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Abstract: We prove the almost sure invariance principle with rate o(nε) for every ε > 0
forHölder continuous observables on nonuniformly expanding and nonuniformly hyper-
bolic transformationswith exponential tails. Examples includeGibbs–Markovmapswith
big images, Axiom A diffeomorphisms, dispersing billiards and a class of logistic and
Hénon maps. The best previously proved rate is O(n1/4(log n)1/2(log log n)1/4). As a
part of our method, we show that nonuniformly expanding transformations are factors
of Markov shifts with simple structure and natural metric (similar to the classical Young
towers). The factor map is Lipschitz continuous and probability measure preserving. For
this we do not require the exponential tails.

1. Introduction

Definition 1.1. Wesay that a randomprocess X0, X1, . . . satisfies theAlmost Sure Invari-
ance Principle (ASIP) with rate, say o(nε) with ε ∈ (0, 1/2), if without changing the
distribution, {Xn, n ≥ 0} can be redefined on a new probability space with a Brownian
motion Wt such that

Xn = Wn + o(nε) almost surely.

TheASIP is a strong statistical property. It implies directly the functional central limit
theorem, the functional law of iterated logarithm and other statistical laws, see Philipp
and Stout [22, Chapter 1]. The rate in the ASIP has additional powerful implications,
see Berkes, Liu and Wu [1] and references therein.

Suppose that T : � → � is a nonuniformly expanding or nonuniformly hyperbolic
transformation as in Young [26,27] with exponential tails (see Sect. 2), such as Gibbs–
Markov maps with big images, Axiom A diffeomorphisms, dispersing billiards, and a
class of logistic and Hénon maps.
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Suppose that ν is the unique T -invariant ergodic physical measure, v : � → R is a
Hölder continuous observable with

∫
v dν = 0 and vn = ∑n−1

k=0 v ◦ T k . Then vn, n ≥ 0
is a random process with stationary increments on the probability space (�, ν).

We prove that vn satisfies the ASIP with rate o(nε) for every ε > 0. Our results
strongly improve the best previously available rates.

Remark 1.2. Our analysis is restricted to discrete time R-valued processes. The ASIP
with good rates for flows and R

d -valued processes with dependent increments, such as
those in dynamical systems, is an important open problem.

Remark 1.3. We only consider processes with bounded increments. This is automatic
for dynamical systems with Hölder continuous observables as above.

The ASIP has been introduced by Strassen [24,25], proved for processes with inde-
pendent increments and martingales using the Skorokhod embedding. Approximations
with martingales turned out to be very robust, see Philipp and Stout [22]; they have been
used to prove the ASIP for various dynamical systems [6–9,11,18,20], including the
nonuniformly expanding and nonuniformly hyperbolic maps in [18].

A downside of the martingale method is that the best rate in the ASIP which the
Skorokhod embedding can produce is O(n1/4(log n)1/2(log log n)1/4), see Kiefer [12].
For nonuniformly expanding and nonuniformly hyperbolic systems, this rate has been
achieved by Cuny and Merlevède [7] and Korepanov, Kosloff, and Melbourne [16].

For processes with independent and identically distributed increments, Komlós,
Major, andTusnády in their celebratedwork [13] proved theASIPwith amuch better rate
O(log n), which is in fact unimprovable. Their proof is based on the so-called Hungarian
construction and uses the quantile transform rather than the Skorokhod embedding.

For processeswith dependent increments, it is also possible to prove theASIPwithout
relying on the Skorokhod embedding, but getting good rates proved to be challenging.
For instance, Gouëzel [10] used blocking techniques to construct an approximation
with a process with independent increments, for which the ASIP with the optimal rate
O(log n) is known. However, an efficient control of the approximation error is tricky,
and the best rate he could reach was o(n1/4+ε) for every ε > 0, roughly the same as in
the martingale method. For different reasons, o(n1/4+ε) was not surpassed by various
other methods [2,17,19,20].

In the dependent setting, the rate O(n1/4(log n)1/2(log log n)1/4) was unbeaten until
very recently. First, Berkes, Liu, and Wu [1] proved the ASIP with rate o(nε) for every
ε > 0 for processes generated by a Bernoulli shift:

Xn =
n−1∑

k=0

ψ(. . . , ξk−1, ξk, ξk+1, . . .),

where {ξk} is a sequence of independent identically distributed random variables and ψ

is a sufficiently nice function. Their result is based on an insightful approximation by
a process with independent increments and a Komlós–Major–Tusnády type result for
processes with independent but not identically distributed increments by Sakhanenko
[23]. Soon after, Merlevède and Rio [21] obtained the rate O(log n) for Harris recurrent
geometrically ergodic Markov chains, strongly using the Markovian structure and in
particular the regeneration technique.

The result of [1] readily covers some smooth dynamical systems such as the doubling
map x �→ 2x (mod 1), whose natural symbolic coding is a Bernoulli shift. But such
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systems are rare: for instance, they do not include smooth perturbations of the doubling
map.

In the present work we extend the result of [1] to a large class of widely studied
dynamical systems. Our strategy is to construct a semiconjugacy between a dynamical
system in question and a Bernoulli shift. The semiconjugacy preserves the probability
measure and sufficient structure for verification of assumptions of [1].

Remark 1.4. The historical overview above focuses on what is immediately relevant to
our goals, without any attempt to describe the vast literature on the ASIP. For a thorough
description of rates related results, see [1] and the review by Zaitsev [28].

Remark 1.5. Chernov andHaskell [4] prove theBernoulli property forK-mixing nonuni-
formly hyperbolic maps. That is, such maps are measure-theoretically isomorphic to
Bernoulli shifts. They remark that even though the Bernoulli property is a characteriza-
tion of extreme chaotic behavior, it is not helpful in proving statistical properties like the
central limit theorem. This is because a measure-theoretic isomorphism alone does not
have to preserve any useful information about the structure of the space, such as metric
or coordinates.

In contrast, we build a semiconjugacy to a Bernoulli shift which preserves enough
information to prove the ASIP.

Remark 1.6. As an essential part of our proof, for a nonuniformly expanding dynamical
systemwe construct an extension which is a renewalMarkov shift, so that the factor map
is Lipschitz with respect to a natural metric. Our construction is inspired by the coupling
lemma for dispersing billiards as it appears in Chernov and Markarian [5, Lemma 7.24].

After circulating the first version of this paper, the author has been made aware of
the work by Zweimüller [29], where he shows that nonuniformly expanding dynamical
systems are similar to renewal Markov shifts.

Two dynamical systems are similar if they are factors of a common extension. All
probabilitymeasure preserving systems are trivially similar, but in infinite ergodic theory
the similarity is a highly nontrivial relation. The focus of [29] is on infinite measure
preserving systems.

Our construction is remarkably similar to the one in [29], although we draw rather
different conclusions: we make observations which allow us to treat probability measure
preserving systems.

2. Statement of the Result

We use notation N = {1, 2, . . .} and N0 = {0, 1, . . .}. All functions, subsets, and par-
titions are assumed to be measurable. When we work with metric spaces, the default
sigma algebra is Borel, and for finite and countable spaces the sigma algebra is discrete.

Let (�, d�) be a bounded metric space and T : � → � be a transformation. Let Y
be a subset of � and m be a probability measure on Y . Let α be an at most countable
partition of Y (modulo a zero measure set) such that m(a) > 0 for all a ∈ α.

Let τ : Y → N be an integrable function which is constant on each a ∈ α with value
τ(a) such that T τ(a)(y) ∈ Y for every y ∈ a, a ∈ α. Let F : Y → Y , F(y) = T τ(y)(y)

be the induced map.
We assume that for each a ∈ α, the map F restricts to a (measure-theoretic) bijection

from a to Y . Further, there are constants 0 < η ≤ 1, λ > 1 and K , Kτ ≥ 1 such that for
all a ∈ α and x, y ∈ a:
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• d�(F(x), F(y)) ≥ λd(x, y),
• d�(T �(x), T �(y)) ≤ Kτ d�(F(x), F(y)) for all 0 ≤ � < τ(a),
• the restriction F : a → Y is nonsingular and its inverse Jacobian ζa = dm

dm ◦ F satisfies

| log ζa(x) − log ζa(y)| ≤ K dη
�(F(x), F(y)). (1)

Finally, we assume that the induced map F : Y → Y allows a non-pathological
coding by elements of α. We require that the set

{(a0, a1, . . .) ∈ αN0 : there exists y ∈ Y with Fk(y) ∈ ak for all k}
is measurable in αN0 (in the product topology with Borel sigma algebra).

We say that T : � → � as above is a nonuniformly expanding map. We say that it
has exponential (return time) tails, if

∫
Y eβτ dm < ∞ with some β > 0.

It is standard [27] that there is a unique T -invariant ergodic probability measure on
�, with respect to which m is absolutely continuous. We denote this measure by ν.

For on observable v : � → R, denote

|v|∞ = sup
x∈�

|v(x)|, |v|η = sup
x 	=y∈�

|v(x) − v(y)|
dη(x, y)

and ‖v‖η = |v|∞ + |v|η.

We say that v is centered, if
∫

v dν = 0, and that v is Hölder, if ‖v‖η < ∞.
Our main result is:

Theorem 2.1. Suppose that there exists β > 0 such that
∫

Y eβτ dm < ∞. If v : � → R

is a Hölder centered observable, then the process vn = ∑n−1
k=0 v ◦ T k, defined on the

probability space (�, ν), satisfies the ASIP with rate o(nε) for every ε > 0.

Remark 2.2. For maps which are naturally a Bernoulli shift, such as the doubling map,
Theorem 2.1 follows directly from [1]. Our result is new for smooth perturbations of the
doubling map and, for example, for:

• smooth expanding circle maps,
• Gibbs–Markov maps with big images,
• unimodal maps such as logistic with Collet–Eckmann parameters [3].

Remark 2.3. In nonuniformly hyperbolic maps with exponential tails and uniform con-
traction along stable leaves, as in Young [26], Hölder observables reduce to Hölder
observables on a nonuniformly expanding quotient system through a bounded cobound-
ary. A detailed exposition can be found in [16, Section 5]. Thus, Theorem 2.1 implies
the ASIP with rate o(nε) for every ε > 0 for maps such as:

• Anosov and Axiom A diffeomorphisms,
• dispersing billiards,
• Hénon maps with Benedicks-Carleson parameters,
• Lozi maps.

The paper is organized as follows: in Sect. 3 we introduce the notion ofMarkov Young
towers and state Theorem 3.4 which establishes a semiconjugacy between T : � → �

and a Markov Young tower. Theorem 3.4 is proved in Sect. 4. We prove Theorem 2.1 in
Sect. 5.
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3. Markov Young Towers

Suppose that

• (A,PA) is a finite or countable probability space,
• hA : A → N is an integrable function,
• 0 < ξ < 1 is a constant.

Define a probability space (X,PX ) = (AN,PN

A) and let fX : X → X be the left
shift,

fX (a0, a1, . . .) = (a1, a2, . . .).

Define h : X → N, h(a0, a1, . . .) = hA(a0). Let f : � → � be a suspension over
fX : X → X with a roof function h, i.e.

� = {(x, �) ∈ X × Z : 0 ≤ � < h(x)}

f (x, �) =
{

(x, � + 1), � < h(x) − 1,
( fX (x), 0), � = h(x) − 1

.
(2)

Define a distance d on X by d(x, y) = ξ s(x,y), where s : X × X → N0 is the separation
time,

s((a0, a1, . . .), (b0, b1, . . .)) = inf{ j ≥ 0 : a j 	= b j }.
Let d also denote the natural compatible distance on �:

d((x, k), (y, j)) =
{
1, k 	= j
d(x, y), k = j

. (3)

Let h̄ = ∫
h dm. Let P be the probability measure on � given by P(A × {�}) =

h̄−1m(A) for all � ≥ 0 and A ⊂ {y ∈ Y : h(y) ≥ � + 1}. Note that P is f -invariant.
Let �k = {(y, �) ∈ � : � = k}. Then X is naturally identified with �0, which we

refer to as the base of the suspension, and PX , fX have their counterparts on �0, which
we also denote PX , fX .

Definition 3.1. We call the map f : � → � as above a (non-invertible) Markov Young
tower.

Remark 3.2. To define a Markov Young tower, we need an at most countable probability
space (A,PA), an integrable function hA : A → N and a constant 0 < ξ < 1. Further,
we always use notation for Markov Young towers as above, i.e. with the symbols f , �,
A, PA, X , PX , fX , h, P, d, ξ .

Remark 3.3. Similar to the classical Young towers, our Markov Young towers are very
simple objects on their own, studied by various people under different names. We chose
the term “Markov Young tower” because for both the key property is not just their own
structure but the relation to a large class of dynamical systems (see Theorem 3.4 below).
It allowed Young [26] to prove the exponential decay of correlations for dispersing
billiards among other maps, and it is an essential ingredient in the proof of our main
result.
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Our key technical result is:

Theorem 3.4. Suppose that T : � → � is a nonuniformly expanding map. Then there
exists a Markov Young tower f : � → � and a map π : � → �, defined P-almost
everywhere, such that

• π is Lipschitz:

d�(π(x), π(y)) ≤ C�d(x, y),

where C� = λKτ diam�,
• π is a semiconjugacy: P-almost surely, T ◦ π = π ◦ f ,
• π preserves the probability measures: π∗ PX = m and π∗ P = ν.

In addition, moments of h are closely related to those of τ :

• (Weak polynomial moments) If there exist Cτ > 0 and β > 1 such that m(τ ≥ �) ≤
Cτ �

−β for all � ≥ 1, then PX (h ≥ �) ≤ C�−β for all � ≥ 1, where the constant C
continuously depends on Cτ , β, λ, K and η.

• (Strong polynomial moments) If there exist constants Cτ > 0 and β > 1 such that∫
τβ dm ≤ Cτ , then

∫
hβ d PX ≤ C, where the constant C continuously depends on

Cτ , β, λ, K and η.
• (Exponential and stretched exponential moments) If there exist constants Cτ > 0,

β > 0 and γ ∈ (0, 1] such that
∫

eβτγ
dm ≤ Cτ , then

∫
eβ ′hγ

d PX ≤ C, where the
constants β ′ ∈ (0, β] and C > 0 depend continuously on Cτ , β, γ , λ, K and η.

• (Exactly exponential moments) If
∫

eβτ dm < ∞ for some β > 0, then f : � → �

can be constructed so that

PX (h = n) =
{

θ(1 − θ)−1(1 − θ)n/N , n ∈ {N , 2N , 3N , . . . }
0, else

with some 0 < θ < 1 and N ≥ 1.

Remark 3.5. The exact exponential moments in Theorem 3.4 allow us to represent in a
natural way f : � → � as a factor of a Bernoulli shift and use [1] to prove the ASIP, see
Sect. 5. Our results are limited to

∫
eβτ dm < ∞, because without the exact exponential

moments such a representation does not work.

4. Proof of Theorem 3.4

For v : � → R and η ∈ (0, 1], denote

|v|∞ = sup
x∈�

|v(x)|, |v|η = sup
x 	=y∈�

|v(x) − v(y)|
dη(x, y)

and ‖v‖η = |v|∞ + |v|η.

4.1. Construction of Markov Young tower. We define A as the set of all finite words in
the alphabet α (not including the empty word). For w = a0 . . . an−1 ∈ A we define

|w| = n and hA(w) = τ(a0) + · · · + τ(an−1).

Let

Yw = {y ∈ Y : T k ∈ ak for all 0 ≤ k ≤ n − 1}.
We use the measure PA from the following lemma:
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Lemma 4.1. There exists a probability measure PA on A and a disintegration m =∑
w∈A PA(w)mw, where mw are probability measures on Y , such that for every w ∈ A,

• mw is supported on Yw,
• (T hA(w))∗mw = m.

In addition,

• If there exist Cτ > 0 and β > 1 such that m(τ ≥ �) ≤ Cτ �
−β for all � ≥ 1, then

PA(hA ≥ �) ≤ C�−β for all � ≥ 1, where the constant C continuously depends on
Cτ , β, λ, K and η.
• If there exist constants Cτ > 0 and β > 1 such that

∫
τβ dm ≤ Cτ , then

∫
hβ

A d PA ≤ C, where the constant C continuously depends on Cτ , β, λ, K and η.
• If there exist constants Cτ > 0, β > 0 and γ ∈ (0, 1] such that

∫
eβτγ

dm ≤
Cτ , then

∫
eβ ′hγ

A d PA ≤ C, where the constants β ′ ∈ (0, β] and C > 0 depend
continuously on Cτ , β, γ , λ, K and η.

Remark 4.2. Our Lemma 4.1 corresponds to [29, Theorem 2], where the disintegration
of m is called a regenerative partition of unity. For the ease of citation and explicit tail
estimates, we refer to [14].

Proof of Lemma 4.1. Suchadecomposition is constructed in [14, Section4]. It is implicit
in [14] that mw is supported on Yw.

We remark that in [14], the set A contains the empty word, while here we do not
allow it. This, however, does not cause problems, because if w is the empty word, then
PA(w) is uniformly bounded away from 1 and mw = m. Thus the decomposition with
the empty word translates to one without, with the same moment bounds. ��

For the exactly exponential moments in Theorem 3.4, we obtain a special version of
Lemma 4.1:

Lemma 4.3. Suppose that
∫

eβτ dm < ∞ with some β > 0. Then the measure PA in
Lemma 4.1 can be chosen so that

PA(hA = �) =
{

θ−1(1 − θ)θ�/N , � ∈ NN

0, else

with some N ∈ N and 0 < θ < 1.

Our proof of Lemma 4.3 uses a rather delicate technical adaptation of the argument
in [15, Section 4]. It is carried out in Appendix A.

LetPA and {mw} be as in Lemmas 4.1 or 4.3. Let ξ = λ−1. According to Remark 3.2,
A, PA, hA and ξ define a Markov Young tower f : � → �. To prove Theorem 3.4, it
remains to construct the semiconjugacy π : � → �.

4.2. Semiconjugacy. Let ι : Y → αN0 be the natural embedding, ι(y) = (a0, a1, . . .) if
Fk(y) ∈ ak for all k. (Technically, ι is defined on a full measure subset of Y .) The space
αN0 is supplied with the product topology and Borel sigma algebra.

Remark 4.4. The map ι is measurable and injective by construction; in addition we
assumed that ι(Y ) is measurable in αN0 . It is straightforward to check that ι−1 is con-
tinuous on ι(Y ), and that ι(A) is measurable for all measurable A ⊂ Y . Hence ι is
bimeasurable: both images and preimages of measurable sets are measurable.
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Let mα = ι∗m. This is a Borel probability measure on αN0 with mα(αN0 \ ι(Y )) = 0.
For words w0, . . . , wn ∈ A, let w0 · · · wn denote their concatenation. Then

|w0 · · · wn| = |w0| + · · · + |wn| and hA(w0 · · · wn) = hA(w0) + · · · + hA(wn).
For x = (w0, w1, . . .) ∈ X , let πα(x) ∈ αN0 denote the sequence of elements of α

obtained by concatenating all wk , k ≥ 0. It is clear that thus defined πα : X → αN0 is
continuous.

Proposition 4.5. (πα)∗ PX = mα .

Proof. Recall that we have the disintegration m = ∑
w∈A PA(w)mw.

Let w0 ∈ A. Since F |w0| : Yw0 → Y is a bijection and F |w0|∗ mw0 = m, we can write
mw0 = ∑

w1∈A PA(w1)mw0,w1 , where mw0,w1 are probability measures supported on

Yw0w1 such that F |w0w1|∗ mw0,w1 = m. Continuing with mw0,w1 and further recursively,
we obtain for each n ≥ 1 a disintegration

m =
∑

w0,...,wn∈A
PA(w0) · · ·PA(wn)mw0,...,wn ,

where mw0,...,wn are probability measures supported on Yw0···wn such that F |w0···wn |∗
mw0,...,wn = m.

Taking images under ι : Y → αN0 , we obtain a similar disintegration in αN0 :

mα =
∑

w0,...,wn∈A
PA(w0) · · ·PA(wn)mα;w0,...,wn ,

where mα;w0,...,wn = ι∗mα;w0,...,wn are probability measures supported on the cylinders
α
N0
w0···wn with

αN0
w = {(a0, a1, . . .) ∈ αN0 : a0 . . . a|w|−1 = w}.

Let w ∈ A and n = |w|. Then for all w0, . . . , wn ∈ A, either α
N0
w0···wn ⊂ α

N0
w or

α
N0
w0···wn ∩ α

N0
w = ∅. Thus

mα(αN0
w ) =

∑

w0,...,wn∈A:
α
N0
w0 ···wn ⊂α

N0
w

PA(w0) · · ·PA(wn) = PX (π−1
α (αN0

w )).

Thus (πα)∗ PX agrees with mα on all cylinders in αN0 . By Carathéodory’s extension
theorem, (πα)∗ PX = mα . ��

Let πX : X → Y , πX = ι−1 ◦ πα .

Proposition 4.6. πX is well defined PX almost everywhere on X and is measurable.
Also, (πX )∗ PX = m.

Proof. The map ι is injective, which allows us to define πX on X ′ = (π−1
α ◦ ι)(Y ).

Recall that ι(Y ) is measurable in αN0 and mα(ι(Y )) = 1. The map πα is continuous,
so X ′ is a measurable subset of X and, by Proposition 4.5, PX (X ′) = 1. Hence πX is
defined almost everywhere.

Using the bimeasurability of ι and Proposition 4.5, for every measurable A ⊂ Y ,

PX (π−1
X (A)) = PX ((π−1

α ◦ ι)(A)) = mα(ι(A)) = m(A).

In other words, (πX )∗ PX = m. ��
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Remark 4.7. Further we silently ignore the zero measure subset of X , on which πX is
not defined, and the corresponding subset of �, which also has zero measure.

Define π : � → � by

π((w0, w1, . . .), �) = T �(πX (w0, w1, . . .)). (4)

Then πX : �0 → Y is a restriction of π .

Proposition 4.8. π is Lipschitz: for all a, b ∈ �,

d�(π(a), π(b)) ≤ C� d(a, b),

where C� = λKτ diam�.

Proof. Let a = (x1, j) and b = (x2, k), where

x1 = (w1,0, w1,1, . . .) and x2 = (w2,0, w2,1, . . .).

If j 	= k or w1,0 	= w2,0, then d(a, b) = 1 and the statement is trivial.
Suppose now that j = k and w1,0 = w2,0. Let n = s(x1, x2). Note that n ≥ 1 and

j = k < h(x1) = h(x2) = hA(w1,0) = hA(w2,0).

Observe that πX (xi ) ∈ Yw1,0···w1,n−1 and F(πX (xi )) ∈ Yw1,1···w1,n−1 for i = 1, 2. Also,
diam Yw1,1···w1,n−1 ≤ λ−(n−1) diam Y . Then

d�(π(a), π(b)) = d�

(
T j (πX (x1)), T j (πX (x2))

) ≤ Kτ diam Yw1,1···w1,n−1

≤ Kτ λ
−(n−1) diam Y = λKτ diam Y d(a, b).

��
Proposition 4.9. T ◦ π = π ◦ f .

Proof. Suppose that a = (x, �) ∈ �, and x = (w0, w1, . . .). If � < h(x) − 1, then
f (a) = (x, � + 1) and

π( f (a)) = T �+1(πX (x)) = T (π(a)).

If � = h(x) − 1, then

π( f (a)) = πX ( fX (x)) = F(πX (x)) = T �+1(πX (x)) = T (π(a)).

Thus π( f (a)) = T (π(a)). ��
Proposition 4.10. π∗ P = ν.

Proof. We use the fact that ν is the unique T -invariant ergodic probability measure on
�, with respect to which m is absolutely continuous.

Since P is f -invariant and ergodic, it follows from Proposition 4.9 that π∗ P is T -
invariant and ergodic. Since PX is absolutely continuous with respect to P and π∗ PX =
m, using Proposition 4.6 we obtain that m is absolutely continuous with respect to π∗ P.
Thus π∗ P = ν. ��
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5. Proof of Theorem 2.1

5.1. ASIP for Bernoulli shift. Suppose that {εk}k∈Z is a sequence of independent identi-
cally distributed random variables, and Xk are real valued random variables with mean
zero given by

Xk = G(. . . , εk−1, εk, εk+1, . . .)

for some function G.
Let {ε′

k} be an independent copy of {εk} and for � ∈ Z define {ε�
k}k∈Z by

ε�
k =

{
εk, k 	= �,

ε′
�, k = �.

Define

X�
k = G(. . . , ε�

k−1, ε
�
k , ε

�
k+1, . . .).

Let p > 4,

δ�,p = ‖X0 − X�
0‖p and ��,p =

∑

|k|≥�

δk,p,

where ‖ · ‖p = (
E | · |p

)1/p.
We use the following result [1, Theorem 2.1] (with [1, Corollary 2.1] to verify the

assumptions):

Theorem 5.1. If ‖Xk‖p < ∞ and ��,p = o(�−p), then the partial sum process
∑n−1

k=0 Xk satisfies the ASIP with rate o(n1/p).

Remark 5.2. Theorem 5.1 is proved in [1] under a more relaxed condition on ��,p. We
use intentionally a suboptimal but easy to state result.

5.2. Construction of Bernoulli shift. Suppose that f : � → � is aMarkov Young tower
as in Sect. 3 with

PA(hA = n) =
{

θ(1 − θ)−1(1 − θ)n/N , n ∈ {N , 2N , 3N , . . . }
0, else

with N ∈ N and 0 < θ < 1. Let v : � → R be a centered Hölder observable and
vn = ∑n−1

k=0 v ◦ f k be the corresponding random process on (�,P).
By Theorem 3.4, to prove Theorem 2.1 it is enough to show the ASIP for vn .
The map f is N -periodic. For simplicity we assume that N = 1. We show how to

remove this assumption in Sect. 5.4.
In the rest of this subsection we construct a suitable Bernoulli shift σ : D → D with

a measure preserving semiconjugacy g : D → �. The random process
∑n−1

k=0 Xk with
Xk = v ◦ g ◦ σ k has the same distribution as vn . If {εk} are the coordinates of D, they
are independent and identically distributed, and Xk = (v ◦ g)(. . . , εk−1, εk, εk+1, . . .).
This sets up a ground for the application of Theorem 5.1.



Rates in Almost Sure Invariance Principle for Dynamical Systems 183

Let (�,P�) be a probability space supporting random variables An : � → A, n ≥ 1,
such that for a ∈ A,

P(An = a) =
{
0, hA(a) 	= n,

PA(a)
PA(

⋃{a∈A:hA(a)=n}) , hA(a) = n
.

That is, An is a random element of A chosen among those with hA = n with respect to
the appropriately conditioned measure PA.

Let Z = {0, 1} and PZ be the probability measure on Z given by PZ (0) = 1− θ and
PZ (1) = θ .

Define D = (�× Z)Z with the product probability measure PD = (P� ×PZ )Z. Let
εk = (ωk, zk) be the coordinates in D and σ : D → D be the left shift.

Let

t0 = sup{k ≤ 0 : zk = 1} and tn = inf{k > tn−1 : zk = 1}, n ≥ 1.

Note that tn are finite PD-almost surely.
Define g : D → � by g({εk}) = (y,−t0), where y = (At1−t0(ωt0), At2−t1(ωt1), . . .).

Observe that g is a probability measure preserving semiconjugacy between σ : D → D
and T : � → �.

5.3. Weak dependence. Here we verify the assumptions of Theorem 5.1. As above, we
set

Xk = (v ◦ g)(. . . , εk−1, εk, εk+1, . . .).

Let p > 4. The observable v is Hölder continuous, thus ‖Xk‖p ≤ ‖Xk‖∞ < ∞. It
remains to prove that ��,p = o(�−p).

Proposition 5.3. There exists 0 < θδ < 1 such that δ�,p = O
(
θ

|�|
δ

)
.

Proof. Let � ∈ Z,

x = ((w0, w1, . . .), r) = g({εk}) and x� = ((w�
0, w

�
1, . . .), r�) = g({ε�

k}).
Suppose first that � ≥ 1. Let c� = ∑�−1

j=1 z j . Then w j = w�
j for all 0 ≤ j ≤ c� − 1.

If c� ≥ 1, then r = r� and d(x, x�) ≤ ξ c� . If c� = 0, then d(x, x�) ≤ 1. In either case,

d(x, x�) ≤ ξ c� .

Since {zk} are independent identically distributed,

E d(x, x�)p ≤ E ξ pc� = (
E ξ pz3

)�−1 = (
1 − θ + θξ p)�−1

.

Since v is Hölder continuous, |X0 − X�
0| ≤ |v|ηd(x, x�)η and the result for � ≥ 1

follows.
Suppose now that � ≤ 0. Then x 	= x� only when t0 ≤ �. The result follows from

Hölder continuity of v and

P(t0 ≤ �) = P(z0 = z−1 = · · · = z�−1 = 0) = (1 − θ)�.

��
Finally, ��,p decays exponentially in �, because so does δ�,p. The proof of Theo-

rem 2.1 is complete.
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5.4. Periodic tower. In Sect. 5.2 we assumed that the tower f : � → � is aperiodic,
namely that N = 1. Here we give a sketch of proof for N > 1.

Let

�N = {(x, �) ∈ � : � = 0 (mod N )}.
We supply �N with a probability measure PN , which is a (normalized) restriction of P.
Define a projection πN : � → �N , πN (x, �) = (

x, N
⌊

�
N

⌋)
. Observe that (πN )∗ P =

PN .
Let

un =
n−1∑

k=0

u ◦ f k N with u =
N−1∑

k=0

v ◦ f k

be a process on the probability space (�N ,PN ).
Since πN is measure preserving and |vn − u�n/N� ◦πN | ≤ 2N |v|∞, the processes vn

and un are naturally defined on a common probability space with vn = u�n/N� + O(1)
almost surely.

By the method which works for N = 1, we show the ASIP for the process un on
the probability space (�N ,PN ). So, there exists a Brownian motion Wn with un =
Wn + o(nε) almost surely for every ε > 0.

Thus, almost surely and for every ε > 0,

vn = W�n/N� + o(nε) = W ′
n + o(nε),

where W ′
n = Wn/N is a Brownian motion. We used that Wn/N − W�n/N� = O(log n)

almost surely. This is the desired ASIP for vn .
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A. Proof of Lemma 4.3

Our argument is based on [15, Section 4], and here we work in their notations, which
are different from the rest of the paper.

In this section, T : � → � is a nonuniformly expandingmap as in Sect. 2, F : Y → Y
is the induced map and f : � → � is the Young tower,

� = {(y, �) ∈ Y × Z : 0 ≤ � < τ(y)},

f (y, �) =
{

(y, � + 1), � < τ(y) − 1,
(Fy, 0), � = τ(y) − 1.

Let τ̄ = ∫
Y τ dm. Let m� be the probability measure on � given by m�(A × {�}) =

τ̄−1m(A) for all � ≥ 0 and A ⊂ {y ∈ Y : τ(y) ≥ � + 1}.
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Let L : L1(m�) → L1(m�) be the transfer operator corresponding to f and m�, so∫
Lφ ψ dm� = ∫

φ ψ ◦ f dm for all φ ∈ L1 and ψ ∈ L∞.
Without loss of generality we assume that f is mixing (otherwise we switch to a

power of f which is mixing).

Remark A.1. The proof of decay of correlations in [15] is based on a construction of a
probability space (W,PW) and a random variable r : W → N such that each sufficiently
regular observable ψ : � → [0,∞) with

∫
ψ dm� = 1 can be decomposed into a sum

ψ = ∑
w∈W PW(w)ψw with

∫
ψw dm� = 1 and Lr(w)ψw = τ̄1�0 . In particular, this

applies to ψ = τ̄1�0 .
The distribution of r depends on the tails m(τ > n). There is quite a lot of flexibility

in the construction. We show that if the tails decay exponentially, we can construct r
distributed geometrically up to a period, as required for Lemma 4.3. Moreover, we can
takeW = A, r = hA and ensure that the observablesψw are supported on the respective
Yw × {0}. This yields the desired result, with mw given by the densities ψw.

Remark A.2. Unfortunately, there is no easy way to point out what needs to be changed
in [15]. We present a complete proof, referring to [15] in the proofs where possible.

Let �� = {(y, k) ∈ � : k = �}. Recall that η ∈ (0, 1] is the exponent in (1). For
ψ : � → [0,∞), define

|ψ |η,� = sup
n≥0

sup
(y,n) 	=(y′,n)∈�n

| logψ(y, n) − logψ(y′, n)|
d(y, y′)η

,

where log 0 = −∞ and log 0 − log 0 = 0. Note that for a countable collection ψk of
nonnegative functions,

∣
∣∑

k ψk
∣
∣
η,�

≤ maxk |ψk |η,�.
For a ∈ α, let Sa = {(y, k) ∈ � : y ∈ a and k = τ(y)−1}, and let � be the partition

of � generated by {Sa}a∈α and {��}�≥0. Let �n = ∨n−1
k=0 f −k�. Then �0 is the trivial

partition, and for every n ≥ 1 and a ∈ �n , there exists � ≥ 0 such that f n : a → �� is
a bijection.

Fix constants R > 0 and ξ ∈ (0, e−R) such that R(1 − ξeR) ≥ K + λ−1R.

Proposition A.3. Suppose that ψ : � → [0,∞) with |ψ |η,� ≤ R. Let n ≥ 1, a ∈ �n

and ψa = ψ1a. Then

1. e−R τ̄
∫
�0

ψ dm� ≤ ψ 1�0 ≤ eR τ̄
∫
�0

ψ dm�.

2. |Lnψa |η,� ≤ R.
3. If t ∈ [0, ξ ], then ψ ′

a = Lnψa − t τ̄
∫
�0

Lnψa dm� 1�0 is nonnegative and |ψ ′
a |η,� ≤

R.

Proof. This is a minor modification of [15, Proposition 4.1]. ��
Let R be the set of observables ψ : � → [0,∞) such that |ψ |∞ ≤ eR τ̄

∫
�

ψ dm�

and |ψ |η,� ≤ R.
For n ≥ 0, letRn denote the set of observables ψ : � → [0,∞) such that Lnψ ∈ R

and |Ln(ψ1a)|η,� ≤ R for every a ∈ �n .

Corollary A.4. (a) If ψ : � → [0,∞) is supported on �0 and |ψ |η,� ≤ R, then
ψ ∈ R.
(b) If ψ ∈ R, then Lψ ∈ R.
(c) If ψ ∈ Rn, then ψ ∈ Rk for all k ≥ n.
(d) If ψ,ψ ′ ∈ Rn and t ≥ 0, then ψ + ψ ′ and tψ belong in Rn.
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Proof. See [15, Corollary 4.2]. ��
Lemma A.5. There exist N ≥ 1 and ε > 0 such that

(a)
∫
�0

ψ dm� ≥ ε
∫
�

ψ dm� for all ψ ∈ L NR,

(b) (1 − ξε)
( 1−ξ
1−ξε

)n ≥ eR τ̄m�

(⋃∞
�=Nn ��

)
for all n ≥ 1.

Proof. (a) is proved in [15, Lemma 4.5]. Following the proof, we are free to choose ε as
small as needed and N as large as needed. By assumptions of Lemma 4.3,m�

(⋃∞
�=n ��)

decays exponentially in n, thus we can choose N and ε so that (b) is satisfied. ��
Further we assume that N and ε are as in Lemma A.5. Define B = L NR. Note that

LB ⊂ B ⊂ R. For n ≥ 0 let Bn denote the set of observables ψ : � → [0,∞) such
that Lnψ ∈ B and |Ln(ψ1a)|η,� ≤ R for every a ∈ �n .

Remark A.6. If ψ ∈ B, then Lψ ∈ B. If ψ ∈ Bn , then ψ ∈ Bk for all k ≥ n.

Define a sequence pn, n ≥ −1 by

p−1 = ξε and pn =
{

(1 − ξ)ε
( 1−ε
1−ξε

)n/N
, n ∈ NZ

0, n 	∈ NZ
for n ≥ 0.

Let tn = 1−∑n−1
k=−1 pk for n ≥ 1. Then

∑∞
k=−1 pk = 1, t1 = 1− ε and for n ≥ 2 using

Lemma A.5 we obtain

tNn = 1 −
Nn−1∑

k=−1

pk = (1 − ξε)
( 1 − ε

1 − ξε

)n ≥ min
{
t1, eR τ̄m�

(⋃∞
�=Nn ��

)}
. (5)

Let E0 = �0 and Ek = {(y, �) ∈ � : � = τ(y) − k, � ≥ 1} for k ≥ 1. Then
{E0, E1, . . .} defines a partition of � and m�(Ek) = m�(�k) for all k.

Proposition A.7. If ψ ∈ B with
∫
�

ψ dm� = 1, then
∫
⋃∞

�=n E�
ψ dm� ≤ tn, for n ≥ 1.

Proof. See [15, Proposition 4.6]. ��
Proposition A.8. Let p j , q j ∈ [0,∞) be sequences such that

∑∞
j=0 p j = ∑∞

j=0 q j <

∞ and
∑k

j=0 q j ≥ ∑k
j=0 p j for all k ≥ 0. Then there exist sk, j ∈ [0, 1], 0 ≤ j ≤ k,

such that
∑k

j=0 sk, j q j = pk for all k ≥ 0 and
∑∞

k= j sk, j = 1 for all j ≥ 0.

Proof. See [15, Proposition 4.7]. ��
Lemma A.9. Let ψ ∈ Bn for some n ≥ 0. Then ψ = ∑∞

k=−1 ψk , where ψk : � →
[0,∞) are such that

(a) Ln(ψ−11a) = ca1�0 for all a ∈ �n, where ca are nonnegative constants,
(b)

∑
a∈�n ca = p−1τ̄

∫
�

ψ dm�,
(c) ψk ∈ Rn+k for all k ≥ 0,
(d)

∫
�

ψk dm� = pk
∫
�

ψ dm� for all k ≥ −1.
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Proof. We follow the proof of [15, Lemma 4.8]. Suppose without loss of generality that∫
�

ψ dm� = 1.
Define

t = p−1/
∫
�0

Lnψ dm� = ξε/
∫
�0

Lnψ dm�.

By Lemma A.5,
∫
�0

Lnψ dm� ≥ ε, so t ∈ [0, ξ ].
Under convention that 0/0 = 0, let

ψ−1 = t τ̄
∑

a∈�n

(∫
�0

Ln(ψ1a) dm�

Ln(ψ1a)
◦ f n

)

ψ1a .

Then properties (a) and (b) are satisfied.
Let g = ψ − ψ−1 and gk = g1T −n Ek for k ≥ 0. Then Ln+k gk is supported on �0

and |Ln+k(gk1a)|η,� ≤ R for every a ∈ �n . By Corollary A.4, gk ∈ Rn+k .
Letqk = ∫

�
gk dm�. Then

∑∞
k=0 qk = ∑∞

k=0 pk andbyPropositionA.7,
∑n

k=0 qk ≥∑n
k=0 pk for all n ≥ 0. Choose sk, j ∈ [0, 1] as in Proposition A.8, and defineψk : � →

[0,∞), k ≥ 0, by

ψk = ∑k
j=0 sk, j g j .

Then (d) holds for all k. Corollary A.4 implies (c). ��
Let W be the countable set of all finite words in the alphabet N0 including the zero

length word, and let Wk be the subset consisting of words of length k. Let PW be the
probabilitymeasure onW given forw = w1 · · · wk ∈ Wk byPW(w) = p−1 pw1 · · · pwk .
Define r : W → N0 by r(w) = �w + N |w|, where �w = w1 + · · · + wk and |w| = k
for w = w1 · · · wk .

Proposition A.10. Let ψ ∈ B with
∫
�

ψ dm� = 1. Then ψ = ∑
w∈W ψw, where

ψw : � → [0,∞) are such that

(a)
∫
�

ψw dm� = PW(w),
(b) Lr(w)ψw = PW(w)τ̄1�0 ,
(c) Lr(w)(ψw1a) = cw,a1�0 for all a ∈ �r(w), where cw,a are nonnegative constants.

Proof. Proof is identical to [15, Proposition 4.9] except for condition (c), which is
guaranteed by Lemma A.9. ��
Definition A.11. Wesay that a randomvariable X has geometric distributionwith param-
eter θ ∈ (0, 1) (or X ∼ Geom(θ)), if X takes values in N0 and P(X = n) = (1 − θ)nθ

for n ≥ 0.

Proposition A.12. Suppose that Y = ∑M
k=1(1 + Xk), where M ∼ Geom(θM ) and

Xk ∼ Geom(θX ) are independent random variables. Let η2 = θXθM and η1 = θM −η2
1−η2

.
Then

P(Y = n) =
{

η1 + (1 − η1)η2, n = 0
(1 − η1)η2(1 − η2)

n, n ≥ 1
.
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Proof. We compute the probability generating function of Y . For z ∈ R,

E(zY ) = P(M = 0) + P(M ≥ 1)E(z1+X1)E(zY ).

Using

E(z1+X1) = ∑∞
k=0 P(X1 = k)zk+1 = θX z

1−(1−θX )z ,

we obtain

E(zY ) = η1 + (1 − η1)
η2

1−(1−η2)z
.

Now, P(Y = n) is the coefficient at zn in the above expression. ��
Proposition A.13. There exist constants 0 < θ < 1 and C1, C2 > 0 such that

P(r = n) =

⎧
⎪⎨

⎪⎩

C1, n = 0
C2θ

n/N , n ∈ NN

0, else.

Proof. Recall that Wk is the subset of W consisting of words of length k. Then
PW(Wk) = (1− p−1)

k p−1. Elements ofWk have the formw1 · · ·wk wherew1, . . . , wk
can be regarded as independent identically distributed random variables, drawn fromN0
with distribution

P(w1 = n) = pn/(1 − p−1) =
{

θ1(1 − θ1)
n/N , n ∈ NN0

0, else
,

where θ1 = (1−ξ)ε
1−ξε

. In other words, w1/N ∼ Geom(θ1).
Then the random variable r/N on W has the same distribution as Y in Proposi-

tion A.12 with θM = p−1 and θX = θ1. The result follows. ��
We are ready to complete the proof of Lemma 4.3. Let ψ = dm/dm� = τ̄1�0 and

ψ = ∑
w∈W ψw be the decomposition from Proposition A.10.

Thenψ = ∑
w∈W

∑
a∈A(w) ψw1a ,where A(w) = {a ∈ �r(w) : a ⊂ �0 and f r(w)a =

�0}. To everyw ∈ W and a ∈ A(w) there corresponds u ∈ A such that a = Yu (modulo
zero m measure) and r(w) = hA(u). Thus we can write

m =
∑

u∈A
PA(u)mu,

where mu are probability measures supported on Yu and PA is a probability measure on
A such that PA(hA = n) = PW(r = n) for all n.

The result of Lemma 4.3 follows from Proposition A.13.
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