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Abstract: We consider non-Gaussian extensions of the elliptic Ginibre ensemble of
complex non-Hermitian random matrices by fixing the trace Tr(XX∗) of the matrix
X with a hard or soft constraint. These ensembles have correlated matrix entries and
non-determinantal joint densities of the complex eigenvalues. We study global and local
bulk statistics in these ensembles, in particular in the limit of weak non-Hermiticity
introduced by Fyodorov, Khoruzhenko and Sommers. Here, the support of the limiting
measure collapses to the real line. This limit was motivated by physics applications and
interpolates between the celebrated sine and Ginibre kernel. Our results constitute a
first proof of universality of the interpolating kernel. Furthermore, in the limit of strong
non-Hermiticity, where the support of the limiting measure remains an ellipse, we obtain
local Ginibre statistics in the bulk of the spectrum.

1. Introduction and Main Results

Despite its almost equally longhistory, the investigationof randommatriceswithout sym-
metry constraints is less advanced than that of random matrices which are for instance
real symmetric, complexHermitian or unitary.More generally, one distinguishes in Ran-
domMatrix Theory (RMT) between matrix eigenvalues living on a one-dimensional set
in the complex plane C and matrices with “genuinely complex” eigenvalues. This dis-
tinction is somewhat imprecisely called Hermitian and non-Hermitian RMT. In physics
applications the distinction between Hermitian and non-Hermitian operators also plays
an important role, where the latter are encountered e.g. in quantum systems that are open
or have a non-vanishing chemical potential. We refer to [3] for a list of modern appli-
cations in Hermitian and non-Hermitian physics problems. This article focuses on the
global and the local statistics in such non-Hermitian RMT where a transition between
real and complex eigenvalues can be observed.

It is known that similar to Hermitian RMT, in the limit of large matrix size the
local statistics in non-Hermitian RMT fall into different universality classes, depending
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on whether the entries of the matrices are real, complex or quaternion. For example,
the limiting local correlations of eigenvalues in the bulk of the spectrum of an N × N
randomGaussianmatrix with complex entries (the so-called Ginibre ensemble, a precise
definition will be given below) are given by those of the Ginibre point process. This point
process is determinantal with the so-called Ginibre kernel (see (8) below) and may be
seen as counterpart of the corresponding sine process which describes the limiting local
bulk statistics of random Hermitian matrices with complex entries. Both limiting point
processes are highly universal in the sense that they are limits of large classes of different
randommatrixmodels. The limit regime leading to the Ginibre kernel will be called limit
of strong non-Hermiticity, where we follow [22]. The precise meaning will be explained
below.

It appears not to be well known—at least in the mathematical community—that
there is another important limit regime in non-Hermitian RMT that leads to a one-
parameter family of limiting point processes interpolating between the Ginibre and sine
point process. This limit was found by Fyodorov, Khoruzhenko and Sommers [21] and
was coined weak non-Hermiticity limit. It occurs for random matrices that are almost
Hermitian. Surprisingly, it is precisely in this limit where a map between RMT and the
corresponding effective field theory of the underlying physics problem can be made, for
example in superconductors with columnar defects [18] or in quantum chromodynamics
with chemical potential [33]. We refer to [23] for a review on this subject and further
references to applications. In [6] a list of weakly non-Hermitian limiting kernels is
given in different symmetry classes. These correspond to local bulk, soft, or hard edge
interpolating point processes that are all conjectured to be universal.

However, with the exception of the soft edge limit of complex matrices [10], there
are no fully rigorous results proving the existence of these local weak non-Hermiticity
limits, let alone their possible universality (cf. Remark 4(d) on the crossover between
the global limiting semicircle and circular law by Fyodorov, Khoruzhenko and Sommers
[21] and by Ledoux [28]). In this article, we give a first proof that for random matrices
with complex entries, the bulk limit of weak non-Hermiticity yields a universal point
process. We show this universality for two classes of ensembles. In the first ensemble
that we call fixed trace elliptic ensemble, the norm TrJ J ∗ of the matrix J is fixed by a
hard constraint. In our second ensemble, the constraint is enforced more smoothly by
adding a trace squared term to the density of the elliptic Ginibre ensemble.

In Hermitian RMT, ensembles with a fixed trace constraint belong to the classical
random matrix ensembles, going back to [32]. In analogy to statistical mechanics, the
fixed trace and standard Gaussian ensembles correspond to the microcanonical and
canonical ensemble, resepectively. Despite this interpretation, to date nothing is known
about the asymptotics when imposing a fixed trace constraint in the non-Hermitian
Ginibre ensemble, in any limit regime. The non-Gaussian nature of this ensemble makes
it an ideal testing ground for universality questions, in particular for the the weak non-
Hermiticity limit.

Let us now make the previous more precise. The Ginibre ensemble [24], which can
be considered as a standard Gaussian measure, is defined as the probability measure on
C

N×N with density proportional to exp[−NTr(J J ∗)]. Equivalently, a random matrix
from the Ginibre ensemble can be realized as J := J1 + i J2, where J1,2 are indepen-
dent Hermitian matrices from the Gaussian Unitary Ensemble (GUE), i.e. the matrix
distribution on the space of N × N Hermitian matrices with density proportional to
exp[−NTr(J 21,2)]. The matrix J will (almost surely) not be unitarily diagonalizable,
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but a Schur decomposition can be used to obtain the joint density of its eigenvalues
z1, . . . , zN on C

N as proportional to

exp

⎡
⎣β

2

∑
j �=l

log
∣∣z j − zl

∣∣ − N
N∑
j=1

∣∣z j
∣∣2
⎤
⎦ , for β = 2. (1)

The eigenvalues form a two-dimensional Coulomb gas which represents another, well-
known physics application of non-Hermitian RMT. Here, the eigenvalues z j correspond
to charged point particles, at inverse temperature β. Only at the specific temperature
β = 2 the point process is determinantal, and the eigenvalue statistics can be efficiently
analyzed, i.e. by the fact that its correlation functions are given as determinants of a
kernel KN , which in turn can be studied using orthogonal polynomials in the complex
plane. In doing so, it was found that in the large N limit, the eigenvalues of J fill the
unit disc in the complex plane with uniform density (the so-called “circular law”). Also
the limiting local correlations between close eigenvalues in the bulk could be computed
(see (8)) [24].

Another important and well-studied model is the elliptic (Ginibre) ensemble. It was
introduced as an interpolation between Hermitian and non-Hermitian matrices by taking
J := √

1 + τ J1 + i
√
1 − τ J2, where J1,2 are again independent GUE matrices and

τ ∈ (−1, 1) controlls the degree of (non-)Hermiticity. TheGinibre ensemble is recovered
choosing τ = 0 and the GUE is obtained by formally taking the limit τ → 1. The elliptic
ensemble has the density

PN ,ell(J ) := 1

ZN ,ell
exp

[
− N

1 − τ 2
Tr

(
J J ∗ − τ

2
(J 2 + J ∗2)

)]
(2)

onCN×N , where ZN ,ell is the normalizing constant. The readerwill note the resemblence
with the bivariate normal distribution. In this interpretation, τ is the correlation coefficient
between �J j,l and �Jl, j and −τ the one between �J j,l and �Jl, j , for j �= l. The
eigenvalue distribution corresponding to (2) is again determinantal, known in closed
form (cf. (27)) and has been analyzed in great detail, cf. [3, Chapter 18] and references
therein. As N → ∞, and |τ | < 1 is fixed, its eigenvalues spread uniformly in the set

E :=
{
Z :

( �Z

1 + τ

)2

+

( �Z

1 − τ

)2

≤ 1

}
, (3)

a fact that is termed “elliptic law”. Its limiting local correlations, however, coincide for
τ ∈ (−1, 1) fixed with those of the Ginibre ensemble [22].

In this article, we study fixed trace versions of the Ginibre and elliptic ensembles.
Formally, the fixed trace Ginibre ensemble PN can be seen as

PN (d J ) = 1

ZN
δ(NKp − TrJ J ∗)d J (4)

with δ denoting the so-called Dirac delta function, ZN the normalizing constant and
Kp > 0 being an arbitrary constant, at which the normalized norm TrJ J ∗/N is fixed.
A rigorous definition is as follows: Define

SN := {J ∈ C
N×N : TrJ J ∗ = NKp}



1114 G. Akemann, M. Cikovic, M. Venker

with Kp > 0 arbitrary.SN is the sphere of radius
√
NKp in the vector spaceR2N2=̂C

N×N .
It is a well-known fact that there is a unique probability measure PN on SN that is in-
variant under the orthogonal group acting on the 2N 2-dimensional sphere. We will call
PN the fixed trace Ginibre ensemble. In the viewpoint of statistical mechanics, the fixed
trace Ginibre ensemble corresponds to the microcanonical ensemble, whereas the Gini-
bre ensemble corresponds to the canonical ensemble.

More generally, we define the elliptic fixed trace ensemble for τ ∈ (−1, 1) as the
probability measure

PN ,FT(d J ) := 1

ZN ,FT
exp

[
τN

2(1 − τ 2)
Tr

(
J 2 + J ∗2)

]
PN (d J ), (5)

where ZN ,FT denotes the normalization constant. In the special case τ = 0, we recover
the fixed trace Ginibre ensemble PN . Note that the density of PN ,FT w.r.t. PN is pro-
portional to the density of the elliptic ensemble (2) on SN w.r.t. the Lebesgue measure,
since on SN the term TrJ J ∗ is constant.

Furthermore, we consider an interpolation between (2) and (5). This ensemble is
given by the density on CN×N

PN ,Tr2(J ) := 1

ZN ,Tr2
exp

[
− N

1 − τ 2
Tr

(
J J ∗ − τ

2
(J 2 + J ∗2)

)
− γ (TrJ J ∗ − NKp)

2
]

,

(6)

where γ ≥ 0, Kp ∈ R are fixed, τ ∈ (−1, 1) and ZN ,Tr2 is the normalization constant.
This model is of the form (5) with a Gaussian approximation of the delta function in (4)
penalizing deviations of TrJ J ∗ from the value NKp. If the strength of the penalization
γ goes to infinity, we have PN ,Tr2(d J ) → PN ,FT(d J ) in distribution. We will call (6)
the trace-squared ensemble. PN ,Tr2 rather puts a “soft constraint” on TrJ J ∗, whereas
PN ,FT is obtained using a “hard constraint”. In contrary to the elliptic ensemble, PN ,Tr2

for γ > 0 and PN ,FT are non-Gaussian and non-determinantal (cf. Remark 6 below).
Let us briefly comment onfixed trace ensembles inHermitianRMT.They are classical

random matrix ensembles introduced in [32] (as reported in [31, Chapter 27]). While
for Hermitian models the limiting global correlations have been known since [31,32] to
be given by the semicircle distribution for all three symmetry classes, a rigorous proof
of universality of the sine kernel for a fixed trace model of Hermitian matrices has only
been presented much more recently in [25], cf. [7] for earlier heuristic arguments. Local
statistics at the soft and hard edge have been analyzed for fixed trace β-ensembles in
[14,30,37]. More general fixed trace models have been considered where the trace of a
polynomial in the random matrix is fixed [5]. This corresponds to the microcanonical
version of non-Gaussian generalizations of the classicalWigner-Dyson ensembles. Here,
on the global scale the non-universality of higher order connected correlation functions
(cluster functions) was argued for using loop equations.

For non-Hermitian fixed trace models, almost nothing is known with the exception
of a formula for the spectral density of complex eigenvalues at finite N in the fixed trace
Ginibre ensemble [15]. In particular, even the limiting measure for this simplest possible
fixed trace model is unknown, let alone the local correlations.

Furthermore, the models (5) and (6) provide an excellent testing ground for studying
the so-called limit ofweaknon-Hermiticity. TheGinibre correlations arise in the situation
of strong non-Hermiticity, meaning that the anti-Hermitian part of the random matrix is
of the same order in N as the Hermitian part. This results in a limiting global distribution
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(the weak limit of the empirical spectral distribution N−1 ∑N
j=1 δz j , the z j ’s being the

eigenvalues) that is supported on a two-dimensional subset of C.
In contrast to the limit of strong non-Hermiticity, the limit of weak non-Hermitici-

ty describes a situation where the limiting global distribution of the non-Hermitian
random matrix is supported on the real line but the local correlations still extend to the
complex plane. For the elliptic ensemble, this happens if the parameter τ is chosen as
τ = 1−κ/N for some κ > 0 not depending on N (see (3)) and thus the randommatrix is
almost Hermitian. The limit of weak non-Hermiticity was first discussed for the density
using the supersymmetric method in [21]. The limiting point process is determinantal
and its kernel was derived in terms of Hermite polynomials in the complex plane in [20],
see [22] for details. The limit of weak non-Hermiticity allows to describe the transition
between sine and Ginibre kernel. This makes its universality highly suggestive, but so
far only heuristic arguments in favour of this conjecture exist. For matrix ensembles
with independent entries, these arguments can be found in [22], whereas more general
ensembles (see (10) below) were treated in [2].

Let us now turn to the main results of this paper. Global and local statistics are usually
studied using correlation functions. For a probability density P on CN and 1 ≤ k ≤ N ,
the k-th correlation function is defined as

ρk(z1, . . . , zk) := N !
(N − k)!

∫
CN−k

P(z1, . . . , zN )dzk+1 . . . dzN . (7)

The correlation functions are multiples of the marginal densities. Let ρk
N ,Tr2

denote
the k-th correlation function of the eigenvalue density corresponding to PN ,Tr2 . Al-
though PN ,FT(d J ) is not absolutely continuous, its eigenvalue distribution is for N ≥ 2.

This is due to the fact that the constraint TrJ J ∗ = NKp translates to
∑N

j=1

∣∣z j
∣∣2 +∑N

i< j

∣∣Ti j
∣∣2 = NKp, where z1, . . . , zN are the eigenvalues collected in the diagonal

matrix Z , and the Ti j are complex variables stemming from the Schur decomposition
J = U (Z + T )U∗. Thus the constraint is somewhat less restrictive on the spectral level.
For N = 1, PN ,FT coincides with its eigenvalue distribution and is a probability distribu-
tion on a dilation of the unit circle. We will throughout the paper tacitly assume N ≥ 2
when speaking of correlation functions. Let ρk

N ,FT denote the k-th correlation function

of the eigenvalue density corresponding to PN ,FT. An integral representation of ρk
N ,FT

for k < N will be derived in Lemma 13. We are now ready to state our main results. For
the sake of brevity, we consider both types of ensembles, (5) and (6), simultaneously.
We start with the strongly non-Hermitian situation.

Theorem 1 (Limit of strong non-Hermiticity). Let τ ∈ (−1, 1) be fixed. Let ρk
N denote

either ρk
N ,FT or ρk

N ,Tr2
. Then there are constants c1, c2,C > 0, depending only on K p, τ

and in case ρk
N = ρk

N ,Tr2
also on γ , such that with E := {Z : c1(�Z)2 + c2(�Z)2 ≤ 1}

the following holds:

(a) For any Z ∈ C, Z /∈ ∂E, we have

lim
N→∞

1

N
ρ1
N (Z) = 1E◦(Z) · C

π
.

(b) For k = 1, 2 . . . , Z ∈ E◦, z1, . . . , zk ∈ C, as N → ∞
1

(CN )k
ρk
N

(
Z +

z1√
CN

, . . . , Z +
zk√
CN

)
= det

(
Kstrong(z j , zl)

)
j,l≤k +O

(
1√
N

)
,
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where

Kstrong(z j , zl) := 1

π
exp

[
−
∣∣z j

∣∣2 + |zl |2
2

+ z j zl

]
. (8)

The O term is uniform for Z from any compact subset of E◦ and z1, . . . , zk from
compacts of C.

Remark 2. (a) The previous theorem shows in particular that the elliptic fixed trace en-
semble (5) and trace-squared ensemble (6) belong to the same strongly non-Hermitian
bulk universality class as the Ginibre ensemble.

(b) For the trace-squared ensemble, the constant C and the elliptic set E are given in
Proposition 10. The set E differs from the limiting support of the elliptic ensemble,
except if Kp = 1 or γ = 0, in which case C = (1 − τ 2)−1.

(c) In [34] for the Ginibre ensemble and [29] for the elliptic ensemble, the convergence
is shown to be exponentially fast. In view of these results, it is likely that the bounds
on the rate of convergence in Theorem 1 can be improved. As this is not one of the
main purposes of this work, we will not pursue this here.

(d) Of course, the models (5) and (6) can also be considered on the set of N × N normal
matrices. Theorem 1 and Theorem 3 below extend to this situation as well. Note that
when considered as a normal matrix model, the joint density of the eigenvalues of
the trace-squared ensemble is proportional to

∏
j<l

∣∣z j − zl
∣∣2 exp

⎡
⎣− N

1 − τ 2

⎛
⎝

N∑
j=1

∣∣z j
∣∣2 − τ

2

⎛
⎝

N∑
j=1

z2j + z j
2

⎞
⎠
⎞
⎠

− γ

⎛
⎝

N∑
j=1

∣∣z j
∣∣2 − NKp

⎞
⎠

2
⎤
⎥⎦ .

WhenconsideredonCN×N , themodel does not have the sameeigenvalue distribution.
Note further that when considering a fixed trace model of normal matrices, its eigen-
value distribution is not absolutely continuous, since the constraint TrJ J ∗ = NKp

implies
∑N

j=1

∣∣z j
∣∣2 = NKp. Correlation functions ρk

N defined as marginal densities
therefore exist for k < N only. They can be defined via the relation

∫
f (z1, . . . , zk)ρ

k
N (z1, . . . , zk)dz = EN

N∑
j1 �= j2 �=···�= jk

f (z j1, . . . , z jk ), (9)

where f is a test function and EN denotes expectation w.r.t. the fixed trace (eigen-
value) measure.

Let us also give an overview over results in the literature on universality of the ker-
nel Kstrong. In [34], the Ginibre kernel was shown for the non-Hermitian analogs of
Wigner matrices, i.e. random matrices with independent entries (and with independent
real and imaginary parts), that have exponentially decaying distributions and fulfill cer-
tain moment conditions. Due to the lack of spectral calculus for matrices without any
symmetries, there is no clear non-Hermitian analog of the rich class of unitary invariant
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ensembles in Hermitian RMT. In general, there is a conflict between having a normaliz-
able density (i.e. a well-defined model) and having an eigenvalue distribution in closed
form.

One class of models in the literature is given by densities proportional to

exp[−σNTr(J J ∗) + �Tr(�(J ))], (10)

where σ > 0 and � is a potential. The ensembles (10) are determinantal, but over
C

N×N the density is normalizable only for very specific potentials �. Basically, these
are either�(J ) = J 2, corresponding to the elliptic ensemble, or logarithmicwith special
coefficient, see the discussion in [3, Chapter 39]. This problem can be circumvented by
simply considering the density on a sufficiently large compact set instead ofCN×N ([19],
see also [12]). However, local universality has so far not been shown for these truncated
ensembles.

A common way around these difficulties is to consider normal matrix models. For
normal matrices, the spectral calculus allows to define unitary invariant ensembles,
e.g. with densities proportional to exp[−NTrV (J J ∗)] for some potential V : C −→ R

of sufficient growth at infinity. Thesemodels have determinantal eigenvalue distributions
and belong to the same (bulk) universality class as the Ginibre ensemble [8,11].

We continue with the weakly non-Hermitian situation. Note the slightly differing
values of τ in parts (a) and (b) of the following theorem.

Theorem 3 (Limit of weak non-Hermiticity). Let ρk
N denote either ρk

N ,FT or ρk
N ,Tr2

.

There is a constant C > 0, depending only on K p and in the case ρk
N = ρk

N ,Tr2
also on

γ , such that the following holds:

(a) Let τ = τN = 1 − κ
N with κ > 0 fixed. Then for any Z ∈ C \ R

lim
N→∞

1

N
ρ1
N (Z) = 0, (11)

and for any X ∈ R

lim
N→∞

∫
R

1

N
ρ1
N (X + iY )dY = C

2π

√
4

C
− X2 1[− 2√

C
, 2√

C

](X). (12)

(b) Set ν(X) := C
2π

√
4
C − X2 and τ = τN := 1 − α2

2Nν(X)2
, α > 0. Then for

k = 1, 2 . . . , as N → ∞
1

(Nν(X))2k
ρk
N

(
X +

z1
Nν(X)

, . . . , X +
zk

Nν(X)

)

= det
(
Kweak

(
z j , zl

))
j,l=1,...k +O

(
log N√

N

)
,

where we denote z j := x j + iy j and define

Kweak (z1, z2) :=
√
2√

πα
exp

[
− y21 + y22

α2

]
1

2π

∫ π

−π

exp

[
−α2u2

2
+ iu(z1 − z̄2)

]
du.

The O term is uniform for X ∈ (− 2√
C
+ δ, 2√

C
− δ) for any δ > 0 fixed and any

z j , j = 1, . . . , k chosen from an arbitrary compact subset of C.
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Remark 4. (a) Part (a) of the previous theorem shows that the support of the limiting
measure collapses to the real axis whenever τ is in any 1/N neighborhood of 1.
Moreover, the limiting marginal density of the real part X is the semicircle density
ν(X), which is used in part (b) to rescale not only the z j ’s, but also τ , in order to
make the limiting kernel independent of X .

(b) Kweak agrees with the kernel given in [22], where x1 = −x2 was chosen. We have
simply rescaled α to make the kernel independent of X . The independence of Kweak
on γ and Kp constitutes our universality result for the non-Gaussian ensembles (5)
and (6) in the limit of weak non-Hermiticity.

(c) It is not hard to show that in the limit α → 0 we obtain

lim
α→0

∫
Ck

f (z1, . . . , zk) det
(
Kweak

(
z j , zl

))
j,l=1,...,k dz1 . . . dzk

=
∫
Rk

f (x1, . . . , xk) det

(
sin(π(x j − xl))

π(x j − xl)

)

j,l=1,...,k
dx1 . . . dxk

for any bounded and continuous function f : C
k −→ R of bounded support.

For the limit α → ∞, we need to rescale the variables z j with α in order to account
for the difference in the local scales (in N ) in the limits of weak and strong non-
Hermiticity. Here it is straightforward to get

lim
α→∞ det

(
α2Kweak

(
αz j , αzl

))
j,l=1,...,k

= det
(
Kstrong

(
z j , zl

))
j,l=1,...,k .

(d) The first correlation function of the elliptic ensemble ρ1
N ,ell(X + iy

N )was studied in the
limit of weak non-Hermiticity using the supersymmetric method in [21], and using
rigorous probabilistic methods in [28]. Here, the variable on the real axis is in the
global scaling regime whereas the imaginary variable is in the local scaling regime.
With this particular choice of variables, one sees a transition from the semicircle law
to the circular law.

(e) For the trace-squared ensemble, the constant C in Theorem 3 is given by

C = 1

2
− 2γ Kp +

1

2

√
16γ 2K 2

p − 8γ Kp + 16γ + 1.

In particular, if γ = 0 or Kp = 1, then C = 1. For the elliptic fixed trace ensemble,
C is given as C = K−1

p .

Let us add some further remarks. It was found in [10] that a similar weakly non-
Hermitian scaling limit can be defined at the edge of the spectrum. There, for the largest
real eigenvalue an interpolation between the Tracy-Widom and Gumbel distribution was
found, where the latter corresponds to the Fredholm determinant of the complementary
error function kernel of the Ginibre ensemble. The same interpolating kernel was found
in a chiral variant of the Ginibre ensemble [4], and it was shown to be a one-parameter
deformation of the Airy kernel. We refer to [6] for an entire list of one-parameter inter-
polating kernels at the edge, in the bulk and at the origin, corresponding to the limits
in Ginibre ensembles and its chiral partners with real, complex or quaternion matrix
elements, see also references therein.

We have alreadymentioned the 2D-Coulomb gases of the complex eigenvalues in (1).
Without going into the vast literature, let us mention that recent results on fluctuations
of such complex β-ensembles around their macroscopic limits have been considered up
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to the finest possible scale in [26,27]. Fluctuations of linear statistics have been studied
in [9], whereas edge universality has been shown in [13].

Let us finish this section with some comments on our methods of proofs and organi-
zation of the article. The general idea is to understand the ensembles under consideration
as averages over perturbations of simpler ensembles. These simpler ensembles will turn
out to be complex-valued measures with determinantal eigenvalue distributions (also
in the sense of complex-valued measures) that can be analyzed using a double contour
integral formula. Generally speaking, the asymptotics of the trace-squared ensemble
(6) are easier to analyze as the model is absolutely continuous. Its analysis will turn
out to be useful for studying the fixed trace models as well. Recall that PN ,Tr2(J ) is
proportional to PN ,ell(J ) exp

[−γ (TrJ J ∗ − NKp)
2
]
, where PN ,ell has been defined in

(2). If TrJ J ∗ is sufficiently well concentrated around NKp, then the trace-squared term
γ (TrJ J ∗ −NKp)

2 can be expected to be of order 1 and thus might not have much influ-
ence at least on the global limit of themodel. The square in this termcan then be linearized
at the expense of an additional integral by understanding exp

[−γ (TrJ J ∗ − NKp)
2
]
as

the Fourier transform of a Gaussian random variable. This gives rise to a Gaussian
average over elliptic ensembles, perturbed by a term of the form exp

[
i tTrJ J ∗] (with

integration variable t), and to an expression of PN ,Tr2 as an average over linearized en-
sembles (see (26)). A similar expression of PN ,FT can not possibly hold, but from the
expression of PN ,Tr2 we can conclude a related formula for the correlation functions of
PN ,FT (see Lemma 13).

However, except for the special cases γ = 0 or Kp = 1, TrJ J ∗ will not be close
to NKp and thus the statistic γ (TrJ J ∗ − NKp)

2 will not be small. In this case a
necessary recentering needs to be executed first. This and the linearization for the trace-
squared ensemble are done in Sect. 2. The asymptotics of the linearized ensemble are
then derived in Sect. 3. Using these results, a proof of the main theorems for the trace-
squared ensemble is given in Sect. 4. The significantly more complex analysis of the
fixed trace ensemble is done in Sect. 5.

2. Recentering and Linearization

Wewill start our analysis of the ensemble (6) by a recentering of the density which takes
into account a part of γ (TrJ J ∗ − NKp)

2 that has an influence on the global distribution
of the eigenvalues. It is not hard to see that limN→∞ EN ,ellTr(J J ∗)/N = 1, where
EN ,ell denotes expectation w.r.t. the elliptic ensemble (2). Hence for Kp = 1 the trace
constraint does not change much and the global asymptotics (such as the support of the
limiting ellipse) of the ensembles PN ,Tr2 and (2) should coincide. Thus in this case no
recentering should be necessary as the penalization just reinforces the convergence of
N−1TrJ J ∗ to Kp. In contrast, choosing Kp different from 1 enforces N−1TrJ J ∗ to have
a different limit, which should lie between Kp and 1. In this case it will be convenient
to renormalize the ensemble. To this end, let us for a > b ≥ 0 consider the family of
densities Pa,b with

Pa,b(J ) := 1

Za,b
exp

[
−aTrJ J ∗ + b

2
Tr

(
J 2 + J ∗2)

]
(13)
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and normalization constant Za,b. The motivation for introducing (13) comes from the
following manipulation of PN ,Tr2 . Let K > −(2γ (1 + τ))−1 and rewrite

PN ,Tr2 (J )

=
exp

[
−N

(
1

1−τ 2
+ 2γ K

)
TrJ J∗ + τN

2(1−τ 2)
Tr

(
J2 + J∗2) − γ (TrJ J∗ − N (Kp + K ))2

]

ZN ,Tr2 exp
[−γ N2(K 2 + 2KKp)

]
(14)

= Za,b

ZN ,Tr2 exp
[−γ N2(K 2 + 2KKp)

] Pa,b(J ) exp
[
−γ (TrJ J∗ − N (Kp + K ))2

]

with

a := N

(
1

1 − τ 2
+ 2γ K

)
, b := τN

1 − τ 2
.

For the rest of the paper, we stick to this choice of a and b. Note that the condition
K > −(2γ (1 + τ))−1 ensures that a > b, and thus the normalizability of Pa,b. Further-
more, comparing (14) and (13) shows that

ZN ,Tr2 exp
[−γ N 2(K 2 + 2KKp)

]

Za,b
= Ea,b exp

[
−γ (Tr J̃ J̃ ∗ − N (Kp + K ))2

]
, (15)

whereEa,b denotes expectation w.r.t. Pa,b and we use the following convention through-
out the paper: In equations, the matrix J̃ is an integration variable, whereas J denotes an
arbitrary, but fixed matrix. However, as there is no ambiguity, we will also let J denote
the random matrix associated to a specified ensemble.

The following lemma gives the optimal choice of the so far arbitrary K in (14). In
short, we determine K such that the statistic TrJ J ∗ − N (Kp + K ) is concentrated under
Pa,b.

Lemma 5. (a) For each τ ∈ (−1, 1), γ ≥ 0 and Kp ∈ R, there is a unique K = K (τ ) =
K (τ, γ, Kp) such that for some constants C1,C2 independent of τ and N, we have
for all N

0 < C1 ≤ Ea,b exp
[
−γ (Tr J̃ J̃ ∗ − N (Kp + K ))2

]
≤ C2 < ∞. (16)

(b) K of (a) is the unique positive zero of the cubic equation (23). The limit
K̄ := limτ→1 K (τ ) exists,

K̄ > − 1

4γ

and
∣∣K (τ ) − K̄

∣∣ = O(|τ − 1|) as τ → 1. (17)

(c) If |τ − 1| = O(1/N ), (16) holds with K replaced by K̄ .
(d) K is continuous in γ and the limit KFT := limγ→∞ γ K exists and is larger than

max{−(2(1 − τ))−1,−(2(1 + τ))−1}. Furthermore, K̄FT := limτ→1 KFT = K−1
p −1
4

and
∣∣KFT − K̄FT

∣∣ = O(|τ − 1|).
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Proof. It is easy to check that under Pa,b, the matrix elements {�J j,k,�J j,k} j,k are
jointly Gaussian random variables with mean 0 and covariance structure as follows.
Diagonal entries �J j, j ,�J j, j have the variances

σ 2
D,� := 1 + τ

2N (1 + 2γ K (1 + τ))
, σ 2

D,� := 1 − τ

2N (1 + 2γ K (1 − τ))
, (18)

respectively, off-diagonal entries �J j,k,�J j,k, j �= k the variance

σ 2
O := 1 + 2γ K (1 − τ 2)

2N (1 + 4γ K + 4γ 2K 2(1 − τ 2))
(19)

and the covariances are 0 except for ( j �= k)

ρ := Cov(�J j,k,�Jk, j ) = τ

2N (1 + 4γ K + 4γ 2K 2(1 − τ 2))
(20)

and

Cov(�J j,k,�Jk, j ) = − τ

2N (1 + 4γ K + 4γ 2K 2(1 − τ 2))
= −ρ.

Thematrix J can be associated with a vector J ∈ R
2N2

that has a multivariate normal
distribution with mean 0 and covariance matrix � that is of block diagonal form. Each
block consists either of σ 2

D,�, σ 2
D,�, or 2× 2 matrices with σ 2

O on the diagonal and ±ρ

off the diagonal. J has the same distribution as UY where U is a 2N 2 × 2N 2 unitary
matrix (diagonalizing �) and Y is Gaussian with independent components with mean
0. The variances of the elements of Y are σ 2

D,� or σ 2
D,� for N components each, and λ2+

or λ2− for N (N − 1) components each, where

λ2± := σ 2
O ± ρ

are the eigenvalues of those blocks of� that contain off-diagonal entries. As Tr(J J ∗) =
‖J‖22 d= ‖Y‖22, where d= means equality of distributions, we find that

Tr(J J ∗) d= λ2+Z1 + λ2−Z2 + σ 2
D,�Z3 + σ 2

D,�Z4, (21)

where Z1, Z2, Z3, Z4 are independent χ2 distributed random variables with N (N − 1),
N (N − 1), N and N degrees of freedom, respectively.

Let us now choose K = K (τ, γ, Kp) such that

Kp + K = 2Nσ 2
O ,

in other words

Kp + K = 1 + 2γ K (1 − τ 2)

1 + 4γ K + 4γ 2K 2(1 − τ 2)
. (22)

Note that K does not depend on N . It is not hard to see that the r.h.s. has poles at
K = −(2γ (1 ± τ))−1 and is strictly decreasing in K for K > max{−(2γ (1 − τ))−1,

−(2γ (1 + τ))−1}. As the l.h.s. of (22) is a strictly increasing continuous function on R,
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there is precisely one K > max{−(2γ (1 − τ))−1,−(2γ (1 + τ))−1} satisfying (22). It
is the rightmost (real) solution of the cubic equation

4γ 2(1 − τ2)K 3 + 4γ (1 + γ (1 − τ2)Kp)K
2 + (1 + 4γ Kp − 2γ (1 − τ2))K + Kp − 1 = 0.

(23)

It can in principle be computed explicitly but its exact form is not important here.
As τ → 1, (22) becomes

Kp + K = 1

1 + 4γ K
,

which has, analogously to (22), only one solution K̄ := limτ→1 K (τ ) that satisfies
K̄ > − 1

4γ . It is given by

K̄ = −Kp

2
− 1

8γ
+

1

8γ

√
16γ 2K 2

p − 8γ Kp + 16γ + 1.

Furthermore, by applying the implicit function theorem to the function

F(τ, K ) := 4γ 2(1 − τ 2)K 3 + 4γ (1 + γ (1 − τ 2)Kp)K
2

+ (1 + 4γ Kp − 2γ (1 − τ 2))K + Kp − 1,

we find that the derivative K ′(τ ) is bounded in a neighborhood of τ = 1 and thus (17)
follows. This proves (b).

Let us turn to proving (a). We have by (21) and (22)

Tr(J J ∗) − N (Kp + K )
d= λ̄2+

√
2
Z1 − N (N − 1)√

2N 2
+ λ̄2−

√
2
Z1 − N (N − 1)√

2N 2

+ σ 2
D,�Z3 + σ 2

D,�Z4, (24)

where λ̄2± := 2Nλ2± do not depend on N . Now (Z j − N (N − 1))/
√
2N 2, j = 1, 2

converge weakly towards standard normals as N → ∞ and σ 2
D,�Z3, σ

2
D,�Z4 converge

weakly to constants. Since Zi , i = 1, 2, 3, 4 are independent, we haveweak convergence
of (24) to a Gaussian distribution and hence

lim
N→∞Ea,b exp

[
−γ (Tr J̃ J̃ ∗ − N (Kp + K ))2

]
= exp

[
− Cγ

1 + cγ

]
(1 + cγ )−1/2

for some C, c > 0, i.e. convergence to the moment-generating function of a non-central
chi-squared distribution. This proves (16).

If |τ − 1| = O(1/N ), (24) holds with K̄ replacing K and adding N (K − K̄ ) = O(1)
to the r.h.s. of (24). This shows (c).

Similar reasoning as above shows with (22) that γ K solves for γ → ∞ the equation

4(1 − τ 2)Kp(γ K )2 + (4Kp − 2(1 − τ 2))(γ K ) + Kp − 1 = 0,

from which the first part of (d) can be checked. The second part follows immediately. ��
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From now on, let K always denote the quantity from Lemma 5. The linearization
uses the simple identity

exp
[
−γ X2

]
= 1√

4πγ

∫
R

exp [i Xt] exp

[
− t2

4γ

]
dt, (25)

valid for any real X . In the physics literature, this is known as the Hubbard–Stratonovich
transform (in its simplest form). With (25), we may rewrite PN ,Tr2 as

PN ,Tr2(J ) = 1√
4πγ

∫
R

exp
[−i N (Kp + K )t

]

ZN ,Tr2 exp
[−γ N 2(K 2 + 2KKp)

]

× exp

[
(−a + i t)TrJ J ∗ + b

2
Tr

(
J 2 + J ∗2)

]
exp

[
− t2

4γ

]
dt.

Setting

a(t) := a − i t,

we have (extending the definition (13) to the complex a(t))

Za(t),b

Za,b
= Ea,b exp

[
i tTr J̃ J̃ ∗] ,

and thus by (21), Za(t),b/Za,b is the product of characteristic functions of χ2 distributed
random variables. Hence the function

t �→ Ea,b exp
[
i tTr J̃ J̃ ∗]

has no zeros on the real line and the “linearized ensemble”

Pa(t),b(J ) = 1

Za(t),b
exp

[(
−N

(
1

1 − τ 2
+ 2γ K

)
+ i t

)
TrJ J ∗

+
τN

2(1 − τ 2)
Tr

(
J 2 + J ∗2)

]

is well-defined. The term “ensemble” here is only a convenient naming, in general Pa(t),b
is complex-valued. Summarizing, we arrive at

PN ,Tr2(J ) = 1√
4πγ

∫
R

Za(t),b exp
[−i N (Kp + K )t

]

ZN ,Tr2 exp
[−γ N 2(K 2 + 2KKp)

] Pa(t),b(J ) exp

[
− t2

4γ

]
dt,

which in turn can be rewritten (after multiplying and dividing by Za,b) as

PN ,Tr2 (J ) = 1√
4πγ

∫
R

Ea,b exp
[
i t (Tr J̃ J̃∗ − N (Kp + K ))

]

Ea,b exp
[
−γ (Tr J̃ J̃∗ − N (Kp + K ))2

] Pa(t),b(J ) exp

[
− t2

4γ

]
dt.

(26)
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One advantage of the linearization is that the joint distribution of eigenvalues (also
in the sense of a complex-valued measure) of Pa(t),b can be given explicitly as

Pa(t),b(z) := 1

ZEV
a(t),b

∏
j<l

∣∣z j − zl
∣∣2 exp

⎡
⎣−a(t)

N∑
j=1

∣∣z j
∣∣2 + b

2

⎛
⎝

N∑
j=1

z2j + z j
2

⎞
⎠
⎤
⎦ ,

(27)

where we abused notation by using the same symbol for the matrix and the eigenvalue
distribution. The superscript EV in the normalization constant indicates that Za(t),b and
ZEV
a(t),b differ. The density (27) will be analyzed in the next section. By continuity it is

clear that the joint distribution of eigenvalues of PN ,Tr2 also has a continuous density.

Hence we can speak of its k-th correlation function ρk
N ,Tr2

, which we define as in (7).
In terms of correlation functions, we get from (26)

ρk
N ,Tr2

(z)= 1√
4πγ

∫
R

Ea,b exp
[
i t (Tr J̃ J̃ ∗−N (Kp + K ))

]

Ea,b exp
[
−γ (Tr J̃ J̃ ∗−N (Kp + K ))2

]ρk
a(t),b(z) exp

[
− t2

4γ

]
dt,

(28)

where ρk
a(t),b denotes the k-th correlation function of Pa(t),b and z is an abbreviation for

z1, . . . , zk . Moreover,

ρ̌k
N ,Tr2

(ž) − det(Kweak / strong(z j , zl)) j,l≤k

= 1√
4πγ

∫
R

Ea,beit (Tr J̃ J̃
∗−N (Kp+K ))

Ea,be−γ (Tr J̃ J̃∗−N (Kp+K ))2

(
ρ̌k
a(t),b(ž)

− det(Kweak / strong(z j , zl)) j,l≤k
)
e− t2

4γ dt, (29)

where ρ̌k
N ,Tr2

(ž) and ρ̌k
a(t),b(ž) denote the appropriately rescaled correlation functions

of the rescaled variables, e.g. in the situation of Theorem 1 (b)

ρ̌k
N ,Tr2

= 1

(CN )k
ρk
N ,Tr2

, ž j = Z +
z j√
CN

, j = 1, . . . , k. (30)

Remark 6. From (28), we see the non-determinantality of the eigenvalue distribution of
PN ,Tr2 . Its correlation functions are not determinants themselves, but rather averages of
determinants.

3. Asymptotics for the Linearized Ensemble

In this section, wewill employ orthogonal polynomials and asymptotic analysis to obtain
the asymptotic behavior of the linearized correlation functions ρk

a(t),b, as N → ∞. For
τ ∈ (−1, 1), τ �= 0, the orthogonal polynomials are Hermite polynomials, whereas for
τ = 0 the orthogonal polynomials are simple monomials. We will first concentrate on
the much more involved case τ �= 0, the case τ = 0 will be dealt with at the end of the
proof of Proposition 10 below.
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Let (Hk)k∈N denote the sequence of Hermite polynomials, that is (cf. [1, 22.10.0])

Hk(z) := k!
2π i

∮
exp

[
−t2 + 2zt

]
t−(k+1)dt, (31)

where the contour encircles the origin. It is well-known that these polynomials form an
orthogonal sequence in L2(R) w.r.t. the weight exp(−t2), i.e. for k �= l

∫
Hk(t)Hl(t)e

−t2dt = 0.

Our analysis depends crucially on the fact that the Hermite polynomials are also or-
thogonal on the complex plane w.r.t. certain Gaussian measures, a fact first noticed in
[16,36]. This can be translated to complex weights easily. Recall first

a(t) = N

(
1

1 − τ 2
+ 2γ K

)
− i t, b = τN

1 − τ 2
,

and a(0) = a. Since bwill remain unchanged, wewill omit it in newly defined quantities
to ease the notation.

Lemma 7. Consider the function

Wa(t)(z) := exp

[
−a(t) |z|2 + b

2
(z2 + z̄2)

]
.

Then
∫
C

Hl(ca(t)z)Hk(ca(t) z̄)Wa(t)(z)dz = δlk
k!π(2a(t))k√
a(t)2 − b2 bk

, (32)

where

ca(t) :=
√
a(t)2 − b2

2b

and
√· denotes the principal branch.

Proof. Using the integral representation (31) and the residue theorem one can easily
verify (32) which we leave to the reader. ��

Define (pk)k∈N as the sequenceof orthonormal polynomials pk(z) := Ca(t),k Hk(ca(t)z)

with Ca(t),k := ( k!π(2a(t))k√
a(t)2−b2bk

)−1/2 such that

∫
C

pl(z)pk(z)Wa(t)(z)dz = δlk .

Now, using standard arguments, it is seen that the ensemble Pa(t),b is determinantal, i.e.
its correlation functions ρk

a(t),b, k = 1, 2, . . . ,

ρk
a(t),b(z1, . . . , zk) = N !

(N − k)!
∫
CN−k

Pa(t),b(z)dzk+1 . . . dzN
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fulfill

ρk
a(t),b(z1, . . . , zk) = det

(
Ka(t)(zi , z j )

)
1≤i, j≤k

with the kernel

Ka(t)(z1, z2) :=
N−1∑
j=0

p j (z1)p j (z2)
√
Wa(t)(z1)

√
Wa(t)(z2). (33)

The analysis of correlation functions of Pa(t),b thus boils down to an analysis of the
kernel Ka(t). In the limit of weak non-Hermiticity we will prove

Proposition 8. Define CK̄ := 1+4γ K̄ with K̄ from Lemma 5. Let X ∈ (− 2√
CK̄

, 2√
CK̄

).

As N → ∞, we have with τ = τN := 1 − α̃2

2C2
K̄
N
, α̃ > 0,

1

C2
K̄
N 2

Ka(t)

(
X +

x1 + iy1
CK̄ N

, X +
x2 + iy2
CK̄ N

)
= 1

π
exp

[
− y21 + y22

α̃2 + i X
(y1 − y2)

2

]

× 1√
2πα̃

∫ 1
2

√
4

CK̄
−X2

− 1
2

√
4

CK̄
−X2

exp
[

− α̃2u2

2
+ iu(x1 − x2) − u(y1 + y2)

]
du +O

(
log N√

N

)
.

The O term is uniform for X ∈ (− 2√
CK̄

+ δ, 2√
CK̄

− δ) for any δ > 0 fixed, any

x j , y j , j = 1, 2 chosen from an arbitrary compact subset of R and |t | = O(
√
log N ).

Remark 9. (a) The reader will note that α̃ in Proposition 8 differs from α in Theorem 3
by a factor ν(X)−1. The scaling of the local variables z j differs also in the same way.
This difference is purely due to notational convenience.

(b) The O term is also uniform in γ K̄ in the following sense. Treating γ K̄ as an inde-
pendent variable, Proposition 8 holds uniformly for γ K̄ in any compact subset of
(−1/4,∞). This is needed in Sect. 5 when dealing with the fixed trace ensembles.

The limit of strong non-Hermiticity corresponds to a fixed τ ∈ (−1, 1).

Proposition 10. Let τ ∈ (−1, 1) be fixed and k be a nonnegative integer. As N → ∞,
we have with C := 1

1−τ 2
+ 2γ K

1

(CN )k
ρk
a(t),b

(
Z +

z1√
CN

, . . . , Z +
zk√
CN

)
= det(Kstrong(z j , zl) j,l≤k +O

(
1√
N

)
,

where Kstrong has been defined in (8). Here Z is chosen from the interior of the elliptic
set

E :=
{
Z ∈ C : 1 − τ + 2γ K (1 − τ 2)

1 + τ + 2γ K (1 − τ 2)
�Z2 +

1 + τ + 2γ K (1 − τ 2)

1 − τ + 2γ K (1 − τ 2)
�Z2 ≤ 1

C

}
.

The O term is uniform for Z from any compact subset of E◦, z1, . . . , zk from compacts
of C and |t | = O(

√
log N ).

Remark 11. TheO term is uniform for γ K from compact subsets of (−(2(1+τ))−1,∞)

(cf. Remark 9).
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A technical ingredient in the proofs of Propositions 8 and 10 is stated in the following
lemma for the normalized upper incomplete gamma function

Q(w, z) := �(w, z)

�(w)
, �(w, z) :=

∫ ∞

z
tw−1e−t dt.

In these definitions w and z are real and positive but �(w, z) and Q(w, z) can in fact be
continued to analytic functions in the complex plane, provided w > 0. We will use the
same symbols for these continued functions.

Lemma 12. ([35]) Denote η := √
2(z − 1 − log z), where we choose the branch of the

square root such that it has the same sign as z − 1 for real positive z, and by continuity
elsewhere. Then, as w → ∞,

Q(w,wz) = 1

2
erfc

(
η
√

(w/2)
)
+O

(
e− w

2 η2

√
w

)
, (34)

where erfc denotes the complementary error function

erfc(z) := 2√
π

∫ ∞

z
e−t2dt,

and the O term is uniform in the domain |arg(z)| ≤ 3π/2 − δ with arbitrary δ > 0,
i.e. for z = reiϕ with −2π + δ ≤ ϕ ≤ 2π − δ, r > 0.

Proof. The lemma is a special case of an asymptotic expansion derived in [35], where
it is shown that

Q(w,wz) = 1

2
erfc

(
η
√

(w/2)
)
+ Rw(η)

and the remainder Rw(η) in (34) admits an asymptotic expansion in negative powers of
w as w → ∞,

Rw(η) ∼ (2πw)−1/2e− 1
2wη2

∞∑
k=0

ck(η)w−k .

The expansion is uniform for η in the domain |arg(z)| ≤ 3π/2 − δ with δ being an
arbitrarily small positive constant (see also [17]). ��

Before beginning with the proof of Proposition 8, we state the relevant asymptotics
of the complementary error function for later use. From [1, 6.5.32] we have

erfc(z) = e−z2

√
π z

(
1 +O

(
z−2

))
, (35)

as z → ∞ in |arg(z)| < 3π/4. Morover, we have by the relation erfc(−z) = 2− erfc(z)

erfc(−z) = 2 − e−z2

√
π z

(
1 +O

(
z−2

))
, z → ∞, (36)

again with |arg(z)| < 3π/4.
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Proof of Proposition 8. We follow the path outlined in [22] for the simpler case
t = 0, K = 0 and start with an alternative representation of the Hermite polynomi-
als (cf. [1, 22.10.15] for the sign (−2i)k , for the other sign use Hk(−z) = (−1)k Hk(z)),

Hk(z) = (±2i)k√
π

exp
[
z2
] ∫

R

rk exp
[
−r2 ∓ 2i zr

]
dr,

which allows to rewrite the kernel as

Ka(t)(z1, z2)

=
√
a(t)2 − b2

π2 exp

[
c2a(t)(z

2
1 + z2

2) − a(t)

2
(|z1|2 + |z2|2) + b

4
(z21 + z22 + z1

2 + z2
2)

]

×
N−1∑
j=0

(
2b

a(t)

) j 1

j !
∫
R

∫
R

(rs) j exp
[
−(r2 + s2) + 2ica(t)(r z1 − sz2)

]
drds.

(37)

It will be useful lateron to derive a general formula independent of the limit regime. To
this end we decouple the integrals via the substitution

�(r, s) := (u, v) :=
(
r + s

ca(t)
,
r − s

ca(t)

)
, |det D�(r, s)| = 2∣∣ca(t)

∣∣2

and arrive after algebraic manipulations at

Ka(t)(z1, z2)

=
√
a(t)2 − b2

∣∣ca(t)
∣∣2

2π2 exp

[
−a(t)

2
(|z1|2 + |z2|2) + ib

2

(
�(z22) − �(z21)

)
+ a(t)z1z2

]

×
∫
R/ca(t)

exp

[
− (a(t) + b)(a(t) − b)2

4a(t)b

(
u − i(z1 − z2)

1 − b/a(t)

)2
]

×
∫
R/ca(t)

exp

[
− (a(t) + b)2(a(t) − b)

4a(t)b

(
v − i(z1 + z2)

1 + b/a(t)

)2
]

× Q

(
N ,

c2a(t)b

2a(t)
(u2 − v2)

)
dvdu. (38)

Here we used the definition of ca(t) in Lemma 7 and the well-known fact that for a
positive integer w one has

Q(w, z) = e−z
w−1∑
j=0

z j

j ! .

We will consider the two integrals iteratively and start with the v-integral. Setting

Cz1,z2 := i(z1 + z2)

1 + b/a(t)
, (39)
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it can be written as
∫
R/ca(t)+Cz1,z2

exp

[
− (a(t) + b)2(a(t) − b)

4a(t)b
v2

]

× Q

(
N ,

c2a(t)b

2a(t)
(u2 − v2) − i

c2a(t)b(z1 + z2)

a(t) + b
v +

c2a(t)b(z1 + z2)2

2a(t)(1 + b/a(t))2

)
dv. (40)

Our next aim is to truncate the integral over the infinite line R/ca(t) +Cz1,z2 to one over
a small compact set. With

z j = X +O
(
1

N

)
, j = 1, 2

and X ∈ R, it is easy to check that, as N → ∞, R/ca(t) + Cz1,z2 → R + i X . Moreover,
we have the asymptotics

(a(t) + b)2(a(t) − b)

4a(t)b
= NCK̄

2
+O

(
1 + |t |
N

)
, (41)

c2a(t)b

2a(t)
= NCK̄

4
+O(1), (42)

c2a(t)b

a(t) + b
= NCK̄

4
+O(1), (43)

c2a(t)b

2a(t)(1 + b/a(t))2
= NCK̄

16
+O(1), (44)

where we recall CK̄ = 1+4γ K̄ . AllO terms might be complex-valued and are uniform
in t . We also note in passing that for these asymptotics, (17) has been used.

(41) is relevant for the decay of the Gaussian term of the integral, (42,43,44) are
needed to control the possible growth of the incomplete Gamma function Q(N , ·).
In view of Lemma 12, its first order asymptotics are given by erfc(

√
N/2η)/2. If√

N/2 |η| is bounded in N , the analyticity of erfc yields boundedness of the Q-term. If√
N/2 |η| → ∞, (35) or (36) are applicable and we get the term exp(−η2N/2) =

exp(−N (z − 1 − log z)) with

z = CK̄

4
(u2 + X2 − v2 − 2ivX) +O(|t | /N ).

From (41) we see for u fixed that the decay of exp
[
− (a(t)+b)2(a(t)−b)

4a(t)b v2
]
in v is faster

than the possible growth of the Q-term and thus we can up to an error of orderO(1/N )

truncate the integral over R/ca(t) +Cz1,z2 to [−CN−1/2+ε,CN−1/2+ε]+Cz1,z2 for some
C > 0 and any ε > 0. Since R/ca(t) is close to the real line for N large enough, we
can further assume �(u2) > 0 or �z > −c for some small c > 0. For such z we have

�(z−1− log z) > 0 or equal +∞ at 0 and hence we get
∣∣∣e−η2N/2

∣∣∣ ≤ 1. This shows that

the constant C in |v| ≤ CN−1/2+ε can be chosen independent of u, i.e. our estimates
are uniform in u.
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Next we will see that

Q (N , Nz) = 1{u2+X2≤4/CK̄ } +O
(
log N√

N

)
(45)

with an O term that is uniform in u and v. Since
∣∣v2∣∣ = O(1/N ), the uniformity in v is

trivial. If u is such that�(u2)+ X2 ≥ 4/CK̄ +
√

(log N )/N , then Q(N , Nz) = O(1/N )

by (35). Similarly, if�(u2)+X2 ≤ 4/CK̄ −√
(log N )/N , then Q(N , Nz) = 1+O(1/N )

by (36). The area of u’s on R/ca(t) such that
∣∣�(u2) + X2 − 4/CK̄

∣∣ ≤ √
(log N )/N ,

has a volume of order O((log N )/N ). Since erfc(η
√
N/2) is bounded on this area, we

arrive at (45).
The remaining v-integral is

∫
[−CN−1/2+ε,CN−1/2+ε]+Cz1,z2

exp

[
−NCK̄

2
v2

]
dv ∼

√
2π

NCK̄
,

which can be seen by using analyticity and standard arguments to shift the contour to
the real line.

To finish the proof, we choose in (38)

z j = X +
x j + iy j
CK̄ N

, j = 1, 2

with x j , y j ∈ R, j = 1, 2 and note the asymptotics

(a(t) + b)(a(t) − b)2

4a(t)b
= α̃2

8
+O

(
1 + |t |
N

)
,

√
a(t)2 − b2

∣∣ca(t)
∣∣2 = N 5/2C5/2

K̄

2α̃
+O(N 3/2),

1 − b

a(t)
= α̃2

2CK̄ N
+O

(
t

N 2

)
,

a(t) ∼ b = N 2C2
K̄

α̃2 +O(N ).

The proposition now follows by the change of variables u �→ u/2. ��
Proof of Proposition 10. For the limit of strong non-Hermiticity, we choose

z j = X + iY +
x j√
N

+ i
y j√
N

, j = 1, 2 (46)
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with X,Y, x j , y j ∈ R. We deal with the more complicated case τ �= 0 first. Using (46),
(38) reads

Ka(t)(z1, z2)

=
√
a(t)2 − b2

∣∣ca(t)
∣∣2

2π2 exp
[

− a(t)(x21 + x22 )

2N
− a(t)(y21 + y22 )

2N
+
i(a(t) − b)X (y1 − y2)√

N

− i(a(t) + b)Y (x1 − x2)√
N

− ib
(x1y1 − x2y2)

N
+
a(t)(x1x2 + y1y2 − i x1y2 + i x2y1)

N

]

×
∫
R/ca(t)

exp
[

− (a(t) − b)2(a(t) + b)

4a(t)b

(
u +

a(t)

a(t) − b

(
2Y − i(x1 − x2)√

N
+

y1 + y2√
N

))2 ]

×
∫
R/ca(t)

exp
[

− (a(t) + b)2(a(t) − b)

4a(t)b

(
v − a(t)

a(t) + b

(
2i X +

i(x1 + x2)√
N

− y1 − y2√
N

))2 ]

× Q

(
N ,

c2a(t)b

2a(t)
(u2 − v2)

)
dvdu. (47)

We can now proceed analogously to the proof of Proposition 8. For the v-integral we
get

∫
R/ca(t)

exp
[

− (a(t) + b)2(a(t) − b)

4a(t)b

(
v − a(t)

a(t) + b

(
2i X +

i(x1 + x2)√
N

− y1 − y2√
N

))2 ]

× 1√
2π

√
(a(t) + b)2(a(t) − b)

2a(t)b
Q

(
N ,

c2a(t)b

2a(t)
(u2 − v2)

)
dv

= 1{ c2ab
2aN u2+ a(a−b)

(a+b)N X2≤1
} +O(1/

√
N ),

where a = a(0). Here, we used that the weaker error term in (45) can be improved

(even to exponentially fast decaying terms) if u is such that c2ab
2aN u

2 + a(a−b)
(a+b)N X2 ≤ 1− δ

for some δ > 0 fixed. This is by the concentration of u around Y equivalent to the
assumption Z ∈ E◦, where E is the elliptic set from the statement of the proposition.
Recall from the proof of Proposition 8 that the error bounds can be chosen uniform in
u. Thus the same procedure can be repeated for the u-integral, giving

∫
R/ca(t)

exp
[

− (a(t) − b)2(a(t) + b)

4a(t)b

(
u +

a(t)

a(t) − b

(
2Y − i(x1 − x2)√

N
+
y1 + y2√

N

))2 ]

× 1√
2π

√
(a(t) − b)2(a(t) + b)

2a(t)b
1{ c2ab

2aN u2+ a(a−b)
(a+b)N X2≤1

}
(
1 +O(1/

√
N
)
du

= 1{ a(a−b)
(a+b)N X2+ a(a+b)

(a−b)N Y 2≤1
} +O(1/

√
N ). (48)

To obtain the final form of the proposition, note that the determinant is invariant under
conjugations of the kernel, i.e. for any kernel K

det(K (z j , zl)) = det(K̃ (z j , zl)),

where K̃ (z j , zl) := K (z j , zl) f (z j )/ f (zl) and f is some function without zeros or
singularities. Using this, we see that the exponential factors

exp

[
i(a(t) − b)X (y1 − y2)√

N
− i(a(t) + b)Y (x1 − x2)√

N
− ib

(x1y1 − x2y2)

N

]

cancel when taking the determinant.
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Let us now consider the case τ = 0. Then b = 0 and it can be easily checked
using polar coordinates that the orthonormal polynomials to the weight function Wa(t)
of Lemma 7 are

p j (z) :=
√
a(t) j+1

π j ! z j ,

√· denoting the principal branch. This gives with (33)

Ka(t)(z1, z2) = a(t)

π
exp

[
−a(t)

2
(|z1|2 + |z2|2 − 2z1 z̄2)

]
Q(N , a(t)z1 z̄2).

Invoking the asymptotics (45), it is straightforward to finish the proof of the proposition.
��

4. Proof of Main Theorems for the Trace-Squared Ensemble

We will prove both main results simultaneously.

Proof of Theorem 1 and Theorem 3 for ρk
N ,Tr. We will start with proving parts (b) of

both theorems. Recall from (29)

ρ̌k
N ,Tr2

(ž) − det(Kweak,strong(z j , zl)) j,l≤k

= 1√
4πγ

∫
R

Ea,beit (Tr J̃ J̃
∗−N (Kp+K̂ ))

Ea,be−γ (Tr J̃ J̃∗−N (Kp+K̂ ))2

×
(
ρ̌k
a(t),b(ž) − det(Kweak,strong(z j , zl)) j,l≤k

)
e− t2

4γ dt, (49)

where Kweak,strong means either Kweak or Kstrong and K̂ stands for K in the case of The-
orem 1 and K̄ in the case of Theorem 3. Furthermore, recall that ρ̌k

N ,Tr2
(ž) and ρ̌k

a(t),b(ž)
denote rescaled correlation functions of rescaledvariables.WehavebyProposition8with
C := CK̄ and α̃ := Cα/ν(X), or by Proposition 10 convergence of the term in the paren-
thesis to 0 with the error prescribed in the propositions, uniform for |t | ≤ 2

√
γ log N .

Note here that the phase factor of the limiting kernel of Proposition 8 cancels when
taking determinants. By (15) and Lemma 5 we have that Ea,be−γ (Tr J̃ J̃∗−N (Kp+K̂ ))2 is

bounded away from 0 uniformly in N . Clearly,
∣∣∣Ea,beit (Tr J̃ J̃

∗−N (Kp+K̂ ))
∣∣∣ is bounded

above by 1. For |t | > 2
√

γ log N , we use

Ea,b exp
[
i t (Tr J̃ J̃ ∗ − N (Kp + K̂ ))

]
Pa(t),b(J )

= exp
[−i t N (Kp + K̂ )

]
Pa,b(J ) exp

[
i tTrJ J ∗]

and consequently
∣∣∣Ea,be

it (Tr J̃ J̃∗−N (Kp+K̂ ))ρ̌k
a(t),b

∣∣∣ ≤ ρ̌k
a,b. (50)

The uniformity of the convergence to the bounded limiting kernel in Proposition 8 or
Proposition 10 thus proves the boundedness of the integrand of (49) in t and N . Hence
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we can split up the t-integral into |t | ≤ 2
√

γ log N and |t | > 2
√

γ log N . The first
integral gives the desired result whereas the second integral is O(1/N ) by (35).

For the remaining part of the proof, we concentrate on the more complicated case
τ �= 0. Part (a) of Theorem 1 follows for Z ∈ E◦ immediately from (b). For Z /∈ E , the
statement follows from (48) together with (28) and (50).

To prove part (a) of Theorem 3, note that (12) follows (formally) directly from (b):
Choosing α = √

2κν(X), k = 1 and z1 = z2 = iy, we obtain
∫

1

N
ρ1
N ,Tr2

(X + iY )dY =
∫

1

N2ν(X)
ρ1
N ,Tr2

(
X +

iy

Nν(X)

)
dy

→ ν(X)
1

2π

∫ π

−π
exp

[
−α2u2

2

]∫
R

√
2√

πα
exp

[
−2y2

α2 − 2uy

]
dydu = ν(X), N → ∞.

To make this argument rigorous, we need to show interchangeability of limit and inte-
gration. In view of (28), Lemma 5 and (50), it suffices to show uniform integrability of
y �→ N−2ρ1

a,b(X + iy/N ). From (38), we get with z := X + iy/N

Ka(z, z) =
√
a2 − b2 |ca |2

2π2 exp

[
−a(a + b)y2

bN2

]∫
R

exp

[
− (a + b)(a − b)2

4ab
u2 − 2c2auy

N

]

×
∫
R

exp

[
− (a + b)2(a − b)

4ab
v2

]

× Q

(
N ,

c2ab

2a
(u2 − v2) +

a(a − b)

a + b
X2 − i(a − b)vX

)
dvdu.

As in the proof of Proposition 8, v can be assumed to be small. However, in contrast to
that proof, Eq. (45) alone is not enough to see that Ka(z, z) decays in y. We will use (45)
as a bound for the incomplete gamma function for |u| ≤ M , where M > 0 is chosen
such that

c2ab

2aN
M2 +

a(a − b)

(a + b)N
X2 > 1 + ε (51)

for some ε > 0 and all N . For |u| ≤ M we have by (45)

∣∣∣∣Q
(
N ,

c2ab

2a
(u2 − v2) +

a(a − b)

a + b
X2 − i(a − b)vX

)∣∣∣∣ = O(1),

where theO term is uniform in u, v and N . For |u| > M , we use Lemma 12 and (51) to
get the bound

∣∣∣∣Q
(
N ,

c2ab

2a
(u2 − v2) +

a(a − b)

a + b
X2 − i(a − b)vX

)∣∣∣∣ = O
(
exp

[
−Cu2

])

for someC > 0 and where theO-term is again uniform in u, v and N . In total, this gives
the bound

Ka(z, z) = O
(
exp

[
−a(a + b)y2

bN 2

] ∫
R

exp

[
−C ′u2 − 2c2auy

N

]
du

)
,
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where C ′ >
(a+b)(a−b)2

4ab . As we have

∫
R

exp

[
− (a + b)(a − b)2

4ab
u2 − 2c2auy

N

]
du = O

(
exp

[
a(a + b)y2

bN 2

])

and C ′ >
(a+b)(a−b)2

4ab , we arrive at

Ka(z, z) = O
(
exp

[
−C ′′y2

])
(52)

for some C ′′ > 0. Here we also used that (a+b)(a−b)2

4ab = O(1) and a(a+b)
bN2 = O(1). The

bound (52) clearly shows that Ka is integrable in y which completes the proof of (12).
Finally, to prove (11), it suffices, analogously to above, to consider Ka(Z , Z),

Z = X + iY , Y �= 0. From (47), we get

Ka(Z , Z) =
√
a2 − b2c2a
2π2

∫
R

exp
[

− (a − b)2(a + b)

4ab

(
u +

2a

a − b
Y

)2 ]

×
∫
R

exp
[

− (a + b)2(a − b)

4ab

(
v − 2ia

a + b
X

)2 ]
Q

(
N ,

c2a(t)b

2a(t)
(u2 − v2)

)
dvdu.

In contrast to the strongly non-Hermitian situation, here the term 2a/(a − b) in front of
Y is of order N which leads after a shift to an expression Q(N ,CN ) with CN > 0 of
order N 2. Now, (34) and (35) give the result. ��

5. Proof of Main Theorems for the Elliptic Fixed Trace Ensemble

The first aim is an explicit expression of the correlation functions of PN ,FT similar to
(28). We start by adapting notation. Let KFT = limγ→∞ γ K denote the limit whose
existence has been shown in Lemma 5. Define

â(t) := N

(
1

1 − τ 2
+ 2KFT

)
− i t, â := â(0) and recall b = τN

1 − τ 2
. (53)

Lemma 13. We have for any τ ∈ (−1, 1), K p > 0, N ≥ 2, 1 ≤ k ≤ N − 1 and z ∈ C
k

ρk
N ,FT(z) = 1

CN ,FT

∫
R

Eâ,b exp
[
i t (Tr J̃ J̃ ∗ − NKp)

]
ρk
â(t),b(z)dt, (54)

where CN ,FT = CN ,FT(k, τ, Kp) is a positive constant with the property

0 < C1 ≤ CN ,FT ≤ C2 < ∞ (55)

for all N ≥ 2 and some constants C1,C2 not depending on N or τ ∈ (−1, 1).

Remark 14. CN ,FT is determined by the normalization condition

CN ,FT = (N − k)!
N !

∫
Ck

∫
R

Eâ,b exp
[
i t (Tr J̃ J̃ ∗ − NKp)

]
ρk
â(t),b(z)dtdz.

A more constructive expression of CN ,FT will be given in the proof below (see (59)).
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Proof of Lemma 13. By construction, we have for each k and N

lim
γ→∞ ρk

N ,Tr2
(dz) = ρk

N ,FT(dz)

in the weak sense. We will show in this proof that ρk
N ,Tr2

(z) converges, as γ → ∞,
pointwise in z to a function given by the r.h.s. of (54). Using (9) and the dominated
convergence theorem, (54) will follow.

Let us consider the r.h.s. of (28), starting with

√
γ Ea,b exp

[
−γ (Tr J̃ J̃ ∗ − N (Kp + K ))2

]
= √

γ

∫ ∞

0
e−γ y fN ,γ (y)dy, (56)

where fN ,γ denotes the density of the distribution of Y 2
N under Pa,b and where

YN := Tr J̃ J̃ ∗ − N (Kp + K ). Defining FN ,γ as the distribution function corresponding
to fN ,γ , we find for y ≥ 0

FN ,γ (y) = Pa,b(−√
y ≤ YN ≤ √

y) = F̃N ,γ (
√
y) − F̃N ,γ (−√

y),

F̃N ,γ denoting the distribution function of YN . With the corresponding density f̃N ,γ we
see

fN ,γ (y) = 1√
y

· 1
2

(
f̃N ,γ (

√
y) + f̃N ,γ (−√

y)
)

. (57)

To compute the large γ asymptotics of (56), we need to determine the behavior of fN ,γ

and thus of f̃N ,γ for γ → ∞. To establish (54) for all N , we will first treat all terms
N -independently. To study the large N behavior in (55), we will then invoke asymptotic
arguments (in N ).

Recall from (24) that YN can be written as a positive linear combination of four
independent, rescaled chi-squared distributed variables. The distribution function of
a chi-squared distributed random variable with n degrees of freedom is given by the
normalized lower incomplete gamma function

P
(n
2
,
y

2

)
:= 1 − Q

(n
2
,
y

2

)
.

For example, for the first summand in (24),

Pa,b

(
λ̄2+

√
2
Z1 − N (N − 1)√

2N 2
≤ √

y

)
= P

(
N (N − 1)

2
,
N (N − 1)

2
+
N

√
y

2λ̄2+

)
. (58)

The other three summands in (24) can be treated analogously. By the independence
of the summands in (24) we find that f̃N ,γ is the convolution of first derivatives of
normalized incomplete Gamma functions. By the positivity of the density of chi-squared
distributions and the fact that, because of the centering in Z1 (and Z2), y = 0 corresponds
to an interior point of the support of the density of the centered random variable, it is
clear that f̃N ,γ (0) > 0. f̃N ,γ depends on γ via the quantities λ̄+, λ̄−, σ 2

D,� and σ 2
D,�,

which all have (non-zero) limits by Lemma 5 as γ → ∞. It follows that f̃N (0) > 0,
where f̃N (y) := limγ→∞ f̃N ,γ (y). Because derivatives (w.r.t. the second variable) of the
gamma function P(w, y) in (58) decay for large y, f̃N ,γ actually converges uniformly
in y ∈ R and is hence uniformly bounded.
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For the asymptotics of (56), only the value f̃N (0) is important. Due to uniformity, it
is assumed on the whole interval (−γ −ε, γ −ε), ε > 0 small enough. Larger values of y
are irrelevant here because of the exponential decay of exp(−γ y). Hence the substitution
y′ = √

y gives with (57)

lim
γ→∞

√
γ

∫ ∞

0
e−γ y fN ,γ (y)dy = √

π f̃N (0) =: CN ,FT. (59)

Let us consider the other terms in (28). Clearly, exp[−t2/(4γ )] converges to 1 for
γ → ∞. Because of the continuous dependence on γ K (and the continuous depen-
dence of K on γ itself by Lemma 5), we have ρk

a(t),b → ρk
â(t),b pointwise. From (33), it

follows easily that (for N fixed) ρk
a(t),b and ρk

â(t),b are bounded in γ and z. Furthermore,

in t ,
∣∣∣ρk

a(t),b(z)
∣∣∣ ∼ |t |kN . It remains to investigate Ea,b exp

[
i t (Tr J̃ J̃ ∗ − N (Kp + K ))

]
.

By the arguments above, it is the product of Fourier transforms of four, partially centered,
chi-squared distributions with in total 2N 2 degrees of freedom. Thus

Ea,b exp
[
i t (Tr J̃ J̃ ∗ − N (Kp + K ))

]
decays in t like |t |−N2

. Recall that k < N and

N ≥ 2. We find that the decay of Ea,b exp
[
i t (Tr J̃ J̃ ∗ − N (Kp + K ))

]
offsets the in-

crease in t of the correlation functions. By Lemma 5, K converges to 0 as γ → ∞
and as before, a → â. Employing arguments analogous to those discussing the uniform

convergence of f̃N ,γ to f̃N , we find thatEa,b exp
[
i t (Tr J̃ J̃ ∗ − N (Kp + K ))

]
converges

uniformly in t to Eâ,b exp
[
i t (Tr J̃ J̃ ∗ − NKp)

]
as γ → ∞. Keeping the decay in mind,

we can apply the dominated convergence theorem and interchange the limit γ → ∞
with the t-integral, thereby proving (54).

To establish (55), by (59) we need to study the large N asymptotics of f̃N (0). Recall
that f̃N is the convolution of first derivatives of incomplete Gamma functions. Let us
again exemplarily look at (58) and invoke Lemma 12 for its large N behavior. In the
notation of Lemma 12, we have

η =
√
y

λ̂2+(N − 1)
+O

(
1

N 3/2

)

where λ̂+ := limγ→∞ λ̄+. Thus η
√
N (N − 1)/4 is of order 1 in N . Since Lemma 12

shows the convergence of P(w,wz) (as w → ∞) to the error function erf := 1 − erfc
to be uniform in z in (sufficiently large) complex domains and P(w, ·) is an analytic
function (in the second variable), the convergence extends to all derivatives by Cauchy’s
integral formula. Hence the density of the first summand in (24) converges to a Gaussian
density as N → ∞, uniformly on R. Similar convergence holds for the three other
summands, where those corresponding to Z3 and Z4 play the role of delta functions in
the limit. We conclude that f̃N converges uniformly in y to a Gaussian density as well.
The uniformity in τ can be seen from (18), (19) and (20). This proves (55) and thus the
lemma. ��
Proof of Theorem 1 and Theorem 3 for ρk

N ,FT. Parts (a) of the theorems follow from
parts (b) as in the case of the trace-squared ensemble, see Sect. 4. We will again deal
with weak and strong non-Hermiticity simultaneously.



Universality at Weak and Strong Non-Hermiticity 1137

Starting from (54), we study

ρ̌k
N ,FT(ž) − det(Kstrong /weak(z j , zl)) j,l≤k

= 1

CN ,FT

∫
R

Eâ,b exp
[
i t (Tr J̃ J̃ ∗ − NKp)

]

×
(
ρ̌k
â(t),b(ž) − det(Kstrong /weak(z j , zl)) j,l≤k

)
dt, (60)

ρ̌k
N ,FT and ž indicating appropriate rescaling like for the trace-squared ensemble (see (29)

and (30)). For the limit of weak non-Hermiticity, the constant KFT in the definition of â
in (53) has to be replaced by K̄FT, which has been defined in Lemma 5. By Lemma 13,
the constant CN ,FT has no influence on the possible convergence of (60). The difference
of correlation functions in the integral converges to 0 uniformly for |t | = O(

√
log N )

by Propositions 8 and 10. This will not be the case for t being large in comparison to N .

In fact,
∣∣∣ρ̌k

â(t),b(ž)
∣∣∣ will increase as |t |kN for N fixed, as seen in the proof of Lemma 13.

In that proof, we also saw that
∣∣∣Eâ,b exp

[
i t (Tr J̃ J̃ ∗ − NKp)

]∣∣∣ has a stronger decay in

t for N fixed. Here, it is our task to show a version of this statement which is uniform in
N .

To this end, let us consider first

Eâ,b exp
[
i t (Tr J̃ J̃ ∗ − NKp)

]
=

∫
R

eity f̃N (y)dy.

Recall that Tr J̃ J̃ ∗ −NKp is the sum of four (partially centered) indepedent chi-squared
random variables. Exemplarily,

∣∣∣∣Eâ,b exp

[
i t

√
2λ̄2+

(
Z1 − N (N − 1)√

2N 2

)]∣∣∣∣

=
∣∣∣∣∣∣

(
1 − 2i

λ̄2+t√
N 2

)− N (N−1)
2

exp

[
−i λ̄2+t

N (N − 1)√
N 2

]∣∣∣∣∣∣

=
(
1 +

(λ̄2+t)
2

N 2/2

)−N (N−1)/4

= exp

(
−(N (N − 1)/4) log

(
1 +

(λ̄2+t)
2

N 2/2

))
. (61)

Let us now consider ρ̌k
â(t),b(ž). It is instructive to look first at the simpler case τ = 0

as the more complicated case τ �= 0 will be partly reduced to this situation. ρk
â(t),b(z) is

(up to constants) the sum of k! summands, each being a k-fold product of terms of the
form

Kâ(t)(z j , zl) = â(t)

π
exp

[
− â(t)

2
(
∣∣z j

∣∣2 + |zl |2 − 2z j z̄l)

]
Q(N , â(t)z j z̄l),

thus it suffices to bound Kâ(t). Here, z j , zl = Z +O(1/N ). From Lemma 12, (35) and
(36), we see that

∣∣Kâ(t)(z j , zl)
∣∣ gets large only if N = O(|t |) in which case it might

grow as exp(O(N log |t/N |)). Such a growth is suppressed by the decay in (61).
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Now assume τ �= 0. We will show first that (40) (with â(t) instead of a(t)) can
effectively be replaced by

√
4π â(t)b

(̂a(t) + b)2(̂a(t) − b)
Q

(
N ,

c2â(t)b

2̂a(t)
u2 +

c2â(t)b(z1 + z2)2

2̂a(t)(1 + b/̂a(t))2

)
, (62)

independently of the size of t . To establish this, we have to see that the possible growth
of

exp

[
−c2â(t)b

2̂a(t)
(u2 − v2) + i

c2â(t)b(z1 + z2)

â(t) + b
v − c2â(t)b(z1 + z2)2

2̂a(t)(1 + b/̂a(t))2

]
, (63)

as v → ∞, is negligible compared to the decay of

exp

[
− (̂a(t) + b)2(̂a(t) − b)

4̂a(t)b
v2

]
. (64)

The decisive term in (63) is as before

exp

[
c2â(t)b

2̂a(t)
v2

]
. (65)

We saw in (41) and (42) that for the trace-squared ensemble, the exponent of (64) was
larger than the one of (65). Since

(̂a(t) + b)2(̂a(t) − b)

4̂a(t)b
= c2â(t)b

2̂a(t)
·
(
1 +

â(t)

b

)

and |1 + â(t)/b| > 1 for any N , t , this remains to be true for the fixed trace ensemble.
Recall that the contour of integration is R/ĉa(t) + Cz1,z2 , where (cf. (39))

Cz1,z2 = i(z1 + z2)
â(t)

â(t) + b
. (66)

It is a straightforward, but cumbersome task to compute the large N , large t asymp-
totics of the involved terms. For instance, in the situation of strong non-Hermiticity the
asymptotics of â(t)/(̂a(t) + b) read

lim
N ,t→∞

â(t)

â(t) + b
=

⎧⎪⎪⎨
⎪⎪⎩

1+2KFT(1−τ 2)

1+τ+2KFT(1−τ 2)
, if t = o(N ),

1+2KFT(1−τ 2)−is
1+τ+2KFT(1−τ 2)−is

, if t = sN ,

1, if t � N .

Here KFT has been defined in Lemma 5. In the situation of weak non-Hermiticity, we
have

lim
N ,t→∞

â(t)

â(t) + b
=

⎧⎪⎨
⎪⎩

1
2 , if t = o(N 2),

1−ir
2−ir , if t = r N 2,

1, if t � N 2.
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It follows by (66) that Cz1,z2 is always O(1). This allows to shift the contour such that
it passes through the origin.

Note that since (38) originates from (37) and Cz1,z2 = O(1), it is clear that (64)
decays onR/ĉa(t). To see that the integral for the fixed trace analog of (40) concentrates
on v = 0, it is necessary to know that the exponent of (64) goes to infinity as N , t → ∞.
To this end, we note firstly

(̂a(t) + b)2(̂a(t) − b)

4̂a(t)b
= c2â(t)

â(t)

2(̂a(t) + b)

and secondly the asymptotics for c2a(t) as N , t → ∞. In the situation of strong non-
Hermiticity

c2â(t) ∼

⎧⎪⎨
⎪⎩

N
2τ (1 + 4KFT + 4K 2

FT(1 − τ 2)), if t = o(N ),

N
2τ (1 + 4KFT + 4K 2

FT(1 − τ 2)) − isN
τ

(1 + 2KFT(1 − τ 2)) − s2N (1−τ 2)
2τ , if t = sN ,

− t2(1−τ 2)
2τN , if t � N ,

and in the situation of weak non-Hermiticity

c2â(t) ∼

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

NCK̄FT
2 , if t = o(N ),

NCK̄FT
2 − isN , if t = sN ,

−i t, if N � t � N 2,

−ir N 2 − r N2α̃2

2C2
K̄FT

, if t = r N 2,

− t2α̃2

2C2
K̄FT

N2 , if t � N 2,

where CK̄FT
:= 1 + 4K̄FT. From here it is straightforward to check (62) analogously to

the proofs of Propositions 8 and 10.
For the u-integral in the fixed trace analog of (38) we have to distinguish two cases.

In the situation of weak non-Hermiticity and t = O(N ), the integral can be treated as in
the proof of Proposition 8 and the result of Proposition 8 holds with error O(1) instead
of O(log N/

√
N ). In all other situations, the u-integral can be treated analogously to

the v-integral yielding

Kâ(t)(z1, z2) ∼ â(t)b

π

|̂a(t) + b| |̂a(t) − b|√
(̂a(t) + b)(̂a(t) − b)

× exp

[
− â(t)

2
(|z1|2 + |z2|2) + ib

2

(
�(z22) − �(z21)

)
+ â(t)z1z2

]

× Q

(
N ,

â(t)2b

â(t)2 − b2
(z21 + z2

2) +
â(t)(̂a(t)2 + b2)

â(t)2 − b2
z1z2

)
.

From here, the same arguments as for the case τ = 0 (see the paragraph following (61))
can be invoked. It follows that the function

t �→ Eâ,b exp
[
i t (Tr J̃ J̃ ∗ − NKp)

] (
ρ̌k
â(t),b(ž) − det(Kstrong /weak(z j , zl)) j,l≤k

)

(67)
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is uniformly integrable in N , hence limit and integration can be interchanged. To see
the claimed rates of convergence, we use Propositions 8 and 10 for |t | = O(

√
log N ).

For |t | = o(N ), (61) shows that (67) has sub-Gaussian decay and for even larger |t | the
polynomial decay is sufficient. ��
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