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Abstract: We prove that the K -theoretic Nekrasov instanton partition functions have a
positive radius of convergence in the instanton counting parameter and are holomorphic
functions of the Coulomb parameters in a suitable domain. We discuss the implications
for the AGT correspondence and the analyticity of the norm of Gaiotto states for the
deformed Virasoro algebra. The proof is based on random matrix techniques and relies
on an integral representation of the partition function, due to Moore, Nekrasov, and
Shatashvili, which we also prove.
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1. Introduction

The purpose of this paper is to study the analytic properties of the Nekrasov instanton
partition function. InN = 2 supersymmetric gauge theory in four and five dimensions,
Nekrasov’s instanton partition function [18] plays the role of a basic building block.
In the physical interpretation, the instanton partition function is the non-perturbative
contribution of instantons to a gauge theory in an �-background. Mathematically it
is the generating function of integrals of torus equivariant cohomology classes (K -
theory classes in the five dimensional theory) on the moduli space of framed torsion
free sheaves with fixed rank on the complex projective plane. The torus is a product of a
two-dimensional torus acting on the projective plane and a torus acting on the framing.
The parameters ε1, ε2 of the �-background are the equivariant parameters of the two-
dimensional torus in the mathematical description and serve as an infrared regulator.
One early success of the theory [18,19] was a microscopic justification of the Seiberg–
Witten formula [22] for the prepotential of the low energy effective theory, which arises
in the limit ε1, ε2 → 0. The Nekrasov instanton partition function is a power series in
a complex variable q parametrizing the strength of the interaction in gauge theory. The
coefficient of qn is the contribution of instanton number n to the partition function. The
simplest case of aNekrasov partition function appears in the pureN = 2 supersymmetric
Yang–Mills theory with gauge groupU (r) onR4 × S1. It is given as a sum over r -tuples
�Y = (Yi )ri=1 of Young diagrams of total size | �Y |:

Z(ε1, ε2, a, q, λ) =
∑

�Y
q| �Y |

r∏

α,β=1

∏

b∈Yα

(λ/2)2

sinh
(

λ
2 Eαβ(b)

)
sinh

(
λ
2 (ε1 + ε2 − Eαβ(b))

) ,

Eαβ(b) = aα − aβ − lYβ (b)ε1 + (aYα (b) + 1)ε2.

Here λ is the circumference of the circle S1 and a = (a1, . . . , ar ) belongs to the Lie
algebra of U (r) and parametrizes boundary conditions of scalar fields in the N = 2
vector multiplet. The arm length aY (b) of a box b is the number of boxes in the Young
diagramY to the right of b; the leg length lY (b) is the (possibly negative) number of boxes
in Y below b. The four dimensional theory on R4 arises in the limit λ → 0 and amounts
to replacing sinh(λx)/λ by x and q = �2r is related to the dynamical mass scale � of
the gauge theory. In the mathematical description, we view R

4 as C2 with its action of
(C×)2 and embed it in CP

2 by adding a line at infinity �∞ ∼= CP
1. Let M(r, n) be the

moduli space of torsion free sheaves on CP2 of rank r and second Chern class n with a
framing, i.e., a trivialization on �∞. It is a smooth algebraic variety of dimension 2nr . The
action of the group (C×)2 lifts to an action onM(r, n). MoreoverGLr , and in particular
its Cartan torus T = (C×)r acts on M(r, n) by changing the framing. Therefore we
have an action of T̃ = (C×)2 × T on M(r, n). For a semisimple T̃ -module V with
finite dimensional weight spaces Vχ , we denote by ch(V ) = ∑

χ eχdim Vχ its formal
character in the completed group ring of the weight lattice. It is a formal series in the
weight variables q1, q2 for the (C×)2-action and u1, . . . , ur for the T -action. Then

Z(ε1, ε2, a, q, λ) =
∞∑

n=0

zn
2nr∑

i=1

(−1)ich Hi (M(r, n),O), z = qλ2r e−λ(ε1+ε2)r/2, (1)
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is the pushforward of the T̃ -equivariant K -theory class of the structure sheaf by the map
to a point, with the identification

q1 = e−λε1 . q2 = e−λε2 , uα = e−λaα , α = 1, . . . , r.

The combinatorial formula above is obtained by localization to fixed points. There are
many variants and generalizations of the Nekrasov partition functions. In this paper we
focus on the casewhere one includesmatter fields in the gauge theory, which corresponds
to replacing the structure sheaf by more general K -theory classes in the mathematical
description.

The absolute value squared |Z |2 of the Nekrasov partition function, in the limit
λ → 0, also appears in the integrand of Pestun’s formula for gauge theory on the
round sphere S4 [21] and in its extension to S4 with an ellipsoid metric parametrized
by ε1, ε2 > 0 [11]. For λ > 0 this formula extends to S4 × S1 and other compact
manifolds, see [20] for a review. For these reasons it is important to understand the
convergence properties of the formal power series defining the partition function. In this
paper, we prove that the power series has a positive radius of convergence if λ > 0 and
in a suitable range of parameters. For example, in the case of pure gauge theory, we
show that if λ > 0 and ε1, ε2 > 0, the series (1) converges for all z in the unit disk to
an analytic function of the Coulomb parameters ai in a neighbourhood of the imaginary
axis, see Theorem 5 for the general result. Note that for this range of parameters a direct
estimation of the sum over partitions is problematic because of small denominators.
In fact, the individual terms are not defined if ε1/ε2 ∈ πQ and have arbitrarily small
denominators otherwise. The situation is different in the case ε1 < 0 < ε2 (which
we do not consider) where a positive radius of convergence may be obtained by direct
estimates on individual terms for generic ai . Our proof applies to the case ε1, ε2 > 0 and
also ε1 = ε̄2 not imaginary, and relies on an integral representation of the coefficients
of Z which resembles a unitary random matrix integral. This integral representation is
actually the form in which this type of partition functions first appeared in the literature,
as a regularized volume of instanton moduli spaces, see [14, , Section 6]. We estimate
it using methods of random matrix theory and an explicit formula from representation
homology [4]. The combinatorial formula for Z above is the sum of residues at certain
poles of the integrand. As the choice of integration cycle is essential for the estimate,
we carefully prove that the integral formula with the correct integration cycle is equal to
the combinatorial formula. This requires showing that certain apparent residues actually
cancel out. The limit λ → 0 to the four dimensional theory is subtle and appears to
require a different approach; we hope to return to this problem in the future.

Another reason for the interest in the radius of convergence of the power series
Z comes from conformal field theory in 2 dimensions through the Alday–Gaiotto–
Tachikawa (AGT) correspondence [2]. According to this correspondence, which was
verified in a number of cases, the instanton partition functions ofN = 2 supersymmetric
gauge theories with suitable matter fields are equal, up to a known scalar factor, to
conformal blocks of W -algebras. For example, for r = 2 and λ = 0 they are related to
the four point conformal blocks of the Virasoro algebra is defined as a matrix element of
products of certain intertwining operators (primary fields). The parameters are the central
charge c = 13+6b2 +6b−2 with ε1 = b = ε−1

2 and the highest weights of four Virasoro
representations, related to masses of matter fields. A priori the four point conformal
block is a formal power series in the cross ratio q of the four points. Except in the special
cases of degenerate representations, occurring in minimal models at c < 1, where they
are solutions of differential equations of hypergeometric type, giving full control on the
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radius of convergence and analytic continuation, representation theory does not seem to
give information on the convergence of the power series. This is particularly relevant for
the unitary representations of theVirasoro algebrawith c > 1, arising in Liouville theory.
We treat both the weakly coupled Liouville theory with c ≥ 25 and ε1, ε2 > 0 and the
strongly coupled range 1 < c ≤ 25, with ε1 = ε̄2 on the unit circle. The limiting case
c = 1 (ε1 = i = −ε2) was considered for λ = 0 in [12]. The case ε1 = −ε2 for λ 	= 0
was recently considered in [5]. In cases where the AGT correspondence is understood,
our estimates on the gauge theory side imply the convergence of conformal blocks. We
make this explicit in the mathematically well-understood case of the norm of Gaiotto
states for the q-deformed Virasoro algebra. Gaiotto states [9] are Whittaker vectors in
completions of Verma modules of W -algebras and their deformations. In the case of
the Virasoro algebra a Gaiotto state is a formal power series in the eigenvalue of the
generator L1. The squared norm of a Gaiotto state can be understood as suitable limits
of a conformal block and corresponds via the AGT correspondence to the Nekrasov
partition function of the pure Yang–Mills theory. As an application of our result we
prove that for a suitable range of parameters the squared norm of the Gaiotto state for
the two-parameter deformation of the Virasoro algebra is a holomorphic function of the
eigenvalue with a convergence radius that converges to infinity in the λ → 0 limit.

This agrees with the findings of Its et al. [12] and Bershtein et al. [5]. They consider
the norm of the Gaiotto state in the case λ = 0 and λ > 0, respectively. Moreover, they
require ε1 + ε2 = 0, which is different from our setting. In their respective setups, the
Plancherel measure on partitions appears and allows for a direct estimate, which proves
analyticity of the norm of the Gaiotto state on the whole complex plane.

The paper is organized as follows: in Sect. 2 we review the mathematical definition of
theNekrasov partition functionwithmatter fields by introducingM(r, n) as a special case
of a Nakajima quiver variety via the ADHM construction and explain the localization
formula leading to the combinatorial expression for Z . We then introduce the integral
representation of Z and compute the large n behaviour of the coefficient of qn using
methods of random matrix theory and estimate the radius of convergence. In Sect. 3 we
discuss how our method can be generalized to more general gauge theory, including the
N = 2∗ theory. In Sect. 4 we present the application to the norm of Gaiotto states for
the deformed Virasoro algebra. In Sect. 5 we discuss some of the problems that are left
open. The Appendix contains the proof of the integral representation of the partition
function.

2. Nekrasov Partition Functions

In this section, we define the K -theoretic Nekrasov partition function as discussed in
[16]. It is defined as a formal power series. Our aim is to show that for certain parameter
ranges, the series converges.

2.1. A Nakajima quiver variety. We follow the exposition in [15,16]. Fix a positive
integer r . The Nekrasov partition function is a generating functions for certain K -theory
classes computed from a sequence of so-calledNakajima quiver varietiesM(r, n), where
n = 0, 1, 2, . . . . They are constructed as follows: Set V = C

n and W = C
r . We define

M(r, n) =
{
(B1, B2, i, j) ∈ End(V ) × End(V ) × Hom(W, V ) × Hom(V,W ) :
[B1, B2] + i j = 0 and there does not exist a proper subspace S ⊂ V
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such that B1(S), B2(S) ⊂ S and i(W ) ⊂ S
}/

GL(V ),

where an element g ∈ GL(V ) acts on (B1, B2, i, j) via

g · (B1, B2, i, j) = (gB1g
−1, gB2g

−1, gi, jg−1).

The space M(r, n) is a nonsingular algebraic variety of dimension 2nr .
Let T ⊂ GLr (C) be the maximal torus consisting of diagonal matrices. The group

T̃ = T × C
∗ × C

∗ acts on M(r, n). This action is induced1 by

(B1, B2, i, j) · (t1, t2, e1, . . . , er ) = (t1B1, t2B2, ie, t1t2e
−1 j),

where (t1, t2, e1, . . . , er ) ∈ T̃ and e is the diagonal matrix with entries e1, . . . , er .
We want to consider T̃ -equivariant K -theory on M(r, n). By the localization princi-

ple, we first want a description of the fixed points of the T̃ -action. In order to describe
the fixed points of this action, we use partitions. First we fix our conventions: We write
l(Y ) = l for the length of the partition Y = (Y (1), . . . , Y (l)) and |Y | for its size
Y (1) + · · · + Y (l). We use the English convention to draw the Young diagram corre-
sponding to the partitions. For example the partition Y = (5, 3, 2) of size 10 has length
l(Y ) = 3 and its Young diagram is given by

.

In the Young diagram, the row index x increases as we go south and the column index
y increases as we go east. In the following we identify the partition Y with its Young
diagram. In particular, we write Y = {(x, y) : 1 ≤ x ≤ l(Y ), 1 ≤ y ≤ Y (x)}.

The fixed point set M(r, n)T̃ is a discrete set whose points I �Y are indexed by r -tuples
�Y = (Y1, . . . ,Yr ) of partitions with total size | �Y | := |Y1| + · · · + |Yr | = n. We denote
the corresponding inclusion maps as follows:

ι : M(r, n)T̃ → M(r, n), ι �Y : {I �Y } → M(r, n), | �Y | = n.

2.2. Notations for K -theory. Let ti be the T̃ -character given by (t1, t2, e1, . . . , er ) �→ ti .
Let eα be the T̃ -character given by (t1, t2, e1, . . . , er ) �→ eα . All the T̃ -equivariant K -
theory groups K T̃ (−) are modules for the ring

R(T̃ ) := K T̃ (pt) ∼= Z[t±1
1 , t±1

2 , e±1
1 , . . . , e±1

r ].
Let R ∼= Q(t1, t2, e1, . . . , er ) denote its quotient field. The maps ι and ι �Y all define
pushforwards in K-theory. The Thomason localization theorem in K-theory says that

ι∗ : K T̃ (M(r, n)T̃ ) → K T̃ (M(r, n))

becomes an isomorphism after localization, i.e. tensoring withR. We write

K T̃
loc(−) = K T̃ (−) ⊗R(T̃ )

R.

1 Note our convention differs from the one used in [15] by eα �→ e−1
α .
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2.3. Tangent spaces at fixed points. We will need a description of the tangent space
T�Y M(r, n) at a fixed point I �Y as a T̃ -module. It is given by [15, Theorem 2.11]

T�Y M(r, n) =
r∑

α,β=1

Nα,β(t1, t2) ∈ K T̃ (pt),

Nα,β(t1, t2) = eαe
−1
β

( ∑

s∈Yα

t
−lYβ

(s)

1 t
aYα (s)+1
2 +

∑

t∈Yβ

t
lYα (t)+1
1 t

−aYβ
(t)

2

)
. (2)

Here we use the arm length aY (s) = Y (x)− y and leg length lY (s) = Y T (y)−x of a box
s = (x, y) ∈ Z

2 with respect to the partition Y . The symbol Y T denotes the transpose
of the partition Y . Note that box s does not have to belong to the partition Y , hence arm
length and leg length can be negative.

2.4. The tautological bundle. In order to include theories with massive matter, we intro-
duce formal parameters �b = (b1, . . . , bs). The tautological bundle V is a vector bundle
over M(r, n) of rank n whose fiber is V , see e.g. [17]. Let c0, . . . , cn ∈ K T̃

loc(M(r, n))

denote its Chern classes. Consider the polynomial b(z) = (z−b1) · · · (z−bs). Construct
the element

κn(b1, . . . , bs) := b(z1) · · · b(zn)|σ j=c j ∈ K T̃
loc(M(r, n))[b1, . . . , bs]

by expressing the symmetric polynomial b(z1) · · · b(zn) as a polynomial in the elemen-
tary symmetric functions σ0, . . . , σn and replacing each σ j by the Chern class c j .

2.5. K -theoretic Nekrasov partition function. We now define the Nekrasov partition
function arising in theK-theoryof themoduli space of instantons.Let (ε1, ε2, a1, . . . , ar )
be coordinates on the Lie algebra of T̃ and λ be a parameter such that t j = eλ ε j and
eα = eλaα . Write bm = eλwm . The Nekrasov partition function is defined as a formal
power series

Z(ε1, ε2, �a; �w; q, λ) =
∑

n≥0

(
qλ2r−se−rλ(ε1 + ε2)/2

)n
Zn(ε1, ε2, �a; �w; λ), (3)

with coefficients

Zn(ε1, ε2, �a; �w; λ) =
2nr∑

i=0

(−1)ich Hi (M(r, n), κn(b1, . . . , bs))

=
∑

| �Y |=n

(ι∗)−1
(
κn(b1, . . . , bs)

)
∈ R[b1, . . . , bs].

Here
∑

| �Y |=n denotes the summation map

K T̃
loc(M(r, n)T̃ )[b1, . . . , bs] =

⊕

| �Y |=n

R[b1, . . . , bs] → R[b1, . . . , bs].
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The fixed point theorem says that after localization we have

(ι∗)−1 =
∑

| �Y |=n

ι∗�Y
�−1T�Y M(r, n)

, (4)

where �−1 denotes the alternating sum of exterior powers. Combining Eq. (4) with the
description (2) of the tangent space at a fixed point to compute �−1T�Y M(r, n), one gets

Zn(ε1, ε2, �a; �w; λ) =
∑

| �Y |=n

ι∗�Y
(
κn(b1, . . . , bs)

)

∏r
α,β=1 n

�Y
α,β(ε1, ε2, �a; λ)

, (5)

where

n
�Y
α,β(ε1, ε2, �a; λ) =

∏

s∈Yα

(
1 − e−λ

(
−lYβ

(s) ε1 +(aYα (s)+1) ε2 +aα−aβ

))

∏

t∈Yβ

(
1 − e−λ

(
(lYα (t)+1) ε1 −aYβ

(t) ε2 +aα−aβ

))
.

For s = 0, i.e. b(z) = 1, we have κn(∅) = O, the K -theory class corresponding
to the structure sheaf on M(r, n). This corresponds to pure Yang Mills theory and the
numerator in Eq. (5) equals one. For general �b = (b1, . . . , bs) and a fixed point I �Y , we
have [17, equation (2.27)]

ι∗�Y
(
κn(b1, . . . , bs)

)
=

r∏

α=1

∏

(x,y)∈Yα

s∏

m=1

(e−λ(aα+(x−1) ε1 +(y−1) ε2) − bm). (6)

Our aim is to estimate the general form of the coefficients (5) in order to prove conver-
gence of the K -theoretic partition function. To do so, we use an integral representation
for the coefficients Zn(ε1, ε2, �a, �w; λ).

2.6. Integral representation and estimate. In this section we define an integral repre-
sentation for the coefficients of the Nekrasov partition function. We will use this repre-
sentation to estimate the coefficients.

2.6.1. Definition of the integral. Let q1 and q2 be a pair of complex numbers in the
open unit disk. Assume that either q1 = q2 or q1, q2 ∈ (0, 1). Note that in either
case q1q2 = |q1q2| ∈ (0, 1). Later these numbers will be identified with exponential
functions of ε1, ε2.

Fix r ≥ 1. Let �u = (u1, . . . , ur ) be a vector of complex numbers such that

|qi | max
α=1,...,r

|uα| < min
α=1,...,r

|uα|, ∀ i = 1, 2.

Let �p = (p1, . . . , ps) be another vector of complex numbers. The condition on |uα|
ensures that we can pick ρ > 0 with

|uα| < ρ < |qi |−1|uα| ∀ α = 1, . . . , r,∀ i = 1, 2. (7)
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Let Cρ ⊂ C be the set of complex numbers of modulus ρ. We define

Zn(�u; �p) = 1

n!
(

1 − q1q2
(1 − q1)(1 − q2)

)n

∫

Cn
ρ

n∏

j=1

dz j
2π i z j

n∏

j=1

s∏

m=1

(z j − pm) I(z1, . . . , zn; �u), (8)

where the integrand contains the symmetric function

I(z1, . . . , zn; �u) =
n∏

j=1

r∏

α=1

−uαz j
(z j − uα)(q1q2z j − uα)

∏

1≤ j 	=k≤n

(z j − zk)(z j − q1q2zk)

(z j − q1zk)(z j − q2zk)
.

(9)

In the following, we evaluate the coefficients Zn(�u; �p) using residue calculus and esti-
mate them. We then identify them with the coefficients Zn of the K -theoretic partition
function up to a change of variables in Sect. 2.8.

2.6.2. Evaluation of the integral. We evaluate the integral in Zn(�u; �p) using residue
calculus. The residues are indexed by r -tuples �Y of partitions Yα with total size | �Y | =
|Y1| + · · · + |Yr | = n. We again identify a partition with its Young diagram. For a box
s = (x, y) ∈ Yα we define

zαs = zαx,y = uα qx−1
1 qy−1

2 . (10)

Theorem 1. Under the assumption

uαu
−1
β 	= qx1 q

y
2 , ∀x, y ∈ {−n, . . . , n}, ∀α 	= β ∈ {1, . . . , r},

qx1 	= qy+1
2 , qx+11 	= qy

2 , ∀x, y ∈ {0, . . . , n − 1}, (11)

the value of Zn(�u; �p) is given as a sum over r-tuples of partitions of total size n in two
equivalent ways:

Zn(�u; �p) =
∑

| �Y |=n

∏r
α=1

∏
s∈Yα

∏s
m=1(z

α
s − pm)

N �Y
α,β(q1, q2, �u)

,

N
�Y
α,β(q1, q2, �u) =

∏

s∈Yα

(
1 − uα

uβ

q
lYα (s)+1
1 q

−aYβ
(s)

2

) ∏

t∈Yβ

(
1 − uα

uβ

q
−lYβ

(t)

1 q
aYα (t)+1
2

)
.

(12)

Alternatively,

Zn(�u; �p) =
∑

| �Y |=n

∏r
α=1

∏
s∈Yα

∏s
m=1(z

α
s − pm)

M �Y
α,β(q1, q2, �u)

,

M
�Y
α,β(q1, q2, �u) =

∏

s∈Yα

(
1 − uα

uβ

q
−lYβ

(s)

1 q
aYα (s)+1
2

) ∏

t∈Yβ

(
1 − uα

uβ

q
lYα (t)+1
1 q

−aYβ
(t)

2

)
.

(13)
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The proof is of this theorem is technical. In the literature, several arguments for
the validity of this or similar formulae have been given, see [8,10,17,18,24]. They are
based on taking the iterated residues at zαx,y , (x, y) ∈ Yα , α = 1, . . . , r . However, the
integrand also has further poles and it is a nontrivial fact, that we prove in this paper, that
the residues at those poles cancel. The proof of Theorem 1 is postponed to Appendix A.

Remark 1. The assumption (11) is necessary to ensure that all terms Z �Y (�u; �p) are well-
defined. If it is violated, some residues might not be simple residues anymore and
consequently some Z �Y (�u; �p) might be infinite. However, their sum Zn(�u; �p) is still
well-defined, as the integral in Eq. (8) is.

2.6.3. Estimate for the integral. In this section we apply potential theory to estimate the
coefficients Zn(�u; �p) in the integral form given by Eq. (8) in the limit of large n.

Theorem 2. We have

lim sup
n→∞

|Zn(�u; �p)| 1n ≤
s∏

m=1

max{|pm |, |u1|, . . . , |ur |}.

We prove this by comparing the growth of Zn(�u; �p) to the growth of the coefficients

an = 1

n!
(

1 − q1q2
(1 − q1)(1 − q2)

)n ∫

Cn
1

n∏

j=1

dz j
2π i z j

∏

j 	=k

(z j − zk)(z j − q1q2zk)

(z j − q1zk)(z j − q2zk)
. (14)

We also want to introduce the language of potential theory. Let T = R /2π Z be the
torus. Define f : T → R∪{∞} by

f (θ) := − log
|eiθ − 1||eiθ − q1q2|
|eiθ − q1||eiθ − q2| . (15)

For each n ∈ N, we define a probability measure on Tn by

Pn(θ)dθ = 1

Zn
e−∑

j 	=k f (θk−θ j )dθ, dθ = dθ1 · · · dθn,

where Zn = ∫
Tn dθe−∑

j 	=k f (θk−θ j ). Denote the associated expectation functionals by
En[−]. By changing variables z j = ρeiθ j in Eq. (8) and z j = eiθ j in Eq. (14), we get

Zn(�u; �p) = an En

[ n∏

j=1

g(ρ, θ j ; �u; �p)
]
,

where

g(ρ, θ; �u; �p) =
s∏

m=1

(ρeiθ − pm)

r∏

α=1

−uαρeiθ

(ρeiθ − uα)(q1q2ρeiθ − uα)
.

We estimate |Zn(�u; �p)| by taking the absolute value inside. We arrive at

∣∣Zn(�u; �p)∣∣ 1n ≤ ∣∣an
∣∣ 1n exp

(
1

n
logEn

[
e
∑

j log |g(ρ,θ j ;�u;p)|]
)

. (16)

We estimate both factors on the right hand side separately. The first one is related to a
known power series:
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Lemma 1. We have

lim sup
n→∞

|an| 1n = 1.

Proof. From [4] we know that

∑

n≥0

anz
n = exp

(∑

n≥1

1 − qn1q
n
2

(1 − qn1 )(1 − qn2 )

zn

n

)
,

as a formal power series. Since all coefficients are positive in this expansion and qni → 0
as n → ∞ we see that the radius of convergence equals 1. ��

These estimates already give a non-quantitative convergence result.

Lemma 2. Assume that λ > 0, q1, q2 in the unit disk, both real or complex conjugate
to each other. Then on each compact subset of the domain

{(�u, �p) ∈ C
r+s | |qi |max

α
|uα| < min

α
|uα|,∀i = 1, 2},

the power series
∑∞

n=0 Zn(�u; �p)zn converges uniformly with a positive radius of con-
vergence.

To prove this lemma notice that on such compact subsets |g(ρ, θ; �u; �p)| is uni-
formly bounded on the integration circleCρ for proper choice of ρ. Thus the coefficients
Zn(�u; �p) are bounded by constn .

To get a quantitative estimate of the radius of convergence we need to work harder.
We have the following result:

Theorem 3. Let h be a continuous, real-valued function on the torus T. We have

1

n
logEn

[
e
∑

j h(θ j )

]
→ 1

2π

∫

T

h(θ)dθ (n → ∞). (17)

The proof of this theorem uses ideas from potential theory and is postponed to
Sect. 2.7. It applies to a more general class of functions f defining the probability
measure, as we discuss in Sect. 3.2. Now we can apply Lemma 1 and Theorem 3 in Eq.
(16) to estimate

lim sup
n→∞

|Zn(�u; �p)| 1n ≤ exp

(
1

2π

∫

T

log |g(ρ, θ; �u; �p)|dθ

)
.

Using that condition (7) says ρ−1|uα| < 1, but ρ−1|q1q2|−1|uα| > 1, formula 18 from
below implies

1

2π

∫

T

log |g(ρ, θ; �u; p)|dθ =
s∑

m=1

max{log |pm |, log ρ}.

We obtain

lim sup
n→∞

|Zn(�u; �p)| 1n ≤
s∏

m=1

max{|pm |, ρ}.

According to condition (7), the lower bound for ρ is given by maxα{|uα|}. We let ρ tend
to this bound, completing the proof of Theorem 2.
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2.7. Potential theory. In this section we prove Theorem 3 using techniques adapted
from [13].

2.7.1. Setup of potential theory. Let M(T) be the set of all Borel probability measures
on T and M0(T) be the subset of all such measures which in addition do not contain
point masses.

The function f : T → R∪{+∞} defined in Eq. (15) is continuous, bounded from
below and has a single pole at θ = 0. Set

I [μ] =
∫∫

θ 	=φ

f (θ − φ)dμ(θ)dμ(φ),

whereμ ∈ M(T). Since f is bounded from below, I is bounded from below, too. Define

I0 := inf
μ∈M0(T)

I [μ] > −∞.

The aim of this section is to prove

Theorem 4. The normalized Lebesguemeasure is the uniquemeasureμwith I [μ] = I0.
Moreover I0 = 0.

Define the function gσ (θ) := 1
2 log(1 + σ 2 − 2σ cos θ) = log |eiθ − σ | for σ > 0.

Its Fourier coefficients

ck(gσ ) = 1

2π

∫

T

gσ (θ)e−ikθdθ =
{

− 1
2|k| min{σ |k|, σ−|k|}, if k 	= 0,

max{0, log σ }, otherwise,
(18)

are known. For σ 	= 1 see for example [7]. For the case σ = 1, note that gσ is uniformly
bounded from above and

gσ (θ) = log(1 − 2σ + σ 2 + 2σ − 2σ cos(θ)) ≥ log σ + g1(θ).

By dominated convergence, it suffices to show that g1 is integrable. The only pole is at
θ = 0. By changing variables to x = 2 − 2 cos θ we have to consider log x 1√

x
which is

integrable as one can see from integration by parts.
We write q j = |q j |eiτ j . We have

ck( f ) = −ck
(
g1

) − ck
(
g|q1q2|

)
+ e−ikτ1ck

(
g|q1|

)
+ e−ikτ2ck

(
g|q2|

)
.

Since |qi | < 1, we obtain c0( f ) = 0, so in particular

Lemma 3. I vanishes for the normalized Lebesgue measure.

For k 	= 0 we get

ck( f ) = 1

2|k| (1 + |q1q2|k − e−ikτ1 |q1||k| − e−ikτ2 |q2||k|).

If q1 = q2, this is bounded from below by 1
2|k| (1 − |q1q2||k|/2)2 > 0. If q1, q2 ∈ (0, 1)

it equals 1
2|k| (1 − |q1||k|)(1 − |q2||k|) > 0. In either case we obtain
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Lemma 4. The Fourier coefficients ck( f ) of f ∈ L1(T) satisfy ck( f ) > 0 if k 	= 0 and
c0( f ) = 0. The Fourier series of f converges everywhere except at θ = 0.

We use this to prove

Lemma 5. We have I0 = 0.

Proof. Since the normalized Lebesgue measure is in M0(T) we have I0 ≤ 0. On the
other hand, for any μ ∈ M0(T), we have

I [μ] =
∫∫

f (θ − φ)dμ(θ)dμ(φ)

=
∑

k 	=0

ck( f )
∫∫

ei(θ−φ)dμ(θ)dμ(φ)

=
∑

k 	=0

ck( f )|ck(μ)|2 ≥ 0.

Firstly, we have dropped the condition θ 	= φ using the fact that μ does not contain
point masses. Then we have applied Tonelli’s theorem using the fact that ck( f )ei(θ−φ)

is bounded from below. ��
Lemma 6. The normalized Lebesgue measure is the unique measure μ ∈ M0(T) for
which I0 = I [μ].
Proof. Let μ, ν ∈ M0(T) with I [μ] = I [ν] = I0. Since I [μ] and I [ν] are both finite,

I [μ − ν] =
∫∫

f (θ − φ)dμ(θ)dμ(φ) +
∫∫

f (θ − φ)dν(θ)dν(φ)

−
∫∫

f (θ − φ)dμ(θ)dν(φ) −
∫∫

f (θ − φ)dν(θ)dμ(φ) ∈ [−∞,∞)

(19)

is well-defined. Using Tonelli’s theorem for each summand, we get

I [μ − ν] =
∑

k 	=0

ck( f )|ck(μ) − ck(ν)|2 ≥ 0. (20)

In particular, I [μ − ν] and all four terms in its expansion (19) are finite.
For t ∈ [0, 1] we have ν + t (μ − ν) ∈ M0(T) and hence

0 = I0 ≤ I [ν + t (μ − ν)]
= I [ν] + t

(∫∫
f (θ − φ)dν(θ)d(μ − ν)(φ)

+
∫∫

f (θ − φ)d(μ − ν)(θ)dν(φ)

)
+ t2 I [μ − ν],

where all terms are finite. The right hand side is a polynomial in t which is nonnegative
for t ∈ [0, 1] and vanishes at t = 0 and t = 1. We obtain I [μ − ν] ≤ 0. From Eq. (20)
we get ck(μ) = ck(ν) for all k 	= 0, since ck( f ) > 0 for k 	= 0. We obtain μ = ν since
c0(μ) = c0(ν) trivially because μ and ν are probability measures. ��

The proof of Theorem 4 is complete.
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2.7.2. Application of potential theory. To a point θ ∈ T
n we associate the probability

measure

δθ = 1

n

n∑

j=1

δθ j ,

where on the right hand side we have a convex combination of ordinary Dirac measures.
Set Tn

0 = {θ ∈ T
n : θ j 	= θk( j 	= k)}. For θ ∈ T

n
0 we have θ j 	= θk ⇔ j 	= k and

thus

n2 I [δθ ] =
∑

j 	=k

f (θ j − θk).

The intuition behind Theorem 3 is the following. The limit behavior for large n of
the quantity

1

n
logEn[e

∑
j h(θ j )] = 1

n
log

1

Zn

∫

Tn
dθe

∑
j h(θ j )e−n2 I [δθ ]

will be dominated by such θ ∈ T
n , for which I [δθ ] is close to I0 = 0. This is the content

of Lemma 7. Those δθ will then for large n equidistribute to approximate the normalized
Lebesgue measure yielding 1

2π

∫
T
h(θ)dθ . This will be the content of Lemma 8 and the

discussion afterwards.
We use the notion of weak convergence for measures:We say a sequence of measures

(μn) in M(T) converges to a measure μ ∈ M(T) iff for all continuous and bounded
functions g on T we have

∫

T

gdμn →
∫

T

gdμ.

It is well-known that the space M(T) with this notion of convergence is sequentially
compact.

For η > 0 define

An,η = {θ ∈ T
n
0 : I0 ≤ I [δθ ] ≤ I0 + η} = {θ ∈ T

n :
∑

j 	=k

f (θk − θ j ) ≤ ηn2}.

This set is compact. Denote by Pn[S] the measure of a measurable set S ⊂ T
n with

respect to the probability measure Pn . We have

Lemma 7. 0 ≤ Pn[Tn \ An,η] ≤ e−ηn2 .

Proof. We have
∫

Tn\An,η

dθe−∑
j 	=k f (θk−θ j ) ≤

∫

Tn\An,η

dθe−ηn2 ≤ (2π)ne−ηn2 .

Let μ denote the normalized Lebesgue measure. By the Jensen inequality we have

Zn

(2π)n
=

∫

T
n
0

∏

j

dμ(θ j )e
−∑

j 	=k f (θk−θ j )
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≥ exp

(∫

T
n
0

∏

j

dμ(θ j )
( −

∑

j 	=k

f (θk − θ j )
))

.

Now

−
∑

j 	=k

∫

T
n
0

∏

j ′
dμ(θ j ′) f (θk − θ j ) = −n(n − 1)

∫∫
f (θ − φ)dμ(θ)dμ(φ)

= −n(n − 1)I [μ] = 0.

��
Moreover, we have

Lemma 8. If the measures νn,η are Dirac measures supported at τ n,η ∈ An,η and
νnk ,η → νη is a convergent subsequence, we have νη ∈ M0(T) and I [νη] ≤ η. If
νηk → ν is a convergent sequence with ηk → 0, the limit ν has to be the normalized
Lebesgue measure.

Proof. Let L ∈ R and separate the diagonal part:

η ≥ I [νn,η] =
∫∫

θ 	=φ

f (θ − φ)dνn,η(θ)dνn,η(φ)

≥
∫∫

θ 	=φ

min{ f (θ − φ), L}dνn,η(θ)dνn,η(φ)

= 1

n2
∑

j 	=k

min{ f (τ n,η
j − τ

n,η
k ), L}

=
∫∫

min{ f (θ − φ), L}dνn,η(θ)dνn,η(φ) − L

n
.

Let ε > 0. Using the Weierstrass approximation theorem, pick a polynomial p(θ, φ)

which uniformly approximates the last integrand up to an error of ε. For n = nk we get

η ≥
∫∫

p(θ, φ)dνnk ,η(θ)dνnk ,η(φ) − ε − L

nk
.

Send k → ∞ to get

η ≥
∫∫

p(θ, φ)dνη(θ)dνη(φ) − ε ≥
∫∫

min{ f (θ − φ), L}dνη(θ)dνη(φ) − 2ε.

Now send ε → 0 and let L → ∞. By monotonicity the limit can pass to the integrand.
We obtain νη ∈ M0(T) and

η ≥
∫∫

f (θ − φ)dνη(θ)dνη(φ) =
∫∫

φ 	=θ

f (θ − φ)dνη(θ)dνη(φ) = I [νη].

Now let νηk → ν be a convergent sequence with ηk → 0. Again fix L ∈ R and estimate,
using νηk ∈ M0(T),

ηk ≥ I [νηk ] =
∫∫

f (θ − φ)dνη(θ)dνη(φ) ≥
∫∫

min{L , f (θ − φ)}dνη(θ)dνη(φ).
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Let ε > 0. Using Weierstrass we get in the limit k → ∞

0 ≥
∫∫

min{L , f (θ − φ)}dν(θ)dν(φ) − 2ε.

Again, we let ε → 0 and L → ∞ to get ν ∈ M0(T) and 0 ≥ I [ν]. The claim follows.
��

Nowwe can prove Theorem 3. Let h be a continuous function on the torus. Fix η > 0.
By Lemma 7, we have

lim sup
n→∞

1

n
logEn[e

∑
j h(θ j )] = lim sup

n→∞
1

n
log

∫

An,η

dθ Pn(θ)e
∑

j h(θ j ),

and analogously for lim inf. Let the continuous, real-valued function e
∑

j h(θ j ) on the
compact set An,η attain its maximum at τ n,η ∈ An,η and its minimum at σ n,η ∈ An,η.
Denote Dirac measures by νn,η and λn,η. We have

1

n
log

∫

An,η

dθ Pn(θ)e
∑

j h(θ j ) ≤ 1

n
log Pn[An,η]e

∑
j h(τ

n,η
j ) ≤

∫

T

dνn,η(θ)h(θ).

Similarly,

1

n
log

∫

An,η

dθ Pn(θ)e
∑

j h(θ j ) ≥ 1

n
log Pn[An,η]e

∑
j h(σ

n,η
j ) ≥

∫

T

dλn,η(θ)h(θ) + O(
1

n
)

since by Lemma 7, Pn[An,η] ≥ 1 − e−ηn2 → 1. Let nk define a subsequence with

lim sup
n→∞

1

n
log

∫

An,η

dθ Pn(θ)e
∑

j h(θ j ) = lim
k→∞

1

nk
log

∫

Ank ,η

dθ Pnk (θ)e
∑

j h(θ j ).

Let mk define a subsequence that realizes the corresponding lim inf. By passing to
respective subsequences, we can suppose that νnk ,η → νη and λmk ,η → λη for some
Borel probability measures λη, νη. We obtain

∫

T

h(θ)dλη(θ) ≤ lim inf
n→∞

1

n
logEn[e

∑
j h(θ j )]

≤ lim sup
n→∞

1

n
logEn[e

∑
j h(θ j )] ≤

∫

T

h(θ)dνη(θ).

The parameter η > 0 is arbitrary. Now let ηk → 0 define a subsequence νη → ν and
η′
k → 0 define a subsequence λη → λ. By Lemma 8, ν = λ is the normalized Lebesgue

measure. We obtain

1

2π

∫

T

h(θ)dθ ≤ lim inf
n→∞

1

n
logEn[e

∑
j h(θ j )]

≤ lim sup
n→∞

1

n
logEn[e

∑
j h(θ j )] ≤ 1

2π

∫ 2π

0
h(θ)dθ.

The proof of Theorem 3 is complete.
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Remark 2. A physical interpretation of Theorem 3 goes as follows: The points of Tn

are the coordinates of n particles on the torus T that interact via the two body potential
f (θ j −θk). The integral overTn on the left hand side of Eq. (17) is dominated by particle
configurations which minimize the potential energy of the system. The even function
f (θ) has a pole at θ = 0 and one minimum θ0 in (0, π). Hence, the particles experience
a strong repulsive force once they get close to each other and have a preferred distance θ0
from each other. For large n they cannot all stay in their preferred distance since the torus
is compact. Hence, the repulsive part dominates and in the limit of large n the particles
equidistribute. The evaluation of the left hand side of Eq. (17) on those equidistributed
points on T defines a Riemann sum approximating the integral on the right hand side of
Eq. (17).

2.8. Identification of coefficients and conclusion. We evaluate the formal parameters of
Sect. 2.5 at the complex parameters of Sect. 2.6.1. We set

t−1
i = e−λ εi = qi , e−1

α = e−λaα = uα, bm = eλwm = pm .

Under the assumption λ > 0, the conditions stated at the beginning of Sect. 2.6.1 are
satisfied provided we assume Re εi > 0 and

(
ε1 = ε2 or ε1, ε2 ∈ R

)
and

max
α

Re(aα) − min
α

Re(aα) < Re εi , i = 1, 2.

Hence, Zn(�u; �p) is well-defined. To ensure that each simple residue Z �Y (�u; �p) is well-
defined, we have to require conditions (11), which translate to

aα − aβ 	≡ x ε1 +y ε2, ∀α 	= β ∈ {1, . . . , r} ∀x, y ∈ {−n, . . . , n},
x ε1 	≡ (y + 1) ε2, (x + 1) ε1 	≡ y ε2, ∀x, y ∈ {0, . . . , n − 1},

(21)

where the inequalities are modulo 2π i
λ

Z. Under these conditions, Theorem 1 implies
Zn(ε1, ε2, �a; �w; λ) = Zn(�u; �p). By Remark 1, the sum Zn(ε1, ε2, �a; �w) is well-defined
even if we drop condition (21). The representation of the coefficients as integrals allowed
us to apply the potential theory in Sect. 2.6.3 to estimate their growth in Theorem 2. We
obtain

Theorem 5. Let λ > 0 and ε1 and ε2 be a pair of complex numbers with positive real
part. Assume either they are complex conjugate or both real. The K -theoretic Nekrasov
partition function Z(ε1, ε2, �a; �w, q, λ) given by Eq. (3) is an analytic function of q, �a, �w
in the domain

�w ∈ C
s, max

α
Re(aα) − min

α
Re(aα) < Re εi , i = 1, 2,

|q| < λs−2r eλ
(
r

ε1 + ε2
2 +

∑s
m=1 min{−Rewm ,Re a1,...,Re ar }

)
.

There remains to prove the analyticity in �a, �w. By Lemma 2, we know that in a
neighbourhoodU of each (�a, �w) the series defining the partition functions converges to
an analytic function for |q| < r for some small positive radius r = r(U ). On the other
hand, Theorem 2 tells us that we have convergence of the power series for the indicated
range of q and fixed �a, �w in the domain. By Hartogs’ lemma ([6], Theorem 2, p. 139)
the series converges to an analytic function on the whole domain.
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3. Generalization

Our technique can be generalized to different parameter ranges and similar types of
gauge theory.

3.1. Different parameter ranges. Assume �p = ∅. Under the inversion
(q1, q2, u1, . . . , ur ) �→ (q−1

1 , q−1
2 , u−1

1 , . . . , u−1
r )

the coefficient Zn(�u; �p = ∅) gets multiplied by (q1q2)−nr . This can directly be seen
from Eq. (13). Using this observation, bounds for |q1|, |q2| > 1 can be obtained as well.

3.2. Similar types of gauge theory. Our technique readily generalizes to partition func-
tions of gauge theories where the weight factor in line (9) in coordinates z j = ρeiθ j is
of the form

exp

(
−

∑

j 	=k

f (θ j − θk)

)
,

where f : T → R∪{+∞} is continuous, bounded from below, has a single pole at θ = 0
and its Fourier coefficients ck( f ) satisfy ck( f ) > 0 for k 	= 0 and c0( f ) = 0.

An example would be N = 2∗ supersymmetric gauge theory, i.e. with massive
matter in the adjoint representation [18, equation (3.25)]. One has to consider a different
polynomial in the numerator of the integrand in (8) and multiply the weight in line (9)
by

∏

1≤ j<k≤n

(z j − q1m−1zk)(z j − q2m−1zk)(z j − q−1
1 mzk)(z j − q−1

2 mzk)

(z j − mzk)(z j − m−1zk)(z j − q1q2m−1zk)(z j − q−1
1 q−1

2 mzk)
.

4. Specialization: Norm of Deformed Gaiotto States

In this section, we briefly discuss an application of our results to conformal field theory,
namely the finiteness of the norm of deformed Gaiotto states.

4.1. Definition. In this introduction, let q, t denote two generic complex parameters.
We follow the exposition of [3]. The deformed Virasoro algebra V irq,t is defined as the
associative algebra topologically generated by Tn, n ∈ Z with the defining relations

[Tn, Tm] = −
∞∑

l=1

rl(Tn−l Tm+l − Tm−l Tn+l)

− (1 − q)(1 − t−1)

1 − qt−1 (qnt−n − q−ntn)δm+n,0.

The coefficients rl are determined by the expansion

r(x) =
∑

l≥0

rl x
l = exp

(∑

n≥1

(1 − qn)(1 − t−n)

1 + qnt−n

xn

n

)
.
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For h ∈ C, the Verma module Mh is generated by a vector |h〉 with T0|h〉 = h|h〉 and
Tn|h〉 = 0 if n ≥ 1. The operator T0 defines a grading Mh = ⊕

n≥0 Mh,n where Mh,n
is the eigenspace of T0 corresponding to the eigenvalue h + n. As usual, each Mh,n has
a basis

Tλ|h〉 := T−λ(1) · · · T−λ(l)|h〉

indexed by partitions λ = (λ(1), . . . , λ(l)) of size |λ| = n. The Shapovalov form
S : Mh ⊗ Mh → C is characterized by S(|h〉, |h〉) = 1 and S(Tnx, y) = S(x, T−n y)
for x, y ∈ Mh and n ∈ Z. The decomposition Mh = ⊕

n≥0 Mh,n is orthogonal with
respect to the Shapovalov form. In particular, the so-called Kac matrix with entries
Sλ,μ := S(Tλ|h〉, Tμ|h〉) is block diagonal with finite blocks (S(n)

λ,μ)|λ|,|μ|=1,...,n .

A deformed Gaiotto state is a formal power series |G〉 = ∑
n≥0 ξn|Gn〉 whose

coefficients |Gn〉 ∈ Mh,n satisfy T1|Gn〉 = |Gn−1〉 with |G−1〉 := 0 and Tn|Gm〉 = 0
for n ≥ 2 and allm. In terms of the expansion |Gn〉 = ∑

|λ|=n g
(n)
λ Tλ|h〉 these conditions

read

∑

|λ|=n

g(n)
λ S(n)

λ,μ = δμ(1n), n = 0, 1, . . . ,

where (1n) is the partition (1, . . . , 1) of size n.
From now on, we assume q, t 	= 1. The zeros of the determinant of the n-th block

S(n) of the Kac matrix are located at [23, equation (2.4)]

h = ±(tr/2q−s/2 + t−r/2qs/2), r, s ≥ 1, rs = n. (22)

Outside of these sets, the Kac matrix is invertible, hence the Gaiotto state exists uniquely
and its norm with respect to the Shapovalov form is given by the formal power series

S(|G〉, |G〉) =
∑

n≥0

ξ2n(S(n))−1
(1n),(1n).

Let Q ∈ C with h = Q
1
2 + Q− 1

2 . From the AGT relation [3,23,24] we obtain the
formal expansion as a Nekrasov partition function

S(|G〉, |G〉) =
∑

n≥0

ξ2nq−ntn Zn(q, t, Q), (23)

where the coefficients are sums over pairs (ν, μ) of partitions:

Zn(q, t, Q) =
∑

|ν|+|μ|=n

1

Nν,μ(Q)Nμ,ν(Q−1)Nν,ν(1)Nμ,μ(1)
,

Nν,μ(Q) =
∏

t∈μ

(1 − Qqaν (t)t lμ(t)+1)
∏

s∈ν

(1 − Qq−aμ(s)−1t−lν (s)).
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4.2. Finiteness of norm. We want to recover the coefficients defined in Eq. (8). We set

q1 = t , q2 = q−1, r = 2 and u1 = u−1
2 = Q

1
2 . The conditions stated at the beginning

of Sect. 2.6.1 say |q| > 1, |t | < 1 and
(
tq = 1 or t, q > 0

)
and

|t |max{|Q|, |Q|−1} < min{|Q|, |Q|−1}, max{|Q|, |Q|−1} < |q|min{|Q|, |Q|−1}.
The condition (11) on the well-definedness of all simple residues translates to

Q /∈ {qx t y : x, y ∈ Z}, and qx 	= t y ∀(x, y) ∈ Z
2 \{(0, 0)}.

We extend the condition on Q on the left to −Q, thus excluding all poles of the Kac
determinant in Eq. (22). The condition on the right we drop by remark (1). From Eq.
(12) in Theorem 1, we then recover

S(|G〉, |G〉) =
∑

n≥0

zn Zn(�u; p = ∅) (24)

for z = ξ2tq−1. Hence, Theorem 2 implies that series (24) converges for |z| < 1. We
obtain

Theorem 6. Let q and t be a pair of complex numbers of with |t | < 1 and |q| > 1
Suppose either tq = 1 or t, q > 0. Let Q

1
2 be a complex number such that

Q /∈ {qx t y : x, y ∈ Z}, |q|max{|Q|, |Q|−1} < min{|Q|, |Q|−1},
− Q /∈ {qx t y : x, y ∈ Z}, max{|Q|, |Q|−1} < |t |min{|Q|, |Q|−1}.

Set h = Q
1
2 + Q− 1

2 . The deformed Gaiotto state |G〉 with formal parameter ξ ∈ C

exists for the Verma module Mh for the deformed Virasoro algebra V irq,t , and its norm
S(|G〉, |G〉) is an analytic function in the variable ξ for

|ξ | < |t |− 1
2 |q| 12 .

5. Open Problems

Here, we briefly describe two formal power series, to which we intended to apply our
results. Their coefficients are certain limits of the coefficients we studied earlier. Due to
the lack of uniformity in our estimates, we were not able to prove convergence of those
power series.

5.1. Homological version of Nekrasov partition function. The K -theoretic Nekrasov
partition function defined in Sect. 2 has a counterpart in which K -theory groups are
replaced by T̃ -equivariant Borel–Moore homology groups HT̃∗ (−). All HT̃∗ (−) aremod-
ules for the ring

S(T̃ ) := HT̃∗ (pt) ∼= Z[ε1, ε2, a1, . . . , ar ].
Let S ∼= Q(ε1, ε2, a1, . . . , ar ) denote its quotient field. The maps ι and ι �Y , defined in
Sect. 2, all define pushforwards in equivariant homology. The localization theorem in
equivariant homology says that ι becomes an isomorphism after tensoring with S.
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The fixed point theorem says that after tensoring with S we have

(ι∗)−1 =
∑

| �Y |=n

ι∗�Y
e(T�Y M(r, n))

, (25)

where e(−) denotes the Euler class. The homological Nekrasov partition function for
pure Yang Mills theory is defined as a formal power series

Z(ε1, ε2, �a; q) =
∑

n≥0

qn Zn(ε1, ε2, �a),

with coefficients Zn(ε1, ε2, �a) = ∑
| �Y |=n(ι∗)−1[M(r, n)] where [M(r, n)] denotes the

fundamental class of M(r, n). Using the fixed point formula (25) and Eq. (2) to compute
the Euler classes gives

Zn(ε1, ε2, �a) =
∑

| �Y |=n

1
∏

α,β n �Y
α,β(ε1, ε2, �a)

, (26)

where

n
�Y
α,β(ε1, ε2, �a) =

∏

s∈Yα

( − lYβ (s) ε1 +(aYα (s) + 1) ε2 +aα − aβ

)

∏

t∈Yβ

(
(lYα (t) + 1) ε1 −aYβ (t) ε2 +aα − aβ

)
.

In particular, the coefficients of the homological Nekrasov partition function are
limits of the coefficients of the K -theoretic partition function, as defined in Eq. (5):

λ2rn Zn(ε1, ε2, �a; �w = ∅; λ) → Zn(ε1, ε2, �a) (λ → 0). (27)

Equation (27) suggests that, under the same conditions on ε1, ε2, a1, . . . , ar as stated
in Theorem 5, the homological Nekrasov partition function Z(ε1, ε2, �a; q) converges
for all q ∈ C. This question remains unanswered: Neither is the limit (27) uniform in n,
nor is the estimate for the radius of convergence uniform in λ.

Remark 3. In the special case ε1 + ε2 = 0, one can directly estimate the coefficients
Zn to prove convergence of the expansion Z(ε1, ε2, �a; q) = ∑

n≥0 q
n Zn(ε1, ε2, �a):

The diagonal term α = β in
∏n

α,β=1 n
�Y
α,β(ε1, ε2, �a) is a product over all hook lengths

occurring in the Young diagram Yα . By the hook length formula we obtain 1
|Yα |! times the

Plancherelmeasure of theYoung diagramYα , which allows one to estimate the expansion
for all q ∈ C, see [12, proposition 1]. This technique, which requires ε1 + ε2 = 0, also
generalizes [5] to the K -theoretic Nekrasov partition function without additional matter
fields.
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5.2. Conformal blocks.

5.2.1. The Virasoro algebra and Vermamodules. We consider the Virasoro algebra V ir .
It is a complex Lie algebra with generators Ln, n ∈ Z and central element C satisfying

[Lm, Ln] = (m − n)Lm+n +
1

12
(m3 − m)δm+n,0C.

Fix c ∈ C, the so-called central charge. It will remain unchanged for the remainder of
this introduction. For h ∈ C the Verma module Vh for the Virasoro algebra of conformal
dimension h and central charge c is a module generated by a vector |h〉 satisfying
L0|h〉 = h|h〉, C |h〉 = c|h〉 and Ln|h〉 = 0 for n ≥ 1. A basis is given by Lλ|h〉 :=
L−λ(1) · · · L−λ(l)|h〉, where λ = (λ(1), . . . , λ(l)) is a partition. The Verma module
comes with a bilinear form, the Shapovalov form, S : Vh ⊗ Vh → C characterized by
S(Lnx, y) = S(x, L−n y), for x, y ∈ Vh and S(|h〉, |h〉) = 1.

5.2.2. Intertwiners. Fix complex numbers h, h1, h2 and set a = h2 − h1 − h. Given
two Verma modules Vh1 and Vh2 for the same central charge c, an intertwiner φ(z) =∑

n∈Z φnzn+a between Vh1 and Vh2 of conformal dimension h is a formal power series
whose coefficients φn are linear maps Vh1 → Vh2 such that

[Ln, φ(z)] = (zn+1∂z + (n + 1)hzn)φ(z). (28)

In conformal field theory, this property models transformations of fields under infinites-
imal conformal transformations. Conformal blocks model vacuum expectation values
of such fields. Mathematically they are defined as follows:

5.2.3. Conformal blocks. Let hl , Hl , hm, Hr , hr be complex numbers. Let φl(w) be an
intertwiner of conformal dimension Hl from Vhm to Vhl . Let φr (z) be an intertwiner of
conformal dimension Hr from Vhr to Vhm . The object

〈hl |φl(1)φr (z)|hr 〉 := lim
w→1

S

(
|hl〉, φl(w)

(
φr (z)|hr 〉

))

is called a four-point conformal block. It defined as zh−hr−Hr times a formal power
series in z, whose complex coefficients are in principle determined by Eq. (28) up to
normalization. The limit is taken for each coefficient separately.

The AGT relation allows us to express the conformal block as a Nekrasov parti-
tion function: One first has to introduce the Liouville parametrization of the conformal
dimensions and the central charge. We pick b ∈ C with

c = 1 + 6(b + b−1)2,

to parametrize the central charge. The conformal dimensions hl , hm, hr of the Verma
modules Vhl , Vhm and Vhr are parametrized as

hl = (b + b−1)2

4
− P2

l , hm = (b + b−1)2

4
− P2

m, hl = (b + b−1)2

4
− P2

l ,

where Pl , Pm, Pr ∈ C. The conformal dimensions Hl and Hr of the intertwiners φl(w)

and φr (z) are parametrized as

Hr = αr (b + b−1 − αr ), Hl = αl(b + b−1 − αl),
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where αr , αl ∈ C. We have [1]

〈hl |φl(1)φr (z)|hr 〉 = (1 − z)2αr (b+b
−1−αl )

∑

n≥0

zn Fn(b, αr , αl , Pr , Pm, Pl),

with

Fn(b, αr , αl , Pr , Pm, Pl)

=
∑

|Y1|+|Y2|=n

Zbi f

(
αr

∣∣∣Pr , (∅,∅); Pm, (Y1,Y2)
)
Zbi f

(
αl

∣∣∣Pm, (Y1,Y2); Pl , (∅,∅)
)

Zbi f

(
0
∣∣∣Pm, (Y1,Y2); Pm, (Y1,Y2)

) .

Here the value of Zbi f (α|P ′, �Y ′; P, �Y ) for pairs of partitions �Y , �Y ′ and complex numbers
P, P ′ and α is given by

Zbi f (α|P ′, �Y ′; P, �Y ) =
2∏

i, j=1

( ∏

s∈Yi
(P ′

j − Pi + b(lY ′
j
(s) + 1) − b−1aYi (s) − α)

∏

t∈Y ′
j

(P ′
j − Pi − blYi (t) + b−1(aY ′

j
(t) + 1) − α)

)
,

where, on the right hand side, Pi is the i-th component of the vector �P = (P,−P) and
similarly for P ′

i .

5.2.4. Attempt at an estimate. A simple calculation gives

Zbi f

(
αr

∣∣∣Pr , (∅,∅); Pm, (Y1,Y2)
)
Zbi f

(
αl

∣∣∣Pm, (Y1,Y2); Pl , (∅,∅)
)

=
2∏

i=1

∏

(x,y)∈Yi

4∏

m=1

((Pm)i + b(x − 1) + b−1(y − 1) + vm),

where v1 = αr + Pr , v2 = αr − Pr , v3 = −αl +b+b−1 + Pl and v4 = −αl +b+b−1− Pl .
Under the identifications

aα = Pα, α = 1, 2, ε1 = b, ε2 = b−1, wm = vm, m = 1, . . . , 4

and using Eq. (12) in Theorem 1, we recover Fn(b, αr , αl , Pr , Pm, Pl) from
Zn(ε1, ε2, �a, �w; λ) in the limit λ → 0. The conditions formulated in Theorem 5 on b
are Re b > 0 and either b > 0 or |b| = 1. The ones on P are |Re P| < 1

2 Re b and
|Re P| < 1

2 Re b
−1. Condition (21) translates, for λ = 0, to

P /∈ b

2
Z+

b−1

2
Z and b2 /∈ Q≥0 .

The condition on P excludes theminimalmodels. The conditions on b restrict the central
charge of the theory to the interval (1,∞). Since λ2r−s = 1, Theorem 5 seems to suggest
that the conformal block 〈hl |φl(1)φr (z)|hr 〉 is analytic in z for |z| < 1. However, we
neither know that the convergence of the Nekrasov partition function is uniform in λ,
nor do we know that the convergence Zn(ε1, ε2, �a, �w; λ) → Fn(b, αr , αl , Pr , Pm, Pl)
as λ → 0 is uniform in n.
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Appendix A. Evaluation by iterated residues

In this section we prove Theorem 1 by evaluating the integral by residues. In a first step, we find the position of
all poles whose residues contribute to the integral and show that they are simple. In a second step we evaluate
the residues.
We show that Zn(�u; �p) is a sum

Zn(�u; �p) =
∑

| �Y |=n

Z �Y (�u; �p), (29)

of iterated, simple residues

Z �Y (�u; �p) :=
(

1 − q1q2
(1 − q1)(1 − q2)

)n n∏

j=1

s∏

m=1

(ẑ j − pm )

lim
z j→ẑ j
j=1,...,n

( n∏

j=1

(z j − ẑ j )
I(z1, . . . , zn; �u)

z1 · · · zn
)

, (30)

where

{ẑ1, . . . , ẑn} = {zαx,y : (x, y) ∈ Yα, α = 1, . . . , r}, (31)

in any order.
We suppose that |q1| = |q2| + δ < 1, where δ > 0 is small enough so that |q2| > |q1|2 > |q1|3 > · · · . The
general case follows from analytic continuation.
We evaluate the integral Zn(�u; �p) by taking iterated residues. We start with a slightly more general integral.
Let U,W be two finite sets of complex numbers and f (z1, . . . , zn) a symmetric function, analytic on the
closed ball in Cn with radius ρ. Our integral is of the form

∫

Cρ

dzn
2π i

. . .

∫

Cρ

dz1
2π i

I (z1, . . . , zn)

=
∫

Cρ

dzn
2π i

∏
w∈W (zn − w)∏
u∈U (zn − u)

∏

n<k

(zn − zk )
2(zn − q1q2zk )(zn − q−1

1 q−1
2 zk )

(zn − q1zk )(zn − q2zk )(zn − q−1
1 zk )(zn − q−1

2 zk )

.

.

.

∫

Cρ

dz2
2π i

∏
w∈W (z2 − w)∏
u∈U (z2 − u)

∏

2<k

(z2 − zk )
2(z2 − q1q2zk )(z2 − q−1

1 q−1
2 zk )

(z2 − q1zk )(z2 − q2zk )(z2 − q−1
1 zk )(z2 − q−1

2 zk )

∫

Cρ

dz1
2π i

∏
w∈W (z1 − w)∏
u∈U (z1 − u)

∏

1<k

(z1 − zk )
2(z1 − q1q2zk )(z1 − q−1

1 q−1
2 zk )

(z1 − q1zk )(z1 − q2zk )(z1 − q−1
1 zk )(z1 − q−1

2 zk )

f (z1, . . . , zn) (32)

where I (z1, . . . , zn) is given by

f (z1, . . . , zn)

n∏

j=1

(∏
w∈W (z j − w)

∏
u∈U (z j − u)

http://creativecommons.org/licenses/by/4.0/
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×
∏

j<k

(z j − zk )
2(z j − q1q2zk )(z j − q−1

1 q−1
2 zk )

(z j − q1zk )(z j − q2zk )(z j − q−1
1 zk )(z j − q−1

2 zk )

)
.

When integrating z1 we can only pick up residues at q1z j , q2z j or ẑ1 = u, for some u ∈ U with |u| ≤ ρ.
Assume that we pick up a residue at ẑ1 = qi z j for some i ∈ {1, 2} and j ∈ {2, . . . , n}. The other case will

be treated later on. Let s ∈ {1, 2} be the index complementary to i . The residue is simple. After renaming
z j ↔ z2 we obtain

∫

Cρ

dzn
2π i

. . .

∫

Cρ

dz2
2π i

f (qi z2, z2, . . . , zn)

×
n∏

j=3

(∏
w∈W (z j − w)

∏
u∈U (z j − u)

∏

2< j<k

(z j − zk )
2(z j − q1q2zk )(z j − q−1

1 q−1
2 zk )

(z j − q1zk )(z j − q2zk )(z j − q−1
1 zk )(z j − q−1

2 zk )

)

×
∏

w∈W (z2 − w)(qi z2 − w)∏
u∈U (z2 − u)(qi z2 − u)

×
∏

2<k

(z2 − zk )(z2 − qi qs zk )(z2qi − zk )(z2qi − q−1
i q−1

s zk )

(z2 − qi zk )(z2 − q−1
s zk )(z2qi − qs zk )(z2qi − q−1

i zk )

× qi z2
(qi − 1)2(1 − qs )(qi − q−1

i q−1
s )

(qi − qs )(qi − q−1
i )(qi − q−1

s )
.

We also have used Fubini’s theorem to permute the order of integration, swapping the integrals over dz2 and
dz j . This is permitted since the integrand does not have poles on the integration contours. Here we use the
small perturbation of |q1| and |q2|. We note that this result does not depend on j anymore, which also follows
from the symmetry of I (z1, . . . , zn). So we can suppose without loss of generality j = 2.

We see that now we can pick up residues at ẑ2 = u0, q
−1
i u0, for some u0 such that ẑ2 lies inside the

integration contour or at ẑ2 = qi z j , where the i is the same as in the previous integral. It appears like there is
a residue coming from the pole (z2qi − qs z j ) if i = 1. However, all residues coming from these poles cancel
each other in the sum: One directly calculates

lim
zk→q−1

1 q2zl

(zk − q−1
1 q2zl )

∑

i=1,2

n∑

j=2

Resẑ1=qi z j I (z1, . . . , zn) = 0.

Assume that we pick ẑ2 = qi z j , again assume without loss of generality j = 3. The residue is simple. The
integral over z3 becomes

∫

Cρ

dz3
2π i

2∏

l=0

∏
w∈W (z3q

l
i − w)

∏
u∈U (z3q

l
i − u)

∏

3<k

(z3 − zk )(z3 − qi qs zk )(z3q
2
i − zk )(z3q

2
i − q−1

i q−1
s zk )

(z3 − qi zk )(z3 − q−1
s zk )(z3q

2
i − qs zk )(z3q

2
i − q−1

i zk )

q3i z
2
3
(qi − 1)3(1 − qs )2(q2i − q−1

s )(q3i − q−1
s )

(qi − qs )(qi − q−1
s )2(q2i − qs )(q3i − 1)

f (q2i z3, qi z3, z3, . . . , zn).

In the next step, we can again only pick up simple residues at ẑ3 = qi z4 or ẑ3 = q−l
i u0 with l ∈ {0, 1, 2} and

u0 ∈ U such that ẑ3 lies inside the integration contour.
Assume thatwehavepicked and evaluated simple residues at (ẑ1, . . . , ẑ J−1)during thefirst J−1 integrations

with ẑ j = q J− j
i z J , j = 1, . . . , J −1, where i ∈ {1, 2} is fixed. Let s ∈ {1, 2} be the other index. The integral

over z J has the integrand

J−1∏

l=0

∏
w∈W (z J q

l
i − w)

∏
u∈U (z J q

l
i − u)
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×
∏

J<k

(z J − zk )(z J − qi qs zk )(z J q
J−1
i − zk )(z J q

J−1
i − q−1

i q−1
s zk )

(z J − qi zk )(z J − q−1
s zk )(z J q

J−1
i − qs zk )(z J q

J−1
i − q−1

i zk )

× z J−1
J q

1
2 (J+2)(J−1)
i

(qi − 1)J (1 − qs )J−1

(qi − q−1
s )J−1(q Ji − 1)

×
J−1∏

j=1

(q j
i − q−1

i q−1
s )

(q j
i − qs )

f (q J−1
i z J , . . . , z J , . . . , zn), (33)

whereas the integrands for z J+1, . . . , zn in Eq. (32) remain the same. Now pick a residue at ẑ J = q
−l0
i u0

inside the integration contour with u0 ∈ U and l0 ∈ {0, . . . , J − 1} and suppose the pole is simple. So we
have followed the evaluation steps

ẑ1 = qi z2, ẑ2 = qi z3, . . . , ẑ J−1 = qi z J , ẑ J = q
−l0
i u0 (34)

leading to the residue strip

(ẑ1, . . . , ẑ J ) = q
−l0
i (q J−1

i u0, . . . , u0). (35)

When we evaluate the final residue we get the same integral expression we started with as in Eq. (32), except
that we only have the variables z J+1, . . . , zn , the sets U,W are changed to

U ′ = U ∪ {q−1
i ẑ J , qs ẑ J , q−1

s ẑ1, qi ẑ1} W ′ = W ∪ {ẑ J , q−1
i q−1

s ẑ J , ẑ1, qi qs ẑ1},
and f (z1, . . . , zn) gets replaced by

f ′(z J+1, . . . , zn) = f (q J−1
i q

−l0
i u0, . . . , q

−l0
i u0, z J+1, . . . , zn).

This function is again symmetric. Moreover, we have accumulated a prefactor with the value

J−1∏

l=0

∏
w∈W (q

l−l0
i u0 − w)

∏
u∈U\{u0}(q

l−l0
i u0 − u)

J−1∏

l=0
l 	=l0

1

(q
l−l0
i − 1)

q
1
2 (J+2)(J−1)−l0 J
i

(qi − 1)J (1 − qs )J−1

(qi − q−1
s )J−1(q Ji − 1)

J−1∏

j=1

(q j
i − q−1

i q−1
s )

(q j
i − qs )

, (36)

coming from the residue evaluation. We see that the evaluation of our integral happens in stages, where one
evaluates a strip of residues. We draw the strip (35) for i = 2 as follows:

ẑ J · · · · · · u0 · · · ẑ1

(37)

The positive qi direction goes from west to east. The residues go from east to west over the residue strip (35).
Here we have also indicated the poles (light gray) and zeros (dark grey) such a strip adds to the setsU andW .
For i = 1 the strip is drawn vertically, with positive qi direction from north to south.
All formulae remain valid for J = 1, i.e. when we directly pick up a residue at ẑ1 = u0 for some u0 ∈ U .

We call such a strip of length one a box. It is drawn as

u0

(38)

Here we have used black to mark a zero of order two. We want to compare the result of the evaluation process
(34) of the above residues for general l0 ∈ {0, . . . , J − 1} to the result from the procedure where we evaluate
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the same final residues (35) by repeated use of the case J = 1. Now, the order of the residues will be different.
It is clear that the sets U ′ and W ′ we end up with agree for both procedures. Moreover, the new symmetric
function f ′ also agrees, since the original function f is symmetric. However the prefactor (36) only agrees
up to a sign, as we will now see.
We first treat the case, where we go in positive qi direction, starting at a pole at some u1: Suppose we pick

up residues using the evaluation process

ẑ1 = u1, ẑ2 = qi u1, . . . , ẑK = qK−1
i u1. (39)

For k = 0, . . . , K , let U+
k and W+

k denote the sets U and W after evaluating the residues at ẑ1, . . . , ẑk . In the
first step we pick up the residue at ẑ1 = u1, the sets U = U+

0 and W = W+
0 get changed to

U+
1 =

(
U \ {u1}

)
∪ {q−1

i u1, qsu1, q
−1
s u1, qi u1}

W+
1 = W ∪ {u1, q−1

i q−1
s u1, qi qsu1},

the symmetric function is f (u1, z2, . . . , zn) and we get the prefactor
∏

w∈W+
0
(u1 − w)

∏
u∈U+

0 \{u1}(u1 − u)
.

By induction, we see that after evaluating all residues (39), we have changed the original sets U,W to

U+
K =

(
U \ {u1}

)
∪ {q−1

i u1, qsu1, q
−1
s qK−1

i u1, qi q
K−1
i u1}

W+
K = W ∪ {q−1

i q−1
s u1, q

K−1
i u1, qi qsq

K−1
i u1},

the function f (z1, . . . , zn) gets replaced by

f +K (zK+1, . . . , zn) = f (u1, . . . , q
K−1
i u1, zK+1, . . . , zn)

and we have accumulated the prefactor

K−1∏

k=0

∏
w∈W+

k
(qki u1 − w)

∏
u∈U+

k \{qki u1}
(qki u1 − u)

=
K−1∏

k=0

∏
w∈W (qki u1 − w)

∏
u∈U\{u1}(q

k
i u1 − u)

K−1∏

k=1

1

(qki − 1)

q
1
2 (K+2)(K−1)
i

(qi − 1)K (1 − qs )K−1

(qKi − 1)(qi − q−1
s )K−1

K−1∏

k=1

(qki − q−1
i q−1

s )

(qki − qs )
. (40)

Next, we treat the case where we go in negative qi direction starting at some pole u2. Suppose we pick up
residues using the evaluation steps

ẑ1 = u2, ẑ2 = q−1
i u2, . . . , ẑM = q−M+1

i u2. (41)

For m = 0, . . . , M , let U−
m and W−

m denote the sets U and W after evaluating the residues at ẑ1, . . . , ẑm . In
the first step we pick up the residue at ẑ1 = u2, the sets U = U−

0 and W = W−
0 get changed to

U−
1 =

(
U \ {u2}

)
∪ {q−1

i u2, qsu2, q
−1
s u2, qi u2}

W−
1 = W ∪ {u2, q−1

i q−1
s u2, qi qsu2},

the symmetric function is f (u2, z2, . . . , zn) and we get the prefactor
∏

w∈W−
0

(u2 − w)

∏
u∈U−

0 \{u2}(u2 − u)
.

Again, after evaluating all residues (41), we have changed the original sets U,W to

U−
M =

(
U \ {u2}

)
∪ {qi u2, q−1

s u2, qsq
−M+1
i u2, q

−1
i q−M+1

i u2}
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W−
M = W ∪ {qi qsu2, q−M+1

i u2, q
−1
i q−1

s q−M+1
i u2},

the function f (z1, . . . , zn) is replaced by

f −
M (zM+1, . . . , zn) = f (u2, . . . , q

−M+1
i u2, zM+1, . . . , zn)

and get the prefactor

M−1∏

m=0

∏
w∈W−

m
(q−m

i u2 − w)

∏
u∈U−

m \{q−m
i u2}(q

−m
i u2 − u)

=
M−1∏

m=0

∏
w∈W (q−m

i u2 − w)
∏

u∈U\{u2}(q
−m
i u2 − u)

M−1∏

m=1

1

(q−m
i − 1)

q
− 1

2 (M−1)M+M−1
i

(1 − qi )
M (1 − qs )M−1

(qi − q−1
s )M−1(1 − qMi )

M−1∏

m=1

(qmi − q−1
i q−1

s )

(qmi − qs )
. (42)

Recall that were looking at the case where we pick the residues (35) as a strip depicted in figure (37) using
the evaluation steps (34) and wewant to compare it to the procedure where we apply the case J = 1 repeatedly.
Set M = l0 + 1 and K = J − l0 − 1. Picking residues according to the stepwise procedures with u2 = u0
and u1 = qi u0 we get the prefactor

K−1∏

k=0

∏
w∈W−

M
(qki u1 − w)

∏
u∈U−

M \{u1}(q
k
i u1 − u)

M−1∏

m=0

∏
w∈W (q−m

i u2 − w)
∏

u∈U\{u2}(q
−m
i u2 − u)

q
1
2 (K+2)(K−1)
i q

− 1
2 (M−1)M+M−1

i
(qi − 1)K (1 − qs )K−1

(qKi − 1)(qi − q−1
s )K−1

(1 − qi )
M (1 − qs )M−1

(qi − q−1
s )M−1(1 − qMi )

K−1∏

k=1

(qki − q−1
i q−1

s )

(qki − qs )

M−1∏

m=1

(qmi − q−1
i q−1

s )

(qmi − qs )

K−1∏

k=1

1

(qki − 1)

M−1∏

m=1

1

(q−m
i − 1)

. (43)

We call this factor the base value for our strip of residues. This factor equals the prefactor in Eq. (36) up to a
sign of

(−1)M+1.

(When we first evaluate the residues in positive qi direction and then in negative qi direction we get the same
result.)
We point out two special cases of our observation:

(1) In the case l0 = 0, where we place the whole strip of residues at u0 and eastwards of u0, it does not
matter whether we pick the residues one by one or as a strip.

(2) In the case l0 = J − 1, where we place the whole strip of residues at u0 and westwards of u0, we get
the base value up to a sign equal to (−1)L+1 where L is the length of the strip.

Claim 1. Only strips with l0 = 0 contribute to the integral.

Suppose, we add a strip of residues of length J with l0 > 0, i.e. part of the residue diagram grows in negative
qi direction. We claim that the total contribution of all possible processes to choose residues leading to the
same residue strip is zero. We depict the strip as

� � � � � † † †

↑
u0 (44)

for i = 2 and vertically for i = 1. The number of stars equals M = l0 + 1 and the number of daggers equals
K = J − M . The residue at u0 is located at the easternmost star. We draw the corresponding base value,
corresponding to a stepwise procedure when picking up residues, as

↑
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u0

Of course, this picture does not fully specify the procedure: We can alternate between picking up residues to
the east and to the west. We will deal with this multiplicity later.
Another way to evaluate the residues is for example by first evaluating some of the residues as a strip with

l0 = J − 2 and then two as boxes and one final strip of length two to the east. We depict this as

↑
u0 (45)

All possible ways to end up with the residues (35) define a partition of the strip (44) into substrips. All those
partitions yield the same final sets U ′,W ′ and the same final function f ′. The contributions of the residue
evaluations differ by signs depending on the partition into substrips. To compute these signs we have to cut
the partition eastwards of u0, for example we substitute the partition (45) by

↑
u0

According to our computation above, we then have to count the number of strips of even length westwards of
u0. For each of those, we get a factor of (−1). Then we have to sum over all partitions of the original string,
weighted by the number of ways in which one can pick residues to obtain the partition. As we have already
noticed, there are multiple ways since one can for example alternate between placing substrips at the west and
east end. The total contribution of all procedures leading to the final residues (35) is given by the base value
times an expression

∑

ξ∈�

w(ξ)s(ξ),

which we want to formalize. Here the set � represents all the ways to cut the strip (44) into substrips. The
integer w(ξ) is the weight corresponding to all possible procedures to pick residues leading to the choice of
substrips ξ . Finally the sign s(ξ) is given by the number of substrips of even length to the west of u0 after
cutting directly to the east of u0. We set

�J = {(J1, . . . , JN ) : N ∈ N, J1, . . . , JN ∈ N : J0 + · · · + JN = J }

to be the set of ordered partitions of the integer J . Cutting the strip (44) into substrips according to �J ∈ �J
means cutting it into substrips of length J0, . . . , Jn fromwest to east. For example the cut strip (45) corresponds
to the element �J = (1, 1, 4, 2) ∈ �8. Let

cut : �J → �M

be the map realized by cutting the collection of substrips �J directly to the east of u0. Now we can formalize
the sign s( �J ) as

s( �J ) =
∏

a
(−1)1+

(
cut( �J )

)
a .

In order to describe the weight w( �J ), we have to take into account two effects: Firstly, for each substrip of
length Ja > 1, we have to count the number of choices when selecting a residue ẑa = qi zb that correspond
to the freedom to choose any of the remaining variables zb for b ∈ {1, . . . , J }. Secondly, we can alternate
between placing substrips to the west of the already chosen residues or to the east of them. We first have to
account for the second effect. To model the second effect, we reorder the vectors �J . We define the map

reo : �J → �J

by demanding that, for

�A = (A1, A2, . . . , AN ) = reo( �J ) = (B0, B1, . . . , Bb,C1, . . . ,Cc),
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the number B0 corresponds to the substrip containing u0, the numbers B1 up to Bb correspond to the substrips
to the west, with increasing index in westward direction, and the numbers C1 up to Cc correspond to substrips
to the east, with increasing index in eastward direction. The indices b = b( �J ) and c = c( �J ) depend on the
collection of substrips �J ∈ �J . For example, the cut strip (45) yields reo( �J ) = (4, 1, 1, 2), b = 2 and c = 1.
We interpret the order of the components of reo( �J ) as the order in which we place the residues. All other
orderings are obtained by permuting the elements ( �B, �C) = (B1, . . . , Bb,C1, . . . ,Cc) of this tuple, such
that the order of the elements in �B and in �C remain the same. This means we can alternate between placing
residues to the west and to the east. Let

Sb,c = {σ ∈ Sb+c : σ(1) < · · · < σ(b), σ (b + 1) < · · · < σ(b + c)}
denote the set of (b, c) shuffles. We define

σ �A = σ(B0, B1, . . . , Bb,C1, . . . ,Cc) = (B0, σ (B1, . . . , Bb,C1, . . . ,Cc)),

where σ acts on (B1, . . . , Bb,C1, . . . ,Cc) in the usual sense. We see that all possible ways to place the
substrips reo( �J ) corresponds to the orbit of this tuple under Sr,s . Hence we have formalized the second effect.
Now we can also formalize the first effect described above: Suppose we are placing the substrip σ( �A)k .
Then the remaining substrips correspond to σ( �A)k+1 + · · · + σ( �A)N variables. Each time we choose a pole at
ẑa = qi zb in σ( �A)k , we can choose zb to be one of those variables, or one of the variables in σ( �A)k , we have
not chosen so far. Hence, we get

σ( �A) j−1∏

h=1

( N∑

k= j+1

σ( �A)k + h
)

possibilities in total when placing σ( �A)k . In the case σ( �A)k = 1, we get an empty product which we interpret
as one. This agrees with the observation that σ( �A)k = 1 implies we pick a residue from the set U , which
leaves no further choices in terms of the remaining variables. Now we can combine the two effects to obtain
the expression

w( �J ) =
∑

σ∈Sb,c

N∏

j=1

( σ( �A) j−1∏

h=1

( N∑

k= j+1

σ( �A)k + h
))

where b = b( �J ), c = c( �J ) and �A = reo( �J ). In order to prove claim 1, we show

∑

�J∈�J

s( �J )w( �J ) =
∑

�J∈�J

(∏

a
(−1)1+

(
cut( �J )

)
a

)

×
( ∑

σ∈Sb( �J ),c( �J )

N∏

j=1

( σ(reo( �J )) j−1∏

h=1

( N∑

k= j+1

σ(reo( �J ))k + h
)))

= 0 (46)

by exhibiting parts of this sum that cancel each other. Fix one �J ∈ �J with Bb > 1 for

�A = reo( �J ) = (B0, B1, . . . , Bb−1, Bb,C1, . . . ,Cc).

We compare this choice of substrips to

�A′ := (B0, B1, . . . , Bb−1, Bb − 1, 1,C1, . . . ,Cc)

=: (B′
0, B

′
1, . . . , B

′
b+1,C

′
1, . . . ,C

′
c).

Graphically, �A′ is obtained from �A by cutting the strip at the westernmost box. Let �J ′ ∈ �J with �A′ = reo( �J ′).
We claim that

w( �J )s( �J ) = −w( �J ′)s( �J ′).
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This suffices: There is a one to one correspondence between collections of substrips whose westernmost
substrip has length one and those whose westernmost substrip has length greater than one. A bijection is given
by �A �→ �A′. It is clear from the definition of s( �J ) that �J and �J ′ have opposite sign, provided l0 > 0. Hence
it suffices to show that their weight is equal. We thus want to prove the equality in

∑

σ∈Sb,c

N∏

j=1

( σ( �A) j−1∏

h=1

( N∑

k= j+1

σ( �A)k + h
))

=
∑

σ∈Sb+1,c

N+1∏

j=1

( σ( �A′) j−1∏

h=1

( N+1∑

k= j+1

σ( �A′)k + h
))

.

We decompose

Sb+1,c =
⋃

σ∈Sb,c
{σ̂λ : λ = 1, . . . , N + 1 − σ(r)},

where, for j = 1, . . . , N + 1,

σ̂λ( j) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

σ( j), j = 1, . . . , b
σ(b) + λ, j = b + 1
σ( j − 1), j = b + 2, . . . , σ (b) + λ

σ( j − 1) + 1, j > σ(b) + λ + 1.

The parameterλ tells us howmuchwedelay the placement of the residue boxwe cut away from thewesternmost
residue strip. Fix σ ∈ Sb,c . We will show

N∏

j=1

( σ( �A) j−1∏

h=1

( N∑

k= j+1

σ( �A)k + h
))

=
N+1−σ(b)∑

λ=1

N+1∏

j=1

( σ̂λ( �A′) j−1∏

h=1

( N+1∑

k= j+1

σ̂λ( �A′)k + h
))

. (47)

We set B := σ(b). This is step in which we place B′
b . The tuples σ̂λ( �A′) and σ( �A) are related as follows:

(
σ̂λ( �A′)1, . . . , σ̂λ( �A′)B−1, σ̂λ( �A′)B , σ̂λ( �A′)B+1, . . . , σ̂λ( �A′)N+1

)

=
(
σ( �A)1, . . . , σ ( �A)B−1, σ ( �A)B − 1,

(
σ( �A)B+1, . . . , 1, . . . , σ ( �A)N

))
,

where 1 sits at index λ inside the inner tuple. Using this description, we rewrite the right hand side of Eq. (47)
as

N+1−B∑

λ=1

B−1∏

j=1

( σ( �A) j−1∏

h=1

( N∑

k= j+1

σ( �A)k + h
))( σ( �A)B−1∏

h=2

( N∑

k=B+1

σ( �A)k + h
))

B+λ−1∏

j=B+1

( σ( �A) j∏

h=2

( N∑

k= j+1

σ( �A)k + h
)) N∏

j=B+λ

( σ( �A) j−1∏

h=1

( N∑

k= j+1

σ( �A)k + h
))

.

This equals the left hand side of Eq. (47) up to a factor of

( N∑

k=B+1

σ( �A)k + 1
)−1 N+1−B∑

λ=1

B+λ−1∏

j=B+1

(( N∑

k= j+1

σ( �A)k + 1
)−1
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( N∑

k= j+1

σ( �A)k + σ( �A) j

))
.

This factor equals one, since for arbitrary tuples (x1, . . . , xL ), we have

L∑

J=1

J∏

j=1

∑L
k= j xk

∑L
k= j+1 xk + 1

=
∑L

k=1 xk∑L
k=2 xk + 1

(
1 +

∑L
k=2 xk∑L

k=3 xk + 1

×
(

· · ·
(
1 +

xk−2 + xk−1 + xk
xk−1 + xk + 1

(
1 +

xk−1 + xk
xk + 1

(1 +
xk
1

)
)) · · ·

))

=
L∑

k=1

xk .

Hence we have established Eq. (46) and thus proved claim 1. We note two consequences of our argument up
to now:

Claim 2. Since we can only consider strips with l0 = 0, we can only consider the cases were we take single
boxes as residues. In particular, the order of their evaluation does not matter.

Claim 3. We can therefore discard poles at q−1
i u0 with u0 ∈ U since they are either out of the integration

contours or realizable by a string with J = 2 and l0 = 1 and hence part of a zero sum described above.

Now we see inductively that the residues ẑ j contributing to the integral are of the form uαq
x−1
1 qy−1

2 where
(x, y) ∈ Yα for some Young diagrams Yα . Because of the condition

uαu
−1
β /∈ {qx1 qy2 : x, y ∈ Z}, α 	= β

the poles do not interact and we may suppose r = 1. The sets U and W we start with are then U = {u1} and
W = ∅. We evaluate a residue at the pole u1 changing the zeros and poles of the remaining integrand. We
depict this process as

the residue

u1

evaluated at pole yields

u1

.

For the induction step, assume we have evaluated residues such that the evaluated residues fill a Young
diagram. Also assume that the poles and zeros encoded in the sets U,W are located at the following places
in the diagram: at each corner outside the diagram which is open to the south east there is a pole. To the
northwest of each of those poles is another pole. At all south-easternmost boxes in the diagram there is a zero
and another zero directly south east of it. Finally there is a zero at the coordinate (−1,−1). An example would
be for instance

×

×
×

×

×

(48)
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As we have seen before in claim 3, evaluating a residue at the poles marked with a cross does not contribute
to the integral. It is clear that placing a residue box as in (38) at one of the remaining poles in diagram (48)
yields again a Young diagram with the same structure of the poles and zeros as in diagram (48).
Hence, we have established that all residues are simple residues located at (31). It is clear that different

procedures to pick residues at {zαs : s ∈ Yα, α = 1, . . . , r} correspond to permutation of the variables
ẑ j , j = 1, . . . , n. Since the integral is symmetric in z1, . . . , zn , all possible permutations occur. This cancels
the factor n! in front of the integral.
We have proved Eq. (29). Next, we evaluate the right hand side of Eq. (30). The integrand (8) is invariant

under swapping q1 and q2. The residues {zαs : s ∈ Yα, α = 1, . . . , r} defined in Eq. (10) remain invariant if
we swap q1 and q2 and transpose the diagrams Y1, . . . , Yr . Hence

∑

| �Y |=n

ZY1,...,Yr (�u; �p) =
∑

| �Y |=n

ZY T
1 ,...Y T

r
(�u; �p)|q1↔q2 .

We have aY (x, y) = lY T (y, x) and hence Eq. (13) follows from Eq. (12).
The proof of Eq. (12) is adapted from [24], where it was performed for the special case r = 2. It suffices to

consider �p = ∅ since we can cancel the factors in the equation we want to prove. Let

R �Y (�u; ∅) =
r∏

α,β=1

( ∏

s∈Yα

1

1 − uαu
−1
β q

lYα (s)+1
1 q

−aYβ
(s)

2

∏

t∈Yβ

1

1 − uαu
−1
β q

−lYβ
(t)

1 q
aYα (t)+1
2

)

be the right hand side of the first equation in Theorem 1.
For any r -tuple �Y of partitions with Yr 	= ∅, define the r -tuple �Y ′ of partitions by removing the last box

from the last partition in �Y , i.e., we set Y ′
α = Yα for α = 1, . . . , r −1 and Y ′

r = (Y1, . . . , Yl−1, Yl −1), where
l is the length of Yr . In terms of Young diagrams, we go from �Y to �Y ′ by removing the box

(l, w) := (l(Yr ), Yr (l))

from the last Young diagram Yr in �Y . We will prove

Z �Y (�u; ∅)

Z �Y ′ (�u; ∅)
= R �Y (�u; ∅)

R �Y ′ (�u; ∅)
. (49)

This already suffices: Using Eq. (49), we can reduce the statement of the theorem to the case �Y =
(Y1, . . . , Yr−1, ∅). Both Z �Y (�u; ∅) and R �Y (�u; ∅) are invariant under simultaneous permutation of the com-

ponents of �Y = (Y1, . . . , Yr ) and u = (u1, . . . , ur ). This follows directly from the respective definitions.
Hence, we can reduce the statement of the theorem to the case �Y = (Y1, . . . , Yr−2, ∅, Yr ) and, again using
Eq. (49), to the case �Y = (Y1, . . . , Yr−2,∅,∅). Continuing in this fashion, we can reduce the statement to the
case �Y = (∅, . . . , ∅), in which it holds trivially.
In the calculation of both sides of Eq. (49) we have to evaluate telescopic products. In order to group the

factors for such evaluations, we will have to keep track when Yα(x) and Y T
α (y) remain constant as we vary

the row and column indices. We write

Yα = (Yα(1), . . . , Yα(l(Yα))) = (Fα(1), . . . , Fα(1)︸ ︷︷ ︸
Gα(1)times

, . . . , Fα(mα), . . . , Fα(mα)︸ ︷︷ ︸
Gα(mα)times

).

We set Fα(mα + 1) = 0. Note that for any x, y ∈ N,

Yα(y) ∈ {Fα( j) : j = 1, . . . ,mα + 1}
Y T
α (x) ∈ {Gα(1) + · · · + Gα( j) : j = 0, . . . ,mα}.

Define the index jα by

Gα(1) + · · · + Gα( jα − 1) < l ≤ Gα(1) + · · ·Gα( jα)
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when this condition can be satisfied and jα = mα + 1 otherwise. We also introduce the notation Hα( j) =
Gα(1) + · · · + Gα( j). We split products over rows of Young diagrams as

l∏

x=1

=
jα−1∏

j=1

Hα( j)∏

x=Hα( j−1)+1

×
l∏

x=Hα( jα−1)+1

. (50)

When x comes from the product with index j ∈ {1, . . . , jα − 1}, we have Yα(y) = Fα( j). In the remaining
product, we have Yα(y) = Fα( jα). Products over columns of Young diagrams are grouped as

Yα(l)∏

y=1

=
Fα( jα)∏

y=1

=
mα∏

j= jα

Fα( j)∏

y=Fα( j+1)+1

(51)

where we have Y T
α (y) = Hα( j) if y comes from the factor with value j .

The right hand side of Eq. (49) equals

R �Y (�u; ∅)

R �Y ′ (�u; ∅)
=

r∏

α,β=1

∏
s∈Y ′

α
1 − uα

uβ
q
lY ′

α
(s)+1

1 q
−aY ′

β
(s)

2
∏

t∈Y ′
β
1 − uα

uβ
q

−lY ′
β

(t)

1 q
aY ′

α
(t)+1

2

∏
s∈Yα

1 − uα
uβ

q
lYα (s)+1
1 q

−aYβ
(s)

2
∏

t∈Yβ
1 − uα

uβ
q

−lYβ
(t)

1 q
aYα (t)+1
2

.

We introduce a variable ξ to be able to ignore poles during the calculation. Regrouping we get

R �Y (�u; ∅)

R �Y ′ (�u; ∅)
= lim

ξ→1
S(ξ)

r−1∏

α=1

Tα(ξ)Uα(ξ)

where

S(ξ) = 1

(ξ − q1)(ξ − q2)

∏

t∈Y ′
r

(ξ − q
lY ′
r
(t)+1

1 q
−aY ′

r
(t)

2 )(ξ − q
−lY ′

r
(t)

1 q
aY ′

r
(t)+1

2 )

(ξ − q
lYr (t)+1
1 q

−aYr (t)
2 )(ξ − q

−lYr (t)
1 q

aYr (t)+1
2 )

Tα(ξ) = 1

ξ − uαu
−1
r q1q

aYα (l,w)+1
2

∏

t∈Yr

ξ − uαu
−1
r q

−lY ′
r
(t)

1 q
aYα (t)+1
2

ξ − uαu
−1
r q

−lYr (t)
1 q

aYα (t)+1
2

×
∏

s∈Yα

ξ − uαu
−1
r q

lYα (s)+1
1 q

−aY ′
r
(s)

2

ξ − uαu
−1
r q

lYα (s)+1
1 q

−aYr (s)
2

Uα(ξ) = 1

ξ − ur u
−1
α q

−aYα (l,w)

2

∏

t∈Yr

ξ − ur u−1
α q

lY ′
r
(t)+1

1 q
−aYα (t)
2

ξ − ur u
−1
α q

lYr (t)+1
1 q

−aYα (t)
2

×
∏

s∈Yα

ξ − ur u−1
α q

−lYα (s)
1 q

aY ′
r
(s)+1

2

ξ − ur u
−1
α q

−lYα (s)
1 q

aYr (s)+1
2

.

Using

aY ′
α
(x, y) =

{
Yα(x) − y − 1, x = l, α = r
Yα(x) − y, otherwise

,

lY ′
α
(x, y) =

{
Y T
α (y) − x − 1, y = w, α = r

Y T
α (y) − x, otherwise

and the splitting described in Eqs. (50) and (51) we get

S(ξ) = 1

(ξ − q1q
−w+1
2 )(ξ − qw

2 )

(ξ − q1)(ξ − q2)

(ξ − 1)(ξ − q1q2)
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mr∏

j=1

(ξ − ql−Hr ( j)
1 q−Fr ( j)+w

2 )(ξ − q−l+Hr ( j)+1
1 qFr ( j)−w+1

2 )

(ξ − ql−Hr ( j−1)
1 q−Fr ( j)+w

2 )(ξ − q−l+Hr ( j−1)+1
1 qFr ( j)−w+1

2 )
,

Tα(ξ) = 1

ξ − uαu
−1
r ql(Yα)−l+1

1 q−w+1
2

mα∏

j=1

ξ − uαu
−1
r q−l+Hα( j)+1

1 qFα( j)−w+1
2

ξ − uαu
−1
r q−l+Hα( j−1)+1

1 qFα( j)−w+1
2

,

Uα(ξ) = 1

ξ − ur u
−1
α q−l(Yα)+l

1 qw
2

mα∏

j=1

ξ − ur u−1
α ql−Hα( j)

1 q−Fα( j)+w
2

ξ − ur u
−1
α ql−Hα( j−1)

1 q−Fα( j)+w
2

.

Together

R �Y (�u; ∅)

R �Y ′ (�u; ∅)
= lim

ξ→1

(ξ − q1)(ξ − q2)

(ξ − 1)(ξ − q1q2)

r∏

α=1

(
1

(ξ − uαu
−1
r ql(Yα)−l+1

1 q−w+1
2 )(ξ − ur u

−1
α q−l(Yα)+l

1 qw
2 )

×
mα∏

j=1

(ξ − ur u−1
α ql−Hα( j)

1 q−Fα( j)+w
2 )(ξ − uαu

−1
r q−l+Hα( j)+1

1 qFα( j)−w+1
2 )

(ξ − ur u
−1
α ql−Hα( j−1)

1 q−Fα( j)+w
2 )(ξ − uαu

−1
r q−l+Hα( j−1)+1

1 qFα( j)−w+1
2 )

)
.

For the residue calculation, fix the order of the variables such that the integration over zn picks up the residue
zrl,w coming from the box (l, w) ∈ Yr we remove from the last partition in �Y to get �Y ′. The left hand side of
Eq. (49) equals

Z �Y (�u; ∅)

Z �Y ′ (�u; ∅)
= 1 − q1q2

(1 − q1)(1 − q2)
lim

z j→ẑ j , j=1,...,n
(1 − zrl,w

zn
)

I(z1, . . . , zn; �u)

I(z1, . . . , zn−1; �u)
.

We take the first (n − 1) limits separately: The quotient I(z1,...,zn ;�u)
I(z1,...,zn−1;�u)

converges to

r∏

α=1

( −uαzn
(zn − uα)(q1q2zn − uα)

×
∏

s∈Y ′
α

(zn − zαs )2(zn − q1q2z
α
s )(zn − q−1

1 q−1
2 zαs )

(zn − q1z
α
s )(zn − q2z

α
s )(zn − q−1

1 zαs )(zn − q−1
2 zαs )

)

for z j → ẑ j , j = 1, . . . , n − 1. The factors with α 	= r do not have poles for zn → zrl,w since uα/ur /∈
{qx1 qy2 : x, y ∈ Z}. We define ξ = zn

zrl,w
and set

Aα(ξ) :=
∏

s∈Yα

(ξ − zαs
zrl,w

)(ξ − q1q2
zαs
zrl,w

)(ξ − zαs
zrl,w

)(ξ − q−1
1 q−1

2
zαs
zrl,w

)

(ξ − q1
zαs
zrl,w

)(ξ − q2
zαs
zrl,w

)(ξ − q−1
1

zαs
zrl,w

)(ξ − q−1
2

zαs
zrl,w

)
.

Hence, the remaining limit zn → zrl,w is given by

Z �Y (�u; ∅)

Z �Y ′ (�u; ∅)
= lim

ξ→1

(ξ − q−1
1 )(ξ − q−1

2 )

(ξ − 1)(ξ − q−1
1 q−1

2 )

r∏

α=1

( −ξuαzrl,w
(ξ zrl,w − uα)(q1q2ξ z

r
l,w − uα)

Aα(ξ)

)
.

Using the splitting described in (50) and (51) we get

Aα(ξ) = (ξ − uα
ur

q1−l
1 q1−w

2 )(ξ − uα
ur

q−l
1 q−w

2 )

(ξ − uα
ur

ql(Yα)−l+1
1 q1−w

2 )(ξ − uα
ur

ql(Yα)−l
1 q−w

2 )

×
mα∏

j=1

(ξ − uα
ur

qHα( j)−l+1
1 qFα( j)−w+1

2 )(ξ − uα
ur

qHα( j)−l
1 qFα( j)−w

2 )

(ξ − uα
ur

qHα( j−1)−l+1
1 qFα( j)−w+1

2 )(ξ − uα
ur

qHα( j−1)−l
1 qFα( j)−w

2 )
.
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Finally, we use (ρ − σ) = −ρσ(ρ−1 − σ−1) repeatedly to conclude

Z �Y (�u; ∅)

Z �Y ′(�u; ∅)
= lim

ξ→1

(ξ − q−1
1 )(ξ − q−1

2 )

(ξ − 1)(ξ − q−1
1 q−1

2 )

r∏

α=1

( −ξuαu
−1
r q−l

1 q−w
2

(ξ − uα
ur

ql(Yα)−l+1
1 q1−w

2 )(ξ − uα
ur

ql(Yα)−l
1 q−w

2 )

×
mα∏

j=1

(ξ − uα
ur

qHα( j)−l+1
1 qFα( j)−w+1

2 )(ξ − uα
ur

qHα( j)−l
1 qFα( j)−w

2 )

(ξ − uα
ur

qHα( j−1)−l+1
1 qFα( j)−w+1

2 )(ξ − uα
ur

qHα( j−1)−l
1 qFα( j)−w

2 )

)

= lim
ξ→1

(ξ−1 − q1)(ξ
−1 − q2)

(ξ−1 − 1)(ξ−1 − q1q2)
r∏

α=1

(
1

(ξ − uα
ur

ql(Yα)−l+1
1 q1−w

2 )(ξ−1 − ur
uα

q−l(Yα)+l
1 qw

2 )

×
mα∏

j=1

(ξ − uα
ur

qHα( j)−l+1
1 qFα( j)−w+1

2 )(ξ−1 − ur
uα

q−Hα( j)+l
1 q−Fα( j)+w

2 )

(ξ − uα
ur

qHα( j−1)−l+1
1 qFα( j)−w+1

2 )(ξ−1 − ur
uα

q−Hα( j−1)+l
1 q−Fα( j)+w

2 )

)

= R �Y (�u; ∅)

R �Y ′(�u; ∅)

since no factor (ξ+1 − · · · ) vanishes in the limit.
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