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Abstract: We carry out a systematic analytical and numerical study of spectral stability
of discontinuous roll wave solutions of the inviscid Saint-Venant equations, based on
a periodic Evans–Lopatinsky determinant analogous to the periodic Evans function of
Gardner in the (smooth) viscous case, obtaining a complete spectral stability diagram
useful in hydraulic engineering and related applications. In particular, we obtain an
explicit low-frequency stability boundary, which, moreover, matches closely with its
(numerically-determined) counterpart in the viscous case. This is seen to be related to
but not implied by the associated formal first-order Whitham modulation equations.
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1. Introduction

In this paper, we study the spectral stability of periodic “roll wave” solutions of the
inviscid Saint-Venant equations

∂t h + ∂x q = 0,

∂t q + ∂x

(
q2

h
+

h2

2F2

)
= h − |q| q

h2

(1.1)

modeling inclined shallow water flow. Here, t and x denote elapsed time and spatial
location along the incline, h and q = hu denote the fluid height and total flux at point
(x, t), u is a vertically averaged velocity, and h2

2F2 is an effective fluid-dynamical force

analogous to pressure in compressible flow.1 The parameter F is a nondimensional
Froude number, defined explicitly as F = U0√

H0g cos θ
, where θ is angle from horizontal

of the incline, g the gravitational constant, and H0 and U0 are fixed chosen reference
values of height and velocity, i.e., units of measurement for h and u. Source terms
h and −|q|q/h2 = −|u|u on the righthand side represent opposing accelerating and
resisting forces of gravity and turbulent bottom friction, the latter approximated by
Chezy’s formula as proportional to fluid speed squared [Dre49,BM04].

System (1.1) and its viscous counterpart, obtained by including the additional term
ν∂x (h∂x (q/h)), with ν > 0 a non dimensional constant (the inverse of a Reynolds num-
ber), on the righthand side of (1.1)(ii), are both commonly used in hydraulic engineering
applications, for example to model shallow fluid flow in a canal or spillway. See [BM04]

1 Indeed, the lefthand side of (1.1) may be recognized as the equations of isentropic compressible gas
dynamics, with h and q playing the roles of density and momentum, and a polytropic (γ = 2) equation of
state.
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Fig. 1. a Simulated Dressler roll waves. b Roll waves in the Grunnbach conduit

for an interesting survey of this topic and applications, including a description of the
reduction to nondimensional form (1.1) [BM04, p. 14].

Our particular interest here is in the phenomena of roll waves [Cor34,Bro69,Bro70],
a well-known hydrodynamic instability associated with destabilization of constant flow
[Jef25] consisting of a periodic series of shocks, or “bores”, separated by smooth mono-
tone wave profiles, advancing down the incline with constant speed. Such waves are
important due to their destructive capacity, both through overflow of a confining channel
due to increased amplitude variation and through the “water-hammer” effect of periodic
shock impacts on hydraulic structures [Dre49, p. 149], [BM04, p. 1], [Hua13, p. 7].
This motivates the study of both the existence, and, as the physical selection mechanism
determining naturally occurring amplitudes and frequencies, dynamical stability of roll
waves.

The existence problem is by now well understood. Existence of roll waves for (1.1)
was established by Dressler by exact solution [Dre49], and for the viscous version of
(1.1) by Härterich [Har05] using singular perturbation analysis in the limit as ν → 0+.
See also [BJN+17] for existence of a full family of small-amplitude viscous long waves
in the near-onset regime F > 2, |F − 2| � 1, by a Bogdanev–Takens bifurcation from
cnoidal waves of the Korteweg–de Vries equation and [NM84] for existence of nearly
harmonic small-amplitude roll waves for general viscosity by aHopf bifurcation analysis
fromconstant states. In the inviscid case, it is known that there exists a 3-parameter family
of wave profiles, parametrized by the Froude number F > 2 and parameters Hs > 0
and H− ∈ (Hmin(F, Hs), Hs), where Hs and H− denote, respectively, the fluid heights
at a distinguished “sonic” point (where wave profile equations are degenerate) and at
the left endpoint of the (monotone increasing) continuous profiles separating jumps; see
Fig. 1a, b for a typical solution and physical example.2 By scaling invariance, this may
be reduced to a 2-parameter family, taking without loss of generality Hs ≡ 1. See Sect. 2
for details. In the viscous case, for each fixed ν there is likewise a 3-parameter family of
waves, converging as ν → 0+ to matched asymptotic expansions of the inviscid profiles
[Har05].

The stability problem, by contrast, despite substantial results in various
asymptotic limits, remains on the whole somewhat mysterious, especially in the
medium-to-large Froude number regime 2.5 � F � 20 that is relevant to hydraulic

2 The latter reproduced from [Cor34].
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engineering applications [Jef25,Bro69,Bro70,AeM91,RG12,RG13,FSMA03]. As
described, e.g., in [YK92,YKH00,Kra92,BM04,BN95,BJN+17], the near-onset regime,
F > 2, |F −2| � 1, in the viscous case is well-described by a weakly nonlinear “ampli-
tude equation” consisting of a singularly perturbedKorteweg–deVries equationmodified
by Kuramoto–Sivashinsky diffusion, for which stability boundaries may be explicitly
determined in terms of integrals of elliptic functions. This formal description (in which
viscosity plays an important role), has at this point been rigorously validated at the
linear and nonlinear level in [JNRZ15,JNRZ14,Bar14,BJN+17], in part using rigorous
computer-assisted proof. However, numerical investigations of [BJN+17] indicate that
its regime of validity is limited to approximately 2 < F � 2.3, which is outside the
regime of interest for typical hydraulic engineering applications.

Away from onset, a standard approach in pattern formation is to replace the weakly
nonlinear amplitude equation approximation by a formal Whitham modulation expan-
sion [Whi74], a multiscale expansion in similar spirit, but built around variations in the
manifold of periodic solutions rather than linear perturbations of a constant state. In con-
trast to the near-onset case, where the full spectral stability is proved to be encoded in a
relevant weakly-nonlinear amplitude equation, suchWhitham expansions yield only sta-
bility information that is low-frequency on wave parameters, in particular low-Floquet
or side-band for the original equations. See [NR13] for a precise discussion of what
may rigorously deduced from this kind of approach, including higher-order versions
thereof. Formal analyses of this general type were carried out by Tamada and Tougou
in [TT79,Tou80] to obtain formal side-band stability criteria. More recently, Boudlal
and Liapidevskii have proposed a different formal necessary stability condition based on
direct spatial averaging [BL02], presumably also related to (but not necessarily limited
to) low-frequency stability.

In a different direction, Jin and Katsoulakis [JK00] have carried out weakly nonlinear
asymptotics in the high-frequency limit, obtaining an amplitude equation consisting of a
negatively damped Burgers equation, fromwhich one may conclude formally instability
of roll waves with sufficiently small period. Working by very different techniques, based
on a direct linearized eigenvalue analysis, and WKB approximation, Noble [Nob03,
Nob06] has obtained complementary high-frequency stability criteria, from which he
was able to conclude high-frequency stability for waves with sufficiently large period,
i.e. stability with respect to perturbations of sufficiently high time frequency. However,
in the large-Froude number regime, (i) the various low-frequency criteria do not agree,
leading to confusion as to what precisely they capture; (ii) the high-frequency condition
of Noble, though theoretically conclusive, is difficult to analyze outside of the large-
period limit computed by Noble; and (iii)up to now complete stability information for
waves away from onset was only established in the unstable high-frequency limit studied
by Jin-Katsoulakis. In particular, stability had not been verified for any roll wave solution
of (1.1) with Froude number F that is not close to 2.

In summary, the stability theory for large-Froude number roll waves remains far
from clear, consisting of disparate, mainly formal, pieces with no unified whole. Our
goal in this paper is to shed light on the situation by a systematic investigation com-
bining rigorous analysis of the exact eigenvalue equations with numerical investigation
to obtain a complete spectral stability diagram for the family of discontinuous roll
wave solutions of the inviscid system (1.1), and at the same time determining a pre-
cise connection between low-frequency stability and the formal Whitham modulation
equations.
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1.1. Viscous stability, Whitham equations, and the Evans–Lopatinsky determinant.

Viscous stability. Our main impetus for the present inviscid stability analysis is the
recent stability analysis carried out away from onset in [NR13,JNRZ14,RZ16,BJN+17]
for smooth roll wave solutions of the viscous version of the Saint-Venant equations
(1.1). There, it was shown rigorously that (i) nonlinear modulated stability follows from
diffusive spectral stability; (ii) in stable cases associated second-order formal Whitham
modulation systems provide accurate large-time approximations; and (iii) in any case
(stable or unstable), spectral perturbations of neutralmodeswith respect toFloquet/Bloch
frequency agree to second order with those predicted by an associated formal second-
orderWhithammodulation system. Finally, the spectrumwas approximated numerically
for the linearized problem about the waves using the periodic Evans function D(λ, ξ),
an analytic function introduced by Gardner [Gar93] whose zeros correspond to spectra
λ and associated Bloch/Floquet numbers ξ ; see [BJN+17] for further description.

The surprising result in the viscous case was that, away from onset, i.e., for F � 2.5,
the stability diagram has a different description3 from the one near onset, with stable
wave parameters corresponding to the region within a lens-shaped region bounded by an
upper and a lower stability boundary. This observation was obtained purely numerically
in [BJN+17], with no explanation of any kind, not even formal. However, there it was
noted that in the region of stability, wave profiles seemed to converge to discontinuous
“Dressler-wave” solutions for large values of F , suggesting that an explanation of the
observed behavior might be found in the study of the inviscid equation (1.1) and its
singular perturbation via the zero viscosity limit. Moreover, the numerical computations
in the viscous case, lying in simultaneous large period and small viscosity limits, were
quite delicate, with a total reported computation time exceeding 40 days (machine time)
on the IU supercomputer cluster [BJN+17, Sect. 9.2].

From the viewpoint of both physical insight and reliability/efficiency of numerical
computations, these findingsmotivate the study of the inviscid equations as an organizing
center for the observed viscous results. Moreover, they suggest the analytical strategy
that we shall follow here, of adapting to the inviscid case the tools that have proved
successful in the viscous one, Whitham modulation, direct spectral expansion, Floquet–
Bloch analysis, and the periodic Evans function of Gardner.

Inviscid Whitham system. We begin by identifying a first-order Whitham modulation
system analogous to that of the viscous case [Whi74,Ser05,NR13,JNRZ14]. In the
viscous case, this appears as

∂t H + ∂x Q = 0,

∂t k − ∂xω = 0,
(1.2)

where k = 1/X and ω = − kc are spatial and temporal wave numbers for roll wave
solutions

(h, q)(x, t) = (H, Q)(ωt + kx)

propagating with speed c, with periodic profile (H, Q) of period one, and, here and
elsewhere, upper barred quantities denote averages over one period. As described in
[Ser05,NR13,JNRZ14], the system (1.2) may be obtained in the viscous case by aver-
aging all conservative equations of the original PDE (1.1) (here, just the first, h equation),

3 Away from onset, the stability boundaries obey an equally simple power-law description.
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and augmenting the resulting system with the “eikonal equation” relating k and ω. For
a derivation, see [Ser05,NR13] and [JNRZ14, Appendix B.1.1].

Following the usual Whitham formalism [Whi74,OZ03,Ser05,NR13,BGNR14,
KR16], the system (1.2) is expected to describe critical side-band behavior of a per-
turbed periodic viscous roll wave as a low-frequency, or “long wave” modulation along
the 2-parameter family (holding fixed the third, physical parameter F) of nearby vis-
cous roll waves. Note that, indeed, since all terms are functions of wave parameters, as
follows from the ODE existence theory for the viscous roll waves, we may view (1.2)
as a 2 × 2 system of first-order conservation laws governing the evolution of these two
parameters. For example, parametrizing the family of viscous roll wave solutions as in
[JNRZ14] in terms of (H , k), we have that all other quantities in (1.2) are (implicitly)
determined as functions these parameters, and so (1.2) represents a first-order system
of conservation laws prescribing the evolution of (H , k). This yields via a consistency
argument the formal low-frequency, or side-band stability condition of well-posedness,
or hyperbolicity of (1.2). See [Whi74,Ser05,NR13,JNRZ14] for further discussion. We
note that the property of sideband stability is independent of the parametrization chosen
for the family of traveling waves, just as hyperbolicity is preserved under nonsingular
changes of variables.

Considering now the inviscid case, we note the lack of a systematic, multi-scale
expansion to derive a corresponding inviscid Whitham system, due to the discontinuous
“shock” nature of the profiles (invalidating standard derivations based on smooth solu-
tions). Nevertheless, based on the convergence of profiles proved in [Har05], together
with expected convergence of low-frequency behavior in the zero-viscosity limit, we
propose as an inviscid Whitham system simply the same system of equation (1.2), but
substituting the inviscid dependence of H , Q, k, and ω on wave parameters (H−, Hs),
where H− denotes the minimum value of profile H over one period and Hs the value
of H at the unique “sonic point” where the speed of the traveling wave coincides with
a characteristic speed of the original hyperbolic system (1.1); see Sect. 2. While this is
merely an optimistic guess at this point, we will justify this system in Sect. 5.1 by a direct
comparison with the associated spectral problem. We note that a remarkable feature of
the system (1.2) associated with (1.1) is that all of its coefficients may be given explicitly,
since the wave profiles may themselves be explicitly given as the resolution of a scalar
ODE with a rational vector field.

For comparison, we present also the alternative low-frequency model proposed in
[BL02]:

∂t H + ∂x Q = 0,

∂t Q + ∂x

(
Q2

H
+

H2

2F2

)
= 0,

(1.3)

upper bars again denoting averages over one period. This model was proposed based on
the observation that the average of undifferentiated terms, being equal to the jump across
the shock in differentiated quantities, must vanish by the Rankine-Hugoniot jump condi-
tion at the shock. Here, again, (1.3) is to be interpreted as a 2×2 system of conservation
laws determining the evolution of wave parameters, with hyperbolicity corresponding
to some necessary condition for spectral stability. Like (1.2), the system (1.3) was pro-
posed on heuristic grounds rather than systematic expansion, hence requires validation
by external means. To rigorously justify/compare such heuristic stability predictions is
an important tangential goal of our investigations.We show in Sect. 5.1 that (1.3) despite
its intuitive appeal does not accurately predict stability, side-band or otherwise, giving
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rise to false negative and positive results, and in some cases wrongly predicting instabil-
ity of (globally) linearly stable waves. That is, the averaged system (1.2) suggested by
the Whitham formalism accurately predicts low-frequency stability also in the inviscid
case, while the seemingly similar averaged system (1.3) does not successfully predict
stability on any scale.

Periodic Lopatinsky determinant. Our primary approach to the stability study of inviscid
roll waves, bypassing issues of formal approximation as described above, is, following
[Nob03,Nob06], to work directly with the exact eigenvalue equations for the lineariza-
tion of (1.1) about the wave. Using the rigorous abstract conclusions so obtained, we
then attempt to deduce useful approximations and to evaluate the validity of proposed
formal stability criteria such as hyperbolicity of modulation systems (1.2) and (1.3). Our
main contributions beyond what was done in [Nob03,Nob06] are the characterization of
normal modes as spectra in the usual sense of an appropriate linear operator, clarifying
the connection of the framework of [Nob03,Nob06] to standard Floquet/Bloch theory,4

and the introduction of a stability function or periodic Evans–Lopatinsky determinant
analogous to the periodic Evans function of Gardner [Gar93] in the viscous case. The
latter proves to be extremely useful for both numerical and analytical computations;
indeed, it is the central object in our development.

Here, we give a quick heuristic derivation of the stability function and associated
eigenvalue equations. A rigorous derivation is given in Sect. 4. Consider a general system
of balance laws

∂tw + ∂x (F(w)) = R(w), (1.4)

with w valued in R
n , smooth except at a sequence of shock positions x j = x j (t),

satisfying the Rankine-Hugoniot jump conditions at the x j

x ′
j (t)[w] j = [F(w)] j (1.5)

where [h] j := h(x+j ) − h(x−
j ). Let us assume that W is a X -periodic traveling wave

solution of (1.4),withwave speed c and a single shock byperiod.Working in a co-moving
coordinate frame turns W in a stationary solution, with shocks located at X j = j X .

Then, in this frame, formally linearizing (1.4) about W (i.e., taking a pointwise, or
Gateaux, derivative not required to be uniform in x, t), we obtain the “interior equations”

∂tv + ∂x (Av) = Ev on R̃ :=
⋃
j∈Z

( j X, ( j + 1)X), (1.6)

where here5

A(x) := dw F(W (x)) − cId and E(x) := dw R(W (x)),

while at the shock locations X j = j X we obtain linearized jump conditions

y′
j [W ] j = y j [A W ′] j + [Av] j , (1.7)

with v and y j now denoting perturbations in w and x j , where the second term in (1.7) is
obtained due to displacement y j in the location of the jump (error terms by H1 extension

4 In particular, bearing on the issue of “completeness” of normal mode solutions.
5 Throughout, the notation dw will represent the differential with respect to the argument w.
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remaining of higher order so long as solutions remain bounded in H1 and y j remains
sufficiently small).

As the system (1.6)–(1.7) has X -periodic coefficients, it may be analyzed via Floquet
theory, i.e., through the use of the Bloch–Laplace transform. Precisely, decomposing
solutions of (1.6)–(1.7) into “normal mode” solutions of the form

v(x, t) = eλt eiξ x v̌(x), y j (t) = χeλt eiξ( j−1)X , λ ∈ C, ξ ∈ [−π/X, π/X ],
(1.8)

with v̌(·) X -periodic and χ constant, and setting

w(x) = v̌(x)eiξ x , (1.9)

we use the quasi-periodic structure in (1.8) to reduce the spectral problem to a one-
parameter family of Floquet eigenvalue systems

(Aw)′ = (E − λId)w on (0, X),

χ(λ{W } − {AW ′}) = {Aw}ξ , (1.10)

parametrized by ξ ∈ [−π/X, π/X ], where here ′ denotes ∂x . Here above we have used
periodic jump notation

{ f } := f |X
0 , { f }ξ := f (X−) − eiξ X f (0+). (1.11)

Note that this reduces the whole-line problem (1.6)–(1.7) to consideration of a family
of problems posed on a single periodic cell (0, X).

As a result, the X -periodic wave W is said to be (spectrally) unstable if there exists a
ξ ∈ [−π/X, π/X ] such that the eigenvalue problem (1.10) has a non-trivial solution w

for some λ ∈ C with �(λ) > 0. Otherwise, the wave W is said to be (spectrally) stable.
For details, see Sect. 4 below.

By stationarity of W , we have AW ′ = (F(W ) − cW )′ = R(W ). Thus we find that
existence of a non-trivial solution to the Floquet eigenvalue problem is equivalent to
linear dependence of {λW − R(W )} and {Aw}ξ , for some solution w to (1.10)(i) or,
equivalently under Assumption 4.2 from Sect. 4, vanishing of the determinant

�(λ, ξ) := det
({λW − R(W )} {Aw1}ξ · · · {Awn−1}ξ

)
, (1.12)

λ ∈ C, ξ ∈ [−π/X, π/X ], where w1, . . . , wn−1 form a basis of solutions of interior
eigenvalue equation (1.10)(i). Here in the abstract discussion we are taking for granted
minimal degeneracy of the structure of interior equations in the presence of a singular
point of the system of eigenvalue ODE (responsible for a loss of one dimension in the
space of H1 solutions) and existence of an analytic in λ choice of basis w1, . . . , wn−1;
see Assumptions 4.2–4.3 below. In this respect, note that a consequence of the periodic
single-shock structure together with the Lax characteristic condition, already observed
in [Nob03,Nob06], is the presence of one sonic, or characteristic, point of F in W , that
is, existence of a singular point of (1.10)(i); see Sect. 2.We refer the reader to Sect. 4 and
“Appendix A” for further details and in particular proofs that on one hand the underlying
Assumptions 4.2–4.3 hold if each periodic cell contains only one singular point and this
singular point is a regular–singular point, and on the other hand this scenario includes
the case of System (1.1).
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Definition 1.1. We call � the6 periodic Evans–Lopatinsky determinant, or “stability
function” for W . We define the nonstable spectrum of W as the set of roots λ with
�λ > 0 of �(·, ξ) for some ξ ∈ [−π/X, π/X ]. Likewise, we define spectral stability
of W as the absence of zeros of � with �λ > 0.

In Sect. 4, we show that in the region of interest, including a neighborhood of the
unstable half-plane, the spectrum as defined above agrees with the H1(R̃) × �2(Z)-
spectrum defined in terms of solvability of resolvent problems.

Remark 1.2. For comparison, the periodic Evans function of Gardner may be written as

D(λ, ξ) := det
({Aw1}ξ · · · {Awn}ξ

)
,

wherew1, . . . , wn are a basis of solutions to the eigenvalueODE.Meanwhile, theEvans–
Lopatinsky determinant associated with a detonation-type solution of (1.4), featuring
a single shock discontinuity at x = 0, appears [Erp62,JLW05,Zum11], with {h} now
denoting h|0+0− , as

δ(λ) := det
({λW − R(W )} Aw1(0+) · · · Aw j0(0

+) Aw j0+1(0
−) · · · Awn−1(0−)

)
,

wherew1, . . .,w j0 are functions on (0,∞) that form a basis of solutions to the eigenvalue
ODE decaying to zero at ∞ and w j0+1, . . ., wn−1 are functions on (−∞, 0) that form
a basis of solutions to the eigenvalue ODE decaying to zero at −∞. In particular,
the periodic Evans–Lopatinsky determinant interpolates between the periodic Evans
function of the viscous case and the Lopatinsky determinant of inviscid shock/detonation
theory.

1.2. Main results. We now describe our main results, both analytical and numerical.

Low-frequency expansion and Whitham modulation equations. Let W be an X -periodic
roll wave solution of (1.1) with speed c. Following Sect. 1.1, we make the change of
coordinates x → x − ct to a co-moving frame in which W is stationary, and define the
periodic Evans–Lopatinsky determinant �(λ, ξ) as in (1.12). Our first observation is
that � possesses the following surprisingly special structure.

Proposition 1.3. λ = 0 is a root of �(·, ξ) for all ξ ∈ [−π/X, π/X ]. Equivalently, �

factors as

�(λ, ξ) = λ�̂(λ, ξ) (1.13)

for all λ ∈ C and ξ ∈ [−π/X, π/X ], where �̂ is an analytic function in both λ and ξ .
Moreover, there exist coefficients α0 and α1 such that uniformly in ξ ∈ [−π/X, π/X ],

�̂(λ, ξ) = α0 λ +
eiξ X − 1

i X
α1 + O(|λ| (|λ| + |ξ |)). (1.14)

6 Note that we slightly abuse the terminology here, since “the” determinant is not canonically defined but
depends on the choice of basis w1, . . . , wn−1 in Assumption 4.3 below. However, this does not affect our
notion of spectra or stability.
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In particular in (1.14)

α0 = ∂λ�̂(0, 0), α1 = ∂ξ �̂(0, 0) = − i X

2
�̂(0, π/X),

and, for any ξ ∈ [−π/X, π/X ],

�̂(0, ξ) = eiξ X − 1

i X
α1.

From (1.13) to (1.14), we obtain quite detailed information on low-frequency spectral
expansions.

Corollary 1.4. λ = 0 is a double root of �(·, ξ) for some non zero ξ ∈ [−π/X, π/X ]
if and only if it is a double root for any ξ ∈ [−π/X, π/X ].
Corollary 1.5. Assume that �(·, 0) has a root of multiplicity exactly two at λ = 0, i.e.,
α0 
= 0. In particular, there are two spectral curves λ j (·), j = 1, 2, that are analytic in ξ

near ξ = 0 and such that, for (λ, ξ) near (0, 0), �(λ, ξ) = 0 is equivalent to λ = λ j (ξ)

for some j ∈ {1, 2}, where

λ1(ξ) = −iξα
(
1 − iξγ + O(ξ2)

)
, λ2(ξ) ≡ 0 for |ξ | sufficiently small, (1.15)

for some real constants α, γ ∈ R. Moreover, α is obtained from (1.14) by

α = α1

iα0
= ∂ξ �̂(0, 0)

i∂λ�̂(0, 0)
= − X�̂(0, π/X)

2∂λ�̂(0, 0)
. (1.16)

Our numerical investigations suggest thatα0 never vanishes so that indeed expansions
(1.15) are directly relevant everywhere. The first-order expansions of λ j (ξ) by (1.15)
are purely imaginary, or neutral, hence do not yield directly low-frequency stability
information. However, the special structure of (1.15) allows us to conclude that second-
order low-frequency stability information does depend on the sign of the first-order
coefficient. Indeed, the second-order term −αγ ξ2 in λ1(ξ), determining low-frequency
stability or instability according as �αγ > 0 or < 0, has sign depending on that of
the first-order coefficient α. Moreover, the term γ in (1.15) is found numerically not
to vanish on the closure of the set of stable waves, hence numerical evidence that the
transition stability/instability for roll waves through low-frequency stability boundary
is the curve in parameter space on which α = 0.

Remark 1.6. The above argument relies partly on numerical observations. However it is
consistent with the intuition that since when α = 0 a full loop of spectrum is present at
λ = 0 we expect that a full loop passes through zero when α changes sign; see Fig. 10a.
In contrast when only the curvature changes sign, see Fig. 10b, one expects that some
medium-frequency part of the spectrum, far from zero, has already gone a while ago
from the stable to the unstable half-plane; see Fig. 11. We will give another independent
supporting argument below, based on a subharmonic stability index, that does not require
information on γ and proves that when α changes sign the number of real positive roots
of �(·, π/X) changes.
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Recall Serre’s Lemma [Ser05,NR13,JNRZ14] in the viscous case, that the character-
istics of thefirst-orderWhithammodulation system, after a coordinate change x → x−ct
to comoving frame (taking characteristics α̃ j to α̃ j −c), agree with the coefficients of the
first-order expansion at (ξ, λ) = (0, 0) of the exact spectrum of the linearized operator
about thewave, encoding side-band behavior. The following results give a generalization
to the inviscid case, rigorously justifying the formal Whitham modulation system (1.2)
as a predictor of low-frequency behavior. Before stating it, let us recall that for a general
first-order system f 0(w)t + f (w)x = 0, w ∈ R

n , we define the associated dispersion
function at constant w as the homogeneous polynomial in (λ, ξ) of degree n,

D(λ, ξ) := det
(
λ dw f 0 + iξ dw f

)
,

with differentials evaluated at w. Moreover, such a system is said to be evolutionary if
det(dw f 0) 
= 0.

Proposition 1.7 (Inviscid Serre’s Lemma). There exists an explicit non zero constant �0
such that as λ → 0, uniformly in ξ ∈ [−π/X, π/X ],

�(λ, ξ) = �0 DW
(

λ − ic
eiξ X − 1

i X
,

eiξ X − 1

i X

)
+ O(|λ|2 (|λ| + |ξ |))

where DW denotes the dispersion function associated with system (1.2).

Corollary 1.8. Coefficients α0 and α1 in (1.14), thus also α in (1.15), are explicitly
calculable7.

Corollary 1.9. λ = 0 is exactly a double root of �(·, 0) if and only if system (1.2) is
evolutionary.

Corollary 1.10. Assume that 0 is a double root of �(·, 0). Then the characteristics of
(1.2) are given by the values c+α and c, with α as in (1.16), or, after a change x → x −ct
to comoving coordinates, the first-order coefficients α and 0 of λ1 and λ2, respectively,
in (1.15).

Remark 1.11. Taylor expanding eiξ X −1
i X , eiξ X −1

i X for small ξ , we obtain the simpler but
less detailed formulation �(λ, ξ) = �0 DW (λ − icξ, ξ) + O((|λ| + |ξ |)3) familiar from
[Ser05], etc.

Remark 1.12. Though valid, the first-order Whitham modulation system does not directly
yield instability information, being hyperbolic except on the boundary α = 0, where,
numerically, hyperbolicity is seen to fail due to presence of a nontrivial Jordan block.
Nevertheless, recall that due to the special structure (1.15), it turns out that the non-zero
characteristic α for the first order modulation system gives also second order side-band
and mod-2 subharmonic stability information, a fact not seen at the “first-order” level of
themodulation system (1.2). This is reminiscent of the case of viscous shock theory (see,
e.g., [Zum01, Sect. 6]), where failure of a first-order low-frequency stability condition
(in this case an inviscid Lopatinsky determinant), marks a boundary for full viscous
stability.

7 Daunting, though. See (5.5) for the expression of α1, which is by far the nicest one.



276 M. A. Johnson, P. Noble, L. M. Rodrigues, Z. Yang, K. Zumbrun

High- and medium-frequency stability indices. We now present our two main analytical
results, comprising rigorous high- and low-frequency stability conclusions. The first is
directly based on an approximate high-frequency diagonalization as in [Nob03]; see
[Zum11,Zum12,LWZ12,BJRZ11,BJN+17] for related analyses in respectively detona-
tion and viscous roll wave stability.

Theorem 1.13 (High-frequency stability criteria). For any roll wave W of (1.1):

(i) (potential) unstable spectra has bounded real part.
(ii) there is a stability index I, explicitly calculable, such that when I < 1 (potential)

unstable spectra is bounded, whereas when I > 1 there is an unbounded curve of
unstable Floquet eigenvalues asymptotic to �λ = η as |λ| → ∞, for some η > 0.

The high-frequency stability index I is seen numerically to be identically< 1, across
the entire parameter-range of existence. Thus, we have the important conclusion, gener-
alizing observations of [Nob03,Nob06], that for any roll wave unstable modes have both
bounded time growth rates and bounded time frequencies. In short, we have excluded
high-frequency instabilities, with the convention used above and from now on that high-,
mid-, and low-frequency refer to the size of the spectral parameter8 λ. Such a result is
important in numerical stability investigations, truncating frequency space to a compact
domain on which computations can be carried out with uniform error bounds, in a the-
oretically justified way. See [BJRZ11,BJN+17] for similar bounds and their numerical
use in the viscous case. Theorem 1.13 is a corollary of the more detailed Proposition 6.3
below.

Remark 1.14. Intuitively, the upper bound on growth rates fromTheorem 1.13(i), associ-
ated with local well-posedness of the linearized equations, follows from the expectation
that � converges as �(λ) → +∞ to a nonvanishing multiple of the shock Lopatinsky
condition for the component shock at endpoints j X of W , which is nonvanishing by
Majda’s theorem [Maj81] giving stability of shock waves for isentropic gas dynamics
with any polytropic equation of state. That is, well-posedness involves only the behavior
near component shocks [Nob09]. See [Zum12] for a similar argument in the detonation
case.

The second result gives a rigorous justification of α = 0 as a potential stability
boundary.

Theorem 1.15 (Nonoscillatory co-periodic and subharmonic instabilities). Let W be a
period-X roll wave of (1.1) and α0 and α1 be as in (1.14) with a normalization ensuring
that �(λ, 0) and �(λ, π/X) are real when λ is real. Assume that α0 
= 0 and let α be
as in (1.16). Then:

(i) The number of real positive roots of �(·, 0) is odd or even depending on the sign of

α0 = ∂2λ�(0, 0)/2

relative to the sign of �(·, 0) as λ → +∞ along the real axis (necessarily constant).

8 Note that we abuse terminology by calling λ instead of �(λ) a time frequency. Besides, note that the
relevance of this distinction is in contrast with the fact that the size of spatial frequencies is not readily
accessible in periodic spectral problems since in any given Floquet parameter are grouped together spatial
frequencies of arbitrary large size.
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boundaries in Fig. 4. a) of [BJNRZ2]

boundaries in Fig. 2. a) of [BL02]

medium-frequency stability boundary

low-frequency stability boundary II

low-frequency stability boundary I

Domain of existence

(a) (b)

Fig. 2. Throughout our figures, we use the scheme in a for labeling the various stability boundaries. In b, in
an effort to illustrate fine details difficult to observe in the numerical results in Fig. 3, we present a cartoon of
the stability boundaries in H−/Hs versus F coordinates. In the actual stability boundaries in Fig. 3a below,
the mid-frequency stability boundary is nearly indistinguishable from the lower existence boundary, while
the low-frequency boundary II seemingly asymptotes to this lower existence curve as F increases, and so the
detail in (b) above is invisible to the eye. We stress in particular that large-amplitude transition to instability
does not originate in low frequencies, stability being encountered between low-frequency stability boundary
I and the mid-frequency boundary. We note also that relevant stability boundaries meet at H−/Hs ≈ 0.09201
when F = F∗

(ii) α1 is purely imaginary and if α1 
= 0 then the number of real positive roots of
�(·, π/X) is odd or even depending on the sign of α1/ i = ∂2λξ�(0, 0)/ i relative
to the sign of �(·, 0) as λ → +∞ along the real axis (again, necessarily constant).

(iii) In particular if α < 0 then W is spectrally unstable.

The proof follows by a global stability index computation adapting those for contin-
uous waves, see for instance [Zum01,BJRZ11,BGMR16], noting that with the above
normalization �̂(λ, 0) and �̂(λ, π/X) are real-valued for λ real, determining their signs
when λ is real and large and invoking the intermediate value theorem. Numerical obser-
vations suggest that only subharmonic instabilities occur through a change in the sign
of α, consistently with the low-frequency analysis.

Numerical stability analysis. We complete our investigations with a full numerical sta-
bility analysis across the entire parameter-rangeof existence.This is performed following
the general approach of [BJN+17] in the viscous case by numerical approximation of the
periodic Evans–Lopatinsky determinant combined with various root finding and track-
ing procedures. Additional difficulties in the present case are induced by the sonic point
at which the eigenvalue ODE becomes singular; this is handled by a hybrid scheme in
which the solution is approximated by series expansion in a neighborhood of the sonic
point, then continued by Runga–Kutta ODE solver forward and backward to boundaries
x = 0, X . The resulting inviscid Evans–Lopatinsky solver proves to be both numerically
well-conditioned and fast. See Sect. 7 for further details.

To interpret our numerical results, we introduce a general scheme for labeling the
various stability boundaries in Fig. 2a. The outcome of our numerical investigations,
displayed in Fig. 3, is a complete and rather simple stability diagram for all inviscid roll
wave solutions of the Saint-Venant equations (1.1), an object of considerable interest in
hydraulic engineering and related applications. In panel (a), given in coordinates H−/Hs
versus F , the upper line H−/Hs = 1 corresponds to the small-amplitude limit while
the lower curve corresponds to the large-amplitude (homoclinic) limit. (Recall that H−
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Fig. 3. Complete inviscid stability diagram. Here, we depict the inviscid stability diagram with respect to
various parameters. Displayed curves are labeled according to the key in Fig. 2. As in Fig. 2, the stable region
is the region lying between the low-frequency stability boundary I and the mid-frequency boundary. Parameter
values for the figures are a H−/Hs versus F . b H+/Hs versus F . c X/Hs versus F . d enlarged view of X/Hs
versus F near onset

denotesminimumwaveheight,while Hs denotes the height of the sonic point atwhich the
wave speed becomes characteristic; we shall also make reference to the maximum wave
height H+.) Here, the stability boundaries are labeled following the scheme in Fig. 2a;
the region below the low-frequency boundary I, and above the mid-frequency boundary
corresponds to spectrally stable roll waves; all other parameter values are spectrally
unstable to either low or mid-frequency perturbations, as described in our forthcoming
analysis. The numerically-determined low-frequency stability boundaries I and II agree
well with the explicitly calculable boundaries α = 0 and γ = 0, a useful confirmation
of numerical accuracy of the code. In Fig. 2b, in an effort to emphasize the key, yet
difficult to see, features in Fig. 3a, we provide a cartoon version of the numerical results
in Fig. 3a: in Fig. 2b, we exaggerated the horizontal and vertical scales to emphasize the
relative positions of the nearly indistinguishable stability and existence boundary curves
in Fig. 3a). Panel 3b depicts the same diagram with minimum rescaled wave height
H−/Hs replaced by maximum rescaled wave-height H+/Hs , addressing the question of
maximum wave overflow mentioned earlier. Panel (c), given in terms of rescaled period
X/Hs , addresses the “water hammer” issue, determining stable wavelengths X and
temporal frequencies ω = −c(Hs)(Hs/X). Similarly, as in the viscous case [BJN+17],
there is seen to be a transition at about F ≈ 2.75 to a different asymptotic regime, in
which the mid-frequency stability curve has a different shape. This is displayed in the
enlarged diagram of panel (d).

In Fig. 4a, we compare the above stability results to the low-frequency stability
predictions of model (1.3), given in terms of average relative height H/Hs as in [BL02],
where here H denotes the average of the height profile H over a period.Here, the dash-dot
curves (green in color plates) are the stability boundaries of [BL02] and the thick curve
(red in color plates) and dash curve (blue in color plates) are corresponding to the stability
boundaries of Fig. 3. We see clearly that (1.3) does not correctly predict low-frequency
spectral behavior nor long-time dynamical stability of roll waves of any kind. Indeed, it
gives both false positive and false negative predictions of spectral stability, invalidating
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Fig. 4. Comparison of the inviscid stability diagram [stable region lying between thick curve (red in color
plates) and dash curve (blue in color plates)] with: a the “averaged” stability diagram of [BL02], which
formally predicts instability outside the region between the dash-dot curves (green in color plates). b The
“viscous” stability diagram of [BJN+17] (stable region lying between black starred curves), corresponding
to exact eigenvalue analysis of the viscous Saint-Venant system linearized about smooth roll-wave solutions
lying near inviscid Dressler waves (color figure online)
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Fig. 5. Blowups of Fig. 4b. a Close correspondence of lower curves away from onset. b Different scaling of
viscous versus inviscid boundaries near onset

in a strong sense the model (1.3) proposed in [BL02]. This resolution, along with the
analytical and numerical validation of the inviscidWhitham system (1.2) , demonstrates
the enormous benefit of working with the exact eigenvalue equations (1.10) derived from
sound mathematical bases.

In Fig. 4b, we compare to a viscous stability diagram obtained through intensive
numerical computations in [BJN+17]. Upper and lower inviscid stability boundaries are
again depicted according to the scheme in Fig. 2a. Both inviscid boundaries are seen to lie
near the lower viscous boundary,with the upper viscous boundary deviating substantially
from the upper inviscid curve. A closeup view, given in Fig. 5, shows that lower viscous
and inviscid curves are in fact extremely close, giving (since carried out by separate
codes and techniques) confirmation of the numerical accuracy of both computations. An
important consequence from the engineering point of view is that for practical purposes
the small-amplitude part of the explicitly calculable inviscid stability boundary α = 0
appears to suffice as an excellent approximation of the small-amplitude transition to
stability also in the viscous case. Note that the viscosity coefficient associated with
Figs. 4b–5 has the value ν = 1; that is, part of the inviscid stability diagram seems to
persist beyond a “small-viscosity” approximation, for moderate values of ν as well.

1.3. Discussion and open problems. Wehave obtained, similarly as in the viscous inves-
tigations of [BJN+17], surprisingly simple-looking curves bounding the region of spec-
tral stability in parameter space from above and below, across which particular low- and
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intermediate-frequency stability transitions for inviscid roll waves occur. This stability
region is bounded; in particular, all waves are unstable for F � 16.3. As also observed
in the viscous case, there seems to be a transition between low-Froude number, or “near-
onset” behavior for 2 < F � 2.5 and high-Froude number behavior for F � 2.5, in the
inviscid case occurring at F ≈ 2.74.

In contrast to the viscous case, however, in this inviscid case, the small-amplitude
transition is seen to agree with the low-frequency stability boundary that is obtained
explicitly, being given as the solution of a cubic equation in wave parameters. Moreover,
numerical computations of this boundary are fast andwell-conditioned, even for large F .
Using scale-invariance of (1.1) these findings are compactly displayed in a single figure
(Fig. 3), for four different choices of wave parametrizations which we hope convenient
for hydraulic engineering applications.

Our results validate but are not implied by the associated formalWhithammodulation
system (1.2). Indeed, our results are obtained by direct spectral analysis via the periodic
Evans–Lopatinsky determinant (1.12), while theWhitham stability results are built upon
formal WKB asymptotics. Furthermore, our results invalidate in a strong sense the
alternative averaged model (1.3) as a predictor of stability/instability of inviscid roll
waves, since it is shown to give false positive and false negative predictions of spectral
stability. Part of our explicit low-frequency stability boundary appears to be accurate
also in the viscous case, at least for a range of viscosity 0 < ν ≤ 1.

As noted throughout the presentation, there is a substantial analogy between roll
wave stability and the more developed detonation theory, both in the structure of the
equations (1.4) and phenomena/mathematical issues involved. It is our hope that the
periodic stability function (1.12) and numerical stability diagram introduced here will
play a similar role for stability of roll waves as have Erpenbeck’s stability function and
systematic numerical investigation for detonations [Erp62].

Our results suggest a number of directions for further investigation. For example, it
should be possible to carry out rigorous asymptotics on the periodic Evans–Lopatinsky
determinant in the F → 2 regime where numerical computations become singular,
complementing our current analysis and determining the validity of the various formal
amplitude equations proposed near onset. Interestingly, the inviscid asymptotics appear
to have a different scaling than the viscous ones; see Fig. 5b. A related problem is to
derive the Whitham equations (1.2) from first principles via a systematic multiscale
expansion, and, continuing, to obtain a second-order expansion (similar to [NR13]),
presumably recovering the second-order low-frequency stability condition obtained here
via expansion of the Evans–Lopatinsky determinant.

A further very intriguing puzzle left by our analysis is the close correspondence of
low-frequency boundaries in the inviscid and viscous case; Fig. 5a. This is reminis-
cent of the situation in the case of denotations, where it has been shown rigorously
that low-frequency limits for inviscid and viscous models agree [JLW05].9 Here, the
corresponding object would appear to be the Whitham modulation equations, or low-
frequency spectral expansion. However, these clearly do not agree, since numerical
computations of [BJN+17] show that characteristics of the viscous modulation systems
do not vanish, whereas inviscid characteristics do. Moreover, the upper and lower sta-
bility curves clearly diverge near onset F → 2+, Fig. 5b, with viscous periods going
to infinity while inviscid periods approach finite limits. Thus, in the present case, the
approximate agreement of low-frequency stability boundaries appears to be limited to
the large-F regime F � 2.5. Nonetheless, the correspondence seems of practical use in

9 Curiously, this does not yield instability results in the detonation case, but only low-frequency stability.
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hydraulic engineering applications lying in this same regime, and as such this would be
very interesting to shed some light on this coincidence.

More generally, the study of the singular zero-viscosity limit and viscosity-
dependence of upper and lower stability boundaries appears to be the main outstanding
problem in stability of roll waves. See [Zum12] for a corresponding study in the detona-
tion case. The roll wave case is significantly complicated by the presence of sonic points
for the inviscid profile, corresponding to loss of normal hyperbolicity in the singular
limit; see the treatment of the related existence problem in [Har05].

A natural further question is to what extent nonlinear stability is related to the spectral
stability properties studied here. Here, we face the conundrum pointed out in [JLW05]
in the related but somewhat simpler case of detonation, that the strongest nonlinear
stability results proven to date for solutions containing shocks, are short time stabil-
ity results in the sense of the original shock stability work of Majda [Maj81] (see also
[Maj83a,Maj83b,FM00,BGS07]), yet these results can be obtained equally well assum-
ing only stability of the component shocks, corresponding in terms of spectrumof the full
wave to nonexistence of spectra with sufficiently large real part; see again Remark 1.14
and reference [Nob09]. To obtain a full nonlinear asymptotic stability result could require
an argument set not in Sobolev setting, but in a setting like BV accommodating forma-
tion of additional shocks, presumably involving a Glimm or shock-tracking scheme.
This is a very interesting problem, but has not so far been carried out even in the sim-
pler detonation An alternative approach to nonlinear dynamics is to combine the rather
complete nonlinear stability theory of the viscous case [BJN+17] with the detailed spec-
tral stability picture of the inviscid case carried out here, closing the logical loop by a
comprehensive study of viscous spectra in the inviscid limit following [Zum11,Zum12].

Finally,wemention the very interesting recentwork ofRichard andGavrilyuk [RG12,
RG13] introducing a refined version of (1.1) modeling additional vorticity effects. For
roll waves, this takes the form of the full non isentropic (3×3) equations of gas dynamics
plus source terms, and yields profiles matching experimental observations of [Cor34,
Bro69,Bro70] to an amazing degree, removing shock overshoot effects of the Dressler
approximations. It would be very interesting to apply our methods toward the stability of
these waves. Other natural directions for generalization are the study of multi-shock roll
waves as mentioned in Remark 2.1 below, and the study of multidimensional stability
incorporating transverse as well as longitudinal perturbations.

2. Dressler’s Roll Waves

2.1. Profile equations. We first review the derivation by Dressler [Dre49] of periodic
traveling-wave solutions of (1.1). Let (h, q) = (H, Q)(x − ct) denote a solution of
(1.1) with c constant and (H, Q) piece-wise smooth and periodic with period X , with
discontinuities at j X , j ∈ Z. In smooth regions, we have therefore

−cH ′ + (Q)′ = 0, −cQ′ +
(

Q2

H
+

H2

2F2

)′
= H − |Q|Q

H2 , (2.1)

and across curves of discontinuity (H, Q) are chosen to satisfy the Rankine-Hugoniot
jump conditions

−c[H ] + [Q] = 0, −c[Q] +
[

Q2

H
+

H2

2F2

]
= 0, (2.2)
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augmented following standard hyperbolic theory [Lax57,Smo83,Ser99] with the Lax
characteristic conditions

a1(X−) < c, a2(X−) > c > a2(X+) or a2(X+) > c, a1(X−) > c > a1(X+) ,

(2.3)
where

a1 = q

h
−

√
h

F2 , a2 = q

h
+

√
h

F2

are the characteristics associated with (1.1). Recall that the conservative part of (1.1)
is the system of isentropic gas dynamics with velocity u = q/h and pressure law
p(h) = h2/2F2, thus above formulas coincide with a j = u ± √

p′(h).
Integrating the first equation of (2.1) jointly with the first equation of (2.2), we obtain

Q − cH ≡ constant =: −q0, (2.4)

whence, substituting in the second equation of (2.1), we obtain the scalar ODE
(

−q2
0

H2 +
H

F2

)
H ′ = H − |−q0 + cH | (−q0 + cH)/H2 (2.5)

and, substituting in the second equation of (2.2), the scalar jump condition
[

q2
0

H
+

H2

2F2

]
= 0. (2.6)

From (2.6) we deduce that there is a special sonic value10 Hs ∈ (H−, H+) such that

−q2
0

H2 +
H

F2 = 0 when H = Hs,

in particular, there, one of the characteristic speeds a j equals the wave speed c, hence
the terminology. The latter argument uses in a fundamental way the scalar nature of
the reduced profile equation (2.1) but a similar conclusion may be obtained as a more
robust consequence of the Lax condition, from which stems that at least one of the
characteristic speeds a j must change position with respect to speed c along the wave
profile. It follows that (2.5) is singular at the value Hs , fromwhichwe can draw a number
of useful conclusions. First, we may check that there is indeed only one sonic value and
that reciprocally wemay solve the sonic equation to obtain, up to a sign indetermination,
q0 as a function of Hs (and F); then, substituting this value in (2.5) evaluated at H = Hs ,
we obtain, again up to a sign indetermination, c as a function of Hs (and F) as well,
leaving

c

H1/2
s

= 1 ± 1

F
,

q0

H3/2
s

= ± 1

F
.

At this stage, by monotonicity of solutions to (2.5), one may notice that only the + sign,
corresponding to a 2-shock, is compatible with the Lax condition (2.3) and it requires
F > 2.

10 Here, H± = H(X±) correspond to the minimum (−) and maximum (+) heights of the wave.
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Combining information, assuming F > 2, and setting H− := H(0+), H+ := H(X−),
we obtain the defining relations

H ′ = F2
H2 + (Hs − c2)H +

q2
0

Hs

H2 + Hs H + H2
s

, H− ≤ H ≤ H+, (2.7)

q2
0

H−
+

H2−
2F2 = q2

0

H+
+

H2
+

2F2 , (2.8)

q0 = q0(Hs) = H
3
2

s

F
, c = c(Hs) = H

1
2

s

(
1 +

1

F

)
, (2.9)

where ′ denotesd/dx . From the solution H of (2.7),wemay recover Q = −q0+cH using
(2.4). Note that, for any 0 < H− < Hs , Eq. (2.8) defines a unique H+ = H+(H−, Hs) >

Hs . Thus solvability reduces to the condition that there is no equilibrium of (2.7) in
(H−, H+), which takes the form H− > Hhom for some Hhom(Hs). We make this latter
condition explicit below. Finally, we observe that the shape of H does not really depend
on H− but is obtained as a piece of the maximal solution of (2.7) passing through Hs .

Remark 2.1. Here, we have decided to consider only roll waves containing a single shock
per period. By the analysis above, it is clear that we may construct multi-shock profiles
consisting of arbitrarily many smooth pieces on intervals surrounding Hs , connected by
shocks satisfying (2.6). Indeed, we may construct solutions from a succession of smooth
pieces of essentially arbitrary lengths, not necessarily periodic. However these solutions
do not persist as traveling waves under viscous perturbations [Nob03, Sect. 1.3.4]. A
similar situation occurs in phase transitions models: at the inviscid level one can form
steady traveling patterns consisting of essentially arbitrary noninteracting (since travel-
ing with common speed) under-compressive phase-transitional shocks switching from
one phase to another. Turning on viscosity makes their “tails” interact, and so they do not
persist as a noninteracting pattern. Numerical simulations [AMPZ00] show that these
slowly interacting patterns can persist for a very long time, but eventually “coarsen” with
waves overtaking and absorbing each other as happens for the Saint-Venant equations
in some (unstable) cases [BM04].

2.2. Scale-invariance. Following [BL02], we note the useful scale-invariance

H(x) = Hs H(x/Hs), X = Hs X , c = H1/2
s c,

q0 = H3/2
s q

0
, Q(x) = H3/2

s Q(x/Hs),
(2.10)

of (2.7), where H is the solution of (2.7) with Hs = 1, and correspondingly

c = 1 +
1

F
, q

0
= 1

F

are the associated speed and constant of integration, i.e.,

H ′ = �(H) := F2 H2 − (1 + 2F)H + 1

H2 + H + 1
, H− ≤ H ≤ H+ (2.11)
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with

1

H−
+

H2−
2

= 1

H+
+

H2
+

2
, i.e. H+ = Z+(H−) = − H−

2
+

√
H2−
4

+
2

H−
. (2.12)

This is quite helpful in simplifying computations; in particular, we see that all profiles
are just rescaled pieces of a single solution H of the scalar ODE (2.11). Note that the

the two real roots 1+2F±√
1+4F

2F2 of the numerator of � are smaller than the sonic point 1,
so that the condition that (H−, H+) avoid these stationary points of (2.11) is

Hhom := 1 + 2F +
√
1 + 4F

2F2 < H− < 1. (2.13)

We note in passing that the denominator of � never vanishes, being always positive.

2.3. Wave numbers and averages. Denoting averages over a single periodic cell by upper
bars, from equation (2.11) we have

X = �(H−) :=
∫ H+

H−

dh

�(h)
, H = 1

�(H−)

∫ H+

H−

h dh

�(h)
, Q = c H − q

0
,

q2
0

H
+

H2

2F2 = γ (H−) := 1

�(H−)

∫ H+

H−

1

F2

(
1

h
+

h2

2

)
dh

�(h)
,

(2.14)
with H+ = Z+(H−). As integrals of rational functions, all the above integrals may be
computed explicitly. We record also formulas

k = 1

X
, ω = −ck, (2.15)

for the (scaled) spatial and temporal wave numbers k and ω, also explicitly computable,
and corresponding scaling rules

k = k

Hs
, ω = ω

H1/2
s

. (2.16)

Finally, note that at any Hhom < H− < 1

�′(H−) = 1

�(H+)

(
H+

H−

)2 H3
+ − 1

H3− − 1
− 1

�(H−)
< 0

(as a sum of negative terms) so that one could alternatively parametrize wave profiles
by (Hs, X) or (Hs, X) instead of (Hs, H−) or (Hs, H−).

3. Modulation Systems

We next study averaged systems (1.2) and (1.3), using the computations of Sect. 2.
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3.1. Dispersion relations and hyperbolicity. Both of the systems (1.2) and (1.3) are of
the form

∂t G
0 + ∂x G1 = 0, (3.1)

where G j = G j (Hs, H−), of which the characteristics are the eigenvalues α̃ j , j = 1, 2
of

(A0)−1A1, A j := d(Hs ,H−)G
j ,

or, alternatively, coefficients of the dispersion relations λ j (ξ) = iα jξ determined by

det
(
λ j (ξ)A0 + iξ A1) = 0.

The characteristics α j are evidently invariant under nonsingular changes of parameters,
corresponding to nonsingular changes of coordinates in the first-order system, with
hyperbolicity corresponding to the α j being real and semisimple.11 Below, we compute
the characteristics α j for both the Whitham system (1.2) and the averaged system (1.3).

3.2. Whitham system. Wefirst compute the characteristics associated to the system (1.2).
Using (2.10)–(2.16), the system (1.2) may be written in the form

G0 =
(

Hs H
1/(Hs�)

)
, G1 =

(
H3/2

s (c H − q
0
)

c/(H1/2
s �)

)
(3.2)

which, taking partial derivative with respect to Hs, H−, yields

A0 =
(

H Hs H
′

−1/(H2
s �) −�′/(Hs�

2)

)
, A1 =

(
3
2 H1/2

s (c H − q
0
) H3/2

s c H
′

− 1
2c/(H3/2

s �) −c�′/(H1/2
s �2)

)
.

(3.3)
Thus, so long as A0 is invertible we find

(A0)−1 = Hs�
2

�H
′ − H�′

(
−�′/(Hs�

2) −Hs H
′

1/(H2
s �) H

)

hence

(A0)−1A1 = c Id +
1

�H
′ − H�′

(
H1/2

s ( 32�
′q

0
− 1

2c (�H)′) 0

H−1/2
s �(c H − 3

2q
0
) 0

)
; (3.4)

here,wehaveverifiednumerically det A0 = �H
′−H�′

Hs�2

= 0. From (3.4),wehave evidently

that the characteristics of the Whitham system (1.2) are

α̃1 = c, α̃2 = c + H1/2
s

3
2�

′q
0
− 1

2c (�H)′

�H
′ − H�′ . (3.5)

As these are both real, we see the Whitham system (1.2) is strictly hyperbolic whenever
α̃2 
= c. On the boundary curve α̃2 = c, it can be checked numerically that c H − 3

2q
0


=
0, hence the system fails to be hyperbolic due to the presence of a non-trivial Jordan
block; see Fig. 6a.

11 That is, the algebraic and geometric multiplicities of the real α j agree, hence the eigenspaces contain no
Jordan Blocks.
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Fig. 6. a Value of �(cH̄ − 3
2q

0
)/(�H̄ ′ − H̄�′) on the strictly hyperbolic boundary α̃2 = c. b Hyperbolic

boundaries from (3.9) superimposed on corresponding figure from [BL02]. In (b),�h and�e denote domains
of hyperbolicity and ellipticity, �± (thin grey line) the boundaries of �h reported in [BL02, Fig.2.a)], and �∗
the boundary of existence for roll wave solutions of (1.1); the dash-dot curves (green in color plates) were
computed using (3.9). Labels ζ̄ and Fr in [BL02] correspond in our notation to H and F (color figure online)

3.3. Averaged system. We next compute the characteristics of (1.3). Using (2.10)–
(2.16), we may rewrite the system in the form (3.1) with

G0 =
(

Hs H

H3/2
s (c H − q

0
)

)
, G1 =

(
H3/2

s (c H − q
0
)

H2
s (c2H − 2c q

0
+ γ̄ )

)
, (3.6)

yielding

A0 =
(

H Hs H
′

3
2 H1/2

s (c H − q
0
) H3/2

s c H
′

)
,

A1 =
(

3
2 H1/2

s (c H − q
0
) H3/2

s c H
′

2Hs(c2H − 2c q
0
+ γ̄ ) H2

s (c2H
′
+ γ̄ ′)

)
. (3.7)

Thus, so long as A0 is invertible we have

(A0)−1 = 1

( 32q
0
− 1

2c H)H
′

(
c H

′ −H−1/2
s H

′

− 3
2 H−1

s (c H − q
0
) H−3/2

s H

)

hence

A := (A0)−1A1 = c Id

+
1

( 32q
0
− 1

2c H)H
′

⎛
⎝ H1/2

s H
′
(c q

0
− 2γ̄ ) −Hs

3/2γ̄ ′ H ′

H−1/2
s (2γ̄ H − 1

4c2H
2
+ 1

2c q
0

H − 9
4q2

0
) H1/2

s H γ̄ ′

⎞
⎠ .

(3.8)

Next, solving for curves corresponding to vanishing of the discriminant of the quadratic
polynomial det(A − λId) = 0, i.e., (Trace(A − c Id))2 = 4 det(A − c Id), we get the
equation

(H
′
(c q

0
− 2γ̄ ) + H γ̄ ′)2 = −γ̄ ′ H ′ (

c H − 3q
0

)2
,
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or, more explicitly,

(H
′
(F + 1 − 2F2γ̄ ) + H F2γ̄ ′)2 + F2γ̄ ′H ′ (

(F + 1) H − 3
)2 = 0 (3.9)

for the boundaries of the region of hyperbolicity. Tracing the roots of (3.9), we get, up
to numerical error, the same boundaries reported in [BL02, Fig. 2.a)] see Fig. 6b.

We point out, in particular, that the boundaries for the regions of hyperbolicity asso-
ciated to (1.2) and (1.3) are different. In order to determine which, if either, give accurate
information regarding the local dynamics about a roll wave solution of (1.1), we next
perform a mathematically rigorous investigation of the spectral stability of roll wave
solutions of (1.1).

4. General Spectral Stability Framework

We now turn to the exact spectral stability problem, replacing the formal development
of Sect. 1.1 with a treatment as rigorous as possible. Our goal is to connect as closely as
possible our spectral frameworkwith a notion of linear stability relevant also at nonlinear
level. Unfortunately we cannot rely on any general nonlinear stability framework since
none is known for any class of discontinuous waves of hyperbolic systems. Instead we
shall argue by comparison with, on one hand, local well-posedness theory near single-
shock waves pioneered byMajda [Maj81,Maj83a,Maj83b,FM00,BGS07], in particular
[Nob09] devoted to short-time persistence of rollwaves, and, on the other hand, nonlinear
stability of continuous periodic waves [JNRZ14].

4.1. Linear space-modulated stability. As in (1.4)–(1.5), consider a general system of
balance laws ∂tw + ∂x (F(w)) = R(w), w ∈ R

n , w piecewise smooth, with jump
conditions [F(w)] j = x ′

j (t)[w] j at discontinuities x j , and a traveling roll wave solution
W with shocks at X j + ct = j X + ct . We complement those jump conditions with Lax
characteristic conditions but assume, as in Sect. 2.1, that they are satisfied in a strict
sense by W ; thus they will not appear at the linearized level.

From the analysis of the continuous periodic case, the best stability that we expect
to hold in general is what was coined as space-modulated stability in [JNRZ14]. This
corresponds to showing a solution w starting close to W will remain close in the sense
that for some (w̃, ψ)

w(x − ct − ψ(x, t), t) = W (x) + w̃(x, t)

with (w̃, ∂xψ, ∂tψ)(·, t) small in suitable norms. See related detailed discussions in
[JNRZ14,Rod13,Rod15,Rod18]. Given the regularity structure of W it is natural to
measure the smallness of w̃(·, t) in Hs(R̃), with s ≥ 0 and

R̃ :=
⋃
j∈Z

( j X, ( j + 1)X).

Note that when s > 1/2 this implicitly requires that ψ(·, t) fixes discontinuities
(x j (t)) j∈Z of w(·, t) through

x j (t) = j X − ct − ψ( j X, t), j ∈ Z. (4.1)
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Observe that whereas for continuous waves the role of the resynchronization by ψ is to
allow a capture of long-time preservation of shape beyond divergence of positions, that
is, to ensure that the norm of w̃(·, t) remains small, for discontinuous waves it is already
necessary to ensure that it remains finite in finite time. In particular, a synchronization
ensuring (4.1) is also needed in definitions and proofs of local-in-time well-posedness
in piecewise smooth settings [Nob09]. Finally, note that at time t smallness of ∂xψ(·, t)
encodes both that IdR − ψ(·, t) is a diffeomorphism and that the distance between
consecutive shocks remain bounded away from zero, hence they do not interact directly.

In the new coordinates, the perturbation of shape and phase shifts (w̃, ψ) evolves
according to

∂t w̃ + ∂tψ W ′ + ∂x (A w̃) − E w̃ + ∂xψ R(W ) = N1(w̃, ∂t w̃, ∂x w̃, ∂tψ, ∂xψ) on R̃

and, for any j ∈ Z,

∂tψ( j X, t) [W ] + [Aw̃] j = N2(w̃, ∂t w̃, ∂x w̃, ∂tψ, ∂xψ)

where, here, [h] j := h(( j X)+) − h(( j X)−), N1, N2 are at least quadratic in their
arguments and, as in Sect. 1.1,

A(x) := dw F(W (x)) − cId and E(x) := dw R(W (x)).

To get closer to Eqs. (1.6)–(1.7), we now introduce

y j (t) := x j (t) + ct − j X = −ψ( j X, t) and v := w̃ + ψW ′

and write the above equations equivalently as

∂tv + ∂x (A v) − E v = N1(v − ψW ′, ∂t (v − ψW ′), ∂x (v − ψW ′), ∂tψ, ∂xψ) on R̃

and, for any j ∈ Z,

y′
j (t) [W ] − y j (t)[AW ′] − [Av] j

= −N2(v − ψW ′, ∂t (v − ψW ′), ∂x (v − ψW ′), ∂tψ, ∂xψ).

We now drop nonlinear terms to focus on linear stability issues. Note however that
our resolvent estimates will not gain derivatives so that the presence of derivatives in
nonlinear terms will necessarilly induce a derivative loss in a nonlinear scheme proving
stability and relying directly on linearized estimates. Recall that, up to now, this issue
has been bypassed only as far as short-time local well-posedned is concerned; again see
[Nob09,BGS07] and references therein.

In view of the foregoing discussion the natural linear stability problem consists in
considering the bounded (continuous) solvability of the system

∂tv + ∂x (A v) − E v= f on R̃ and for any j, y′
j [W ] − y j [AW ′]−[Av] j =g j

(4.2)

for functions f and sequences (g j ) belonging to an appropriate space, i.e. determining
if (4.2) has solutions such that there exists a ψ such that, for any j , ψ( j X, t) = −y j (t),
and (v − ψW ′, ∂xψ, ∂tψ) may be bounded in terms of ( f, (g j ) j , v(·, 0), (y j (0))). The
question of rigorously elucidating how this is connected to spectral properties considered
here would lead us too far and we leave it for further investigation. See [JNRZ14,Rod18]
for examples of such considerations for different classes of equations.We stress however
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that, based on analyses of the continuous case, the kind of time growth expected to arise
from neglecting the dynamical role of ψ—in particular trying to bound ψ rather than
∂xψ—is algebraic, thus may be safely omitted when focusing, as we shall do now,
on precluding exponential growths. Regarding local well-posedness, at the linearized
level one only needs to exclude growths faster than exponential and ψ may be chosen
independently of dynamical considerations, in an essentially arbitrary way from the
discontinuity positions, for instance cell-wise affine such that ψ( j X, t) = −y j (t) as in
[Nob03,Nob06,Nob09].

For our purpose it turns out to be sufficient to consider solvability of (4.2) in H1(R̃)×
�2(Z). As is well-known, see for instance [BGS07, Sect. 3.1.1], thanks to the equation
traces are still defined in lower-regularity settings. However, we use the H1(R̃) setting
for another purpose here: to discard algebraic or logarithmic singularities that arise from
sonic points in R̃. Once those are cast away, one may actually transfer conclusions from
H1(R̃) to Hs(R̃), for any s ≥ 1. To motivate the �2(Z) framework for (y j ) j , we add one
more comment concerning its relation with ψ . Without loss of generality one expects
to be able to enforce that the phase shift ψ is low-frequency and centered—see [Rod18,
Section 3.1]—so that its high-regularity norms are controlled by its lower ones and

ψ(x, t) =
∫ π/X

−π/X
eiξ x ψ̂(ξ, t)dξ

where ·̂ denotes the Fourier transform in the x-variable. Moreover, under these condi-
tions, from Parseval identities for the Fourier transform and Fourier series

‖ψ(·, t)‖L2(R) = √
X‖(y j (t)) j‖�2(Z), ‖∂tψ(·, t)‖L2(R) = √

X‖(y′
j (t)) j‖�2(Z).

4.2. Structure of the spectral problem. Focusing on solutions to (4.2) that grow at most
linearly in time naturally lead to the consideration of Laplace transforms in time on time
frequencies λ with �(λ) > 0. This transforms (4.2) into

λv+∂x (A v)− E v = f on R̃ and for any j, λy j [W ]− y j [AW ′]−[Av] j = g j
(4.3)

with notational changes that the new (v, (y j ) j ) is the Laplace transform of the old one
at frequency λ and that the new ( f, (g j ) j ) mixes Laplace transforms at λ of old ones
and initial data for former (v, (y j ) j ).

Observing that (4.3) is periodic-coefficient in space, it is natural to introduce the
Bloch-wave representation of v (and f ) and to interpret y = (y j ) j (and (g j ) j ) as
Fourier series of (2π/X)-periodic functions12

v(x) =
∫ π/X

−π/X
eiξ x v̌(ξ, x)dξ, y j =

∫ π/X

−π/X
eiξ j X y̌(ξ)dξ, (4.4)

where each v̌(ξ, ·) is X -periodic. For sufficiently smooth v and sufficiently localized
(y j ) j , the former transforms are defined pointwise by

v̌(ξ, x) :=
∑
k∈Z

ei 2kπ
X x v̂

( 2πk
X + ξ

)=∑
k∈Z

e−iξ(x+k)v(x + k X), y̌(ξ) :=
∑
j∈Z

e−i j X ξ y j .

12 Note that in terms of the above low-frequency assumption onψ , y̌(ξ) = −ψ̂(ξ)when ξ ∈ [−π/X, π/X ].
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General definitions follow by a density argument in L2 (respectively, �2) based on
Parseval identities

‖v̌‖L2(−π/X,π/X;L2(0,X)) = 1√
2π

‖v‖L2(R), ‖y̌‖L2(−π/X,π/X) =
√

X

2π
‖(y j (t)) j‖�2(Z).

In particular, the Bloch transform identifies L2(R) with L2(−π/X, π/X; L2(0, X)),
and this identification may be extended to Hs(R̃) with L2(−π/X, π/X; Hs(0, X)) by
observing

‖(∂x + iξ)k v̌‖L2(−π/X,π/X;L2(0,X)) = 1√
2π

‖∂k
x v‖L2(R), k ∈ N.

For comparison, note the key distinction that Hs(R) is identified with L2(−π/X, π/X;
Hs
per(0, X)) where Hs

per(0, X) is the Hs(0, X)-closure of smooth X -periodic functions
on R, hence is a set of Hs(0, X) functions satisfying suitable periodic boundary condi-
tions as soon as s > 1/2.

Applying the above transformations to (4.3) diagonalizes it into single-cell problems
parametrized by the Floquet exponent ξ , namely

λv̌ + (∂x + iξ)(A v̌)− E v̌ = f on (0, X) and y̌(λ [W ]− [AW ′])−[Av̌] = g.

(4.5)
Under the substitutionw(x) = eiξ x v̌(x), χ = eiξ X y̌ the system (4.5) may be recognized
as an inhomogeneous version of the generalized eigenvalue equation (1.10) of Sect. 1.1.
Moreover, note that to extend from a cell-problem mode back to a full-line mode one
should on one hand extend v̌ periodically, then keep the same formula for w, and on
the other hand define shock variations as eiξ j X y̌, j ∈ Z. This clean characterization in
(4.5) originates in [Nob03,Nob06],without discussion of underlying integral transforms.
Here, we are making the new observation of “completeness” of the representation (4.4),
providing a rigorous basis for the normal form analysis.

At this point, we need some knowledge of the structure of the interior ODE appearing
in the first equation of (4.5). We begin with the following definition, analogous to
consistent splitting in standard Evans function theory [AGJ90].

Definition 4.1 (Local H1 solvability). We say that at λ ∈ C local H1 solvability holds
if there exists a constant C such that for any f ∈ H1(0, X), the interior equations

λw + ∂x (A w) − E w = f

have an (n − 1)-dimensional affine space of H1(0, X) solutions whose minimum
H1(0, X) norm is bounded by C‖ f ‖H1(0,X).

We will call the set � of λ ∈ C that satisfies Definition 4.1 the domain of H1 local
solvability, echoing the classical Evans function terminology. It follows that for λ ∈ �,
bounded invertibility of (4.5) depends continuously on ξ ∈ [−π/X, π/X ]. Combined
with the isometric properties of the integral transforms discussed above, this shows
that bounded invertibility of (4.3) is equivalent to the problem (4.5) being boundedly
invertible for each ξ ∈ [−π/X, π/X ], justifying the above normal form reduction; see
for instance [Rod13, pp. 30–31]. It follows that for λ ∈ � bounded invertibility of
(4.5) is equivalent to an n-dimensional square matrix problem, encoded by �(λ, ξ) 
= 0
with � as in (1.12), hence in particular bounded invertibility is equivalent to injectivity.
Further, on � where D(λ, ξ) 
= 0 one may define resolvent-like operators as products
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of D(λ, ξ)−1 and functions that are analytic in λ on � so that one may check that those
resolvent-like operators have poles exactly where D(·, ξ) vanishes and thatmultiplicities
as poles of resolvent-like operators agree with multiplicities as roots of D(·, ξ).

With the above in mind, we now make the following assumption, verified for (1.1)
in “Appendix A”, regarding the structure of the set � for the general system (4.5).

Assumption 4.2 (Structure of �). At any λ ∈ C such that �λ ≥ 0 local H1 solvability
holds. That is,

{λ ∈ C : �(λ) ≥ 0} ⊂ �.

This justifies the Definition 1.1 of spectral instability given in Sect. 1.1 as equivalent
to the fact that for some λ ∈ C with �(λ) > 0 the problem (4.3) is not boundedly
invertible in H1(R̃) × �2(Z). For the Saint-Venant equations (1.1), the domain of local
H1 solvability is shown in “Appendix A” to satisfy

{
λ : �(λ) > − F − 2

4
√

Hs

}
⊂ �,

evidently verifyingAssumption 4.2, henceDefinition 1.1, for the Saint-Venant equations.
Moreover, in “Appendix A” we also demonstrate that the complex right-half plane is
included in domain of local Hs solvability for (1.1) for any s ≥ 1.

Observe that we use local H1 solvability at λ ∈ C only to ensure that vanishing of
the Evans–Lopatinsky determinant �(λ, ξ) for some ξ is the only way in which the
bounded solvability of the associated resolvent-like H1 ×�2 problem may fail. To study
and compute � for general systems (4.5) the following, seemingly weaker, assumption
is sufficient.

Assumption 4.3 (Homogeneous local analytic solvability). There exists an open con-
nected set �0 ⊂ C containing {λ : �(λ) ≥ 0} on which one may choose a basis
w1, . . . , wn−1 of the space of analytic solutions to

λw + ∂x (A w) − E w = 0,

that depends analytically on λ.

In “Appendix A” we check that for the special case of the Saint-Venant equations
(1.1), one may choose

�0 =
{
λ : �(λ) > − F − 2

2
√

Hs

}
,

hence verifying Assumption 4.3 in that case.

4.3. Specialization to Saint-Venant equations. Preparatory to our further investigations,
we now specialize the abstract theory of Sects. 4.1–4.2 above to the case of the Saint-
Venant equations. System (1.1) can be put in form (1.4) with n = 2 as

w =
(

h
q

)
, F(w) =

(
q

p(h) + q2

h

)
, R(w) =

(
0

r(w)

)
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where

p(h) = h2

2F2 , r(w) = h − q2

h2 .

Linearizing about W := (H, Q)T in a co-moving frame and taking a Laplace transform
in time, we obtain interior equations

λh+∂x (−ch+q) = 0, λq+∂x

((2Q

H
− c

)
q +

( − Q2

H2 +
H

F2

)
h

)
= h− 2Q

H2 q+2
Q2

H3 h

(4.6)
corresponding to (1.10)(i), with v1 = (h, q)T ,

Av =
( −ch + q

(
2Q
H − c)q + (− Q2

H2 + p′(H))h

)
=

( −ch + q

(
2Q
H − c)q + (− Q2

H2 +
H
F2 )h

)
,

and

Ev =
(

0
∂hr(W )h + ∂qr(W )q

)
=

(
0

h − 2Q
H2 q + 2 Q2

H3 h

)
.

To define an Evans–Lopatinsky determinant we need to choose a normalization of
solutions to (4.6). It is convenient to enforce

(
h
q

)
(xs) = (F − 2)

2(F + 1)

√
Hs

( (
λ + 2

3
F+1√

Hs

)
F(

λ
√

Hs(F − 1) + 2
3 (F + 1)2

)
)

(4.7)

where xs denotes the sonic point in (0, X), that is, the point in (0, X)where H(xs) = Hs .
The facts that this parametrization is possible and that the analytic dependence of values
at xs transfers to the joint analyticity of (h, q) follows from the analysis in “Appendix A”.
The above normalization is chosen to ensure that at λ = 0, (h, q) ≡ (H ′, Q′).

With the above choice of normalization we introduce, as prescribed in (1.12), the
Evans–Lopatinsky determinant

�(λ, ξ) = det

( {λH} {−ch + q}ξ
{λQ − (H − Q2

H2 )} {(− Q2

H2 +
H
F2 )h + (

2Q
H − c)q}ξ

)
(4.8)

where here we recall notation {·} and {·}ξ in (1.11). Similarly as in (2.10), wemay reduce
the spectral problem to the case when Hs = 1 by performing the rescaling

λ = λ√
Hs

, ξ = ξ

Hs
, h = Hs h

( ·
Hs

)
, q = H3/2

s q

( ·
Hs

)
.

This results (with obvious notation) in

�(λ, ξ) = H5/2
s �(λ, ξ).
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5. Low-Frequency Analysis

5.1. Comparison with modulation equations. The goal of this section is to obtain expan-
sions of the Evans–Lopatinsky determinant �(λ, ξ) when (λ, ξ) is sufficiently small.
To this end, we exploit cancellations that have their robust origin in the structure of
neighboring periodic traveling waves. In this way, we prove Propositions 1.3 and 1.7
and their corollaries at once.

With this in mind, on one hand we temporarily translate profiles to enforce that sonic
points occur at j X , j ∈ Z. Thus jumps are now located at x− + j X , j ∈ Z, where
x− = −xs , xs being the original position of the sonic point in (0, X). We also modify
the definition of jump accordingly. Note that the reduced spectral problems are now
posed on (x−, x− + X). However, for readability’s sake, we keep notation unchanged.
The gain is that with this new normalization of invariance by translation it is clearly
apparent that profiles are parametrized in terms of13 (Hs, H−) as

(H, Q)(x) = (H, Q)(x; Hs), x ∈ (x−, x− + X)

with

x− = x−(Hs, H−), X = X (Hs, H−), c = c(Hs), q0 = q0(Hs).

In particular, the interior shape of profiles is obviously independent of H−, and the
quantities x− and X are implicitly defined from it by

H(x−; Hs) = H−,

(
H2

2F2 +
Q2

H
− cQ

)
(x− + X) =

(
H2

2F2 +
Q2

H
− cQ

)
(x−).

On the other hand, let us denote the solutions (h, q) of (4.6) as (h, q)(·; λ), or just
(h, q)(λ), to mark dependence on λ. Noting that differentiating spatially the interior
profile equations (2.1) one finds that both (h, q)(·; 0) and (H ′, Q′) satisfy the same
first-order system and that by normalization (4.7) they share the same value at the sonic
point 0, we conclude by uniqueness that

(h, q)(·; 0) = (H ′, Q′).
Let us now introduce the analytic functions

(h̃, q̃)(·; λ) = λ−1 ((h, q)(·; λ) − (H ′, Q′)).

Now,first integrating (4.6) then expandingwith (h̃, q̃) and using interior profile equations
yields

�(λ, ξ) = det

( {λH} {−ch + q}ξ
{λQ − (H − Q2

H2 )} {(− Q2

H2 +
H
F2 )h + (

2Q
H − c)q}ξ

)

= λ det

⎛
⎜⎜⎜⎜⎝

{H} −λ

∫ x−+X

x−
h̃ + (eiξ X − 1)(ch̃ − q̃)(x−)

{λQ − (H − Q2

H2 )} λ{(− Q2

H2 +
H
F2 )h̃ + (

2Q
H − c)q̃}ξ + λ{Q}

− (eiξ X − 1)(H − Q2

H2 )(x−)

⎞
⎟⎟⎟⎟⎠ ,

13 Incidentally we observe that we could also use a parametrization by (c, X), a more robust choice that
would slightly simplify the present computations but would bring us farther from choices of other sections of
the paper.
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where here we have used the fact that { f } = { f }ξ + (eiξ X − 1) f (x−) as well as the
observation that

(
− Q2

H2 +
H

F2 + c2
)

H ′ +
(
2Q

H
− c

)
Q′ =

(
− q2

0

H2 +
H

F2

)
H ′ = H − Q2

H2 .

This motivates the introduction of the factored determinant

�̂(λ, ξ) = det

⎛
⎜⎜⎜⎜⎝

{H} −λ

∫ x−+X

x−
h̃ + (eiξ X − 1)(ch̃ − q̃)(x−)

{λQ − (H − Q2

H2 )} λ{(− Q2

H2 +
H
F2 )h̃ + (

2Q
H − c)q̃}ξ + λ{Q}

− (eiξ X − 1)(H − Q2

H2 )(x−)

⎞
⎟⎟⎟⎟⎠ .

(5.1)
Now, note that14 (h̃(0), q̃(0)) satisfies the system

H ′ + ∂x (−ch̃(0) + q̃(0)) = 0,

Q′ + ∂x

((
2Q

H
− c

)
q̃(0) +

(
− Q2

H2 +
H

F2

)
h̃(0)

)
= h̃(0) − 2Q

H2 q̃(0) + 2
Q2

H3 h̃(0),

which is recognized as the linearized equation (4.6) atλ = 0with inhomogeneous forcing
term (H ′, Q′), which spans the X -periodic kernel of (4.6). Further, differentiating the
interior profile equation (2.1) with respect to Hs one finds this system is also solved by

− 1

c′(Hs)
(∂Hs H, ∂Hs Q)

and hence this function differs from (h̃(0), q̃(0)) by a constant multiple of (H ′, Q′).
Consequently, from (5.1) we find for |λ| � 1 and uniformly in ξ ∈ [−π/X, π/X ] that

− c′(Hs)�̂(λ, ξ)

= det

⎛
⎜⎜⎜⎜⎝

{H} −λ

∫ x−+X

x−
∂Hs H + iξ X (c∂Hs H − ∂Hs Q)(x−)

−{H − Q2

H2 } λ{(− Q2

H2 +
H
F2 )∂Hs H + (

2Q
H − c)∂Hs Q}

− λc′(Hs){Q} + (eiξ X − 1)c′(Hs)(H − Q2

H2 )(x−)

⎞
⎟⎟⎟⎟⎠

+ O(|λ| (|λ| + |ξ |))
= λ

(
{H}

{(
− Q2

H2 +
H

F2

)
∂Hs H +

(2Q

H
− c

)
∂Hs Q

}
− c′(Hs) c {H}

−
{

H − Q2

H2

} ∫ x−+X

x−
∂Hs H

)

+ (eiξ X − 1)

({
H − Q2

H2

}(
− c′(Hs)H(x−) + q ′

0(Hs)
)

+ c′(Hs){H}
(

H − Q2

H2

)
(x−)

)
+ O(|λ| (|λ| + |ξ |))

14 Here, h̃(0) denotes the function h̃(·, λ) at λ = 0, and similarly for q̃(0).
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wherewe have used the fact that Q = cH −q0. This verifies the expansion in Proposition
1.3. In particular, it follows that, using the notation in (1.14), α0 ∈ R and α1 ∈ Ri are
explicitly determined.

Next, we aim to prove Proposition 1.7 by comparing the above expansions with
the dispersion relation from the Whitham system (1.2). To this end, observe that, with
notation from Sect. 3.2,

A0 =

⎛
⎜⎜⎜⎜⎜⎝

−∂Hs X

X2

∫ x−+X

x−
H +

1

X

∫ x−+X

x−
∂Hs H −∂H− X

X2

∫ x−+X

x−
H +

{H}
X

∂H− x−

+
{H}

X
∂Hs x− + H(x− + X) ∂Hs X +H(x− + X) ∂H− X

−∂Hs X

X2 −∂H− X

X2

⎞
⎟⎟⎟⎟⎟⎠

and

A1 = c A0 +

⎛
⎜⎜⎝

c′(Hs)

X

∫ x−+X

x−
H − q ′

0(Hs) 0

c′(Hs)

X
0

⎞
⎟⎟⎠ .

Therefore, a direct calculation yields

det

((
λ − c

eiξ X − 1

X

)
A0 +

eiξ X − 1

X
A1

)

= det

⎛
⎜⎜⎜⎜⎜⎜⎝

λ

X

∫ x−+X

x−
∂Hs H + λ

{H}
X

∂Hs x− λ
{H}

X
∂H− x− + λ

H(x− + X)

X
∂H− X

+λ
H(x− + X)

X
∂Hs X − eiξ X − 1

X
q ′
0(Hs)

−λ
∂Hs X

X2 +
eiξ X − 1

X

c′(Hs)

X
−λ

∂H− X

X2

⎞
⎟⎟⎟⎟⎟⎟⎠

= λ

X3

[
λ

(
{H} (∂Hs X ∂H− x− − ∂H− X ∂Hs x−

) − ∂H− X
∫ x−+X

x−
∂Hs H

)

+ (eiξ X − 1)
(
∂H− X q ′

0(Hs) − c′(Hs) {H} ∂H− x− − H(x− + X) ∂H− X c′(Hs)
) ]

.

To compare this to the expansion of �(λ, ξ) above, we note that by differentiating the
defining equation for X , one finds

(
H − Q2

H2

)
(x− + X) ∂H− X = −

{
H − Q2

H2

}
∂H− x−,

(
H − Q2

H2

)
(x− + X) ∂Hs X = −

{
H − Q2

H2

}
∂Hs x− + c′(Hs) c{H}

−
{(

H

F2 − Q2

H2

)
∂Hs H +

(
2Q

H
− c

)
∂Hs Q

}
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so that, in particular,(
H − Q2

H2

)
(x− + X)

(
∂Hs X ∂H− x− − ∂H− X ∂Hs x−

)

= ∂H− x−
(

c′(Hs) c{H} −
{(

H

F2 − Q2

H2

)
∂Hs H +

(
2Q

H
− c

)
∂Hs Q

})

and(
H − Q2

H2

)
(x− + X)

(
∂H− X q ′

0(Hs)−c′(Hs) {H} ∂H− x−− H(x− + X) ∂H− X c′(Hs)
)

= −∂H− x−
({

H − Q2

H2

}
(q ′

0(Hs) − H(x− + X) c′(Hs))

+ c′(Hs) {H}
(

H − Q2

H2

)
(x− + X)

)

= −∂H− x−
({

H − Q2

H2

}(
− c′(Hs)H(x−) + q ′

0(Hs)
)

+ c′(Hs){H}
(

H − Q2

H2

)
(x−)

)
.

Therefore, as λ → 0, uniformly in ξ ∈ [−π/X/π/X ], we find that

�(λ, ξ) =
X3

(
H − Q2

H2

)
(x− + X)

c′(Hs) ∂H− x−
det

((
λ − c

eiξ X − 1

X

)
A0 +

eiξ X − 1

X
A1

)

+O(|λ|2 (|λ| + |ξ |)).
This calculation proves Proposition 1.7, thus rigorously justifying the formal Whitham
modulation system (1.2) as a predictor of low-frequency stability for periodic traveling
wave solutions of the inviscid Saint-Venant equation (1.1).

Remark 5.1. Wecomment brieflyon themeaning/origins of the degenerate zeroλ(ξ) ≡ 0
indicated by the factorization �(λ, ξ) = λ�̂(λ, ξ) of (5.1). Going back to the gener-
alized eigenvalue equations (4.5), we see that these roots correspond to quasiperiodic
generalized eigenmodesw = eiξ x v̌, (eiξ j X y̌) j∈Zwith v̌ periodic on∪ j∈Z( j X, ( j+1)X)

and (v̌, y̌) satisfying the eigenvalue equation (4.5) associated with λ = 0. By unique-
ness up to constant of the solution to the interior eigenvalue equation (in formulationw),
recalling that AW ′ = R(W ) = (0, r(W ))T , we find that these modes are of the form

v̌(ξ, x) = c(ξ) e−iξ x W ′(x) for x ∈ (0, X),

w(ξ, x) = c(ξ) W ′(x) eiξ j X for x ∈ ( j X, ( j + 1)X), j ∈ Z,

y̌(ξ) = −c(ξ) e−iξ X {r(W )}ξ
{r(W )} corresponding to − c(ξ) ei( j−1)ξ X {r(W )}ξ

{r(W )} , j ∈ Z,

with c(ξ) arbitrary.15

15 Consistently with the formula for w(ξ, ·), to extend v̌(ξ, ·) to R̃ = ∪ j∈Z( j X, ( j + 1)X) the formula
provided above must be periodized via

v̌(ξ, x) = c(ξ) e−iξ(x− j X) W ′(x) for x ∈ ( j X, ( j + 1)X), j ∈ Z.
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Moreover, since the Floquet eigenvalue λ = 0 is independent of the Floquet param-
eter, one may synthesize a stationary linear mode of the original untransformed spectral
problem, (4.3) with zero source terms. Indeed converting back to the original v, (y j ) j∈Z
by linear superposition as in (4.4), we obtain

v(x) =
∫ π/X

−π/X
eiξ x v̌(ξ, x) dξ =

∫ π/X

−π/X
c(ξ) W ′(x) eiξ j X dξ = c j W ′(x) (5.2)

y j =
∫ π/X

−π/X
eiξ j X y̌(ξ) dξ = −

∫ π/X

−π/X
eiξ( j−1)X c(ξ)

{r(W )}ξ
{r(W )} dξ (5.3)

= −r(W (X−)) c j−1 − r(W (0+)) c j

{r(W )}
for j ∈ Z, x ∈ ( j X, ( j + 1)X), where (c j ) j∈Z are the coefficients of the Fourier series
of ξ �→ c(ξ).

That is, the family of Floquet eigenmodes corresponding to the degenerate root
λ(ξ) ≡ 0 span the family (5.2)–(5.3) of stationary solutions of the linearized equations,
parametrized by (c j ) j∈Z ∈ �2(Z) or equivalently by c ∈ L2(−π/X, π/X), consisting
of simultaneous instantaneous translation of interior waves and their connecting discon-
tinuities, corresponding to constant multiples c j W ′ of the background wave derivatives
and shifts y j of the background discontinuity locations. Note moreover that the rela-
tion between y̌ and c is boundedly invertible so that the family may be alternatively
parametrized by y̌ and that (y j ) j∈Z ∈ �2(Z) may be chosen arbitrarily. Comparing back
to our discussion of nonlinear solutions, we see that this corresponds exactly to the
family of nearby stationary profiles described in Remark 2.1.

5.2. Low-frequency stability boundaries. During the computations in the previous sub-
section, we found that the Evans–Lopatinsky determinant can be decomposed for suffi-
ciently small λ, uniformly in ξ ∈ [−π/X, π/X ] as

�(λ, ξ) = λ �̂(λ, ξ)

with

�̂(λ, ξ) = λ∂λ�̂(0, 0) +
eiξ X − 1

i X
∂ξ �̂(0, 0) + O(|λ|(|λ| + |ξ |)).

In particular, observe that if ∂ξ �̂(0, 0) = 0 then 0 is actually a double root of�(·, ξ) for
any ξ . This suggests that when ∂ξ �̂(0, 0) changes sign, a loop of spectrum, parametrized
by ξ , may switch from one half-plane to the other. Consequently, in the absence of
additional instabilities, the vanishing of ∂ξ �̂(0, 0)may indicate a transition from stability
to instability (or vice versa) of the underlying periodic solution. Later on we shall offer
another partial support to this scenario by proving that the parity of the number of real
positive subharmonic—i.e. corresponding to ξ = π/X,−π/X—eigenvalues changes
when this occurs.

Likewise, if ∂λ�̂(0, 0) were changing sign somewhere then this might indicate a
change in the parity of the number of real positive co-periodic—i.e. corresponding to
ξ = 0—eigenvalues.16 However, as discussed in the introduction, we have checked

16 Such a parity change would follow immediately provided one could determine, say, the sign of �(λ, 0)
for large λ ∈ R.
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numerically that ∂λ�̂(0, 0) never vanishes over the entire range of existence of periodic
traveling wave solutions of (1.1). Motivated by this numerical observation, we now
restrict our theoretical discussion to the case when ∂λ�̂(0, 0) 
= 0.

From the above expansion of�(λ, ξ), a direct computation shows that the non-trivial
small root of �(·, ξ) expands for |ξ | � 1 as

λ(ξ) = −iαξ − βξ2 + O(|ξ |3), (5.4)

with α and β real numbers17 given by

α = ∂ξ �̂(0, 0)

i∂λ�̂(0, 0)

and

β = α

(
−1

2
X − 1

2
α

∂2λ�̂(0, 0)

∂λ�̂(0, 0)
− i

∂2λξ �̂(0, 0)

∂λ�̂(0, 0)

)
=: αγ.

In particular, a transition instability/stability of small eigenvalues associated with small
Floquet numbers necessarily takes place whenever, by changing parameters of wave, the
parameter β changes sign. For this reason we use the vanishing of β as an indicator of a
low-frequency stability boundary. Furthermore, since β = α γ , we distinguish between
two types of potential low-frequency stability boundaries:
(1) low-frequency stability boundary I: when α vanishes, and in this case we know

that a full loop of spectrum passes through the origin;
(2) low-frequency stability boundary II: when α does not vanish but γ changes sign,

and we at least know that the curvature at the origin of the non trivial small root
changes sign.

We now explain how to carry out the computations of the quantities ∂λ�̂(0, 0), α

and γ . First we remind the reader that all coefficients in A0 and A1 from Sect. 3.2 may
be explicitly computed by simple but tedious algebraic manipulations. In particular,
both ∂ξ �̂(0, 0) and ∂λ�̂(0, 0) have explicit expressions in terms of H−, Hs and F . The
expression of the latter is both long and quite daunting, therefore we omit it and resort
to numerical evaluation to determine its sign. Let us only mention that its ugliest parts
involve � and �H .

The evaluation of ∂ξ �̂(0, 0) provides a nicer form,

∂ξ �̂(0, 0)

i X
=

{
H − Q2

H2

}(
H− − q ′

0(Hs)

c′(Hs)

)
− {H}

(
H− − (c(Hs)H− − q0(Hs))

2

H2−

)

= H2
s {H}

F2(F+1)H2− H2
+

[ (
F2H2− H2

+−2(F+1)H− H++(H−+H+)
) (

(F+1)H−−3
)

− (F + 1)H2
+

(
F2H3− − (F + 1)2H2− + 2(F + 1)H− − 1

) ]

= H2
s {H}

F2(F + 1)H2− H2
+

[
F3H2−H2

+ − 2F2H−H+(H+ − H−)

+ F(3H2−H2
+ − 4H− H+(H− + H+) + 7H− H+ + H2− + H2

+)

+ H2−H2
+ − 2H−H+(H− + H+) + H2− + H2

+ + 7H− H+ − 3(H− + H+)
]
. (5.5)

17 The reality of α, β follows by the explicit expansion of �̂(λ, ξ) in the previous subsection.
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Fig. 7. a A plot of the limits of the domain of existence, as well as the low-frequency stability boundaries
(recall the labeling scheme fromFig. 2a). As the low-frequency stability boundary II is nearly indistinguishable
from the lower existence boundary, we show in (b) an enlargement of (a) near F = 2. In b, we are showing the
lower existence boundary, the low-frequency stability boundary II, and the mid-frequency stability boundary

Once the sign of ∂λ�̂(0, 0) is known, determining the sign of α is thus reduced to the
study of the sign of a third order polynomial in F with coefficients given as polynomials
in H− and H+, thus as functions of H−. This task may be achieved by exact algebraic
computations. In particular, by root solving symbolically inMATLABwe have obtained
the low-frequency stability boundary I expounded in Fig. 7a. While we have restricted
to the case when Hs = 1 in Fig. 7a, we recall that conclusions for general values of Hs
can be deduced thanks to the scaling invariance (2.10).

In contrast, the sign of γ is not directly related to the first-order18 modulation system
(1.2), and it is unclear to us whether γ may be obtained in closed form. However,
the only missing piece in obtaining a closed form expression for γ is knowledge of
∂λ(h̃, q̃)(·; 0) = 1

2∂
2
λ(h, q)(·; 0) (with notation from Sect. 5.1). By differentiating twice

the defining equations for (h, q)(·; λ), we find that ∂λ(h̃, q̃)(xs; 0) = 0 and that

h̃(0) + ∂x (−c∂λh̃(0) + ∂λq̃(0)) = 0,

q̃(0) + ∂x

((
2Q

H
− c

)
∂λq̃(0) +

(
− Q2

H2 +
H

F2

)
∂λh̃(0)

)
= ∂λh̃(0) − 2Q

H2 ∂λq̃(0)

+ 2
Q2

H3 ∂λh̃(0)

with

(h̃, q̃)(·; 0) = − 1

c′(Hs)
(∂Hs H, ∂Hs Q) +

3(F + 2)

2(F + 1)(F − 2)

√
Hs (H ′, Q′).

In the foregoing we have also used (4.7) to determine the multiple of (H ′, Q′)
in (h̃, q̃)(·; 0). To determine γ we have indeed used a numerical approximation of
∂λ(h̃, q̃)(·; 0) obtained by solving the above singular ODECauchy problem. Our numer-
ical outcome is that γ vanishes only near the lower boundary of the existence domain,
that is, the potential low-frequency stability boundary II actually sits between the low-
frequency stability boundary I and the lower boundary of the existence domain. As F
increases the low-frequency stability boundary II gets even closer to the lower boundary
of the existence domain. See Fig. 7b for an enlarged figure of the low-frequency stability
boundary II near F = 2.

18 Yet we expect that it could be related to a suitable second-order system as in [NR13,JNRZ13,JNRZ14,
KR16].
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6. High-Frequency Analysis

In this sectionwe analyze the behavior of solutions of to the interior eigenvalue problems
(4.6)–(4.7) when |λ| → ∞. These conclusions will then be used to deduce high- and
medium-frequency stability indices.

Though detailed computations depend on specificities of (1.1), the method of our
analysis applies to general hyperbolic systems of balance laws (1.4). Indeed, the tenet of
the argument is that expansions when |λ| → ∞ perturb from purely hyperbolic modes
(of the system without source term) and that the first correction to this picture encodes
how the relaxation damps these modes. Note that this occurs even when, as here, the
relaxation is degenerate in the sense that it appears only in one equation of the system.
In particular the condition on the index I introduced below is analogous to the averaged
slope condition of the viscous case that was shown to always hold in [RZ16].

6.1. High-frequency expansion. As in Section A.3, we begin by changing the unknown
from (h, q) to W := (w1, w2) = (ch − q, h), so that the system (4.6) becomes

(
p′(H) − q2

0

H2

)
W ′ = (λ B0 + B1) W,

where

B0 =
(
0 p′(H) − q2

0
H2

1 − 2q0
H

)

B1 =
⎛
⎝ 0 0

−∂qr(H, Q) −
(
2q0
H

)′ −
(

p′(H) − q2
0

H2

)′
+ ∂hr(H, Q) + c∂qr(H, Q)

⎞
⎠ ,

(6.1)

and normalization (4.7) becomes

W (xs) = (F − 2)

2(F + 1)

√
Hs

(
2λ

√
Hs(

λ + 2
3

F+1√
Hs

)
F

)
.

Now, note that B0 = P0 � P−1
0 with

� =
(

μ+ 0
0 μ−

)
, μ± = −q0

H
± √

p′(H),

and

P0 =
( q0

H +
√

p′(H)
q0
H − √

p′(H)

1 1

)

P−1
0 = 1

2
√

p′(H)

(
1

√
p′(H) − q0

H

−1
√

p′(H) + q0
H

)
. (6.2)
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By setting W0 = P−1
0 W , the above system is transformed into(

p′(H) − q2
0

H2

)
W ′

0 = (λ � + C0) W0

with

C0 = P−1
0 B1P0 −

(
p′(H) − q2

0

H2

)
P−1
0 (P0)

′. (6.3)

Observe that, by direct calculations similar to those in Sect. A.3, we have

�(xs) =
(
0 0

0 − 2
√

Hs
F

)
and C0(xs) =

(
0 0

4
3

(F+1)
F 0

)

and that the normalization (4.7) becomes

W0(xs) = F(F − 2)

4(F + 1)

(
1 0

−1 2
√

Hs
F

)(
2λ

√
Hs(

λ + 2
3

F+1√
Hs

)
F

)
= F(F − 2)

4(F + 1)

(
2λ

√
Hs

4
3 (F + 1)

)
.

We now set

P1(·; λ) = I2 +
1

λ
P̃1, P̃1 =

(
0 − (C0)1,2

μ+−μ−
(C0)2,1
μ+−μ− 0

)

to ensure commutator relations

[λ�, P1(·; λ)] = [�, P̃1(·; λ)] = −
(

0 (C0)1,2
(C0)2,1 0

)
.

For |λ| sufficiently large, P1(·; λ) is point-wise invertible. For such λ, setting W1 =
P−1
1 W0 transforms the interior spectral system into(

p′(H) − q2
0

H2

)
W ′

1 =
((

λ μ+ + (C0)1,1 0
0 λ μ− + (C0)2,2

)
+
1

λ
C1(·; λ)

)
W1

with

C1(·; λ) = −P−1
1 P̃1

(
(C0)1,1 0

0 (C0)2,2

)
+ P−1

1 C0 P̃1 −
(

p′(H) − q2
0

H2

)
P−1
1 (P̃1)

′.

Note that C1 vanishes at xs and that the normalization (4.7) now reads

W1(xs) = F(F − 2)

4(F + 1)

(
1 0

− 1
λ
2
3

(F+1)√
Hs

1

)(
2λ

√
Hs

4
3 (F + 1)

)
= F(F − 2)

4(F + 1)

(
2λ

√
Hs

0

)
.

In order not to suggest spurious singularities, we introduce the following smooth
factorizations:

μ+ =
(

p′(H) − q2
0

H2

)
μ̃+, (C0)1,1 =

(
p′(H) − q2

0

H2

)
γ̃+,

(C0)2,2 =
(

p′(H) − q2
0

H2

)
γ̃−, C1 =

(
p′(H) − q2

0

H2

)
C̃1. (6.4)
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The above computations suggests that W1(x) behaves to leading order as

F(F − 2)

4(F + 1)

(
2λ

√
Hs e

∫ x
xs

(λ μ̃+(y)+γ̃+(y))dy

0

)

as |λ| → ∞. To prove this claim, we introduce

W̃1(x) = e− ∫ x
xs

(λ μ̃+(y)+γ̃+(y))dy W1(x)

and note that W̃1 satisfies the fixed point equation W̃1 = �(W̃1), where � is defined by

�(W̃ )(x) = F(F − 2)

4(F + 1)

(
2λ

√
Hs

0

)

+
1

λ

∫ x

xs

(
1 0

0 e
−λ

∫ x
y

μ+−μ−
p′(H)−q20 H−2 (z) dz−∫ x

y (γ̃+−γ̃−)(z) dz

)
C̃1(y) W̃ (y) dy.

Since the function

μ+ − μ−
p′(H) − q2

0 H−2
(x)

has the same sign as (x − xs) over [0, X ], it follows that � is a Lipschitz function on
C0([0, X ];C2) with Lipschitz constant K/|λ| for some constant K > 0 uniform on λ

when �(λ) ≥ −θ , with θ ∈ [0, (F − 2)/2
√

Hs) held fixed, and λ is sufficiently large.
Under such conditions on λ the function � is a strict contraction so that, in particular,
for any function W̃ ∈ C0([0, X ];C2)

‖W̃1 − W̃‖L∞(0,X) ≤ 1

1 − K |λ|−1 ‖W̃ − �(W̃ )‖L∞(0,X)

where K is a uniform constant. Thus with the same constant K we have the estimates

‖W̃1‖L∞(0,X) ≤ |λ|√Hs

1 − K |λ|−1

F(F − 2)

2(F + 1)

and ∥∥∥∥W̃1 − F(F − 2)

4(F + 1)

(
2λ

√
Hs

0

)∥∥∥∥
L∞(0,X)

≤ K

|λ| − K

|λ|√Hs

1 − K |λ|−1

F(F − 2)

2(F + 1)
.

By undoing change of variables (h, q) = (w2, cw2 − w1, (w1, w2)
T = W =

P0P1W1, we have proved the following proposition.

Proposition 6.1. Let θ ∈ [0, (F −2)/2
√

Hs). The solution (h, q) to (4.6)–(4.7) satisfies

e− ∫ x
xs

(λ μ̃+(y)+γ̃+(y))dy
(

h
q

)
(x) = λ

√
Hs

F(F − 2)

2(F + 1)

(
1

Q(x)
H(x)

− √
p′(H(x))

)
+ O(1)

(6.5)
as |λ| → ∞ with �(λ) ≥ −θ , where

μ̃+ =
(√

P ′(H) +
q0
H

)−1

and γ̃+ is defined through (6.1)–(6.4).



Spectral Stability of Inviscid Roll Waves 303

6.2. Co-periodic and subharmonic real-frequency instability indices. Sending�(λ) →
∞ in (4.8), we recover through the above proposition the results in [Nob06] that potential
unstable frequencies have bounded real parts. This is essentially necessary to local well-
posedness, or, in other words, Hadamard stability, as proved in [Nob09]. We capture this
in the following result.

Proposition 6.2. Uniformly in ξ ∈ [−π/X, π/X ], the Evans–Lopatinsky determinant
defined in (4.8) satisifes

�(λ, ξ) ∼ γ0λ
2 e

∫ X
xs

(λ μ̃+(y)+γ̃+(y))dy (6.6)

as �(λ) → ∞, where the constant γ0 is defined explicitly as

γ0 := √
Hs

F(F − 2)

2(F + 1)
{H}

(√
H+

F
+

q0
H+

)2

.

In particular there is an upper
bound on real parts of unstable frequencies.

Proof. For �(λ) → ∞, the second column in (4.8) is dominated by the exponentially
large value at x = X , whereas, the first column of the Evans–Lopatinsky determinant is
dominated by (λ{H}, λ{Q})T . Combining these observations, we obtain (6.6) with

γ0 = det

⎛
⎝ {H} −c + Q(X)

H+
−

√
H+
F

c{H} H+
F2 − Q(X)2

H2
+

+
(
2Q(X)

H+
− c

) (
Q(X)

H+
−

√
H+
F

)
⎞
⎠

which is seen to coincide with the above value by direct expansion of
Q(X) = cH+ − q0. ��

The above proposition may be used to derive co-periodic and subharmonic real-
frequency instability indices. Indeed, note that from the uniqueness of solutions(h, q) of
(4.6)–(4.7) it follows that (h, q) is real whenever λ is real and hence we have that�(λ, 0)
and �(λ, π/X) are real for λ ∈ R. By Proposition 6.2 we deduce that both �(λ, 0) and
�(λ, π/X) are positive when λ ∈ R is positive and sufficiently large. Using the already
established expansions

�(λ, 0) = λ2∂λ�̂(0, 0) + O(|λ|3)

�
(
λ,

π

X

)
= −2λ

∂ξ �̂(0, 0)

i X
+ O(|λ|2),

valid as λ → 0, we deduce by the intermediate value theorem that the sign of ∂λ�̂(0, 0)
determines modulo two the number of co-periodic—that is, associated with ξ = 0—real
unstable frequencies, and that the sign of i∂ξ �̂(0, 0) determines modulo two the number
of subharmonic—that is, associated with ξ = π/X—real unstable frequencies. Inciden-
tally, note that if ∂λ�̂(0, 0) is positive (as suggested by our numerical observations) then
by (5.4) the quantity �(0, π/X) has the opposite sign of α. Moreover, recall that both
∂λ�̂(0, 0) and ∂ξ �̂(0, 0) are directly related to the Whitham modulation system and are
hence explicitly computable: see Sect. 5.1 above.

Taken all together, the above considerations prove Theorem 1.15.
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6.3. High-frequency stability index. Using the result of Proposition 6.1 without assum-
ing that �(λ) is large, we now study high-frequency stability. In this case, we cannot
use exponential growths to discard parts of the expansions as in Proposition 6.2 and,
consequently, the expansion (6.6) is modified into

�(λ, ξ) = λ2 e
−λ

∫ xs
0 μ̃++

∫ X
x− γ̃++iξ X

γ0

×
⎛
⎜⎝eλ

∫ X
0 μ̃+−iξ X (

1 + O
(|λ|−1)) −

⎛
⎝

√
H−
F + q0

H−√
H+
F + q0

H+

⎞
⎠

2

e− ∫ X
0 γ̃+ + O

(|λ|−1)
⎞
⎟⎠

(6.7)

uniformly in ξ ∈ [−π/X, π/X ] when |λ| → ∞ with �(λ) ≥ −θ , θ being held fixed in
[0, (F − 2)/2

√
Hs). Defining the high-frequency index

I :=
⎛
⎝

√
H−
F + q0

H−√
H+
F + q0

H+

⎞
⎠

2

e− ∫ X
0 γ̃+ (6.8)

where γ̃+ is derived from (6.1)–(6.2)–(6.3)–(6.4), we obtain the following characteriza-
tion of high-frequency spectrum.

Proposition 6.3. If I ≤ e
− F−2

2
√

Hs

∫ X
0 μ̃+ , then for any θ ∈ [0, (F − 2)/2

√
Hs) there exists

a R0 > 0 such that the system (4.6)–(4.7) has no spectrum in the set

{ λ : �(λ) ≥ −θ and |λ| ≥ R0}.

Conversely, if I > e
− F−2

2
√

Hs

∫ X
0 μ̃+ then for any

θ ∈
(

ln(I)∫ X
0 μ̃+

,
F − 2

2
√

Hs

)

there exists a R0 > 0 such that the spectrum in

{ λ : �(λ) ≥ −θ and |λ| ≥ R0}
consists exactly of two curves, made of simple Floquet eigenvalues and locally
parametrized by ξ , asymptoting to the vertical line with equation

�(λ) = ln(I)∫ X
0 μ̃+

.

Proof. This follows directly through Rouché’s theorem from a comparison of zeros λ

of

λ−2 e
λ
∫ xs
0 μ̃+−

∫ X
x− γ̃+−iξ X

γ −1
0 �(λ, ξ)

with those of

eλ
∫ X
0 μ̃+−iξ X − I

uniformly in ξ in the aforementioned zone of λs. ��
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Fig. 8. Numerical evaluation of I(F, H−) for a F = 3, H− ∈ (Hhom(3), 1] and for b H− = 0.8, F ∈
[2.4, 20]

Observe now that Theorem 1.13 is a simple corollary of Proposition 6.3.
In order to compute the high-frequency index , observe that the integral in the def-

inition of the index I may be written as an integral between H− and H+ of a rational
function of h whose denominator is easily factored so that an exact formula for Imay be
algebraically determined. Yet, we omit it here since the resulting formula is both very
long and not very instructive.

Instead, we fix Hs = 1 and evaluate numerically the high-frequency stability index
I = I(F, H−). The outcome of this numerical computation is the observation that,
across the entire parameter-range of existence, one has I(F, H−) < 1, indicating high-
frequency stability of all periodic traveling wave solutions of (1.1). See Fig. 8 for a
depiction of the typical behavior of the high-frequency stability index as parameters H−
and F are varied.

7. Numerical Investigations and Stability Diagram

In this section, we describe how we have carried out our numerical investigations, pro-
viding complete stability diagrams expounded in the introduction in Figs. 3 and 4.While
some details on the implementation are provided in “Appendix B”, our focus here is on
methodology.

The general framework introduced in Sect. 4 and the exact factorization from Sect. 5
lead to the problem of finding roots of �̂(·, ξ) for any ξ ∈ [−π/X, π/X ], where �̂ is
as defined in (5.1).

Let us first explain how to compute (h, q) (or its reduced version (h̃, q̃)) from equa-
tions (4.6)–(4.7) and, in particular, how to deal with the presence of the singular point
at x = xs . At the numerical level, we follow the pattern of the existence proof provided
in Sect. A.2, that is, in a small neighborhood of the singular point we carry out a spe-
cific, asymptotic treatment of the problem and then solve outward from the boundary
of the neighboring zone with a standard ODE solver. Near the sonic point, we use the
analyticity of the sought solution to approximate it by a finite series whose coefficients
are determined from the finite-order recursion relation imposed by the equation. At this
stage, since coefficients of the eigen equation and H ′ itself are expressed in terms of H ,
it is convenient to use a truncated version of an expansion in terms of H(x)− Hs instead
of x − xs , that is, to approximate (h, q)(x) with a finite sum of the form

N−1∑
n=0

(H(x) − Hs)
n (an, bn)
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where (an, bn) are determined recursively. Moreover the convergence of the correspond-
ing series is readily deduced by applying the general theory in Sect. (A.2) to the equation
obtained from (4.6) after the change of variable x �→ H(x). Recurrence relations are
obtained and solved by using a numerical symbolic solver. To use a relatively small
number N of terms in the expansion, the size of the neighborhood of the sonic point on
which the expansion is used is chosen adaptively, so as to ensure reasonable accuracy
of the power series expansion. This scheme turns out to be very robust.

Once the above approximations of (h, q) has been achieved, our computations fol-
low the by now classical road map to investigate stability of periodic waves from Evans
function computations. See in particular [BJN+13] for comparison and for some imple-
mentation details omitted here.

Explicitly, to determine stability, we fix 0 < r < R with r � 1 and R � 1 and
examine the presence of spectrum associated to (4.6)–(4.7) within the set

�(r, R) := { λ : �(λ) > 0, r < |λ| < R }.
To this end, we compute for any ξ ∈ [−π/X, π/X ] a winding number for the associated
reduced periodic Evans–Lopatinsky function �̂(·, ξ), i.e. we numerically compute the
complex contour integral

n(ξ ;�) := 1

2π i

∮
∂�

∂λ�̂(λ, ξ)

�̂(λ, ξ)
dλ = 1

2π i

∮
∂�

∂λ arg
(
�̂(λ, ξ)

)
dλ.

Since �̂(·, ξ) is complex analytic in λ, it is clear that this counts its number of zeros
within the set �. To capture the structure of the full spectrum, this winding number
must be computed for a suitably fine discretization of ξ ∈ [−π/X, π/X ]. Observe that
a significant amount of redundant calculation is spared by noting that19

�̂(λ, ξ) = det

⎛
⎜⎜⎜⎜⎝

{H} −λ

∫ x−+X

x−
h̃ − (ch̃ − q̃)(x−)

{λQ − (H − Q2

H2 )} λ{(− Q2

H2 +
H
F2 )h̃ + (

2Q
H − c)q̃} + λ{Q}

+ (H − Q2

H2 )(x−)

⎞
⎟⎟⎟⎟⎠

+ eiξ X det

⎛
⎜⎜⎝

{H} (ch̃ − q̃)(x−)

{λQ − (H − Q2

H2 )} −λ
(
− Q2

H2 +
H
F2 )h̃ + (

2Q
H − c)q̃

)
(x−)

− (H − Q2

H2 )(x−)

⎞
⎟⎟⎠

and that the computation of the two determinants above is independent of ξ . For illustra-
tion, typical graphs of how the contour ∂�(r, R) maps under �̂(·, ξ) are given in Fig. 9.
We have used the abovemethod to verifymedium-frequency stability, for 2.3 ≤ F ≤ 19,
discretizing uniformly into 6000 points the area of parameters corresponding to waves
having passed our low-frequency stability tests, choosing r = 0.01, R = 400 and ξ

in a 1000-point uniform mesh of the interval [−π/X, π/X ]. From these calculations
was determined an additional “medium-frequency stability boundary” which crosses the
low-frequency stability boundary I at about F = 16.3; see the illustration in Fig. 2b.

19 We keep the x-notation for clarity but recall that actually we perform numerical computations after the
change of variable x �→ H(x) has been performed.
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Fig. 10. a Plots of the spectrum near the origin with Hs = 1 when H− crosses the low-frequency stabil-
ity boundary I at F = 2.492779325091594, H− = 0.806451612903226; b Plots of the spectrum near
the origin with Hs = 1 when H− crosses the low-frequency stability boundary II at F = 2.5, H− =
0.745329985201548

Both to improve accuracy by bisecting on H− and to shed some light on the transition
to instability, we have refined numerically all of the aforementioned stability boundaries.
Concerning the low-frequency stability boundaries, we have tracked as a function of
the Bloch frequency ξ the small root of �̂(·, ξ) by running a classical root solver.
Consistently with our theoretical analysis, we have observed that:

(i) As H− decreases and crosses the low-frequency stability boundary I, the spectra
first appears to be a “circle” on the right half plane (indicating instability), gradually
shrink to the origin (corresponding to α = 0), and finally grow to be a circle on the
left half plane (indicating low-frequency stability). See Fig. 10a.

(ii) As H− decreases and crosses the low-frequency stability boundary II, the spectra
near the origin initially curves into the left half plane (corresponding to β > 0),
gradually becomes more and more vertical, and finally curves to lie on the right half
plane (corresponding to β < 0). See Fig. 10b.

Whereas the above is merely a consistency check for the low-frequency stability
boundaries, the computation of the medium-frequency transition is more instructive. To
detect and trace it we have again used a root solver, this time near roots that barely crossed
the imaginary axis. The behavior of these critical spectral curves seems to depend on F .
Indeed, for 2 < F ≤ 12.2, the curves connect back to the origin as ξ is varied, while for
12.3 ≤ F ≤ 16.3 the curves cross real axis at about −1.5: see Fig. 11a, b. Furthermore,
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Fig. 11. Spectral plots for points on the mid-frequency boundary, with the purely imaginary (non-zero)
points of the spectrum indicated with a small black box. Everywhere Hs = 1. a F = 16.3, H− =
0.0920122990378320; b F = 8, H− = 0.178726395676078; c F = 2.75, H− = 0.658783869495317;
d F = 2.74, H− = 0.661884455727258; e F = 2.73, H− = 0.665012235912442. Note that panes c–e
show a jump in the imaginary part of the critical purely imaginary points as F decreases through F ≈ 2.74

for F ≈ 2.74 there appear to be multiple (local) curves that touch the imaginary axis
away from the origin, making the tracking of this boundary potentially difficult. For
example, as F decreases through 2.74 the location of the purely imaginary points away
from the origin in the spectrum changes from a pair farther away from the origin to a
pair nearer the origin; see Fig. 11c–e. It is this switching between critical branches of
spectrum that is responsible for the sharp edge of the stability boundary in Fig. 3d.
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Appendix A. Local Solvability

In this appendix we treat solvability in Sobolev spaces or analytic setting of a class
of singular ODEs. Our analysis significantly differs from, but obviously also overlaps
with, the classical treatment of regular–singular points of ODEs, as found in [Cod61].
We perform the required estimates first for a “toy” model equation, and then for the
general case at hand.

A.1. Model problems. Starting with the principal singular part, we are led to consider
the model constant-coefficient scalar equation

xv′ + a0v = g, (A.1)

on a bounded interval I ⊂ R containing 0, where here a0 ∈ C is a constant. Our goal
here is to study the continuous solvability of the Eq. (A.1) within different function
classes and, in particular, allowing a0 to have arbitrary large real part.

For exposition, we begin with the L p-theory, 1 < p ≤ ∞. In this case, for each
g ∈ L p(I ) and �(a0) > 1/p there is at most one solution of (A.1) since x �→ |x |−a0
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does not belong to L p(I ) on either side of zero. We show now that under the same
condition there is indeed exactly one solution in L p(I ), depending continuously on
g ∈ L p(I ). The claimed solution is given explicitly by

v(x) =
∫ x

0

( |y|
|x |

)a0
g(y)

dy

y
=

∫ 1

0
ta0g(x t)

dt

t
. (A.2)

Note that the condition �(a0) > 1/p ensures that the map y �→ |y|a0/y belongs to
L p′

(I ), where p′ is Lebesgue-conjugate to p, i.e. 1/p+1/p′ = 1, since then p′(�(a0)−
1) > −1. In particular, (A.2)makes sense20 whenever x 
= 0.Moreover, since |x v(x)| �
|x |1−1/p → 0 as x �→ 0, one readily checks that (A.2) provides a distributional solution
to (A.1). The continuity of the solution map follows from the elementary estimate

‖v‖L p(I ) ≤
∫ 1

0
t�(a0)‖g(· t)‖L p(I )

dt

t
≤ ‖g‖L p(I )

∫ 1

0
t�(a0)−1/p dt

t

= 1

�(a0) − 1/p
‖g‖L p(I ),

which proves the claim.
Extending to W k,p-solvability, k ∈ N

∗, 1 < p ≤ ∞, we expect to relax the condition
on a0. The fastest way to check this claim is to observe that at this level of regularity
(A.1) may be equivalently written as

x (v(k))′ + (a0 + k) v(k) = g(k)

(to be solved with v(k) ∈ L p(I )), supplemented by initial data constraints

(a0 + �)v(�)(0) = g(�)(0), 0 ≤ � ≤ k − 1.

As a result, when �(a0) > −k + 1/p any W k,p-solution satisfies

‖v(k)‖L p(I ) ≤ 1

�(a0) + k − 1/p
‖g(k)‖L p(I ),

and the set of solutions is a singleton if a0 /∈ {−(k − 1), . . . , 0}, and a line parametrized
by v(−a0)(0) otherwise.

Finally, we consider the solvability of (A.1) within the class of analytic functions on
I . Given an analytic function g on I , then as above we find that if a0 /∈ −N there is at
most one solution of (A.1) while if a0 ∈ −N then any solution, if it exists, is determined
only up to a multiple of x �→ x−a0 . For simplicity, here we only discuss the case when
�(a0) > −1. Since a0 v(0) = g(0) is a necessary condition for solvability, when a0 = 0
we assume moreover that g(0) = 0 and otherwise choose v(0) such that this constraint
is satisfied (uniquely when a0 
= 0, arbitrarily otherwise). In this case, it is easy to check
that the W 1,∞-formula

v(x) = v(0) +
∫ 1

0
ta0 g(x t) − g(0)

t
dt

20 We warn the reader, however, that the corresponding pessimistic pointwise bound |v(x)| � |x |−1/p

incorrectly suggests that v /∈ L p(I ).
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actually defines an analytic solution on I whenever g is analytic on I . In particular, the
above solution formula may be extended to x lying in a complex convex neighborhood
B of 0, defining a holomorphic extension satisfying the continuity estimate

max
z∈B

|v(z) − v(0)|
|z|N

≤ 1

�(a0) + N
max
z∈B

|g(z) − g(0)|
|z|N

,

where here N is chosen so that 0 is a root of g − g(0) of order at least N .
Having considered the scalar model (A.1) above and with actual singular problem

deriving from (1.1) in mind, we now consider the continuous solvability of a triangular
constant-coefficient system of the form{

v′
1 = g1

x v′
2 = L0v1 − a0 v2 + g2,

(A.3)

considered again on a bounded interval I ⊂ R containing 0, where here L0 ∈
M1,n−1(C) is a matrix, a0 ∈ C is a constant, v1 is Rn−1-valued and v2 is scalar-valued.
Given 1 < p ≤ ∞ and given g1, g2 ∈ L p(I ), we find that if �(a0) > 1/p then the set
of L p-solutions of (A.3) is an (n − 1)-dimensional space, parametrized by v1(0), with
solutions satisfying the continuity estimate

‖v1‖L p(I ) ≤ |v1(0)| |I |1/p + ‖g1‖L p(I ) |I |
‖v2‖L p(I ) ≤ 1

�(a0) − 1/p

[
|L0| |v1(0)| |I |1/p + |L0|‖g1‖L p(I ) |I | + ‖g2‖L p(I )

]
.

Likewise when k ∈ N
∗ and g1, g2 ∈ W k,p(I ), we find that if

�(a0) > −k + 1/p, a0 /∈ {−(k − 1), . . . ,−1} and (a0, L0) is non-zero,
(A.4)

then the set of W k,p(I )-solutions is again an (n − 1)-dimensional space, parametrized
by values (v1(0), v2(0)) ∈ R

n satisfying the condition

0 = L0v1(0) − a0 v2(0) + g2(0)

with solutions satisfying the continuity estimate

‖v(k)
1 ‖L p(I ) ≤ |g(k−1)

1 (0)| |I |1/p + ‖g(k)
1 ‖L p(I ) |I |

‖v(k)
2 ‖L p(I ) ≤ 1

�(a0)−1/p

[
|L0| |g(k−1)

1 (0)| |I |1/p+|L0|‖g(k)
1 ‖L p(I ) |I |+‖g(k)

2 ‖L p(I )

]
,

and data at x = 0 being determined via the relations

v
(�)
1 (0) = g(�−1)

1 (0), v
(�)
2 (0) = 1

a0 + �

[
L0g(�−1)

1 (0) + g(�)
2 (0)

]
, 1 ≤ � ≤ k − 1.

Finally, we consider the solvability of (A.3) within the class of analytic functions on
I under the assumptions that

�(a0) > −1, and (a0, L0) is non-zero.

To this end, fix (v1(0), v2(0)) such that

0 = L0v1(0) − a0 v2(0) + g2(0).
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Then an easy calculation shows there exists a unique analytic solution to (A.3) starting
from (v1(0), v2(0)) and its complex extension to a complex convex neighborhood of
zero B satisfying the continuity estimate

max
z∈B

|v1(z) − v(0)|
|z|N+1 ≤ 1

N + 1
max
z∈B

|g1(z)|
|z|N

max
z∈B

|v2(z) − v(0)|
|z|N+1 ≤ 1

�(a0) + N + 1

[ |L0|
N + 1

max
z∈B

|g1(z)|
|z|N

+ max
z∈B

|g2(z) − g2(0)|
|z|N+1

]
,

provided (g1, g2) are holomorphic on B and 0 is a root of g1 of order at least N and of
g2 − g(0) of order at least N + 1.

A.2. The general case. We now replace (A.3) with an inhomogeneous system in the
form (

v′
1

x v′
2

)
=

(
Ã C
L −a

)(
v1
v2

)
+

(
g1
g2

)
(A.5)

with smooth coefficients and show that the problem keeps the same structure as above,
with a0 := a(0) and L0 := L(0).

Concerning Sobolev solving, it stems from the estimates on the model system (A.3)
through a contraction argument that (A.5) is continuously solvable in W k,p(I ) provided
(A.4) holds and I = (−ε, ε) with ε sufficiently small (depending only on coefficients).
This may then be extended to an arbitrary bounded interval containing 0 by relying on
the classical regular ODE theory to solve outside a small ball about the singular point
x = 0.

As for analytic solving when

�(a(0)) > −1, and (a(0), L(0)) is non-zero,

with initial data (v1(0), v2(0)) satisfying the condition

0 = L(0)v1(0) − a(0) v2(0) + g2(0),

we again only need to examine analyticity in a neighborhood of 0. The latter also
follows from estimates of the previous subsection through Picard iteration. Indeed if
(g1, g2) is holomorphic on B, a complex convex neighborhood of zero, the above esti-
mates yield that, setting (v1, v2) = ∑

N∈N(v
(N )
1 , v

(N )
2 ) with (v

(0)
1 , v

(0)
2 ) constant equal

to (v1(0), v2(0)), there exists a constant K depending only on coefficients (and blowing
up when �(a(0)) → −1) such that

max
z∈B

|(v(1)
1 , v

(1)
2 )(z)|

|z| ≤ K

[
‖(v1(0), v2(0))‖ + max

z∈B
|g1(z)| + max

z∈B

|g2(z) − g2(0)|
|z|

]

and, for any integer N ≥ 1

max
z∈B

|(v(N+1)
1 , v

(N+1)
2 )(z)|

|z|N+1 ≤ K

N + 1
max
z∈B

|(v(N )
1 , v

(N )
2 )(z)|

|z|N
.

Thus, for any integer N ≥ 1

max
z∈B

|(v(N )
1 , v

(N )
2 )(z)|

|z|N
≤ K N

N !
[
‖(v1(0), v2(0))‖ + max

z∈B
|g1(z)|+max

z∈B

|g2(z)−g2(0)|
|z|

]
.

This is sufficient to deduce the claimed convergence, providing an analytic solution of
(A.5) provided the g j are themselves analytic.
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A.3. Application to (1.1). We now demonstrate that the above general theory applies to
the spectral problemassociatedwith our rollwaves of (1.1), yielding that local solvability
in H1 for the system (4.6)–(4.7) occurs whenever the spectral parameter λ satisfies

�(λ) > −1

4

F − 2√
Hs

as well as analytic solvability when

�(λ) > −1

2

F − 2√
Hs

.

We begin by rewriting the inhomogeneous version of (4.6) as

λ h + (q − ch)′ = f1

λ q +

((
p′(H) − Q2

H2

)
h +

(
2Q

H
− c

)
q

)′
= ∂hr(H, Q) h + ∂qr(H, Q) q + f2

where

p(h) = h2

2F2 and r(h, q) = h − |q| q

h2

and where f1 and f2 are given functions. By changing the unknown from (h, q) to
(w1, w2) = (ch − q, h), the above system becomes

w′
1 = λw2 − f1(

p′(H) − q2
0

H2

)
w′
2 =

(
−

(
p′(H) − q2

0

H2

)′
+ ∂hr(H, Q) + c∂qr(H, Q) − 2λ q0

H

)
w2

+

(
λ − ∂qr(H, Q) −

(
2q0
H

)′)
w1 + f2 +

(
2q0
H

− c

)
f1

where we have introduced the constant q0 such that Q − cH = −q0: see (2.4).
Now, let xs denote the unique point in (0, X) where H(xs) = Hs , where Hs is such

that p′(Hs) − q2
0

H2
s

= 0. Recalling (2.1), we see that differentiating the profile equation

(
p′(H) − q2

0

H2

)
H ′ = r(H, Q), Q − cH = −q0,

and evaluating at xs yields

−
(

p′(H) − q2
0

H2

)′
(xs) + ∂hr(H(xs), Q(xs)) + c∂qr(H(xs), Q(xs)) = 0.

In particular, factoring
(

−p′(H) − q2
0

H2

)
(x) = (x − xs) d(x)
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with d nonvanishing on (0, X), dividing the second resolvent equation by d, translating
xs to 0 and defining (v1, v2), (g1, g2) accordingly, we see the above inhomogeneous
system takes abstract general form (A.5) with

a(0) = 1

d(xs)

2λ q0
H(xs)

= 2λ q0

Hs

(
p′′(Hs) +

2q2
0

H3

)
H ′(xs)

= 2λ
√

Hs

F − 2

and

L(0) = 1

d(xs)

(
λ − ∂qr(H(xs), Q(xs)) +

2q0
H2

s
H ′(xs)

)
= F

F − 2

(
λ +

2

3

F + 1√
Hs

)

where we have used formulas computed in Sect. 2, q0 = H3/2
s /F , c = H1/2

s (1 + 1/F)

and H ′(xs) = F(F − 2)/3. Notice that (a(0), L(0)) cannot vanish and that, since
F > 2, the conditions �(a(0)) > −1/2 and �(a(0)) > −1 correspond, respectively, to
the announced constraints for H1 and analytic solvability.

As an outcome of the above analysis, note that when

�(λ) > −1

2

F − 2√
Hs

,

taking ( f1, f2) ≡ 0 above implies the set of analytic solutions of (4.6) can be
parametrized by data at the sonic point (h(xs), q(xs)), which may be chosen arbitrarily
provided it satisfies the condition

−2λ q0
Hs

h(xs) +

(
λ − ∂qr(H(xs), Q(xs)) +

2q0
H2

s
H ′(xs)

)
(ch(xs) − q(xs)) = 0.

Note the above condition may be written more explicitly as

(
λ
√

Hs(F − 1) +
2

3
(F + 1)2

)
h(xs) −

(
λ +

2

3

F + 1√
Hs

)
F q(xs) = 0.

Appendix B. Computational Framework

B.1. Computational environment. In carrying out our numerical investigations, we have
used a Lenovo laptop with 8GB memory and a quad core AMD processor with 1.9GHz
processing speed and a 2009 Mac Pro with 16GB memory and two quad-core Intel pro-
cessorswith 2.26GHzprocessing speed for coding and debugging. Themain parallelized
computation is done in the compute nodes of IU Karst, a high-throughput computing
cluster. It has 228 compute nodes. Each node is an IBM NeXtScale nx360 M4 server
equipped with two Intel Xeon E5-2650 v2 8-core processors and with 32 GB of RAM
and 250 GB of local disk storage.

B.2. Computational time. The following computational times are times elapsed in a
single processor of IU Karst (Tables 1, 2).
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Table 1. Times to compute a single Evans–Lopatinsky determinant

λ, ξ F, H−
3, Hhom(3)
+ 10−5 (s)

3, 0.8 (s) 8, Hhom(8)
+ 10−5 (s)

8, 0.8 (s) 16, Hhom(16)
+ 10−5 (s)

16, 0.8 (s)

0.001, 0 0.04 0.02 0.09 0.01 0.02 0.01
1, 0 0.08 0.02 0.14 0.01 0.08 0.01
1000, 0 6.06 2.95 2.11 0.13 1.25 0.03

Table 2. Times using winding numbers to classify points as stable/unstable

F, H− 3, Hhom(3)
+ 10−5

3, 0.8 8, Hhom(8)
+ 10−5

8, 0.8 16, Hhom(16) + 10−5 16, 0.8

Time 92974s 9055s 24373s 173s 14002s 112s
Stability Stable Unstable Unstable Unstable Unstable Unstable

In all situations, r = 0.01, R = 400 and �ξ ∈ [−π : 2π
1000 : π ] where the small half circle is divided

uniformly into 1000 pieces, the two straight line segments are each divided uniformly into 2000 pieces, and
the large half circle is divided uniformly into 2000 pieces. The split Evans–Lopatinsky determinant is then
evaluated at 7000 points on the contour
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