path integrals,12

because it demonstrates that the complex saddles of this type must be included in the

12 As Picard–Lefschetz theory of path integrals is not a complete theory, we should clarify what we mean by
this. By Picard–Lefschetz theory we mean a meaningful and systematic expansion of the observables which
have a path-integral representation into contributions coming from various saddles of the action. Note that we
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semiclassical expansion. In the ζ -deformed theories, we find a similar exact cancellation
mechanisms for ζ ∈ N

+.

• ζ -odd: As asserted above, the lowest ζ states are exactly solvable at θ = 0, and
thus there must exist an exact cancellation between real and complex bion saddles.
Indeed, we find

En.p.(ν, g, ζ ) = 2[RB] + 2[CB]±
= 2

(
−(−1)ν − e±iπ(ζ−ν)

)
ζ=1,3,...

e−Sb/g · · ·
= 2(−1)ν+1(1 + eiπζ )ζ=1,3,...e

−Sb/g = 0 (2.23)

For level ν = 0, 2, . . . , ζ −2, the real bion reduces the energy, while the complex bion
increases it and the two cancel exactly. For level ν = 1, 3, . . . , ζ − 1, the real bion
increases the energy, while the complex bion reduces it and the two cancel exactly.
The cancellation between the two is a consequence of the destructive interference
induced by hidden topological angle θHTA = ζπ associated with the complex bion.

• ζ -even: In this case, the lowest ζ states are exactly solvable at θ = π , so we must
consider the effect of the topological θ angle for the QES. Since the real and complex
bions have the winding numbers 1 and 0, respectively, we find that

[RB](θ) = [RB]eiθ , [CB](θ) = [CB]. (2.24)

As a result of this, the contribution of real and complex bion to the energy level ν for
the case of even ζ takes the form

En.p.(ν, g, ζ ) = ([RB] + c.c.) + 2[CB]
= 2

(
−(−1)ν cos θ |θ=π − e±iπ(ζ−ν)

)
ζ=2,4,...

e−Sb/g · · ·
= 2(−1)ν+1(cos θ |θ=π + eiπζ )ζ=2,4,...e

−Sb/g · · · = 0. (2.25)

For level ν = 0, 2, . . . , ζ − 1, the real bion increases the energy, while the complex
bion reduces it and the two cancel exactly. For level ν = 1, 3, . . . , ζ −2, the real bion
reduces the energy, while the complex bion increases it and the two cancel exactly.
The cancellation between the two is a consequence of the destructive interference
induced also by ordinary topological angle θ associated with the real bion.

We find the mechanism described in (2.23) and (2.25) nothing short of remarkable. It
is due to this exact non-perturbative cancellation mechanisms induced by the interplay
of the hidden topological angle with the ordinary topological angle is necessary for the
exact algebraic solvability of the states inH0 in these QES-systems.

So far, we have shown that a consistent semiclassical picture is given for QES if we
take into account the effect of complex bions. Remainder of Sect. 2 is dedicated to the
analytic properties off the integer values of ζ . As we shall see, such theories hold much
more information about QES systems then would naively be thought.

Footnote 12 continued
do not a priori refer to the nature, structure and construction of Lefshetz thimbles. More concretely, we do not
claim that the dual of the Lefschetz thimble associated with the complex bion has nonzero intersection number
with the original integration cycle. Our intention is to build this theory for path integrals, and in this work, by
using Bender–Wu analysis, resurgence, QES, supersymmetry and complexified path integral, we take mileage
in this direction, and provide an almost complete picture for the systems we study.
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2.3. The general ζ -deformed theory. In this and the next sections, we shall show that
the complex bion must be taken into account for the semiclassical and resurgent analysis
to make sense. For ζ ∈ N

+ the perturbation series has a finite convergence radius, and
there seems to be no room for resurgence to play into the game. In order to understand
what is happening better, we are going to compute the perturbation series of the DSG
system for a generic ζ ∈ R and establish the intricate relation of the perturbative sector
and the complex bion. By using the continuity in the limit ζ → 1, 2, 3, . . ., we argue
that the complex bion still describes a nonperturbative contribution in the semiclassical
analysis without the factorial growth of the perturbation series; we name it a Cheshire
Cat effect.

To compute the perturbation series, we apply the Bender–Wu method [58–60]. The
Bender–Wumethod is an algorithm to compute the high order correction for an arbitrary
energy level in perturbation theory. The main idea of this algorithm is to construct the
recursive relation for the perturbative coefficients of the eigen-energy E and eigenfunc-
tion ψ .

We demonstrate two remarkable aspect of the perturbation theory.

• For ζ ∈ N
+, the perturbation theory of the DSG system for ν = 0, 1, . . . , ζ − 1

is convergent and exact. For higher energy levels, the perturbation theory yields an
asymptotic expansion.

• For generic ζ , the perturbation theory is always asymptotic.

2.3.1. Exactly solvablity from perturbation theory for ζ ∈ N
+. For ζ ∈ N

+, Bender–Wu
equation gives a convergent results for the energy levels ν = 0, 1, 2, . . . , ζ − 1, and it
gives divergent asymptotic series for level number ν ≥ ζ . See for example Table 1a–c.

For ζ = 1, the system is supersymmetric. Indeed, the ground state (ν = 0) energy
is zero to all orders in perturbation theory. For the wave-function, perturbation theory
does not yield zero, but a convergent and exact result for level number ν = 0. For higher
states ν = 1, 2, . . . in the supersymmetric theory, perturbation theory is asymptotic.

As an example of a convergent (and non-truncating) perturbation theory, see Table 1c,
let us show the series for the ground state energy of the ζ = 3 system.

Epert.(ν = 0, g, ζ ) = −1 +
g

4
− g2

32
+

g4

2048
− g6

65536
+

5g8

8388608
− 7g10

268435456
+ . . . ,

(2.26)

which is exactly the expansion of E0 in (2.18).

2.3.2. Asymptotic corrections from the Bender–Wu analysis. Studying the Bender–Wu
recursion relation, one can find the large-order behavior of perturbation theory.

an(ν, ζ ) ≈ − 1

π

1

ν!
1

8ζ−2ν−1

1

�(1 + ν − ζ )

(n − ζ + 2ν)!
(Sb)n−ζ+2ν+1

×
(
1 +

Sb b1(ν, ζ )

n − ζ + 2ν
+

S2b b2(ν, ζ )

(n − ζ + 2ν)(n − ζ + 2ν − 1)

+ · · · + SKb bK (ν, ζ )

(n − ζ + 2ν)(n − ζ + 2ν − 1) · · · (n − ζ + 2ν − K )

)
, (2.27)

where we set b0 = 1 and terminated the 1/n correction to some finite order K . This can
be done for any state, but here we report for state ν = 0 and ν = 1. We can then use the
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BenderWu package [58] to compute the coefficients an(ν, ζ ) to some high order n = N ,
retaining the analytic dependence on ζ . Explicit values of n = N−K , N−K +1, . . . , N
can then be plugged into the above approximate equation, giving K equations with K
unknowns b1(ν, ζ ), b2(ν, ζ ), . . . , bK (ν, ζ ). Taking K = 10, and expanding in a series
in ζ for ν = 0 we get the following numerical values

b1(ν = 0, ζ ) = −0.6249999999802 + 0.624999999937376ζ

− 0.1249999999149091ζ 2 + o(ζ 310−11),

b2(ν = 0, ζ ) = −0.10156250436 + 0.015625013847ζ + 0.117187481117609ζ 2

− 0.0624999852717885ζ 3 + 0.00781249267805392ζ 4 + o(ζ 510−9),

b3(ν = 0, ζ ) = −0.116211 + 0.124022ζ − 0.00325335ζ 2

− 0.016603ζ 3 − 0.003254481026038194ζ 4

+ 0.002929444295569087ζ 5−0.0003254657952886725ζ 6+o(ζ 710−9).

(2.28)

We repeat the same for ν = 1 and obtain

b1(ν = 1, ζ ) = −2.6249999967918 + 1.374999993327027ζ

− 0.1249999939430032ζ 2 + o(ζ 310−9),

b2(ν = 1, ζ ) = 1.24218678107 − 1.953123499260ζ + 0.929686131557870ζ 2

+ 0.1562492802762927ζ 3 + 0.00781225722624248ζ 4 + o(ζ 510−8).,

b3(ν = 1, ζ ) = −0.471608 + 0.473483ζ − 0.444525ζ 2 + 0.278248ζ 3

− 0.0774493776897379ζ 4

+ 0.00878340297785316ζ 5 − 0.0003246026044364228ζ 6 + o(ζ 710−7).

(2.29)

The fact that the perturbative coefficients follow the factorial growth given by (1.8)
suggests that the complex bion must contribute in the semiclassical analysis. By using
the continuity in ζ , complex bion gives the contribution also for ζ ∈ N

+, which solves
the puzzle in QES literature as we discussed in Sect. 2.2. Furthermore, our detailed
computation on bi (ν, ζ ) gives the conjecture about the perturbative fluctuations around
the complex bion contribution.

2.4. Self-resurgence and the Dunne–Ünsal relation. By using Bender–Wu recur-
sion relations, we can derive a perturbative expansion for the energy eigenvalues
Epert.(ν, g, ζ ) as a function of coupling g, level number ν, and parameter ζ . For example,
up to fourth order in g, we obtain an expression

Epert.(ν, g, ζ ) = a0(ν, ζ ) + a1(ν, ζ ) g + a2(ν, ζ ) g2 + a3(ν, ζ ) g3 + a4(ν, ζ ) g4 +O(g5),
(2.30)

where

a0(ν, ζ ) = ν +
1

2
− ζ

2
,
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a1(ν, ζ ) = 1

8

(
2ζν + ζ − 2ν2 − 2ν − 1

)

a2(ν, ζ ) = 1

64

(
ζ 2(−(2ν + 1)) + ζ

(
6ν2 + 6ν + 3

)
− 2

(
2ν3 + 3ν2 + 3ν + 1

) )
,

a3(ν, ζ ) = 1

256

(
ζ 3(2ν + 1) − 6ζ 2

(
2ν2 + 2ν + 1

)
+ ζ

(
20ν3 + 30ν2 + 32ν + 11

)

− 2
(
5ν4 + 10ν3 + 16ν2 + 11ν + 3

) )
,

a4(ν, ζ ) = 1

4096

(
− 5ζ 4(2ν + 1) + 48ζ 3

(
2ν2 + 2ν + 1

)

− 2ζ 2
(
142ν3 + 213ν2 + 233ν + 81

)

+ 15ζ
(
22ν4 + 44ν3 + 74ν2 + 52ν + 15

)

− 2
(
66ν5 + 165ν4 + 370ν3 + 390ν2 + 225ν + 53

)
. (2.31)

As stated earlier, the traditional resurgence connects large-order growth around the
perturbative vacuum of perturbation theory to early terms around the instanton–anti-
instanton saddle. However, a new type of resurgence, which follows from exact quanti-
zation condition implemented via uniformWKB approach, offers a constructive version
of resurgence [9]. It is an early term–early term relation. The knowledge of perturbative
expansion around the perturbative saddle at order gn as a function of energy levels is
sufficient to deduce the fluctuations around the leading non-perturbative saddle at order
gn−1. The non-perturbative contribution to the energy for level ν is

En.p.
± (ν, g, ζ ) = [RB] + [CB]±

= − 1

2π

2

ν!
(g
8

)ζ−2ν−1
�(ζ − ν)((−1)ν + e±iπ(ζ−ν))e−Sb/gPfluc(ν, g, ζ )

(2.32)

where Pfluc(ν, g, ζ ) is the fluctuation operator around the real and complex saddle. We
remind the reader that, according to the result of [9,10] (see also [71]) in the case of
ζ = 0, the fluctuations around an instanton-saddle are completely determined from the
perturbative expansions around the trivial saddle. Inspired by this, we give a conjectured
form of the relation between Pfluc(ν, g, ζ ) of complex bion and the trivial perturbation
theory Epert.(ν, g, ζ )

Pfluc(ν, g, ζ ) = ∂Epert.

∂ν
exp

[
Sb

∫ g

0

dg

g2

(
∂Epert.

∂ν
− 1 +

2g(ν + 1
2 − ζ

2 )

Sb

)]
. (2.33)

How can we check this formula? One way is to show consistency with the exact
quantization condition, similar in spirit to the Zinn-Justin and Jentshura [65,72,73]. We
defer the discussion of exact quantization condition for ζ -deformed theories elsewhere.
Instead, from above expression we can identify the ζ -polynomials bi (ν, ζ ) by noting
that

Pfluc(ν, g, ζ ) = b0(ν, ζ ) + b1(ν, ζ )g + b2(ν, ζ )g2 + · · · , (2.34)

so that

b0(ν, ζ ) = 1,
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b1(ν, ζ ) = 1

8

(
− ζ 2 + ζ(6ν + 5) − 2ν(3ν + 5) − 5

)
,

b2(ν, ζ ) = 1

128

(
ζ 4 − 4ζ 3(3ν + 2) + ζ 2

(
48ν2 + 56ν + 15

)

− 2ζ
(
36ν3 + 60ν2 + 30ν − 1

)
+ 36ν4 + 80ν3 + 60ν2 − 4ν − 13

)
,

b3(ν, ζ ) = 1

3072

(
− ζ 6 + 9ζ 5(2ν + 1) − 2ζ 4

(
63ν2 + 51ν + 5

)

+ ζ 3
(
432ν3 + 432ν2 + 42ν − 51

)

− 2ζ 2
(
378ν4 + 444ν3 + 21ν2 − 165ν + 5

)

+ 3ζ
(
216ν5 + 300ν4 − 228ν2 + 70ν + 127

)

− 3
(
72ν6 + 120ν5 − 152ν3 + 70ν2 + 254ν + 119

) )
. (2.35)

Setting ν = 0 and 1, we can compare them with an estimate to these polynomials in
(2.28) and (2.29), respectively. Indeed the reader iswelcome to check that the coefficients
of (2.28) and (2.29) differ from the ones above by no more than 0.06%. This consistency
again strengthens the evidence that the complex bion gives a physical contribution for
the DSG system in the semiclassical analysis and justifies the Cheshire Cat resurgence.
For the ground state, set level number ν = 0 we obtain

b0(ν = 0, ζ )

∣∣∣∣
DÜ

= 1,

b1(ν = 0, ζ )

∣∣∣
DÜ

= 1

8

(
− 5 + 5ζ − ζ 2

)
,

b2(ν = 0, ζ )

∣∣∣
DÜ

= 1

128

(
− 13 + 2ζ + 15ζ 2 − 8ζ 3 + ζ 4

)
,

b3(ν = 0, ζ )

∣∣∣
DÜ

= 1

3072

(
− ζ 6 + 9ζ 5 − 10ζ 4 − 51ζ 3 − 10ζ 2 + 381ζ − 357

)
,

(2.36)

where we have explicitly indicated that the result was obtained from the Dunne–Ünsal
relation (2.33). This confirms, at least to the precision indicated above, that the formula
(2.33) holds.

Let us do the same with ν = 1. From the Dunne–Ünsal relation we have

b0(ν = 1, ζ )

∣∣∣
DÜ

= 1,

b1(ν = 1, ζ )

∣∣∣
DÜ

= 1

8

(
−ζ 2 + 11ζ − 21

)
,

b2(ν = 1, ζ )

∣∣∣
DÜ

= 1

128

(
ζ 4 − 20ζ 3 + 119ζ 2 − 250ζ + 159

)
,

b3(ν = 1, ζ )

∣∣∣
DÜ

= 1

3072

(
−ζ 6 + 27ζ 5 − 238ζ 4 + 855ζ 3 − 1366ζ 2 + 1455ζ − 1449

)
.

(2.37)

Comparing with (2.29) we find that the coefficients agree with the above formula to the
precision of no worse than 0.3% (most coefficients are below 0.06%).
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3. Resolving Puzzle 2: Tilted Double-Well

In this section, we present the resolution of Puzzle 2 of Sect. 1.5. The Tilted Double-
Well (TDW) is not a QES system, but the perturbation series converges both for the
wave function and energy eigenvalue. The wave function obtained in this manner is
non-normalizable, and therefore, it cannot be a non-perturbative solution. This is again
in contrast with the existing textbook semi-classical approach since the TDW potential
does not possess real non-perturbative saddles. In the case of TDW, the complex bions
come to rescue too and explain why all orders perturbative solution is not exact.

Let us repeat our analysis for the ζ -deformation of the double-well system to get
more insight on the connection of the perturbation theory and complex saddles. The
Hamiltonian takes the same form (1.5), where the auxiliary potential (or super-potential
for ζ = 1) is given by

W (x) = x3

3
− ω2x

4
, (3.1)

where ω is the natural frequency of the system. For simplicity, in the remainder of this
section we set ω = 1. We can always reinstate it by the following replacement x → ωx ,
g → g/ω3 and the energy eigenvalues E → ωE .

Further, the system also has a convergent perturbation series in powers of g for
ζ ∈ N

+. Moreover, the series sums to a finite, but incorrect (or rather incomplete)
result. We will derive this result analytically using techniques of QES. For generic ζ ,
perturbation theory is asymptotic.

Note that Sect. 3.1 should be considered as a reviewmaterial as it is already discussed
in literature in great depth [74,75]. Here, we briefly discuss it for completeness. The
relation of the fluctuations around the complex bion and perturbation theory around
the trivial saddle (the Dunne–Ünsal relation) and the self-resurgence properties of the
perturbation theory are new.

3.1. Pseudo-QES. Wewill now applyQES techniques to “solve” the TDWproblem.We
emphasize again, that this not a genuine solution to the full non-perturbative problem.
It provides the all-order perturbative solution correctly but lacks some non-perturbative
contributions.

We start, as usual, with an Ansatz

ψ(x) = u(x)eW (x)/g, (3.2)

motivated by the supersymmetric case ζ = 1. This is a non-normalizable solution to
Schrödinger equation, hence not a state in the Hilbert space. The equation for u(x) is
given by

−g

2
u′′(x) − u′(x)W ′(x) + 1

2
(ζ − 1)u(x)W ′′(x) = Eu(x). (3.3)

Plugging in W ′(x) = x2 − 1/4, we obtain the equation

−1

2
g u′′(x) +

(
1

4
− x2

)
u′(x) + x(ζ − 1) u(x) = Eu(x). (3.4)

Hence we define the reduced hamiltonian

ĥ = −g

2

d2

dx2
+

(
1

4
− x2

)
d

dx
+ x(ζ − 1). (3.5)
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The objective now is to find eigenvalues E of this differential operator.
Now, observe that the operators

J+ = 2 j x − x2
d

dx
, J− = d

dx
, J3 = x

d

dx
− j. (3.6)

obey the SU (2) algebra, which for 2 j ∈ N
0 leaves invariant the vector spaceH0 spanned

by the polynomials um = Nmx j+m for m = − j,− j + 1, . . . , j . Further, it takes little to
check that ĥ can be written as

ĥ = −g

2
J 2− +

(
1

2
J− + J+

)
+ (ζ − 1 − 2 j)x . (3.7)

Since 2 j ∈ N
0, then choosing ζ = 2 j + 1 allows us to eliminate the last term above,

and write hT entirely in terms of operators J±, J3. The ĥ operator acting on the SU (2)
invariant subspace spanned by polynomials um is therefore given by

ĥ = −g

2
J 2− + (J−/4 + J+), 2 j = ζ − 1. (3.8)

Let us now solve several specific cases.

3.1.1. ζ = 1, 2, 3, 4 perturbatively exact solutions. We considerH0 and ĥ for the cases
ζ = 1, 2, 3, 4.

ζ = 1 case (SUSY). If ζ = 1, then j = 0 and the only state in the invariant subspace is
u0 = const. The Hamiltonian action on H0 is

ĥ = 0 (3.9)

with eigenvalues and eigenfunctions

E(ν = 0) = 0. (3.10)

This is indeed the result of the SUSY system, as eW (x)/g solves the Schödinger equation
with energy zero. This state is not normalizable, hence, supersymmetry is broken dynam-
ically. Indeed, a non-perturbative ground state energy has the form En.p.

0 ∼ e−Sb/g .

ζ = 2 case. In this case we have to solve for eigenvalues of the matrix

ĥ =
(
0 1

4
1 0

)
(3.11)

which are simply

E(ν = 0) = −1

2
, E(ν = 1) = 1

2
. (3.12)
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Fig. 3. A plot of eigenvalues E(ν = {0, 1, 2}, g) for ζ = 3 as a function of coupling g. The solid lines
represent the real part of the all orders in perturbation theory result (3.14), while the dashed lines represent
the numerical solution to the Schrödinger equation. Notice that E(ν = 1, g) and E(ν = 2, g) in (3.14) collide
and turn into complex conjugate pairs when g = 1

3
√
3

ζ = 3 case. Now the matrix becomes

ĥ =
⎛
⎜⎝

0 1
2
√
2

−g√
2 0 1

2
√
2

0
√
2 0

⎞
⎟⎠ (3.13)

with eigenvalues

E(ν = 0, g) = − 2√
3
cos

[
1

3
arccos

[
3
√
3g

]]
(3.14a)

E(ν = 1, g) = 2√
3
sin

[
1

3
arcsin

[
3
√
3g

]]
(3.14b)

E(ν = 2, g) = 2√
3
cos

[
1

3
arccos

[
−3

√
3g

]]
. (3.14c)

The plot of the real part of E(ν = {0, 1, 2}, g) is given in Fig. 3, alongwith the numerical
solution of the Schrödinger equation. Notice that while the ground state is described
extremely well by the all-orders perturbative result,13 E(ν = 1, g) starts deviating
significantly already at the coupling g ≈ 0.1, while E(ν = 2, g) shows a drastic
deviation already at g ≈ 0.05. Further, when g = 1

3
√
3
, the two pseudo-eigenvalues

E(ν = 1, g), E(ν = 2, g) merge and for g > 1
3
√
3
they become complex and turn

into each other’s complex conjugate pairs. This of course cannot happen for actual
eigenvalues of the Schrödinger equation.

13 It can be shown that the difference is in precise agreement with a complex bion for small g.
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Fig. 4. A plot of perturbative eigenvalues (solid line) and the numerical solutions (dashed line) for the states
E(ν = {0, 1, 2, 3}, g) for ζ = 4 as a function of coupling g which are solutions of (3.16). Notice that while
E(ν = {0, 1}, g) agree quite well (up to non-perturbative corrections), the perturbative values of E(ν = 2, g)
and E(ν = 3, g) merge at some value of g and turn into complex conjugate pairs

ζ = 4 case. The ĥ matrix is given by

ĥ =

⎛
⎜⎜⎜⎝

0
√
3
4 −√

3g 0√
3 0 1

2 −√
3g

0 2 0
√
3
4

0 0
√
3 0

⎞
⎟⎟⎟⎠ (3.15)

with the characteristic equation

(
E2 − 1

4

) (
E2 − 9

4

)
= −12gE . (3.16)

The form of the solutions is not particularly illuminating. We show in Fig. 4 a plot of the
eigenvalues E(ν = {0, 1, 2, 3}, g) which are the solution of the above equations, along
with the numerical solution of the Schrödinger equation.

Large ζ case and an unsolved puzzle. We found it amusing to also discuss briefly a case
where ζ is large. Although solutions to the algebraic equation ĥ u = E u do not have a
nice closed form, they can nevertheless be easily plotted. In Fig. 5 we plot perturbative
eigenvalues for three values of ζ = 10, 15, 20. Notice that in all cases the top lying states
merge into complex-conjugate pairs at some value of the coupling g. It is an interesting
question of how and whether these complex parts can be cured by the non-perturbative
contributions. Recall that the perturbation theory in all of these cases has a perfectly finite
radius of convergence. Further, these imaginary parts are completely unambiguous. We
suspect that non-perturbative contributions must somehow contribute a multi-valued
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Fig. 5. A plot of first ζ eigenvalues to all order of perturbation theory for ζ = 10, 15, 20 (left to right)

result with an imaginary part, possibly as a result of a complete resummation of multi-
instantons, in order to cancel this pathology. At this moment, however, we do not know
if this is true and present this as an open problem.

3.2. Complex saddles and the role of the hidden topological angle. The non-
normalizable states (3.2) provides a pseudo-QES system for which all orders pertur-
bative results are obtained. But due to non-normalizibility, these states are not a part of
the Hilbert space, and all orders perturbative results cannot be correct.

This is puzzling from a semi-classical point of view. Presumably, the all order pertur-
bative result arises from the perturbative saddle, but there are no real non-perturbative
saddles that can contribute to the path integral for the lowest ζ -states. In the inverted
potential, −V (x) = − 1

2 (W
′(x)2 + ζgW ′′(x)), a classical particle starting at the higher

hill-top will over shoot the lower hill top and fly of to infinity. Thus, the action of such
saddles is infinite and cannot contribute to semi-classical expansion of path integral. As
discussed in depth in [15], the resolution of this puzzle is again given by complex bions.

The complex bion contribution to the energy for level ν is given by (setting A = 1
in (1.11), note that Sb = 1/3), one finds

En.p.
± (ν, g, ζ )

= [CB]± = − 1

2π

1

ν!
( g

2

)ζ−2ν−1
�(ζ − ν)e±iπ(ζ−ν)e−Sb/g (b0(ν, ζ ) + b1(ν, ζ ) g + · · · ) ,

(3.17)

implying an imaginary ambiguous parts of the complex bion amplitude of the form,

Im En.p.
± (ν, g, ζ ) = ∓1

2

1

ν!
(g
2

)ζ−2ν−1 1

�(1+ν−ζ )
e−Sb/g (b0(ν, ζ ) + b1(ν, ζ ) g + · · · ) .

(3.18)

Few comments are in order:

• For generic ζ , the contribution of the complex bion is two-fold ambiguous. This
ambiguity cancels against the ambiguity in the Borel resummation of perturbation
theory. If ζ ∈ N

+, the ambiguity vanishes for first ζ states.
• ζ -odd: For level ν = 0, 2, . . . , ζ −1, the complex bion increases the energy thanks to

the hidden topological angle θHTA = π . For levels ν = 1, 3, . . . , ζ − 2, the complex
bion reduces the energy. The existence of these complex saddle gives non-perturbative
contributions and is the reason that these states are not exactly solvable.
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• ζ -even: For levels ν = 0, 2, . . . , ζ − 1, the complex bion reduces the energy. For
level ν = 1, 3, . . . , ζ − 2, the complex bion increases the energy compared to all
order perturbative result.

Although we do not report here the details, all predictions arising from complex bions
are realized in numerical solutions. In particular, the deficit of all orders convergent
perturbative result and the numerical solution is matched to a very high accuracy by the
complex bion contribution at weak coupling.

3.3. Bender–Wu method for the ζ -deformed theory. The application of the Bender–Wu
method to TDW system was performed using the BenderWuMathematica package of
[58]. Results are tabulated in Table 2a–c for ζ = 1, 2, 3 for the lowest lying four levels
ν = 0, 1, 2, 3 in Appendix B. Further using the BenderWu package we are able to
construct the series as an analytic function of ζ .

The main conclusion of these analysis are

• For positive integer ζ , Bender–Wu approach yields a convergent perturbation theory
for level number ν = 0, 1, . . . , ζ − 1. The summation of perturbation theory gives
precisely the same result as in the pseudo-QES approach. These are all orders per-
turbative solutions to a non-perturbative problem. Unlike DSG, this is an incorrect,
or rather incomplete, result. There exists non-perturbative corrections that arise from
complex bion saddles. For higher states, Bender–Wu approach yields an asymptotic
expansion.

• For generic ζ , Bender–Wu approach yields an asymptotic perturbation theory, which
can be viewed as the leading part of the resurgent trans-series.

3.3.1. All orders perturbation theory. The TDW system with integer ζ shows two types
of behavior in perturbation theory. For the level numbers ν = 0, 1, . . . , ζ − 1 the
perturbation series is convergent, and it is asymptotic otherwise. Recall that we observed
a similar behavior in the DSG system, where the perturbation theory summed to an
exact result at an appropriate θ angle. We will see, however, that the perturbation theory,
although having a finite radius of convergence, gives an incorrect, or rather incomplete,
result. In fact, we will show that the perturbation theory result is obtained exactly (i.e. to
all orders) from an ansatz in thewave-function P(x)eW (x)/g , where P(x) is a polynomial
of order ζ −1. Such an result is clearly non-normalizable,14 and is therefore inadmissible
as a solution.

This is in contrast to the exactly solvable states of the DSG example in which the
real bion cancels exactly the complex bion contribution, and convergent perturbation
theory yields exact results. In the present case, there are no real bion contributions to
cancel the complex bion contributions. For the ground state ν = 0, at leading order, the
non-perturbative contribution of the complex bion is given by

En.p. = −gζ−1

2ζ π
�(ζ )e±iπζ e−Sb/g + · · · . (3.19)

14 As we discussed, it is most convenient to build the perturbation theory in the canonical normalization, in
which replaces x → √

gx . The wave-function ψ ∝ eW (
√
gx)/g is then easily seen to be normalizable to any

finite order in perturbation theory by expanding it around the global minimum x = −a/
√
g . In other words

the perturbation theory is oblivious to the global boundary conditions.
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If ζ is an odd integer, ζ = 1, 3, 5, . . ., the contribution of the complex bion is positive.
Note that ζ = 1 case is supersymmetric. For the present potential, supersymmetry is
dynamically broken, and ground state energy is positive. In the bosonized language of
the supersymmetric theory, the positivity of the ground state energy is due to the fact
that the hidden topological angle is θHTA = π .

For ζ = 1, of course, perturbation theory is convergent and gives zero energy
ground-state energy to all orders of perturbation theory. The perturbation theory for
the wave function is convergent and upon summation, produces ψ ∝ eW (

√
gx)/g , the

non-normalizable (perturbative) solution to the Schrödinger equation.
For ζ = 2 the perturbation theory is again rather trivial for the first two levels ν = 0, 1,

giving
E(ν = 0) = −a, E(ν = 1) = +a, a = 1

2 . (3.20)

The reason for this is, as was pointed out in [76,77], that the system can be related to two
supersymmetric systems with the substitution W̃ ′(x) = W ′(x)− 1

x±a . The ground states
of these SUSY systems correspond to the ground state and the first excited state of the
ζ = 2 tilted double well, and their perturbation theory is protected by supersymmetry.15

For ζ = 3, perturbation theory is convergent, but does not truncate. For the lowest
lying three states, few terms in the perturbative expansion and their sum gives:

Epert.(ν = 0, g) = −1 − g +
3g2

2
− 4g3 +

105g4

8
− 48g5 +

3003g6

16

−768g7 +
415701g8

128
− 14080g9 + O

(
g10

)

= − 2√
3
cos

(
1

3
arccos

(
3
√
3g

))
,

Epert.(ν = 1, g) = 0 + 2g + 8g3 + 96g5 + 1536g7 + 28160g9 + 559104g11 + O
(
g12

)

= 2√
3
sin

(
1

3
arcsin

(
3
√
3g

))
,

Epert.(ν = 2, g) = +1 − g − 3g2

2
− 4g3 − 105g4

8
− 48g5 − 3003g6

16

−768g7 − 415701g8

128
− 14080g9 − O

(
g10

)

= 2√
3
cos

(
1

3
arccos

(
−3

√
3g

))
. (3.21)

The perturbation theory has a finite radius of convergence for these three lowest lying
states. The radius of convergence is

g ≤ gc = 1

3
√
3
. (3.22)

Recall that gc is a branch point of arcsin
(
3
√
3g

)
and arccos

(
3
√
3g

)
.

15 Note that the map W̃ ′(x) = W̃ ′(x) − 1
x±a is singular at either x = −a or at x = +a. Because of this

the map disallows decomposition of the Hamiltonian into a product of two operators on the entire square-
integrable Hilbert space. However insofar that the analysis is local around x = ±a, this does not matter for
the perturbation theory.
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Note that for g < gc, all these three solutions are real. At g = 0 these solutions start
at −1, 0, 1. Perturbative eigenvalue spectrum changes as a function of g for g < gc,
but at g = gc, two real higher eigenvalues collide and move to the complex plane, with
real and imaginary parts. This perturbative conclusion is obviously incorrect, but it is
not currently clear what is the mechanism which turns these complex eigenvalues of the
convergent perturbation theory and QES solution into real ones.

Unlike the text-book examples of saddles such as instantons, in which, instantons
lead to level splitting of otherwise degenerate levels, in the present case, the complex
bions lead to either up or down shift of the energy compared to all order perturbative
result. It is still meaningful to include non-perturbative contribution, because all orders
perturbative result is known exactly.

3.3.2. Self-resurgence and theDunne–Ünsal relation. Performing the Bender–Wu anal-
ysis via the Mathematica package BendeWu, we can find the sub-leading corrections
to the leading factorial growth. For level ν, we have:

an(ν, ζ ) = 1

2π

1

(2)ζ−2ν−1

1

�(1 + ν − ζ )

(n + 2ν − ζ )!
(Sb)n−ζ+1

×
[
b0(ν, ζ ) +

Sb b1(ν, ζ )

n − ζ + 2ν
+

S2b b2(ν, ζ )

(n − ζ + 2ν)(n − ζ + 2ν − 1)
+ · · ·

]
.

(3.23)

b0 = 1 and where the pre-factor is constrained by demanding that the Borel sum ambi-
guity of the leading asymptotic growth of the perturbation series is exactly cancelled by
the complex bion contribution to the ground state energy.

Further, by using theBenderWu package [58]we can obtain a perturbative expansion
for the energy eigenvalues as a function of coupling g, level number ν, and parameter
ζ . For example, up to fourth order in g, we obtain an expression

Epert(ν, g, ζ ) = a0(ν, ζ ) + a1(ν, ζ ) g + a2(ν, ζ ) g2 + a3(ν, ζ ) g3 + a4(ν, ζ ) g4 +O(g5),
(3.24)

where

a0(ν, ζ ) = ν +
1

2
− ζ

2
,

a1(ν, ζ ) = 1

2

(
−ζ 2 + 6ζν + 3ζ − 6ν2 − 6ν − 2

)
,

a2(ν, ζ ) = 1

4

(
4ζ 3 − 21ζ 2(2ν + 1) + ζ

(
102ν2 + 102ν + 35

)

− 2
(
34ν3 + 51ν2 + 35ν + 9

) )

a3(ν, ζ ) = 1

4

(
− 16ζ 4 + 123ζ 3(2ν + 1) − 2ζ 2

(
498ν2 + 498ν + 173

)

+ 3ζ
(
500ν3 + 750ν2 + 528ν + 139

)

− 2
(
375ν4 + 750ν3 + 792ν2 + 417ν + 89

) )
,
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a4(ν, ζ ) = 1

16

(
336ζ 5 − 3453ζ 4(2ν + 1) + 8ζ 3

(
5010ν2 + 5010ν + 1753

)

− 6ζ 2
(
16330ν3 + 24495ν2 + 17483ν + 4659

)

+ ζ
(
106890ν4 + 213780ν3 + 230550ν2 + 123660ν + 27073

)

− 2
(
21378ν5 + 53445ν4 + 76850ν3 + 61830ν2 + 27073ν + 5013

) )
.

(3.25)

Using the Dunne–Ünsal relation, the knowledge of perturbative expansion around
the perturbative saddle at order gn is sufficient to deduce the fluctuations around the
leading non-perturbative saddle at order gn−1. The leading non-perturbative saddle is
the complex bion. The non-perturbative contribution to the energy for level ν is given
by

En.p.
± (ν, g, ζ ) = [CB]± = − 1

2π

1

ν!
(g
2

)ζ−2ν−1
�(ζ − ν)e±iπ(ζ−ν)e−Sb/gPfluc(ν, g, ζ )

(3.26)

wherePfluc(ν, g, ζ ) is the fluctuation operator around the complex bion saddle. Accord-
ing to the result of [9,10] (see also [71]), Pfluc(ν, g, ζ ) is completely dictated by
Epert.(ν, g, ζ ) in a constructive way.

Pfluc(ν, g, ζ ) = ∂Epert.

∂ν
exp

[
Sb

∫ g

0

dg

g2

(
∂Epert.

∂ν
− 1 +

2g(ν + 1
2 − ζ

2 )

Sb

)]

= b0(ν, ζ ) + b1(ν, ζ ) g + b2(ν, ζ ) g2 + b3(ν, ζ ) g3 + . . . , (3.27)

where

b0(ν, ζ ) = 1,

b1(ν, ζ ) = 1

6

(
−21ζ 2 + 3ζ(34ν + 23) − 6ν(17ν + 23) − 53

)
,

b2(ν, ζ ) = 1

72

(
441ζ 4 − 36ζ 3(119ν + 60) + 3ζ 2

(
4896ν2 + 4632ν + 973

)

− 6ζ
(
3468ν3 + 4788ν2 + 1898ν + 13

)
+ 10404ν4 + 19152ν3

+ 11388ν2 + 156ν − 1277
)
,

b3(ν, ζ ) = 1

1296

(
− 9261ζ 6 + 567ζ 5(238ν + 79) − 162ζ 4

(
4879ν2 + 2883ν + 143

)

+ 27ζ 3
(
87856ν3 + 70704ν2 + 4014ν − 4929

)

− 18ζ 2
(
213282ν4 + 214524ν3 + 7605ν2 − 45093ν − 1465

)

+ 9ζ
(
353736ν5 + 431460ν4 + 6336ν3 − 181836ν2 + 5794ν + 45941

)

− 1061208ν6 − 1553256ν5 − 28512ν4 + 1091016ν3

− 52146ν2 − 826938ν − 336437
)
. (3.28)
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Setting level number ν = 0, 1, one obtains for the fluctuations around the complex bion
event contribution to the ground state and first excited state energies as

bν=0
0 (ζ ) = 1

bν=0
1 (ζ ) = 1

6

(
−53 + 69ζ − 21ζ 2

)

bν=0
2 (ζ ) = 1

72

(
− 1277 − 78ζ + 2919ζ 2 − 2160ζ 3 + 441ζ 4

)
,

bν=0
3 (ζ ) = 1

1296

(
−9261ζ 6 + 44793ζ 5 − 23166ζ 4 − 133083ζ 3

+26370ζ 2 + 413469ζ − 336437
)

(3.29)

and

bν=1
0 (ζ ) = 1

bν=1
1 (ζ ) = 1

6

(
−21ζ 2 + 171ζ − 293

)

bν=1
2 (ζ ) = 1

72

(
441ζ 4 − 6444ζ 3 + 31503ζ 2 − 61002ζ + 39823

)
,

bν=1
3 (ζ ) = 1

1296

(
−9261ζ 6 + 179739ζ 5 − 1280610ζ 4

+4256415ζ 3 − 6999354ζ 2 + 5952879ζ − 2767481
)

. (3.30)

On the other hand, we can find these coefficients b1, b2, b3, . . . approximately from
the explicit calculation of the perturbation theory via the procedure described in Sect.
2.3.2. We get for ν = 0

b1(ν = 0, ζ ) = − 8.833333332924 + 11.49999999835448ζ

− 3.499999997041193ζ 2 + o(10−9ζ 3),

b2(ν = 0, ζ ) = − 17.736112193 − 1.0833289712ζ + 40.5416588043985ζ 2

− 29.99999157670543ζ 3 + 6.12499401506749ζ 4 + o(10−6ζ 5),

b3(ν = 0, ζ ) = − 259.595 + 319.03ζ + 20.3565ζ 2 − 102.697ζ 3

− 17.8679ζ 4 + 34.559ζ 5

− 7.14458ζ 6 + o(10−4ζ 7), (3.31)

and for ν = 1

b1(ν = 1, ζ ) = −48.833333096294 + 28.49999939463613ζ

−3.499999304322683ζ 2 + o(10−7ζ 3),

b2(ν = 1, ζ ) = 553.096586547 − 847.2483729877ζ + 437.5397921020106ζ 2

−89.4987081484367ζ 3 + 6.12440133941877ζ 4 + o(10−4ζ 5),

b3(ν = 1, ζ ) = −2134.65+4591.34ζ −5398.5ζ 2 + 3282.73ζ 3 − 987.407646031719ζ 4

+138.4467901243447ζ 5 − 7.08375962476414ζ 6 + o(10−2ζ 7).

(3.32)



Cheshire Cat Resurgence, Self-Resurgence and Quasi-Exact Solvable Systems 869

The reader is welcome to check that (3.31) and (3.32) are numerically consistent with
(3.29) at ν = 0 and with (3.30) at ν = 1 within the relative error 0.05% and 0.8%,
respectively.

4. Connection to Quantum Field Theory

Before conclusions we take an opportunity to comment on the potential significance of
these systems and one of our motivation in studying them.

On the one hand, these quantum mechanical systems are helping us establish the
rules of an all orders semi-classical expansion (i.e. exact semi-classics). On the other
hand, these systems have remarkable similarities with some quantum field theories, in
particular, to gauge theories [66] and non-linear sigma models16 [19] with matter fields.

In the present context, ζ ∈ (−n f ,−n f + 1, . . . , n f )-deformed theories arise as
the sectors of a multi-flavor theory with one bosonic position field x(t) and multiple
Grassmann valued-fields ψ I (t) where I = 1, . . . n f . For n f = 1, this theory is super-
symmetric for the appropriate choice of couplings. We can do a similar construction in
gauge theories and sigma models. First, we can promote a bosonic theory into a super-
symmetric one by adding aGrassmann valued quantumfieldwith the right gauge, global,
Lorentz quantum numbers and interactions. Then, we can replicate the fermionic sector
and obtain the multi-flavor version. This procedure is sketched in Quantum Mechanics
as well as in the Yang–Mills and CPN−1 theories below.

Bosonic SUSY multi-flavor generalization

QM : x(t) −→ (x(t), ψ(t)) −→ (x(t), ψ I (t)), I = 1, . . . , n f

Yang Mills : Aμ −→ (Aμ,ψα) −→ (Aμ,ψ I
α), I = 1, . . . , n f

CPN−1 : zi −→ (zi , ψi ) −→ (zi , ψ I
i ), I = 1, . . . , n f

There is currently building up evidence that this class of “replica theories” has some
number of very special properties, similar to supersymmetric ones.

• Consider the twisted (or graded) partition function

Z̃(L) = tr e−HL(−1)F , (4.1)

where F is a fermion number. In supersymmetric theories, this is the supersymmetric
Witten index [61]. It is an invariant quantity independent of L . In our multi-flavor
QM systemwith odd number of n f , Z̃(L) = 0 either for the supersymmetric theories
with n f = 1, as well as non-supersymmetric theories with n f = 3, 5, 7, . . ..17 This
vanishing of course implies an exact spectral cancellation over the whole spectrum.18

In similarly constructed QFT, in particular, in QCD(adj), at large-N limit, Z̃(L)

satisfies volume independence, namely

∂ Z̃(L)

∂L

∣∣∣
N=∞ = 0. (4.2)

16 For an explanation of this connection and proof of volume independence in the CPN−1 model see [78].
17 Vanishing index for the supersymmetric case either imply absence of supersymmetric ground states or

Bose–Fermi paired supersymmetric ground states. Our TDW is an example of the former and DSG is an
example of the latter.
18 For DW, IW = 0 = 0 − 0 because there is neither bosonic nor fermionic supersymmetric ground states,

and in the SG, IW = 0 = 1 − 1 because there is a Bose–Fermi paired set of ground states. In both cases, the
non-zero spectrum exhibits spectral cancellation.
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In particular, there are no phase transitions as a function of L . In supersymmetric
theory, it is known that this is due to the exact spectral cancellations (modulo ground
states for N = 1 SYM, which gives the index IW = Z̃(L) = N ), a consequence
of supersymmetry. In the non-supersymmetric theories, especially, the absence of
the confinement/deconfinement phase transition [66] is extremely intriguing, and
points to spectral cancellation even in non-supersymmetric theories with a poten-
tially emergent fermionic symmetry at large-N .19 To see this, note that if the factor
(−1)F is dropped, the system has a thermal interpretation and undergoes a confine-
ment/deconfinement transition at some L = Lc due to the Hagedorn growth of the
density of states of the large-N theory. The lack of Hagedorn instability implies
that there must exist an extremely good spectral cancellation between bosonic and
fermionic sectors, pointing to an emergent fermionic symmetry in the large-N limit
[67,79,80]. In this sense, our multi-flavor QM systems may form prototype for much
more complicated QFTs, such as QCD(adj) and two dimensional sigma models with
multi-fermions.

• In multi-flavor theories, there also exist real and complex bions, correlated instanton-
anti-instanton pairs. In QCD(adj), the hidden topological angle associated with the
complex bion is θHTA = (4n f − 3)π , [30], In particular, θHTA is quantized for
integer values of the number of flavors. This implies, as shown in [30], that the
non-perturbative contributions to the gluon condensate (and by trace anomaly to the
vacuum energy) that arise from neutral and magnetic bions interfere with each other
and their total contribution vanishes. This is an identical mechanism to that described
by (2.23),where cancellation between the real and complex bion takes place. This also
suggest that perturbation theory forQCD(adj)may have a finite radius of convergence
for some special set of states. Further, analogous multi-flavor CPN−1 systems show
similar behavior [19].

• More concretely, the DSG quantum mechanics is related to certain twisted compact-
ification of two dimensional sigma models, and is connected to them via adiabatic
continuity. In particular, it appears as the low energy limit of the two dimensional
SU (2) principle chiral model and O(3) model with fermions on a small circle limit
[14,19]. For the n f = 1 flavor SUSY theory, the cancellation between the real and
complex bion correspond to the vanishing of the spin wave condensate in the field
theory. This quantummechanics also corresponds to the low energy limit of the circle
compactified η-deformed principle chiral model for a special choice of parameters
[52].

We interpret the existence of both real and complex non-BPS saddles, the quantiza-
tion of hidden topological angles, and the exact spectral cancellation as useful analogs
between the quantum mechanical systems we study and the QFTs with the structure
given above. While the situation in quantum field theories in general is undoubtedly
much more subtle, it is useful to keep in mind the similarities between these two cases,
and investigate it further.

5. Conclusion and Outlook

This work is a step towards exact semi-classical treatment of path integral, and reveals
surprising resurgent relations between the perturbation theory around the perturbative

19 The existence of an emergent fermionic symmetry is not ruled out byColeman–Mandula theorem, because
N = ∞ is free in terms of hadrons, and has trivial S-matrix.
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vacuum and around non-perturbative complex saddles. We were able to treat a class of
theories parametrized by ζ in a unified manner, where ζ = 0 is the bosonic, ζ = 1
is supersymmetric, ζ = 2, 3, . . . are either QES or pseudo-QES, and generic values
of ζ ∈ R are also equally interesting. Using the Bender–Wu method, we computed
the perturbative coefficient of these theories as a function of ζ and the level number ν.
By computing the perturbative coefficients explicitly we checked that the large-order
asymptotic growth of the perturbation theory is correctly described by the early terms of
the perturbative fluctuations around the complex-bion saddle via traditional resurgence,
a late-term early-term correspondence.

For both systems we study, whenever ζ ∈ N
+ the factorial growth of the perturbation

theory vanishes for the first ζ states. Using the technique of QES, we analytically show
that this perturbation theory for the first ζ states converges. This all-order perturbative
solutiongives an exact solution if it satisfies the correct boundary condition, but otherwise
suffers from non-perturbative corrections.

There was a long-standing puzzle in the QES literature about this subtlety: the pertur-
bative solution gives an exact solution while there exists a real non-perturbative classical
solution that we call a real bion, in one case, and the non-perturbative correction exists
while a real bion is absent in the another case.

By analyticity in ζ we conclude that the effect of the complex contribution, called the
complex bion, is present for ζ ∈ N

+ without any imaginary ambiguities, a phenomenon
whichwe call theCheshireCat resurgence.Wefind that contributions of real and complex
bions must be canceled in order for the convergent perturbative to give an exact answer.
This emphasizes the importance of complex bions in the semiclassical analysis.

We also consider the unconventional type of resurgent relation—the self-resurgence.
In the double sine-Gordon and titled double-well cases, early terms of the expansion
around the perturbative saddle give sufficient information about early terms of the expan-
sion around complex bions via the Dunne–Ünsal relation. By exploiting the traditional
resurgence, this means that early terms of the perturbative series know about the late
terms of the same series: i.e. the perturbative expansion is self-resurgent. We checked
the self-resurgent property by explicitly computing the perturbative series, and found it
to be in agreement with the Dunne–Ünsal relation.

It is an important future study to understand the effect of complex bions in the semi-
classical analysis from the viewpoint of the path integral expression. Application of
the Picard–Lefschetz theory to the (UV and IR regularized) path integral gathers much
attention for numerical study of lattice field theories in order to tame the sign prob-
lem [81–84]. If the classical action takes complex values, then there exist situations
where interference of multiple complex classical solutions are important for physical
observables [85–95], which remind us of the interference between real and complex
bions. However, the models in this study do not have the sign problem since the clas-
sical action is a real functional at least when the coupling is physical.20 This poses an
interesting question on how we can understand the contribution of complex bions with
nonzero HTA based on the Lefschetz-thimble decomposition of path integral. Quite pos-
sibly, some conditions on the standard Lefschetz-thimble approached must be relaxed
to accommodate the complex bion contribution to path integral.

Finally, as we have already explained in Sect. 4, quantum mechanics studied in this
paper has similarities with multi-flavor QCD with adjoint fermions, and some nonlinear

20 A sign problem does exist in the formulation of (1.2), as the “Dirac operator” determinant is not positive
definite. The study of this systems however can be reduced to the study of the ζ -deformed systems with
ζ = −n f /2, . . . , n f /2, all of which do not posses the sign problem.
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sigma models with fermions. These theories possess some interesting properties to the
supersymmetric field theories, much like our ζ = 3, 5, . . . theories possessing most
of the properties of the ζ = 1 supersymmetric theory. By comparing properties of the
hidden topological angle, we can speculate that magnetic and neutral bions in QCD(adj)
correspond to real and complex bions in quantum mechanics. It is an interesting topic to
understand the non-perturbative dynamics of gauge theories by discussing constructive
or destructive interference of real and complex bions [96]. It is also a great task to explain
the relation between generic asymptotic nature of the perturbation theory, quantization
of the hidden topological angle, and potentially, convergent perturbation theory for a
subset of states in quantum field theories [14,21,97].
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A. Tables for Perturbative Coefficients

We here show tables of perturbative coefficients of the DSG and TDW systems at ζ = 1,
2, and 3.

Table 1. Tables of perturbative coefficients of the DSG system at ζ = 1, 2, and 3

ν = 0 ν = 1 ν = 2 ν = 3

(a) DSG ζ = 1
1 0 1 2 3

g 0 − 1

4
−1 − 9

4
g2 0 − 3

32
− 9

16
− 57

32

g3 0 − 3

32
− 27

32
− 117

32

g4 0 − 273

2048
− 1809

1024
− 21027

2048

g5 0 − 15

64
− 2295

512
− 2205

64

g6 0 − 31443

65536
− 425169

32768
− 8546937

65536

g7 0 − 18141

16384
− 339957

8192
− 8846739

16384

g8 0 − 23700837

8388608
− 603458181

4194304
− 20134192143

8388608

g9 0 − 4126773

524288
− 70008543

131072
− 5933126187

524288

g10 0 − 6370376181

268435456
− 282618414063

134217728
− 15066484101519

268435456
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Table 1. Continued

ν = 0 ν = 1 ν = 2 ν = 3

(b) DSG ζ = 2

1 − 1

2

1

2

3

2

5

2

g
1

8

1

8
− 3

8
− 11

8

g2 0 0 − 3

16
− 15

16

g3 0 0 − 15

64
− 105

64

g4 0 0 − 417

1024
− 4065

1024

g5 0 0 − 3525

4096
− 47355

4096

g6 0 0 − 68433

32768
− 1251345

32768

g7 0 0 − 739695

131072
− 18168465

131072

g8 0 0 − 69923685

4194304
− 2275665765

4194304

g9 0 0 − 892497165

16777216
− 37956199155

16777216

g10 0 0 − 24410041071

134217728
− 1337756678895

134217728
(c) DSG ζ = 3
1 −1 0 1 2

g
1

4

1

2

1

4
− 1

2

g2 − 1

32
0

1

32
− 5

16

g3 0 0 0 − 15

32

g4
1

2048
0 − 1

2048
− 985

1024

g5 0 0 0 − 1215

512

g6 − 1

65536
0

1

65536
− 218165

32768

g7 0 0 0 − 168945

8192

g8
5

8388608
0 − 5

8388608
− 290599445

4194304

g9 0 0 0 − 32709615

131072

g10 − 7

268435456
0

7

268435456
− 128334137795

134217728
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Table 2. Tables of perturbative coefficients of the TDW system at ζ = 1, 2, and 3

ν = 0 ν = 1 ν = 2

(a) TDW ζ = 1
1 0 1 2

g 0 −3 −12

g2 0 − 39

2
−141

g3 0 −270 −3330

g4 0 − 41433

8
− 418953

4
g5 0 −121104 −3895866

g6 0 − 52149999

16
− 1300600941

8
g7 0 −97888095 −7397575110

g8 0 − 412171252725

128
− 23088242197365

64

g9 0 − 229284886527

2
−18643301573274

g10 0 − 1121697677785665

256
− 129681560992818075

128
(b) TDW ζ = 2

1 − 1

2

1

2

3

2
g 0 0 −6

g2 0 0 −51

g3 0 0 −909

g4 0 0 − 88545

4

g5 0 0 − 2595087

4

g6 0 0 − 172957281

8

g7 0 0 − 6355598589

8

g8 0 0 − 2022705878757

64

g9 0 0 − 86088409115175

64

g10 0 0 − 7777562767529055

128

ν = 0 ν = 1 ν = 2 ν = 3

(c) TDW ζ = 3
1 −1 0 1 2

g −1 2 −1 −10

g2
3

2
0 − 3

2
−105

g3 −4 8 −4 −2290

g4
105

8
0 − 105

8
− 270705

4
g5 −48 96 −48 −2388810
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Table 2. Continued

ν = 0 ν = 1 ν = 2 ν = 3

g6
3003

16
0 − 3003

16
− 761448465

8
g7 −768 1536 −768 −4152537390

g8
415701

128
0 − 415701

128
− 12464873944005

64
g9 −14080 28160 −14080 −9704850553210

g10
15935205

256
0 − 15935205

256
− 65234638372161615

128
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