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Abstract: This is the third part of a four-paper sequence, which establishes the Thresh-
old Conjecture and the Soliton-Bubbling versus Scattering Dichotomy for the energy
critical hyperbolic Yang–Mills equation in the (4 + 1)-dimensional Minkowski space-
time. This paper provides basic tools for considering the dynamics of the hyperbolic
Yang–Mills equation in an arbitrary topological class at an optimal regularity. We gen-
eralize the standard notion of a topological class of connections on R

d , defined via a
pullback to the one-point compactification S

d = R
d ∪ {∞}, to rough connections with

curvature in the critical space L
d
2 (Rd). Moreover, we provide excision and extension

techniques for the Yang–Mills constraint (or Gauss) equation, which allow us to effi-
ciently localize Yang–Mills initial data sets. Combined with the results in the previous
paper (Oh and Tataru in The hyperbolic Yang–Mills equation in the caloric gauge. Local
well-posedness and control of energy dispersed solutions, 2017. arXiv:1709.09332), we
obtain local well-posedness of the hyperbolic Yang–Mills equation on R

1+d (d ≥ 4)
in an arbitrary topological class at optimal regularity in the temporal gauge (where fi-
nite speed of propagation holds). In addition, in the energy subcritical case d = 3,
our techniques provide an alternative proof of the classical finite energy global well-
posedness theorem of Klainerman–Machedon (Ann. Math. (2) 142(1):39–119, 1995.
https://doi.org/10.2307/2118611), while also removing the smallness assumption in the
temporal-gauge local well-posedness theorem of Tao (J. Differ. Equ. 189(2):366–382,
2003. https://doi.org/10.1016/S0022-0396(02)00177-8). Although this paper is a part
of a larger sequence, the materials presented in this paper may be of independent and
general interest. For this reason, we have organized the paper so that it may be read
separately from the sequence.
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1. Introduction

The subject of this paper is the (d + 1)-dimensional hyperbolic Yang–Mills equation
with compact noncommutative structure group. Our goal is two-fold:

• To describe, topologically and analytically, the Yang–Mills initial data sets at the
optimal L2-Sobolev regularity;

• To provide a good local theory for solutions at the optimal L2-Sobolev regularity.

In each case, we consider twomodel base spaces: Either a ball BR = {x ∈ R
d : |x | < R}

or the whole spaceRd for the first goal, and (suitable time restrictions of) their respective
domains of dependence D(BR) = {(t, x) ∈ R

1+d : |t | + |x | < R} and D(Rd) = R
1+d

for the second goal.
The main results of this paper may be classified into three classes:

(1) Good global gauge and topological class of rough connections.Motivated by the op-
timal regularity theory for the hyperbolic Yang–Mills equation, we consider locally-

defined connections on a subset ofRd with L
d
2 -curvature. Patching together the local

gauges, we show that we can always produce good global gauges in the two model
base spaces above (Theorems 1.4 and 1.5). Moreover, in the whole space case,
we use the asymptotics of the good global gauge potential to extend the notion of
topological classes of connections to the rough setting. (Definition 1.8).

(2) Initial data surgery.We provide techniques for excising and extending Yang–Mills
initial data sets, which are subject to the nonlinear Yang–Mills constraint (or Gauss)
equation (Theorems 1.16 and 1.17). These are based on a sharp solvability result for
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the covariant divergence equation D�e� = h which preserves physical space support
properties (Theorem 1.14).

(3) Large data local theory.Using the ideas of initial data surgery and patching solutions,
we show how to extend a small data well-posedness result in the temporal gauge to
arbitrarily large data; the key is that causality (or finite speed of propagation) holds
in the temporal gauge. Combined with the optimal regularity temporal gauge small
data global well-posedness theorem proved in [21], we prove local well-posedness
of the hyperbolic Yang–Mills equation in the temporal gauge for arbitrary critical
Sobolev initial data in d ≥ 4 (Theorem 1.22). In d = 3, we obtain a generalization
of a low regularity result of Tao [29], as well as an alternative proof of the classical
result of Klainerman–Machedon [11].

In addition, in the last section we provide a review of the theory of harmonic Yang–
Mills equation onR4 using the topological framework developed in this paper. A partic-
ular emphasis is given to the recent sharp energy lower bound for non-instanton solutions
due to Gursky–Kelleher–Streets [10], which clarifies the threshold energy for the energy
critical hyperbolic Yang–Mills equation (and the Yang–Mills heat flow); namely, it is
twice the ground state energy.

Remark 1.1. When restricted to the energy critical dimension d = 4, the results in this
paper constitute the third part of a four-paper sequence, whose principal aim is to prove
the Threshold Theorem for the energy critical hyperbolic Yang–Mills equation. The four
installments of the series are concerned with

(1) the caloric gauge for the hyperbolic Yang–Mills equation [20].
(2) large data energy dispersed caloric gauge solutions [21].
(3) topological classes of connections and large data local well-posedness, this article.
(4) soliton bubbling versus scattering dichotomy for large data solutions [22].

A short overview of the whole sequence is provided in the survey paper [23].
The present paper is mostly independent of the other papers in the series; the only

exception is the small data well-posedness result for the hyperbolic Yang–Mills equation
from [21] (d ≥ 4), which is used here as a black-box.

This paper is structured as follows. In the remainder of the introduction, we present
the basic definitions and main results of this paper. For the notation and conventions that
are not explained in the course of exposition, we refer the reader to Sect. 2. In Sects. 3–6,
we elaborate and provide proofs of the results stated in the introduction.

1.1. Connections on a vector bundle with structure group G. Here we give a quick
reviewof the basic theory of connections on vector bundles, and at the same time fix some
notation and conventions. For a textbook treatment of these materials, we recommend
[13,14,16].

Let G be a compact Lie group with Lie algebra g. We denote the adjoint action of G
on g by Ad(O)A = OAO−1, and the corresponding action of g by ad(A)B = [A, B].
We endow g with an inner product 〈·, ·〉 which is Ad-invariant (or bi-invariant), i.e.,

〈A, B〉 = 〈Ad(O)A, Ad(O)B〉 A, B ∈ g, O ∈ G.

Such an Ad-invariant inner product always exists ifG is compact. Indeed, from any inner
product 〈·, ·〉′, we may construct an Ad-invariant inner product by applying Ad(O) to
each input and averaging in O ∈ G.
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The main objects we consider are connections D on a vector bundle with structure
group G on some smooth base manifold X . Here we recall the standard local definition
of a vector bundle in the smooth and continuous cases, which will be most useful later:

Definition 1.2. A C∞ [resp. C0] vector bundle η on a smooth manifold X with fibers
modeled on a vector space V consists of the following objects:

• An open cover {Uα} of X ;
• For each pair Uα,Uβ , a C∞ [resp. C0] transition map O(αβ) : Uα ∩Uβ → Aut (V ),
which satisfy the following cocycle properties:
(1) O(αα) = I on Uα(= Uα ∩Uα),
(2) O(αγ ) = O(αβ)O(βγ ) on Uα ∩Uβ ∩Uγ .

Suppose that a Lie group G acts on V , in the sense that there exists a smooth represen-
tation ρ : G→ Aut (V ). We say that η has structure group G if the transition functions
may be lifted to C∞ [resp. C0] G-valued cocyles, i.e.,

O(αβ) = ρ ◦ Õ(αβ) for some Õ(αβ) : Uα ∩Uβ → G

so that {Õ(αβ)} satisfy the cocycle property.
For simplicity, throughout the paper we omit the representation ρ and denote the

lifted cocycles Õ(αβ) by O(αβ).

In the local formulation, vector bundles with structure group G defined by the data
sets {Uα, O(αβ)} and {U ′α′ , O ′(α′β ′)} are isomorphic if and only if there exists a common

refinement {Vγ } of {Uα} and {U ′α′ }, so that Vγ ⊆ Uα(γ ) ∩ Uα′(γ ) and C∞ [resp. C0]
functions P(γ ) : Vγ → G so that

P(γ )O(α(γ )α(δ)) = O ′(α′(γ )α′(δ))P(δ) on Vγ ∩ Vδ.

By the topological or isomorphism class of a vector bundle η, we mean the class of all
vector bundles isomorphic to η.

The open cover {Uα} in Definition 1.2 provides subsets on which η is isomorphic
to the trivial bundle Uα × V , and the transition maps {O(αβ)} describe how these local
trivial bundles are patched together. We call an isomorphism η �Uα→ Uα × V a local
gauge (or local trivializations), and refer to O(αβ), viewed as an isomorphism between
two trivial bundlesUα×V , as a local gauge transformation. Moreover, we use the term
global gauge for a global isomorphism from η→ X ×V (if it exists), and global gauge
transformation for a G-valued function on X , viewed as an isomorphism between such
trivial bundles.

Let η be aC∞ vector bundle with structure group G, defined by the data {Uα, O(αβ)}.
A section s of η consists of local data s(α) (the local expression for s in the local gauge on
Uα), which are smooth functions s(α) : Uα → V satisfying the compatibility condition

s(α) = O(αβ)s(β) on Uα ∩Uβ.

A connectionD on η consists of local data d+A(α), where each A(α) is a smooth g-valued
1-form on Uα satisfying the compatibility condition:

A(α) = Ad(O(αβ))A(β) − ∂O(αβ)O
−1
(αβ) on Uα ∩Uβ.

We call A(α) a gauge potential for D in the local gauge Uα .
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Observe that D defines a first order differential on the space of smooth sections of η,
in the sense that D( f s) = d f s + f Ds for any function f and any section s. The space
of all connections is denoted by A(η). As is well-known, A(η) has the structure of an
affine space, in the sense that the difference of two connections D and D′ is a 1-form
taking values in the adjoint bundle ad(η) (defined with the same data as η, but where
V = g and O(αβ) acts on V on the left by the adjoint action).

The curvature 2-form of D is defined by the relation

F[D](X,Y ) · s = DXDY s − DYDXs − D[X,Y ]s

Locally, it takes the form

F(α) = dA(α) +
1

2
[A(α) ∧ A(α)] on Uα,

and different local data are related to each other by

F(α) = Ad(O(αβ))F(β) on Uα ∩Uβ.

In other words, F is an ad(η)-valued 2-form on X .
Finally, we introduce the notion of the associated principal G-bundle, which is the

bundle with data the {Uα, O(αβ)} and with the fibers modeled on the group G, where the
transition functions O(αβ) act on G by right multiplication. From the local viewpoint,
it is simply a way to encapsulate the data {Uα, O(αβ)} without reference to any vector
space V . Principal bundles may serve as an alternative starting point for developing the
theory of vector bundles (cf. Kobayashi–Nomizu [13,14]).

1.2. Global gauges and topological classes of C∞ connections. In the following few
subsections, we specialize to the cases X = BR (a ball of radius R in R

d ) or Rd .
Eventually, we aim to give a suitable definition of connections at the optimal regularity,
and introduce the notion of topological classes of such connections. Before we embark
on these goals, we first review the simple case of a C∞ connection with a compactly
supported curvature.

We start with the case X = BR . Since BR is contractible, all C∞ vector bundles
over BR are trivial; more precisely, a global gauge (or trivialization) of η on BR can be
constructed by parallel transportation with respect to D along each ray starting from the
center x0 of BR . We obtain a representative A of D on BR such that

A ∈ C∞(BR; g). (1.1)

Moreover, (x − x0) j A j = 0 by the parallel transport condition.
Next, we consider the case X = R

d . SinceRd is contractible, too, allC∞ vector bun-
dles overRd are trivial. However, when the vector bundles is endowed with a compactly
supported curvature,wemay define their topological class by viewing themas bundles on
the compactificationRd ∪{∞}, which is homeomorphic to Sd = {X ∈ R

d+1 : |X | = 1}.
More precisely, consider the stereographic projection

� : Sd → R
d , (X1, . . . , Xd+1) �→

(
X1

1− Xd+1 , . . . ,
Xd

1− Xd+1

)
. (1.2)

Note that the pullback of (η, D) along �, which we denote by (�∗η,�∗D), obeys
F[�∗D] = 0 on U ′∞ = {X ∈ S

d : 0 < Xd+1 < 1} = �−1(Rd\B1). Since U ′∞ is
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simply connected, the pullback bundle �∗η is isomorphic to the trivial bundle U ′∞ × V
[13, Corollary 9.2], which may be easily extended to U∞ = {X ∈ S

d : Xd+1 > 0}.
Therefore,�∗η extends to a smooth vector bundle on Sd . The topological class of (η, D)

may be defined to be that of the extended bundle on S
d .

SinceSd is coveredbywith twocontractible open sets, namelyU0 = S
d\{(0, . . . , 0, 1)}

andU∞ = S
d\{(0, . . . , 0,−1)}, the topological class of the bundle on Sd is determined

by the transition map in-between. At the level of η, it is the transition map O between
R
d , on which there exists a local representative D = d+ A with A(0) = 0 and x j A j = 0

(parallel transport along radial rays from 0), and R
d\B1, on which D = d. On R

d\B1,
we have

A = −∂x OO−1.

Moreover, since x j A j = 0, it follows that x j∂ j O = 0 on R
d\B1, i.e., O(x) = O( x

|x | )
for |x | ≥ 1. Defining O(∞) : Rd\{0} → G, O(∞)(x) = O( x

|x | ) and introducing a
smooth function χ such that 1− χ is compactly supported, we arrive at:

Theorem 1.3. Let D be a C∞ connection on a C∞ vector bundle η on R
d , whose

curvature is compactly supported. Then there exists a global gauge for η in which the
global gauge potential A = D− d admits a decomposition of the form

A = −χO(∞);x + B (1.3)

where O(∞)(x) is a smooth 0-homogeneous map into G and B ∈ C∞c (Rd ; g).
It is not difficult to see that O(∞), which we call a gauge at infinity for A, is defined

uniquely up to homotopy (cf. Proposition 1.6). The homotopy class [O(∞)], which is
defined intrinsically without reference to the pullback procedure, determines the topo-
logical class1 of the extended pullback bundle on Sd . Hence, any topological invariants
of the extended pullback bundle depend only on [O(∞)].

Characteristic classes are important invariants of a vector (or principal) G-bundle.
On Sd , by the Chern–Weil theory [14, Chapter XII], these may be defined in terms of a
connection D as follows. Given any symmetric Ad-invariant k-linear function f on g,
we call the 2k-form

f (F[D], . . . , F[D]) = f (Fj1 j2 , . . . , Fjd−1 jd )dx
j1 ∧ dx j2 ∧ · · · ∧ dx jd

the characteristic class associated to f . This 2k-form is closed and is invariant, up to an
exact form, in the choice of a connection D on the bundle; hence it defines a cohomology
class in H2k(Sd), which depends only on the isomorphism class of the bundle.Moreover,
when d = 2k, the integral

χ f =
∫
Sd

f (F[D], . . . , F[D]),

called the characteristic number, is also an invariant of the bundle.
Now, as an application of Theorem 1.3, consider a C∞ connection D on R

d with
compactly supported curvature. Then χ f of the pullback bundle equals

χ f =
∫
Rd

f (F[D], . . . , F[D]), (1.4)

1 Strictly speaking, O(∞) in Theorem 1.3 directly determines only the smooth isomorphism class, which

in turn determines the topological (i.e., C0) isomorphism class by a density argument.
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and depends only on [O(∞)] in Theorem 1.3.
An important special case of the above theory is when d = 4 and G = SU (2), and

we take f (A, B) = 1
8π2 tr (AB). The corresponding characteristic number, given by the

integral formula

c2 = 1

8π2

∫
R4

tr (F ∧ F),

is called the secondChern number. It is always an integer, and it classifies the topological
classes of SU (2)-bundles. For more on characteristic classes, we refer the reader to [16].

1.3. Global gauges for rough G-bundles. We are now ready to describe our first set
of results. Motivated by the desire to study the hyperbolic Yang–Mills equation (cf.
Sect. 1.5) at the optimal scaling-invariant regularity, our aim here is to sharpen (1.1) and
(1.3) in two ways:

(1) To obtain quantitative bounds for A in a “good global gauge” in terms of F ;

(2) To relax the condition for F to the scaling-invariant condition F ∈ L
d
2 (X).

In what follows, we restrict to d ≥ 3 (which, for instance, avoids the case L
d
2 = L1).

To set up the scene, we start with the definition of connections with L
d
2
loc curvature.

Let X be an open subset of Rd . For k ∈ R and p ∈ [1,∞], we introduce
Gk,p
loc (X) ={O ∈ Wk,p

loc (X;RN×N ) : O(x) ∈ G for a.e. x ∈ X}. (1.5)

The relevant regularity class is G2, d2
loc , which turns out to be closed under multiplication

and inverse (see Lemmas 3.1, 3.3 and 3.4 below). In parallel to Sect. 1.1, we define a

G2, d2
loc (principal) G-bundle on X ⊆ R

d by the data:

• An open cover {Uα} of X ;
• A transition function O(αβ) ∈ G2, d2

loc (Uα ∩ Uβ) for every α, β, obeying the cocycle
conditions:
(1) O(αα) = id on each Uα;
(2) O(αβ) · O(βγ ) = O(αγ ) on each Uα ∩Uβ ∩Uγ .

An open cover {Vγ } is a refinement of {Uα} if there exists a function α = α(γ ) such
that Vγ ⊆ Uα(γ ). We say that two data sets {Uα, O(αβ)} and {U ′α′ , O ′(α′β ′)} define an

equivalent G2, d2
loc bundle if there exists a common refinement Vγ of the open covers and

P(γ ) ∈ G2, d2
loc (Vγ ) such that

P(δ) · O(α(δ)α(γ )) = O ′(α′(δ)α′(γ )) · P(γ ) on Vγ ∩ Vδ.

A W
1, d2
loc connection D on the bundle defined by {Uα, O(αβ)} is given by the local data:

• A 1-form A(α) ∈ W
1, d2
loc (Uα; g) for each α, called the local representative of D onUα ,

satisfying the compatibility condition

A(α) = Ad(O(αβ))A(β) − O(αβ);x on each Uα ∩Uβ.
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Given aW
1, d2
loc connection D, we define its curvature 2-form F = F[D] by the local data:

F(α) = dA(α) +
1

2
[A(α) ∧ A(α)] on each Uα.

We denote byA1, d2
loc (X) the space of all W

1, d2
loc connections on all G2, d2

loc bundles on X . By
the compatibility property of F(α) (algebraically the same as in the smooth case), note
that

|F | = |F(α)| =
√〈F(α), F(α)〉 on each Uα

is a well-defined element of L
d
2
loc(X).

Consider the case X = BR . In order to state quantitative bounds for the gauge

potential in a “good gauge”, we introduce the inner (L
d
2 -)concentration scale with

threshold ε∗ of a connection D, defined as follows:

r ε∗
c [D] = sup{r > 0 : ‖F[D]‖

L
d
2 (Br (x)∩X)

≤ ε∗ for all x ∈ X}.

Theorem 1.4 (Good gauge on a ball). Let D ∈ A1, d2
loc (BR) satisfy F[D] ∈ L

d
2 (BR) and

r ε∗
c [D] ≥ r , for some r > 0 and a sufficiently small ε∗ > 0. Then there exists a global
gauge in which the gauge potential A for D satisfies

‖A‖
Ẇ 1, d2 (BR)

�
ε∗, Rr

1. (1.6)

If, in addition, D(n)F ∈ L p(BR) for some nonnegative integer n and p ∈ (1,∞) such
that p ≥ d

n+2 , then A ∈ Wn+1,p(BR).

Theorem 1.4 tells us that given any connection on a ball with L
d
2 -curvature, there

exists a good gauge in which the a-priori bound (1.6) holds. When ‖F[D]‖
L

d
2 (BR)

is

sufficiently small (with the threshold depending on d), Theorem 1.4 is the classical
result of Uhlenbeck [30]. The general case is proved by appropriately patching up local
applications of Uhlenbeck’s lemma.

Next, we consider the case X = R
d . To proceed, we need an additional concept. We

define the outer (L
d
2 -)concentration radius with threshold ε∗ of a connection D to be

Rε∗
c [D] = inf{r > 0 : ‖F[D]‖

L
d
2 (Rd\Br (x))

≤ ε∗ for some x ∈ R
d}.

Let 1− χ ∈ C∞c (Rd) be fixed.

Theorem 1.5 (Good global gauge on R
d ). Let D ∈ A1, d2

loc (Rd) satisfy F[D] ∈ L
d
2 (Rd),

as well as r ε∗
c [D] ≥ r and Rε∗

c [D] ≤ R for some 0 < r ≤ R and a universal small
constant ε∗ > 0. Then there exists a global gauge on R

d , in which the gauge potential

A ∈ Ẇ
1, d2
loc (Rd) for D admits a decomposition of the form

A = −χ(·/R)O(∞);x + B (1.7)
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where O(∞)(x) is a smooth 0-homogeneous map into G and B ∈ Ẇ 1, d2 (Rd; g). More-
over,

‖B‖
Ẇ 1, d2

�
ε∗, Rr

1, ‖O(∞)‖CN (Sd−1) �
ε∗, Rr ,N 1 for all N ≥ 0. (1.8)

If, in addition, D(n)F ∈ L p(BR) for some nonnegative integer n and p ∈ (1,∞) such
that p ≥ d

n+2 , then B ∈ Ẇ n+1,p(Rd).

Thanks to Theorems 1.4 and 1.5, we may identify any connection D ∈ A1, d2 (X)with

a gauge potential A ∈ W
1, d2
loc (X) in a good global gauge. In the rest of the introduction,

we adopt the convention of referring to a connection D on BR or Rd by its global gauge
potential A.

1.4. Topological classes of rough connections. Given a W
1, d2
loc connection A on R

d ,
we call a pair (O(∞), B) of a smooth 0-homogeneous map into G and an element in

Ẇ 1, d2 (Rd; g) a good representative of A if A = −χO(∞);x + B for some 1 − χ ∈
C∞c (Rd). We furthermore call O(∞) a gauge (transformation) at infinity for A. Theo-

rem 1.5 insures that a good representative always exists provided that F[A] ∈ L
d
2 .

Recall that when the curvature is smooth and compactly supported, the topological
class of A is classified by the homotopy class of its gauge at infinity O(∞). We extend

the definition of the topological class to a rough connections on R
d with L

d
2 -curvature

using this classification. We need the following preliminary results:

Proposition 1.6. Let A ∈ A1, d2
loc (Rd) satisfy F[A] ∈ L

d
2 (Rd), and let (O(∞), B) be a

good representative of A.

(1) If (O ′(∞), B
′) is another good representation of A, then O(∞) is homotopic to O ′(∞).

(2) Conversely, given any smooth O ′(∞) : Sd−1 → G homotopic to O(∞), there exists
another good representation (O ′(∞), B

′) of A.

Remark 1.7. For completeness, we make the trivial observation that the homotopy class
of O(∞) is independent of the choice of χ , too.

Theorem 1.5, Proposition 1.6 and Remark 1.7 lead to the following:

Definition 1.8. Given an L
d
2 -curvature connection A, we define the topological class

[A] of A to be the homotopy class of O(∞) : Sd−1 → G of a good representative (i.e.,
a gauge at infinity for A). If the topological class of A′ is [A], then we write A′ ∈ [A].

Observe that the addition of a 1-form B in Ẇ 1, d2 (Rd; g) does not change the topo-
logical class of A, i.e.,

A + B ∈ [A].
In particular, by mollifying and cutting off B, we can easily find approximations by
smooth connections with compactly supported curvature in the same topological class
with respect to the distance d

Ẇ 1, d2
(A, A′) = ‖A − A′‖

Ẇ 1, d2 (Rd ;g)
. Moreover, good
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representations of two connections with the same O(∞) are path-connected with respect
to the d

Ẇ 1, d2
. By Proposition 1.6, it follows that each topological class is path-connected

with respect to d
Ẇ 1, d2

up to global gauge transformations in G2, d2
loc (Rd).

Observe also that topological class is determined by the part of the connection where

the L
d
2 norm of F is concentrated. More precisely, we have:

Proposition 1.9. Let A, A′ ∈ A1, d2
loc (Rd) satisfy F[A], F[A′] ∈ L

d
2 (Rd). Assume more-

over that A and A′ are close in Ld(B5R), and have small L
d
2 curvature outside BR,

i.e.,

‖A − A′‖Ld (B5R) ≤ ε∗, ‖F[A]‖
L

d
2 (Rd\BR)

≤ ε∗, ‖F[A′]‖
L

d
2 (Rd\BR)

≤ ε∗,

where ε∗ > 0 is sufficiently small universal constant. Then [A] = [A′].

We now discuss some simple consequences of the above results. Given an L
d
2 -

curvature connection A, let An be an approximation of A in d
Ẇ 1, d2

, such that each

An is smooth and F[An] is compactly supported. For any symmetric Ad-invariant k-
linear function f on g, the associated characteristic classes of the pullback bundles
(�∗η,�∗An) are independent of n (for sufficiently large n), as well as of the approxi-
mating sequence. Moreover, when d = 2k, the characteristic numbers obey

χ f =
∫
Rd

f (F[An], . . . , F[An])→
∫
Rd

f (F[A], . . . , F[A])

by continuity of the integral with respect to ‖A− A′‖
Ẇ 1, d2 (Rd ;g)

. Hence we recover the

following result of Uhlenbeck [31]:

Corollary 1.10. The characteristic numbers χ f , defined as in (1.4), depend only on [A].
In particular, they vanish for [0].

As another corollary of Theorem1.5, we obtain a characterization of the topologically
trivial class (i.e., the topological class of the trivial connection A = 0):

Corollary 1.11. The space of topologically trivial connections with finite L
d
2 curvature

correspond exactly to

A1, d2
0 (Rd) = {D = d + A : A ∈ Ẇ 1, d2 (Rd ; g)}.

All characteristic numbers associated to a connection A in A1, d2
0 (Rd) vanish.

Remark 1.12. The preceding corollary implies that given any connection A in the topo-

logically trivial class, there exists a global representative Ã in the space Ẇ 1, d2 (Rd; g).
Note, however, that no quantitative bound on ‖ Ã‖

Ẇ 1, d2
is claimed; such a bound would

rely on quantitative bounds on a homotopy of O(∞) to the identity in terms of scaling-
invariant bounds on O(∞).
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1.5. Hyperbolic Yang–Mills equation. The remainder of the introduction concerns the
hyperbolic Yang–Mills equation. The purpose of this subsection is to provide a brief
introduction to this equation.

Let R1+d denote the (d + 1)-dimensional Minkowski space, which is equipped with
the Minkowski metric mμν = diag(−1,+1, . . . ,+1) in the rectangular coordinates
(x0, x1, . . . , xd). We will often write t = x0, to emphasize the role of x0 as (a choice of)
a time function. Throughout this paper, we will use the usual convention of raising and
lowering indices using the Minkowski metric, as well as summing up repeated upper
and lower indices.

Consider a connection D on a vector bundle on R
1+d with structure group G. By

topological triviality of Rd (or Theorem 1.5 at low regularity), D at each t may be
identified with a global gauge potential A. The hyperbolic Yang–Mills equation onR1+d

for A is the Euler–Lagrange equation associated with the formal Lagrangian action
functional

L(A) = 1

2

∫
R1+d
〈Fαβ, Fαβ〉 dxdt,

which takes the form

DαFαβ = 0. (1.9)

Clearly, (1.9) is invariant under (smooth) gauge transformations. This equation possesses
a conserved energy, given by

E{t}×Rd (A) =
∫
{t}×Rd

∑
α<β

|Fαβ |2 dx .

Furthermore, (1.9) is invariant under the scaling

A(t, x) �→ λA(λt, λx) (λ > 0).

The scaling-invariant L2-Sobolev norm is ‖A(t, ·)‖
Ḣ

d−2
2
. In particular, (1.9) is en-

ergy critical when d = 4, in the sense that the conserved energy (which scales like
‖A(t, ·)‖Ḣ1 ) is invariant under the scaling.

We are interested in the initial value problem for (1.9) at the scaling-invariant L2-
Sobolev regularity. For this purpose we first formulate a gauge-covariant notion of initial
data sets. We say that a pair (a, e) of a gauge potential a and a g-valued 1-form e on Rd

is an initial data set for a solution A to (1.9) if

(A j , F0 j ) �{t=0}= (a j , e j ).

Here and throughout this paper, the roman letters stand for the spatial coordinates
x1, . . . , xd . Note that (1.9) with β = 0 imposes the condition that

D j e j = ∂ j e j + [a j , e j ] = 0. (1.10)

This equation is the Gauss (or the constraint) equation for (1.9).
It turns out that (1.10) characterizes precisely those pairs (a, e) which can arise as

an initial data set. Thus we make the following definition:
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Definition 1.13. AnHσ (O) (resp. Ḣσ (O) orHσ
loc(O)) initial data set for theYang-Mills

equation is a pair (a, e) ∈ Hσ × Hσ−1(O) (resp. Ḣσ × Ḣσ−1(O) or Hσ
loc× Hσ−1

loc (O))
that satisfies the constraint equation (1.10).

Due to invariance under gauge transformations, (1.9) is not even formally well-posed
when viewed as a PDE for A. In order to analyze (1.9) at the level of A, this invariance
must be removed by fixing a representative (or a gauge). A simple and useful way is to
require that

A0 = 0. (1.11)

The gauge thus chosen is called temporal. In this gauge, (1.9) becomes a coupled system
of wave and transport equations for the curl and divergence of A, respectively, and local
well-posedness for regular data is easily follows. Moreover, in the regular case it is also
easy to verify the finite speed of propagation property, in the sense that A vanishes on
the domain of dependence of the zero-set of the data.

The aforementioned coupled wave-transport system in the temporal gauge becomes
difficult to analyze in the low regularity setting. Nonetheless, in [21], global well-
posedness of (1.9) under (1.11) was proved for small data at the optimal L2-Sobolev
regularity (for dimensions d ≥ 4), by first working in a gauge with more favorable
structure (caloric gauge), and then estimating the gauge transformation to the temporal
gauge.

At this point, one may imagine upgrading the small data result to large data local
well-posedness by the following procedure:

(1) Constructing local-in-spacetime solutions from the small data result applied to suit-
able localizations of the initial data;

(2) Patch the local-in-spacetime solutions together by finite speed of propagation.

Though this strategy eventually works (see Sect. 1.7 below), this is not trivial. The
primary reason is that the Gauss equation (1.10) is nonlocal, and thus initial data sets
cannot be freely cut off. The next subsection is devoted to resolving this issue.

1.6. Excision and extension of Yang–Mills initial data. In this subsection we present
the second set of results of this paper, which eventually lead to a useful excision-and-
extension technique for Yang–Mills initial data. The first and main result is solvability
of the inhomogeneous Gauss equation

(D(a))�e� = h (1.12)

while keeping good physical space support properties.

Theorem 1.14. Let d ≥ 4 and a ∈ Ḣ
d−2
2 (Rd). Given any convex open set K , there

exists a solution operator Ta for (1.12) satisfying the following conditions:

(1) (Boundedness) We have

‖Ta[h]‖
Ḣ

d−4
2

�‖a‖
Ḣ

d−2
2

,L(K ) ‖h‖
Ḣ

d−6
2

, (1.13)

where L(K ) is a scaling-invariant quantity (i.e., L(λK ) is independent of λ > 0)
defined in (4.2).
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(2) (Exterior support property) If h is supported outside the set

λK = {λ(x − xK ) ∈ R
d : xK is the barycenter of K }

for some λ > 0, then so is Ta[h].
(3) (Higher regularity) If h and a are smooth, so is Ta[h].

Remark 1.15. In d ≤ 3, our proof does not apply at the critical regularity e ∈ Ḣ
d−4
2 ,

since the possible error of (1.10) belongs only to the ill-behaved space Ḣ− 3
2 . However,

under an extra smallness assumption for ‖a‖
Ḣ

d−2
2
, the conclusion of Theorem 1.14 holds

for h ∈ Ḣσ−1 and e ∈ Ḣσ for the subcritical regularities σ > 1− d
2 ; see Proposition 4.2

below.

As a consequence of Theorem 1.14, we have the following extension result for the
Yang–Mills initial data sets.

Theorem 1.16. For d ≥ 4, let K be a convex domain in R
d , and let (a, e) be an H d−2

2

Yang–Mills initial data set on 2K\K. Then there exists anH d−2
2 Yang–Mills initial data

set (ā, ē) on R
d\K that coincides with (a, e) on 2K\K and obeys

‖ā‖
Ḣ

d−2
2 (Rd\K )

�L(K ) ‖a‖
Ḣ

d−2
2 (2K\K )

, (1.14)

‖ē‖
Ḣ

d−4
2 (Rd\K )

�‖a‖
Ḣ

d−2
2 (2K\K )

,L(K ) ‖e‖
Ḣ

d−4
2 (2K\K )

. (1.15)

It can be arranged so that the association (a, e) �→ (ā, ē) is equivariant under constant
gauge transformations, i.e., (Ad(O)a, Ad(O)e) �→ (Ad(O)ā, Ad(O)ē)) for each O ∈
G. Moreover, if (a, e) is smooth, then so is (ā, ē).

At this point, it is useful to introduce a suitable generalization of local energy for
initial data sets at the optimal L2-Sobolev regularity. For d ≥ 4 even, we make a gauge-
invariant definition

E
d−2
2

U (a, e) = ‖(D(a))(
d−2
2 )(F[a], e)‖2L2(U )

+ ‖(F[a], e)‖2
L

d
2 (U )

.

Note that this is equivalent to the energy when d = 4. For d ≥ 4 odd, there is a nuisance
that the optimal L2-Sobolev regularity involves a fractional derivative. Here, we take an
easy way out, and make a gauge-dependent definition in this case:

E
d−2
2

U (a, e) = ‖(a, e)‖2
Ḣ

d−2
2 ×Ḣ d−4

2 (U )
.

Let ε∗ > 0. For X = BR orRd , we define the notion of the (inner) critical L2-Sobolev
concentration scale with threshold ε∗ as follows:
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r ε∗
c = r ε∗

c [a, e] = sup{r > 0 : E
d−2
2

X∩Br (x)(a, e) ≤ ε2∗ for all x ∈ X}, (1.16)

When d = 4, we call r ε∗
c the energy concentration scale with threshold ε∗.

Combining Theorem 1.16 with Uhlenbeck’s lemma, we also obtain the following
excision-and-extension result.

Theorem 1.17. Let (a, e) be an H
d−2
2

loc Yang–Mills initial data set on X = BR (resp.
X = R

d) with critical L2-Sobolev concentration scale (with threshold ε∗) at most rc.
Consider a ball Br (x) with radius r < 10rc and x ∈ X. For ε∗ > 0 sufficiently small
(as a universal constant), the following statements hold.

(1) To (a, e), we associate (ã, ẽ, O) ∈ H d−2
2 (Rd)× G d

2 (Br (x) ∩ X) such that (ã, ẽ) is
gauge equivalent to (a, e) on Br (x) ∩ X, i.e.,

(ã, ẽ) = (Ad(O)a − O;x , Ad(O)e) in Br (x) ∩ X.

Moreover, (ã, ẽ) and O obey the bounds

‖(ã, ẽ)‖2
Ḣ

d−2
2 ×Ḣ d−4

2
+ r−(d−2)‖ã‖2L2 + r−(d−4)‖ẽ‖2L2 � E

d−2
2

Br (x)∩X (a, e),

(1.17)

‖O;x‖
Ḣ

d−2
2 (Br (x)∩X)

� ‖a‖
Ḣ

d−2
2 (Br (x)∩X)

. (1.18)

When d is odd, O is a constant gauge transformation. If (a, e) is smooth, then so
are (ã, ẽ) and O.

(2) Let {(an, en)} be a sequence ofH d−2
2 Yang–Mills initial data sets on Br (x)∩ X such

that (an, en) → (a, e) in H
d−2
2 × H

d−4
2 (Br (x) ∩ X). Let (ãn, ẽn, On) be given2

by (1) from (an, en). Then after passing to a subsequence and suitably conjugating
each (ãn, ẽn, On) with a constant gauge transformation, we have

(ãn, ẽn)→ (ã, ẽ) in H
d−2
2 × H

d−4
2 (Rd), On → O in H

d
2 (Br (x) ∩ X).

Remark 1.18. Theorems 1.16 and 1.17 have a similar flavor to the so-called initial data
gluing procedure in general relativity [5–7], which is a method to remove an error in the
constraint equation while keeping physical space localization properties. See [19] for
an adaptation of this procedure for the Maxwell–Klein–Gordon constraint equation at
the critical regularity, which had a similar role as Theorems 1.16 and 1.17 in the present
paper. We also note that an initial data extension theorem, analogous to Theorem 1.16,
was recently proved for the vacuum Einstein equation at the L2-curvature regularity
[8,9].

As is evident from (2), it is natural to view the association (a, e) �→ (ã, ẽ, O) in (1)
as defined up to a constant gauge transformation.

2 Note that the hypothesis on the critical L2-Sobolev concentration scale is satisfied for large enough n.
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1.7. Local theory in an arbitrary topological class. We present the third set of results of

this paper, which concern local theory of (1.9) for arbitrary H
d−2
2

loc initial data sets. The
main local well-posedness results in the temporal gauge (Theorems 1.22 and 1.27) are
proved as consequences of the finite speed of propagation property of (1.9), the results
in Sect. 1.6 and small data well-posedness results [21,29].

We start with a (rather general) basic definition of a solution.

Definition 1.19. (1) An H
d−2
2

loc connection in an open set O ⊆ R
1+d is a connection

D = d + A satisfying

(A, ∂t A) ∈ Ct H
d−2
2

loc × Ct H
d−4
2

loc (O).

(2) An H d−2
2 solution for the hyperbolic Yang–Mills equation (1.9) in O is an H

d−2
2

loc
connection D = d + A in O which is the limit of regular solutions in the topology

Ct H
d−2
2

loc × Ct H
d−4
2

loc (O).

It is straightforward to see that the set ofH
d−2
2

loc solutions is closed with respect to the

Ct H
d−2
2

loc × Ct H
d−4
2

loc topology.

Next, we formulate the notion of gauge covariance ofH
d−2
2

loc connections, as follows:

Definition 1.20. (1) A regular gauge transformation in an open setO ⊆ R
1+d is a map

O : O→ G with the regularity properties O;t,x ∈ Ct HN
loc.

(2) An admissible gauge transformation in O is a map O : O→ G with the regularity

properties O;t,x ∈ Ct H
d−2
2

loc .

(3) We say that twoH d−2
2 connections A(1) and A(2) in O are gauge equivalent if there

exists an admissible gauge transformationO inO such that A(2)
j = Ad(O)A(1)

j −O; j .
Any admissible gauge transformation may be approximated by regular gauge trans-

formations in Ct H
d
2
loc (the proof is a straightforward variant of Lemma 3.2 below, and

is left to the reader). As a consequence, if A and A′ are gauge equivalent H d−2
2 con-

nections in O, A is a H d−2
2 solution to (1.9) if and only if A′ is. Moreover, the class of

gauge-equivalent connections is closed:

Proposition 1.21. The class [A] of gauge-equivalentH d−2
2 connections is closed in the

topology Ct H
d−2
2

loc × Ct H
d−4
2

loc (O).

With the basic notion of a solution in our hands, we are ready to discuss the local

theory of (1.9) forH
d−2
2

loc initial data sets. Given a subset X of Rd and a time interval I ,
denote by DI (X) the future domain of dependence of X , intersected with I × R

d :

DI (X) = {(t, x) ∈ [0,∞)× R
d : Bt (x) ⊆ X} ∩ I × R

d .

In [21], global well-posedness of (1.9) in the temporal gauge for small Ḣ d−2
2 data

on Rd was proved for dimensions3 d ≥ 4 (see Theorem 5.2 below). Combined with the

3 The exposition of [21] is focused on the case d = 4, but the proof extends in a straightforward manner to
d ≥ 4.
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excision-and-extension result in Sect. 1.6 and the finite speed of propagation property
in the temporal gauge, we obtain:

Theorem 1.22 (Local well-posedness at optimal regularity, d ≥ 4). For d ≥ 4, there
exists a dimensional constant ε∗ > 0 such that the Yang–Mills equation in the temporal
gauge is locally well-posed on the time interval of length r ε∗

c = r ε∗
c [a, e] for initial data

(a, e) ∈ H
d−2
2

loc (X) for X = BR or Rd . More precisely, the following statements hold.

(1) (Regular data) Let (a, e) be a smooth Yang–Mills initial data set on X. Then there
exists a unique smooth solution At,x to the Yang–Mills equation in the temporal
gauge on D[0,rc)(X) such that (A j , F0 j ) �{t=0}= (a j , e j ).

(2) (Rough data) Let H
d−2
2

loc, rc
(X) be the class of H

d−2
2

loc (X) Yang–Mills initial data sets
with concentration scale ≥ rc, topologized with the norm

‖(a, e)‖
H

d−2
2

loc, rc
(X)
= sup

x∈X
‖(a, e)‖

Ḣ
d−2
2 ×Ḣ d−4

2 (Brc (x)∩X)
.

Then the data-to-solution map admits a continuous extension

H
d−2
2

loc, rc
(X) � (a, e) �→ (Ax , ∂t Ax ) ∈ CtH

d−2
2

loc, rc
(D[0,rc)(X)). (1.19)

(3) (A-priori bound) The solution defined as above obeys the a-priori bound

‖(A, ∂t A)‖
L∞(H

d−2
2 ×H d−4

2 )(D[0,rc)(BR′ (x)))
� ‖(a, e)‖

H
d−2
2 ×H d−4

2 (BR′ (x))
(1.20)

for any BR′(x) ⊆ X.

The temporal gauge solution given by Theorem 1.22 represents any H
d−2
2

loc solution
in the sense of Definition 1.19.

Theorem 1.23. Any H
d−2
2

loc solution to the hyperbolic Yang–Mills equation in DI (X)

(where X = BR or Rd ) can be put into the temporal gauge.

When X = R
d , we say that A is a H d−2

2 solution to the hyperbolic Yang–Mills

equation in I × R
d if it is an H

d−2
2

loc solution, and moreover satisfies the following
condition for every t ∈ I :

E
d−2
2

Rd (Ax (t), F0x (t)) <∞. (1.21)

By Uhlenbeck’s lemma and Theorem 1.22(3), (1.21) holds for every t ∈ I if it holds
for its data (a, e) at some t ∈ I . For such a solution, the topological class of Ax (t) is
preserved under the hyperbolic Yang–Mills evolution.

Proposition 1.24. Let A be anH d−2
2 solution to (1.9) in I×R4. Then [Ax (t)] is constant

in t .

The temporal gauge is convenient in order to deal with causality, but it lacks good
dispersive bounds in contrast to the caloric gauge [21] (cf. also the small data result in
the Coulomb gauge in [15]). In a different global gauge, the caloric gauge regularity
may be patched up, as the following sample result demonstrates:
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Theorem 1.25. Let A be an H
d−2
2

loc solution to (1.9) in D[0,rc)(BR), whose initial data
set has critical L2-Sobolev concentration scale ≥ rc with sufficiently small ε∗ > 0. In a
suitable global gauge in D = [0, rc)× BR−4rc , the solution obeys

‖∇Ax‖
L∞ Ḣ

d−4
2 (D)

+ ‖�Ax‖
�1L2 Ḣ

d−5
2 (D)

+ ‖∇A0‖
�1L2 Ḣ

d−3
2 (D)

�
ε∗, R

rc
1. (1.22)

Remark 1.26. The restriction to [0, rc)×BR−4rc instead ofD[0,rc)(BR) is enforcedmerely
to avoid technical issues near the boundary, and may be removed if desired. We do not
pursue this improvement, since Theorem 1.25 suffices for our application in [22].

Finally, we discuss application of our techniques to the case of d = 3. For X = BR
or R3, we topologize the space Hσ

loc(X) with the norm

‖(a, e)‖Hσ
loc(X) = sup

x∈X
‖(a, e)‖Hσ×Hσ−1(B1(x)∩X).

From the small data local well-posedness result of Tao [29], we obtain the following
large data result:

Theorem 1.27 (Local well-posedness in the temporal gauge, d = 3). Let σ > 3
4 . The

Yang-Mills equation in the temporal gauge is locally well-posed for initial data (a, e) ∈
Hσ

loc(R
3) on a time interval of length ≥ T (‖(a, e)‖Hσ

loc
).

Moreover, the techniques of this paper lead to an alternative proof of the classical
result of Klainerman–Machedon [11]:

Theorem 1.28. The Yang–Mills equation in the temporal gauge is globally well-posed
for initial data (a, e) ∈ H1

loc(R
3).

An advantage of the present approach is that the delicate issue of boundary values on
spacetime cones (i.e., the domains of dependence of balls) is avoided by the robust
excision-and-extension procedure. We note that yet another proof of Theorem 1.28
relying on a global gauge defined by the Yang–Mills heat flow (a subcritical version of
the caloric gauge we use in the present series [20–22]) was given by the first author
[17,18].

1.8. Topological classes, instantons and harmonic Yang–Mills connections on R
4. In

this subsection, we restrict to the energy critical dimension d = 4, and discuss the
relationship between the topological class of a connection a on R4 and its static energy

Ee(a) = ER4(a, 0) = 1

2

∫
R4
〈Fjk[a], F jk[a]〉 dx . (1.23)

Recall that each topological class [a] of finite energy connections form a path-
connected component in the Ḣ1 distance up to gauge transformations (Sect. 1.4). We
may therefore look for an absolute minimizer of Ee(a) in each topological class; such a
connection is called an instanton.4 More generally, we refer to a critical point of (1.23)
as a harmonic Yang–Mills connection.

4 Usually, one also distinguishes between an instanton and an anti-instanton, depending on whether the
curvature is self- or anti-self-dual. Here, we make no such distinction.
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Such connections are clearly static solutions to both the Yang–Mills heat flow and
the hyperbolic Yang–Mills equation, and hence obstructions to convergence of solutions
to the trivial connection (as well as scattering). Moreover, these connections may also
arise as “bubbles” near the singularity of a dynamic solution. Therefore, knowledge of
the energies of the harmonic Yang–Mills connections is necessary for determining the
precise threshold energy in the Threshold Theorem, both for the Yang–Mills heat flow
[20] and for the hyperbolic Yang–Mills equation [22].

We open our discussionwith the important special caseG = SU (2). The correspond-
ing Lie algebra g = su(2) consists of 2× 2 complex anti-hermitean matrices with zero
trace. We furthermore assume that the Ad-invariant inner product on g takes the form

〈A, B〉 = −tr (AB).

In fact, as all Ad-invariant inner products on g are positive multiples of each other, there
is no loss of generality.

In this case, the topological classes of finite energy connections are classified by the
second Chern number c2, which takes the explicit form (via the Chern–Weil theory)

c2 = 1

8π2

∫
R4

tr (F[a] ∧ F[a]). (1.24)

For any finite energy connection a, the second Chern number c2 is an integer; in fact,
it equals the degree of the 0-homogeneous map O (defined using the homeomorphism
SU (2) � S

3) in Theorem 1.5. A simple algebraic manipulation using the Hodge star
operator5 � shows that

〈Fjk[a], F jk[a]〉 = − � 2tr (F ∧ �F)

= − � tr ((F ± �F) ∧ �(F ± �F))± 2 � tr (F ∧ F)

= 1

2
〈F ± �F, F ± �F〉 ± 2 � tr (F ∧ F).

Note that the first term on the last line is nonnegative. Integrating overR4, we obtain the
Bogomoln’yi bound

Ee(a) ≥ 8π2|c2|. (1.25)

The equality holds (in which case, a is an instanton) if and only if F = ∓ � F , where±
is the sign of c2. We call such a connection anti-self or self dual, respectively. There is
a beautiful theory due to Atiyah–Drinfeld–Hitchin–Manin [1], which gives an explicit
construction of all anti-self dual (resp. self-dual) connections with c2 > 0 (resp. c2 < 0).
In particular, we have:

Theorem 1.29 [1]. For any κ ∈ Z, there exists an instanton with c2 = −κ and energy
8π2|κ|.

However, the instantons do not tell the full story. It is known that there also exist
nontrivial harmonic Yang–Mills connections which are not self or anti-self dual [3,24,
25,27]. Nevertheless, by the recent result of Gursky–Kelleher–Streets [10], they must
have energy at least 16π2 more than the Bogomoln’yi bound6:

5 To define �, we use the standard inner product on 2-forms such that {dx j ∧dxk : j < k} is an orthonormal
basis.

6 Note that [10, Corollary 1.2] is stated on S
4, but the same conclusion holds on R

4 by conformal
invariance of the harmonic Yang–Mills equation and Ee . Moreover, to compare the results, recall that
Ee(a) = 1

2 ‖F[a]‖2L2 .
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Theorem 1.30 [10, Corollary 1.2]. Any harmonic Yang–Mills connection on R
4 either

has energy equal to 8π2|c2|, or has energy at least 8π2|c2| + 16π2.

In conclusion, we see that: Any nontrivial harmonic SU (2) Yang–Mills connection
either has energy at least 16π2, or it is an instanton with c2 = ±1 (a first instanton)
with energy 8π2. We call the first instanton alternatively as the ground state (as it has
the lowest nontrivial energy), and refer to its energy as the ground state energy EGS .

We now turn to the general case when G is a compact Lie group, for which our goal
is to establish a similar conclusion. Consider f2(·, ·) = −〈·, ·〉, which is a symmetric
Ad-invariant bilinear function, and the corresponding characteristic class (cf. Sect. 1.2).

−〈F[a] ∧ F[a]〉 = −〈Fi j [a], Fk�[a]〉 dxi ∧ dx j ∧ dxk ∧ dx�. (1.26)

The characteristic number

χ =
∫
R4
−〈F[a] ∧ F[a]〉 (1.27)

is determined by the topological class [a], by Corollary 1.10.Moreover, the same algebra
as in (1.25) leads to:

Lemma 1.31. Let G be a compact Lie group. For any finite energy connection a on a
G-bundle on R4, we have the pointwise bound

1

2
〈Fjk[a], F jk[a]〉 ≥ |〈F[a] ∧ F[a]〉|, (1.28)

and the corresponding integrated bound

Ee(a) ≥ |χ |.
Note that when G is commutative, then the harmonic Yang–Mills connections are

nothing else than the harmonic 2-forms; thus no nontrivial finite energy harmonic Yang–
Mills connections exist. In the noncommutative case, we prove:

Theorem 1.32. Let G be a noncommutative compact Lie group. Let

EGS = inf{Ee(a) : a is a nontrivial harmonic Yang–Mills connection on a G-bundle on R
4}.

Then the following statements hold.

(1) There exists a nontrivial harmonic Yang–Mills connection a such that Ee(Q) =
EGS <∞.

(2) Let a be any nontrivial harmonic Yang–Mills connection. Then either Ee(a) ≥ 2EGS,
or

|χ | = Ee(a) ≥ EGS .

We call EGS the ground state energy, and a harmonic Yang–Mills connection Q
attaining this energy a ground state.

The proof of Theorem 1.32 combines well-known results concerning the structure of
a compact Lie group and the preceding analysis in the case G = SU (2); it is provided
in Sect. 6.
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2. Notation and Conventions

Here we collect some notation and conventions used in this paper.

• We employ the usual asymptotic notation A � B to denote A ≤ CB for some implicit
constantC > 0. The dependence ofC on various parameters is specified by subscripts.

• Throughout the paper, we omit the dependence of constants on the dimension d. In
particular, by a universal constant, we mean a constant that depends only on d.

• We call a bounded open subset U of Rd a domain. For λ > 0, λU is defined to be
rescaling ofU by λ centered at the barycenter ofU . For any r > 0 and x ∈ R

d , Br (x)
is the ball of radius r centered at x . When (x) is omitted, the center is taken to be the
origin 0.

• We use the notation ∂ (without sub- or superscripts) for the spatial gradient ∂ =
(∂1, ∂2, . . . , ∂d), and ∇ for the spacetime gradient ∇ = (∂0, ∂1, . . . , ∂d). We write
∂(n) (resp. ∇(n)) for the collection of n-th order spatial (resp. spacetime) derivatives,
and ∂(≤n) (resp. ∇(≤n)) for those up to order n.

• The n-th homogeneous L p-Sobolev space for functions fromR
d into a normed vector

space V is denoted by Ẇ n,p(Rd; V ). In the special case p = 2, we write

Ḣn(Rd ; V ) = Ẇ n,2(Rd; V ).

The inhomogeneous counterparts are denoted by Wn,p(Rd ; V ) and Hn(Rd ; V ), re-
spectively. The Lebesgue spaces (i.e., when n = 0) are denoted by L p(Rd; V ).

• The mixed spacetime norm Lq
t Ẇ

n,r
x of functions on R

1+d is often abbreviated as
LqẆ n,r .

• Given a function space X (on either Rd or R1+d ), we define the space �p X by

‖u‖p�p X =
∑
k

‖Pku‖pX

(with the usual modification for p = ∞), where Pk (k ∈ Z) are the usual Littlewood–
Paley projections to dyadic frequency annuli.

• Generally, a function space on an open subset U ⊆ R
d is defined by restriction, i.e.,

‖u‖X (U ) = inf{‖ũ‖X : ũ ∈ X, ũ �U= u}. A similar convention applies for a function
space on an open subset O ⊆ R

1+d .
According to this convention, the restriction of the homogeneous Sobolev norm Ẇ n,p

for n ∈ N, 1 < p < d
n for a locally Lipschitz domain U is characterized by

‖u‖Ẇ n,p(U ) �U ‖∂(n)u‖L p(U ) + ‖u‖L p∗ (U ), where
d

p∗
= d

p
− n.

Note, importantly, that the implicit constant is invariant under scaling. To distinguish
this norm from the usual homogeneous Sobolev semi-norm, we introduce the notation
W̊ n,p(U ) for a nonnegative integer n and p ∈ [1,∞], and define ‖u‖W̊ n,p(U )

=
‖∂(n)u‖L p(U ).

• The local function space Xloc(U ) is defined as

Xloc(U ) =
⋂

Bx (r):Bx (r)⊆U
X (Bx (r)).
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3. Connections with L
d
2 -Curvature

In this section,we prove the good global gauge theoremsTheorems 1.4 and 1.5. Through-
out the section, we let d ≥ 3.

3.1. G-valued functions at critical regularity. We start by collecting some basic analytic

facts concerning G-valued functions at regularity Wk, dk .
In what follows, we assume that G is a group of orthogonal matrices in R

N×N ,
equipped with the usual inner product 〈A, B〉 = tr AB†. Recall the standard fact that
any compact Lie group G may be realized as such a matrix group, and the inner product
on g = TIdG is equivalent to the one induced from R

N×N .
Let U ⊆ R

d be an open set, k ∈ R and p ∈ [1,∞]. In Sect. 1.3, we introduced

Gk,p(U ) = {O ∈ Wk,p(U ;RN×N ) : O(x) ∈ G for a.e. x ∈ U }.

Since G is compact, any O ∈ Gk,p(U ) belongs to L∞(U ). When U is a domain with
locally Lipschitz boundary, an element O ∈ Gk,p(U ) may be extended7 to Õ ∈ Wk,p ∩
L∞(Rd); see [28, §VI.3]. For a general irregular open set U , we instead use

Gk,p
loc (U ) = {O ∈ Wk,p

loc (U ;RN×N ) : O(x) ∈ G for a.e. x ∈ U },
for which the following extension property holds: For any ball B ⊆ U , there exists
(B) Õ ∈ Wk,p ∩ L∞(Rd) such that (B) Õ(x) = O(x) for a.e. x ∈ B.

In view of the applications to the hyperbolic Yang–Mills equation at the critical
regularity, we consider the scale-invariant case p = d

k > 1, which is subtle due to the

fact that Hk, dk �↪→ L∞, and thus Hk, dk is not an algebra. Nevertheless, as we will see,
basic operations needed to define a G-bundle are still well-defined. To avoid technical
issues, we focus on the case when k is a positive integer. Of special importance is
when k = 2, which correspond to local gauge transformations in a bundle admitting a

connection with L
d
2 curvature.

As a quick consequence of the extension properties mentioned above, we have the
following multiplication lemma.

Lemma 3.1. Let k be a positive integer, and let U ⊆ R
d be an open set. Then the

pointwise multiplication map

Gk, dk
loc (U )× Gk, dk

loc (U ) � (O1, O2) �→ O1 · O2 ∈ Gk, dk
loc (U )

is continuous. If U is a domain with a locally Lipschitz boundary, then the same con-

clusion holds for the space Gk, dk (U ).

Although multiplication is continuous, we remark that it utterly fails to be any more
regular. This is in sharp contrast with the subcritical case Gk,p with p > d

k , in which
multiplication is smooth.

7 We emphasize, however, that Õ(x) �∈ G for x �∈ U in general.
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Proof. It suffices to consider the case when U is a domain with a locally Lipschitz

boundary (the other case follows by taking U to be balls). Let O1, O2 ∈ Gk, dk (U ), and
consider their usual extensions outside U . Note that O1 · O2 is an L1

loc function with

values in G for a.e. x ∈ U , and belongs to Wk, dk (U ) by the whole space estimate

‖O1 · O2‖
Wk, dk

� ‖O1‖L∞‖O2‖
Wk, dk

+ ‖O1‖
Wk, dk
‖O2‖L∞ .

To prove continuity, consider sequences On
1 → O1 and On

2 → O2 in Gk, dk (U ). We
extend On

1 and On
2 to the whole space using the same extension operator as before,

which insures On
1 → O1 and On

2 → O2 in Wk, dk (Rd ;RN×N ). By the Leibniz rule and
the Sobolev inequality, for any multi-index α of order k, we may show that

∂α(On
1 · On

2 )− (∂αOn
1 ) · On

2 − On
1 · ∂αOn

2 → ∂α(O1 · O2)

−(∂αO1)O2 − O1∂
αO2 in L

d
k .

By symmetry, it only remains to prove that (∂αOn
1 ) · On

2 → (∂αO1) · O2 in L
d
k . Since

On
2 is uniformly bounded, the problem is further reduced to showing that

‖∂αO1 · (On
2 − O2)‖

L
d
k
→ 0.

If this limit were not true, then there would exist a subsequence with no further sub-

sequence converging to zero. However, On
2 → O2 in Wk, dk implies a.e. convergence

along a subsequence, along which the above limit holds by the dominated convergence
theorem. ��

It iswell-known that ifU is anopen setwith piecewise smoothboundary, then anyO ∈
G2, d2 (U ) can be approximated by a sequence On ∈ C∞(U ;G) in theW 2, d2 (U ;RN×N )-
topology [26].We state here a technical refinement which allows us to localize the region
wherewe perform the approximation (essentially from [31]). This versionwill be helpful
for handling the extension problem to a G-valued map (not RN×N -valued).

Lemma 3.2. Let k be a positive integer. Let U ⊆ R
d be a domain with locally Lipschitz

boundary, and let O ∈ Gk, dk (U ). If V,W are (possibly empty) open sets in Rd such that

V ∪W ⊆ U and V ∩W = ∅, then for every ε > 0 there exists O ′ ∈ Gk, dk (U ) such that
O ′ �V= O �V , O ′ ∈ C∞(W ;G) and ‖O ′ − O‖

Wk, dk (U ;RN×N )
< ε.

We recover the usual approximation result by setting V = ∅ and W = U . As a

consequence, for a general open set U , any O ∈ Gk, dk
loc (U ) can be approximated by

On ∈ C∞(B;G) in the Wk, dk (B;RN×N )-topology for any open ball B ⊆ U .

Proof. We may assume that W �= ∅, as otherwise we may set Oε = O . By standard

Sobolev extension, there exists Õ ∈ Wk, dk (Rd;RN×N ) such that Õ �U= O . We intro-
duce δ > 0 to be fixed later, and let h : U → [0, 1] be a smooth function such that h = 0
on V and h = 1 on W (smooth Urysohn’s lemma). Fix a smooth function ζ supported
in the unit ball satisfying

∫
ζ = 1. We define Õδ : Rd → R

N×N by inhomogeneous
mollification:

Õδ(x) =
∫

ζ(y)Õ(x − δh(x)y) dy.



The Hyperbolic Yang–Mills Equation for Connections 707

It is straightforward to verify that ‖Õδ − Õ‖
Wk, dk (U )

→ 0 as δ→ 0, and also that Õδ is

smooth on W . However, Õδ(x) �∈ G in general. To rectify this, we proceed as in [26].
Let G̃ ⊆ R

N×N be a tubular neighborhoodofG, onwhich the nearset-point projection
πG : G̃ → G is well-defined as a smooth map. For x ∈ U , we wish to ensure that
Õδ(x) ∈ G̃ for δ sufficiently small. Since O(y) ∈ G for a.e. y ∈ U , we have

d(Õδ(x), G)d ≤ 1

|U ∩ Bδh(x)(x)|
∫
U∩Bδh(x)(x)

|Õδ(x)− O(y)|d dy.

By boundedness and the locally Lipschitz condition, |U ∩ Br (x)| �U,d rd for every x ∈
U and sufficiently small r > 0. Moreover, by the Poincaré inequality ‖ f ‖Ld (Br (x)) �ζ

r‖∂ f ‖Ld (Br (x)) for f satisfying
∫

ζ(y) f (x + r y) dy = 0, we have

d(Õδ(x), G)d �U,ζ,d

∫
Bδh(x)(x)

|∂ Õ(y)|d dy.

By compactness of U , the RHS goes to 0 uniformly as δ→ 0, so that Õδ(x) ∈ G̃.
Define O ′ = πG ◦ Õδ �U . It is now straightforward to show that O ′ obeys the desired

properties once we fix δ > 0 small enough (depending on ε). ��
As a consequence of the approximation property, we now show that pointwise inver-

sion is well-defined as a continuous map Gk, dk
loc (U )→ Gk, dk

loc (U ).

Lemma 3.3. Let k be a positive integer, and let U ⊆ R
d be an open set. Then the

pointwise inversion map

Gk, dk
loc (U ) � O �→ O−1 ∈ Gk, dk

loc (U )

is continuous. Moreover, the usual differentiation rule ∂x O−1 = −O−1∂x OO−1 holds
for O ∈ Gk, dk

loc (U ). If U is a domain with a locally Lipschitz boundary, then the same

conclusion holds for the space Gk, dk (U ).

Proof. As before, we only consider the case whenU is a domain with a locally Lipschitz
boundary. For simplicity, we only treat the case k = 1; the higher k’s are handled
similarly. Given O ∈ G1,d(U ), let On → O be a smooth approximation sequence in
G1,d(U ) given by Lemma 3.2 (with V = ∅ and W = U ). By passing to a subsequence,
we may assume that On → O a.e. inU as well; hence (On)−1→ O−1 inU . Moreover,
by the usual differentiation formula in the smooth case,

∂x (O
n)−1 = −(On)−1∂x On(On)−1.

By the dominated convergence theorem, ∂x (On)−1 is Cauchy in W 1,d(U ;RN×N ), so
that O−1 ∈ G1,d(U ). Moreover, the formula

∂x O
−1 = −O−1∂x OO−1

is justified for O ∈ G1,d(U ). By a similar argument using the dominated convergence
theorem applied to an arbitrary sequence On → O in G1,d(U ). the continuity property
also follows. ��
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Next, from the approximation property and Lemma 3.3, it follows that the usual

operations involving Gk, dk
loc (U ) and W

k′, dk
loc (U ; g) are continuous.

Lemma 3.4. Let k be a positive integer, and let U ⊆ R
d be an open set.

(1) The operations O �→ O;x = ∂x OO−1 and O �→ O−1;x = −O−1∂x O are continuous

as mappings Gk, dk
loc (U )→ W

k−1, dk
loc (U ; g).

(2) For any integer 0 ≤ k′ ≤ k, the operation (O, B) �→ Ad(O)B = OBO−1 is

continuous as a mapping Gk, dk
loc (U )×W

k′, dk
loc (U ; g)→ W

k′, dk
loc (U ; g).

(3) If O, O1, O2 ∈ Gk, dk
loc (U ) and B ∈ W

k′, dk
loc (U ; g), then the following Leibniz rules

hold:

(O1O2);x = O1;x + Ad(O1)O2;x ,
∂x (Ad(O)B) = Ad(O)∂x B + Ad(O)[O;x , B].

If U has a locally Lipschitz boundary, then the same conclusion holds for the spaces

Gk, dk (U ) and Wk′, dk (U ; g).
As before, the fact that these operations map into the right space is justified by using

a smooth approximating sequence (Lemma 3.2), and then their continuity properties are
proved in a similar manner. We omit the proof.

We end with an auxiliary lemma concerning the construction of a G-valued function
on an annulus with a prescribed normal derivative on the outer boundary.

Lemma 3.5. Let Ar ∈ H
d−3
2 (Sd−1). There exists O ∈ G d

2 (B1), which depends contin-
uously on Ar , such that

(O, O;s) �{r=1}= (I d, Ar ).

A similar construction can be done in the exterior region Rd\B1.

Proof. Wefirstwork on the annulus B\ 12 B, whichwe view as the product space ( 12 , 1)r×
S
d−1
� (note that the corresponding Lebesgue and Sobolev spaces are equivalent). We

define ϕ(r,�) to be Poisson semigroup ϕ(r,�) = e
√−��(r−1)B, and define

�(r,�) = (r − 1)ϕ(r,�),

By the properties of the Poisson semigroup, observe that

�(r,�) = (r − 1)B(�) + or→1(r − 1) in H
d−3
2 (Sd−1).

Moreover, �(r,�) ∈ L∞ ∩ H
d
2 (( 12 , 1)× S

d−1) and
‖�(r, ·)‖L∞(Sd−1) = or→1(1)

where the rate depends only on the right tail of the H
d−3
2 frequency envelope of B.

O(r,�) = exp(χ�(r,�)).

where χ = χ(r) is a smooth radial function such that χ = 0 in {r < 2
3 } and χ = 1 in

{r > 5
6 }. Since L∞∩H

d
2 is an algebra, and since O = I d in {r < 2

3 }, it may be checked

that O ∈ L∞ ∩ H
d
2 (B). Moreover, ∂r O(r,�)O−1(r,�) �{r=1}= ∂r�(r,�) �{r=1}=

B(�), as desired. ��



The Hyperbolic Yang–Mills Equation for Connections 709

3.2. Patching procedures. Here we describe procedures for patching together local
gauges to a global gauge, which is one of the main ingredients of the proof of the
good global gauge theorems.

We consider three scenarios:

(1) Local gauges given on small (round) cubes Q(α) covering a large (round) cube QR ;
(2) Local gauges given on small balls B(α) covering a large ball BR ;
(3) Local gauges given on concentric balls BRn covering X = BR or Rd .

In all three scenarios, the patching procedure depends only on the trivial topology and
differentiable structure of the base.

Scenario (1): Large cubes covered by smaller cubes. We first consider a covering con-
sisting of (round) cubes, which admits simple intersection properties.

Let QR be a smooth domain in R
d , and consider a covering {Qα}α∈� of QR by

smooth domains Qα indexed by a subset � of the lattice Z
d . We equip Z

d with two
norms: |α|∞ = supk |αk | and |α|1 =

(∑
k |αk |2

)1/2
.We say that two indices are adjacent

if |α−α′|∞ ≤ 1. If |α−α′|1 ≤ 1,we say thatα andα′ are face-adjacent; if |α−α′|∞ = 1
but |α−α′|1 > 1, thenwe say that α and α′ are corner-adjacent.We say that the covering
{Qα}α∈� is good if the following properties hold:

(a) The index set � is of the form � = {α ∈ Z
d : |α|∞ < R�} for some R� > 0.

(b) For each α, there exist a sequence of shrinking domains Qα = Q(0)
α ⊃ Q(1)

α ⊃ · · · ,
such that, for each n ≥ 0,

QR ⊆
⋃
α∈�

Q(n)
α , Q(n+1)

α ∩ QR ⊆ Q(n) ∩ QR .

(c) Two domains Q(n)
α and Q(n′)

α′ intersect if and only if their indices are adjacent.
(d) Consider any α ∈ � and a subfamily �′ ⊆ � of adjacent indices with the property

that (i) the face-adjacent indices in �′ are adjacent to each other and (ii) each corner-
adjacent index in�′ is adjacent to some face-adjacent index in�′. Then for each n ≥
1 there exists a diffeomorphism�

(n)

�′ from Q(n)
α into F̃ (n)

�′ =
(
∪α′∈�′Q(n−1)

α′
)
∩Q(n)

α ,

which equals the identity in F (n)

�′ =
(
∪α′∈�′Q(n)

α′
)
∩ Q(n)

α .

Given any cube QR of sidelength R > 1, we construct a good covering of QR
by round cubes (i.e., with rounded edges, so that they are smooth) with roughly unit
sidelength (more precisely, between 1/2 and 4) as follows. Rescaling by a factor � 1
(say between 1/2 and 2), we may assume that R is an integer. Partition QR into unit
cubes Q̃α with integer vertices, indexed in an obvious manner by � ⊆ Z

d as in (a).
Rounding off the edges (uniformly in α), we may replace each Q̃α by a round cube,
such that {1.1Q̃α} still covers QR . Fix a sequence 2 > λ(0) > λ(1) > · · · > 1.1, and
define Q(n)

α to be the enlargement λ(n) Q̃α . It is then straightforward to verify that (b)–(d)
hold for {Q(n)

α }.
Remark 3.6. Wemake the simple but crucial observation that the preceding construction
of a good covering may be fixed depending only on the size R of the large cube. Also,
QR may be taken to be a round cube as well; it does not affect the properties (a)–(d), as
long as the edges are rounded off at a scale much smaller than 1.
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Let {Qα}α∈� be a good covering of QR , and suppose that a local data set {Qα, O(αβ)}
for a G-bundle (with arbitrary regularity) is given. Our goal is to patch the local gauges
up to form a global gauge on QR . More concretely, we find a gauge transformation P(α)

on each Q(N )
(α) , where N = #�, such that

P(β) = P(α) · O(αβ) in Q(N )
α ∩ Q(N )

β .

To start the construction, we endow � with the lexicographic ordering (i.e., α < α′
if αi < α′i , where i is the first index where the components differ); we denote by [α] the
ordinality of α in this covering (thus 1 ≤ [α] ≤ N ). The simple key observation is that
such an ordering insures that each α and �′ = {α′ < α} satisfy the condition of (d).

We proceed inductively on [α], and construct P(α) on Q([α])
α such that

P(β) = P(α) · O(αβ) in Q([β])
α ∩ Q([β])

β , for α ≤ β.

For the first element [α] = 1, we simply take P(α) = I d on Q(1)
α . Now assume that

P(α′) has been constructed on Q([α′])
α′ for α′ < α, where [α] = n > 1. Define P̃(α) in

F̃ (n)

{α′<α} =
(
∪α′<αQ

(n−1)
α′

)
∩ Q(n)

α by

P̃(α) = P(α′) · O(α′α) on Q(n−1)
α′ ∩ Q(n)

α for each α′ < α. (3.1)

By construction, these expressions match on the intersections. Applying (d) in the def-
inition of a good covering, we find a diffeomorphism �

(n)

{α′<α} from Q(n)
α into F̃ (n)

{α′<α},
which equals the identity in F (n)

{α′<α} =
(
∪α′<αQ

(n)

α′
)
∩ Q(n)

α . We simply define P(α) in

Q(n)
α by the pullback

P(α) = P̃(α) ◦�
(n)

{α′<α}. (3.2)

Next, suppose that local data for a connection {A(α)} are also given. Then the gauge
potential A in the global gauge constructed above is described in terms of A(α) and P(α)

as follows: Given a partition of unity χ(α) subordinate to {Q(N )
(α) }, we have

A =
∑

χ(α)

(
Ad(P(α))A(α) − P(α);x

)
. (3.3)

The advantage of this patching procedure is that it relies only on the properties (a)–(d)
of the good covering {Qα}α∈� , and is universal in the data {O(αβ)} or {A(α)}. Moreover,
it is straightforward to infer properties of P(α) and A from those of {O(αβ)} and {A(α)}.
Indeed, in the above construction, observe that {P(α)} is constructed from {O(αβ)} using
only the operations of (i) pointwise multplication, (ii) pullback by a diffeomorphism,
(iii) restriction to a smooth subdomain and (iv) patching up local expressions which are
consistent on the intersections. Any property of {O(αβ)} invariant under these operations
transfers to P(α). In particular, for any k ≥ 1 and p ≥ d

k ,

O(αβ) ∈ Gk,p
loc (Qα ∩ Qβ) ∀α, β ⇒ P(α) ∈ Gk,p

loc (Q(N )
α ) ∀α.

Regarding bounds for A, it is useful to introduce the following definition:
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Definition 3.7. We say that a norm Y on R
d is (patching-)admissible if:

• Y is invariant under pullback by any diffeomorphism;
• Y is invariant under any smooth cutoff;
• If A ∈ Y and O;x ∈ Y , then Ad(O)A ∈ Y with ‖Ad(O)A‖Y �‖A‖Y ,‖O;x‖Y 1.

From the preceding observation regarding the construction of P(α), as well as the
explicit formula (3.3), we see that:

O(αβ);x ∈ Y (Qα ∩ Qβ) ∀α, β and A ∈ Y (Qα) ∀α ⇒ ‖A‖Y (QR) � 1,

where the implicit constant depends only on the good covering (which, in turn, may be
fixed depending only on R; cf. Remark 3.6), supα ‖A(α)‖Y (Qα) and supα,β‖O(αβ)‖Y (Qα∩Qβ).

Scenario (2): Large ball covered by small balls. Here, we wish to patch up local data
for a G-bundle and a connection given on small balls centered inside BR ; this is the
case we encounter in our applications. The idea is to reduce to Scenario (1) by a suitable
diffeomorphism.

Consider a covering {Bα ∩ BR} of BR by finitely many balls. Let � be a bi-Lipschitz
isomorphism from the cube Qλ0R to BR , where λ0 ∈ (0,∞) is to be fixed below. Let
{Qα}α∈� be a good covering of Qλ0R as in Scenario (1). We wish to insure that the
image of each Qα under �R is contained in a unit ball. Indeed, observe that, by scaling-
invariance, the Lipschitz constant of�R is independent of R, but decreases in λ0. Hence,
for any δ > 0, by choosing λ0 sufficiently large (independent of R) we may insure that

�R(Qα) ⊆ Bδ(x) for some x ∈ BR . (3.4)

By Lebesgue’s covering lemma, this ensures that �(Qα) is contained in some ball Bα

in the covering. Finally, by rounding off the edges of Qλ0R , we may replace Qλ0R by
a round cube, and � by a diffeomorphism with uniform bounds. Note that this can be
done while not disturbing the Lipschitz constant much (and thus (3.4) still holds), while
the uniform bounds of higher derivatives would depend on R.

Remark 3.8. In the above procedure, note that λ0 depends only on Lebesgue constant
δ > 0 of the covering {Bα}. In particular, if Bα’s are unit balls which are uniformly
separated, so that the Lebesgue constant is � 1, λ0 may be fixed independent of R. The
remaining components of the construction may be fixed depending only on the radius R
(recall also Remark 3.6).

We now apply the patching procedure in Scenario (1) to the pulled-back data
{Qα, O(αβ) ◦ �,�∗A(α)}, which are well-defined since each �(Qα) is contained in
some ball Bα in the covering. Then we return to BR via �−1. As a result, we obtain a
refinement {B ′α = �(Q(N )

α )} of the covering {Bα} (the index sets are different, but we
abuse the notation and denote both by α), as well as a gauge transform Pα′ in each B ′

α′ ,
such that

P(α) = P(α′) · O(α′α) on B ′α′ ∩ B ′α. (3.5)

Moreover, given a partition of unity subordinate to {B ′α}, the global gauge potential A
takes the form

A =
∑

χ(α)

(
Ad(P(α)A(α) − P(α);x

)
. (3.6)

Finally, we obtain the following result:
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Proposition 3.9. Let R ≥ 1, and consider a covering {Bα ∩ BR} of BR by uniformly

separated unit balls Bα centered inside BR. AnyG-bundle with O(αβ) ∈ Gk, dk (Bα∩Bβ∩
BR) admits a global gauge. Moreover, given any local data {A(α)} for a connection on

this G-bundle satisfying A ∈ Wk−1, dk (Bα ∩ BR), the global gauge potential satisfies

A ∈ Wk, dk (BR). More precisely, if

sup
α
‖A(α)‖

Wk−1, dk (Bα∩BR)
≤ M, sup

α,β

‖O(αβ);x‖
Wk−1, dk (Bα∩Bβ∩BR)

≤ M,

for some M > 0, then

‖A‖
Wk, dk (BR)

�R,M 1.

Scenario (3): X = BR or Rd covered by concentric balls. Finally, we consider the
case when local data for a G-bundle and a connection are given all concentric balls
{BRn }n=1,2,... with Rn ↗ R or∞.

Add a smaller ball BR0 ⊂ BR1 to the covering. For n ≥ 2, let�n be a diffeomorphism
from BRn into BRn−1 , which equals the identity on BRn−2 . Define P(n) on BRn inductively
by P(1) = id and

P(n) = (P(n−1) · O((n−1)n)) ◦�n .

Then we restrict the data and P(n) on BRn to BRn−1 . It follows by construction that, for
n < m,

P(m) = P(n) · O(nm) in BRn−1 .

Given some local data {A(n)} for a connection, the global gauge potential is given by

A = Ad(P(n))A(n) − P(n);x in BRn−1 .

These expressions are consistent in the intersection (i.e., the smaller ball). Again, observe
that P(n) is constructed by the same operations (i)–(iv) as in Scenario (1).

As a consequence this patching procedure, as well as Proposition 3.9, we obtain the
following soft result, which is a starting point for the good global gauge theorems.

Proposition 3.10. AnyG-bundle with regularity Gk, dk
loc on X = BR orRd admits a global

gauge. Moreover, for any D ∈ Ak−1, dk
loc (X) on this G-bundle, the global gauge potential

satisfies A ∈ W
1, d2
loc (X).

Proof. Let {Uα, O(αβ)} be the local data for a G-bundle with regularity Gk, dk
loc on X = BR

or Rd , and consider a smaller ball BR′ such that BR′ ⊆ X . By Lebesgue’s covering
lemma, there exists a refinement of Uα by balls {Bδ(x) ∩ BR′ }x∈BR′ of the same radius
δ > 0 . By Proposition 3.9, we obtain a global gauge on BR′ . Since R′ is arbitrary,
Scenario (3) applies to a sequence of global gauges on BR′ with R′ ↗ R or∞, and we
obtain a global gauge on X . Existence of a corresponding global gauge potential for any

Ak−1, dk
loc (X) connection is a quick corollary. ��
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3.3. Uhlenbeck lemmas and elliptic regularity. Thanks to Proposition 3.10, we know

that any A1, d2
loc (X) connection admits a global gauge potential in W

1, d2
loc (X). This is a

natural setting for Uhlenbeck’s lemma, which finds good local gauges under a gauge-
invariant smallness assumption. These good local gauges furnish anothermain ingredient
of the proof of the good global gauge theorems.

We start with the case of a ball B1.

Theorem 3.11 (Uhlenbeck’s lemma on a ball). Consider D ∈ A1, d2
loc (B1) of the form

D = d + A with A ∈ W 1, d2 (B1; g), which satisfies

‖F[A]‖
L

d
2 (B1)

< ε0. (3.7)

(1) There exists O ∈ G2, d2 (B1), unique up to multiplication by a constant element of G,

such that Ã = Ad(O)A − O;x ∈ W 1, d2 (B1; g) obeys

∂� Ã� = 0 in B1, x� Ã� = 0 on ∂B1

and

‖ Ã‖
W 1, d2 (B1)

� ‖F[A]‖
L

d
2 (B1)

.

(2) Let An be a sequence of connections such that An → A inW 1, d2 (B1; g). Let ( Ãn, On)

be given by (1) from An. Then passing to a subsequence and suitably conjugating
each ( Ãn, On) with a constant gauge transformation, we have

Ãn → Ã in W 1, d2 (B1), On → O in W 2, d2 (B1).

Proof. For a proof of the existence claim in (1), see [30, Theorem 1.3]. For uniqueness,

observe that the gauge transformation Õ ∈ G2, d2 (B1) between the two possible Ã and
Ã′ satisfies the a-priori bound ‖Õ;x‖

W 1, d2 (B1)
� ε0, and also solves the div-curl system

∂� Õ;� = Ad(Õ)[Õ;�, ( Ã′)�], ∂ j Õ;k − ∂k Õ; j = −[Õ; j , Õ;k],

with the boundary condition x� Õ;� = 0 on ∂B1. It follows that Õ;x = 0, i.e., Õ is
constant.

To prove (2), observe first that the W 2, d2 (B1) norm of On is uniformly bounded,
thanks to the formula On

;x = Ad(On)An − Ãn . Thus, after passing to a subsequence,

On ⇀ O ′ and Ãn ⇀ Ã′ in W 2, d2 (B1) and W 1, d2 (B1), respectively. This weak conver-
gence is enough to justify

Ã′ = Ad(O ′)A − O ′;x in B1, ∂� Ã� = 0 in B1, x� Ã� = 0 on ∂B1.

Hence, by the uniqueness statement in (1), ( Ã′, O ′) coincides with ( Ã, O ′) up to a
constant gauge transformation O0. Applying O0 to the sequence ( Ãn, On), we may

insure that On ⇀ O and Ãn ⇀ Ã in W 2, d2 (B1) and W 1, d2 (B1), respectively.
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To upgrade the weak convergence to strong convergence, we use the div-curl system

for Ã. First, by the strong W 1, d2 convergence An → A and the weak W 2, d2 convergence
On → O , it follows that

F[ Ãn] = Ad(On)F[An] → Ad(O)F[A] = F[ Ã] in L
d
2 (B1).

Then by the div-curl system

∂� Ã� = 0, ∂ j Ãk − ∂k Ã j = F[ Ãn],

the weakW 1, d2 convergence Ãn → Ã is improved to strong convergence. Finally, by the

formula O;x = Ad(O)A − Ã, the weak W 2, d2 convergence On → O is also improved
to strong convergence. ��

Theorem3.11was extended in [31] to a “removal of singularity” result for connections
defined only on a punctured ball. Let B ′r = {x ∈ R

d : 0 < |x | < r}.

Theorem 3.12 (Uhlenbeck’s lemma on a punctured ball). Consider D ∈ A1, d2
loc (B ′1+δ)

for some δ > 0, which admits a representative D = d + A with A ∈ W
1, d2
loc (B ′1+δ; g) and

satisfies

‖F[A]‖
L

d
2 (B′1)

≤ ε′0.

Then there exists O ∈ G2, d2
loc (B ′1) such that Ã = Ad(O)A − O;x obeys

∂� Ã� = 0 in B ′1,

and

‖ Ã‖
W 1, d2 (B′1)

� ‖F[A]‖
L

d
2 (B′1)

.

As a consequence, we see that Ã is the restriction of a A1, d2
loc connection on the full

ball B1+δ . For a proof, we refer the reader to [31].
If F satisfies higher (covariant) regularity bounds, then so does Ã in the above theo-

rems. This statement is most naturally formulated as an elliptic regularity result for the
nonlinear div-curl system satisfied by Ã with ∂� Ã� = 0. In what follows, we omit the
tilde for simplicity, and we focus on quantitative bounds in scaling-invariant spaces.

We start with a simple interior regularity result.

Lemma 3.13. Let A ∈ W 1, d2 (B) be a solution to the nonlinear div-curl system

∂ j Ak − ∂k A j = Fjk − [A j , Ak],
∂�A� = 0.

(3.8)

If D(m)F ∈ L
d

m+2 (B) with d
m+2 > 1, then ∂(m+1)A ∈ L

d
n+2 (λB) for any 0 ≤ λ < 1, with

a bound depending only on m, ‖D(m)F‖
L

d
m+2 (B)

, ‖A‖Ld (B) and λ.
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Proof. Since it is a straightforward interior elliptic regularity argument, we only sketch
the proof. We proceed by a simple induction on m; the key point is that ∂(m)Fjk and

∂(m)[A j , Ak] in L
d

m+2 are controlled by D(m)F in L
d

m+2 and the inductive bounds for

∂(m′+1)A in L
d

m′+2 (0 ≤ m′ ≤ m). ��
When Theorem 3.11 is applied to a unit ball B1(x) centered near the boundary ∂BR

of a larger ball, it is of interest to control regularity of A up to the boundary ∂BR . For
this purpose, consider normalized angular derivatives �∂ = { 1

|x | (x j∂k − xk∂ j )} about the
origin (at which BR is centered), and the corresponding covariant angular derivatives
�D = { 1

|x | (x jDk − xkD j )}. In any unit ball away from the origin, we show that higher
angular regularity of F implies the corresponding regularity of A in the Coulomb gauge.

Lemma 3.14. Let B be a unit ball inRd such that B∩ B1(0) = ∅, and let A ∈ W 1, d2 (B)

be a solution to the nonlinear div-curl system (3.8). If �D(m)F ∈ L
d

m+2 (B) with d
m+2 > 1,

then ∂ �∂(m)A ∈ L
d

m+2 (λB) for any 0 ≤ λ < 1, with a bound depending only on m,
‖�D(m)F‖

L
d

m+2 (B)
, ‖A‖

W 1, d2 (B)
and λ.

Proof. This lemma ismost simply proved by commutingwith the Lie derivativeswith re-
spect to the normalized rotation vector fields� jk = 1

d(0,B)
� jk ; these are isometries and

thus exactly commute with the div-curl system. Moreover, their lengths are comparable
to 1 (independent of B), so that |L(≤n)

�
A| �n |�∂(≤n)A|.

As before, when p = d
n+2 > 1, the statement follows (with explicit bounds) by an

induction on n. By the trace theorem and the (angular) Sobolev inequality, observe that

‖u‖
L∞r L

d−1
m+1
� (B)

� ‖u‖
L

d
m+2 (B)

+ ‖∂u‖
L

d
m+2 (B)

.

Using this inequality and Hölder, we may control L(n)

�
F and �

(n)[A j , Ak] in L
d

n+2 by

�D(≤n)F in L
d

n+2 and the inductive bounds for ∂ �∂(≤m)A in L
d

m+2 . Then we may proceed
as in the proof of Lemma 3.13. ��
Remark 3.15. As in Theorem 3.11(2), an argument similar to Lemma 3.13 (resp.
Lemma 3.14) for the div-curl system for Ã leads to strong convergence of ∂(≤m+1) Ãn

and ∂(≤m+2)On in L
d

n+2 (λB) (resp. ∂(≤m+1) Ãn and ∂(≤2) �∂(≤m)On in L
d

n+2 (λB ∩ BR)),

provided that An → A in Wm, d
m+1 . We omit the straightforward proof.

Next, we record a simple interior regularity result for the div-curl system of O .

Lemma 3.16. Let O ∈ W 2, d2 (B) be a solution to the div-curl system

∂ j O;k − ∂kO; j = [O; j , O;k]
∂�O;� = H.

(3.9)

If H ∈ �1L
d
2 (B), then O;x ∈ �1W 1, d2 (λB) for any 0 ≤ λ < 1, with the bound

‖O;x‖
�1Ẇ 1, d2 (λB)

�λ ‖H‖
�1L

d
2 (B)

+ ‖O;x‖2
W 1, d2 (B)

.



716 S.-J. Oh, D. Tataru

Moreover, if (O ′, H ′) ∈ W 2, d2 (B)× �1L
d
2 (B) is another solution to (3.9), then

‖O;x − O ′;x‖
�1Ẇ 1, d2 (λB)

�λ ‖H − H ′‖
�1L

d
2 (B)

+ (‖O;x‖
W 1, d2 (B)

+ ‖O ′;x‖W 1, d2 (B)
)‖O;x − O ′;x‖W 1, d2 (B)

.

Thekey point is that [O; j , O;k] in �1L
d
2 (B) can be estimated byO; j , O;k inW 1, d2 (B).

We omit the obvious proof.

The �1Ẇ 1, d2 bound on O;x is useful as it implies continuity of O . More precisely,
we have the following:

Lemma 3.17. If O;x ∈ �1W 1, d2 (B), then O is continuous on B.

Proof. Without loss of generality, let x1 be farther away from ∂B than x2. As in the
proof of Morrey’s inequality, we have

d(O(x1), O(x2)) �
∫
B(x1,2r)

|O;x |
|x − x1|d−1 +

|O;x |
|x − x2|d−1 dx .

The last integral may be estimated in terms of the Besov norm of the extension of O;x ,
and vanishes as x1→ x2. ��

3.4. Good global gauge theorem on the ball. The goal of this subsection is to prove
Theorem 1.4. The overall proof is divided into two steps:

• First, we prove the quantitative statements under the assumption thatD admits a global

gauge potential A ∈ Ẇ 1, d2 (BR).
• Next, using softer arguments, we remove the global gauge assumption.

In the first step, the idea is to produce local gauges on balls B1(x) centered inside BR
using Uhlenbeck’s lemma, and then patch them up to a global gauge on BR . To handle
balls near the boundary, the following simple extension procedure is helpful.

Lemma 3.18. Let A ∈ W 1, d2 (BR) with Ar = 0 on ∂BR. Extend A outside BR by

Ār

(
R2

r
,�

)
= −Ar (r,�), Ā�

(
R2

r
,�

)
= A�(r,�).

Then the extension obeys

F[ Ā]
(
R2

r
,�

)
= F[A](r,�) for r < R. (3.10)

The proof is an easy algebra computation, which we omit. We now carry out the first
step.

Proposition 3.19. Theorem 1.4 holds under the additional assumption that A ∈
Ẇ 1, d2 (BR).
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Proof. By rescaling, we may set r = 1, i.e., r ε∗
c [A] ≥ 1. Then we need to show that

(1.6) holds with an implicit constant depending only on ε∗ and R, provided that ε∗ is
sufficiently small compared to a universal constant.

If R � 1, then the conclusion of Theorem 1.4 follows by Uhlenbeck’s lemma, so
we may assume that R > 10 (say). Applying Lemma 3.5, we may assume, without loss
of generality that Ar = 0. Then we extend A outside BR via Lemma 3.18. By (3.10),
it follows that the extended connection still has concentration radius � 1 in BR+10.
Choosing ε∗ sufficiently small, we may insure that Uhlenbeck’s lemma applies to the
extended connection on balls of radius 2 centered in BR .

Consider a covering {Bα} of BR by uniformly separated unit balls centered in BR ,

and apply Uhlenbeck’s lemma on each 2Bα to obtain local data A(α) ∈ W 1, d2 (2Bα) and

O(αβ) ∈ G2, d2 (2Bα ∩ 2Bβ). By Lemma 3.13, we see that A(α) enjoys higher regularity
properties in each interior ball Bα (i.e., 2Bα ∩ ∂BR = ∅). For a boundary ball Bα ,
i.e., 2Bα ∩ ∂BR �= ∅, we first obtain higher angular regularity of A in Bα ∩ BR by
Lemma 3.14, and then also regularity in the radial direction by the equations

∂r Ar = −div�A�, ∂r A� = ∂�Ar + [Ar , A�] + Fr�, (3.11)

as well as radial covariant derivative bounds on Fr�. Finally, observe that the desired
higher regularity of O(αβ) in Bα ∩ Bβ ∩ BR follows from the equation O(αβ);x =
Ad(O(αβ))A(β) − A(α) and the bounds for A(α), A(β).

As a result, on the covering {Bα ∩ BR}, we obtain local data O(αβ) ∈ Wk, dk (Bα ∩
Bβ ∩BR) and A(α) ∈ Wk, dk (B(α)∩BR), provided that D(k)F ∈ L

d
k (with k ≥ 1, dk > 1).

We are in a position to apply Proposition 3.9, fromwhich the conclusion of Theorem 1.4
follows. ��

Finally, we remove the global gauge assumption, and thereby complete the proof of
Theorem 1.4.

Completion of proof of Theorem 1.4. Consider a sequence Rn ↗ R. Apply Proposi-
tion 3.19 to each A �BRn

, which gives rise to Ã(n) and O(n) such that

O(n)
; j = Ad(O(n))A j − Ã(n)

j

∂kO
(n)
; j = [O(n)

;k , Ad(O(n))A j ] + Ad(O(n))∂k A j − ∂k Ã
(n)
j

It follows that O(m)
;x is uniformly bounded in W 1, d2 on each fixed BR′ . Therefore, after

passing to a subsequence, there exists O ∈ W
2, d2
loc (BR;RN×N ) such that O(n) ⇀ O

in W 2, d2 (BR′ ;RN×N ) for every 0 < R′ < R and O(n) → O a.e. on BR . Hence,

O ∈ G2, d2
loc (BR) and moreover

Ã j = Ad(O)A j − O; j

is the weak limit of Ã(n) in W
1, d2
loc . Since the Ẇ 1, d2 (BRn ) norm of Ã(n) is uniformly

bounded in n, it follows that ‖ Ã‖
Ẇ 1, d2 (BR)

�‖F‖
L
d
2
1. ��
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3.5. Good global gauge theorem on the whole space. Next, we establish Theorem 1.5.

Proof of Theorem 1.5. By rescaling, we set Rc = 1. Throughout this proof, we work

with global gauge potentials inW
1, d2
loc (Rd) forD, which exists thanks to Proposition 3.10.

The firstmain task is to find a good gauge in a suitable exterior domain. By hypothesis,
and our normalization Rc = 1, we have ‖F[A]‖

L
d
2 (Rd\B)

< ε∗. Consider the inversion
map

ι : x �→ y = x

|x |2 ,

which clearly satisfies ι ◦ ι = id. Under ι, the exterior region R
d\B is the image of the

punctured unit ball B ′, and vice versa. The map ι is a conformal isometry, such that

(ι∗δ)i j = |x |4δi j , ι∗(dy1 ∧ · · · ∧ dyd) = (−1)d
|x |2d dx1 ∧ · · · ∧ dxd .

In particular, if T is a covariant 2-tensor on ι(U ) ⊆ R
d , then∫

ι(U )

(
∑
i, j

|Tyi y j |2) d
4 (y) dy =

∫
U

(
∑
i, j

|ι∗Txi x j |2) d
4 (x) dx .

Choosing ε∗ < ε′0, we have ‖ι∗F‖L d
2 (B′)

= ‖F‖
L

d
2 (Rd\B < ε′0, and we may apply The-

orem 3.12 to find a local gauge in which the gauge potential satisfies Ã(∞) ∈ Ẇ 1, d2 (B).
We define A(∞) to be the local gauge potential of D = ι∗ι∗D onRd\B given by A(∞) =
ι∗ Ã(∞). Since ∂(ι∗ Ã(∞)) = ι∗(∂ Ã(∞)) and ‖ι∗∂ Ã(∞)‖

L
d
2 (Rd\B)

= ‖∂ Ã(∞)‖
L

d
2 (B′)

, it

follows that A(∞) ∈ Ẇ 1, d2 (Rd\B) and

‖A(∞)‖
Ld∩Ẇ 1, d2 (Rd\B)

� ε∗. (3.12)

On the other hand, by Theorem 1.4 applied to 5B, we obtain a local gauge potential
A(0) ∈ for such that

‖A(0)‖
Ld∩Ẇ 1, d2 (5B)

�
ε∗,r−1c

1. (3.13)

By construction there exists O ∈ G2, d2
loc (5B\B) such that

A(0) = Ad(O)A(∞) − O;x in 5B\B.

By this relation, (3.12) and (3.13), on 5B\B we have

‖O;x‖
Ld∩Ẇ 1, d2 (5B\B)

�
ε∗,r−1c

1.

Using the partial approximation lemma (Lemma 3.2) and performing 0-homogeneous
extension outside a suitable sphere, it is straightforward to construct a gauge transform
Õ(∞) on R

d\B satisfying the following properties:

• Õ(∞) = O in 2B\B;
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• Õ(∞)(r�) = Õ(∞)(4�) for � ∈ S
d−1 and r ≥ 4

• ‖Õ(∞)‖
Ld∩Ẇ 1, d2 (5B\B)

�
ε∗,r−1c

1;

• Õ(∞) is C∞ in 5B\3B with ‖O(∞)‖CN (5B\3B) �
ε∗,r−1c ,N 1 for all N ≥ 0.

Using Õ(∞) to patch up the local gauges in 2B and R
d\B, we obtain the global gauge

potential

Ax =
{
A(0)x on 2B
Ad(Õ(∞))A(∞)x − Õ(∞);x on R

d\B
Let O(∞) be the smooth 0-homogeneous map on R

d\{0} defined by O(∞)(r�) =
Õ(∞)(4�), and define Bx = Ax +χO(∞);x . By (3.12), (3.13) and the preceding bounds
for Õ(∞), the desired bounds (1.8) follow. ��

3.6. Topological classes of rough connections. Here, we verify the results stated in
Sect. 1.4. Our first goal is to prove homotopy equivalence of O(∞) of different good
representations of the same connection (Proposition 1.6). We need a few lemmas.

Lemma 3.20. Let O ∈ G2, d2 (A), where A = {x ∈ R
d : R1 < |x | < R2} is an annulus.

For almost every R ∈ (R1, R2), O �∂BR is continuous, which are all homotopic to each
other.

By this lemma, we may define [O] to be the homotopy class (as continuous maps
S
d−1 → G) of the restriction of O to ∂BR for almost every R. We refer to such R’s as

generic radii.

Proof. Since the boundary of A is smooth, we may approximate O by On ∈ C∞(A;G)

in the W 2, d2 (A;RN×N )-topology [26,31]. After passing to a subsequence, for almost
every R ∈ (R1, R2), we have

On �∂BR→ On �∂BR in W 2, d2 (∂BR;RN×N ).

The lemma now follows from the observation that W 2, d2 (∂BR;RN×N ) ↪→ C0(∂BR;
R

N×N ), due to the Sobolev embedding on spheres. ��
Lemma 3.21. Let δ > 0 and let O ∈ G2, d2 ( Ã), where Ã = {x ∈ R

d : R1 − δ < |x | <
R2}. Then there exists an extension Õ ∈ G2, d2 (BR2) such that Õ �A= O �A if and only
if [O] = [id].

In this lemma, [O] is defined by viewing O as defined on either the annulus Ã or A;
both give the same answer by Lemma 3.20. Our proof is qualitative, in that we make no

claim regarding the size of Õ ∈ G2, d2 (BR2).

Proof. Wefirst prove the “only if” part. ByLemma3.2 (withV = ∅ andU = W = BR2 ),
there exists an approximating sequence On ∈ C∞(BR2;G), which approaches O in the

W 2, d2 (BR2;RN×N )-topology. Recalling the proof of Lemma 3.20, we see that [O] is
the homotopy class of On �∂BR for any ∂BR ⊆ BR2 , provided that n is sufficiently
large. Now, the whole map On : BR2 → G provides a homotopy from On �∂BR2

to the
constant map On �{0}, which in turn is homotopic to the identity map.
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Next, we prove the “if” part. First, by Lemma 3.2, there exists O ′ ∈ G2, d2 (R1− 4
3δ <

|x | < R2) such that O ′ ∈ C∞(R1 − 4
3δ < |x | < R1 − 1

4δ;G), O ′ �A= O �A.
By Lemma 3.20, [O ′] = [O] = [id]. Working in the smooth category, we may find

Õ ∈ G2, d2 (BR2) such that Õ �A= O ′ �A while Õ ∈ C∞(|x | < R2 − 1
2δ). ��

Lemma 3.22. Let O ∈ G2, d2 (Rd\B). Then [O] = [id].
In this lemma, [O] is defined by viewing O as defined on an annulus A ⊆ R

d\B.
Proof. Without loss of generality, let U = R

d\B1. We also observe that it suffices to
prove [O] = [const]. As before, by Lemma 3.2 (more precisely, a slight variant for
the exterior domain) there exists an approximating sequence On ∈ C∞(U ;G), which

approaches O in the W 2, d2 (U ;RN×N )-topology, where [O] is the homotopy class of
On �∂BR for any ∂BR ⊆ U , provided that n is sufficiently large.

By Sobolev embedding, note that∫
U
|On
;x |d dx <∞ for all n.

In the polar coordinates (r,�) ∈ (0,∞)× S
d−1, it follows that

∫ ∞
1

∫
Sd−1
|∂�On(r,�)|d dVSd−1(�)

dr

r
<∞ for all n,

which implies that lim infr→∞ ‖∂�On(r,�)‖Ld (Sd ) = 0. The desired conclusion [O] =
[const] now follows. ��

We are ready to prove Proposition 1.6.

Proof of Proposition 1.6. By suitably replacing χ , we may assume that 1− χ vanishes
outside the unit ball B.

Proof of (1). By equivalence of (O(∞), Bx ) and (O ′(∞), B
′
x ), there exists O ∈ G2, d2

loc (Rd)

such that

−O(∞);x + Bx = −Ad(O)O ′(∞);x − O;x + Ad(O)B ′x .

From simple computation, it follows that

(O−1(∞)OO ′(∞));x = Ad(O−1(∞)O)B ′x − Ad(O−1(∞))Bx ,

which implies that O−1(∞)OO ′(∞) ∈ G1,d(Rd\B). Applying Lemmas 3.21 and 3.22 to O

and O−1(∞)OO ′(∞), respectively, it follows that

[id] = [O] = [O−1(∞)OO ′(∞)].
Therefore, [O(∞)] = [O ′(∞)], as desired.
Proof of (2). Since [O ′(∞)O

−1
(∞)] = [id], by Lemma 3.21 there exists a gauge transform

P ∈ G2, d2 (2B) such that P = O ′(∞)O
−1
(∞) in 2B\B. Extend P as a 0-homogeneous
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map outside 2B; we abuse the notation and refer to the extension again by P (thus, P =
O ′(∞)O

−1
(∞) inR

d\B). Apply the gauge transform P to Ax = −χO(∞);x +Bx , and define

B ′x by the decomposition Ad(P)Ax − P;x = −χO ′
(∞);x + B ′x . From P ∈ G2, d2 (2B), it

follows that B ′x ∈ Ld ∩ Ẇ 1, d2 (2B). Moreover, outside 2B,

B ′x = Ad(P)Bx .

Observe that 0-homogeneity of P is sufficient to ensure Ad(P)Bx ∈ Ld∩Ẇ 1, d2 (Rd\2B).
Hence (O ′

(∞);x , B
′
x ) is also a good representation, as desired. ��

Finally, we prove Proposition 1.9.

Proof of Proposition 1.9. By scaling, we may set R = 1. Arguing as in the proof of
Theorem 1.5, we find local gauge potentials A(∞) and A′(∞) in R

d\B satisfying (3.12).

By construction, there exist O, O ′ ∈ G2, d2 (5B\B) such that

A = Ad(O)A(∞) − O;x , A′ = Ad(O ′)A′(∞) − O ′;x in 5B\B.

From the proof of Theorem 1.5, as well as Definition 1.8, note that the topological
classes [A] and [A′] are determined by the homotopy classes [O] and [O ′], respectively,
as defined in Lemma 3.20. In particular, it suffices to prove that O � ∂Br and O ′ � ∂Br
are homotopic to each other for a generic 1 < r < 5, in the sense of Lemma 3.20.

Since ‖A − A′‖Ld (5B) ≤ ε∗, the difference O;x − O ′;x obeys the bound

‖O;x − O ′;x‖Ld (5B\B) � ε∗,

which holds independently of possible additional constant gauge transformations for O
or O ′. By the pigeonhole principle, the following bound holds some generic 1 < r < 5:

‖O;x − O ′;x‖Ld (∂Br ) � ε∗.

After a suitable constant gauge transformation (which does not change the homotopy

class), it follows that O and O ′ are close in C 1
d (∂Br ), and therefore belong to the same

homotopy class. ��

4. Excision, Gluing and Extension of Yang–Mills Initial Data Sets

In this section, we provide proofs of the results stated in Sect. 1.6 concerning the Yang–
Mills initial data sets.

4.1. Solvability results for the inhomogeneous Gauss equation. In this subsection, we
address the question of solvability for divergence equations

(D(a))�e� = h (4.1)

in exterior of a convex domain.
To quantify the constants, we need to quantify the geometry of a convex domain.

Let K be a convex domain with barycenter xK . By convexity, for each � ∈ S
d−1, there

exists a unique intersection fK (�) of ∂K and the ray in the direction � emanating from
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xK . Define the radius of K by R(K ) = supx,y∈K |x − y|, and the Lipschitz constant of
K by

L(K ) = sup
�,�′∈Sd−1

| fK (�)− fK (�′)|
R(K )|�−�′| . (4.2)

Clearly, R(K ) is 1-homogeneous and L(K ) is scaling-invariant, in the sense that R(λK ) =
λR(K ) and L(λK ) = L(K ) for λ > 0.

We begin with a general solvability result for the usual divergence equation (i.e.,
a = 0).

Proposition 4.1. For any convex domain K , there exists a solution operator T0 for the
equation ∂�e� = h with the following properties:

(1) (Boundedness) For 1 < p <∞ and 1− d
p < σ < 1 + d

p ,

‖T0h‖Ẇ σ,p �L(K ),σ,p ‖h‖Ẇ σ−1,p . (4.3)

(2) (Exterior support) If h = 0 in λK, then T0h = 0 in λK.
(3) (Higher regularity) If h is smooth, so is T0h.

Proof. In the case K is a ball, this was considered in our prior work [19], where T0 is
constructed as a pseudodifferential operator of order −1. Here we will use a slightly
different but closely related solution operator.

First, we claim that given a unit vector ω ∈ S
d−1, we can construct an exact solution

operator Tω with smooth homogeneous symbol of order 1, and kernel supported in a
small conic neighborhood of ω. Our starting point is the simple observation that the
following operator solves the divergence equation (say for h ∈ C∞c (Rd)):

T̃e1h(x) =
∫ x1

−∞
e1h(y1, x2, . . . , xd) dy1,

where e1 is the unit vector (1, 0, . . . , 0). This operator is translation-invariant with kernel

e11(0,∞)(x
1)δ0(x

2) · · · δ0(xd),
which is supported on the ray {re1 : r > 0}. By rotation, for any unit vectorω ∈ S

d−1, we
obtain an analogous translation-invariant solution operator T̃ω whose kernel is supported
on the ray {rω : r > 0}. Moreover, given a smooth function χ̃ω(ω′) on S

d−1 supported
on a neighborhood Ĉω ⊆ S

d−1, the smooth average

Tωh =
∫

T̃ω′(h)χ̃ω(ω′) dω′

is a translation-invariant solution operator, whose kernel is smooth outside the origin,
homogeneous of degree −d + 1 and supported in the conic neighborhood Cω = {x ∈
R
d : x
|x | ∈ Ĉω}, as desired.

We now turn to the issue of insuring the exterior support property. If one were to work
with the operators T̃ω, then it is easy to produce such an solution operator T : We simply
decompose the input into each angleω and apply T̃ω, i.e., T =

∫
Sd−1 T̃ωδω(ω′) dω′. Then

(formally) the exterior support property holds for any convex set K .
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To use the operators Tω with “fattened” kernel, we use a uniform conical partition of
unity in the physical space 1 = ∑

χω (centered at the origin) and define our solution
operator T0 to be

T0 =
∑

Tωχω.

Making the angular support of each χω sufficiently narrow (which, of course, increases
the number of partitions) depending on L(K ), we may insure the exterior support prop-
erty of T .

Multiplication by each χω is bounded on Ẇ σ−1,p thanks to Hardy’s inequality, which
holds since |σ − 1| < d

p ; hence (4.3) follows. The higher regularity property follows by
differentiation. ��

Next, we generalize Proposition 4.1 to the inhomogeneous covariant Gauss equation
(4.1) when ‖a‖

Ḣ
d−2
2

is small by a perturbative argument.

Proposition 4.2. Let D = d + a ∈ A d−2
2 ,2(Rd) satisfy ‖a‖

Ḣ
d−2
2
≤ ε∗. For any convex

domain K , there exists a solution operator Ta for the equation D�e� = h with the
following properties:

(1) (Boundedness) For 2 ≤ p <∞ and 1− d
p < σ < d

2 ,

‖Tah‖Ẇ σ,p �L(K ),σ,p ‖h‖Ẇ σ−1,p . (4.4)

(2) (Exterior support) If h = 0 in λK, then Tah = 0 in λK.
(3) (Higher regularity) If a and h is smooth, so is Tah.

Proof. We proceed in two steps.

Step 1: Definition of Ta . To define Ta , we solve the fixed point problem is

e = T (h − [a�, e�]).
Let us abbreviate [a�, e�] = ad(a)e. Under the conditions for p and σ , multiplica-
tion by a takes Ẇ σ,p into Ẇ σ−1,p (this may be proved by the usual Littlewood–Paley
trichotomy), so that we can estimate

‖Tad(a)‖Ẇ σ,p→Ẇ σ,p � ‖a‖
Ḣ

d−2
2

.

Therefore, for ‖a‖
Ḣ

d−2
2

sufficiently small, we find Ta which clearly satisfies the bound-

edness and exterior support properties.

Step 2: Higher regularity. Here we assume that ∂(m)a ∈ Ḣ
d−2
2 and ∂(m)h ∈ Ẇ σ−1,p

for 0 ≤ m ≤ n, then we prove that ∂(n)e ∈ Ẇ σ,p. We consider the case n = 1; higher
values of n are dealt with in a similar manner. Differentiating our fixed point problem
we get

∂e = T (∂h − [a�, ∂e�])− T ([∂a�, e�]) + [∂, T ](h − [a�, e�]) (4.5)

where we can estimate

‖T ([∂a, e]) + [T, ∂](h − [a, e])‖Ẇ σ,p � ‖e‖Ẇ σ,p + ‖h‖Ẇ σ,p
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with an implicit constant depending on the Ḣ
d−2
2 norms of ∂a and a. Then we have a

fixed point problem for ∂e, which is solved in Ẇ σ,p to obtain the bound

‖∂e‖Ẇ σ,p � ‖h‖Ẇ σ,p∩Ẇ σ−1,p

One minor issue here is that we do not a-priori know that ∂e ∈ Ẇ σ,p. But this can be
easily circumvented by replacing the gradient with the appropriated divided difference.

��
Finally, we prove Theorem 1.14, where the smallness assumption for a is removed.

For simplicity, we restrict to the critical space h ∈ Ḣ
d−6
2 where d ≥ 4, which suffices

for our main applications.

Proof of Theorem 1.14. We work from the case when h is not differentiated (i.e., h ∈
L

d
2 ), and gradually move up to higher regularity spaces. In the proof, we omit the

dependence of constants on L(K ).

Step 1: Construction of Ta: Ẇ
−1,p→ Lp (1 < p < d). We compensate for the lack of

smallness of a by adding a weight w = 2−φ where φ is a smooth bounded increasing
radial function. The goal is to insure that

‖Tad(a)‖L p
w→L p

w
# 1

We denote

Ak = {x ∈ R
d : k ≤ φ(x) ≤ k + 1}.

Then for j ≥ k, by Hölder’s inequality, the embedding Lq ↪→ Ẇ−1,p (where q−1 =
p−1 + d−1) and Proposition 4.1 we have

‖1A j T ad(a)1Ak‖L p
w→L p

w
� 2k− j‖a‖Ld (Ak )

.

On the other hand, the LHS vanishes when j < k by the exterior support property. After
summation, we obtain

‖Tad(a)‖L p
w→L p

w
� sup

k
‖a‖Ld (Ak )

.

Thus to insure the desired smallness, it suffices to choose w so that the RHS is small,
which is easily done.

Step 2: Boundedness into Ḣ
d−4

2 . Let n be the least integer greater than or equal to d−4
2 .

The strategy is to commute ∂ for up to order n (as in Step 2 in the proof of Proposition 4.2),

and inductively prove boundedness of Ta : Ẇm−1, d
m+2 → Ẇm, d

m+2 for m = 1, . . . , n;
this would directly imply (1.13) for even d, and after interpolation for odd d.

For simplicity, as in Step 2 of the proof of Proposition 4.2, we only consider the case
n = 1; the general case is dealt with by induction in a similar manner. Our starting point
is (4.5):

∂e = T (∂h − [a�, ∂e�])− T ([∂a�, e�]) + [∂, T ](h − [a�, e�]). (4.6)
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The strategy is to use ‖e‖Ld , which is already under control, to estimate the last two
terms, and use an iteration argument in L p

w as in Step 1 with p = d
3 to estimate8 ∂e. By

Proposition 4.1, Sobolev and Hölder, we have

‖T ([∂a�, e�])‖
L

d
3

� ‖∂a‖
L

d
2
‖e‖

L
d
2

� ‖a‖
Ḣ

d−2
2
‖e‖

L
d
2
.

On the other hand, note that [T, ∂] =∑
ω Tω∂χω (cf. proof of Proposition 4.1), where

χω is 0-homogeneous. Thus by Tω : Ẇ−1,p → L p, Hardy, Sobolev and Hölder,

‖[∂, T ](h − [a�, e�])‖
L

d
3

� ‖h − [a�, e�]‖
L

d
3

� ‖h‖
L

d
3
+ ‖a‖

Ḣ
d−2
2
‖e‖

L
d
2
.

By Step 1 with p = d
2 , we have ‖e‖L d

2
� ‖h‖

Ẇ−1,
d
2

� ‖h‖
L

d
3
. Then finding the fixed

point ∂e of (4.6) as in Step 1, the desired estimate ‖∂e‖
L

d
3

�‖a‖
Ḣ

d−2
2
‖h‖

L
d
3
follows.

Step 3: Higher regularity. This step is analogous to Step 2 of Proposition 4.2, where
the iteration is done in L p

w. ��

4.2. Initial data surgery. Now we explore consequences of the previous result in terms
of excising and extending initial data sets. The aim of this subsection is to prove Theo-
rems 1.16 and 1.17.

Before we turn to the proofs, a few remarks about Sobolev extension are in order. For
any domain K with locally Lipschitz boundary, Stein’s extension theorem [28, §VI.3]
says that there exists a universal linear extension operator E for all Sobolev spaces
W σ,p(K ) → W σ,p(Rd). When K is convex with R(K ) = 1 (which we may insure
by scaling), it can be checked that the constant depends only on σ, p and the Lipschitz
constant L(K ). In particular, we have

‖Eu‖Ẇ σ,p �L(K ),p,σ ‖u‖Ẇ σ,p(K ) where σ ≥ 0, q, p ∈ (1,∞),
d

p
− σ = d

q
.

(4.7)

The same bound holds for general R(K ) by scaling-invariance of the both sides. Simi-
larly, for an annular region 4K\K (with general R(K )), there exists a universal linear
extension operator E such that

‖Eu‖Ẇ σ,p �L(K ),p,σ ‖u‖Ẇ σ,p(4K\K ) where σ ≥ 0, q, p ∈ (1,∞),
d

p
− σ = d

q
.

(4.8)

Now we prove Theorem 1.16, concerning truncation of Yang–Mills initial data sets.

Proof of Theorem 1.16. Let (a, e) be the given H d−2
2 Yang–Mills initial data set on

2K\K . In this proof, we use the shorthands

A = ‖a‖
Ḣ

d−2
2 (2K\K )

, E = ‖e‖
Ḣ

d−4
2 (2K\K )

.

8 As in Step 2 of Proposition 4.2, to be rigorous one should work with divided differences, but the argument
is essentially the same.
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First, we use the universal extension E to extend a, e to ā, ē′ on R
d , respectively.

Clearly, restriction of ā satisfies (1.14). On the other hand, ē′ obeys a favorable bound,
but violates the Gauss equation outside 2K\K . More precisely,

(D(ā))�ē′� = h

where h = 0 in 2K\K since (ā, ē) = (a, e) there. Let χout be a smooth cutoff which
equals zero in K and 1 outside 2K , then let hout = χout h. Note that

‖hout‖
Ḣ

d−6
2

� ‖∂ ē‖
Ḣ

d−6
2

+ ‖ā‖
Ḣ

d−2
2
‖ē‖

Ḣ
d−4
2

�A E .

Hence, by Theorem 1.14, we find d� such that (D(ā))�d� = −hout , d = 0 in 2K and
‖d‖

Ḣ
d−4
2

�A E . The desired ē is then given by the restriction of ē′ + d to Rd\K .

To conclude the proof, note that the higher regularity and local Lipschitz properties
are obvious by construction. Finally, equivariance under constant gauge transformations
can be insured by fixing a particular construction, conjugating by elements of G, and
then averaging over G. ��

Combined with Uhlenbeck’s lemma (Theorem 3.11), we may now prove the final
excision-and-extension result (Theorem 1.17).

Proof of Theorem 1.17. We only treat the case when d ≥ 4 is even and X = BR . The
other cases are simpler and thus are left to the reader (when d is odd, Uhlenbeck’s lemma
is not needed, and when X = R

d , the extension procedure is unnecessary).

Step 1: Application of Uhlenbeck’s lemma. As in the proof of Proposition 3.19, we
first set ar = 0 by Lemma 3.5, and extend a outside BR by Lemma 3.18. Then the Ld -
concentration radius of a does not vary much, and Uhlenbeck’s lemma (Theorem 3.11)
is applicable on any ball B2r (x) with r < 10rc and x ∈ BR . We claim that

‖ã‖
Ḣ

d−2
2 (Br (x)∩X)

� ‖D( d−42 )F[a]‖L2(Br (x)∩X) + ‖F[a]‖L d
2 (Br (x)∩X)

.

For interior balls (i.e., B2r (x)∩∂B = ∅), this bound follows directly from Lemma 3.13.
For boundary balls (i.e., B2r (x) ∩ ∂B �= ∅), we obtain angular regularity (with respect
to the center of BR) by Lemma 3.14, then radial regularity by (3.11). We note that the
implicit constant is controlled thanks to the smallness of ε∗.

Next, by the formula O;x = Ad(O)a − ã), we obtain (1.18). Then it also follows
that

‖ẽ‖
Ḣ

d−4
2 (Br (x)∩X)

� ‖D( d−42 )e‖L2(Br (x)∩X) + ‖e‖L d
2 (Br (x)∩X)

.

Step 2: Application of Theorem 1.16. We apply Theorem 1.16 to (ã, ẽ) and obtain
an extended Yang–Mills initial data set outside the convex domain K = Br (x) ∩ BR ,
which we still denote by (ã, ẽ). We note for domains of the form K = Br (x) ∩ BR , we
have the universal bound R(K ) � r and L(K ) � 1. Therefore, by (1.14), (1.15), and
the preceding bounds for (ã, ẽ) on K , we obtain (1.17).

Step 3: Completion of proof. It remains to prove Theorem 1.17(2). We begin by clar-
ifying the ambiguity of the construction so far. In Step 1, the triple (ã, ẽ, O) �K is
determined up to a constant gauge transformation, as in Uhlenbeck’s lemma (Theo-
rem 3.11). Since Theorem 1.16 is equivariant under such operations, the corresponding
extensions (ã, ẽ) are also constant gauge transformations of each other.
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As a result, in order to prove (2), it suffices to show that we can enforce strong

convergence of (ãn, ẽn, On) to (ã, ẽ, O) in H
d−2
2 × H

d−4
2 × H

d
2 (K ), after passing

to a subsequence and conjugating the sequence with a constant gauge transformation.
Proceeding as in Theorem 3.11(2), we may first insure convergence of a suitable sub-

sequence up to a constant gauge transformation in W 1, d2 × L
d
2 × W 2, d2 (K ). Then by

Remark 3.15, strong convergence in the desired topology (of the same sequence) may
be proved. We omit the straightforward details. ��

5. The Local Theory for the Hyperbolic Yang–Mills Equation

In this section, we consider the local-in-time theory for the hyperbolic Yang–Mills
equation for data in an arbitrary topological class.

5.1. Gauge equivalent classes of connections. We start by verifying that the gauge-

equivalent class of H d−2
2 connections is closed, as asserted in Sect. 1.7.

Proposition 5.1. Let A be an H
d−2
2

loc connection in O ⊆ R
1+d . Then [A] is closed in the

corresponding topology.

Proof. Suppose that O(n) is a sequence of admissible gauge transformations so that the
gauge equivalent connections A(n) given by

A(n) = Ad(O(n))A − O(n)
;t,x (5.1)

converge to an H
d−2
2

loc connection B. Then we need to show that A and B are gauge
equivalent.

Wefirst consider the corresponding gauge transformations O(n). By the relation (5.1),
it follows that these are uniformly bounded on compact sets. Hence, by compact Sobolev
embeddings we obtain a limiting gauge transformation O , so that on a subsequence we
have
(i) O satisfies the bounds

∇O ∈ L∞H
d−2
2

loc

(ii) Convergence in weaker topologies:

∇O(n) → ∇O in L pW
d−2
2 ,2−

loc , p <∞.

(iii) Pointwise a.e convergence:

O(n)(t, x)→ O(t, x) a.e., ∇O(n)(t, x)→ ∇O(t, x) a.e.

These properties allow us to pass to the limit and obtain

B = OAO−1 − O;t,x
as well as the similar relation for the curvatures.

It remains to improve the first property (i) above to continuity in time. This cannot
come fromweak convergence, instead it is a consequence of the corresponding continuity
property for A and B. We start from property (ii), which guarantees that O(t, x) is
continuous in t for almost every x . Since A, B ∈ Ct Ld

loc, so is Ad(O)A and thus ∇O .

We now differentiate and repeat the process for ∂∇O in L
d
2 , and so on. ��
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5.2. Local theory at optimal regularity for dimensions d ≥ 4. We begin by recalling
the temporal gauge small data global well-posedness result proved9 in [21].

Theorem 5.2 [21, Theorem1.17]. If the Ḣ
d−2
2 ×Ḣ

d−4
2 normof the initial data set (a, e) is

smaller than some universal constant ε∗, then the corresponding solution (At,x , ∂t At,x )

in the temporal gauge A0 = 0 exists globally in Ct (R; Ḣ d−2
2 × Ḣ

d−4
2 ), and obeys the

a-priori bound

‖∇Ax‖
L∞ Ḣ

d−4
2

� ‖(a, e)‖
Ḣ

d−2
2 ×Ḣ d−4

2
.

The solution is unique among the local-in-time limits of smooth solutions, and it depends

continuously on the data (a, e) ∈ Ḣ
d−2
2 × Ḣ

d−4
2 .

We now derive Theorem 1.22 from Theorems 1.17 and 5.2.

Proof of Theorem 1.22. The idea is to construct the local-in-spacetime solutions using
Theorems 1.17 and 5.2, and then patch up by finite speed of propagation (i.e., local-in-
spacetime uniqueness) in the temporal gauge.

Step 1: Construction of local-in-spacetime solutions. Consider a ball Br (x) with
r < 10rc and x ∈ X ; we introduce the abbreviation K = Br (x) ∩ X . Let (ã, ẽ) and
O be the global Yang–Mills initial data and the gauge transformation associated with
(a, e) by Theorem 1.17(1); recall that (a, e) is gauge equivalent to (ã, ẽ) via O on K .

Choosing ε∗ sufficiently small, Theorem 5.2 produces a uniqueCtH d−2
2 temporal-gauge

solution Ã corresponding to (ã, ẽ). We define A on D(K ) by

Aμ(t, x) = Ad(O−1(x)) Ãμ(t, x)− O−1;μ (x).

Note that (ã, ẽ, O) in Theorem 1.17(1) is determined up to a constant gauge transfor-
mation, but any choice leads to the same solution A. By (1.17), (1.18) and Theorem 5.2,
it follows that

‖∇Ax‖
L∞ Ḣ

d−4
2 (D(K ))

� ‖(a, e)‖
Ḣ

d−2
2 ×Ḣ d−4

2 (K )
. (5.2)

Step 2: Continuous dependence and uniqueness. We claim that the mapping

H d−2
2 (K ) � (a, e) �→ (A, ∂t A) ∈ Ct (H

d−2
2 × H

d−4
2 )(D(K ))

is continuous. Indeed, for the purpose of contradiction, suppose that there is a se-

quence of H d−2
2 Yang–Mills initial data sets on K such that (an, en) → (a, e), while

(An, ∂t An) �→ (A, ∂t A) inCt (H
d−2
2 ×H

d−4
2 )(D(K )). By passing to a subsequence, we

may assume that no further subsequence of (An, ∂t An) converges to (A, ∂t A) in the same
topology. However, by Theorem 1.17(2) and the continuity statement in Theorem 5.2,

there exists a subsequence for which ( Ãn, ∂t Ãn) → ( Ã, ∂t Ã) in Ct (Ḣ
d−2
2 × Ḣ

d−4
2 ).

By the convergence On → O and (On)−1 → O−1 in G d
2 ,2(K ), it follows that

(An, ∂t An)→ (A, ∂t A) in the above topology, which is a contradiction.

9 In [21], this theorem is stated an proved in the most difficult case d = 4. Nevertheless, its proof may be
extended to d > 4.
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From continuous dependence and persistence of regularity in Theorems 1.17 and
5.2 it follows that (A, ∂t A) defined in Step 1 is approximated by smooth (temporal
gauge) solutions, i.e., it is a solution to (1.9) in the sense of Definition 1.19. Therefore,
uniqueness of the solution onD(K ) in the sense of Definition 1.19 in the temporal gauge
follows.

Step 3: Conclusion of the proof. Consider now a family of balls {B2rc(x)}x∈X , and
the corresponding family of temporal gauge solutions in each D(B2rc (x) ∩ X). By
the local-in-spacetime uniqueness that we just proved, these solutions coincide on the
intersections, and therefore define a unique temporal gauge solution (in the sense of
Definition 1.19) in D[0,rc)(X) ⊆ ∪x∈XD(B2rc(x) ∩ X).

Properties (1) and (2) claimed in Theorem 1.22 follow from the construction. For
the a-priori bound in (3), we repeat the above steps to the data restricted to uniformly
spaced balls B of radius 2rc that cover BR′(x). By local-in-spacetime uniqueness, the
result coincides with A inD[0,rc)(BR′(x)). Moreover, (1.20) follows by summing up the
a-priori bounds in Theorem 5.2 for the local-in-spacetime solutions. ��

Next, we also show that allH
d−2
2

loc solutions (in the sense of Definition 1.19) are gauge
equivalent to the corresponding temporal solutions.

Proof of Theorem 1.23. Let A(n) be a sequence of smooth solutions which converge

to A in the norm Ct (H
d−2
2

loc × H
d−4
2

loc ). Let Ã(n), respectively Ã, be the corresponding
temporal solutions. We know that Ã(n) and A(n) are gauge equivalent; denote by O(n)

the corresponding gauge transformations.
We know that in the H1 topology

Ad(O(n)) Ã(n) − O(n)
;t,x = A(n) → A

but also that

Ã(n) → Ã

Thus, the gauge transformations O(n) satisfy uniform bounds locally. Then it follows
that (up to a subsequence)

Ad(O(n)) Ã − O(n)
;t,x → A.

But now we can use Proposition 5.1 to conclude that Ã and A are gauge equivalent. ��

Continuity of Ax (t) in H
d−2
2

loc,rc
, as stated in Theorem 1.22, is in general insufficient

to conclude invariance of the topological class. However, combined with finite speed of
propagation and Proposition 1.9, we may nevertheless prove that the topological class
of Ax (t) is conserved under the hyperbolic Yang–Mills evolution.

Proof of Proposition 1.24. Thanks to Theorem 1.23, it suffices to consider a temporal
gauge solution Ax (t). By a usual continuous induction in t (as well as time reversibility
of (1.9)), it suffices to show that the [Ax (t)] = [Ax (0)] for all t > 0 sufficiently close
to 0.
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Since E
d−2
2

Rd (a, e) < ∞, there exists R > 0 such that E
d−2
2

Rd\BR
(a, e) # ε∗. By Uh-

lenbeck’s lemma (when d is even) and the local-in-spacetime a-priori estimate (1.20), it
follows that

sup
t∈[0,rc)

E
d−2
2

Rd\BR+t
(Ax (t), ∂t Ax (t)) � E

d−2
2

Rd\BR
(a, e)# ε∗.

In particular, choosing R large enough, we may insure that

‖F[Ax (t)]‖
L

d
2 (Rd\B2R)

< ε∗,

where ε∗ is as in Proposition 1.9. For t > 0 sufficiently close to 0, by the continuity
property (1.19), we may also insure that

‖Ax (t)− Ax (0)‖Ld (B2R) < ε∗.

By Proposition 1.9, it follows that [Ax (t)] = [Ax (0)]. ��
Finally, we turn to the proof of Theorem 1.25. The main ingredient is the caloric

gauge small data well-posedness theorem from [21]:

Theorem 5.3 [21, Corollary 1.13]. Let (a, e) be an Yang–Mills initial data set with the

property that its Ḣ
d−2
2 × Ḣ

d−4
2 norm is smaller than some universal constant ε2∗ . Then

there exists a gauge transformation O ∈ Ḣ
d
2 (Rd;G) of (a, e) to a caloric gauge data

(ã, ẽ), which is unique up to a constant gauge transformation.Moreover, the correspond-
ing caloric gauge solution ( Ãt,x , ∂t Ãt,x ) exists globally in time, and obeys the a-priori
bound

‖ Ãx‖
S
d−2
2

� ‖(a, e)‖
Ḣ

d−2
2 ×Ḣ d−4

2
. (5.3)

We refer the reader to [20,21] for the precise definition of the caloric gauge and the

S
d−2
2 norm. For our purposes, all we need to know is that

‖∇ Ãx‖
L∞ Ḣ

d−4
2

+ ‖ Ãx‖L2L2d � ‖ Ãx‖
S
d−2
2

(5.4)

and that the a-priori bound of the S
d−2
2 norm implies the following additional control of

the solution Ãt,x [21, Theorem 5.1]:

‖� Ãx‖
�1L2 Ḣ

d−5
2

+ ‖∂� Ã�‖
�1L2 Ḣ

d−3
2

+ ‖∇ Ã0‖
�1L2 Ḣ

d−3
2

�‖ Ãx‖
S
d−2
2

‖ Ãx‖2
S
d−2
2

.

(5.5)

Combined with the initial data surgery technique (Theorem 1.17) and the patching pro-
cedure in Sect. 3.2, we may now prove Theorem 1.25.

Proof of Theorem 1.25. On theonehand,wehave aglobalH
d−2
2

loc solution A inD[0,rc)(BR)

by Theorem 1.22. On the other hand, we can cover [0, rc) × BR−4rc with cylinders
[0, rc)×Brc (xα), each of which is contained in a truncated coneD[0,rc)(B4rc(xα))whose
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base is contained in BR , i.e., B4rc(xα) ⊆ BR . In eachD[0,rc)(B4rc(xα)), by Theorem 5.3,
we have a gauge-equivalent caloric solution Ã(α) satisfying

‖∇ Ã(α)x‖
L∞ Ḣ

d−4
2

+ ‖� Ã(α)x‖
�1L2 Ḣ

d−5
2

+ ‖∂� Ã(α)�‖
�1L2 Ḣ

d−3
2

+ ‖∇ Ã(α)0‖
�1L2 Ḣ

d−3
2

� ε∗.

(5.6)

In the remainder of the proof, we restrict each solution Ã(α) to the cylinder [0, rc) ×
Brc (xα).

We need to compute the regularity of the gauge transformation O(αβ) between two
such solutions Ã(α) and Ã(β). We build up the regularity of O(αβ) in several stages,
depending on the formula

Ã(α) = Ad(O(αβ)) Ã(β) − O(αβ);t,x in [0, rc)× (Brc (xα) ∩ Brc (xβ))

In what follows, all norms are over [0, rc) × (Brc(xα) ∩ Brc (xβ)), and we omit the
subscripts (α), (β) and (αβ).

(i) L p regularity. It immediately follows that

O;x , O;t ∈ L∞Ld ∩ L2L2d .

Reiterating this, we also obtain

O;x , O;t ∈ L∞ Ḣ
d−2
2 .

(ii) �1 Besov structure for O;x . Here we obtain

O;x ∈ �1(L∞ Ḣ
d−2
2 ∩ L2 Ḣ

d−1
2 ).

which follows from the div-curl system10 for O;x (cf. Lemma 3.16).
(iii) �1 Besov structure for O;t . Next, we obtain

O;t ∈ �1(L∞ Ḣ
d−2
2 ∩ L2 Ḣ

d−1
2 ).

which is obtained by differentiating in x in the O;t relation. Differentiating instead
in t , we also obtain

∂t O;t ∈ �1(L∞ Ḣ
d−4
2 ∩ L2 Ḣ

d−3
2 ).

(iv) �O;x ∈ �1L2 Ḣ
d−5
2 .This requires a similar bound for [O;α, ∂α Ã] and for [∂αO;α, Ã].

Both of them follow from the previous bounds.

To summarize, we have the regularity properties:

O;x ∈ �1L2 Ḣ
d−1
2 , ∂2t O;x ∈ �1L2 Ḣ

d−5
2 , ∇O;t ∈ �1L2 Ḣ

d−3
2 , (5.7)

where ∂2t O;x ∈ L2 Ḣ
d−5
2 follows by combining (ii) and (iii). These in particular imply

that each O is continuous, and is close to a constant in L∞. Hence, the operations of

10 In order to appeal to interior regularity, we may in fact start with local data on slightly larger balls
B2rc (xα), then shrink their radii to rc at this stage. We omit this minor technical detail.
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pointwise multiplication, inversion, adjoint action on g etc. are all well-behaved for O
(in contrast to the general situation in Sect. 3.1).

Next step is to patch up the local gauges. Taking only the balls Brc (xα) which cover
BR−4rc and which are uniformly separated, Scenario (2) in Sect. 3.2 is applicable to each
fixed time {t}× BR−4rc . Note that the diffeomorphisms and the smooth cutoffs involved
in the patching procedure in Scenario (1) in Sect. 3.2 all depend trivially on t . It follows
that on each [0, rc)× B ′α , the gauge transformations P(α) obey

P;x ∈ �1L2 Ḣ
d−1
2 , ∂2t P;x ∈ �1L2 Ḣ

d−5
2 , ∇P;t ∈ �1L2 Ḣ

d−3
2 , (5.8)

where the bound depends only on R/rc and ε∗.
It remains to verify the bound (1.22) for the global gauge potential A, which is

a consequence of (5.6), (5.7) and the formula (3.6) (it is easily extended to the 0-th

component). Here, we only sketch the proof of�Ax ∈ �1L2 Ḣ
d−5
2 , which is the trickiest,

and leave the remaining cases to the reader.
Recalling the formula (3.6), we have

�Ax =
∑

χα

(
Ad(P(α))� Ã(α)x −�P;x + h.o.t.

)
.

The higher order terms, whose precise expression is omitted, are estimated by (5.8) and

(5.6). Moreover, �P;x = −∂2t P;x + �P;x ∈ �1L2 Ḣ
d−5
2 ([0, rc)× B ′α) by (5.8). Thanks

to (5.8), Ad(P(α)) may be easily removed in �1L2 Ḣ
d−5
2 ([0, rc) × B ′α). Then finally,

� Ã(α)x ∈ �1L2 Ḣ
d−5
2 ([0, rc)× B ′α) by (5.6). ��

5.3. Local theory in dimension d = 3. Here we sketch the proofs of Theorems 1.27
and 1.28. The key result is the following subcritical initial data surgery result (cf. The-
orems 1.16 and 1.17):

Theorem 5.4. Let 1
2 < σ < 5

2 , and let (a, e) be an Hσ Yang–Mills initial data set on a
convex domain K in R3 satisfying

‖a‖
Ḣ

1
2 (K )

≤ ε. (5.9)

If ε > 0 is sufficiently small depending on L(K ), then there exists an Hσ Yang–Mills
initial data set (ā, ē) in R3 that coincides with (a, e) on K and obeys

‖ā‖Ḣσ∩R(K )−σ L2 + ‖ē‖Ḣσ−1+R(K )σ−1L2 �L(K ) ‖a‖Ḣσ∩R(K )−σ L2(K )

+ ‖e‖Ḣσ−1+R(K )σ−1L2(K ). (5.10)

It can be arranged so that the association (a, e) �→ (ā, ē) is equivariant under constant
gauge transformations, and so that (a, e) �→ (ā, ē) is locally Lipschitz continuous.
Moreover, if (a, e) is smooth, then so is (ā, ē).

Proof. By rescaling, we set R(K ) = 1 so that Ḣσ ∩ R(K )−σ L2 � Hσ and Ḣσ−1 +
R(K )σ−1L2 � Hσ−1. As in the proof of Theorem1.16,we apply the universal extension
operatorE to (a, e) to first obtain (ā, ē′) ∈ Hσ×Hσ−1(R3). Then the error for theGauss
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equation h = (D(ā))�ē′ is supported outside K and obeys ‖h‖Hσ−2 �‖ā‖
Ḣ

1
2
‖e‖Hσ−1(K ).

Since

‖ā‖
Ḣ

1
2

�L(K ) ‖a‖
Ḣ

1
2 (K )

≤ ε,

Proposition 4.2 is applicable if ε > 0 is chosen sufficiently small. Thus d = −Tāh
satisfies

(D(ā))�d� = −h, ‖d‖Hσ−1 � ‖h‖Hσ−2 � ‖ē′‖Hσ−1 ,

and vanishes in K . It follows that (ā, ē = ē′ + d) is a Yang–Mills initial data set
obeying the desired bound (5.10). The higher regularity and local Lipschitz properties
are obvious by construction. Finally, equivariance under constant gauge transformations
can be insured by fixing a particular construction, conjugating by elements of G, and
then averaging. ��

Next, we recall the temporal gauge small data local well-posedness of Tao.

Theorem 5.5 [29]. Let σ > 3
4 . If theHσ norm of the initial data set (a, e) is sufficiently

small, then the corresponding solution (At,x , ∂t At,x ) in the temporal gauge A0 = 0
exists in Ct ((−1, 1); Hσ × Hσ−1), and obeys the a-priori bound

‖(Ax , ∂t Ax )‖L∞(Hσ×Hσ−1) � ‖(a, e)‖Hσ×Hσ−1 .

The solution is unique among the local-in-time limits of smooth solutions, and it depends
in a locally Lipschitz manner on the data (a, e) ∈ Hσ × Hσ−1.

Now we are ready to prove Theorem 1.27.

Sketch of Proof of Theorem 1.27. As in the proof of Theorem 1.22, the idea is to patch
together the small local-in-spacetime solutions constructed using Theorems 5.4 and 5.5
in the temporal gauge.

It suffices to consider 3
4 < σ < 5

2 . Observe that, by subcriticality, the Hσ
loc norm

obeys the following one-sided scaling property:

‖(a(λ), e(λ))‖Hσ
loc

� λσ− 1
2 ‖(a, e)‖Hσ

loc
for λ ≤ 1.

Here (a(λ), e(λ))(x) = (λa, λ2e)(λx) is the invariant scaling. Choosing

λ �
(
ε∗‖(a, e)‖−1Hσ

loc

) 2
σ−1

,

wemay insure that ‖(a(λ), e(λ))‖Hσ
loc
# ε∗. Choosing ε∗ > 0 sufficiently small, we may

apply Theorem 5.4 to each (a(λ), e(λ)) �B2(x) to find an extension (ā(λ), ē(λ)), and then
Theorem 5.5 to this global-in-space small data to obtain a temporal gauge solution A(λ)

on the time interval (−1, 1). Proceeding as in the proof of Theorem 1.22, we obtain a
well-posed temporal gauge solution for (a(λ), e(λ)) on (−1, 1). By rescaling back, the

theorem follows with an explicit lower bound T � ‖(a, e)‖−
2

σ−1
Hσ

loc
. ��

Finally, Theorem 1.28 is an easy corollary of Uhlenbeck’s lemma (at subcritical
regularity) and Theorem 1.27.
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Sketch of Proof of Theorem 1.28. By conservation of energy, it suffices to prove that
the temporal gauge solution given by Theorem 1.27 exists on a interval of length
T (‖(F[a], e)‖L2

loc
), where ‖ · ‖L2

loc
= supx∈R3 ‖ · ‖L2(B1(x)). As before, we have the

one-sided scaling property

‖(F[a(λ)], e(λ))‖L2
loc

� λ
1
2 sup
x∈R3
‖(F[a], e)‖L2

loc
for λ ≤ 1.

Choosing λ � ε∗‖(F[a], e)‖−2L2
loc
, we may insure that the LHS is � ε∗. In what follows,

we work with the rescaled data (a(λ), e(λ)); we omit the superscript (λ) for simplicity.
For the rescaled data, we wish to show that the corresponding temporal gauge solution
given by Theorem 1.27 exists on the unit time interval [0, 1).

Fix a unit ball B = B1(x0). Applying Uhlenbeck’s lemma [30, Theorem 1.3] (which
is possible if we take ε∗ sufficiently small), we find O ∈ G2,2(2B) such that

‖O‖H2(B) � ‖a‖H1(2B),

and (ã, ẽ) = (Ad(O)a − O;x , Ad(O)e) obeys

‖(ã, ẽ)‖H1×L2(2B) � ‖(F[a], e)‖L2(2B) � ε∗.

By Theorem 5.5 (taking ε∗ even smaller if necessary), we find a temporal gauge solution
Ã with data (ã, ẽ) on (−1, 1). Applying the H2(2B) gauge transformation O−1, we
obtain a temporal gauge solution A = Ad(O−1) Ã + O−1O;t,x in D[0,1)(2B). It can be
easily verified that this solution is the limit of smooth temporal gauge solutions; hence it
coincides with the solution given by Theorem 1.27 in D[0,1)(2B). Since this procedure
can be applied to any unit ball B ⊆ R

3, it follows that the temporal gauge solution exists
on the time interval [0, 1), as desired. ��

6. Harmonic Yang–Mills Connections with Compact Structure Group

The goal of this section is to prove Theorem 1.32. We proceed in two steps, in increasing
generality.

Step 1: G is simple, compact and simply connected. Assume that G is compact and
simply connected, and also that g is simple, i.e., it is nonabelian ([g, g] �= 0) and there is
no nonzero proper ideal. As we will see, this case turns out to be completely analogous
to the model case G = SU (2).

We need some algebraic preliminaries on compact simple Lie algebras over R. We
only sketch the part of the theory that is needed for us; for a more comprehensive
treatment, see [12, Chapters II and IV].

A maximal abelian subalgebra h of g is called a Cartan subalgebra. Given such a
h, consider {ad(H) : g → g}H∈h, which is a family of commuting anti-self-adjoint
operators. Thus, viewed as linear operators on the complexification gC = g ⊗R C,
they are simultaneously diagonalizable with purely imaginary (or zero) eigenvalues. A
nonzero linear functional α ∈ h∗ is called a root11 if the simultaneous eigenspace (called
the root space)

gC,α = {A ∈ gC : ad(H)A = iα(H)A, ∀H ∈ h}
11 A more standard definition (used in [12]) is to define roots as α ∈ h∗

C
such that ∩H∈hCker(ad(H) −

α(H)) �= {0}. This differs from our definition by a factor of i .
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is nonzero. We write � for the space of all roots. By the preceding discussion, we see
that

gC = hC ⊕
⊕
α∈�

gC,α

as vector spaces. In particular, � �= {0}; in fact, it spans h∗. It is a fundamental result of
Cartan that all Cartan subalgebras are related to each other by an Ad(O)-action; thus �

is independent of the choice of h.
To each α ∈ �, we use the inner product 〈·, ·〉 to associate Hα ∈ h such that

α(H) = 〈Hα, H〉, H ∈ h,

and define the induced inner product on � by 〈α, β〉 = 〈Hα, Hβ〉. The roots with the
largest norm are called the highest roots.

Clearly, ifα ∈ �, then−α ∈ �with gC,−α = gC,α . For any Eα ∈ gC,α , by definition,

[Hα, Eα] = iα(Hα)Eα = i〈α, α〉Eα, [Hα, Eα] = −iα(Hα)Eα = −i〈α, α〉Eα.

Moreover, dimC gC,α = 1 and for any Eα ∈ gC,α , we have

〈Eα, Eα〉 = 0, [Eα, Eα] = i〈Eα, Eα〉Hα,

where 〈·, ·〉 is extended to gC in aC-bilinear fashion. For the proofs of the last properties,
see [12, Section II.4].

Every root generates an embedding of su(2) into g. More precisely, given a root
α ∈ �, normalize Eα so that

〈Eα, Eα〉 = 2

〈α, α〉 ,

and consider iα, jα, kα ∈ g defined by

iα = (Eα + Eα), jα = i(Eα − Eα), kα = 2

〈α, α〉Hα.

Then it is straightforward to verify that {iα, jα, kα} generate an su(2)-subalgebra, i.e.,

[iα, jα] = 2kα, [jα, kα] = 2iα, [kα, iα] = 2jα. (6.1)

Indeed, (6.1) are precisely the Lie bracket relations satisfied the following standard basis
of su(2):

i =
(

0 1
−1 0

)
, j =

(
0 i
i 0

)
, k =

(
i 0
0 −i

)
.

Note also that iα, jα, kα obeys

|iα|2 = |jα|2 = |kα|2 = 4

〈α, α〉 . (6.2)

By simplicity, all symmetric Ad-invariant bilinear functions on g (of which 〈·, ·〉 is
an example) are constant multiples of each other [12, Corollary 4.9]. Multiplying 〈·, ·〉
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by a suitable constant, which does not change the conclusion of Theorem 1.32, we may
assume that:

The highest roots in g have 〈α, α〉 = 2. (6.3)

When G = SU (n), this amounts to taking 〈A, B〉 = −tr (AB). We now recall the
following well-known result of Bott [4] concerning the third homotopy group π3(G) of
G:

Theorem 6.1. Let G be a simple, compact, simply connected Lie group. Then π3(G) �
Z. Any Lie group homomorphism ϕ : SU (2) → G, induced by the Lie algebra homo-
morphism

dϕ : su(2)→ g, (i, j, k) �→ (iα, jα, kα)

for a highest root α in g, induces an isomorphism π3(SU (2))→ π3(G).

The identification π3(G) � Z is due to Bott [4]. For the proof that such a ϕ induces
an isomorphism, see Atiyah–Hitchin–Singer [2, Section 8]. By our normalization (6.3),
dϕ is isometric.

Our goal now is to prove an analogue of Theorem1.29 concerning topological classes,
characteristic numbers and instantons. Let a be a A1,2

loc connection on R
4 with finite

energy, and let O(∞) be a gauge at infinity for a (which exists thanks to Theorem 1.5).
By Theorem 6.1, [O(∞)] = −κ[ϕ] for some κ ∈ Z. We claim that:

Claim 6.2. We have χ = −8π2κ . Moreover, there exists an instanton for each κ with
energy 8π2|κ|.

To prove the claim, note that each self-dual (resp. anti-self-dual) SU (2)-connection
ãκ with second Chern number c2 = −κ where κ > 0 (resp. κ < 0) induces a self-dual
(resp. anti-self-dual) G-connection aκ = dϕ(ãκ ) by the Lie algebra homomorphism
dϕ : su(2)→ g. Since dϕ preserves the normalized Ad-invariant inner product, which
equals −tr (AB) on su(2), we have

χ =
∫
R4
−〈dϕ(F[ãκ ]), dϕ(F[ãκ ])〉 =

∫
R4

tr (F[ãκ ] ∧ F[ãκ ]) = 8π2c2

Ee(aκ) = 1

2

∫
R4
〈dϕ(Fjk[ãκ ]), dϕ(F jk[ãκ ])〉 = 1

2

∫
R4
−tr (Fjk[ãκ ]F jk[ãκ ]) = 8π2|c2|.

Moreover, by a standard computation, the degree of a gauge at infinity Õκ(∞) for ãκ ,
viewed as a map S3→ SU (2) � S

3, is equal to c2 = κ (with the appropriate choices of
the orientations). Correspondingly, Oκ(∞) = ϕ ◦ Õ(κ(∞) is a gauge at infinity for aκ , and
since ϕ induces the isomorphism π3(SU (2)) → π3(G), we have [Oκ(∞)] = −κ[ϕ].
Since χ is dependent only on the topological class, the claim follows.

Next, analogous to Theorem 1.30, we claim that:

Claim 6.3. Let a be a finite energy harmonic Yang–Mills connection, which is not an
instanton. Then

Ee(a) ≥ |χ | + 16π2.
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In essence, this is [10, Corollary 1.2]. However, to insure that we obtain the sharp
bound, we need to verify that the proof goes through for our choice of 〈·, ·〉, without
relying on an embedding g ⊂ so(n) to normalize 〈·, ·〉 as in [10]. For this purpose, we
have the following replacement of [10, Lemma 2.1]:

Lemma 6.4. Under our normalization (6.3), we have

|[A, B]| ≤ √2|A||B| for any A, B ∈ g.

with equality if and only if, up to an Ad(O)-action, A and B are proportional to two of
{iα, jα, kα} for some highest root α.
Proof. Consider a maximal abelian subalgebra h containing A. Eigenvalues of ad(A)

are {0, iα(A)}α∈�. By (6.3), |α| ≤ √2. Thus,

|[A, B]| = |ad(A)B| ≤ sup
α∈�
|α(A)||B| ≤ sup

α∈�
|α||A||B| ≤ √2|A||B|.

In order for the equalities to hold, α must be a highest root, A = |A|Hα = |A|kα , and
B ∈ span(iα, jα). Since Ad(exp(skα)) simply rotates the plane span(iα, jα), and leaves
kα invariant, we see that Ad(exp(skα))B is parallel to iα for an appropriate choice of
s ∈ R. Finally, the converse is easy to verify. ��

The proof in [10] now goes through for a G-bundle with normalization (6.3) with the
parameters γ0 =

√
2 and γ1 = 2√

3
γ0 = 4√

6
. The SU (2)-instanton with κ = 1, which

we constructed above, saturates the inequalities in [10], exactly as in [10, Remark 2.7
and Section 3.2].

Step 2: G is a general nonabelian compact Lie group. Finally, we consider a general
nonabelian compact Lie group G and prove Theorem 1.32.

Observe that the Ad-invariant inner product on g can be used to define the orthogonal
complement h⊥ of an ideal h ⊆ g, which is also an ideal. Thus g admits the direct-sum
splitting

g = g̃1 ⊕ · · · ⊕ g̃ñ

as Lie algebra ideals, where each summand has no proper nonzero ideal. In fact, it is
either 1-dimensional, and thus abelian, or simple. Since G is assumed to be nonabelian,
at least one summand is simple. Thus, we arrive at the decomposition

g = g1 ⊕ · · · ⊕ gn ⊕ a.

where n ≥ 1, each gi is simple, and a is abelian. As a result, the universal cover G̃ of G
splits into

G̃ = �iGi × R
r

where Gi is the simply connected Lie group corresponding to gi , and r = dim a. Denote
by π i the projection G → Gi , and by dπ i the corresponding projection g→ gi , with
the convention Gn+1 = R

r , gn+1 = a.
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As we are working with global gauge potentials on R
4, the splitting allows us to

decompose any a into components dπ i (a), which are completely decoupled from each
other. We have the splitting

χ =
∫
R4
−〈F[a], F[a]〉 =

∑
i

∫
R4
−〈dπ(F[a]), dπ(F[a])〉 =

∑
i

χ(dπ i (a)), (6.4)

Ee(a) = 1

2

∫
R4
〈Fjk [a], F jk [a]〉 =

∑
i

1

2

∫
R4
〈dπ(Fjk [a]), dπ(F jk [a])〉 =

∑
i

Ee(dπ i (a)).

(6.5)

Moreover, a is a harmonic Yang–Mills connection if and only if each dπ i (a) is. In this
case, dπn+1(a) = 0, since no nontrivial finite energy harmonic 2-form exists on R4.

For each compact simple Gi , let Ei be the energy of a first instanton; from Step 1,
we know that Ei = 16

〈α,α〉π
2, where α is a highest root in gi . Reordering the factors if

necessary, we may arrange so that E1 ≤ E2 ≤ . . . ≤ En . In particular, E1 coincides
with the infimum in Theorem 1.32, and part (1) follows.

To prove part (2), note that if a is a finite energy harmonic Yang–Mills connection
with energy< 2E1 ≤ 2Ei , then by Step 1, each dπ i (a) is either zero or a first instanton.
Immediately by (6.5), we also see that exactly one of dπ i (a) is nonzero. Thus |χ | =
|χ i | = Ee(dπ i (a)) = Ee(a), as desired.
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