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Abstract: Kinetically constrained models (KCM) are reversible interacting particle
systems onZd with continuous timeMarkov dynamics of Glauber type, which represent
a natural stochastic (and non-monotone) counterpart of the family of cellular automata
known as U-bootstrap percolation. KCM also display some of the peculiar features of
the so-called “glassy dynamics”, and as such they are extensively used in the physics
literature to model the liquid-glass transition, a major and longstanding open problem
in condensed matter physics. We consider two-dimensional KCM with update rule U ,
and focus on proving universality results for the mean infection time of the origin, in
the same spirit as those recently established in the setting of U-bootstrap percolation.
We first identify what we believe are the correct universality classes, which turn out
to be different from those of U-bootstrap percolation. We then prove universal upper
bounds on the mean infection time within each class, which we conjecture to be sharp
up to logarithmic corrections. In certain cases, including all supercritical models, and
the well-known Duarte model, our conjecture has recently been confirmed in Marêché
et al. (Exact asymptotics for Duarte and supercritical rooted kinetically constrained
models). In fact, in these cases our upper bound is sharp up to a constant factor in
the exponent. For certain classes of update rules, it turns out that the infection time of
the KCM diverges much faster than for the corresponding U-bootstrap process when the
equilibrium density of infected sites goes to zero. This is due to the occurrence of energy
barriers which determine the dominant behaviour for KCM, but which do not matter for
the monotone bootstrap dynamics.
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1. Introduction

Kinetically constrained models (KCM) are interacting particle systems on the integer
lattice Z

d , which were introduced in the physics literature in the 1980s in order to
model the liquid-glass transition (see e.g. [22,31] for reviews), a major and still largely
open problem in condensed matter physics. The main motivation for the ongoing (and
extremely active) research on KCM is that, despite their simplicity, they feature some
of the main signatures of a super-cooled liquid near the glass transition point.

A generic KCM is a continuous-time Markov process of Glauber type defined as
follows. A configuration ω is defined by assigning to each site x ∈ Z

d an occupation
variable ωx ∈ {0, 1}, corresponding to an empty or occupied site respectively. Each site
waits an independent,mean one, exponential time and then, iff a certain local constraint is
satisfied by the current configurationω, its occupation variable is updated to be occupied
with rate p and to emptywith rateq = 1−p. All the constraints that have been considered
in the physics literature belong to the following general class [10].

Fix an update family U = {X1, . . . , Xm}, that is, a finite collection of finite subsets
of Zd\{0}. Then ω satisfies the constraint at site x if there exists X ∈ U such that
ωy = 0 for all y ∈ X + x . Since each update set belongs to Z

d\{0}, the constraints
never depend on the state of the to-be-updated site. As a consequence, the product
Bernoulli(p) measure μ is a reversible invariant measure, and the process started at μ is
stationary. Despite this trivial equilibriummeasure, however, KCMdisplay an extremely
rich behaviour which is qualitatively different from that of interacting particle systems
with non-degenerate birth/death rates (e.g. the stochastic Ising model). This behaviour
includes the key dynamical features of real glassy materials: anomalously long mixing
times [1,10,26], aging and dynamical heterogeneities [21], and ergodicity breaking
transitions corresponding to percolation of blocked structures [22]. Moreover, proving
the above results rigorously turned out to be a surprisingly challenging task, in part
due to the fact that several of the classical tools typically used to analyse reversible
interacting particle systems (e.g. coupling, censoring, logarithmic Sobolev inequalities)
fail for KCM.

KCM can be also viewed as a natural non-monotone and stochastic counterpart of
U-bootstrap percolation, a well-studied class of discrete cellular automata, see [4,5,8].
For U-bootstrap on Z

d , given a configuration of “infected” sites At at time t , infected
sites remain infected, and a site v becomes infected at time t+1 if the translate by v of one
of the sets in U belongs to At . One then defines the final infection set [A]U :=

⋃∞
t=1 At

and the critical probability of the U-bootstrap process on Z
d to be

qc
(
Z
d ,U) := inf

{
q : Pq

([A]U = Z
d) = 1

}
, (1.1)

where Pq denotes the product probability measure on Z
d with density q of infected

sites. The following key connection between U-bootstrap percolation and KCM has
been established byCancrini,Martinelli, Roberto, andToninelli [10]:KCMprocesses are
ergodic for q > qc

(
Z
d ,U)

, and they are not ergodic for q < qc
(
Z
d ,U)

. Furthermore, the
results of [10] prove that in the ergodic regime time auto-correlations decay exponentially
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for a large class of KCM including all the models that have been considered in the
physics literature (Eastmodel, Friedrickson-Andersenmodels, North-Eastmodel).More
precisely, for these models the relaxation time Trel(q;U) (see Definition 2.9) and the
mean infection time1 Eμ(τ0) (i.e. the mean over the stationary KCM process of the first
time at which the origin becomes empty) are finite for q > qc

(
Z
d ,U)

and infinite for
q < qc

(
Z
d ,U)

. Both from a physical and mathematical point of view, two key questions
arise: (i) are the relaxation time and the mean infection time finite if q > qc(Zd ,U) for
any possible choice of the update families U? (ii) which is the divergence of the time
scales Trel(q;U) and Eμ(τ0) as q ↓ qc(Zd ,U)? We will now briefly review some of the
known results, which show that KCM exhibit a very large variety of possible scalings
depending on the details of the update family U .

We begin by discussing one of the most extensively studied KCM, which was intro-
duced by Jäckle and Eisinger [23,35]: the so-called East model. This model has update
family U = {{−�e1, }, . . . , {−�ed}

}
, so in the one-dimensional setting d = 1 a site can

update iff it is the neighbour “to the east” of an empty site. It is not difficult to see that
in any dimension qc(Zd ,U) = 0. For d = 1, it was first proved in [1] that the relaxation
time Trel(q) is finite for any q ∈ (0, 1], and it was later shown (see [1,10,13]) that it
diverges as

exp

(
(
1 + o(1)

) log(1/q)2

2 log 2

)

as q ↓ 0. A similar scaling was later proved in any dimension d � 1, see [14].
Another well-studied KCM, introduced by Friedrickson and Andersen [2], is the

k-facilitated model (FA-kf), whose update family consists of the k-sets of nearest neigh-
bours of the origin: a site can be updated iff it has at least k empty nearest neighbours.
In this case it was proved in [19,33] that qc(Zd ,U) = 0 for all 1 � k � d, whereas
qc(Zd ,U) = 1 for all k > d. Moreover, the relaxation time Trel(q) diverges as 1/q�(1)

when k = 1 [10,30], and as a (k − 1)-times iterated exponential of q−1/(d−k+1) when
2 � k � d [26]. The above scalings also hold for the mean infection time Eμ(τ0).

The above model-dependent results (which are, in fact, the only ones that have been
proved so far) include a large diversity of possible scalings of the mean infection time,
together with a strong sensitivity to the details of the update family U . Therefore, a very
natural “universality” question emerges:

Question. Is it possible to group all possible update families U into distinct classes, in
such a way that all members of the same class induce the same divergence of the mean
infection time as q approaches from above the critical value qc(Zd ,U)?

Such a general question has not been addressed so far, even in the physics literature:
physicists lack a general criterion to predict the different scalings. This fact is particu-
larly unfortunate since, due to the anomalous and sharp divergence of times, numerical
simulations often cannot give clear-cut and reliable answers. Indeed, some of the rigor-
ous results recalled above corrected some false conjectures that were based on numerical
simulations.

Theuniversality question stated abovehas, however, being addressed and successfully
solved for two-dimensional U-bootstrap percolation (see [4,5,8], or [29] for a recent
review). The update families U were classified by Bollobás, Smith, and Uzzell [8] into

1 The mean infection time is very close to the persistence time in the physics literature.
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three universality classes: supercritical, critical, and subcritical (see Definition 2.2),
according to a simple geometric criterion. They also proved in [8] that qc

(
Z
2,U) = 0

if U is supercritical or critical, and it was proved by Balister, Bollobás, Przykucki, and
Smith [4] that qc

(
Z
2,U)

> 0 ifU is subcritical. For critical update familiesU , the scaling
(as q ↓ 0) of the typical infection time of the origin starting from Pq was determined
very precisely by Bollobás, Duminil-Copin, Morris, and Smith [5] (improving bounds
obtained in [8]), and various universal properties of the dynamics were obtained.

In this paper we take an important step towards establishing a similar universality
picture for two-dimensional KCMwith supercritical or critical update family U . Using a
geometric criterion, we propose a classification of the two-dimensional update families
into universality classes, which is inspired by, but at the same time quite different from,
that established for bootstrap percolation. More precisely, we classify a supercritical
update family U as being supercritical unrooted or supercritical rooted and a critical U
as being α-rooted or β-unrooted, where α ∈ N and α � β ∈ N ∪ {∞} are called the
difficulty and the bilateral difficulty ofU respectively (see Definitions 2.11 and 2.12).We
then prove (see Sects. 3–7) the following two main universality results (see Theorems 1
and 2 in Sect. 2.3) on the mean infection time Eμ(τ0) and on the relaxation time Trel.

Supercritical KCM. Let U be a supercritical two-dimensional update family. Then, for
q > 0, both Eμ(τ0) and Trel are finite. And, as q → 0,

(a) if U is unrooted

Eμ(τ0) � Trel/q � q−O(1);
(b) if U is rooted

Eμ(τ0) � Trel/q � exp
(
O

(
log q−1

)2
)
.

Critical KCM. Let U be a critical two-dimensional update family with difficulty α and
bilateral difficulty β. Then, for q > 0, both Eμ(τ0) and Trel are finite. And, as q → 0,

(a) if U is α-rooted

Eμ(τ0) � Trel/q � exp
(
q−2α

(
log q−1

)O(1)
)
;

(a) if U is β-unrooted

Eμ(τ0) � Trel/q � exp
(
q−β

(
log q−1

)O(1)
)
.

Even though the theorems above only establish universal upper bounds on Eμ(τ0)

and Trel, we conjecture that our bounds provide the correct scaling up to logarithmic
corrections. This has recently been proved for supercritical models in [27]. For critical
update families, the bound Eμ(τ0) = �(TU ) (see [26, Lemma 4.3]), where TU denotes
the median infection time of the origin for the U-bootstrap process at density q, together
with the results of [5] on TU , provide a matching lower bound for all β-unrooted mod-
els with α = β (for example, the FA-2f model). In particular, these recent advances
combined with the above theorems prove two conjectures that we put forward in [29].
Among the α-rooted models, those which have been considered most extensively in the
literature are the Duarte and modified Duarte model (see [6,16,28,34]), for which α = 1
and β = ∞. In [27], using very different tools and ideas from those in this paper, a lower
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bound on Eμ(τ0) was recently obtained for both models that matches our upper bound,
including the logarithmic corrections, yielding Eμ(τ0) = exp

(
�

(
q−2(log 1/q)4

))
.

The above results imply that for all supercritical rootedKCM, and also for theDuarte-
KCM, the mean infection time diverges much faster than the median infection time for
the corresponding U-bootstrap process, which obeys TU ∼ 1/q�(1) for supercritical
models [8], and TU ∼ exp

(
�

(
q−1(log 1/q)2

))
for the Duarte model [28]. This is a

consequence of the fact that for these KCM the infection time is not well-approximated
by the number of updates needed to infect the origin (as it is for bootstrap percolation), but
is the result of a much more complex mechanism. In particular, the visits of the process
to regions of the configuration space with an anomalous amount of infection (borrowing
from physical jargon we may call them “energy barriers”) are heavily penalized and
require a very long time to actually take place.

Providing an insight into the heuristics and/or the key steps of the proofs at this
stage, before providing a clear definition of the geometrical quantities involved, would
inevitably be rather vague. We therefore defer these explanations to Sect. 2.4. We can,
however, state two high-level ingredients. The first one consists in identifying, for each
class of update families U , an “efficient” (and potentially optimal) dynamical strategy for
the difficult (i.e., unlikely) task of infecting the origin. This is necessarily more complex
than the growth of the correspondingU-bootstrap process, since an efficient strategymust
necessarily feature both infection and healing in order to avoid crossing excessively high
energy barriers. The second ingredient consists in using the above strategy as a guide,2

without actually implementing it, for the analytic technique introduced in [26] by two of
the authors of the present paper,which allows one to bound the relaxation time Trel(q;U ).
In [26] this technique was successfully applied to the FA-kf model, with the imagined
mechanism for infecting the origin being a large droplet of infected sites moving as a
random walk in a suitable (evolving) random environment of sparse infection. Here we
have to go well beyond the method of [26], since the randomwalk picture does not apply
to rooted models. Our main novelty is a new and more complex analytic approach to
bound Trel(q,U) which is inspired by the East dynamics (see Sect. 2.4 for more details).

1.1. Notation. We gather here (for the reader’s convenience) some of the standard no-
tation that we use throughout the paper. First, recall that we write μ for the Bernoulli
product measure ⊗x∈Z2Ber(p) on Z

2, where q = 1 − p will always be assumed to be
sufficiently small (depending on the update family U).

If f and g are positive real-valued functions of q, then we will write f = O(g) if
there exists a constantC > 0 (depending onU , but not on q) such that f (q) � Cg(q) for
every sufficiently small q > 0. We will also write f (q) = �(g(q)) if g(q) = O( f (q))

and f (q) = �(g(q)) if both f (q) = O(g(q)) and g(q) = O( f (q)).
All constants, including those implied by the notation O(·),�(·) and�(·), are quan-

tities that may depend on the update family U (and other quantities where explicitly
stated) but not on the parameter q. If c1 and c2 are constants, then c1 
 c2 
 1
means that c2 is sufficiently large, and c1 is sufficiently large depending on c2. Simi-
larly, 1 
 c1 
 c2 > 0 means that c1 is sufficiently small, and c2 is sufficiently small
depending on c1. Finally, we will use the standard notation [n] = {1, . . . , n}.

2 In this respect our situation shares some similarities with other large deviations problems, where an
imagined optimal dynamical strategy has the role of suggesting and motivating several, otherwise mysterious,
analytic steps.
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2. Universality Classes for KCM and Main Results

In this section we will begin by recalling the main universality results for bootstrap
cellular automata. We will then define the KCM process associated to a bootstrap update
family, introduce its universality classes, and state our main results about its scaling
near criticality. To finish, we will provide an outline of the heuristics behind our main
theorems, and a sketch of their proofs.

2.1. The bootstrap monotone cellular automata and its universality properties. Let us
begin by defining a large class of two-dimensional monotone cellular automata, which
were recently introduced by Bollobás, Smith, and Uzzell [8].

Definition 2.1. Let U = {X1, . . . , Xm} be an arbitrary finite collection of finite subsets
of Z2\{0}. The U-bootstrap process on Z

2 is defined as follows: given a set A ⊂ Z
2 of

initially infected sites, set A0 = A, and define for each t � 0,

At+1 = At ∪
{
x ∈ Z

2 : X + x ⊂ At for some X ∈ U}
. (2.1)

We write [A]U =
⋃

t�0 At for the closure of A under the U-bootstrap process.
Thus, a vertex x becomes infected at time t + 1 if the translate by x of one of the

sets in U (which we refer to as the update family) is already entirely infected at time t ,
and infected vertices remain infected forever. For example, if we take U to be the family
of 2-subsets of the set of nearest neighbours of the origin, we obtain the classical 2-
neighbour bootstrap process. One of the key insights of Bollobás, Smith, and Uzzell [8]
was that, at least in two dimensions, the typical global behaviour of the U-bootstrap
process acting on random initial sets should be determined by the action of the process
on discrete half-planes.

For each unit vector u ∈ S1, let Hu := {x ∈ Z
2 : 〈x, u〉 < 0} denote the discrete

half-plane whose boundary is perpendicular to u.

Definition 2.2. The set of stable directions is

S = S(U) = {
u ∈ S1 : [Hu]U = Hu

}
.

The update family U is:

• supercritical if there exists an open semicircle in S1 that is disjoint from S,
• critical if there exists a semicircle in S1 that has finite intersection with S, and if
every open semicircle in S1 has non-empty intersection with S,

• subcritical if every semicircle in S1 has infinite intersection with S.
The first step towards justifying this trichotomy is given by the following theorem,

which was proved in [4,8]. Recall from (1.1) the definition of qc
(
Z
2,U)

, the critical
probability of the U-bootstrap process on Z

2.

Theorem 2.3. If U is a supercritical or critical two-dimensional update family, then
qc

(
Z
2,U) = 0, whereas if U is subcritical then qc

(
Z
2,U)

> 0.

For supercritical and critical update families, the main question is therefore to deter-
mine the scaling as q → 0 of the typical time it takes to infect the origin.
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Definition 2.4. The typical infection time at density q of an update family U is defined
to be

TU = Tq,U := inf

{

t � 0 : Pq
(
0 ∈ At

)
� 1

2

}

,

where (we recall) Pq indicates that every site is included in A with probability q, inde-
pendently from all other sites, and At was defined in (2.1). We will write TU , omitting
the suffix q from the notation, whenever there is no risk of confusion.

In order to state the main result of [5] we need some additional definitions. Let
Q1 ⊂ S1 denote the set of rational directions on the circle, and for each u ∈ Q1, let �+u
be the (infinite) subset of the line �u := {x ∈ Z

2 : 〈x, u〉 = 0} consisting of the origin
and the sites to the right of the origin as one looks in the direction of u. Similarly, let
�−u := (�u\�+u) ∪ {0} consist of the origin and the sites to the left of the origin. Given
a two-dimensional bootstrap percolation update family U , let α+

U (u) be the minimum
(possibly infinite) cardinality of a set Z ⊂ Z

2 such that [Hu ∪ Z ]U contains infinitely
many sites of �+u , and define α−U (u) similarly (using �−u in place of �+u).

Definition 2.5. Given u ∈ Q1, the difficulty of u (with respect to U) is3

α(u) :=
{
min

{
α+
U (u), α−U (u)

}
if α+

U (u) <∞ and α−U (u) <∞
∞ otherwise.

Let C denote the collection of open semicircles of S1. The difficulty of U is given by

α := min
C∈C

max
u∈C α(u), (2.2)

and the bilateral difficulty by

β := min
C∈C

max
u∈C max

{
α(u), α(−u)

}
. (2.3)

A critical update family U is balanced if there exists a closed semicircle C such that
α(u) � α for all u ∈ C . It is said to be unbalanced otherwise.

Remark 2.6. If u ∈ S1 is not a stable direction then [Hu]U = Z
2 (see [8, Lemma 3.1]),

and therefore α(u) = 0. Moreover, it was proved in [8, Lemma 5.2] (see also [5,
Lemma 2.7]) that if u ∈ S(U) then α(u) <∞ if and only u is an isolated point of S(U).
It follows that α = 0 for every supercritical update family, and that α is finite for every
critical update family. Observe also that α � β � ∞, and that β can be infinite even
for a supercritical update family (for example, one can embed the one-dimensional East
model in two dimensions). A well-studied critical model with β infinite (and α = 1) is
the Duarte model (see [6,16,28,34]), which has update family

D = {{(−1, 0), (0, 1)}, {(−1, 0), (0,−1)}, {(0, 1), (0,−1)}}. (2.4)

3 In order to slightly simplify the notation, and since the update family U will always be clear from the
context, we will not emphasize the dependence of the difficulty on U .
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Roughly speaking, Definition 2.5 says that a direction u has finite difficulty if there
exists a finite set of sites that, together with the half-plane Hu , infect the entire line �u .
Moreover, the difficulty of u is at least k if it is necessary (in order to infect �u) to find
at least k infected sites that are ‘close’ to one another. If the open semicircle C with
u as midpoint contains no direction of difficulty greater than k, then it is possible for
a “critical droplet” of infected sites to grow in the direction of u without ever finding
more than k infected sites close together. As a consequence, if the bilateral difficulty is
not greater than k, then there exists a direction u (the midpoint of the optimal semicircle
in 2.3) such that a suitable critical droplet is able to grow in both directions u and −u,
without ever finding more than k infected sites close together.

We are now in a position to state themain results on the scaling of the typical infection
time for supercritical and critical update families. The following bounds were proved
in [5] (for critical families) and in [8] (for supercritical families).

Theorem 2.7. Let U be a two-dimensional update family. Then, as q → 0,

(a) if U is supercritical then

TU = q−�(1);
(b) if U is critical and balanced with difficulty α, then

TU = exp

(
�(1)

qα

)

;

(c) if U is critical and unbalanced with difficulty α, then

TU = exp

(
�

(
log(1/q)

)2

qα

)

.

Remark 2.8. Note that in the above result the bilateral difficulty β plays no role. This
is because in bootstrap percolation a droplet of empty sites only needs to grow in one
direction (as opposed to moving back and forth). For KCM, on the other hand, we will
see that the ability to move in two opposite directions will play a crucial role.

2.2. General finite-range KCM. In this section we define a class of two-dimensional
interacting particle systems known as kinetically constrained models. As will be clear
from what follows, KCM are intimately connected with bootstrap cellular automata.

We will work on the probability space (�,μ), where � = {0, 1}Z2
and μ is the

product Bernoulli(p) measure, and we will be interested in the asymptotic regime q ↓ 0,
where q = 1− p. Givenω ∈ � and x ∈ Z

2, we will say that x is “empty” (or “infected”)
if ωx = 0. We will say that f : � �→ R is a local function if it depends on only finitely
many of the variables ωx .

Given a two-dimensional update familyU = {X1, . . . , Xm}, the correspondingKCM
is the Markov process on � associated to the Markov generator

(L f )(ω) =
∑

x∈Z2

cx (ω)
(
μx ( f )− f

)
(ω), (2.5)

where f : � �→ R is a local function, μx ( f ) denotes the average of f w.r.t. the variable
ωx , and cx is the indicator function of the event that there exists an update rule X ∈ U
such that ωy = 0 for every y ∈ X + x .
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Informally, this process can be described as follows. Each vertex x ∈ Z
2, with rate

one and independently acrossZ2, is resampled from
({0, 1},Ber(p)) iff one of the update

rules of theU-bootstrap process at x is satisfied by the current configuration of the empty
sites. In what follows, we will sometimes call such an update a legal update or legal
spin flip. It follows (see [10]) that L is the generator of a reversible Markov process on
�, with reversible measure μ.

We now define the two main quantities we will use to characterize the dynamics of
the KCM process. The first of these is the relaxation time Trel(q,U).

Definition 2.9. We say that C > 0 is a Poincaré constant for a given KCM if, for all
local functions f , we have

Var( f ) � C D( f ), (2.6)

where D( f ) = ∑
x μ

(
cx Varx ( f )

)
is the KCM Dirichlet form of f associated to L. If

there exists a finite Poincaré constant we then define

Trel(q,U) := inf
{
C > 0 : C is a Poincaré constant for the KCM

}
.

Otherwise we say that the relaxation time is infinite.

A finite relaxation time implies that the reversible measure μ is mixing for the semi-
group Pt = etLwith exponentially decaying time auto-correlations [25].More precisely,
in that case Trel(q,U)−1 coincides with the best positive constant λ such that,

Var
(
etL f

)
� e−2λt Var( f ) ∀ f ∈ L2(μ). (2.7)

One of the main results of [10] states that Trel(q,U) <∞ when q > qc for a large class
of KCM including all the models that have been considered in the physics literature
(East model, Friedrickson-Andersen models, North-East model).

The second (random) quantity is the hitting time

τ0 = inf
{
t � 0 : ω0(t) = 0

}
.

In the physics literature the hitting time τ0 is usually referred to as the persistence time,
while in the bootstrap percolation framework it would be more conveniently dubbed
the infection time. For our purposes, the most important connection between the mean
infection timeEμ(τ0) for the stationary KCM process (i.e., withμ as initial distribution)
and Trel(q,U) is as follows (see [9, Theorem 4.7]):

Eμ(τ0) � Trel(q,U)

q
∀ q ∈ (0, 1). (2.8)

The proof is quite simple. By definition, τ0 is the hitting time of A = {
ω : ω0 = 0

}
,

and it is a standard result (see, e.g. [3, Theorem 2]) that Pμ(τ0 > t) � e−tλA , where

λA = inf
{D( f ) : μ( f 2) = 1 and f (ω) = 0 for every ω ∈ A

}
.

Observe that Var( f ) � μ(A) = q for any function f satisfying μ( f 2) = 1 that is
identically zero on A. This implies that λA � q/Trel(q,U), and so (2.8) follows.

Remark 2.10. If the initial distribution ν of the KCM process is different from the in-
variant measureμ, then it is only known that Eν(τ0) is finite in a couple of specific cases
(the d-dimensional East process [11,12], and the 1-dimensional FA-1f process [7]), even
under the assumption that ν is a product Bernoulli(p′) measure with p′ �= p.
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A matching lower bound on Eμ(τ0) in terms of Trel(q,U) is not known. However,
in [26, Lemma 4.3] it was proved that

Eμ(τ0) = �(TU ). (2.9)

2.3. Universality results. We are now ready to define precisely the universality classes
for KCM with a supercritical or critical update family. We will also restate (in a more
precise form) our main results and conjectures on the scaling of Eμ(τ0) and Trel as
q → 0. We begin with the (much easier) supercritical case.

Definition 2.11. A supercritical two-dimensional update family U is said to be super-
critical rooted if there exist two non-opposite stable directions in S1. Otherwise it is
called supercritical unrooted.

Our first main result, already stated in the Introduction, provides an upper bound on
Eμ(τ0) and Trel for every supercritical two-dimensional update family that is (by the
results of [27]) sharp up to the implicit constant factor in the exponent. Recall that if U
is supercritical then TU = q−�(1), by Theorem 2.7.

Theorem 1 (Supercritical KCM). Let U be a supercritical two-dimensional update fam-
ily. Then, for q > 0, both Eμ(τ0) and Trel are finite. And, as q → 0,

(a) if U is unrooted

Eμ(τ0) � q−1 Trel � q−O(1) = exp
(
O

(
log TU

))
,

(b) if U is rooted,

Eμ(τ0) � q−1 Trel � exp
(
O

(
log q−1

)2
)
= exp

(
O

(
log TU

)2
)
.

We next turn to our bounds for critical update families, the proofs of which will
require us to overcome a number of significant technical challenges, in addition to those
encountered in the supercritical case. In this setting the distinction between critical
unrooted and critical rooted is more subtle, and both the difficulty α and the bilateral
difficulty β (see Definition 2.5) play an important role. Recall that for a critical update
family the difficulty is finite, but that the bilateral difficulty may be infinite.

Definition 2.12. A critical update family U with difficulty α and bilateral difficulty β is
said to be α-rooted if β � 2α. Otherwise it is said to be β-unrooted.4

The following theorem is the main contribution of this paper.

Theorem 2 (Critical KCM). Let U be a critical two-dimensional update family with
difficulty α and bilateral difficulty β. Then, for q > 0, both Eμ(τ0) and Trel are finite.
And, as q → 0,

(a) if U is α-rooted

Eμ(τ0) � q−1 Trel � exp
(
O

(
q−2α

(
log q−1

)4
))
= exp

(
Õ

(
log TU

)2
)
;

4 We warn the attentive reader that when α < β < 2α the model is here called β-unrooted, while in [29]
it was called α-rooted.
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(b) if U is β-unrooted

Eμ(τ0) � q−1 Trel � exp
(
O

(
q−β

(
log q−1

)3
))
= exp

(
Õ

(
log TU

)β/α
)
.

It was recently proved in [27] that the upper bounds in Theorem 1 are best possible up
to the implicit constant factor in the exponent for all supercritical update families (note
that this follows from (2.9) for unrooted models). We conjecture that the bounds for
critical models in Theorem 2 are also best possible, though in a slightly weaker sense:
up to a polylogarithmic factor in the exponent.

Conjecture 3. Let U be a critical two-dimensional update family with difficulty α and
bilateral difficulty β. Then, as q → 0,

(a) if U is α-rooted

Eμ(τ0) = exp
(
q−2α

(
log q−1

)�(1)
)
;

(b) if U is β-unrooted

Eμ(τ0) = exp
(
q−β

(
log q−1

)�(1)
)
.

The same result hold for Trel.

Observe that for α-unrooted update families U (i.e., families with β = α), the lower
bound in Conjecture 3 follows from Theorem 2.7 and (2.9); in particular Theorem 2
confirms [29, Conjecture 2.4]. If U is moreover unbalanced, then the upper and lower
bounds given by Theorems 2 and 2.7 differ by only a single factor of log(1/q) (in the
exponent), and we suspect that in this case the lower bound is correct, see Remark 6.14.

Conjecture 4. Let U be an α-unrooted, unbalanced, critical two-dimensional update
family with difficulty α. Then, as q → 0,

Eμ(τ0) = exp
(
�

(
q−α

(
log q−1

)2
))

.

The same result holds for Trel.

We remark that an example of an update family satisfying the conditions of Conjec-
ture 4 is the so-called anisotropic model (see, e.g. [17,18]) whose update family consists
of all subsets of size 3 of the set

{
(−2, 0), (−1, 0), (1, 0), (2, 0), (0, 1), (0,−1)}.

Another model for which Conjecture 3 holds is the Duarte model, defined in (2.4), for
which a matching lower bound (this time, up to a constant factor in the exponent) was
recently proved in [27], confirming (in a strong sense) [29, Conjecture 2.5]. For all other
critical models, however, the best known lower bound is that given by Theorem 2.7
and (2.9), and is therefore (we think) very far from the truth.
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2.4. Heuristics and roadmap. We conclude this section with a high-level description of
the intuition behind the proofs of Theorems 1 and 2, together with a roadmap of the
actual proof, which is carried out in Sects. 3–7.

The first key point to be stressed is that we never actually follow the dynamics of the
KCM process itself; instead, we will prove the existence of a Poincaré constant with the
correct scaling as q → 0, and use the inequality (2.8) to deduce a bound on the mean
infection time.We emphasize that this approach only works for the stationary KCM, that
is, the process starting from the stationary measure μ. The second point is that, given
that the Dirichlet form of the KCM

D( f ) =
∑

x∈Z2

μ
(
cx Varx ( f )

)

is a sum of local variances (⇔ spin flips) computedwith suitable infection nearby (⇔ the
constraints cx ), all of our reasoning will be guided by the fact that we need to have some
infection (⇔ empty sites) next to where we want to compute the variance. Therefore,
much of our intuition, and all of the technical tools, have been developed with the aim
of finding a way to effectively move infection where we need it.

A configuration sampled from μ will always have “mesoscopic” droplets (large
patches of infected sites), though these will typically be very far from the origin. The
general theory of U-bootstrap percolation developed in [5,8] allows us to quantify very
precisely the critical size of those droplets that (typically) allows infection to grow from
them and invade the system. However—and this is a fundamental difference between
bootstrap percolation and KCM—it is extremely unlikely for the stationary KCM to
create around a given vertex and at a given time a very large cluster of infection. Thus,
it is essential to envisage an infection/healing mechanism that is able to move infection
over long distances without creating too large an excess5 of it.

At the root of our approach lies the notion of a critical droplet. A critical droplet
is a certain finite set D whose geometry depends on the update family U , and whose
characteristic sizemay depend on q. For supercriticalmodelswe can take any sufficiently
large (not depending on q) rectangle oriented along themid-point u of a semicircleC free
of stable directions. For critical models the droplet D is a more complicated object called
a quasi-stable half-ring (see Definition 4.9 and Fig. 5) oriented along the midpoint u of
an open semicircle with largest difficulty either α or β. The long sides of D will have
length either �

(
q−α log(1/q)

)
or �

(
q−β log(1/q)

)
for the α-rooted and β-unrooted

cases respectively, while the short sides will always have length �(1). The key feature
of a critical droplet for supercritical models (see Sect. 4.2) is that, if it is empty, then it
is able to infect a suitable translate of itself in the u-direction. For unrooted supercritical
models the semicircle C can be chosen in such a way that both C and −C are free of
stable directions. As a consequence, the empty critical droplet will be able to infect a
suitable translate of itself in both directions ±u.

For critical models the situation changes drastically. An empty critical droplet will
not be able to infect freely another critical droplet next to it in the u-direction because
of the stable directions which are present in every open semicircle. However, it will be
able to do so (in the u-direction if the model is α-rooted, and in the ±u-directions if
β-unrooted) provided that it receives some help from a finite number of extra empty
sites (in “clusters” of size α or β) nearby. If the size of the critical droplet is chosen
as above, then it is straightforward to show that such extra helping empty sites will be
present with high probability (see Sect. 6.1).

5 In physical terms an excess of infection is equivalent to an “energy barrier”.
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Having clarified what a critical droplet is, and under which circumstances it is able
to infect nearby sites, we next explain what we mean by “moving a critical droplet”.
For simplicity we explain the heuristics only for the supercritical case. Imagine that we
have a sequence D0, D1, . . . , Dn of contiguous, non-overlapping and identical critical
droplets such that Di+1 = Di +diu for some suitable di > 0. Suppose first that themodel
is unrooted and that D0 is completely infected, and let us write ωi for the configuration
of spins in Di . Using the infection in D0 it possible to first infect D1, then D2 and
then, using reversibility, restore (i.e., heal) the original configuration ω1 in D1. Using
the infection in D2 we can next infect D3 and then, using the infection in D3, restore ω2
in D2 (see the schematic diagram below, where ∅ stands for an infected droplet)

∅ ω1 ω2 ω3 · · · �→ ∅ ∅ ω2 ω3 · · · �→ ∅ ∅ ∅ ω3 · · ·
�→ ∅ ω1 ∅ ω3 · · · �→ ∅ ω1 ∅ ∅ · · · �→ ∅ ω1 ω2 ∅ · · ·

If we continue in this way, we end up moving the original infection in D0 to the last
droplet Dn without having ever created more than two extra infected critical droplets
simultaneously. We remark that the sequence described above is reminiscent of how
infection moves in the one-dimensional 1-neighbour KCM.

For rooted supercritical models, on the other hand, we cannot simply restore the con-
figurationω2 in D2 using only the infection in D3 (in the unrooted case this was possible
because infection could propagate in both the u and −u directions). As a consequence,
we need to follow a more complicated pattern:

∅ ω1 ω2 ω3 · · · �→ ∅ ∅ ω2 ω3 · · · �→ ∅ ∅ ∅ ω3 · · ·
�→ ∅ ∅ ∅ ∅ · · · �→ ∅ ∅ ω2 ∅ · · · �→ ∅ ω1 ω2 ∅ · · · ,

in which healing is always induced by infection present in the adjacent droplet in the
−u direction. This latter case is reminiscent of the one-dimensional East model. In this
case, a combinatorial result proved in [15] implies that in order to move the infection to
Dn it is necessary to create � log n simultaneous extra infected critical droplets. This
logarithmic energy barrier is the reason for the different scaling of Eμ(τ0) in rooted and
unrooted supercritical models (see Theorem 1).

Let us now give a somewhat more detailed outline of our approach. We begin by
partitioning Z2 into ‘suitable’ rectangular blocks {Vi }i∈Z2 with shortest side orthogonal
to the direction u (see Sect. 4.1). For supercritical models these blocks have sides of
constant length, while for critical models they will have length q−κ for some constant
κ 
 α, and height equal to that of a critical droplet, so either �

(
q−α log(1/q)

)
or

�
(
q−β log(1/q)

)
, depending on the nature of the model. Then, given a configuration

ω ∈ �, we declare a block to be good or super-good according to the following rules:

• For supercritical models any block is good, while for critical models good blocks
are those which contain “enough” empty sites to allow an adjacent empty critical
droplet to advance in the u (or ±u) direction(s) (see Definition 6.4).

• In both cases, a block is said to be super-good if it is good and also contains an
empty (i.e., completely infected) critical droplet.

Good blocks turn out to be very likely w.r.t. μ (a triviality in the supercritical case),
and it follows by standard percolation arguments that they form a rather dense infinite
cluster. Super-good blocks, on the other hand, are quite rare, with density ρ = q�(1) in
the supercritical case, ρ = exp

(−�
(
q−α log(1/q)2

))
in the critical α-rooted case, and

ρ = exp
(−�

(
q−β log(1/q)2

))
for critical β-unrooted models.
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We will then prove the existence of a suitable Poincaré constant in three steps, each
step being associated to a natural kinetically constrained block dynamics6 on a certain
length scale. In each block dynamics the configuration in each block is resampled with
rate one (and independently of other resamplings) if a certain constraint is satisfied.

Our first block dynamics forces one of the blocks neighbouring Vi to be at the begin-
ning of an oriented “thick” path γ of good blocks, with length ≈ 1/ρ, whose last block
is super-good. Using the fact that this constraint is very likely, it is possible to prove (see
Section 2 in [26]) that the relaxation time of this process is O(1), and moreover (see
Proposition 3.5) that the Poincaré inequality

Var( f ) � 4
∑

i

μ
(
1�i Vari ( f )

)
(2.10)

holds, where 1�i is the indicator of the event that a good path exists for Vi . Though
this starting point is similar to the method we develop in [26], for the next two steps
of the proof we introduce here a completely different set of tools and ideas in order
to avoid the direct use of canonical paths (which could instead be used in [26] for the
special case of the FA-2f model). Indeed for a general model (and especially for rooted
models), using canonical paths and evaluating their congestion constants would result
in a very heavy and complicated machinery. The next idea is to convert the long-range
constrained Poincaré inequality (2.10) into a short-range one of the form

Var( f ) � C1(q)
∑

i

μ
(
1SGi Vari ( f )

)
, (2.11)

in which 1SGi is the indicator of the event that a suitable collection of blocks near Vi
are good and one of them is super-good. Which collections of blocks are “suitable”, and
which one should be super-good, depends onwhether themodel is rooted or unrooted;we
refer the reader to Theorem 3.1 for the details. The main content of Theorem 3.1, which
we present in a slightly more general setting for later convenience, is that C1(q) can be
taken equal to the best Poincaré constant (i.e., the relaxation time) of a one-dimensional
generalised 1-neighbour or East process at the effective density ρ. Section 3 is entirely
dedicated to the task of formalising and proving the above claim.

The final step of the proof is to convert the Poincaré inequality (2.11) into the true
Poincaré inequality for our KCM

Var( f ) � C2(q)
∑

x

μ(cx Varx ( f )),

with a Poincaré constant C2(q) which scales with q as required by Theorems 1 and 2.
In turn, this requires us to prove that a full resampling of a block in the presence of
nearby super-good and good blocks can be simulated (or reproduced) by a sequence
of legal single-site updates of the original KCM, with a global cost in the Poincaré
constant compatible with Theorems 1 and 2. It is here that the results of [5,8] on the
behaviour of the U-bootstrap process come into play. While for supercritical models the
task described above is relatively simple (see Sect. 5), for critical models the problem
is significantly more complicated and a suitable generalised East process again plays a
key role. A full sketch of the proof can be found in Sect. 6.1.2, see in particular the proof
of Proposition 6.6, and Remark 6.7.

6 See, e.g. Chapter 15.5 of [24] for a introduction to the technique of block dynamics in reversible Markov
chains.
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3. Constrained Poincaré Inequalities

The aimof this section is to prove a constrainedPoincaré inequality for a productmeasure
on SZ

2
, where S is a finite set. This general inequality will play an instrumental role in

the proof of our main theorems, giving us precise control of the infection time for both
supercritical and critical KCM.

In order to state our general constrained Poincaré inequality, we will need some
notation. Let (S, μ̂) be a finite positive probability space, and set � = (

SZ
2
, μ

)
, where

μ = ⊗i∈Z2 μ̂. A generic element � will be denoted by ω = {ωi }i∈Z2 . For any local
function f we will write Var( f ) for its variance w.r.t. μ and Vari ( f ) for the variance
w.r.t. to the variable ωi ∈ S conditioned on all the other variables {ω j } j �=i . For any
i ∈ Z

2 we set

L
+(i) = i +

{�e1, �e2 − �e1
}

and L
−(i) = i − {�e1, �e2 − �e1

}
.

Finally, let G2 ⊆ G1 ⊆ S be two events, and set p1 := μ̂(G1) and p2 := μ̂(G2). The
main result of this section is the following theorem.

Theorem 3.1. For any t ∈ (0, 1) there exist �T (t), T (t) satisfying �T (t) � exp
(
O

(
log 1

t

)2)
and T (t) � t−O(1) as t → 0, such that the following oriented and unoriented

constrained Poincaré inequalities hold.

(A) Suppose that G1 = S and G2 ⊆ S. Then, for all local functions f :

Var( f ) � �T (p2)
∑

i∈Z2

μ
(
1{ωi+�e1∈G2}Vari ( f )

)
(3.1)

Var( f ) � T (p2)
∑

i∈Z2

μ
(
1{{ωi+�e1∈G2}∪{ωi−�e1∈G2}}Vari ( f )

)
. (3.2)

(B) Suppose that G2 ⊆ G1 ⊆ S. Then there exists δ > 0 such that, for all p1, p2
satisfying max

{
p2, (1− p1)(log p2)2

}
� δ, and all local functions f :

Var( f ) � �T (p2)

( ∑

i∈Z2

μ
(
1{ωi+�e2∈G2}1{ω j∈G1 ∀ j∈L+(i)} Vari ( f )

)

+
∑

i∈Z2

μ
(
1{ωi+�e1∈G2}1{ωi−�e1∈G1}Vari

(
f |G1

))
)

, (3.3)

Var( f ) � T (p2)

( ∑

ε=±1

∑

i∈Z2

μ
(
1{ωi+ε�e2∈G2}1{ω j∈G1 ∀ j∈Lε(i)} Vari ( f )

)

+
∑

ε=±1

∑

i∈Z2

μ
(
1{ωi+ε�e1∈G2}1{ωi−ε�e1∈G1}Vari

(
f |G1

))
)

. (3.4)

Remark 3.2. When proving Theorem 1 the starting point will be (3.1) or (3.2), depending
onwhether themodel is rooted or unrooted. Similarly, for criticalmodels wewill start the
proof of Theorem 2 from (3.3) or (3.4) depending onwhether themodel is α-rooted or β-
unrooted. This choice is dictated by the U-bootstrap process according to the following
rule: we will require Vi ⊂ [A]U to hold for any set A of empty sites such that the
indicator function in front of Vari ( f ) is equal to one. We refer the reader to Sects. 5
and 6, and in particular to the proof of Lemma 5.2, for more details.
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An important role in the proof of the theorem is played by the one-dimensional East
and1-neighbour processes (see, e.g. [10]), and a certain generalization of these processes.
For the reader’s convenience, we begin by recalling these generalized models.

3.1. The generalised East and 1-neighbour models. The standard versions of these two
models are ergodic interacting particle systems on {0, 1}n with kinetic constraints, which
will mean that jumps in the dynamics are facilitated by certain configurations of vertices
in state 0. They are both reversible w.r.t. the product measure π = Ber(α1) ⊗ · · · ⊗
Ber(αn), where Ber(α) is the α-Bernoulli measure and α1, . . . , αn ∈ (0, 1).

In the first process, known as the non-homogeneousEastmodel (see [20,23] and refer-
ences therein), the state ωx of each point x ∈ [n] is resampled at rate one (independently
across [n]) from the distribution Ber(αx ), provided that cx (ω) = 1, where

cx (ω) = 1{ωx+1=0} and ωn+1 := 0.

In the second model, known as the non-homogeneous 1-neighbour model (and also as
the FA-1f model [2]), the resampling occurs in the same way, except in this case

cx (ω) = max
{
1{ωx−1=0}, 1{ωx+1=0}

}
where ω0 := 1 and ωn+1 := 0.

It is known [1,10,13] that the corresponding relaxation times TEast(n, ᾱ) and TFA(n, ᾱ)

(where ᾱ = (α1, . . . , αn)) are finite uniformly in n and that they satisfy the following
scaling as q := min

{
1− αx : x ∈ [n]

}
tends to zero:

TEast

(
n, ᾱ

) = q−O(min{log n, log(1/q)}) and TFA

(
n, ᾱ

) = q−O(1). (3.5)

The proof of (3.5) is deferred to the Appendix. In the proof of Theorem 3.1 we will need
to work in the following more general setting.

Consider a finite product probability space of the form � = ⊗x∈[n](Sx , νx ), where
Sx is either a finite set or an interval of R, and νx is a positive probability measure on
Sx . Given {ωx }x∈[n] ∈ �, we will refer to ωx as the the state of the vertex x . Moreover,
for each x ∈ [n], let us fix a constraining event Sgx ⊆ Sx with qx := νx (S

g
x ) > 0. We

consider the following generalisations of the East and FA-1f processes on the space �.

Definition 3.3. In the generalised East chain, the state ωx of each vertex x ∈ [n] is
resampled at rate one (independently across [n]) from the distribution νx , provided that
�cx (ω) = 1, where

�cx (ω) = 1{ωx+1∈Sgx+1}

if x ∈ {1, . . . , n − 1}, and �cn(ω) ≡ 1.
In the generalised FA-1f chain, the resampling occurs in the same way, except in this

case c1(ω) = 1{ω2 ∈ Sg2 },

cx (ω) = max
{
1{ωx−1 ∈ Sgx−1}, 1{ωx+1 ∈ Sgx+1}

}

if x ∈ {2, . . . , n − 1}, and cn(ω) ≡ 1.
In both cases, set q := minx qx = minx νx (S

g
x ), and set αx := 1 − qx for each

x ∈ [n].
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Note that the projection variables ηx = 1{Sgx } evolve as a standard East or FA-1f
chain, and it is therefore natural to ask whether the relaxation times of these generalised
constrained chains can be bounded from above in terms of the relaxation times TEast(n, ᾱ)

and TFA(n, ᾱ) respectively. The answer is affirmative, and it is the content of the following
proposition (cf. [14, Proposition 3.4]), which provides us with Poincaré inequalities for
the generalised East and FA-1f chains.

Proposition 3.4. Let f : � �→ R. For the generalised East chain, we have

Var( f ) � 1

q
· TEast(n, ᾱ) ·

n∑

x=1
ν
(�cx Varx ( f )

)
, (3.6)

and for the generalised FA-1f chain, we have

Var( f ) � 1

q
· TFA(n, ᾱ) ·

n∑

x=1
ν
(
cx Varx ( f )

)
, (3.7)

where Varx (·) denotes the conditional variance w.r.t. νx , given all the other variables.

The proof of this proposition, which is similar to that of [13, Proposition 3.4], is
deferred to the Appendix.

3.2. Proof of Theorem 3.1. We begin with the proof of part (A), which is a relatively
straightforward consequence of Proposition 3.4 and (3.5). The proof of part (B) is signifi-
cantlymore difficult, andwewill require a technical result from [26] (see Proposition 3.5,
below) and a careful application of Proposition 3.4 (and of convexity) after conditioning
on various events.

3.2.1. Proof of part (A) Recall that in this setting G1 = S and G2 ⊂ S, where (S, μ̂)

is an arbitrary finite positive probability space. Let f be a local function and let M > 0
be sufficiently large so that f does not depend on the variables at vertices (m, n) with
|m| � M . For each n ∈ Z, let μn denote the product measure ⊗m∈Z μ̂ on SZ×{n}, and
note that μ = ⊗n∈Z μn . By construction, Varμn ( f ) coincides with the same conditional
variance computed w.r.t. μM

n := ⊗m∈Z∩[−M,M] μ̂.

We apply Proposition 3.4 to the homogeneous product measure μM
n with the event

G2 as event S
g
x for all x ∈ {−M, . . . , M}. Note that qx = μ̂(G2) = p2 for every x , and

that Var(M,n)( f ) = Var(−M,n)( f ) = 0. It follows, using (3.5), that

Varμn ( f ) � �T (p2)
∑

m∈Z
μn

(
1{ω(m+1,n)∈G2}Var(m,n)( f )

)
,

where �T (p2) = exp
(
O

(
log 1

p2

)2
)
, and

Varμn ( f ) � T (p2)
∑

m∈Z
μn

(
1{ω(m+1,n)∈G2}∪{ω(m−1,n)∈G2}Var(m,n)( f )

)
,

where T (p2) = p−O(1)
2 . Using the standard inequality Varμ( f ) �

∑
n∈Z μ

(
Varμn ( f )

)
,

the Poincaré inequalities (3.1) and (3.2) follow.
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3.2.2. Proof of part (B) We next turn to the significantly more challenging task of prov-
ing the constrained Poincaré inequalities (3.3) and (3.4). As noted above, in addition to
Proposition 3.4 we will require a technical result from [26], stated below as Proposi-
tion 3.5. In order to state this result we need some additional notation.

Recall that an oriented path of length n in Z
2 is a sequence γ = (i (1), . . . , i (n)) of

n vertices of Z2 with the property that i (k+1) − i (k) ∈ {�e1, �e2} for each k ∈ [n − 1]. We
will say that γ starts at i (1), ends at i (n), and that i ∈ γ if i = i (k) for some k ∈ [n].
Moreover, given ω ∈ �, we will say that γ is

• ω-good if ωi ∈ G1 for all i ∈⋃
j∈γ

{
j, j + �e1, j − �e1

}
, and

• ω-super-good if it is good and there exists i ∈ γ such that ωi ∈ G2,

where G2 ⊆ G1 ⊆ S are the events in the statement of Theorem 3.1.
In what follows it will be convenient to order the oriented paths of length n starting

from a given point according to the alphabetical order of the associated strings of n unit
vectors from the finite alphabet X = {�e1, �e2}. Next, for each i ∈ Z

2 we define the key
event �i ⊂ �, as follows:

(i) there exists an oriented ω-good path γ , of length L = ⌊
1/p22

⌋
starting at i + �e2;

(ii) the smallest such path (in the above order) is ω-super-good;
(iii) ωi+�e1 ∈ G1.

In what follows, and if no confusion arises, we will abbreviate ω-good and ω-super-
good to good and super-good respectively. The following upper bound on Var( f ) is
very similar to [26, Proposition 3.4], and we therefore defer the proof to the Appendix.

Proposition 3.5. There exists δ > 0 such that, ifmax
{
p2, (1− p1)(log p2)2

}
� δ, then

Var( f ) � 4
∑

i∈Z2

μ
(
1�i Vari ( f )

)
(3.8)

for every local function f .

We would like to use Proposition 3.4 to bound the right-hand side of (3.8). However,
Proposition 3.4 provides us with an upper bound on the variance of a function, whereas
the quantityμ

(
1�i Vari ( f )

)
ismore like the average of a local variance.Wewill therefore

need to use convexity to bound from above the average of a local variance by a full
variance. In order to reduce as much as possible the potential loss of such an operation,
we first perform a series of conditionings on the measure μ and use convexity only on
the final conditional measure.

Roughly speaking, on the event �i we first reveal, for each j �= i within distance
2/p22 of the origin, whether or not the event {ω j ∈ G1} holds. Given this information,
we know which paths of length L and starting at i + �e2 are good and we define γ ∗ as the
smallest one in the order defined above (Fig. 1). Next, we reveal the last j∗ ∈ γ ∗ such
that {ω j∗ ∈ G2}. Note that in doing so we do not need to observe whether or not the
event {ω j ∈ G2} holds for any earlier j (i.e., before j∗ in γ ∗). Finally, defining γ ⊂ γ ∗
to be the part of γ ∗ before j∗, we reveal ω j for all j ∈ Z

2, except for j = i and j ∈ γ .
At the end of this process we are left with a (conditional) probability measure ν on

Sγ∪{i}. We will then apply convexity and Proposition 3.4 to this measure. We now detail
the above procedure.
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γ

γ∗

ξ

•
0

•

Fig. 1. The minimal good path γ ∗, the position of the first super-good vertex ξ encountered while traveling
backward along γ ∗, and the subpath γ ⊂ γ ∗ (thick black) connecting �e2 to a neighbour of ξ

Proof of part (B) of Theorem 3.1. Let δ > 0 be given by Proposition 3.5, and assume
that the events G2 ⊆ G1 ⊆ S satisfy max

{
p2, (1 − p1)(log p2)2

}
� δ. By Proposi-

tion 3.5, we have
Var( f ) � 4

∑

i∈Z2

μ
(
1�i Vari ( f )

)
(3.9)

for every local function f .Wewill bound each term of the sum in (3.9). Using translation
invariance, it will suffice to consider the term i = (0, 0).

For each ω ∈ �(0,0), let γ ∗ = γ ∗(ω) denote the smallest ω-good oriented path
of length L starting from �e2, and note that γ ∗ is ω-super-good, since ω ∈ �(0,0). Let
ξ = ξ(ω) ∈ γ ∗ be the first super-good vertex encountered while travelling along γ ∗
backwards, i.e., from its last point to its starting point �e2. Finally, let γ be the portion of
γ ∗ starting at �e2 and ending at the vertex preceding ξ in γ ∗.

We next perform the series of conditionings on the measure μ that were described
informally above. Let � be the box of side-length 4/p22 centred at the origin. We first
condition on the event �(0,0) and on the σ -algebra generated by the events

{{ω j ∈ G1} : j ∈ �\{(0, 0)}}.
Note that, since we are conditioning on the event �(0,0), these events determine γ ∗. Next
we condition on the position of ξ on γ ∗; this determines the path γ = (i (1), . . . , i (n)).
Finally,we condition on all of the variablesω j with j �∈ γ∪{(0, 0)}. Let ν be the resulting
conditional measure and observe that (Sγ∪{(0,0)}, ν) is a product probability space of the
form⊗ j∈γ∪{(0,0)}(S j , ν j ), with (S(0,0), ν(0,0)) = (S, μ̂) and (S j , ν j ) =

(
G1, μ̂(· |G1)

)

for each j ∈ γ . Notice that

μ
(
1�(0,0) Var(0,0)( f )

) = μ
(
1�(0,0) ν

(
Varν(0,0) ( f )

))
� μ

(
1�(0,0) Varν( f )

)
, (3.10)

because ν
(
Varν(0,0) ( f )

)
� Varν( f ), by convexity.

We can now bound Varν( f ) from above by applying Proposition 3.4 to the measure
ν = ⊗ j∈γ∪{(0,0)}(S j , ν j ), with the super-good event G2 as the constraining event Sgj .

Observe that ν
(
Sg(0,0)

) = μ̂(G2) = p2 and ν
(
Sgj

) = μ̂
(
G2 |G1

) = p2/p1 for each
j ∈ γ . The first Poincaré inequality (3.6) in Proposition 3.4 therefore gives

μ
(
1�(0,0) Varν( f )

)
� �T (p2) · μ

(

1�(0,0)

∑

i∈γ∪{(0,0)}
ν
(
1{ωm(i)∈G2}Varνi ( f )

))

, (3.11)
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where m(i) is the next point on the path γ ∗ after i (i.e., m(i) is either m(i) = i + �e1 or
m(i) = i + �e2) and

�T (p2) � 1

p2
sup

{
TEast(n, ᾱ) : n � L

}
� p−O(log(1/p2))

2 ,

by (3.5). Recall that in Definition 3.3 the constraint for the last point is identically equal
to one (this is in order to guarantee irreducibility of the chain), and observe that this
condition holds in the above setting because, by construction, ωξ ∈ G2.

Finally, we claim that (3.11) implies that

μ
(
1�(0,0) Varν( f )

)
� �T (p2)

∑

i∈�

(

μ
(
1{ωi+�e1∈G2}1{ωi−�e1∈G1}Vari ( f |G1)

)

+μ
(
1{ωi+�e2∈G2}1{ω j∈G1 ∀ j∈L+(i)}

(
Vari ( f ) + Vari ( f |G1)

))
)

.

(3.12)

Indeed, note that Varν(0,0) ( f ) = Var(0,0)( f ) and that Varνi ( f ) = Vari ( f |G1) for each
i ∈ γ , and recall that, by construction, ωi+�e1 , ωi−�e1 ∈ G1 for every i ∈ γ . Therefore,
for each i ∈ γ , if m(i) = i + �e1 then ωi−�e1 ∈ G1, and if m(i) = i + �e2 then ω j ∈ G1 for
each j ∈ L

+(i) = i +
{�e1, �e2− �e1

}
. Moreover, the event �(0,0) implies that ω j ∈ G1 for

each j ∈ L
+((0, 0)). Therefore, every term of the right-hand side of (3.11) is included

in the right-hand side of (3.12), and hence (3.11) implies (3.12), as claimed.
Now, combining (3.12) with (3.9) and (3.10), and noting that Vari ( f ) � p1 Vari

( f |G1) and that |�| � p−O(1)
2 , we obtain

Var( f ) � p−11 p−O(1)
2

�T (p2)
∑

i∈Z2

(

μ
(
1{ωi+�e1∈G2}1{ωi−�e1∈G1}Vari

(
f |G1

))

+μ
(
1{ωi+�e2∈G2}1{ω j∈G1 ∀ j∈L+(i)} Vari ( f )

))

,

which implies the oriented Poincaré inequality (3.3), as required.
The proof of the unoriented inequality (3.4) is almost the same, except we will use

the second Poincaré inequality (3.7) in Proposition 3.4, instead of (3.6). To spell out the
details, we obtain

μ
(
1�(0,0) Varν( f )

)
� T (p2) · μ

(

1�(0,0)

∑

i∈γ∪{(0,0)}
ν
(
ci Varνi ( f )

))

, (3.13)

where ci is the indicator of the event that G2 holds for at least one of the neighbours of
i on the path γ ∗, and

T (p2) � 1

p2
sup
n�L

TFA(n, ᾱ) = p−O(1)
2 ,

by (3.5). Note that the constraint for the last point is again identically equal to one since
ωξ ∈ G2. It follows (cf. 3.12) that
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μ
(
1�(0,0) Varν( f )

)
� T (p2)

∑

i∈�

∑

ε=±1

(

μ
(
1{ωi+ε�e1∈G2}1{ωi−ε�e1∈G1}Vari

(
f |G1

))

+μ
(
1{ωi+ε�e2∈G2}1{ω j∈G1 ∀ j∈Lε(i)}

(
Vari ( f ) + Vari

(
f |G1

)))
)

,

(3.14)

since ωi+�e1 , ωi−�e1 ∈ G1 for every i ∈ γ , and the event �(0,0) implies that ω j ∈ G1 for
each j ∈ L

+((0, 0)). In particular, note that if i ∈ γ and i + �e2 ∈ γ , then ω j ∈ G1 for
each j ∈ L

+(i) = L
−(i + �e2) = i +

{�e1, �e2 − �e1
}
. Therefore, as before, every term of

the right-hand side of (3.13) is included in the right-hand side of (3.14).
Finally, combining (3.14) with (3.9) and (3.10), and sinceVari ( f ) � p1 Vari ( f |G1)

and |�| � p−O(1)
2 , we obtain

Var( f ) � p−11 p−O(1)
2 T (p2)

∑

i∈Z2

∑

ε=±1

(

μ
(
1{ωi+ε�e1∈G2}1{ωi−ε�e1∈G1}Vari

(
f |G1

))

+μ
(
1{ωi+ε�e2∈G2}1{ω j∈G1 ∀ j∈Lε(i)} Vari ( f )

))

,

which gives the unoriented Poincaré inequality (3.4), as claimed, and hence completes
the proof of Theorem 3.1. ��

4. Renormalization and Spreading of Infection

In this section we shall define the setting to which we will apply Theorem 3.1 in order to
bound from above the relaxation time, and hence themean infection time, of supercritical
and critical KCM. We will begin with a very brief informal description, before giving
(in Sect. 4.1) the precise definition. We will then, in Sects. 4.2 and 4.3, state two results
from the theory of bootstrap percolation that will play an instrumental role in the proofs
of Theorems 1 and 2.

Our basic strategy is to partition the lattice Z
2 into disjoint rectangular “blocks”

{Vi }i∈Z2 , whose size is adapted to the bootstrap update family U . To each block Vi we
associate a block randomvariableωi ,which is just the collection of i.i.d. 0/1Bernoulli(p)
variables {ωx }x∈Vi attached to each vertex of the block. In order to avoid confusion we
will always use the letters i, j, . . . for the labels of quantities associated to blocks, and
the letters x, y, . . . for the labels of the quantities associated to vertices of Z2. We will
apply Theorem 3.1 to the block variables {ωi }i∈Z2 .

4.1. A concrete general setting. Let v and v⊥ be orthogonal rational directions in the
first and second quadrant of R2 respectively. Let �v be the vector joining the origin to the
first site of Z2 in direction v, and similarly for �v⊥. Let n1 � n2 be (sufficiently large)
even integers, and set

R := {
x ∈ R

2 : x = αn1�v + βn2�v⊥, α, β ∈ [0, 1)}. (4.1)

The finite probability space (S, μ̂) appearing in Sect. 3 will always be of the form
S = {0, 1}V , where V = R ∩ Z

2, and μ̂ is the Bernoulli(p) product measure. Observe
that the probability space (SZ

2
, μ) is isomorphic to � = {0, 1}Z2

equipped with the
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v

v⊥

Fig. 2. The partition into blocks Vi , i ∈ Z
2

Bernoulli(p) product measure which, with a slight abuse of notation, we will continue
to denote byμ. For our purposes, a convenient isomorphism between the two probability
spaces is given by a kind of tilted “brick-wall” partition of Z2 into disjoint copies of the
basic block V (see Fig. 2). To be precise, for each i = (i1, i2) ∈ Z

2, set Vi := Ri ∩ Z
2,

where Ri := R + (i1 + i2/2)n1�v + i2n2�v⊥.
In this partition the “northern” and “southern” neighbouring blocks of Vi (i.e., the

blocks corresponding to (i1, i2 ± 1)) are shifted in the direction �v by ± n1/2 w.r.t. Vi .
With this notation, and given ω ∈ SZ

2
, it is then convenient to think of the variable

ωi ∈ S as being the collection {ωx }x∈Vi ∈ {0, 1}Vi . The local variance term Vari ( f )
(i.e., the variance of f w.r.t. the variable ωi given all the other variables {ω j } j �=i ), which
appears in the various constrained Poincaré inequalities in the statement of Theorem 3.1,
is then equal to the variance VarVi ( f ) w.r.t. the i.i.d. Bernoulli(p) variables {ωx }x∈Vi ,
given all of the other variables {ωy}y∈Z2\Vi .

From now on, ω will always denote an element of {0, 1}Z2
and, given � ⊂ R

2,
we will write ω� for the collection of i.i.d. random variables {ωx }x∈�∩Z2 , and μ� for
their joint product Bernoulli(p) law. We will say that � is empty (or empty in ω) if ω is
identically equal to 0 on �∩Z

2, and similarly that � is filled (or completely occupied)
if ω is identically equal to 1 on � ∩ Z

2.
We now turn to the definitions of the good and super-good events G2 ⊂ G1 ⊆ S.

The good event G1 will depend on the update family U , and will (roughly speaking)
approximate the event that the block Vi can be “crossed” in the U-bootstrap process with
the help of a constant-width strip connecting the top and bottom of Vi . For supercritical
models this event is trivial, and therefore G1 is the entire space S; for critical models,
on the other hand, G1 will require the presence of empty vertices inside V obeying
certain model-dependent geometric constraints (see Definition 6.4, below). The super-
good event G2 for supercritical models will simply require that V is empty. For critical
models it will require thatG1 holds, and additionally that there exists an empty subsetR
of V , called a quasi-stable half-ring (see Definitions 4.9 and 6.4, and Fig. 5) of (large)
constant width, and height equal to that of V . We emphasize that the parameters n1, n2
will be chosen (depending on the model) so that the probabilities p1 and p2 of the events
G1 and G2 (respectively) satisfy the key condition

lim
q→0

max
{
p2,

(
1− p1

)(
log p2

)2
}
= 0

that appears in part (B) of Theorem 3.1.

4.2. Spreading of infection: the supercritical case. We are now almost ready to state the
property of U-bootstrap percolation (proved by Bollobás, Smith, and Uzzell [8]) that we
will need when U is supercritical, i.e., when there exists an open semicircle C ⊂ S1 that
is free of stable directions. If U is rooted, then we may choose −v (in the construction
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of the rectangle R and of the partition {Vi }i∈Z2 described in Sect. 4.1) to be the midpoint
of any such semicircle; if U is unrooted, on the other hand, then C can be chosen in such
a way that −C also has no stable directions, and we can choose v to be the midpoint of
any such semicircle.

Recall that [Vi ]U denotes the closure of Vi = Ri ∩Z2 under the U-bootstrap process.
The following result, proved in [8], states that a large enough rectangle can infect the
rectangle to its “left” (i.e., in direction −v) under the U-bootstrap process, and if U is
unrooted then it can also infect the rectangle to its “right” (i.e., in direction v).

Proposition 4.1. Let U be a supercritical two-dimensional update family. If n1 and n2
are sufficiently large, then the following hold:

(i) If U is unrooted, then V(−1,0) ∪ V(1,0) ⊂ [V(0,0)]U .
(ii) If U is rooted, then V(−1,0) ⊂ [V(0,0)]U .
Remark 4.2. By definition, in the rooted case the semicircle −C contains some stable
directions. Thus, V(1,0) �⊂ [V(0,0)]U .

The proof of Proposition 4.1 in [8] is non-trivial, and required some important inno-
vations, most notably the notion of “quasi-stable directions” (see Definition 4.5, below).
We will therefore give here only a brief sketch, explaining how one can read the claimed
inclusions out of the results of [8].

Sketch proof of Proposition 4.1. Both parts of the proposition are essentially immediate
consequences of the following claim: if R is a sufficiently large rectangle with two sides
parallel tow ∈ S1, and the semicircle centred atw is entirely unstable, then [R]U contains
every element of Z2 that can be reached from R by travelling in direction w. This claim
follows from [8], Lemma 5.5, since in this setting all of the quasi-stable directions in
S ′U (see [8], Section 5.3) are unstable (since they are contained in the semicircle centred
at w), and if u is unstable then the empty set is a u-block (see [8], Definition 5.1). We
refer the reader to [8], Sections 5 and 7 for more details.

4.3. Spreading of infection: the critical case. We next turn to the more complicated task
of precisely defining the good and super-good events for critical update families. In this
subsection we will lay the groundwork for the precise definitions of these events (which
we defer until Sect. 6, see Definition 6.4) by recalling some definitions from [5,8], and
introducing the key newobjects needed for the proof of Theorem2,whichwe call “quasi-
stable half-rings” (see Definition 4.9 and Fig. 5, below). Throughout this subsection, we
will assume that U is a critical update family with difficulty α ∈ [1,∞) and bilateral
difficulty β ∈ [α,∞] (see Definition 2.5). Recall that we say that U is α-rooted if
β � 2α, and that U is β-unrooted otherwise.

We begin by noting an important property of the set of stable directions S(U).

Lemma 4.3. If β < ∞ then S(U) consists of a finite number of isolated, rational
directions. Moreover, if U is β-unrooted and α(u∗) = max

{
α(u) : u ∈ S(U)

}
, then

α(u) � β for every u ∈ S(U)\{u∗,−u∗}.
Proof. By [8, Theorem 1.10], S(U) is a finite union of rational closed intervals of S1,
and by [8], Lemma 5.2 (see also [5], Lemma 2.7), if u ∈ S(U) is a rational direction,
then α(u) <∞ if and only if u is an isolated point of S(U). Thus, if one of the intervals
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in S(U) is not an isolated point, then there exist two non-opposite stable directions in
S1, each with infinite difficulty, and so β = ∞.

Now, suppose that U is β-unrooted, and that u ∈ S(U) satisfies α(u) > β and
u �∈ {u∗,−u∗}. Then u and u∗ are non-opposite stable directions in S1, each with
difficulty strictly greater than β, which contradicts the definition of β. ��

In particular, if U is β-unrooted then Lemma 4.3 guarantees the existence of an open
semicircle C such that (C ∪−C)∩S(U) consists of finitely many directions, each with
difficulty at most β. The next lemma provides a corresponding property for α-rooted
models.

Lemma 4.4. If U is α-rooted, then there exists an open semicircle C such that C ∩S(U)

consists of finitely many directions, each with difficulty at most α.

Proof. By Definition 2.5, there exists an open semicircle C such that each u ∈ C
has difficulty at most α. Since U is critical (and hence α is finite), it follows from [8,
Lemma 5.2] (cf. the proof of Lemma 4.3) that each u ∈ C is either unstable, or an
isolated element of S(U), and hence C ∩ S(U) is finite, as claimed. ��

Let us fix (for the rest of the subsection) an open semicircle C , containing finitely
many stable directions, and such that the following holds:

• if U is α-rooted then α(v) � α for each v ∈ C ;
• if U is β-unrooted then α(v) � β for each v ∈ C ∪ −C .

Let us also choose C such that its mid-point u belongs to Q1, and denote by ±u⊥ the
boundary points ofC .When drawing pictures wewill always think ofC as the semicircle
(−π/2, π/2), though we emphasize that we do not assume that u is parallel to one of
the axes of Z2. We remark that the values of α(u⊥) and α(−u⊥) will not be important:
we will only need to use the fact that they are both finite.

We are now ready to define one of the key notions from [8], the set of quasi-stable
directions. These are directions that are not (necessarily) stable, but which nevertheless
it is useful to treat as if they were. For any v ∈ S1, let us write v̂ for the direction in S1

that is symmetric to v w.r.t. the mid-point u of C .

Definition 4.5 (Quasi-stable directions).We say that a direction v ∈ Q1 is quasi-stable
if either v or v̂ is a member of the set

{u} ∪ S(U) ∪
( ⋃

X∈U

⋃

x∈X

{
v ∈ S1 : 〈v, x〉 = 0

}
)

.

Observe that there are only finitely many quasi-stable directions inC (and, if β <∞,
only finitely many in S1). The key property of the family of quasi-stable directions is
given by the following lemma, which allows us to empty the sites near the corners of
“quasi-stable half-rings” (see Definition 4.9, below). Recall that we write �v for the
discrete line {x ∈ Z

2 : 〈x, v〉 = 0} (Fig. 3).
Lemma 4.6 [[8, Lemma 5.3]].For every pair v, v′ of consecutive quasi-stable directions
there exists an update rule X such that X ⊂ (

Hv ∪ �v

) ∩ (
Hv′ ∪ �v′

)
.

Proof. The statement was proved in [8] (see also [5, Lemma 3.5]) for the family S(U)∪(⋃
X∈U

⋃
x∈X

{
v ∈ S1 : 〈v, x〉 = 0

})
of quasi-stable directions, and it therefore holds

for any superset of this family.
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Fig. 3. The geometric setting of Lemma 4.6

v

u⊥

∂ext
λ (S)

∂+(S)

Fig. 4. A v-strip S, the +-boundary of S, the external boundary (solid segment), and its subset ∂extλ (S) (thick
solid segment)

In order to define quasi-stable half-rings, we first need to introduce some additional
notation:

Definition 4.7. Let v ∈ Q1 with α(v) � α. A v-strip S is any closed parallelogram in
R
2 with long sides perpendicular to v and short sides perpendicular to u⊥.

• The +-boundary and −-boundary of S, denoted ∂+(S) and ∂−(S) respectively, are
the sides of S with outer normal v and −v.

• The external boundary ∂ext(S) is defined as that translate of ∂+(S) in the v-direction
which captures for the first time a new lattice point not already present in S.

• Given λ > 0, we define ∂extλ (S) as the portion of ∂ext(S) at distance λ from its
endpoints (see Fig. 4).

If v is a stable direction, then a v-strip needs some “help” from other infected sites
in order to infect its external boundary (in the U-bootstrap process). Our next ingredient
(also first proved in [8]) provides us with a set that suffices for this purpose.

Let v be a quasi-stable direction with difficulty α(v) � α, and let Zv ⊂ Z
2 be a

set of cardinality α such that [Hv ∪ Zv]U ∩ �v is infinite. (In the language of [5], Zv is
called a voracious set.) The following lemma (see [8, Lemma 5.5] and [5, Lemma 3.4])
states that if S is a sufficiently large v-strip, then a bounded number of translates of Zv ,
together with S ∩ Z

2, are sufficient to infect ∂extλ (S) for some λ = O(1).

Lemma 4.8. There exist λv > 0, Tv = {a1, . . . , ar } ⊂ �v and b ∈ �v such that the
following holds. If S is a sufficiently large v-strip such that ∂ext(S) ∩ Z

2 ⊂ �v , then

∂extλv
(S) ∩ Z

2 ⊂ [
(S ∩ Z

2) ∪ (Zv + a1 + k1b) ∪ · · · ∪ (Zv + ar + krb)
]
U (4.2)

for every k1, . . . , kr ∈ Z such that ai + kib ∈ ∂extλv
(S) for every i ∈ [r ].
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u

u⊥

Fig. 5. A quasi-stable half-ring

Let us fix, for each quasi-stable direction v ∈ C , a constant λv > 0, a set Tv =
{a1, . . . , ar } ⊂ �v and a site b ∈ �v given by Lemma 4.8. If S is a sufficiently large
v-strip such that ∂ext(S) ∩ Z

2 ⊂ �v + x for some x ∈ Z
2, then we will refer to any set

of the form (
(Zv + a1 + k1b) ∪ · · · ∪ (Zv + ar + krb)

)
+ x, (4.3)

with ai + kib + x ∈ ∂extλv
(S) for every i ∈ [r ], as a helping set for S.

We are finally ready to define the key objects we will use to control the movement of
empty sites in a criticalKCM, the quasi-stable half-rings. These are non-self-intersecting
polygons, obtained by patching together suitable v-strips corresponding to quasi-stable
directions (see Fig. 5). Recall from Definition 4.5 that, by construction, the set of quasi-
stable directions in C is symmetric w.r.t. the midpoint u of C .

Definition 4.9 (Quasi-stable half-rings).Let (v1, . . . , vm) be the quasi-stable directions
inC , ordered in such away that vi and vi+1 are consecutive directions for any i ∈ [m−1],
and vi−1 comes before vi in clockwise order. Let Svi be a vi -strip with length �i and
width wi . We say that R :=⋃m

i=1 Svi is a quasi-stable half-ring of width w and length
� if the following holds:

(i) wi = w and �i = � for each i ∈ [m];
(ii) Svi ∩ Sv j = ∅, unless vi and v j are consecutive directions, in which case the two

strips share exactly one of their short sides and no other point.

We can finally formulate the “spreading of infection” result that we will need later.
Given a quasi-stable half-ringR, we will writeR∗ for the quasi-stable half-ringR+ su,
where s > 0 is minimal such that

(R∗\R)∩Z2 is non-empty. Also, for any setU ⊂ Z
2,

let us write [A]UU for the closure of A under the U-bootstrap process restricted to U .

Proposition 4.10. There exists a constant λ = λ(U) > 0 such that following holds. Let
R be a quasi-stable half-ring of width w and length �, where w, � � λ. Let U be the set
of points of Z2 within distance λ ofR∪R∗, and let Zi be a helping set for Svi for each
i ∈ [m]. Then

R∗ ∩ Z
2 ⊂ [(R ∩ Z

2) ∪ Z1 ∪ · · · ∪ Zm
]U
U .

Proof. This is a straightforward consequence of Lemmas 4.6 and 4.8. To see this, note
first that, by Lemma 4.8, the closure of

(R∩Z2
)∪ Z1 ∪ · · · ∪ Zm under the U-bootstrap

process contains all points ofR∗∩Z2 except possibly those that lie within distance O(1)
of a corner of R. Moreover, the path of infection described in the proof of Lemma 4.8
in [5,8] only uses sites within distance O(1) of the v-strip S. Thus, if λ is chosen large
enough, we have ∂extλ/4(Svi ) ∩ Z

2 ⊂ [(R ∩ Z
2
) ∪ Zi

]U
U for each i ∈ [m].
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Now, by Lemma 4.6, it follows that the set
[(R ∩ Z

2
) ∪ Zi ∪ Zi+1

]U
U contains the

remaining sites of ∂ext(Svi ) ∩ Z
2 and ∂ext(Svi+1) ∩ Z

2 that lie within distance λ/4 of
the intersection of Svi and Svi+1 . Indeed, these sites can be infected one by one, working
towards the corner, using sites in R ∪ ∂extλ/4(Svi ) ∪ ∂extλ/4(Svi+1). Since this holds for each

i ∈ [m − 1], it follows that the whole of R∗ ∩ Z
2 is infected, as claimed. ��

Given a quasi-stable half-ring R of width w, we will write R′ for the quasi-stable
half-ring R + wu, i.e., the minimal translate of R in the u-direction such that R ∩ Z

2

and R′ ∩ Z
2 are disjoint.

Corollary 4.11. There exists a constant λ = λ(U) > 0 such that following holds. LetR
be a quasi-stable half-ring of width w and length �, and suppose that w � λ and � � λ.
Let U be the set of points of Z2 within distance λ ofR∪R′, and let A ⊂ U be such that
for any quasi-stable direction v, and any v-strip Sv such that ∂ext(Sv) ∩R′ has length
at least �, there exists a helping set for Sv in A. Then

R′ ∩ Z
2 ⊂ [(R ∩ Z

2) ∪ A
]U
U .

Proof. By construction, each vi -strip ofR has a helping set inR′. Therefore, by Propo-
sition 4.10, the U-bootstrap process restricted to U is able to infect the quasi-stable
half-ring R∗. We then repeat with R replaced by R∗, and so on, until the entire quasi-
stable half-ring R′ has been infected. ��

Observe that, under the additional assumption that each quasi-stable direction v has
a helping set contained in �v , we may choose A to be a subset ofR′, but that in general
we may (at some stage) need a helping set not contained inR′ in order to advance in the
u-direction.

Remark 4.12. Later on, wewill also need the above results in the slightly different setting
in which the first v1-strip entering in the definition ofR is longer than the others, while
all of the other v j -strips, j �= 1 have the same length. In this case we will refer toR as an
elongated quasi-stable half-ring. For simplicity we preferred to state Proposition 4.10
in the slightly less general setting above, but exactly the same proof applies if R is an
elongated quasi-stable half-ring.

5. Supercritical KCM: Proof of Theorem 1

In this section we shall prove Theorem 1, which gives a sharp (up to a constant factor
in the exponent) upper bound on the mean infection time for a supercritical KCM. We
will first (in Sect. 5.1) give a detailed proof in the case that U is unrooted, and then (in
Sect. 5.2) explain briefly how the proof can be modified to prove the claimed bound for
rooted models.

5.1. The unrooted case. Let U be a supercritical, unrooted, two-dimensional update
family; we are required to show that there exists a constant λ = λ(U) such that

Eμ(τ0) � q−λ
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for all sufficiently smallq > 0.Todo so, recall first from (2.8) thatEμ(τ0) � Trel(q,U)/q,
and therefore, by Definition 2.9, it will suffice to prove that

Var( f ) � q−λ
∑

x

μ
(
cx Varx ( f )

)
(5.1)

for some λ = λ(U) > 0 and all local functions f , where cx denotes the kinetic constraint
for the KCM, i.e., cx is the indicator function of the event that there exists an update rule
X ∈ U such that ωy = 0 for each y ∈ X + x . We will deduce a bound of the form (5.1)
from Theorem 3.1 and Proposition 4.1.

Recall the construction and notation described in Sects. 4.1 and 4.2; in particular,
recall the definitions of the blocks Vi , of the parameters n1 and n2 (which determine the
side lengths of the basic rectangle R), and the choice of v as the midpoint of an open
semicircleC ⊂ S1 such that the setC∪−C contains no stable directions. As anticipated
in Sect. 4.1, the choice of the good and super-good events G2 ⊂ G1 ⊆ S entering in
Theorem 3.1, is, in this case, extremely simple.

Definition 5.1. If U is a supercritical two-dimensional update family, then:

(a) every block Vi satisfies the good event G1 for U (i.e., G1 = S);
(b) a block Vi satisfies the super-good event G2 for U if and only if it is empty.

Let us fix the parameters n1 and n2 to be O(1), but sufficiently large so that Proposi-
tion 4.1 holds. It follows that if V(0,0) is super-good, then the blocks V(−1,0) and V(1,0)
(its nearest neighbours to the left and right respectively) lie in the closure under the
U-bootstrap process of the empty sites in V(0,0). In particular,

t± = min
{
t > 0 : At ⊇ V(±1,0)

}
,

are both finite, where At is the set of sites infected after t steps of theU-bootstrap process,
starting from A0 = V(0,0) (see Definition 2.1). With foresight, define

� := (
At−\V(0,0)

)
+ n1�v, (5.2)

and note that � ∩ V�e1 = ∅ and V(0,0) ⊂ �.

Proof of part (a) of Theorem 1. The first step is to apply Theorem 3.1 to the probabil-
ity space (SZ

2
, μ) described in Sect. 4.1, in which each ‘block’ variable ωi ∈ S is

given by the collection {ωx }x∈Vi ∈ {0, 1}Vi of i.i.d. Bernoulli(p) variables. Recall that
p1 = μ̂(G1) and p2 = μ̂(G2) are the probabilities of the good and super-good events,
respectively, and note that, in our setting, p1 = 1 and p2 � qO(n1n2) = qO(1). It follows,
using (3.2), that

Var( f ) � 1

qO(1)

∑

i∈Z2

μ
(
1{either Vi+�e1 or Vi−�e1 is empty} VarVi ( f )

)
(5.3)

for all local functions f ,whereVarVi ( f )denotes the variancewith respect to the variables{ωx }x∈Vi , given all the other variables {ωy}y∈Z2\Vi .
To deduce (5.1), it will suffice (by symmetry) to prove an upper bound on the right-

hand side of (5.3) of the form

μ
(
1{V�e1 is empty} VarV(0,0) ( f )

)
� 1

qO(1)

∑

x∈�∪V�e1
μ

(
cx Varx ( f )

)
(5.4)
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for the set � defined in (5.2), since the elements of �∪ V�e1 are all within distance O(1)
from the origin, and so we may then simply sum over all i ∈ Z

2.
To prove (5.4), the first step is to observe that, by the convexity of the variance, and

recalling that � ∩ V�e1 = ∅ and V(0,0) ⊂ �, we have

μ
(
1{V�e1 is empty} VarV(0,0) ( f )

)
� μ

(
1{V�e1 is empty} Var�( f )

)
. (5.5)

To conclude, we appeal to the following result which, for later purposes, we formulate
in a slightly more general setting than is needed here. In what follows, for any ω ∈ �

and U ⊂ Z
2, we shall write [ω]UU for the closure of the set

{
x ∈ Z

2 : ωx = 0
}
under

the U-bootstrap process restricted to U .

Lemma 5.2. Let A, B ⊂ Z
2 be disjoint sets, and let E be an event depending only on

ωB. Suppose that there exists a set U ⊃ A∪ B such that B ⊂ [ω]UU for any ω ∈ {0, 1}U
for which A is empty and ωB ∈ E . Then

μ
(
1{A is empty} VarB

(
f | E))

� |U |q−|U | 2
pq

∑

x∈U
μ

(
cx Varx ( f )

)
(5.6)

for any local function f .

Before proving the lemma we conclude the proof of part (a) of Theorem 1. We apply
the lemma with A = V�e1 , B = �, U = A ∪ B and E the trivial event, i.e., E = �B .

Indeed, by construction (see (5.2)), � ⊂ [
V�e1

]U
U . Thus (5.6) becomes

μ
(
1{V�e1 is empty} Var�( f )

)
� |U |q−|U | 2

pq

∑

x∈U
μ

(
cx Varx ( f )

)
. (5.7)

Since |U | = O(1), and using (5.5), we conclude that for all i ∈ Z
2,

μ
(
1{Vi+�e1 is empty} VarVi ( f )

)
� 1

qO(1)

∑

x∈Ui

μ
(
cx Varx ( f )

)
,

where Ui is the analogue of U for the block Vi .
As noted above, summing over i ∈ Z

2 and using (5.3), we obtain the Poincaré
inequality (5.1) with constant q−O(1), and by (2.8) and Definition 2.9 it follows that
there exists a constant λ = λ(U) such that

Eμ(τ0) � Trel(q,U)

q
� q−λ,

for all sufficiently small q > 0, as required. Since the bootstrap infection time TU
of a supercritical update family satisfies TU = q−�(1), it also follows that Eμ(τ0)

� T O(1)
U . ��

Proof of Lemma 5.2. Observe first that, for any ω ∈ �,

VarB
(
f | E)

(ωZ2\B)� 1

μB(E)

∑

ηB∈E
μB(ηB)

(
f
(
ηB, ωZ2\B

)− f
(
0, ωZ2\B

))2
, (5.8)
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since E
[
(X − a)2

]
is minimized by taking a = E[X ], where (

0, ωZ2\B
)
denotes the

configuration that is equal to ωZ2\B outside B, and empty inside B.
We will break each term on the right-hand side of (5.8) into the sum of single spin-

flips using the U-bootstrap process as follows. Fix ω ∈ � such that A is empty, and
fix ηB ∈ E . Using the assumption of the lemma, we claim that there exists a path
γ ≡ (ω(0), . . . , ω(m)) in � such that:

(i) ω(0) = (ηB, ωZ2\B) and ω(m) = (0, ωZ2\B);
(ii) the length m of γ satisfies m � 2|U |;
(iii) for each k = 1, . . . ,m, there exists a vertex x (k) ∈ U such that

• the configuration ω(k) is obtained from ω(k−1) by flipping the value at x (k);
• this flip is legal, i.e., cx (k)

(
ω(k−1)) = 1.

We construct γ in two steps: first we empty all of B, and possibly some ofU\B; then we
reconstruct ωZ2\B without changing ωB . To spell out the details, observe first that, since

B ⊂ [(
ηB, ωU\B

)]U
U , there exists a sequence of legal flips inU connecting

(
ηB, ωZ2\B

)

to a configuration with A ∪ B empty. By choosing a minimal such sequence, we may
assume that all of the flips are from occupied to empty, and therefore that this first part
of the path has length at most |U |.

Now, to reconstruct ωZ2\B , we simply run the same sequence backwards, except
without performing the steps inside B. Note that all of these flips are legal, since skipping
the steps inside B only creates additional empty sites, and that this second part of the
path also has length at most |U |, as required.

It follows, using Cauchy–Schwarz, that

(
f
(
ηB , ω

Z2\B
)− f

(
0, ω

Z2\B
))2

� m
m∑

k=1
cx (k)

(
ω(k−1))( f

(
ω(k))− f

(
ω(k−1)))2

� 2|U | 1
μ∗

1

pq

∑

x∈U

∑

η∈{0,1}U
μU (η)cx (η, ω

Z2\U ) pq
(
f
(
η(x), ω

Z2\U
)− f

(
η, ω

Z2\U
))2

,

for any ω in which A is empty, and any ηB ∈ E , whereμ∗ = minη∈{0,1}U μU (η) = q |U |,
and η(x) denotes the configuration obtained from η by flipping the spin at x . Notice that
the right-hand side does not depend on ηB , and that pq

(
f
(
η(x), ωZ2\U

)− f
(
η, ωZ2\U

))2

is the local variance Varx ( f ) computed for the configuration ω ≡ (η, ωZ2\U ).
Hence, using (5.8), we obtain

1{A is empty} VarB
(
f | E)

(ωZ2\B) � 2|U |q−|U |
pq

∑

x∈U
μU (cx Varx ( f )

)
(ωZ2\U )

for any ω ∈ �, and inequality (5.6) follows by averaging using the measure μ. ��

5.2. The rooted case. Let U be a supercritical, rooted, two-dimensional update family,
let C ⊂ S1 be a semicircle with no stable directions and recall that, thanks to (2.8), it
will suffice to prove a Poincaré inequality (cf. 5.1) with constant q−O(log(1/q)). To prove
this we will follow almost exactly the same route of the unrooted case, with the same
definition of the blocks Vi and of the good and super-good events. We will therefore
only give a very brief sketch of the proof in this new setting.
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The main difference w.r.t. the unrooted case is that now the opposite semicircle −C
will necessarily contain some stable directions. This forces us to use the orientedPoincaré
inequality (3.1) from Theorem 3.1 instead of the unoriented one (3.2), because in this
case (see Proposition 4.1 and Remark 4.2) a super-good block is able to infect the block
to its left but not the block to its right, i.e., V(−1,0) ⊂ [V(0,0)]U but V(1,0) �⊂ [V(0,0)]U .
Proof of part (b) of Theorem 1. We again apply Theorem 3.1 to the probability space
(SZ

2
, μ) described in Sect. 4.1, but we use (3.1) instead of (3.2). Recalling that p1 = 1

and p2 = qO(1), we obtain

Var( f ) � 1

qO(log(1/q))

∑

i∈Z2

μ
(
1{Vi+�e1 is empty} VarVi ( f )

)
(5.9)

for all local functions f . As before, using translation invariance, we only examine the
i = (0, 0) term in the above sum. We claim that

μ
(
1{V�e1 is empty} VarV(0,0) ( f )

)
� 1

qO(1)

∑

x∈U
μ

(
cx Varx ( f )

)
(5.10)

for U = V�e1 ∪ �, where � is the set defined in (5.2). However, the proof of (5.10) is
identical to that of (5.4), since Proposition 4.1 implies that V(0,0) can be entirely infected
by V�e1 . We therefore obtain the Poincaré inequality

Var( f ) � 1

qO(log(1/q))

∑

x

μ
(
cx Varx ( f )

)
(5.11)

for all local functions f . Thus Trel(q,U) � q−O(log(1/q)), and hence

Eμ(τ0) � Trel(q,U)

q
� q−O(log(1/q)) = T O(log TU )

U ,

as required, because TU = q−�(1). ��

6. Critical KCM: Proof of Theorem 2 Under a Simplifying Assumption

In this section we shall prove Theorem 2 under the following additional assumption (see
below): every stable direction v with finite difficulty has a voracious set that is a subset
of the line �v . By doing so, we avoid some technical complications (mostly related to
the geometry of the quasi-stable half-ring) which might obscure the main ideas behind
the proof. The changes necessary to treat the general case are spelled out in detail in
Sect. 7.

Assumption 6.1. For any stable direction u ∈ S with finite difficulty α(u), there exists
a set Zu ⊂ �u of cardinality α(u) such that

[
Hu ∪ Zu

]
U ∩ �u is infinite.

As in Sect. 5, ourmain taskwill be to establish a suitable upper boundon the relaxation
time Trel(U; q). In Sect. 6.1 we will first analyse the α-rooted case and the starting point
will be the constrained Poincaré inequality (3.3); the proof the β-unrooted case (see Sect.
6.2) will be essentially the same, the main difference being that (3.3) will be replaced
by (3.4).
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6.1. α-Rooted update families. Let U be a critical, α-rooted, two-dimensional update
family, and recall from Definition 2.12 that U has difficulty α, and bilateral difficulty
at least 2α. The properties of U that we will need below have already been proved in
Sect. 4.3; they all follow from the fact (seeLemma4.4) that there exists anopen semicircle
C such that C ∩ S(U) consists of finitely many directions, each with difficulty at most
α. In particular, we will make crucial use of Corollary 4.11.

We will prove that, if Assumption 6.1 holds, then there exists a constant λ = λ(U)

such that

Eμ(τ0) � Trel(q,U)

q
� exp

(
λ · q−2α(

log(1/q)
)4

)

for all sufficiently small q > 0. Note that the first inequality follows from (2.8), and so,
by Definition 2.9, it will suffice to prove that

Var( f ) � exp
(
λ · q−2α(

log(1/q)
)4

) ∑

x∈Z2

μ
(
cx Varx ( f )

)
(6.1)

for some λ = λ(U) and all local functions f . We will deduce a bound of the form (6.1)
starting from (3.3) and using Corollary 4.11.

Remark 6.2. We are not able to use the unoriented constrained Poincaré inequality (3.4)
in place of the oriented inequality (3.3) in the proof of (6.1) because there exist α-rooted
models (the Duarte model [16] is one such example) with β = ∞ such that, for any
choice of the side-lengths n1 and n2 of the blocks Vi , and of the good and super-good
events G2 ⊂ G1 satisfying the condition (1 − p1)(log p2)2 = o(1), the U-bootstrap
process is not guaranteed to be able to infect the block Vi using only that facts that the
block Vi−�e1 is infected and that some nearby blocks Vj are good. For update families
with 2α < β < ∞, it is possible to apply (3.4) for certain choices of (n1, n2,G1,G2),
but the best Poincaré constant we are able to obtain in this way is roughly exp

(
q−β

)
,

which is much larger than the one we prove using (3.3).

6.1.1. The geometric setting and the good and super-good events. Recall the construc-
tion and notation described in Sects. 4.1 and 4.3; in particular, recall that V = R ∩ Z

2,
where R is a rectangle in the rotated coordinates (v, v⊥), and u = −v is the midpoint
of an open semicircle C ⊂ S1 in which every stable direction has difficulty at most α.
As in Sect. 4, when drawing figures we will think of u as pointing to the left. We will
choose the parameters n1 and n2 (which determine the side-lengths of R) depending on
q; to be precise, set

n1 =
⌊
q−3κ

⌋
and n2 =

⌊
κ4q−α log(1/q)

⌋
,

where κ = κ(U) is a sufficiently large constant.
In order to define the good and super-good events G1 and G2, we need to define

some structures which we call κ-stairs, which will provide us with a way of transporting
infection ‘vertically’. Let us call the set of points of V lying on the same line parallel
to u (resp. u⊥) a row (resp. column) of V , and let us order the rows from bottom to top
and the columns from left to right. Let a and b be (respectively) the number of rows
and columns of V , and observe that, since v is a rational direction, we have a = �(n2)
and b = �(n1), where the implicit constants depend only on the update family U . We
will say that a set of vertices is an interval of V if it is the intersection with V of a line
segment in R2. Recall that κ = κ(U) > 0 was fixed above.
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Definition 6.3. We say that a collectionM = {
M (1), . . . , M (a)

}
of disjoint intervals of

V of size 2κ forms an upward κ-stair with steps M (1), M (2), . . . if:

(i) for each i ∈ [a], the i th-step M (i) belongs to the i th-row of V ;
(ii) the i th-step is “to the left” of the j th-step if i < j . More precisely, let

(
M (i)

� , M (i)
r

)

be the abscissa (in the (v, v⊥)-frame) of the leftmost and rightmost elements (re-
spectively) of the i th-step. Then M (i)

r < M ( j)
� whenever i < j .

We refer the reader to Fig. 7 for a picture of an upward κ-stair.
We are now ready to define the good and super-good events. Let us say that a quasi-

stable half-ring R fits in the block Vi if the top and bottom sides of R are contained
in the top and bottom sides of Ri , and note that this determines the length � of R,
which moreover satisfies � � n2/m (see Definition 4.9). Let (v1, . . . , vm) be the quasi-
stable directions in C (see Definition 4.5), and recall the definitions of a v-strip Sv (see
Definition 4.7) and of a helping set Z for Sv (see immediately after Lemma 4.8). Note
that Assumption 6.1 implies that, for any j ∈ [m] and v j -strip Sv j , we may choose the
voracious set Zv j so that the helping sets for Sv j are subsets of ∂ext(Sv j ).

Definition 6.4 (Good and super-good events).

(1) The block Vi = Ri ∩ Z
2 satisfies the good event G1 iff:

(a) for each quasi-stable direction v ∈ C and every v-strip S such that the length of
the segment ∂ext(S) ∩ Ri is at least n2/(4m), there exists an empty helping set
Z ⊂ ∂ext(S) ∩ Vi for S;

(b) there exists an empty upward κ-stair within the leftmost quarter of Vi .
(2) The block Vi satisfies the super-good event G2 iff it satisfies the good event G1,

and moreover there exists an empty quasi-stable half-ringR of width κ , that fits in
Vi and is entirely contained in the rightmost quarter of Ri .

Next we prove that the hypothesis for the part (B) of Theorem 3.1 holds in the above
setting if κ is sufficiently large.

Lemma 6.5 Let p1 := μ̂(G1) and p2 := μ̂(G2). There exists a constant κ0(U) > 0
such that, for any κ > κ0(U),

lim
q→0

(
1− p1

)(
log(1/p2)

)2 = 0.

Proof First, let’s bound the probability that there is no empty helping set Z ⊂ Vi for
a given v-strip S (where v is a quasi-stable direction in C) such that ∂ext(S) ∩ Ri has
length at least n2/(4m). Observe that we can choose �(n2) potential values for each k j
in (4.3) such that the corresponding sets Zv + a j + k j b are pairwise disjoint subsets of
∂ext(S) ∩ Vi (using Assumption 6.1), and that each such translate of Zv is empty with
probability qα . (Here the implicit constant depends only on U .) The probability that S
has no empty helping set is therefore at most

O
((
1− qα

)�(n2)
)

� qκ3

if κ is sufficiently large and q ! 1. There are at most O(n21n
2
2) choices for the quasi-

stable direction v ∈ C and for the intersection of the v-strip S with Vi . Thus, by the
union bound, part (a) of the definition of G1 holds with probability at least 1− qκ2 .
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To bound the probability of part (b), observe that an interval of V of size �(n1/n2)
contains an empty interval of V of size 2κ with probability at least

1− (
1− q2κ

)�(n1/n2) � 1− exp
(− q−κ+2α)

,

if q ! 1, and therefore the probability that V contains an empty upward κ-stair is (by
the union bound) at least

1− O(n2) exp
(− q−κ+2α)

� 1− qκ2 (6.2)

if κ is sufficiently large and q ! 1. It follows that

1− p1 = 1− μ̂(G1) � 2 · qκ2 .

Moreover, the probability that there exists an empty quasi-stable half-ringR of width κ

that fits in Vi is at least qO(n2), so (by the FKG inequality) we have

log(1/p2) � O(n2) log(1/q) � O
(
q−α

(
log(1/q)

)2
)
,

where the implicit constant is independent of q. It follows that, if κ is sufficiently large,
then

(
1− p1

)(
log(1/p2)

)2 → 0 as q → 0, as required.

Let us fix, from now on, the constant κ to be sufficiently large so that Lemma 6.5
applies. In particular, by Theorem 3.1, the constrained Poincaré inequality (3.3) holds
for any local function f , i.e.,

Var( f ) � �T (p2)

( ∑

i∈Z2

μ
(
1{ωi+�e2∈G2}1{ω j∈G1 ∀ j∈L+(i)} VarVi ( f )

)

+
∑

i∈Z2

μ
(
1{ωi+�e1∈G2}1{ωi−�e1∈G1} VarVi

(
f |G1

))
)

, (6.3)

with

�T (p2) = eO(log(p2)2) = exp
(
O

(
q−2α log(1/q)4

))
.

As in the supercritical setting (see Sect. 5), our strategy will be to bound each of the
sums in the r.h.s. of (6.3) from above in terms of the Dirichlet form D( f ) of our KCM.
To do so, it will suffice to bound from above, for a fixed (and arbitrary) local function f ,
the following two generic terms:

I1(i) := μ
(
1{ωi+�e1∈G2}1{ωi−�e1∈G1}VarVi

(
f |G1

))
,

and

I2(i) := μ
(
1{ωi+�e2∈G2}1{ω j∈G1 ∀ j∈L+(i)} VarVi ( f )

)
,

see Fig. 6. Using translation invariance it suffices to consider only the case i = (0, 0),
so let us set I1 ≡ I1((0, 0) and I2 ≡ I2((0, 0)).

Define W1 = V(0,0) ∪ V(−1,0) ∪ V(1,0) and W2 = V(0,0) ∪ V(−1,0) ∪ V(1,0) ∪ V(−1,1) ∪
V(0,1). We will prove the following upper bounds on I1 and I2.
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Fig. 6. In I1 the block V ≡ V(0,0) is conditioned to be good (G), while the blocks V(−1,0) and V(1,0) are
good and super-good (SG) respectively. Recall that L+((0, 0)) = {

(1, 0), (−1, 1)}, so in I2 the blocks V(1,0)
and V(−1,1) are good, the block V(0,1) is super-good, and V is unconditioned

Proposition 6.6 For each j ∈ {1, 2}, there exists a O(1)-neighbourhood Ŵ j of W j such
that

I j � exp
(
O

(
q−α log(1/q)3

)) ∑

x∈Ŵ j

μ
(
cx Varx ( f )

)
.

Observe that, combining Proposition 6.6 with (6.3), and noting that |Ŵ j | = q−O(1),
we immediately obtain a final Poincaré inequality of the form (6.1), i.e.,

Var( f ) � exp
(
O

(
q−2α log(1/q)4

)) ∑

x∈Z2

μ
(
cx Varx ( f )

)
,

as required. It will therefore suffice to prove Proposition 6.6.

6.1.2. The core of the proof of Proposition 6.6. Before giving the full technical details
of the proof of the proposition, we first explain the high-level idea we wish to exploit.
Fix j ∈ {1, 2}, set W := Wj , and fix ω ∈ � such that the restriction of ω to W satisfies
the requirement of the good and super-good environment of the blocks (see Fig. 7). The
key idea is to cover the block V = V(0,0) with a collection of pairwise disjoint “fibers”
F̂1, . . . , F̂N+1, each of which is a quasi-stable half-ring, for some N � |V | depending
on ω. For each fiber F̂i , the set Fi := F̂i ∩Z

2 is a subset ofW of cardinality O(n2) with
the following key properties (which we will define precisely later):

(a) the fiber FN+1 is empty;
(b) in each fiber Fi a certain “helping” event Hi , depending only on the restriction of ω

to Fi , and implied by our assumption on the goodness7 of the blocks in W , occurs;
(c) the helping event Hi has the following property: the U-bootstrap process restricted

to a O(1)-neighbourhood of the set Fi ∪ Fi+1 is able to infect Fi for any ω such
that Fi+1 is empty and Hi occurs.

To be concrete, let us consider the term I1. In this case we will take FN+1 to beR∩Z
2,

whereR is the rightmost empty quasi-stable half-ring of width κ that fits in V(1,0), which
exists by our assumption that V(1,0) is a super-good block. The other fibers F1, . . . , FN
will be suitable disjoint translates of FN+1 in the u-direction, satisfying V ⊂ � :=
⋃N

i=1 Fi . The helping event Hi will require the presence in Fi of suitable helping sets
for each quasi-stable direction; we remark that the key requirement that Hi depends
only on the restriction of ω to Fi is a consequence of Assumption 6.1. Finally, the third
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Fig. 7. The top picture shows the local neighbourhood W1 of the block V = V(0,0); in this case the fibers are
simply the disjoint translates of the rightmost empty quasi-stable half-ringR in the last quarter of V(1,0). The
bottom picture shows the local neighbourhood W2; in this case the fibers are not all equal: they grow as they
‘descend’ the steps of the upward κ-stairM (the little horizontal intervals). Each fiber becomes an elongated
version of the rightmost empty half-ringR

condition (c) above will follow from Corollary 4.11. A similar construction will be used
for the term I2, but the fibers will be slightly more complicated, see Fig. 7.

Let us write νi for the Bernoulli(p) product measure on Si = {0, 1}Fi conditioned
on the event Hi . The main step in the proof is the following bound on I j for j ∈ {1, 2}:

I j � 1

p1
· μ

(
1{FN+1 is empty} Varν( f )

)
, (6.4)

where Varν(·) is the variance computed w.r.t. the product measure ν = ⊗N
i=1νi . Before

proving (6.4) (see Sect. 6.1.3, below), let us show how to use Proposition 3.4 and Lemma
5.2 to deduce Proposition 6.6 from it.

Proof of Proposition 6.6, assuming (6.4) Consider the generalized East chain on the
space ⊗N

i=1(Si , νi ) with constraining event Sgi =
{
Fi is empty

}
(see Definition 3.3).

Note that the East constraint for the last fiber FN is always satisfied because FN+1 is
empty, and that the parameters {qi }Ni=1 of the generalized East process satisfy

qi = νi
(
Sgi

)
� qO(n2) = exp

(
− O

(
q−α log(1/q)2

))
.

Noting that N � |V | = q−O(1), it follows from (3.5) that

TEast

(
n, ᾱ

)
� exp

(
O

(
q−α log(1/q)3

))
. (6.5)

Hence, applying Proposition 3.4 to bound Varν( f ) from above, and recalling (6.4) and
that � =⋃N

i=1 Fi , we obtain

I j � 1

p1
· μ

(
1{FN+1 is empty} Varν( f )

)

� eO(q−α log(1/q)3)μ

(

1{FN+1 is empty}
N∑

i=1
ν
(
1{Fi+1 is empty} Varνi ( f )

))

7 It is worth emphasizing here that Hi only requires the blocks to be good, rather than super-good, and
therefore holds with high probability.
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= eO(q−α log(1/q)3)μ

(

1{FN+1 is empty}
N∑

i=1
μ�

(
1{Fi+1 is empty} Varνi ( f )

))

, (6.6)

where the final inequality follows from the definition of νi , and property (b) of the fibers,
which implies that the event H1∩· · ·∩ HN has probability at least p31 = 1−o(1) (since
it is implied by the goodness of three blocks).

Recall that, by property (c) of the fibers, Fi is contained in the closure, under the
U-bootstrap process restricted to a O(1)-neighbourhood Ui of the set Fi ∪ Fi+1, of any
set of empty sites containing Fi+1 and for which the event Hi holds. We may therefore
apply Lemma 5.2, with A := Fi+1, B := Fi , E := Hi and U := Ui , to obtain

μ�

(
1{Fi+1 is empty} Varνi ( f )

)
� O(n2)q

−O(n2)
∑

x∈Ui

μ�

(
cx Varx ( f )

)
, (6.7)

since |Fi | = O(n2). Inserting (6.7) into (6.6) we obtain

I j � eO(q−α log(1/q)3)
∑

x∈Ŵ j

μ
(
cx Varx ( f )

)

for each j ∈ {1, 2}, and some O(1)-neighbourhood Ŵ j of Wj , as required. ��
Remark 6.7 We remark that our use of the generalized East chain (rather than the gen-
eralised FA-1f chain) in the proof above was necessary (since for α-rooted models
Proposition 4.10 can only be used to move infection in the u-direction), and also harm-
less (since in either case the bound we obtain is of the form exp

(
Õ(q−α)

)
, which is

much smaller than exp
(
q−2α

)
). In the proof for β-unrooted models we will also use the

generalized East chain, however, even though in that case we can move infection in both
the u- and −u-directions, and doing so costs us a factor of log(1/q) in the exponent for
models with β = α. This is because the method we use in this paper does not appear to
easily allow us to use the generalised FA-1f chain in this setting.

In order to conclude the proof of the proposition, it remains to construct in detail the
fibers for each case and to prove the basic inequality (6.4).

6.1.3. Construction of the fibers and the proof of (6.4). We will first define the helping
events and prove (6.4) in the (easier) case j = 1. Recall that

I1 = μ
(
1{ω�e1∈G2}1{ω−�e1∈G1}VarV

(
f |G1

))
,

where V = V(0,0), and that ω�e1 ∈ G2 implies that there exists an empty quasi-stable
half-ringR of width κ that fits in V(1,0) and is entirely contained in the rightmost quarter
of R(1,0), and recall that this determines the length � of R, and that � � n2/m. By
translating R slightly (without changing the set R ∩ Z

2) if necessary, we may also
assume that there are no sites of Z2 on the boundary of R and in the interior of R(1,0).
Let us also choose κ so that the vector κu has integer coordinates. Now, for each such
quasi-stable half-ringR, set

N = N (R) := min
{
j : R + jκu ⊂ V(−1,0)

}
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and define Fi = Fi (R) := F̂i ∩ Z
2, where

F̂i = F̂i (R) := R + (N + 1− i)κu,

for each 1 � i � N + 1. Note that V(0,0) ⊂⋃N
i=1 Fi , and that (by our choice of κ) there

are no sites of Z2 on the boundary of F̂i in the interior of R(−1,0) ∪ R(0,0) ∪ R(1,0).

Definition 6.8 For eachR and i ∈ [N ], let Hi denote the event that for each quasi-stable
direction v ∈ C and every v-strip S such that the segment ∂ext(S) ∩ F̂i has length at
least n2/(2m), there exists an empty helping set Z ⊂ Fi for S.

Notice that in the above definitionwe do not require the v-strip S to be contained in F̂i .
Observe that if the blocks V(−1,0), V(0,0) and V(1,0) are all good, then the event Hi occurs
for every i ∈ [N ]. Now define HR to be the event thatR is (up to translates preserving
the set R ∩ Z

2) the rightmost empty quasi-stable half-ring in R(1,0), and observe that,
conditional on HR, the events {Hi }Ni=1 are independent. Moreover, by Corollary 4.11,
and since κ is sufficiently large, if Fi+1 is empty and Hi occurs, then the U-bootstrap
process restricted to a O(1)-neighbourhood of the set Fi ∪ Fi+1 is able to infect Fi .
The fibers {Fi }N+1

i=1 therefore satisfy conditions (a), (b) and (c) of Sect. 6.1.2. Recall that

we write � = ⋃N
i=1 Fi . We make the following claim, which implies (6.4) in the case

j = 1:

Claim 6.9

I1 � 1

p1

∑

R
μ

(
1HR Var�

(
f

∣
∣ H1 ∩ · · · ∩ HN

))
. (6.8)

Note that the sum in the claim is over equivalence classes of quasi-stable half-rings
R, where two half-rings are equivalent if they have the same intersection with Z2.

Proof of Claim 6.9 We first claim that

I1 � 1

p1

∑

R
μ

(
1HR1{ω±�e1∈G1}μV

(
1{ω0∈G1}

(
f − a

)2
))

, (6.9)

where ω0 ≡ ωV(0,0) and, for any ω ∈ HR, we set

a = a
(
ωZ2\�

) := μ�

(
f

∣
∣ H1 ∩ · · · ∩ HN

)
,

noting that, on the event HR, the set� and the fibers becomedeterministic. To prove (6.9)
we use Definition 6.4, which implies that if V(1,0) is super-good then it is also good,
and also that the event HR holds for some R, and the standard inequality Var(X) �
E

[
(X − a)2

]
, which holds for any a ∈ R and any random variable X .

Recalling that if the blocks V(−1,0), V(0,0) and V(1,0) are all good, then the event Hi
occurs for every i ∈ [N ], it follows from (6.9) that

I1 � 1

p1

∑

R
μ

(
1HR μ�

(
1H1∩···∩HN

(
f − a

)2
))

� 1

p1

∑

R
μ

(
1HR Var�

(
f

∣
∣ H1 ∩ · · · ∩ HN

))
,
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where the last inequality follows from our choice of a and the trivial inequality

μ�

(
1H1∩···∩HN

(
f − a

)2
)

� μ�

((
f − a

)2 ∣
∣ H1 ∩ · · · ∩ HN

)
.

This proves the claim, and hence (6.4) in the case j = 1. ��
We now turn to the analysis of the term

I2 = μ
(
1{ω�e2∈G2}1{ω j∈G1 ∀ j∈L+}VarV ( f )

)
.

In this case we need to modify the definition of the fibers Fi in order to take into account
the different local neighbourhood W2 of V(0,0) and the different good and super-good
environment in W2 (see Figs. 6, 7).

First, let us define HR to be the event that R is (up to translates preserving the set
R ∩ Z

2) the rightmost empty quasi-stable half-ring of width κ that fits in V(0,1), and
observe that the length � of R satisfies � � n2/m, and that the event ω�e2 ∈ G2 implies
that HR holds for someR in the rightmost quarter of R(0,1). As before, we may choose
R so that there are no sites of Z2 on its boundary in the interior of R(0,1).

The fibers {Fi }N+1
i=1 will be similar to those used above to bound I1, but some of the

v1-strips (which form the bottom portion of each fiber) will be elongated as the fibers
“descend” the upward κ-stair in V(1,0), see Fig. 7. (Recall that we call these objects
elongated quasi-stable half-rings.) To be precise, let us write L(R) for the two-way
infinite v1-strip of width κ that contains the v1-strip of R, and define

N = N (R) := min

{

j : V(0,0) ⊂
j⋃

i=1

(
L(R) + iκu

)
}

.

Now, recall that a = �(n2) is the number of rows of V , and recall Definition 6.3. Let
M = {

M (1), . . . , M (a)
}
be an upward κ-stair contained in the leftmost quarter of V(1,0),

and define the fibers F̂i = F̂i (R,M) recursively as follows:

(a) F̂N+1 := R;
(b) For each i ∈ [N ] set F̂ ′i := F̂i+1 + κu. Now define:

(i) F̂i to be an elongated version of F̂ ′i such that
(
F̂i\F̂ ′i

) ∩ Z
2 is a subset of a step

of M, if such an elongated quasi-stable half-ring exists;
(ii) F̂i := F̂ ′i otherwise.

As before, we set Fi = Fi (R,M) := F̂i ∩ Z
2 for each 1 � i � N + 1. Let us write

HM for the event thatM is the first (in some arbitrary ordering) empty upward κ-stair
contained in the leftmost quarter of V(1,0). We can now define the helping events.

Definition 6.10 For each R and M, and each i ∈ [N ], let Hi denote the event that for
each quasi-stable direction v ∈ C and every v-strip S such that the segment

∂ext(S) ∩ F̂i ∩
(
R(−1,1) ∪ R(0,1)

)

has length at least n2/(2m), there exists an empty helping set Z ⊂ Fi for S.
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u
u⊥ R+R−

Fig. 8. The two quasi-stable half-rings R±. For simplicity they have been drawn as mirror images of one
another, although in general the quasi-stable directions do not necessarily have this property

Observe that if the blocks V(−1,1) and V(0,1) are both good, then the event Hi occurs
for every i ∈ [N ]. Moreover, conditional on the event HR ∩ HM, the events {Hi }Ni=1 are
independent and, by Corollary 4.11 (see Remark 4.12), if Fi+1 is empty and the events
HM and Hi occur, then the U-bootstrap process restricted to a O(1)-neighbourhood of
the set Fi ∪ Fi+1 is able to infect Fi . It follows that if the event HR ∩ HM occurs, then
the fibers {Fi }N+1

i=1 satisfy conditions (a), (b) and (c) of Sect. 6.1.2.
We make the following claim, which implies (6.4) in the case j = 2:

Claim 6.11

I2 � 1

p1

∑

R,M
μ

(
1HR1HM Var�

(
f

∣
∣ H1 ∩ · · · ∩ HN

))
. (6.10)

The proof of Claim 6.11 is identical to that of Claim 6.9. As discussed above, this
completes the proof of the Proposition 6.6, and hence of Theorem 2 in the case where
U is α-rooted and Assumption 6.1 holds.

6.2. The β-unrooted case. In this section we assume that the bilateral difficulty β of the
updating rule U is smaller than 2α. We will prove that, if Assumption 6.1 holds, then
there exists a constant λ = λ(U) such that

Eμ(τ0) � Trel(q,U)

q
� exp

(
λ · q−β

(
log(1/q)

)3
)

for all sufficiently small q > 0. Note that the first inequality follows from (2.8), and so,
by Definition 2.9, it will suffice to prove that

Var( f ) � exp
(
λ · q−β

(
log(1/q)

)3
) ∑

x∈Z2

μ
(
cx Varx ( f )

)
(6.11)

for some λ = λ(U) and all local functions f . We will deduce a bound of the form (6.11)
from the unoriented constrained Poincaré inequality (3.4) and Corollary 4.11.

Recall from Sect. 4.3 that C ⊂ S1 is an open semicircle such that α(v) � β for each
v ∈ C ∪ −C , and that we let u be the mid-point of C . Similarly to Sect. 6.1, we set

n1 =
⌊
q−3κ

⌋
and n2 =

⌊
κ4q−β log(1/q)

⌋
, (6.12)

where κ = κ(U) is a sufficiently large constant.
We need to slightly modify the definition of the good and super-good events G1 and

G2 as follows. Let (v1, . . . , vm) be the quasi-stable directions inC , and let (v1, . . . , vm′)
be the quasi-stable directions in −C (see Definition 4.5). As in Sect. 6.1, it follows by
Assumption 6.1 that we may choose the voracious sets so that the helping sets for Sv are
subsets of ∂ext(Sv) for each quasi-stable direction v ∈ C ∪ −C .
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Definition 6.12 (Good and super-good events)

(1) The block Vi = Ri ∩ Z
2 satisfies the good event G1 iff:

(a) for each quasi-stable direction v ∈ C and every v-strip S such that the length of
the segment ∂ext(S) ∩ Ri is at least n2/(4m), there exists an empty helping set
Z ⊂ ∂ext(S) ∩ Vi for S;

(b) for each quasi-stable direction v ∈ −C and every v-strip S such that the length
of the segment ∂ext(S) ∩ Ri is at least n2/(4m′), there exists an empty helping
set Z ⊂ ∂ext(S) ∩ Vi for S;

(c) there exist two empty upward κ-stairs, one within the leftmost quarter of Vi , and
one within the rightmost quarter of Vi .

(2) The block Vi satisfies the super-good event G2 iff it satisfies the good event G1,
and moreover there exist two empty quasi-stable half-rings R+ and R−, of width
κ , that both fit in Vi , with R+ relative to C and entirely contained in the rightmost
quarter of Ri , and with R− relative to −C and entirely contained in the leftmost
quarter of Ri (Fig. 8).

It is easy to check that, with the new definition of the good and super-good events,
Lemma 6.5 still holds. It follows, by Theorem 3.1, that the unconstrained Poincaré
inequality (3.4) holds for any local function f , i.e.,

Var( f ) � T (p2)

( ∑

ε=±1

∑

i∈Z2

μ
(
1{ωi+ε�e2∈G2}1{ω j∈G1 ∀ j∈Lε(i)} Vari ( f )

)

+
∑

ε=±1

∑

i∈Z2

μ
(
1{ωi+ε�e1∈G2}1{ωi−ε�e1∈G1} Vari

(
f |G1

))
)

(6.13)

with

T (p2) = p−O(1)
2 = exp

(
O

(
q−β log(1/q)2

))
.

As in Sect. 6.1, using translation invariance it will suffice to bound from above, for a
fixed (and arbitrary) local function f , the following four generic terms:

I±1 (i) := μ
(
1{ωi±�e1∈G2}1{ωi∓�e1∈G1}VarVi ( f |G1)

)
,

and

I±2 (i) := μ
(
1{ωi±�e2∈G2}1{ω j∈G1 ∀ j∈L±(i)} VarVi ( f )

)
.

Define W+
1 = W−

1 = V(0,0) ∪ V(−1,0) ∪ V(1,0), and W+
2 = V(0,0) ∪ V(−1,0) ∪ V(1,0) ∪

V(−1,1) ∪ V(0,1) and W−
2 = V(0,0) ∪ V(1,0) ∪ V(−1,0) ∪ V(1,−1) ∪ V(0,−1). The following

upper bounds on I±1 and I±2 (cf. Proposition 6.6) follow exactly as in Sect. 6.1.

Proposition 6.13 For each j ∈ {1, 2}, there exist O(1)-neighbourhoods Ŵ±
j of W±

j
such that

I±j � exp
(
O

(
q−β log(1/q)3

)) ∑

x∈Ŵ±
j

μ
(
cx Varx ( f )

)
.
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Fig. 9. In I−1 the block V ≡ V(0,0) is conditioned to be good (G), while the blocks V(1,0) and V(−1,0) are
good and super-good (SG) respectively. In I−2 the blocks V(−1,0) and V(1,−1) are good, the block V(0,−1) is
super-good, and V is unconditioned

Proof of Sketch proof of Proposition 6.13 The terms I +1 and I +2 can be treated exactly
as the terms I1 and I2 analysed in the previous section, because the new good and
super-good events imply the good and super-good events for the α-rooted case. We may
therefore repeat the proof of Proposition 6.6, with the only difference being that n2 is
now as defined in (6.12), to obtain the claimed bounds on I +1 and I +2 .

For the new terms, I−1 and I−2 (which are illustrated in Fig. 9), the argument is exactly
the same after a rotation of π of the coordinate axes. Indeed, a good block now contains
suitable empty helping sets for the quasi-stable directions in −C (as well as C), and an
empty upward κ-stair in the rightmost quarter (as well as the leftmost), and a super-good
block contains an empty quasi-stable half-ring relative to−C in the leftmost quarter (as
well as one relative to C in the rightmost quarter). Such a rotation therefore transforms
I−1 and I−2 into I +1 and I +2 , and so the proof of the claimed bounds is once again identical
to that of Proposition 6.6.

Remark 6.14 As noted in Remark 6.7, our application of the generalized East chain in
the proof above cost us a factor of log(1/q) in the exponent. More precisely, this log-
factor was lost in step (6.5) of the proof of Proposition 6.13, when (roughly speaking)
we passed through an energy barrier corresponding to the simultaneous existence of
about log(1/q) empty quasi-stable half-rings in a single block. As stated precisely in
Conjecture 4, we expect that (at least for models with β = α) the true relaxation time
does not contain this additional factor of log(1/q).

Combining Proposition 6.13 with (6.13), and noting that |Ŵ±
j | = q−O(1), we obtain

a final Poincaré inequality of the form (6.11), i.e.,

Var( f ) � exp
(
O

(
q−β log(1/q)3

)) ∑

x∈Z2

μ
(
cx Varx ( f )

)
,

as required. This completes the proof of Theorem 2 for update families U such that
Assumption 6.1 holds. ��

7. Critical KCM: Removing the Simplifying Assumption

In this section we explain how tomodify the proof given in Sect. 6 in order to avoid using
Assumption 6.1. Since the argument is essentially identical for α-rooted and β-unrooted
families, for simplicity we will restrict ourselves to the α-rooted case.

Our solution requires a slight change in the geometry of the quasi-stable half-ring.
In what follows we will always work in the frame (−u, u⊥), where u is the midpoint of
the semicircle C given by Lemma 4.4 (cf. Sects. 4.3 and 6.1).
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(a) (b)

Fig. 10. A generalised quasi-stable half-ring. a A quasi-stable half-ring R (left) and its generalised version
Rg (right). The core ofRg isRg stripped off all the left protuberances (i.e., the sets {Ŝlvi }ni=1). b The union

of Rg and its translate by κ in the u-direction (in light grey) together with the quasi-stable half-ring R′ of
smaller width (dark grey)

Recall from Definition 4.7 the definitions of the +- and −-boundaries of a v-strip S.
The following key definition is illustrated in Fig. 10a.

Definition 7.1 (Generalised quasi-stable half-rings) Let (v1, . . . , vm) be the quasi-
stable directions in C , ordered as in Definition 4.9, and letR be a quasi-stable half-ring
of width w and length � relative to C . For each quasi-stable direction v ∈ C , let Sv be
the v-strip inR, and let Ŝlv and Ŝrv be the (unique) v-strips of width w/3 and length �/3
satisfying the following properties:

(i) Ŝlv and Ŝrv each share exactly one corner with Sv; moreover each of these corners
lies at the “top” of Sv when working in the frame (−u, u⊥).
(ii) ∂−(Ŝlv) ⊂ ∂+(Sv) and ∂−(Ŝrv) ⊂ ∂−(Sv).

Set

Sgv :=
(
Sv\Ŝrv

) ∪ Ŝlv,

and set

Rg :=
m⋃

i=1
Sgvi .

We call Rg the generalised version of R, and define the “core” of Rg to be the set
Rg ∩R.

Recall now the following two key ingredients of the proof given in the previous
section (see Sect. 6.1.2) under the simplifying Assumption 6.1:

(i) a sufficiently large empty quasi-stable half-ring R is able to completely infect its
translateR + κu, provided that a certain “helping” event occurs;

(ii) the helping event depends only on the configuration inside R.

Here we prove a similar result for the generalised quasi-stable half-rings without the
simplifying assumption. We first define the helping event, cf. Definition 6.8.
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Definition 7.2 Given a quasi-stable half-ringR of length � andwidth κ , we define H(R)

to be the event that for each quasi-stable direction v ∈ C and every v-strip S of length
� with ∂+(S) ⊂ R, there exists an empty helping set for S inRg .

If H(R) holds, then we will say that Rg is helping. We will modify (see below) the
good and super-good events G1 and G2 (see Definition 6.4) so that they guarantee that
this helping event occurs, and choose the constant κ = κ(U) > 0 (as in Sect. 6.1) so
that the conclusion of Lemma 6.5 holds, and so that κu has integer coordinates. We will
also choose our (generalised) quasi-stable half-rings so that there are no sites of Z2 on
their boundary, except on the top and bottom boundaries of the rectangles Ri .

Lemma 7.3 Let R be a quasi-stable half-ring of length � and width κ , and let Rg be
the generalised version of R. Assume that the core of Rg is empty and that Rg and
its translate Rg + κu are both helping. Then there exists a O(1)-neighbourhood U of
Rg ∪ (Rg + κu

)
such that the U-bootstrap process restricted to U is able to infect the

core of Rg + κu.

Proof The lemma is a straightforward consequence of Proposition 4.10, using the ge-
ometry of the generalised quasi-stable half-rings. To spell out the details (cf. the proof
of Corollary 4.11), fix R as in the lemma, and let R′ be any quasi-stable half-ring of
length � and width κ/3 such that:

(a) R′ = R + λu for some λ � 0, and
(b) R′ ⊂ Rg ∪ (Rg + κu),

see Fig. 10b. We claim that, for every quasi-stable direction v ∈ C , there exists an empty
helping set in Rg ∪ (Rg + κu

)
for the v-strip S′v of R′. Indeed, this follows from the

fact that Rg and Rg + κu are both helping, since (by construction) either ∂+(S′v) ⊂ R
or ∂+(S′v) ⊂ R + κu.

Now, since the core ofRg is empty, it follows, by Proposition 4.10, that there exists a
O(1)-neighbourhoodU ofRg ∪ (Rg + κu

)
such that the U-bootstrap process restricted

to U can advance in the u-direction, and infect the core of Rg + κu, as claimed. ��
Given the above lemma, the proof of Theorem 2 proceeds exactly as the one given

in Sect. 6, with only two main changes:

(a) the fibers {Fi }Ni=1 are no longer the quasi-stable half-rings (or their elongated ver-
sion) but rather the generalised quasi-stable half-rings (or their elongated version);

(b) when defining the generalised East process for the fibers, the constraining event Sgi
(see Definition 3.3), which in Sect. 6 was simply Sgi = {Fi is empty}, now becomes
Sgi = {the core of Fi is empty}.

We leave the (straightforward) task of verifying the details to the reader.

Appendix A

1.1. Proof of Proposition 3.4. We will follow closely the proof of a very similar result
proved in [14, Proposition 3.4]. Let {Pt }t�0 be the Markov semigroup associated to
either the generalised East chain or the generalised FA-1f chain. Using reversibility, it
follows (see, e.g. [32, Theorem 2.1.7]) that

lim
t→∞−

1

t
log

(
max

ω

∥
∥Pt (ω, ·)− ν(·)∥∥TV

)
= 1

Trel
, (A.1)
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where ‖ · ‖TV denotes the total variation distance. We now claim that for every function
f : �→ R with ‖ f ‖∞ � 1,

∥
∥Pt f − ν( f )

∥
∥∞ � C(n, q)e−t/t∗ (A.2)

for some 0 < C(n, q) < ∞ and either t∗ � TEast(n, ᾱ)/q or t∗ � TFA(n, ᾱ)/q,
depending on which of the two models we are considering. Clearly (A.1) and (A.2)
imply that Trel � t∗ and (recalling Definition 2.9) the proposition follows.

To prove (A.2), let τx (ω) be the time of the first legal ring at x (that is, the first time
that the state of x is resampled) when the starting configuration is ω. Then, for any
function f : ⊗x∈[n] Sx �→ R with ν( f ) = 0, we write

‖Pt f ‖∞ � max
ω

{∣
∣
∣Eω

(
f
(
ω(t)

) · 1{τx (ω) < t ∀x}
)∣
∣
∣

+ ‖ f ‖∞ · n · max
x∈[n] Pω

(
τx (ω) > t

)}
, (A.3)

where Pω(·) and Eω(·) denote the law and associated expectation of the chain {ω(t)}t�0
with ω(0) = ω.

If η(ω) = {ηx (ω)}x∈[n] denotes the collection of the 0-1 variables ηx = 1{ωx∈Sgx } and
τ̂x (η) is the hitting time of the set

{
η′ : η′x �= ηx

}
, then

{
τx (ω) > t

} ⊂ {
τ̂x (η(ω)) > t

}
,

and hence Pω

(
τx (ω) > t

)
� Pω

(
τ̂x (η(ω)) > t

)
. Notice that η(t) ≡ η(ω(t)) is itself

a Markov chain whose law P̃η(·) coincides with that of either the non-homogeneous
East chain or the non-homogeneous FA-1f chain, depending on the chain described
by Pt . Therefore, Pω

(
τ̂x (η) > t

) = P̃η

(
τ̂x (η) > t

)
, where η ≡ η(ω). Letting ν̃ =

Ber(α1)⊗ · · · ⊗ Ber(αn), we have that ν̃ is the reversible measure for the η-chain and
that

P̃η

(
τ̂x (η) > t

)
� 1

minη ν̃(η)

∑

η′
ν̃(η′)P̃η′

(
τ̂x (η

′) > t
)

�
{
2q−n exp

(− tq/TEast(n, ᾱ)
)

for the East process,
2q−n exp

(− tq/TFA(n, ᾱ)
)

for the FA-1f process,

where the factor q−n comes from ν̃(η) � qn and the exponential bounds follow from [9,
Theorem4.4]. In particular, the inverse of the exponential rate of decay (in t) of the second
term in the r.h.s. of (A.3) is smaller than TEast(n, ᾱ)/q or TFA(n, ᾱ)/q, depending on
which of the two models we are considering.

We now analyse the first term in the r.h.s. of (A.3). Conditionally on the event⋂
x

{
τx (ω) < t

}
and on the vector η(t)∈ {0, 1}n , the variables {

ωx (t) : x ∈ [n]
}
are

independent with law ⊗x∈[n]νx
( · | ηx (t)

)
. Thus, if g(η′) := ν

(
f | η′), then

Eω

(
f
(
ω(t)

) · 1{τx (ω) < t ∀x}
)
= Eω

(
g
(
η(t)

) · 1{τx (ω) < t ∀x}
)

= P̃t g(η)− Eω

(
g
(
η(t)

) · 1{maxx τx (ω) > t}
)

where P̃t g(η) ≡ Ẽη

(
g
(
η(t)

)) = Eω

(
g
(
η(t)

))
. The last term in the r.h.s. above can be

analysed exactly as the second term in the r.h.s. of (A.3). Moreover, by the Cauchy–
Schwarz inequality and (2.7), the first term satisfies

‖P̃t g‖∞ � 1

minη ν̃(η)
Varν̃

(
P̃t g

)1/2 � 1

qn
e−λt Varν̃ (g)

1/2,
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where λ is either TEast(n, ᾱ)−1 or TFA(n, ᾱ)−1 depending on the chosen model. This
proves (A.2), and hence the proposition. ��

1.2. Proof of the scaling (3.5). Recall that q := min
{
1−αx : x ∈ [n]

}
, and let TEast

(
n, q

)

and TFA

(
n, q

)
be the relaxation times of the homogenous East and FA-1f chains on [n]

with parameters αx = 1− q for each x ∈ [n]. It was proved in [10,13] that

TEast

(
n, q

) = q−O(min{log n, log(1/q)}) and TFA

(
n, q

) = q−O(1).

Thus, it will suffice to prove that

TEast(n, ᾱ) = 1

q
· TEast(n, q) and TFA(n, ᾱ) = 1

q
· TFA(n, q).

For simplicity we only treat the East case, since the FA-1f case follows by exactly the
same arguments.

Consider the generalized East chain on � = [0, 1]n in which each vertex x ∈ [n],
with rate one and independently across [n], is resampled from the uniform measure on
[0, 1] if either x � n − 1 and ωx+1 � 1− q, or x = n. The chain is reversible w.r.t. the
uniform measure ν on � and, by Proposition 3.4, we have

Varν( f ) � 1

q
· TEast(n, q) ·

n∑

x=1
ν
(�cx Varx ( f )

)
(A.4)

for every function f : � �→ R, since ν
(
ωx � 1− q

) = q for each x ∈ [n]. (Recall that
�cx (ω) = 1{ωx+1�1−q} if x � n − 1, and that �cn(ω) ≡ 1.)

Now, letη = {ηx }x∈[n]withηx := 1{ωx<αx }, and, for an arbitrary function g : {0, 1}n �→
R, set f (ω) := g

(
η(ω)

)
. Note that ηx � 1{ωx�1−q} (by the definition of q), and that the

law of the variables η w.r.t. ν is the product Bernoulli measure π = Ber(α1) ⊗ · · · ⊗
Ber(αn). Therefore, applying (A.4) to f , we obtain

Varπ (g) = Varν( f ) � 1

q
· TEast(n, q) ·

( n−1∑

x=1
π

(
1{ηx+1=0}Varx (g)

)
+ π

(
Varn(g)

)
)

.

The right-hand side of this inequality is exactlyC ·D(g), whereC = 1/q ·TEast(n, q) and
D(g) is the Dirichlet form of g associated to the generator of the non-homogenous East
model. Since g was an arbitrary function, it follows by Definition 2.9 that TEast(n, ᾱ) =
1/q · TEast(n, q), as required. As noted above, the proof that TFA(n, ᾱ) = 1/q · TFA(n, q)

is identical. ��

1.3. Proof of Proposition 3.5. Wewill deduce the proposition from [26, Theorem 1]. The
deduction is almost exactly the same as that of [26, Proposition 3.4], but for completeness
we give the details. Set � = ⌈

log(1/p2)
⌉
, L = ⌊

1/p22
⌋
, and for each i ∈ Z

2, define

Ci (�) =
�⋃

k=0

{
i + �e2 + k�e1

}
.
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Let also Pi (�, L) be the family of oriented paths starting in Ci (�) and of length L . We
define two families of events

{
A(1)
i , A(2)

i

}
i∈Zd as follows:

A(1)
i = {

ω j ∈ G1 for all j ∈ Ci (�) ∪ {i + �e1} ∪ {i + �e2 − �e1}
}
,

A(2)
i = {

there exists a good path in Pi (�, L) and the smallest good one is super-good
}
,

where, if there is more than one smallest good path, then we choose the leftmost one.

Observe that A(1)
i ∩ A(2)

i ⊂ �i , since A(1)
i implies that the smallest good path in

Pi (�, L) starts at i + �e2,8 and hence is equal to the smallest path in the definition of �i .
We now want to apply [26, Theorem 1] to the two families of constraints

{
c(k)
i

}
i∈Z2 ,

where c(k)
i := 1{A(k)

i } for each k ∈ {1, 2}. To do so, we need to check the following two

conditions:

(a) there exists a two-way infinite sequence of sets (. . . , V−2, V−1, V0, V1, V2, . . .),
with Vn ⊂ Vn+1 for every n ∈ Z and

⋃
n Vn = Z

2, such that if i �∈ Vn , then the

event A(k)
i is independent of the collection of variables

{
ωi : i ∈ Vn+1

}
;

(b) there exists a family
{
λI : ∅ �= I ⊂ {1, 2}} of positive constants such that the key

condition [26, equation (2.1)] holds.

To see (a), let the sets Vn be all translations of the closed half-space

H(1,2) =
{
x ∈ Z

2 : 〈x, (1, 2)〉 � 0
}

by elements of Z2 (ordered in the obvious way). Now, observe that if i �∈ Vn then
Vn+1 ⊂ H(1,2) + i , and the event A

(k)
i is indeed independent of the variables inH(1,2) + i .

To prove (b), set λI = 1 for every non-empty set I ⊂ {1, 2}, and note that the event
A(1)
i depends on � + 3 variables, and that A(2)

i depends on at most (L + �)2 variables. It
follows that there exists a constant δ̂ > 0 such that [26, equation (2.1)] holds if

�
(
1− μ

(
A(1)
i

))
+ (L + �)2

(
1− μ

(
A(2)
i

))
� δ̂. (A.5)

We now claim that if the constant δ of Proposition 3.5 is chosen to be sufficiently small,
then (A.5) holds. In order to prove this, it is enough to observe that, by the union bound,

1− μ
(
A(1)
i

)
� (� + 3)(1− p1),

and that

1− μ
(
A(2)
i

)
� μ

(
there is no good path in Pi (�, L)

)

+ max
γ∈Pi (�,L)

μ
(
γ is not super-good

∣
∣ γ is good

)

� e−m(p1)� +
(
1− p2

)L
,

8 This follows from the observation that the word (of length L) obtained from W ∈ {�e1, �e2}L by adding
�e1 at the start and removing the final letter is at most W in alphabetical order.
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with limp1→1m(p1) = ∞, by a standard Peierls bound and by the FKG inequality. In
conclusion, if δ > 0 is sufficiently small then we may apply [26, Theorem 1], which
gives

Var( f ) � 4
∑

i∈Z2

μ
(
1{A(1)

i ∩A(2)
i }Vari ( f )

)
� 4

∑

i∈Z2

μ
(
1�i Vari ( f )

)
,

where the final inequality holds because A(1)
i ∩ A(2)

i ⊂ �i . ��
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