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Abstract: Revisiting and extending an old idea of Michel Hénon, we geometrically
and algebraically characterize the whole set of isochrone potentials. Such potentials are
fundamental in potential theory. They appear in spherically symmetrical systems formed
by a large amount of charges (electrical or gravitational) of the same type considered
in mean-field theory. Such potentials are defined by the fact that the radial period of
a test charge in such potentials, provided that it exists, depends only on its energy
and not on its angular momentum. Our characterization of the isochrone set is based
on the action of a real affine subgroup on isochrone potentials related to parabolas in
the R

2 plane. Furthermore, any isochrone orbits are mapped onto associated Keplerian
elliptic ones by a generalization of the Bohlin transformation. This mapping allows us to
understand the isochrony property of a given potential as relative to the reference frame
in which its parabola is represented. We detail this isochrone relativity in the special
relativity formalism.We eventually exploit the completeness of our characterization and
the relativity of isochrony to propose a deeper understanding of general symmetries such
as Kepler’s Third Law and Bertrand’s theorem.
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1. Introduction

Macroscopic properties of self-gravitating systems can be derived from the orbits of their
components, e.g. stars. These orbits are designed by the potential–density pair (ψ–ρ)
involved in Poisson’s equation Δψ = 4πGρ. This pair forms a steady-state model for
such astrophysical systems and there are essentially two ways to produce a physically
relevant model—one depending on empirical input, the other on theoretical input.

By compiling observational data, one can look for the emergence of an empirical
model. For example, consider de Vaucouleur’s law for elliptical galaxies in the middle
of the twentieth century [12]. In that paper, the author remarks that the projection I (R) of
the luminosity onto the plane of the sky of elliptical galaxies varies as a function of an
apparent distance R from the center as I (R) ∝ exp

(−R1/4
)
. From I (R), assuming a

given mass-to-light ratio, one can build the mass density ρ of the system and, solving
Poisson’s equation, obtain a gravitational potential for elliptical galaxies. This problem
is generally ill-posed: as a matter of fact, after the projection, a lot of “good” potentials
(Jaffe [24], Hernquist [23], Dehnen [13] or NFW [36]) produce R1/4-compatible lumi-
nosity profiles. Apart from this empirical property, all these famous models are poorly
justified physically.

The reverse approach is much less investigated. The mass density is a marginal
velocity law of the one-particle distribution function f associated with a self-gravitating
system. This function f (t, r, p) describes the statistical properties of a test particle of
mass m, position r and momentum p in the mean field gravitational potential ψ (t, r).
These two functions satisfy the Collisionless-Boltzmann and Poisson system

{
∂ f
∂t + { f, E} = 0,
Δψ = 4πGρ = 4πmG

∫
f dp,
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where E = p2

2m +mψ is the total energy of the test particle and {, } stands for the Poisson
bracket. Using basic properties of these brackets, one can see that the simplest steady
states are described by f (E): this is the simplest case of Jeans’ theorem (see e.g. [6]).
InvolvingGidas–Ni–Nirenberg theorem [16], one can show [37, sect. 2] that, if their total
mass is finite, the corresponding self-gravitating systems are spherical and isotropic and
thus their gravitational potentials are radial, ψ = ψ (r) with r = |r|. Stability analysis
can restrict possible steady states to decreasing and positive f but nothing general can be
said anymore about the choice of an equilibrium in this context. Adding thermodynamic
considerations, Lynden-Bell [30] has initiated a long debate. Based on the fact that in
three spatial dimensions there is no regular isothermal steady states with finite mass, this
debate is often summarized by the fact that isolated self-gravitating systems could settle
down in a truncated isothermal state with a core-halo density distribution. The size of
the core and the slope of the halo depend on structural dissipation which can occur in
the system. This point will be discussed in a forthcoming paper.

In a singular and seminal paper in French, Hénon [22] (for an English translation
see [5]) followed another way to address this problem. Radial potentials confer to any
of their confined test particles the property to have a periodic radial distance from the
center of the system. This radial period τr depends generically on the two physical
parameters of this test particle: its energy E and the modulus L2 of its squared angular
momentum. Hénon remarks that orbits confined around the center of the system (which
evolve generically in a harmonic potential) and orbits confined to the outer parts (which
evolve generically in a Keplerian potential) have a radial period that depends only on
E . He then proposed looking for a general potential which could be characterized by
this property. He succeeded by finding his famous isochrone potential. Although his
potential gives a mass density in pretty good accordance with some of the observed
globular clusters at the time, history has decided to follow another direction. In his
conclusion,Michel Hénon proposed amechanism based on resonances that could lead to
the formation of an isochrone. This mechanism needed to be considered more accurately
and proved substantially [5,22], but it has not been further investigated. In addition to
Lynden-Bell’s work on violent relaxation and the above-mentioned debate that followed,
the observational data refinement and the development of numerical simulations revealed
a great variety of profiles for self-gravitating systems and Hénon’s isochrone became
one among them. Recent works (in a paper in preparation by Simon-Petit, A., Perez,
J, and Plum, G.) reveal that, as suggested by Hénon [22] in his conclusion, isochrony
could in fact be inherited from the formation process of isolated self-gravitating systems.
Hence there could be a fundamental initial state from which, after the initial collapse,
the observed diversity could arise.

For all of these reasons, we have decided to revisit in detail isochrony in radial
potential-governed systems. Inspecting Hénon ideas we have found that his work is far
from exhaustive in a mathematical sense, even if the potential he has found might be one
of the most important for physical applications. We propose in this paper to characterize
the whole set of isochrone potentials in a rigorous way. This characterization will help
for a global understanding of the importance of the isochrone property and will clarify
some important physical symmetries occurring in gravitation like Kepler’s Third Law
or Bertrand’s theorem.

The paper is organized as follows. In the spirit of Michel Hénon, Sect. 2 is devoted
to geometry. In Sect. 2.1 we first recall the basics of the problem of potential isochrony,
general definitions and the Hénon link between isochrony and parabolas. In addition,
we call for a rigorous proof of this parabola property which is given in Appendix B.
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Taking into account very general physical properties, we introduce in Sect. 2.2 appro-
priate transformations and prove three lemmas which allow us to restrict the study to
parabolas passing through the origin with a vertical or a horizontal tangent. As these
transformations leave invariant vertical lines, these three lemmas will make clear the de-
composition of parabolas into four families: ones with a vertical symmetry axis (straight
parabolas) and others (tilted parabolas) that are classified in three different types de-
pending on the parabola orientation and vertical tangent position. These transformations
and hence this distinction were not identified by Hénon who also missed some elements
of the isochrone set. Thanks to this geometric decomposition, we deduce in Sect. 2.3
the whole set of isochrone potentials. It is a modulus space in which each point is a
potential from one of the four classes of equivalence of parabolas under the action of
the previous transformations. This algebraic representation classifies the four isochrone
potential types but separates them in a partition of four equivalence classes. However,
isochrone potentials are unified, linking orbits together.

In Sect. 3, we focus on the isochrone orbits. Based on the fundamental differential
orbital equation, we present in Sect. 3.1 themost general transformation which preserves
isochrony and angular momentum when applied to a given orbit. This linear application
is then identified as a generalization of the well-known Bohlin transformation [3,7] as
well as the brilliant idea of Donald Lynden-Bell [32]. It continuously maps isochrone
orbits onto their Keplerian associates. This Keplerian character of a given isochrone
orbit is developed in Sect. 3.2. Adapting the time, energy and angular momentum of a
given isochrone orbit in an isochrone potential, it is shown in detail how to map this
orbit onto its associated Keplerian one in the appropriate frame.

The last section is devoted to physical applications of this isochrony classification and
interpretation. We first present in Sect. 4.1 the physical properties of systems associated
with isochrone potentials. In particular, we give in table 50 the explicit formulation of
τr (E) and nϕ

(
L2
)
for all isochrone potentials. The properties of τr (E) allow us to give

a generalization of Kepler’s Third Law in Sect. 4.3. Eventually we show in Sect. 4.4 that
the famous Bertrand’s theorem about closed orbits in radial potentials is just a corollary
of a general property of isochrone orbits.

Four appendices detail important results for isochrony used in the paper.

2. The Isochrone Geometry

2.1. Hénon’s parabola. We consider a stellar system described by a gravitational po-
tentialψ (r) = ψ (r), where r is the position vector of a test particle of mass m confined
in this system. The orbit of this test particle is contained in a plane. In this plane, the two
parameters of this orbit are its energy E = mξ and the norm of its angular momentum
L = mΛ. Both these two parameters contribute to the definition of the gravitational
potential of the cluster ψ (r) and to the computation of the distance r between the star
and the center of mass of the cluster at each time t . This contribution is summarized in
the definition of the energy of the star,

ξ = 1

2

(
dr

dt

)2

+
Λ2

2r2
+ ψ (r) = cst. (1)
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Fig. 1. Physical effective potentials that allow Periodic Radial Orbits. The solid curve corresponds to a finite
ψ∞ and the dashed curve corresponds to an infinite ψ∞

Weare interested in increasing1 potentialsψ (r) forwhich theode (1) admits periodic
solutions, namedhereafter PeriodicRadialOrbits (pros). The effective potentialψe(r) =
Λ2

2r2
+ ψ (r) then reaches a global minimum and diverges to +∞ when r → 0 as shown

in Fig. 1. When they exist, the apoastron at distance ra and periastron at rp of a pro
are given by the two intersections of the graph of ψe with constant ξ -lines. For a given
energy ξc corresponding to the minimum of ψe, the distance ra = rp and the orbit is
circular.

In order to clarify the vocabulary wewill use, let us define two fundamental potentials
in this context.

Definition 1. The harmonic potential is defined by ψha (r) = 1
2ω

2r2 with ω �= 0. We

call the potential ψke (r) = −μ

r
with μ > 0 a Keplerian potential.

To get the existence of a global minimum of the effective potential ψe and hence
of pro’s, we have to specify the behavior of the potential ψ when r → 0. This is the
objective of the following lemma.

Lemma 1. If for some Λ ≥ 0, the effective potential ψe (r) → +∞ when r → 0, then
limr→0 r2ψ (r) = � < ∞. Conversely, if limr→0 r2ψ (r) = � < ∞, then for any Λ ≥ 0
the effective potential ψe (r) → +∞ when r → 0 provided that � > −Λ2.

Proof. The converse claim is obvious since limr→0 r2ψe (r) = Λ2 +� > 0 if � > −Λ2.
For the first claim, let us assume that limr→0 r2ψ (r) is infinite. Then limr→0 ψ (r) is
also infinite. But since r �→ ψ (r) is increasing we must have limr→0 ψ (r) = −∞. So
for any Λ > 0, by choosing r close enough to 0, we would get

r2ψ (r) < −Λ2 �⇒ ψ (r) < −Λ2

r2
�⇒ ψe (r) < − Λ2

2r2

which implies limr→0 ψe (r) = −∞. The claim follows by contraposition. 
�
1 This restriction characterizes the gravitational interaction forwhichGauss’ theorem in spherical symmetry

indicates that dψ
dr = G M(r)

r2
> 0.
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These restrictions allowa proprovided that ξ ∈ [ξc, ψ∞),whereψ∞ = limr→+∞ ψ (r)

may be infinite. The total and/or the central mass of such systems could be infinite but
the radial period

τr = 2
∫ ra

rp

dr
√

2 [ξ − ψ (r)] − Λ2

r2

(2)

is always finite. This period corresponds to the total duration of the transfer from ra to
rp and back, and it is also related to the ξ -derivative of the radial actionAr , which gives
the radial pulsation (see for example [6, p. 221])

Ω−1
r = τr

2π
= ∂Ar

∂ξ
with Ar = 1

π

∫ ra

rp

√

2 [ξ − ψ (r)] − Λ2

r2
dr . (3)

This radial action also generates the increment of the azimuthal angle Δϕ during the
transfer from ra to rp and back given by

Δϕ

2π
= nϕ = −∂Ar

∂Λ
. (4)

Both τr and Δϕ are clearly two functions of the two variables ξ and Λ. In May
1958, Michel Hénon pointed out that two fundamental potentials, i.e. the Keplerian and
harmonic ones, have τr which only depends on ξ . One year later, in a seminal article in
French [22] (for an English translation see [5]), he found a family of physical potentials
for which this property remains valid. We propose to complete this characterization of
isochrony by an equivalent property on the azimuthal angle: Δϕ only depends on Λ,
see Theorem 6 in Appendix A. This family is known as Hénon’s Isochrone. We propose
now to follow his steps to recover his result and eventually extend it by exhibiting the
whole set of possible isochrones.

Introducing Hénon’s variables,

x = 2r2 and Y (x) = xψ
(√

x/2
)

, (5)

one can see that the corresponding x-values of the periastron and apoastron, namely xa
and x p, are the roots of the equationY (x) = ξ x−Λ2. As it is detailed in Fig. 2, for a fixed
value ξ of the energy, the set of all points

(
Pa,i ; Pp,i

)
on the lines yi (x) = ξ x −Λ2

i with
corresponding abscissa xa,i and x p,i form the graph of Y . Using a clever analysis Michel

Hénon shows that τr only depends on ξ if and only if P0 I is proportional to
(
x p,1 − xa 1

)2

when Λ2 is varying. After a much more involved analysis Hénon was able to prove that
this property characterizes parabolas. This original proof is very technical and we give
a new version of it in Theorem 7 of Appendix B highlighting the analytical property of
the potentials.

2.2. General properties of isochrone parabolas. The general equation for a parabola in
Hénon’s variables is written as

(ax + bY )2 + cx + dY + e = 0. (6)
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Fig. 2. Geometric view of Hénon’s variables

The expressions of the constants a, b, c, d and e in terms of the problem parameters are
given in the original Hénon paper [22], where a and b cannot simultaneously vanish.
Fromnowon, the function defined byψ : x �→ Y (x)/x represents an isochrone potential
according to the previous result. Two remarks allow us to simplify the parabola equation.
First, any potential is defined up to a constant ε which enables us to map ψ → ψ + ε or
Y → Y + εx without loss of generality. This transformation is named an ε-transvection
(x, Y ) → (x, Y + εx). Second, by inspection of Eq. (1), one can see that ifψ is isochrone
then the potential ψ∗ (r) = ψ (r) + jλ (r) where jλ (r) = λ

2r2
is also isochrone with a

new value of the angular momentum Λ′2 = Λ2 + λ > 0. In terms of Y this allows the
transformation Y → Y ∗ = Y + λ. Let us call this translation of the parabola a λ-gauge
transformation of an isochrone potential. The action of a λ-gauge or ε-transvection could
be synthesized in an affine transformation which is denoted as

Jε,λ : R
2 → R

2

(x, Y ) �→ (x, Y + εx + λ).

If we denote by A the set of these affine transformations Jε,λ and by observing that
Jε,λ ◦ Jε′,λ′ = Jε+ε′,λ+λ′ , we see that it is a subgroup of affine transformations of the real
plane, isomorphic to (R2,+). Affine transformations in Hénon’s variables correspond to
physical transformations which preserve the isochrone property. From this, we arrive at
three short lemmas to organize the discussion.

Lemma 2. With a vertical translation J0,λ : Y → Y ∗ = Y +λ, the Hénon Parabola can
be reduced to a non-degenerate parabola passing through the origin of the (x, y)-axis.

Proof. According to Lemma 1, � = limr→0 r2ψ (r) is a real number. By plugging the
potential in Eq. (6) with the Hénon change of variables, we get

[
2ar2 + 2br2ψ (r)

]2
+ 2cr2 + 2dr2ψ (r) + e = 0.

Taking the limit as r → 0 we get

4b2�2 + 2d� + e = 0. (7)
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Now, the λ-translation Y → Y ∗ = Y + λ changes the potential to ψ∗ (r) = ψ (r) + λ
2r2

and hence �∗ = limr→0 r2ψ∗ (r) = � + λ
2 . So by taking λ = −2� we have �∗ = 0.

Therefore, according to (7), we have e∗ = 0 for the new parabola. In other words, the
translated parabola passes through the origin of the (x, y)-axis. The degenerate cases
of parabolas, where a/b (resp. b/a) is proportional to c/d (resp. d/c) or d = c = 0 or
a = b = 0, are not of interest in our study since they lead to constant potentials up to a
gauge. 
�

Considering the result of Lemma 2, it is now possible to consider the asymptotic
behavior of the isochrone potential ψ associated with Y , which is given by the relation

(A + Bψ)2 = Cψ + D

2r2
. (8)

Let Dψ ⊂ R
+ be the domain on which the potential is defined physically. Then, let us

introduce

R = sup
R̄

[
Dψ

]
, (9)

where a prioriR is finite andpositive ifDψ is boundedorR = +∞ if not.Weadditionally
define ψ∞ = limr→R ψ(r). We now have the following lemma:

Lemma 3. In the context of the above reduction given by (8) we have the following
equivalences: ψ∞ is infinite if and only if B = 0 if and only if ψ is harmonic up to an
additive constant.

Proof. – If B = 0 then, according to Lemma 2, C �= 0 and from (8) we get ψ (r) =
2 A2

C r2 − D
C . As we are only interested in increasing potentials, C is positive and

ψ (r) = ψha (r) = 1
2ω

2r2 with ω �= 0—up to an additive constant. This potential is
defined on [0,+∞) soR = +∞ and ψ∞ = +∞.

– Let us assume conversely that ψ∞ is infinite. As the potential is increasing, there
exists an r0 in the neighborhood ofR such that for all r > r0, ψ(r) > 0. By dividing
Eq. (8) by ψ for r > r0, we get

1

ψ
(A + Bψ)2 = 1

2r2

(
C +

D

ψ

)
.

The right hand side of this equality tends to the finite limit C
2R2 when r → R (that

is to zero if R = +∞). If B �= 0, since ψ∞ = +∞, the left hand side tends to +∞
when r → R. Therefore, ψ∞ infinite implies that B = 0 and ψ is harmonic by the
first part of this analysis. 
�
The quantity ψ∞ indicates the asymptotic direction of the parabola. When ψ∞ =

+∞, then the symmetry axis of the parabola is parallel to (Oy). We do not consider
the case ψ∞ = −∞ because it corresponds to bottom-oriented parabolas which are
always associated with decreasing harmonic potentials ψ−

ha (r) = − 1
2ω

2r2. In this case
the effective potential never has global nor local minima and no orbit could ever be
periodic.

Before exhibiting the isochrone potentials we can say a little more about the tangent
to the parabola at the origin.
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Lemma 4. For a potential given by (8), two cases may happen concerning the tangent
at the origin of the isochrone parabola:

1. It is vertical and the reduced potential is Keplerian up to an additive constant. This
corresponds to C = 0 in (8).

2. It is not vertical and modulo a transvection we can manage to get a horizontal tangent
corresponding to D = 0 in the transvected version of (8).

Proof. With a gauge transformation we may write the isochrone parabola equation as
(Ax + BY )2 = CY + Dx . Let us apply to it a transvection with a parameter ε. The new
equation is then

(
A′x + B ′Y

)2 = C ′Y + D′x with

{
A′ = A + Bε, C ′ = C
B ′ = B and D′ = D + Cε.

(10)

By considering the gradient of the function f (x, y) = (
A′x + B ′y

)2 −C ′y − D′x at the
origin, we get the equation of the tangent to the parabola at the origin, D′x + C ′y = 0.
Depending on its direction, two cases may be distinguished:

1. When C = 0, the parabola passes through the origin with a vertical tangent. One
may further simplify the parabolic equation choosing ε to cancel A′ since B should
be non-zero according to Lemma 2. We eventually obtain (B ′)2Y 2 = D′x . This
equation implies that D′ > 0. Making explicit Hénon variables with (5), we get

ψ (r) = ψke (r) = −μ
r where μ =

√
D′
2B′2 is a positive constant since r �→ ψ (r) is

increasing.
2. When C �= 0, it is possible to choose the parameter ε of the transvection to can-

cel D′ so that the parabola passes through the origin with a horizontal tangent. In
other words, we choose the arbitrary constant of the potential to simplify the study
of its corresponding parabola, which may be described by

(
A′x + B ′Y

)2 = C ′Y
with A′ �= 0. A′ cannot vanish unless ε = − A

B = − D
C which is forbidden by

Lemma 2. 
�
Let us summarize the situation at this point (see Fig. 3).
Any parabola in the plane (x, y) is associated with an isochrone potential. Combining

Lemmas 2, 3 and 4 we can only study the family of parabolas passing through the origin
and belonging to one of the two following classes:

– Straight parabolas, which possess a vertical symmetry axis and thus never admit any
vertical tangent. As we have explained before we are only interested by straight up-
oriented parabolas. Using affine transformations, straight parabolas could be moved
in such a manner that their apices are the origin of the (x, y)-plane. They correspond
to harmonic potentials.

– Tilted parabolas, whose symmetry axes are inclined from the vertical ones and
possess a horizontal or vertical tangent at the origin. This tilted parabola family is
composed of three categories:
– Laid parabolas, with a vertical tangent at the origin corresponding to Kepler po-

tentials;
– Right-oriented parabolas, with a horizontal tangent at the origin;
– Left-oriented parabolas, with a horizontal tangent at the origin.

In Fig. 3, we have plotted in the (x Oy) plane the four reduced classes of parabolas.
A precise definition of the corresponding potentials is given in Definition 2, p. 618.
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Fig. 3. The four classes of reduced parabolas corresponding to the reduced isochrone potentials. The part
of the parabola associated with the increasing potential is highlighted (y1). The dashed part of the parabola
corresponds to potentials with an imaginary distance argument (x < 0). The unhighlighted solid line part of
the parabola (y2) in the x > 0 half-plane corresponds to decreasing potentials

The reduced isochrone potential contained in each reduced parabola is emphasized
in this figure and it corresponds to a limited part of the parabola. As a matter of fact, the
variable of the potential is the radial distance, a positive real number. Each isochrone
potential is then included in the x-positive right plane. This remark excludes left-oriented
laid parabolas. For any non-straight parabolas there are two functions x �→ y1 (x)

and x �→ y2 (x) into which the x-positive part of the graph of the parabola could be
decomposed (see Fig. 3). The slope of the chord between the origin and a point M of
abscissa x > 0 on the graph of y1 or y2 is given by the ratio y1(x)

x or y2(x)
x which is

precisely the definition of the potential ψ . This remark shows that ψ is an increasing
(resp. decreasing) function if the graph of y is convex (resp. concave), i.e. the chord
between two points is above (resp. below) the function. As we look for increasing
potentials in order to have pro’s, we have to consider the convex part of the parabola
graph. This part is named y1 in Fig. 3.

Tilted parabolas have a symmetry axis with a finite slope. Any ε-transvection adds
ε to this slope, modifying the orientation of these parabolas. Nevertheless, we cannot
jump from a left-oriented parabola to a right-oriented one using an affine transformation.
However, according to Lemma 4 and conserving its orientation, we can morph any tilted
parabola with a horizontal tangent or a vertical tangent at the origin. In the latter case,
the symmetry axis is parallel to (Ox). The morphing from the reduced parabolas to the
whole set of isochrone ones is detailed in Fig. 5 following our analysis of the concerned
potentials in the next section.

Our reduction to four families of parabolas and their corresponding potentials enables
us to obtain the whole set of isochrone potentials. In his historical study, Michel Hénon
did not remark on the crucial role of these affine transformations. He dismissed out-of-
origin parabolas and forgot left-oriented tilted ones.
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Let us now determine explicitly the isochrone potentials of the reduced families.

2.3. Classification of isochrone potentials. From the previous analysis wewill now state
and prove the following classification result.

Theorem 1. The isochrone potentials are classified by these two properties:

1. There are essentially four types of reduced isochrone potentials:
– The Keplerian potential ψke for which the reduced parabola has a horizontal

symmetry axis and a vertical tangent at the origin.
– The harmonic potential ψha for which the reduced parabola is straight with a

horizontal tangent at the origin.
– Two other potentials ψ red

he and ψ red
bo for which the reduced parabolas have hori-

zontal tangents at the origin and are respectively right and left oriented. They are
given by the formulae

ψ red
he := μ

2b
− μ

b +
√

b2 + r2
, ψ red

bo := − μ

2b
+

μ

b +
√

b2 − r2
,

where μ and b are positive constants.
2. Any isochrone potential ψ is equivalent under an affine transformation to one of the

previous types. That is to say there exist two constants ε and λ and some reduced
potential ψ red ∈ {ψke, ψha, ψ

red
he , ψ red

bo } such that ψ (r) = ψ red (r) + ε + λ
2r2

.

The potential ψhe is the original potential discovered by Michel Hénon. From our
knowledge, the potential ψbo is a new one. We call it the bounded potential for reasons
appearing in Sect. 2.4.

Proof. Let P be the parabola associated with an isochrone potential ψ which is neither
Keplerian nor harmonic. According to Lemmas 2, 3 and 4 we are left to consider the
case where P passes through the origin, has a horizontal tangent and has a symmetry
axis which is not vertical. According to (8) and the previous lemmas, this corresponds
to having an equation of the form

2r2 = nψ

(ψ − m)2
,

for some constantm and n both non zero. As a consequence, we see here that the potential
ψ will depend on two constants. Normalizing the potential by setting ψ = mV , we are
led to the functional equation

q = q(V ) = V

(V − 1)2
, with q = κx = 2κr2,

where κ = m/n is another non zero constant. The inversion of the function q gives two
solutions V (q) of the quadratic equation

qV 2 − (2q + 1)V + q = 0. (11)

They are of the form
⎧
⎨

⎩

V +(q) := 2q+1−√
4q+1

2q = 1 − 2
1+

√
4q+1

,

V −(q) := 2q+1+
√
4q+1

2q = 1 − 2
1−√

4q+1
.

(12)
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Fig. 4. The potential V + and V − as functions of q

These two functions q �→ V (q) are defined on the real interval q � −1/4. As shown
in Fig. 4, the ± signs of V are chosen in such a way that q �→ V +(q) is increasing on
[−1/4,+∞) and q �→ V −(q) is decreasing on both [−1/4, 0) and ]0,+∞). From the
quadratic equation (11) we have

V +(q) + V −(q) = 2 +
1

q
and V +(q)V −(q) = 1. (13)

Now we compute the potential. From the expression q = κx = 2κr2, we will classify
the potentials by the sign of the constant κ .

1. When κ < 0, then q is necessarily negative. Therefore−1/4 � q � 0 which implies

r2 � 1

8|κ| .

Setting a new constant b := 1√
8|κ| in such a way that the previous inequality becomes

r � b, we have q = −r2

4b2
. Therefore,

ψ (r) = mV (q) = mV
(−r2

4b2

)
.

This gives us two possible potentials ψ±. But to have a pro, the function r �→ ψ(r)

must be ultimately increasing. That is,

−mr

2b2
dV

dq

(−r2

4b2

)
> 0.

Since q �→ V +(q) is increasing wemust choosem = − μ
2b for some positive constant

μ. The factor 1
2b is just here for simplicity of the final result. Similarly in the formula

for ψ− we must choose m = μ
2b > 0. This leads to the two potentials

⎧
⎨

⎩

ψ+
bo(r) := − μ

2b V +
(−r2

4b2

)
= − μ

2b + μ

b+
√

b2−r2
,

ψ−
bo(r) := μ

2b V −
(−r2

4b2

)
= μ

2b − μ

b−√
b2−r2

.

From (13), we get that

ψ−
bo(r) − ψ+

bo(r) = μ

2b

[
V +

(−r2

4b2

)
+ V − (−r2

4b2

)]
= μ

b
− 2bμ

r2
. (14)
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As a consequence, the left-oriented parabolas associated with ψ+
bo and ψ−

bo are ex-
changed by an affine transformation. This is the meaning of the word essentially in
the statement of the theorem since the group orbits of ψ red

bo := ψ+
bo and of ψ−

bo under
the action of the affine group are the same.

2. When κ > 0, setting b := 1/
√
8κ again, we similarly getψ = mV (q) = mV

(
r2

4b2

)
.

And by setting again μ
2b := |m| we get two new isochrone potentials

⎧
⎨

⎩

ψ+
he(r) := μ

2b V +
(

r2

4b2

)
= μ

2b − μ

b+
√

b2+r2
,

ψ−
he(r) := − μ

2b V −
(

r2

4b2

)
= − μ

2b + μ

b−√
b2+r2

.

Again from (13), we have that

ψ+
he (r) − ψ−

he (r) = μ

2b

[
V +

(
r2

4b2

)
+ V − (

r2

4b2

)]
= μ

b
+
2bμ

r2
. (15)

Therefore, ψ red
he := ψ+

he and ψ−
he are also exchanged by the affine group and their

respective group orbits under this group action will coincide. These potentials are
defined for all values of r ∈ [0,+∞) so that their parabolas are then right-oriented.

To conclude the proof of the theorem we only have to observe that according to
Lemmas 2, 3 and 4, any isochrone is in the orbit of a reduced one under the affine
subgroup generated by the Jε,λ tranformations. 
�

These reduced potentials can be visualized in Fig. 3.
Using natural notations taken from the proof of Theorem 1, from (14) and (15) we

can write
{

ψ−
bo = J+ε,λ

(
ψ+
bo

)

ψ−
he = J−ε,λ

(
ψ+
he

) with ε = μ

b
and λ = −4bμ. (16)

The tilted parabolas presented in Fig. 3 are the ones associated with ψ+
he for the right

(calledP+
he) parabola andwithψ+

bo for the left one (calledP+
bo). These two parabolas both

open to the top, i.e. in the direction where y increases. Using property (16) or by direct
representation, one can verify that, using natural notations, P−

he(resp. P
−
bo) is the image

of P+
he(resp. P+

bo) by the symmetry under the (O, x)-axis. Thus, these two “negative”
parabolas both open to the bottom.

2.4. Some physical meaning of this classification. The potential ψ red
he defined by

ψ red
he (r) := μ

2b
− μ

b +
√

b2 + r2

is the original isochrone potential discovered by Michel Hénon. Similarly, the potential

ψ red
bo := − μ

2b
+

μ

b +
√

b2 − r2

defines another type of isochrone potential. The index bo means bounded potential.
Indeed, from the above formula the mappings r �→ ψ red

bo (r) + ε are only defined for
bounded values of

r ∈ Dψbo = [0, b]. (17)
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The fact that such potentials are associated with a bounded system give them special
features which are very different from the three other types of isochrone potentials. Up
to our knowledge, such bounded potentials do not seem to have appeared in the literature
before.

The potential of Michel Hénon is equivalent to a Keplerian one when r → ∞. Using
relation (12), we can readily see that V +(q) ∼ q when q → 0. The roots product in (13)
then implies V −(q) ∼ q−1 in the same limit. Then both ψ red

bo and ψ red
he come from V +.

Hence we can assert that they are harmonic near their center: ψ red
bo ∼ ψ red

he ∼ ψha when
r → 0.

From a physical point of view, ε-transvections Jε,0 : ψ → ψ + ε add a constant
to the potential, hence they do not change anything for the dynamics in the considered
potential, changing only the value of the energy attributed to the trajectories.

When the λ-gauge J0,λ : ψ → ψ + λ
2r2

is applied to a reduced potential, it makes it

divergent as r−2 when r → 0. As we said at the beginning of Sect. 2.2, such transforma-
tions correspond to a change of the value of the angular momentum in the corresponding
isochrone orbit.

Geometrically, when the physical convex part of the parabola starts from the origin,
then, when r → 0, the corresponding potential is finite (if it is ψbo, ψhe or ψha) or
diverges like r−1 (if it is Keplerian). This behavior is not perturbed by ε-transvections.
In all other cases isochrone potentials diverge like r−2 when r → 0; but, using a λ-
translation, we can manage this physical problem.

These remarks enable us to define three classes of isochrone potentials. They are
classes of equivalence under the action of Jε,λ affine transformations as detailed in
Sect. 2.5. Definition 2 sets their names in addition to the name of the four isochrone
potential types.

Definition 2. 1. We call the four isochrone potentials

ψke (r) = −μ

r
, ψha (r) = 1

2ω
2r2,

ψhe (r) = − μ

b +
√

b2 + r2
, and ψbo(r) = μ

b +
√

b2 − r2
,

the Kepler, the harmonic, the Hénon and the bounded potential, respectively.
2. We call reduced isochrone potentials ψ red

iso one of the four potentials

ψke, ψha, ψ red
he = J μ

2b ,0 (ψhe)= μ

2b
+ ψhe or ψ red

bo = J− μ
2b ,0 (ψbo) = − μ

2b
+ ψbo.

3. We call physical isochrone potentials ψ
phy
iso the result of a transvection applied to a

reduced isochrone: ψphy
iso = Jε,0

(
ψ red
iso

) = ψ red
iso + ε.

4. We call gauged isochrone potentials ψ
gau
iso the result of a vertical translation applied

to a physical isochrone: ψgau
iso = J0,λ

(
ψ

phys
iso

)
= ψ

phys
iso + λ

2r2
.

Physical isochrones possess interesting physical properties which are presented and
studied in Sect. 4. They all confine a finite mass in a finite radius r < R (see Eq. (9),
p. 612). Reduced isochrones are special cases of physical ones: their parabolas pass
through the origin with a horizontal or a vertical tangent.

Due to their r−2 divergence in the potential, when λ �= 0, gauged isochrone potentials
have an infinite mass at their center and thus possess poor physical meaning. However,
they are essential to the completeness of the isochrone set.
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2.5. The affine group action on the isochrone set. Let us denote respectively Ipot and
Ipar the set of isochrone potentials and parabolas. These two sets are in bijection and
Theorem 1 states that, from a mathematical point of view, they are four-dimensional
manifolds. As a matter of fact, each isochrone potential is uniquely determined by four
real parameters (μ, b, ε, λ) with μ > 0, b ≥ 0 and (ε, λ) ∈ R

2—n.b. for ψbo, b > 0.
We have also seen that the two-dimensional affine group A � (R2,+), generated by

the affine transformations Jε,λ with (ε, λ) ∈ R
2, acts on both sets, either on potentials

or on the corresponding parabolas. Since the dimension of A is less than the dimension
of Ipot and Ipar (2 < 4), the action is not transitive and each group orbit A · ψ or A · P
for corresponding potential ψ or parabola P is a two-dimensional sub-manifold of Ipot
or Ipar. This translates the second part of Theorem 1: we have four types of group orbits
under the action of A, one for each type of isochrone potential.

Let us now see more precisely this action of the affine group and its corresponding
group orbits.

Eachparabola is associatedwith an isochronepotential andvice-versa.Each isochrone
parabola belongs to one of the four classes of reduced parabolas we have presented in
Fig. 3 and is associated with one of the four reduced isochrone potentials made explicit
in Theorem 1. In order to geometrically understand themorphing of parabolas associated
with the action of affine transformations, we propose the general picture of Fig. 5.

We do not represent in this figure either the bottom-oriented straight parabolas or
the left-oriented laid ones because they respectively correspond to decreasing and non-
physical potentials. We specify that it is always possible to have (Oy)-axis crossing the
parabola: this corresponds to a horizontal translation of the parabola associated with a
good choice of the origin of the physical referential.

Transvections correspond to Jε,0. They are associated with a swivel combined with
a deformation of the parabola: the points of the parabola lying on the (Oy)-axis are
invariant as is the abscissa of the vertical tangent.

General affine transformations Jε,λ swivel, deform and translate a reduced parabola.
They affect both the energy and the angular momentum of the considered isochrone
orbit. Any parabola obtained from the action of Jε,λ on a reduced one corresponds to an
isochrone potential in the same group orbit of the reduced potential under the action of
the Affine Group. In this sense we can claim that there are only four different isochrone
potentials up to an affinity on its parabola.

We note that relations exist between the isochrone potentials. As a matter of fact,ψke
and ψha come from ψhe when b → 0 and b → +∞, respectively. Furthermore, known
relations exist between ψke and ψha, such as the Bohlin transformation ([3,7,33], see
also the Footnote 3, p. 623) which maps the harmonic orbits onto Keplerian ones and
vice versa. All these relations are not in the scope of the affine group action and do not
affect the parameters (μ, b) or ω of the concerned potentials.

Nevertheless, making use of rotations Rθ of an angle θ in the (x, y)-frame and
starting, for instance, from the laid Kepler parabola, we can obtain a new parabola
with an arbitrarily oriented axis of symmetry. Then, acting with Jε,λ, we can recover the
corresponding reduced parabola in one of the four families. This operation is graphically
illustrated in Fig. 6 in the case of the morphing from the Kepler isochrone to the Hénon
isochrone.

Varying the unique parameter μ of the Kepler potential, written as

yke (x) = −μ
√
2x (18)
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Fig. 5. The action of affine transformations on reduced parabolas and their corresponding potentials

Fig. 6. Rotation and transvection of the Kepler parabola to the Hénon one
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in Hénon’s variables, the aperture of its laid parabola varies and produces a variation of
the b parameter of the Hénon potential corresponding to the negative part of the rotated
parabola. Using this process one can easily understand that when θ ∈ (−π

2 ,+π
2

)
, we

recover a Hénon potential ψhe; when θ ∈ (
π
2 ,+3π

2

)
, we recover the bounded potential

ψbo; and for θ = +π
2 , we obtain the harmonic ψha from the Kepler potential ψke. More

generally, any isochrone potential is contained in the group orbit of a Kepler potential
under the action of the group SO(2) � A.

As we have completely classified Ipot and Ipar, we can now return to the study of
isochrone pro’s. We will see that relevant isochrone rotations are not Euclidian but
hyperbolic.

3. Isochrone Orbits and Isochrone Transformations

3.1. Introduction and motivation. From the geometrical classification of the isochrone
potentials established through the action of the Affine Group in Sect. 2, we propose now
to investigate isochrone orbits.2

For this purpose, we generalize a transformation that originates in the work of New-
ton, Bohlin [7] andLynden-Bell [32]who recently passed away and towhomwe dedicate
this work. He explored a remarkable property of Michel Hénon’s isochrone, namelyψhe
is equivalent to a harmonic potential at small distances and to a Keplerian potential at
larger ones, see Sect. 4. In those two potentials, the orbits are closed ellipses. Newton
showed, in the later edition of the Principia, how to map a Keplerian elliptical orbit
onto a harmonic one and vice versa. His methods relied on a total exchange of energy
and potential between a Kepler and a Hooke system. Pointing out a freedom that in-
volves partial exchange of energy and potential, Donald Lynden-Bell derived Hénon’s
isochrone as a convex interpolation of Kepler and Hooke potentials. Let us detail now
their mathematical analysis and generalize it to isochrone orbits transformations.

3.1.1. Isochrone orbits transformations A periodic radial orbit (pro) r0(t0) in a radial
potential ψ0 is governed by the ordinary differential equation

1

2

(
dr0
dt0

)2

+
Λ2

0

2r20
= ξ0 − ψ0 (r0) .

In Hénon variables x0 = 2r20 and y0 = x0ψ0(x0), it can be written as

1

16

(
dx0
dt0

)2

+ Λ2
0 = x0ξ0 − y0 (x0) . (19)

Since the force derived from a radial potential is radial, the motion of a test particle takes
place in a fixed plane and this particle is described by its polar coordinates (r0, ϕ0) in
this plane.

When the potential is isochrone, y0 is a parabola. This property is preserved by linear
transformations of parabolas (see Lemma 8 in Appendix C) and consequently for the
orbits they contain. Placing the origin of the (x, y)-plane at the center of the system
described by ψ0, linear transformations relate isochrone orbits together. There exists

2 When not specified, orbit refers to the trajectory of the considered test particle in the considered potential
and no more to the group orbit of a potential or parabola under a group action.
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then a change of variables (r0, t0) �→ (r1, t1) mapping an isochrone orbit onto another
one that satisfies an orbital equation in the new potential y1, i.e.

1

16

(
dx1
dt1

)2

+ Λ2
1 = x1ξ1 − y1 (x1) . (20)

As Donald Lynden-Bell explained [33, sect. 3] or [32, sect. 2], it is convenient to study
orbits of identical angular momentum

Λ1 = Λ0 = Λ. (21)

This hypothesis allows one to get the same Kepler’s area law for both orbits, in their
respective radial potentials.

At this point, no constraints specify how each of the three remaining terms
(

dx0
dt0

)2
,

x0ξ0, and y0 in (19) is transformed in the mapping. For instance, the Bohlin transfor-
mation (see [7] for the original reference or [3] for a modern presentation) consists of
a full exchange between energy and potential terms. As underlined by Lynden-Bell, the
exchange can also be partial: only part of the potential term y0 is then mapped onto the
energy ξ1 and vice versa. We thus propose to conserve

x1ξ1 − y1(x1) = x0ξ0 − y0(x0). (22)

The two conditions (21) and (22) imply

dx1
dt1

= dx0
dt0

and 2Λ = x0
dϕ0

dt0
= x1

dϕ1

dt1
(23)

for the radial and angular velocities of the orbits in the mapping.
The more general linear transformation of w = (ξ x, y)� satisfying the constraint

(22) is given by

w1 = Bα,β (w0) with Bα,β =
[

α β

α − 1 β + 1

]
, (α, β) ∈ R

2. (24)

Lynden-Bell transformation only depends on one parameter with β = 1− α. From now
on, we will assume det

(
Bα,β

) = α+β �= 0 because the corresponding singular transfor-
mation leads to constant potentials or not well-defined image orbits. As a consequence,
Bα,β will be invertible and can be used to change the reference frame. In this case we
call Bα,β a bolst in the general case or an ibolst when it is symmetric. Reasons for these
names will become clear later.

3.1.2. The bolst as the generalized Bohlin transformation A bolst Bα,β maps two orbits
in two isochrone potentials. It induces a change of time which can be made explicit:
using (23) and (24) we get

dt1
dt0

= dx1
dx0

= αξ0

ξ1
+

β

ξ1

dy0
dx0

. (25)

We assume ξ1 �= 0 since associated orbits are not well-defined in the coordinates of w.
To deal with ξ1 = 0 one may apply first a transvection Jε,0 to w, then study the orbit
with ξ1 + ε �= 0.
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In order to ensure a bijective time transformation t0 → t1(t0), we need to impose a
fixed sign on dt1

dt0
. For instance, we assume it to be positive. Combining its expression (25)

with the second condition of (23), the time evolution can be expressed in terms of the
polar angles of the two orbits in their respective planes of motion. They are linked
through

[
αξ0

ξ1
+

β

ξ1

y0
x0

]
dϕ1

dϕ0
= αξ0

ξ1
+

β

ξ1

dy0
dx0

> 0. (26)

As we will see below, this ode gives ϕ1 as a function of ϕ0, i.e. ϕ1(ϕ0), when y0 (x0) is
specified. When it is solved, the orbit can be plotted in polar coordinates (x1, ϕ1). In the
next proposition we solve this equation when a bolst is applied to a Keplerian orbit. In
Theorem 2, we call system a potential–orbit couple.

Theorem 2. Only the harmonic and Keplerian potentials can exchange their radial
orbits with a linear change of polar angle. The transformation of a Kepler system into
a scaled Kepler system is given by Bα,0. On the other hand, B0,β maps a Kepler system
onto a harmonic one by fully exchanging the energy and potential. This is the classical
Bohlin transformation.3

Otherwise, when αβ �= 0, the image of a Keplerian pro by Bα,β is an isochrone orbit.
Its azimuthal angle is given by

ϕ1 (ϕ0) = ϕ0

2
+ χ√

(1+χ)2−e2
arctan

[√
1+χ−e
1+χ+e tan

(ϕ0

2

)]
with χ = pα |ξ0|

μβ
, (27)

where p and e are respectively the semilatus rectum and excentricity of the primary
Keplerian orbit. The expression holds when α → 0 and for the neutral bolst Bα,0 when
β → 0. The precession Δϕ1 of the transformed polar angle during the transfer from the
periastron to the apoastron and back is given by

Δϕ1 = π

(

1 +
χ

√
(1 + χ)2 − e2

)

.

Proof. Assume potential ψ0 to be ψke. If the primary orbit is a pro, then the radial
distance is known by

1

r0
= 1 + e cosϕ0

p
,

where p and e are respectively the semilatus rectum and the excentricity of the Keplerian
elliptic orbit of energy ξ0 < 0 that we consider. Moreover, from Eq. (18), we have
y0(x0) = −μ

√
2x0. Hence,

y0
x0

= ψ0 = − μ

r0
and

dy0
dx0

= − μ√
2x0

= − μ

2r0
.

In this case, the ode (26) becomes
[
αξ0 − μβ

p
(1 + e cosϕ0)

]
dϕ1

dϕ0
= αξ0 − μβ

2p
(1 + e cosϕ0)

for ξ1 �= 0. Two cases appear to be trivial:

3 This transformation is also known as the transformation of Levi-Civita [29] and was already introduced
by MacLaurin [34] and then Goursat [19] as excellently remarked by Alain Albouy and Niccolò Guicciardini.
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Fig. 7. The transformation B0,β of a Keplerian pro gives a harmonic pro when βξ1 < 0, as represented on
the left panel. The transformation Bα,0 of a Keplerian pro gives a Keplerian pro when α > 0 and ξ1 < 0, as
represented on the right panel

1. When α = 0 and β �= 0, then

dϕ1

dϕ0
= 1

2
.

The system (24) can be directly inverted and gives

{
r21 = −βμ

ξ1
r0,

ψ1 (r1) = β1 + 1
2ω1r21 , where ω2

1 = 2|ξ0|ξ21
μ2β2 and β1 = β+1

β
ξ1.

This duality between the harmonic and the Keplerian potentials is the same as that
described by a Bohlin transformation [21]. In order to get a real r1, the quantity

β
ξ1

must be negative. The angle ϕ0 of the Keplerian orbit is twice that of the correspond-
ing ϕ1 of the harmonic one, as represented in Fig. 7. The focus F of the Keplerian
ellipse is the center of the harmonic one.

2. When α �= 0 and β = 0, then

dϕ1

dϕ0
= 1.

The system can still be inverted as

{
r21 = αξ0

ξ1
r20 ,

ψ1 (r1) = α1 − μ1
r1

, where α1 = (α−1)
α

ξ1 and μ1 = μ

√
ξ1
αξ0

.

The quantity ξ1
αξ0

must be positive when x0,1 = 2r20,1 > 0. This transformation maps
the primary Keplerian ellipse onto a scaled confocal one. The two moving points are
always aligned with the common focus of the two ellipses. As ξ1 needs to be negative
to ensure bounded bolsted orbit, this imposes α > 0.



Isochrony in 3D Radial Potentials 625

These two special cases are represented in Fig. 7.
To show that only the harmonic and Keplerian potentials can exchange their radial

orbit with a linear change of polar angles, we assume that

ϕ1(t1) = mϕ0(t0) with m = cst. (28)

Combining (23) with the derivative of (28) one can verify that y0 satisfies the ode

dy

dx0
− m

x0
y = ξ0

α

β
(m − 1) , (29)

which holds for β �= 0. The solution of (29) is given by

y0(x0) = kxm
0 − ξ0

α

β
x0.

But y0 must describe a parabola, so either

– m = 1 or m = 0. Then the potential is constant or constant with a gauge, and no
pro exists.

– m = 1
2 . Then y0 represents a Keplerian potential up to a constant. Inserting the

solution y0 in (ξ1x1, y1)�, y1 is a harmonic potential with a constant.
– m = 2. Then y0 represents a harmonic potential up to a constant and y1 a transvected
Keplerian potential.

Let us examine now the more general case when αβ �= 0. The ode for phases is
written as

dϕ1

dϕ0
= N (ϕ0)

D (ϕ0)
where

⎧
⎪⎨

⎪⎩

N (ϕ0) = dx1
dx0

= 1

ξ1

[
αξ0 − μβ

2p (1 + e cosϕ0)
]
,

D (ϕ0) = x1
x0

= 1

ξ1

[
αξ0 − μβ

p (1 + e cosϕ0)
]
.

(30)

We first remark that the denominator function ϕ → D (ϕ) is strictly positive as both
x0 = 2r20 and x1 = 2r21 are positive functions. In (25) we have seen that the sign
of N (ϕ) cannot change; as a consequence the function ϕ0 → ϕ1 (ϕ0) is monotone.
In our hypothesis where N (ϕ) ≥ 0, ϕ1 is an increasing function of ϕ0. After a little
rearrangement, from (30) we obtain

ϕ1 =
∫ ϕ0

0

η + cosϕ

δ + 2 cosϕ
dϕ where η = μβ − 2pαξ0

μβe
≥ 1 and δ = 2μβ − 2pαξ0

μβe
> 2.

We notice that the particular case when the primary Keplerian orbit is circular, i.e.
e = 0, linearly links ϕ0 and ϕ1. The integral for ϕ1 can be made explicit: introducing
u = tan (ϕ/2) we get cosϕ = 1−u2

1+u2
, dϕ = 2du

1+u2
and thus

ϕ1 = 2
∫ u0

0

� + 2 + �u2
(
m + 4 + mu2

) (
1 + u2

)du where

{
� = η − 1 ≥ 0,
m = δ − 2 > 0.

A partial fraction decomposition gives

ϕ1 =
∫ u0

0

1

1 + u2 du +
2� − m√
m (m + 4)

∫ v0

0

dv

1 + v2
,
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Fig. 8. The α = 1.5 and β = 0.6 bolst of a Keplerian ellipse (e � 0, 7; p � 0.35) which gives an isochrone
orbit with the same energy (ξ0 = ξ1 = −1)

where v =
√

m
m+4u. The integration leads to

ϕ1 = ϕ0

2
+

2� − m√
m (m + 4)

arctan

[√
m

m + 4
tan

(ϕ0

2

)]
,

and so

ϕ1 = ϕ0

2
+ χ√

(1+χ)2−e2
arctan

[√
1+χ−e
1+χ+e tan

(ϕ0

2

)]
with χ = pα |ξ0|

μβ
.

If α = 0 we would recover the relation ϕ1 = ϕ0
2 previously mentioned. In the same way,

when β → 0, then ϕ1 → ϕ0. When the bolsted orbit is a pro, we can easily compute
the increment of the azimuthal angle Δϕ during the transfer from ra to rp and back. In
the Keplerian case, from Fig. 8, we see that the transfer for r0 : r0,p → r0,a corresponds
to ϕ0 : 0 → π . Hence, using (27) one gets

ϕ1 : 0 → 1

2
Δϕ1 = π

2
+

χ
√

(1 + χ)2 − e2
arctan(∞)

= π

2

(
1 + χ√

(1+χ)2−e2

)
.

Since

p = Λ2

μ
and e =

√

1 +
2Λ2ξ0

μ2 ,

we see that Δϕ1 depends on Λ2 but not on ξ1. This is a characterization of isochrone
orbits (see Theorem 6 in Appendix A). Given a point (ϕ0, r0) on the primary Keplerian
ellipse, its image on the bolsted orbit has a polar angle ϕ1 given by the formula (27) and
a distance r1 given by the relation (24), i.e.

x1 = 2r21 = 2α
ξ0

ξ1
r20 − 2μ

β

ξ1
r0 �⇒ r21 = αξ0r20 − μβr0

ξ1
.

When α, β and ξ1 are such that r21 > 0 for all r0 on the Keplerian orbit, this corresponds
to an isochrone pro. 
�
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Theorem 2 shows that any Keplerian pro can be transformed into a particular
isochrone one by a suitable bolst Bα,β . When α = 0, the bolst coincides with a Bohlin
transformation. In the other cases, it generalizes it; we have plotted an example of such
a bolst in Fig. 8.

Reciprocally, we will see in Sect. 3.2.5 that any isochrone pro could be connected
to a Keplerian ellipse.

3.1.3. The bolst, a key to isochrony Geometrically, a Keplerian parabola in a frame
RO = (O, i, j) is laid (see Sect. 2.2, p. 613), i.e. its tangent at the origin is Rj and its
axis of symmetry is Ri. According to Lemma 9 in Appendix C, its image by a bolst Bα,β

remains laid, and so Keplerian, in the image frame Bα,β (RO). But, in RO , the image
parabola has two distinct intersections with Rj and thus appears to be a non-Keplerian
isochrone. Therefore, it appears that to be or not to be Keplerian depends on the choice
of the reference frame. This is an aspect of the isochrone relativity that we will discuss
in what follows.

For this discussion, we will not consider the general case of any bolst Bα,β . With only
technical restrictions, we will consider the case where the bolst is symmetric: according
to (24), Bα,β is a symmetric matrix if and only if α − 1 = β. Introducing the parameter
γ = α + β which is the variable eigenvalue of Bα,β , with the other 1, the general bolst
Bα,β then becomes the symmetric Bγ that we call an ibolst for which the isochrone
relativity appears to be clear.

We have seen that bolsts generalize the Bohlin transformation, and we will see now
that ibolsts are the boosts of the isochrone relativity. Names appear to be clarified: bolst
stands for bohlin boost and ibolst for symmetric bohlin boost.

3.2. Isochrone relativity. The special theory of relativity has two pillars:

1. The Einstein principle of special relativity imposes that the laws of physics can be
written in the same way in all Galilean frames;

2. The length of any space-time interval is conserved through changes of Galilean
frames, aka Lorentz frames.

These principles make time and length relative to a given Galilean frame. These two
physical quantities are linearly exchanged during changes of Galilean frames.

In the same way, the linear exchange between ξ x and y proposed in the previous
section conserves the “isochrone interval” ξ x − y in Eq. (22). This conservation is
imposed by that of the fundamental orbital law (19) which renders the conservation of
the energy along the orbit. The linearity of the transformation is associated with the
isochrony preservation. The conservations of the “isochrone interval” and isochrone law
are the two pillars of the isochrone relativity.

For the sake of simplicity, we restrict our attention to symmetric exchanges between
ξ x and y: the bolst Bα,β is then reduced to the ibolst Bγ=α+β , choosing α − 1 = β,

Bγ = 1

2

[
γ + 1 γ − 1
γ − 1 γ + 1

]
.

3.2.1. The ibolst algebra LetR = (i, j) be the canonical basis ofR
2. Any vector z ∈ R

2

has affine coordinates (z1, z2) in the frameRO = (O, i, j), i.e. there exists a unique point
Z in the Oz1z2 plane such that z = −→

O Z = z1i+ z2j. We do not use the usual upper index
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for contravariant components because, as we are in R
2, we do not use Einstein notation

for sums and we prefer to conserve the upper index for powers. The orthonormality is
defined in the Euclidian sense, i.e. with natural notations

‖z‖2 = (z|z) = z21 + z22 then (i|i) := ‖i‖2 = ‖j‖2 =: (j|j) = 1 and (i|j) = 0.

The R basis is then orthonormal for the Euclidian scalar product. We will also use the
Minkowski scalar product for which

‖z‖2m = 〈z|z〉 = z21 − z22 then 〈i|i〉 := ‖i‖2m = 1, 〈j|j〉 := ‖j‖2m = −1 and 〈i|j〉 = 0.

Consider the two eigenvectors k = 1√
2

(i − j) and l = 1√
2

(i + j) of the ibolst Bγ

such that

Bγ (k) = k and Bγ (l) = γ l. (31)

The basis R̃ = (k, l) is justR rotated by an angle of −π
4 . It is thus orthonormal for the

Euclidian scalar product. Moreover, we see that for the Minkowski scalar product, we
have

〈k|k〉 = 〈l|l〉 = 0 and 〈k|l〉 = 〈l|k〉 = 1. (32)

From (31), let us remark that the set B = {
Bγ , γ ∈ R

∗} forms a commutative linear
group since

∀ (γ, γ ′) ∈ R
∗ × R

∗, Bγ ◦ Bγ ′ = Bγ ′ ◦ Bγ = Bγ γ ′ ∈ B.

For this law, B1 is an identity element. The inverse of a transformation Bγ for γ ∈ R
∗

is B 1
γ
.

As expected, any ibolst is symmetric, i.e. for the Euclidian scalar product and for any
vectors w and z, we have

(
Bγ (w) |z) = (

w|Bγ (z)
)
. (33)

As a matter of fact, since the matrix Bγ is symmetric, considering the expansion of these
vectors in the basis R̃ noted with a tilde, we get directly from (31) that

(
Bγ (w) |z) = (

w̃1Bγ (k) + w̃2Bγ (l) |z̃1k + z̃2l
) = w̃1 z̃1 + γ w̃2 z̃2

= z̃1w̃1 + γ z̃2w̃2 = (
Bγ (z) |w) = (

w|Bγ (z)
)
.

However this symmetry property does not generally hold for the Minkowski scalar
product.
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3.2.2. Lengths and spaces Let us consider ξ and Λ as two fixed parameters. We can
define inRO the affine coordinates system (w1 = ξ x, w2 = y). Using these coordinates
we set

w′ = Bγ (w) .

The symmetry (33) of the ibolst for the Euclidian scalar product gives

∀α ∈ R,
(
w′|αl) = (

Bγ (w) |αl) = (
w|Bγ (αl)

) = γ (w|αl) .

With α = √
2, this relation corresponds to the equality

ξ ′x ′ + y′ = γ (ξ x + y) . (34)

This same symmetry, but in the direction given by k, gives the conservation of the
isochrone interval

∀α ∈ R,
(
w′|αk) = (w|αk) ⇒ ξ ′x ′ − y′ = ξ x − y. (35)

By multiplication of these two relations we get directly4

(
ξ ′x ′)2 − y′2 = γ

[
(ξ x)2 − y2

]
. (36)

This relation corresponds to the fact that an ibolst is not an isometry using the
Minkowskian norm

〈
w′|w′〉 = γ 〈w|w〉 . (37)

As a consequence, the radial cone

C =
{
z ∈ R

2, 〈z|z〉 = 0
}

is preserved by the ibolst as C = Rk ∪ Rl. Its name comes from the fact that the line
y = ξ x defines a radial orbit (Λ = 0) of energy ξ in the potential ψ (r). In a Kepler
potential ψke (r) = −μ

r a test particle of energy ξ < 0 with a radial orbit moves on
a segment from ra = μ

|ξ | at t = 0 to r → 0 when t → +∞. As its period should be
infinite, a radial orbit is not a pro but we can say that it is a maximal time-bounded orbit.

In this relativistic formulation of the problemwe can then define periodic-like vectors
lying in the periodic space

P =
{
z ∈ R

2, 〈z|z〉 < 0
}

and aperiodic-like vectors lying in the aperiodic space

A =
{
z ∈ R

2, 〈z|z〉 > 0
}

.

As the convex x-positive part of parabolas containing pro in the coordinates system
(ξ x, y) is delimited by the radial cone and exactly contained in P , the names P and
A are natural.

4 The relation (35) holds for any bolst Bα,β . This is not the case for (34) which requires the Bγ -symmetry.
As a consequence, the relation (36) is simple only in the symmetric case.
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Fig. 9. The bolsted frameR′
O = (O, u, v), when ξξ ′ > 0. Its periodic spaceP ′ is represented in grey, while

its aperiodic one A ′ is in white

3.2.3. Orbits relativity Let us define the ibolsted frame R′
O = (O, u, v) such that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u = Bγ (i) = Bγ

(
l + k√

2

)
= γ l + k√

2
and

v = Bγ (j) = Bγ

(
l − k√

2

)
= γ l − k√

2

�⇒ k = u − v√
2

. (38)

Definition 3. The reference frame of a given parabolaP is the frame (O, t, n)where the
tangent to the parabola at the origin is TO (P) = Rt and the symmetry axis is S (P) =
Rn.

A reference frame geometrically defines a parabola up to a scale factor. For instance,
RO is the reference frame of the Keplerian parabola containingψke up to the scale factor
μ. According to Lemma 9 in Appendix C, the line Rv is tangent to the bolsted parabola
and Ru is its symmetry axis. Thus, R′

O is the reference frame of the bolsted parabola
and characterizes it up to a scale factor.

All possibilities are represented in Fig. 9, when the primary energy ξ and the image
energy ξ ′ share the same sign. When ξξ ′ < 0, the direction of u has to be inverted.

Depending on the value of γ �= 1, we can define the angle δ given by

tan δ =
∣∣
∣∣
γ + 1

γ − 1

∣∣
∣∣

which is useful to construct R′
O from RO by simple composition of a homothety and

a hyperbolic rotation (see [8, p. 28] for a nice description in French or [18] for general
properties of rotation in special relativity).

As with i and j, the two ibolsted basis vectors u and v have the same Euclidian norm

‖u‖2 = ‖v‖2 = γ 2 + 1

2
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and opposed Minkowskian lengths

‖u‖m = γ = −‖v‖m .

Moreover, from (32) and (38), the primary and the ibolsted basis are orthogonal in the
Minkowskian scalar product: 〈i|j〉 = 〈u|v〉 = 0. Depending on γ and on the frame RO
or R′

O used to define the scalar product, one vector is aperiodic-like and the other is
periodic-like, see Fig. 9.

In the canonical frameRO , using the isochrone relativity formalism and introducing
the proper time dτ = ξdt of an orbit of energy ξ and angular momentum Λ, the orbital
differential equation (19) in the affine coordinates (ξ x, y) can be written as

1

16

[
d

dτ
(w|i)

]2
= (w|i − j) + (wΛ|j) , (39)

where wΛ = −Λ2j. The vector w describes the potential of parabola P and the orbit
which corresponds to an arc of P . When this orbit is a pro, this arc is finite. When w
describes a Keplerian orbit, its ibolsted image w′ is characterized by Theorem 3.

Theorem 3. A vector w′ describes an isochrone orbit (ξ ′,Λ′) on its arc of parabola
if and only if it is the image, by an ibolst Bγ ∈ B, of a vector w which describes a
Keplerian orbit (ξ,Λ) on a Keplerian parabola. In the Keplerian frame RO = (O, i, j),
the orbit (ξ ′,Λ′) is isochrone but generally not Keplerian. In its natural bolsted frame
R′

O = (O, u, v) it is a Keplerian orbit with angular momentum Λ. If ξξ ′ > 0 then5

Λ′ = √
γΛ

else

Λ′ = Λ.

Proof. In the affine coordinate system (w1 = |ξ |x, w2 = y), an orbit of energy ξ < 0
and angular momentum Λ corresponds to an arc of the parabola P . When this orbit is
a pro, the two extremities A and P of this parabolic arc are associated with the two
solutions apoastron wA and periastron wP of the equation d

dτ
(w, i) = 0, with dτ =

|ξ |dt . Considering the orbital differential equation (39) in the coordinates (|ξ |x, y),
these two extremal points of the orbit are on the extremal line

Δ =
{
w ∈ R

2,
√
2 (w|k) = Λ2

}
.

Trivially we then note that Δ is parallel to Rk. As the vectors w defining this pro satisfy
[ d

dτ
(w, i)

]2 ≥ 0, they are periodic-like vectors. Defining

K = TO (P) ∩ Δ,

the point K is the k parallel projection of A and P on Rj and trivially,

−−→
O K = −Λ2j. (40)

5 When γ < 0, Λ is imaginary and does not correspond to a pro.
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Fig. 10. The γ > 1 ibolst of the Kepler parabola when ξξ ′ > 0

When γ > 1, the ibolst of the Kepler parabola is represented in Fig. 10; the other
values of γ can be deduced directly from Fig. 9 and the analysis we will give below.
With natural notations, we set P ′ = Bγ (P) and Δ′ = Bγ (Δ). As Δ is parallel to Rk,
which is an invariant direction of the ibolst, Δ′ is also parallel to Rk. Let us consider
K ′ = Bγ (K ). According to Lemma 9 we have

K ′ = Bγ (TO (P) ∩ Δ)

= Bγ (TO (P)) ∩ Bγ (Δ)

= TO
(
P ′) ∩ Δ′

and quantitatively, as
−−→
O K = −Λ2j, after an ibolst, we get

−−→
O K ′ = −Λ2v. (41)

This relation clearly indicates that Λ is the same angular momentum for the Keplerian
orbit and for the ibolsted orbit when it is considered in the reference frame of its ibolsted
parabola, where it is also a Keplerian one. In addition,

Δ′ = K ′ + Rk = Bγ (K ) + RBγ (k). (42)

Therefore, each point of the isochrone orbit on its arc of parabola is directly linked by the
ibolst to its l-parallel projection on the Keplerian parabola.We can determine the angular
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momentumΛ′ of the isochrone orbit in the Keplerian coordinates. Combining (38), (40)
and (41) we get

−−→
K K ′ = −Λ2 (v − j) = − Λ2

√
2

(γ − 1) l.

If we introduce now the two orthogonal projections Kl and K ′
l of K and K ′ on Rl, we

have
−−→
K K ′ = −−→

Kl Kl
′ and−−→

O Kl
′ = Bγ

(−−→
O Kl

)
by (42). Since Kl = Δ∩Rl, K ′

l = Δ′ ∩Rl

and Bγ sends Δ to Δ′ and l to γ l, we get

−−→
O Kl

′ = Bγ

(−−→
O Kl

)
= γ

−−→
O Kl .

And finally by Thales theorem,

O K ′
l

O Kl
= O H

O K
= γ where H = TO (P) ∩ Δ′. (43)

The length O H is the squared angular momentumΛ′2 of the ibolsted orbit considered in
the reference frame of the Keplerian parabola. As O K is the squared angular momentum
of the Keplerian orbit in its natural frame, we have

Λ′2 = γΛ2.

When ξξ ′ < 0, the orientation of u is inverted. The line Δ′ is Δ′ = K ′ + Rl, and since−−→
O Kl is directed by k, then Λ′ = Λ. 
�

The bolsted orbital differential equations follow from Theorem 3. As we can see
from (45), in isochrone relativity, orbital laws are the same in all reference frames.

Corollary 1. In the canonical frame RO, the bolsted orbital differential equation is

1

16

[
d

dτ

(
w′|i)

]2
= (

w′|i − j
)
+
(
w′

Λ|j) (44)

with w′
Λ

= −Λ′2j.
In the bolsted frame R′

O with affine coordinates (ξ ′x ′, y′) and proper time dτ ′ = ξ ′dt ′,
the bolsted orbital differential equation is

1

16

[
d

dτ ′
(
w′|u)

]2
= (

w′|u − v
)
+
(
w′

Λ|v) (45)

with w′
Λ = −Λ2v.

Isochrone pro are contained in the periodic-space of their parabola reference frame.
But in the Keplerian primary frame this periodic-space appears vertical when γ > 0 and
horizontal otherwise. In some cases, the pro is then associated with an arc of parabola
which is concave or located in the negative part of the Keplerian frame. Those image
orbits are not physical.
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3.2.4. Potentials relativity The Keplerian nature of an isochrone potential is revealed in
the reference frameR′

O of its parabola, cf. Theorem3.An ibolst can also bolst a harmonic
potential and then exactly provide the appropriate primary framewhich characterizes the
radial oscillation of a pro in the image isochrone potential. In such a frame, all periods
of pro have indeed the same value.

We give hereafter an explicit formulation of the parameters of all the image potentials.
They can be obtained by direct resolution of quadratic equations.

When the primary potential is Keplerian ψke (r) = −μ
r , the primary orbits are such

that ξ < 0 in order to be bounded. If γ > 0, the ibolsted potential ψ ′ (r ′) is always a
transvection of a Hénon or a bounded isochrone potential introduced in Sect. 2.3. Using
the notations of reduced potentials, coming from the proof of Theorem 1 and Eq. (16),
one can verify that

sign
(
ξ ′) = −sign (ξ) > 0 sign

(
ξ ′) = sign (ξ) < 0

γ > 1 Jε,0
(
ψ+
bo

) = ψ+
bo + ε Jε,0

(
ψ−
he

) = ψ−
he + ε

0 < γ < 1 J−ε,0
(
ψ−
bo

) = ψ−
bo − ε J−ε,0

(
ψ+
he

) = ψ+
he − ε

(46)

where

ε = μ′ (γ + 1)2

8γ b
> 0, μ′ =

∣∣
∣∣∣

8μξ ′γ
(γ + 1)

√|8ξξ ′ (γ + 1)|

∣∣
∣∣∣

and b =
∣∣
∣∣∣

μ (γ − 1)
√|8ξξ ′ (γ + 1)|

∣∣
∣∣∣
.

Then, when the primary potential ψ (r) is the harmonic ψha (r) = +1
2ω

2r2, the primary
energy is positive ξ > 0 in order to get bounded orbits. When γ > 0, the ibolst leads to
the four increasing potentials ψ ′ (r ′),

sign
(
ξ ′) = sign (ξ) > 0 sign

(
ξ ′) = −sign (ξ) < 0

γ > 1 Jε,0
(
ψ+
he

) = ψ+
he + ε Jε,0

(
ψ−
bo

) = ψ+
he + ε

0 < γ < 1 J−ε,0
(
ψ+
bo

) = ψ+
bo − ε J−ε,0

(
ψ+
bo

) = ψ+
bo − ε

(47)

where

ε = μ′ (γ − 1)2

8bγ
, μ′ =

∣∣∣∣∣
4ξ ′ξγ

ω (γ − 1)
√|ξ ′ (γ − 1)|

∣∣∣∣∣
and b = (γ + 1) |ξ |

2ω
√|ξ ′ (γ − 1)| .

The classical Bohlin transformation B−1 exchanges the two potentials ψke and ψha, cf.
Theorem 2, p. 623. The commutative structure and associative property of the group B

then provide the image of any isochrone potential by Bγ when γ < 0.
A transvection Jε,0 swivels a parabola when it only adds the constant ε to the cor-

responding potential. This constant has no particular role and we can neglect it in a
potential diagram summarizing the effect of the ibolst on isochrone potentials. This is
the purpose of Fig. 11.

Using this diagram and the group property of the ibolst, we can recover all ibolsted
potentials only from the Keplerian one. Isochrone potentials form the group orbit of
Kepler potentials under the action of B.
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Fig. 11. Diagram of the set of all possible ibolsted potentials up to an additive constant. The nomenclature
used is the one defined in the isochrone classification of Sect. 2.3

Fig. 12. Graphical determination of the Keplerian reference frame of an isochrone parabola. Here isochrone
orbits have negative energy

3.2.5. Isochrone orbits construction Isochrony is a Keplerian property seen from an
appropriate reference frame. Theorem 3 gives a method to find the relative isochrone
reference frame from a Keplerian potential. From any isochrone potential one may
reciprocally construct its isochrone orbits and find their related Keplerian description
graphically using parabolas.

In order to be concrete, we build now the complete back to the Kepler process when
the needed ibolst has γ > 1 for ξξ ′ > 0 in Fig. 12.

Consider a parabola P ′′∗ . From Definition 2, p. 618, we retrieve a physical parabola
from a vertical translation J0,λ(P ′′∗ ) = P ′′. Then, by Definition 3, p. 630, we find the
natural frame (O, t, n) attached to P ′′. While the angles ι and ν are not equal, we adjust
the parabolawith a transvection Jε,0 to prepare it for a bolst.We then debolst the parabola
with the ibolst Bγ given by the angle δ = ι = ν, with δ < π

2 . Given P and P ′, the
isochrone orbit can be related to its Keplerian description as in Fig. 10.

This geometrical construction gives the radial distances

r0 = 1

2
√|ξ0|

√
(w|i) and r1 = 1

2
√|ξ0|

√
(w′|i)

of theKeplerian and isochrone orbits in the (|ξ0|x, y)-coordinates of theKeplerian frame.
The angles ϕ0 and ϕ1 are provided by Theorem 2, p. 623 and given by
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Fig. 13. The bounded and the Hénon isochrone potential (left). The mass density of isochrones (right)

a = 1

2

(
r0,p + r0,a

)
,

|ξ0|
μ

= 1

2a
, e = r0,a − r0,p

2a
, p =

(
1 − e2

)
a, and

α

β
= γ + 1

γ − 1
.

They can also be geometrically determined. In fact, the precession of the isochrone
apocenters or pericenters nϕ depends on Λ and the ordinate of the intersection of the
convex part of the parabola and Rj, see Proposition 1. This intersection is given by the
vertical translation parameter λ and the aperture of the parabola; more precisely, by the
distance 4bμ between the two intersections of the parabola and the axis Rj, just as one
can deduce from (16) and its following properties on p. 617.

This construction does not explicitly depend on the hypothesis γ > 1, and can be
generalized to other values of γ as long as the considered initial orbit is a pro, i.e. w′
remains a periodic-like vector on the convex part of a parabola. It is also possible to
construct positive energy ibolsted orbits from negative energy Keplerian orbits.

This procedure can also be generalized using a bolst Bα,β , which is a transvection
of an ibolst Bγ when expressed in the basis (l, k). In the same way, the first translation
J0,λ is not compulsory.

4. Applications

4.1. Physical properties of isochrone potentials. Up to an affine transformation, there
are four different increasing potentials which are isochrone, i.e. in which the radial
periods τr only depend on the energy of the considered radially oscillating particles.
Two of them are very well known: the Kepler potential ψke is associated with a Dirac
density distribution and the harmonic potential ψha is sourced by a constant density
distribution of matter in the considered volume. In Fig. 13 we present the plot of the two
other ones, i.e. ψbo and ψhe. Notice their harmonic quadratic behavior at small radial
distances.

The Hénon potential ψhe has important physical properties in gravitational stellar
dynamics: in a forthcoming paper in preparation by Simon-Petit et al., we will show
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that it appears to be a fundamental equilibrium state where stellar systems settle down
after violent relaxation (e.g. [30] for the original contribution and [6, pp. 380–382] for
a modern review). The corresponding density is a core-halo structure: the typical size
of the core is the length b and the surrounding halo falls like a r−4 power law. This
property ensures that the mass Mhe(r) contained in any ball of radius r in a Hénon
potential is finite. As a matter of fact, by Gauss’ theorem, we have G Mhe(r) = r2 dψhe

dr
and limr→∞ G Mhe(r) = μ. Recalling Definition 2, this finite mass property is trivially
conserved for the reduced version of the Hénon potential ψ red

he = ψ+
he = ψhe +

μ
2b and

for all physical Hénon’s ψ
phy
he = ψhe + ε for any real ε. However, the gauged Hénon

ψ
gau
he = ψ

phy
he + λ

2r2
contains an infinite mass in its center and has poor physical meaning.

Nevertheless, this latter potential is still isochrone. As we said in the classification of
the Sect. 2.3, gauged potentials are essential for the completeness of the isochrone set.

The properties of systems associated with the ψbo potential are more unusual. When
it is considered on its whole domain Dψbo = [0, b], the systems have an infinite total

mass. As a matter of fact, G Mbo(r) ∼ μ

√
b

2(b−r)
when r → b. This property holds for

any physical bounded potential. In fact these systems are self-confined because there
exists an infinite repulsive force at their boundaries in r = b. Perhaps ψbo potentials
might be used as classical models for structurally confined systems like, for example,
quarks in the nucleon. Indeed, such fundamental particles are confined in the nucleon
(here of size b) and are characterized by asymptotic freedom, i.e. they do not feel any
force at the center of the nucleon. Gauged bounded potentials are even more unusual
with their infinite central mass!

The repartition of mass in physical isochrones is progressive: the mass is concen-
trated into a point in the center of a Kepler system, while in a Hénon one, the mass is
equally distributed up to a characteristic length settled by the parameter b, and in a less
concentrated decreasing repartition after the characteristic radius. When b increases,
the first dense harmonic part grows and the Hénon potential eventually behaves like a
harmonic potential since

ψ red
he ∼

b→∞
μ

8b3
r2, (48)

i.e. the physical Hénon isochrone is changed into the physical harmonic when b → +∞.
This property can be easily seen on the mass density distribution in the right panel of
the Fig. 13. Subsequently, since

ψ red
bo ∼

b→∞
μ

8b3
r2 (49)

we can say in a converse manner that when the infinite mass of the unbounded harmonic
is concentrated into a finite domain of size b. We can recover the bounded isochrone by
controlling b.

Let us revisit the properties of orbits.

4.2. Period and precession of periastron for isochrones. Proposition 1 gathers the prop-
erties τr and nϕ of isochrone orbits and reveals the interesting similarities of isochrone
radial periods. Their form in ψhe and ψbo is the same as in the Keplerian potential.
We will use this remark to generalize Kepler’s Third Law in the next subsection. In
a harmonic potential, τr is the same regardless of the energy of the massive particles.
Moreover, in ψke and ψha, nϕ is rational and all orbits are closed.
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Proposition 1. Given a pro (ξ,Λ) in an isochrone potential, its radial and azimuthal
periods are

ψke ψha ψhe ψbo

τr 2πμ |2ξ |−3/2 πω−1 2πμ |2ξ |−3/2 2πμ |2ξ |−3/2

nϕ 1 1
2

1
2 + Λ

2
√

4bμ+Λ2
1
2 − Λ

2
√

4bμ+Λ2

(50)

Proof. Using isochrone potential expressions, the radial period (2) and increment nϕ of
the azimuthal angle (4) come from the computation of the radial action

Ar = 1

π

∫ ra

rp

√

2 [ξ − ψ (r)] − Λ2

r2
dr.

For a Keplerian orbit of energy ξk < 0 in ψke (r) = −μ
r and a harmonic orbit of energy

ξh > 0 in ψha (r) = 1
2ω

2r2, we have

Ake
r =

√
2 |ξk |
π

∫ ra

rp

√(
r − rp

)
(ra − r)

r
dr with

{
rp + ra = μ

|ξk |
rpra = Λ2

2|ξk |
(51)

and

Aha
r =

√
μ

2π

∫ r2a

r2p

√(
u − r2p

) (
r2a − u

)

u
du with

{
r2p + r2a = 2ξh

ω2(
rpra

)2 = Λ2

ω2 .
(52)

The computation of these radial actions can be done bymeticulous integration to recover
τr and nϕ in ψke and ψha. Conversely, knowing the radial and azimuthal periods, one
recovers the expression of Ake

r and Aha
r . Indeed, for ψke, τr follows from the classical

Kepler’s Third Law, and nϕ = 1 because the center of attraction of a Keplerian ellipse
is located at one of its foci (see Fig. 7). For the harmonic potential, τr = π

ω
and nϕ = 1

2
because harmonic ellipses are centered at their centers of attraction, see Fig. 7. As it is
shown in Appendix D, one gets

Ake
r = μ√

2 |ξk | − Λ and Aha
r = ξh

2ω
− Λ

2
.

For the two non classical isochrones ψbo
he (r) = ±μ

b

(
1 +

√
1 ∓ r2

b2

)−1

, generalizing [6,

p. 152], we introduce s = 1 +
√
1 ∓ r2

b2
. For the Hénon potential, s > 2 and the pro

has ξ− < 0 according to its effective potential, see Sect. 2.1, p. 608. In the same way,
for the bounded potential, 2 > s > 0 and its pro has positive energy ξ+ > 0. Then, for
sp < sa , the radial actions are

Abo
r,he = ∓

b
√
2
∣∣ξ+−

∣∣

π

∫ sa

sp

(s − 1)

s (s − 2)

√(
s − sp

)
(sa − s)ds
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with
{

sp + sa = 2 + μ

b|ξ+−|
sasp = 4bμ+Λ2

2b2|ξ+−| .
(53)

Hence, using I2 from Appendix D, one gets

Abo
r,he = ∓ μ

√
2
∣∣ξ+−

∣∣
− 1

2

(
Λ ∓

√
4bμ + Λ2

)
.

The results follow by derivation. 
�
The dynamics is unchanged when adding constants to potentials, i.e. ψ → ψ + ε.

However, the expression of the periods are modified and can be deduced from Proposi-
tions 1 and 2 for the reduced, physical and gauged isochrones.

Proposition 2. Let ψ and ψ∗ be two potentials related by an affine transformation
ψ∗ = Jε,λ(ψ) = ψ + ε + λ

2r2
.

An orbit defined in ψ and its affine transformation in ψ∗ share the same orbital
properties τr and nϕ .

Provided that λ + Λ2 > 0, the radial action and its derivatives are transformed as
follows:

1. A∗
r (ξ ;Λ) = Ar

(
ξ − ε;√

λ + Λ2
)

,

2. τ ∗
r (ξ ;Λ) = τr

(
ξ − ε;√

λ + Λ2
)

,

3. n∗
ϕ(ξ ;Λ) = nϕ

(
ξ − ε;√

λ + Λ2
)

Λ√
λ+Λ2

.

Proof. The radial action of an orbit of energy ξ and angular momentumΛ inψ∗ is given
by

A∗
r (ξ ;Λ) = 1

π

∫ r∗
a (ξ ;Λ)

r∗
p(ξ ;Λ)

√

2(ξ − ψ∗(r)) − Λ2

r2
dr

= 1

π

∫ r∗
a (ξ ;Λ)

r∗
p(ξ ;Λ)

√

2(ξ − ε − ψ(r)) − λ + Λ2

r2
dr

= 1

π

∫ ra

(
ξ−ε;√λ+Λ2

)

rp

(
ξ−ε;√λ+Λ2

)

√

2(ξ − ε − ψ(r)) − λ + Λ2

r2
dr

A∗
r (ξ ;Λ) = Ar

(
ξ − ε;√

λ + Λ2
)

,

where r is the radial distance in the reference frame associated with ψ , and r∗ is the
image in the same frame by the affine transformation. For the second relation we use

the definition τ∗
r (ξ ;Λ)

2π = ∂A∗
r

∂ξ
(ξ ;Λ). For the third one, we get

n∗
ϕ(ξ ;Λ) = − ∂A∗

r
∂Λ

(ξ ;Λ)

= − ∂
∂Λ

(
Ar

(
ξ − ε;√

λ + Λ2
))

= − ∂Ar
∂Λ

(
ξ − ε;√

λ + Λ2
)

× Λ√
λ+Λ2

.
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And the third relation follows.
Eventually, a transformation Jε,λ maps an orbit (ξ,Λ) onto another one of parameters

(ξ +ε,
√

Λ2 − λ)whenΛ2−λ > 0. Inserting them in the previous relations, we recover
the invariance of τr and nϕ under Jε,λ: the radial period of the image orbit τ ∗(ξ +
ε,

√
Λ2 − λ) is that of the primaryorbit τ(ξ,Λ). In the sameway,n∗

ϕ(ξ+ε;√
Λ2 − λ)) =

nϕ(ξ,Λ). 
�
Eventually, the radially periodic orbits are rosettes, [6, sect. 3]. The number nϕ of

revolutions to reach a periastron from the preceding one can be greater or lower than
for a harmonic or Keplerian potential. A gauge introduces orbits that spiral into the
origin [31], as it happens for orbits of the extremal line defining an imaginary radial
distance on its parabola at the pericenter. The gauged harmonic presents a similarity
with ψhe and ψbo, as described in Proposition 3. The precession of orbits that emerge
when adding a 1

r2
-term to the potential corresponds to the one described in Proposition

XLIV of Newton’s Principia [35] for the Kepler force.

Proposition 3. Bounded, Hénon and gauged harmonic pro’s are rosettes with azimuthal
precessions nϕ such that:

Proof. Let us illustrate the case of a harmonic oscillator and its gauge transform ψ∗ =
J0,λ(ψha) = ψha + λ

2r2
. From Proposition 2, we get that for the modified potential,

τ ∗
r = τr = π

ω
, n∗

ϕ = Λ

2
√

λ + Λ2
.

Thus, for harmonic potentials, adding a gauge modifies nϕ , whereas the period never
changes. Moreover we get the dynamical consequence that n∗

ϕ < 1/2 when λ > 0 and
n∗

ϕ > 1/2 when λ < 0.
The parallel property exists for ψhe and ψbo. According to (50) in Proposition 1,

nbo
ϕ = 1

2 − Λ

2
√

4bμ+Λ2
where Λ

2
√

4bμ+Λ2
> 0, and then nbo

ϕ < 1
2 . In the same way,

nhe
ϕ > 1

2 .

This nϕ property shapes the corresponding orbits. On the one hand, when nϕ > 1
2 , the

azimuthal precessionΔϕ/2 during the transfer from apoastron (r = ra) to the periastron
(r = rp) is greater than π . Thus the orbit must turn around the center of the system as
it is indicated on the left panel of the proposition. On the other hand, when nϕ < 1

2 , the
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transfer rp → ra → rp cannot turn around the center; such orbits oscillate between ra
and rp, precessing around the center, as is plotted on the right panel of the proposition.
The smaller the value of the angular momentum, the tighter the oscillation is. On this
right panel we have 0 � Λ1 < Λ2. 
�

Let us conclude this section remarking that the extension (ra and rp) of an isochrone
orbit is managed by its energy (see the expression of ξ in (51), (52) and (53)) when
the thickness of its oscillation is governed by its angular momentum. More precisely,
radial (thin) orbits are obtained when Λ → 0 and circular (fat) orbits when Λ = Λc,
the largest value possible of the angular momentum for the considered energy.

4.3. Generalization of Kepler’s Third Law. The Kepler potential ψke (r) = −μ
r is

sourced by a point of mass M such that μ = G M where G is the Newton constant.
Radially periodic orbits close after one radial period τr and form ellipses with semi
major axes a = − μ

2ξ . In his last major book Harmonices Mundi [26], Johannes Kepler

proposed in 1619 his Third Law claiming that τ 2r × a−3 is constant for all ellipses. Isaac
Newton, half a century later, proved this empirical observation using his laws of dynam-
ics and his gravitational force. This law appears to become a cornerstone of celestial
mechanics because the Kepler constant appears to be τ 2r a−3 = 4π2

μ
and thus gives the

mass of the attracting body.
In this paper we have shown that Kepler potential generates the isochrone group

and we remark that Kepler’s Third Law could be generalized. As a matter of fact,
considering the specific energy ξ associated with a given pro in an isochrone potential
ψ ∈ {ψke, ψhe, ψbo}, we see that according to Proposition 1, except for the harmonic
potential, all isochrone orbits are such that

τ 2r |ξ |3 = π2μ2

2
= cst. (54)

Nevertheless, the law (54) expressed in terms of the specific energy is not stable under
transvections of the potential, ψ �→ ψ∗ = ψ + ε, and has to be slightly modified for
physical potentials when adding a constant. As mentioned in Proposition 2, a pro (ξ,Λ)

in ψ∗ will satisfy

τ 2r |ξ − ε|3 = π2μ2

2
= cst. (55)

In these relations, ξ is the specific energy of the test particle moving on a prowith period
τr . The parameter μ is directly related to the total mass of the system which sources the
potential when it is finite i.e. ψke and ψhe. For the other non classical isochrone ψbo, the
total mass is infinite but Eq. (54) always holds with a less physically comprehensive μ

constant. The modification of the law (54) into (55) somehow hides the symmetry of the
considered system. We thus propose a geometric formulation of Kepler’s Third Law for
isochrones.

The formulation of Kepler τ 2r × a−3 in terms of the geometric parameter a is more
appropriate for conveying the symmetry of the potential. In fact, the Lagrangian L =
T − U , with T the specific kinetic energy of a particle and U = ψke, is invariant, under
a time t → t̃ = ζ t and space r → r̃ = � r rescaling, if

ζ 2 ∝ � 3
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because ψke is a homogeneous function of degree −1, i.e. ψke (r̃) = �−1ψke (r). In
order to geometrically express Kepler’s Third Law, we introduce in Definition 4 “semi
major axes”, relevant to all isochrone potentials, and directly related to their Keplerian
relative description. These characteristic lengths, generally related to specific energies
by (51), (52) and (53), provide a method to determine the mass of an isochrone system
as mentioned at the end of this section.

Definition 4. Let rp and ra be the peri- and apoastron radial distance of a given isochrone
periodic orbit. We call the isochrone semi-major axis of this orbit by the following
lengths:

1. in a Kepler potential,

a = 1

2

(
ra + rp

)
,

2. in a homogeneous box of radius R,

a =
(
1

2

)2/3

R,

3. in a Hénon potential,

a = 1

2

(√
b2 + r2a +

√
b2 + r2p

)
,

4. in a bounded potential,

a = 1

2

(√
b2 − r2a +

√
b2 − r2p

)
.

In Definition 4, we have considered a homogeneous box to include the description of
its elliptic trajectories with the Third Law. In fact, the situation of the harmonic potential
needs more attention since ψha is degenerate. In such a potential all test particles share
the same period but different specific energies, hence relation (54) cannot hold for each
specific energy.

The harmonic potential is not exactly representative of a real system because of its
constant density and infinite spatial extension, which imply an infinite mass. Instead, the
potential associated with a finite homogenous repartition of masses in a ball of radius R
with constant density (while the outside region is empty) does represent a real system
and can be written as

ψ R
ha (r) =

{ 1
2ω

2r2 − 3
2ω

2R2 if r < R
− G M

r if r > R.

We call it a finite harmonic potential. Additionally, either Gauss’ theorem or the conti-
nuity of the force at the boundary of the ball leads to the following relation:

μ = G M = ω2R3. (56)

As mentioned on p. 619, the harmonic potential corresponds to the limit of an isochrone
potential ψhe or ψbo when b → ∞. This result holds for the finite harmonic potential
ψ R
ha. In Fig. 13, we see the confluence of these potentials and their densities when the

parameter b is large, as written in Proposition 4. As it will be proven in Theorem 4, the
characteristic length for the finite harmonic also naturally appears in the expression of
Kepler’s Third Law.
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Proposition 4. The finite harmonic potential satisfies

ψhe (r) ∼
b→∞ ψ R

ha (r) and ψbo (r) ∼
b→∞ ψ R

ha (r) with R = 22/3b for any fixed r.

Proof. As already mentioned, the potential ψ R
ha is continuous in r = R if and only if

μ = G M = ω2R3.
We assume the potentials vanish at r = 0 without loss of generality. We consider

then the reduced potentials and their equivalents from (48) and (49) as ψ red
he ∼

b→∞
μ

8b3
r2

and ψ red
bo ∼

b→∞
μ

8b3
r2.

In this limit, the Hénon and bounded potentials behave as homogeneous spheres
inside a radius R = 22/3b. 
�

Now, Kepler’s Third Law can be generalized to all isochrone potentials in Theorem 4.

Theorem 4. For any radially periodic orbit in an isochrone potential, the square of the
radial period is proportional to the cube of the isochrone semi-major axis by

τ 2r = 4π2

μ
a3, (57)

where μ is the mass parameter of ψke, ψhe, ψbo and μ = ω2R3 for ψ R
ha.

Proof. In ψke, it is Kepler’s Third Law. In ψhe, for a pro of energy ξ < 0, the radial
variable s introduced in the proof of Proposition 1 satisfies (53) as

sa + sp = 2 − μ

ξb
= 2 +

√(ra

b

)2
+ 1 +

√(rp

b

)2
+ 1

and

ξ = − μ

2a
with a =

√
r2a + b2 +

√
r2p + b2

2
.

Inserting this expression of ξ in (54) gives (57).
Similarly, in ψbo the variable s satisfies

smin + smax = 2 +
μ

ξb
= 2 +

√

1 −
(rp

b

)2
+

√

1 −
(ra

b

)2

and

ξ = μ

2a
> 0 with a = 1

2
=
√

b2 − r2p +
√

b2 − r2a .

By inserting this expression in (54), we recover the law (57).
In ψha, all orbits have the same radial period τr = π

ω
. When a harmonic system

is compacted into a ball of radius R of constant density, then μ = ω2R3 according
to (56). Hence, the period could be related to the radius of the ball through the relation

τr = π√
μ

R3/2. Introducing the length a = ( 1
2

)2/3
R, one has

μτ 2r = 4π2a3.


�
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Thus, Kepler’s Third Law appears to be generalized through the isochrone group.
Kepler’s Third Law is mainly used for mass determination, as in, for example, the post-
newtonian approximation to estimate themass of black holes. For aKepler potential, only
one orbit is theoretically necessary to determine the mass of the central attractive body
given byμ. For other isochrone potentials, using (4), only two orbits would be necessary
to determine the parameter b and mass μ described by their isochrone potential.

4.4. The Bertrand theorem. In 1873, J. Bertrand published a fascinating theorem: There
are only two central potentials for which all orbits with an initial velocity below a
certain limit are closed, namely the Keplerian and the harmonic potentials. While this
fascinating result was proved more than 140 years ago, the proof of this theorem has
been retaining attention. According to the most recent reviews [11] and works on this
topic [1, chap. 3], it has been proven using very different techniques: [2,4,10,25,27],
using global methods, sometimes stemming from the analysis of the precession rate as
initiated in proposition XLV of [35]; [9,14,17,41], developing perturbative expansions;
[20,39,40], using inverse transformations methods; [38], by searching for additional
constants of motion; and [15], mainly using Birkhoff invariants along circular orbits in a
generic potential. Furthermore, the original proof does not mention the case of collision
orbits. We will therefore consider the result of Bertrand’s theorem under the hypotheses
of orbits that are bounded in position and bounded away from 0. We propose here to
show that, in fact, Bertrand’s theorem is a refined property of the isochrone one.

Theorem 5. In a given radial potential ψ , if all non-circular orbits that are bounded in
position and bounded away from 0 are closed, then ψ is isochrone.

Proof. In a given radial potential ψ , if all bounded and bounded away from 0 orbits
are closed, the increment of the azimuthal angle Δϕ during the transfer from ra to rp

is a fractional multiple of 2π , i.e. the quantity nϕ = Δϕ
2π ∈ Q. But, for a given radial

potential ψ (r), we have that

nϕ = −∂Ar

∂Λ
= 1

π

∫ ra

rp

Λ

r2
√

2 [ξ − ψ (r)] − Λ2

r2

dr

is a continuous mapping (ξ,Λ) �→ nϕ . By continuity, because the set R\Q is dense in
R, one can conclude that in order to only have closed orbits, nϕ = cst ∈ Q. In these
conditions we then have

0 = ∂nϕ

∂ξ
.

This characterizes an isochrone potential according to Theorem 6 of Appendix A. The
potentials of the form − μ

rα with α > 2 are excluded because all orbits that are bounded
in position either collide at the origin or are circular. 
�

Using our studywe can go further becausewehave obtained a geometric and algebraic
description of the whole set of isochrone potentials. More specifically, we have obtained
in table (50) the explicit value of nϕ for all isochrone potentials. The completeness of
our description and this table enable us to claim that Bertrand’s theorem is a corollary
of Theorem 5.
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Corollary 2. The Bertrand Theorem ! There are only two central potentials for which all
non-circular orbits that are bounded in position and bounded away from 0 are closed,
namely the Keplerian and the harmonic potentials.

Proof. As the quantities Λ

2
√

4bμ+Λ2
and Λ√

λ+Λ2
in Proposition 1 and 2 cannot be rational

for each value of Λ, among all isochrone potentials, only ψke and ψha have rational nϕ

for all orbits, i.e. for all values of (ξ,Λ). 
�
In a given potential, the fact that all bounded orbits are closed, namely Bertrand’s

property, is then a supplementary restriction to the isochrone one.

5. Conclusion

In this paper we have revisited the set of isochrone orbits in radial 3D potentials. These
models concern self-organised radial systems with long-range interactions like gravita-
tion or electrostatics with one kind of electric charge. Let us summarize the main results
we have obtained:

1. We have clarified the original proof by Hénon [22] that isochrone potentials are con-
tained in a branch of a parabola in adapted coordinates (Theorem 7). These parabolas
characterize the property of isochrony.

2. Taking into account very general properties of potentials in physics—i.e. invariance
under the addition of a constant, conservation of the energy and angular momentum
for isolated radial systems—we have given a geometrical characterization and clas-
sification of the set of all isochrone orbits/potentials that we have completed. This
characterization (Theorem 1) is based on a subgroup A of the real affine group.

3. We have shown (Theorem 1 and Sect. 2.5) that under the group action of A, any
isochrone potential is in the orbit of one of the four fundamental potentials: Kepler,
Hénon, Bounded or Harmonic (Definition 2).

4. Focusing on orbits, we have proposed a mapping which generalizes the Bohlin trans-
formation to all isochrone potentials. This mapping, summarized in Theorem 2, con-
nects any Keplerian elliptic orbit to a particular isochrone radially periodic orbit.
Reciprocally, by Theorem 3, we have shown how to construct the elliptic Keplerian
orbit connected to any isochrone periodic orbit. This mapping is based on a particu-
lar linear transformation, that we call a bolst, which preserves the orbital differential
equation for a given value of the angular momentum.

5. With the set of symmetric bolsts, namely Ibolsts, we have revealed the relative be-
havior of the isochrone property of orbits/potentials. We have detailed in Sect. 3.2 a
lot of similarities between the special theory of relativity and the isochrony of orbits
in radial potentials. In this view, a given orbit in an isochrone potential is seen as
a Keplerian orbit in its special frame. This is the Isochrone Relativity presented in
Sect. 3.2. The time and energy are relative to each orbit which defines a frame of
reference. Various examples were presented and illustrated to construct isochrone
orbits in isochrone potentials.

6. The explicit expression of the radial (τr ) and azimuthal (nϕ) periods was calculated
for all fundamental isochrone potentials. These results are presented in Proposition 1.
The computation of these periods in physical or gauged isochrones is possible using
the results presented in Proposition 2.

7. We have proposed a generalization of the quadricentennial Kepler’s Third Law in
Theorem 4. While this classic law involves the semi major axis of closed Keplerian
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orbits, we define characteristic lengths in each isochrone potential that are related to
the radial period in the famous 3/2 power equation. This rational value 3/2 is well
known to be related to the mechanical similarity involved in the Kepler potential and
its −1 homogeneity property (e.g. [28, pp. 22–24]). In this view, the generalization
of the Kepler’s Third Law to any isochrone is not surprising since we have seen that
any isochrone is a Kepler in the adequate referential.

8. Noting that both the radial period τr and the precession rate nϕ are partial deriva-
tives of the same quantity, i.e. the radial action Ar , we observed that the famous
Bertrand’s theorem is a specific property of isochrones. Once again this property
could be interpreted as a consequence of the isochrone relativity.

The essence of isochrony is Keplerian. As isochrony is characterized by the parabolic
property in Hénon’s variables, we understand the linear transformations that act on these
parabolas and are shaped by the bolst Bα,β play crucial roles. Merging these ideas, we
conjecture that a theory of general relativity of radial potentials could be formulated
using non-linear transformations. This theory could relate any orbit in a radial potential
to an associated orbit in a Kepler potential.

In a forthcoming paper we will explain the physical importance of the isochrone
potential during the formation and evolution process of self-gravitating systems.
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Appendix

A. Isochrone Characterization

Let us recall that the radial actionAr gives the radial period τr and the increment of the
azimuthal angle nϕ through (3) and (4) in Sect. 2.1:

∂Ar

∂ξ
= τr

2π
and − ∂Ar

∂Λ
= Δϕ

2π
= nϕ.

The exclusive ξ -dependency of τr is the fundamental isochrone property used byMichel
Hénon to define isochrone potentials. After his analysis, he remarked the exclusive Λ-
dependency of nϕ for his potential. The following theorem establishes the equivalence
of properties which can characterize isochrone potentials as a whole.

Theorem 6. Consider a central potential ψ . Then the following properties are equiva-
lent:

1. For any orbit (ξ,Λ) in ψ , τr only depends on ξ .
2. For any orbit (ξ,Λ) in ψ , nϕ only depends on Λ.
3. There exist two function f and g such that for any (ξ,Λ) the radial action is

Ar (ξ,Λ) = f (ξ) + g(Λ).

Proof. The separation of variables in the radial action expressed in 3 implies the two
properties 1 and 2 by direct differentiation with respect to ξ for 1 and Λ for 2.
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Assume 2 is true for any orbit in the central potential ψ . Then ∂Ar
∂ξ

= τr (ξ)
2π and by

integration there exists a function g, constant with respect to ξ , such that Ar (ξ,Λ) =
f (ξ) + g(Λ), where f is a primitive of τr

2π . We thus recover 3.
In the same way, assuming 2 implies 3. 
�

B. Proof of a Parabola Property

Michel Hénon has shown in [22] the equivalence between the isochrony of a potentialψ
and the parabolic property of the graph C of f : x → xψ associated with it. We propose
here a different proof based on the analyticity of the potential.

We call (P) this parabolic property, and it can be formulated as follows.
A function f : I → R has the property (P) if and only if :

1. f is either convex or concave on the real interval I , i.e. f ′′ > 0 or f ′′ < 0 on I.
2. For any P0 belonging to its graph C, and for any line L parallel to the tangent

TP0 (C), the square length of the projected chord
∣∣xa,1 − x p,1

∣∣ is proportional to the
distance between the chord and the tangent to the curve that is parallel to the chord.
The proportional relation holds equivalently with the vertical distance P0 I between
TP0 (C) and L. In Fig. 2 we have TP0 (C) : y = ξ x − Λ2

0 and L : y = ξ x − Λ2
1.

In terms of function, this last point translates as follows:

(P) :

∣∣∣∣∣
∣∣

∀x0 ∈ I, ∃�(x0) ∈ R+ such that ∀λ > 0, when they exist,
the two solutions x p and xa of the equation
f (x) − f (x0) = λ + f ′(x0) (x − x0)
satisfy the relation

(
xa − x p

) = �(x0)
√

λ with xa > x p.

Michel Hénon’s equivalence then corresponds to the following theorem.

Theorem 7. Let f : I → R be an analytic real function on an interval I ⊂ R. Then the
graph of f is a parabola if and only if f has the property (P).

The proof of this result will be done in several steps. The first one is a reduction
procedure given by the following lemma.

Lemma 5. Let g : I → R be a real analytic function satisfying property (P). Then we
have

1. For any real constant a �= 0, f := ag satisfies (P) ;
2. For any constants (ε, λ) ∈ R

2, f (x) = g (x) + εx + λ satisfies (P) ;
3. For any constants (ε, λ) ∈ R

2, with ε �= 0, f (x) := g (εx + λ) satisfies (P).

This statement indicates that property (P) is stable by affine transformations acting
on the graph of the considered function. Its proof is quite obvious and is left to the reader.

Any graph of a parabola can be obtained by the transformations of Lemma 5 of the
graphs of x �→ √

x or x �→ x2. It follows that, if the graph of f is a parabola, then f
satisfies the simple implication of the theorem.

In order to have the converse implication, i.e. (P) �⇒ C is a parabola, we now
consider the simple case where, in Fig. 2, TP0 (C) is horizontal.

Lemma 6. If ϕ : I → R is a real analytic function and if at x0 ∈ I we have ϕ′ (x0) = 0
and ϕ′′ (x0) = 2, then

5
[
ϕ(3) (x0)

]2 = 6ϕ(4) (x0) . (B1)
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Proof. Let ϕ (x) = g (z) with z = x − x0. Then, since ϕ is analytic, g has a convergent
Taylor expansion at x0 of the form g (z) = z2 + g3z3 + g4z4 + · · · , such that

g(z) = z2

⎛

⎝1 +
∑

n≥3

gnzn−2

⎞

⎠ = z2(1 + R(z)),

where R(z) is a convergent series that vanishes at z = 0. Then, we may expand

√
1 + R(z) = 1 +

1

2
R +

1

2!
(
1

2

)(
1

2
− 1

)
R2 + · · ·

and insert it in
√

g(z) = G(z) = z
√
1 + R(z) = z + G2z2 + G3z3 + · · ·

Because G(0) = 0 and G ′(0) = 1, G is locally bijective in the neighborhood of z = 0;
the analytic inverse function theorem assures that its inverse H is also a convergent
power series H(z) = z +

∑
n≥2 hnzn .

The fact that ϕ satisfies (P) means that for any small enough λ > 0 the two solutions
z1 and z2 > z1 of g (z) = λ satisfy z2 − z1 = � (x0)

√
λ. However,

g (z) = λ ⇔ G2 (z) = λ

⇔ G (z) = ±λ

⇔ z = H (±λ) .

More precisely, z2 = H(
√

λ) and z1 = H(−√
λ) if λ ≥ 0 is small enough because H

locally increases. The second condition from (P) gives H(
√

λ)−H(−√
λ) = �(x0)

√
λ

for sufficiently small λ ≥ 0 and

H(t) − H(−t) = � t, (B2)

since all members of the previous equation are power series. Inserting the expression of
H(t) = ∑

n≥1 hntn in (B2), noting that the even termsdisappear, onefinds 2h1 = 2 = �

and h2m+1 = 0 if m ≥ 1. In other words,

H(t) = t + h2t2 + h4t4 + · · ·
Identifying the terms of the equality given by H ◦ G(z) = z, one specifically finds
G2 = −h2 and G3 = −2h2G2 = 2h2

2. Hence the expansion of g is written as

g(z) = G2(z) = z2 − 2h2z3 + 5h2
2z4 + · · ·

= 1
2g′′(x0)z2 + 1

6g(3)(x0)z3 + 1
24g(4)(x0)z4 + · · · ,

where the identification between each term leads to
(
g(3)(x0)

)2 = 122h2
2 = 6

5g(4)(x0)
which is exactly (B1). 
�

We now exploit this particular case to characterize the property (P) in terms of a
differential equation.

Lemma 7. Let f : I → R be a real analytic function satisfying (P). Then f also
satisfies

∀x0 ∈ I , 5
[

f (3) (x0)
]2 = 3 f (4) (x0) f ′′ (x0) . (B3)
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Proof. For any point x0 ∈ I with f ′′ (x0) �= 0, the function

ϕ (x) = 2

f ′′ (x0)

[
f (x) − f (x0) − f ′ (x0) (x − x0)

]

satisfies the property (P) according to Lemma 5. Moreover we have that ϕ′ (x0) = 0
and

⎧
⎪⎪⎨

⎪⎪⎩

ϕ′′ (x) = 2 f ′′(x)
f ′′(x0)

�⇒ ϕ′′ (x0) = 2

ϕ(3) (x) = 2 f (3)(x)
f ′′(x0)

�⇒ ϕ(3) (x0) = 2 f (3)(x0)
f ′′(x0)

ϕ(4) (x) = 2 f (4)(x)
f ′′(x0)

�⇒ ϕ(4) (x0) = 2 f (4)(x0)
f ′′(x0)

.

As a consequence, ϕ satisfies the assumptions of Lemma 6 and therefore (B1) �⇒
(B3). 
�

Let us observe that (B3) was obtained under the condition that f ′′ (x0) �= 0. By
analytic continuation the relation is still satisfied at the isolated points where f ′′ could
vanish.

We are therefore led to solve (B3), which is in fact the universal differential equation
for parabolas. Setting w = f ′′, (B3) becomes

5
(
w′)2 = 3w′′w. (B4)

Two cases may occur:

1. If w′ = f (3) := 0 on I :
then f ′′ is constant and f is a second-degree polynomial and its graph C is a parabola.

2. If w′ = f (3) do not vanish everywhere on I :
then on any subset where w′ �= 0, Eq. (B4) becomes

5w′

w
= 3w′′

w′ ,

which gives by integration

5 ln |w| = 3 ln
∣∣w′∣∣ + cst �⇒ w′w−5/3 = cst.

Hence w−2/3 is a linear function of x , namely w (x) = f ′′ (x) = (εx + λ)−3/2. By
integrating this equation twice, we get that f is proportional to f0 (x) = √

εx + λ +
ax + b whose graph is a parabola too.

This concludes the proof of Theorem 7.

C. Useful Lemmas

Consider

– a frameRO = (O, i, j) with coordinates (x, y) for each point M ;
– a linear application L : R

2 → R
2 such that L (i) = u and L ( j) = v;

– a curve C of equation f (x, y) = 0 in the frame R.

The linearity of L ensures the two properties below.
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Lemma 8. The cartesian equation of curve C′ = L (C) in the frame R′
O = (O, u, v)

remains f (x, y) = 0.

Proof. Consider
−−→
O M = x i + y j . Then M ∈ C ⇔ f (x, y) = 0. But L(

−−→
O M) =

x L(i) + yL( j) = xu + yv ∈ C′ by definition. Thus f (x, y) = 0 also defines C′ inR′
O .
�

Define

– TO (P) the tangent at the origin O to a parabola P;
– S (P) the symmetry axis of parabola P .

Then we have the following lemma:

Lemma 9. If P ′ = L (P) then TO
(
P ′) = L (TO (P)) and S

(
P ′) = L (S (P)).

Proof. According to Lemma 8, P and P ′ have the equation (ax + by) + e = (cx + dy)2

in their respective frames. Then the tangent TO has the direction vector t = −bi + a j
and the symmetry axis S (P) has the vector n = −d i +c j . In the same way, with natural
notations, t ′ = −bu + av and n′ = −du + cv. Thus t ′ = L(t) and n′ = L(n). 
�

D. Isochrone Integrals

Lemma 10. The Keplerian and harmonic radial actions are given by

Ake
r = μ√−2ξ

− Λ and Aha
r = ξ

2ω
− Λ

2
.

For any pair of positive real (u1, u2) such that u1 < u2, we have

I1 (u1, u2) =
∫ u2

u1

√
(u − u1) (u2 − u)

u
du = π

2

(
u1 + u2 − 2

√
u1u2

)

and

I2 (u1, u2) =
∫ u2

u1

(u − 1)
√

(u − u1) (u2 − u)

u (u − 2)
du

=
{

π
2

[
u1 + u2 − √

u1u2 − √
(u1 − 2) (u2 − 2) − 2

]
if 2 < u1

π
2

[
u1 + u2 − √

u1u2 +
√

(u1 − 2) (u2 − 2) − 2
]

if u2 < 2.

The result of I1 can be obtained by a direct meticulous computation; instead, we
propose to deduce it from the physical computation of the Keplerian radial action.

In a second step, we will deduce I2 from I1.

D.1. Computation of Ake
r , Aha

r and physical deduction of I1. The radial action for an
orbit of negative energy ξ and momentum Λ in a Keplerian potential ψke (r) = −μ

r is
given by

Ake
r = 1

π

∫ ra

rp

√

2 [ξ − ψke (r)] − Λ2

r2
dr (D5)

=
√−2ξ

π

∫ ra

rp

√(
r − rp

)
(ra − r)

r
dr with

{
rp + ra = −μ

ξ

rpra = −Λ2

2ξ
(D6)
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as in (51). The radial period and the azimuthal precession are just partial derivatives of
the radial action according to (3) and (4):

∂Ar

∂ξ
= τr

2π
and

∂Ar

∂Λ
= −Δϕ

2π
= −nϕ.

For a negative energy, theKepler orbit is an ellipsewith semi-major axis a = 1
2

(
ra + rp

)
,

where ra and rp are respectively the apoastron and the periastron of the trajectory (hence
ra ≥ rp). For this Keplerian ellipse we trivially have Δϕ = 2π and then nϕ = 1. By
integration, one gets in this case

∂Ake
r

∂Λ
= −1 �⇒ Ake

r = −Λ + f (ξ) .

The unknown function f (ξ) could be expressed in terms of the radial period through
the relation

τr = 2π
∂Ake

r

∂ξ
= 2π f ′ (ξ) .

From the classical Kepler’s Third Law, we have τr = πμ√
2(−ξ)3/2

, which gives

f (ξ) = μ

2
√
2

∫
(−ξ)−3/2 dξ + c = μ√−2ξ

+ c �⇒ Ake
r = μ√−2ξ

− Λ + c, (D7)

where c is a constant. On the one hand, for a circular Keplerian orbit we have ra = rp,
so that Ake

r given by (D6) vanishes in this case. On the other hand, a circular Keplerian
orbit is characterized by Λ = μ√−2ξ

. Combining these two remarks in (D7) gives c = 0.
Plugging this result into (D6), one obtains

I1
(
rp, ra

) = π√−2ξ
Ake

r = π

2

(
μ

(−ξ)
− 2Λ√−2ξ

)
, (D8)

where we recognize the values of the sum and the product of ra and rp given by (D6).
Hence,

I1
(
rp, ra

) = π
2

(
rp + ra − 2

√
rpra

)
.

Since the above formula holds for any arbitrary positive numbers rp ≤ ra , we deduce
the explicit expression of I1 given in the lemma.

In the same way, given τr = π
ω
and nϕ = 1

2 to compute the radial action with (3)
and (4), the proof can be done similarly for a harmonic potential.

D.2. Proof for the expression of I2. The result for I2 (u1, u2) simply comes from the
relation

2 (u − 1)

u (u − 2)
= 1

u
+

1

u − 2

from which we have

2I2 (u1, u2) = I1 (u1, u2) +
∫ u2

u1

√
(u − u1) (u2 − u)

u − 2
du. (D9)

Two cases are of interest:
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1. If 2 < u1 < u2, then plugging v = u − 2 into the last integral of (D9), we get
2I2 (u1, u2) = I1 (u1, u2) + I1 (u1 − 2, u2 − 2) which gives

I2 (u1, u2) = π

2

[
u1 + u2 − √

u1u2 − √
(u1 − 2) (u2 − 2) − 2

]
.

2. If 0 < u1 < u2 < 2, then plugging v = 2 − u into the last integral of (D9), we get
2I2 (u1, u2) = I1 (u1, u2) − I1 (2 − u1, 2 − u2) which gives

I2 (u1, u2) = π

2

[
u1 + u2 − √

u1u2 +
√

(u1 − 2) (u2 − 2) − 2
]
.

This completes the proof for I2.
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